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Extensive literature has been devoted to study the operators for which the maxi-
mum and/or the anti-maximum principle holds. Combining an idea of Takáč (1996),
with those from the recent theory of eventually positive C0-semigroups, we look at
some necessary and sufficient conditions for uniform (anti-)maximum principles to
hold in an abstract setting of Banach lattices.

More precisely, if A : dom(A) ⊆ E → E is a closed, densely defined, and real
operator on a complex Banach lattice E (or, in particular, an Lp-space), then we
consider the equation

(λ−A)u = f

for real numbers λ in the resolvent set of A. We ask whether f ≥ 0 implies u ≥ 0 for
λ in a right neighbourhood of an eigenvalue. In this case, we say that the uniform
maximum principle is satisfied. Analogously, when the implication f ≥ 0 implies
u ≤ 0 holds for λ in a left neighbourhood of an eigenvalue, we say that the uniform
anti-maximum principle holds.

We will also see how these abstract results can be applied to various concrete
differential operators. In addition, we shall look at a characterization for both the
individual maximum and anti-maximum principle to hold simultaneously. This is
joint work with Jochen Glück.
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