CONVERGENCE TO EQUILIBRIUM FOR SYSTEMS OF PARABOLIC EQUATIONS WITH A MATRIX POTENTIAL

JOCHEN GLÜCK

ABSTRACT. On a bounded domain $\Omega\subseteq \mathbb{R}^d,$ consider the coupled system of parabolic equations

$$\frac{d}{dt} \begin{pmatrix} u_1 \\ \vdots \\ u_N \end{pmatrix} = \begin{pmatrix} A_1 u_1 \\ \vdots \\ A_N u_N \end{pmatrix} + V \begin{pmatrix} u_1 \\ \vdots \\ u_N \end{pmatrix} \qquad (t \ge 0),$$

where A_1, \ldots, A_N are elliptic operators on Ω with Neumann boundary conditions and where $V : \Omega \to \mathbb{R}^{N \times N}$ is a matrix-valued potential. While the solutions to a single parabolic equation on a bounded domain are well-known to converge to an equilibrium as $t \to \infty$, the matrix potential V can for instance introduce the existence of periodic solutions to the equation.

In this talk, we discuss sufficient conditions for the solutions to the above system to converge as $t \to \infty$. We shall see that there is a close connection between this question and geometric properties of the potential V with respect to the ℓ^p -unit ball in \mathbb{R}^N – more precisely speaking, we impose the assumption on V to be *p*-dissipative.

What makes our analysis interesting is the fact that completely different methods are required for the cases p = 2 and $p \neq 2$: in the first case, standard Hilbert space techniques can be used, while the case $p \neq 2$ requires more sophisticated methods from spectral theory, the geometry of Banach spaces and semigroup theory.

This talk is based on joint work the Alexander Dobrick (Christian-Albrechts-Universität zu Kiel).

Email address: jochen.glueck@uni-passau.de