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Abstract. On a bounded domain Ω ⊆ Rd, consider the coupled system of

parabolic equations
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where A1, . . . , AN are elliptic operators on Ω with Neumann boundary con-

ditions and where V : Ω → RN×N is a matrix-valued potential. While the
solutions to a single parabolic equation on a bounded domain are well-known to

converge to an equilibrium as t→∞, the matrix potential V can for instance
introduce the existence of periodic solutions to the equation.

In this talk, we discuss sufficient conditions for the solutions to the above

system to converge as t → ∞. We shall see that there is a close connection
between this question and geometric properties of the potential V with respect

to the `p-unit ball in RN – more precisely speaking, we impose the assumption

on V to be p-dissipative.
What makes our analysis interesting is the fact that completely different

methods are required for the cases p = 2 and p 6= 2: in the first case, standard

Hilbert space techniques can be used, while the case p 6= 2 requires more
sophisticated methods from spectral theory, the geometry of Banach spaces

and semigroup theory.

This talk is based on joint work the Alexander Dobrick (Christian-Albrechts-
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