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Convex Extensions of Partially Ordered Rings 
Niels Schwartz*) 

A series of lectures given at the conference  
"Géométrie algébrique et analytique réelle" 
Kenitra, Morocco, September 13 – 20, 2004 

 
This series of lectures is about algebraic aspects of real algebraic geometry. Partially ordered 
rings (porings) occur very naturally in real algebraic geometry, as well as in other branches of 
mathematics. There is a rich classical theory of porings (the beginnings dating back to the 
1930s and 1940s). To a large extent it was inspired by the study of rings of continuous 
functions in analysis and topology. I will mention rings of continuous functions from time to 
time, but will not attempt an in-depth discussion.  
 With the rise of real algebraic geometry in the last 25 years there also arose a need for 
algebraic methods that are specifically adapted to real algebraic geometry, as opposed to 
general algebraic geometry. For a long time commutative algebra has been the answer to a 
similar need in general algebraic geometry. For real algebraic geometry, an important part of 
the answer is the theory of porings. However, the classical theory of porings frequently does 
not address the questions from real algebraic geometry. Therefore it is necessary to develop a 
more comprehensive theory of porings that includes rings of continuous functions, but also 
deals with phenomena occurring in real geometry. This is a major task that is not nearly 
finished at the present time.   
 First I give the definition of porings: 
 
Definition 1 
A partially ordered ring (poring) is a ring A (all rings are commutative with 1) together with 
a subset P ! A  that satisfies the following conditions 

• P + P ! P ; 
• P !P " P ; 
• A

2
! P ; 

• P!"P = 0{ } . 
The set P is called the positive cone of A. Ω 
 
This presentation of a partial order differs from the most intuitive one. The basic idea is that a 
partial order encodes the concept of "size" or "precedence" for the elements of a set, group, 
ring or other structure – given any two elements a and b, it may happen that a is larger than  
b, or that b is larger than a, or that the two are incomparable. A binary relation is the most 
natural way to express such relationships between elements. Of course, the relation must 
satisfy certain axioms to capture the idea of comparison by size. If it does so then it is called 
an order relation. In the case of algebraic structures, the order relation also has some 
monotonicity properties. The definition above looks differently, it does not talk about a binary 
relation. However, the positive cone of a partially ordered ring can be used to define a binary 
relation: 
 

a ! b  if and only if b ! a "P . 
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One checks easily that the relation defined in this way has the following properties: 
• !a "A :a # a  
• !a,b "A : a # b& b # a$ a = b( )  
• !a,b,c "A : a # b& b # c$ a # c( )  
• !a,b,c "A : a # b$ a + c # b + c( )  
• !a,b,c "A : a # b& 0 < c$ a % c # b % c( )  
• !a "A : 0 # a

2  
The first three properties express that the relation is an order relation; the fourth and fifth 
properties say that addition and multiplication by certain elements preserve the order relation, 
thus establishing a connection between the order relation and the algebraic operations of the 
ring; the last property makes sure that many elements of the ring can be compared with each 
other and thus gives substance to the order relation. 
 Conversely, for any binary relation "≤" with these properties one defines the set 
P = a !A 0 " a{ } . Then A is a partially ordered ring with positive cone P. The 
correspondence between partial order relations and positive cones is bijective; hence positive 
cones will be identified with the corresponding order relations.  
 There are a many variations of the definition of a poring. Some of them make a very 
considerable difference. But in this series of lectures only the one given above will be used, 
and, to avoid confusion, alternative definitions will not be discussed.  
 In this lecture I make one more general assumption: All porings are reduced, i.e., there are 
no nilpotent elements. This hypothesis has far-reaching consequences. It is known that 
general porings can be much more complicated than reduced ones. This is true in particular 
with respect to category-theoretic properties. In fact, a considerable part of the theory of 
porings has been developed only for reduced porings so far. If I do not explicitly say 
otherwise, porings are always reduced.  
 Here are some examples of porings that are known to every mathematician: 
 
Example 2 
Some of the most basic rings of numbers are totally ordered (i.e., the axioms of porings hold 
and, in addition, any two elements can be compared), e.g., the integers, the rational numbers 
and the real numbers. The integers can be considered as a subring of every poring.  Ω 
 
Example 3 
If X is a set and C,T( )  is a poring then the ring A = C

X  of all maps from X to C is partially 
ordered by pointwise comparison of maps, i.e., f ! g  if and only if f x( ) ! g x( )  for all 
x !X . There are many applications in which the poring C,T( )  is even totally ordered. Ω 
 
Example 4 
If B,Q( )  is a poring and if A ! B  is a subring then P = A!Q  is the positive cone for a 
partial order of A. In this case A,P( )  is a sub-poring of B,Q( ) . Ω 
 
Example 5 
The previous two examples can be combined with each other: Let X be a topological space. 
The ring  A = R

X  is partially ordered. The set 
 
C X,R( )  of continuous functions is a subring of 
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A, hence it is a poring through pointwise comparison of functions.  
 If one speaks about rings of continuous functions, then one always means this poring. 
Rings of continuous functions are important invariants of topological spaces. Topologists 
have studied them intensively for a long time. Rings of continuous functions were one of the 
main motivations for the development of a general theory of porings. 
 In this lecture it is always assumed that topological spaces are completely regular. The 
reason is that rings of continuous functions are not suited to the study of more general classes 
of spaces: If X is any topological space then there is a natural continuous map 
 X! R

C X ,R( )
: x! x̂ , where 

 
x̂ :C X,R( )! R  is evaluation at x. If  !X " R

C X ,R( )  is the image 
of this map with the subspace topology then the natural map 

 
C !X ,R( )" C X,R( )  is an 

isomorphism, i.e., the rings of continuous functions cannot distinguish between X and !X . 
The space !X  is completely regular.  Ω 
 

A ring is said to be real if a
i

2

i=1

r

! = 0  always implies 
 
a
1
=… = a

r
= 0 . If A is a real ring then 

A
2

! , the set of sums of squares in A, is the positive cone of a partial order. (This can be 
checked easily.) Many real rings carry various different partial orders. The smallest one (i.e., 
the one with the smallest positive cone) is always formed by the sums of squares. 
 
Example 6 
A field can be partially ordered if and only if it can be totally ordered, if and only if it is real. 
Zorn's Lemma shows that the positive cone of a partial order of a field is contained in a 
maximal one. The maximal partial orders are, in fact, total orders. A partial order of a field is 
the intersection of all the total orders that contain it. Real fields have characteristic 0.  
 Suppose that K ,K

+( )  is a totally ordered field. Then an algebraic extension of K is not 
necessarily real, hence not every algebraic extension can be ordered, e.g., the algebraic 
closure can never be ordered. However, there are maximal algebraic extensions that are real; 
these fields are called real closed. Real closed fields always carry a unique total order; the 
positive cone consists of the squares. Every totally ordered field has an algebraic extension 
that is real closed and whose total order extends the given total order of K. This real closed 
extension is unique in a very strong sense; it is called the real closure of K ,K +( ) . Ω 
 
Example 7 
If A is a real ring and B = A X

i
i !I"# $%  is a polynomial ring then B is also real. Since totally 

ordered fields are real, all polynomial rings with coefficients in  R  are real, hence are partially 
ordered by the sums of squares. It is important to note that these rings also carry other partial 
orders (e.g., see Example 9 and Example 10 below). Polynomial rings over the real numbers 
are among the most important rings in real algebraic geometry. Ω 
 
Example 8 
If A is a real ring and if X is a set then the ring AX  is a real ring. Subrings of real rings are 
always real. Thus, rings of continuous functions are real rings. In fact, in rings of continuous 
functions every sum of squares is even a square, and the pointwise partial order coincides 
with the partial order given by the (sums of) squares. Ω 
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Example 9 
In the previous example, let  X = R

n  for some 1 ! n "N . Then a polynomial is positive with 
respect to the pointwise partial if and only if it is positive semi-definite. If n = 1  then this 
partial order coincides with the sums of squares. If n ! 2  then the two partial orders do not 
coincide. Hilbert (in 1888) was the first to prove this fact; the first explicit example of a 
positive semi-definite polynomial that is not a sum of squares was given by Motzkin in 1967:  
 

X
4
!Y

2
+ X

2
!Y

4
+1" 3 ! X

2
!Y

2 . 
 
Today many other examples are known. Ω 
 
Example 10 
If A,P( )  is a partially ordered ring and if M ! A  is any subset then the set 
 

P M[ ] = p
i
! a

ij

j=1

si

"
i=1

r

# r, s
i
$N & p

i
$P & a

ij
$M

%
&
'(

)
*
+(

 

 
satisfies all conditions of a partial order except possibly the last one, i.e., it can happen that 
P M[ ]!"P M[ ] # 0{ } . Thus P M[ ]  is a partial order if and only if the condition 
P M[ ]!"P M[ ] = 0{ }  is satisfied. If P M[ ]  is a partial order, then it is called the partial 
order generated by M over P. 
 Let 

  
A = R X

1
,…,X

n[ ]  be partially ordered by the sums of squares and let 
 
f
1
,…, fk !A , set 

  
X = x !R

n
f
1
x( ) " 0 &…& fk x( ) " 0{ } . Then 

 
Q = A

2

! f
1
,…, fk[ ]  is a partial order of A if 

the set X has nonempty interior.  Ω 
 
The maps that are used to relate different porings to each other are the monotonic or order 
preserving homomorphisms: If A,P( )  and B,Q( ) are porings, a homomorphism f :A! B  is 
order preserving if f P( )! Q .  
 The porings together with the order preserving homomorphisms form the category of 
porings, POR. This is a very large category, all rings of continuous functions are among its 
objects, as well as the porings that arise in real algebraic geometry, e.g., partially ordered 
polynomial rings. The category is closed under many constructions. It is complete and co-
complete. In this respect it behaves much more favorably than either the class of rings of 
continuous functions or the class of partially ordered polynomial rings.  
 To understand the advantage of using a category of porings in which many ring-theoretic 
constructions are possible, suppose that you study some question about rings of continuous 
functions. Your arguments may require the use a ring theoretic construction. Very often such 
constructions lead to rings that are porings, but not rings of continuous functions. General 
porings, even if they are not themselves rings of continuous functions, can contribute to a 
better understanding of rings of continuous functions. Therefore it is desirable to work in a 
more flexible category that contains all rings of continuous functions and admits as many ring 
theoretic constructions as possible. The literature contains several approaches, e.g., one may 
study f-rings, a special class of lattice-ordered rings. However, from the point of view of real 
algebraic geometry, this is a bad choice – the porings that arise in real algebraic geometry are 
rarely f-rings. Therefore, the category POR is more appropriate if one wants to develop a 
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theory that also includes the porings from real algebraic geometry.  
 Completeness of POR implies the existence of a terminal object, which is the zero ring, as 
one checks easily. Similarly, co-completeness of POR implies the existence of an initial 
object, which is the totally ordered ring of integers.  
 One should note that well-known category-theoretic constructions, if they are performed in 
the category POR, can lead to results that are quite different from what the underlying rings 
yield in the category of rings. Here is an example with fibre sums: 
 
Example 11 
In the category of rings the fibre sum, i.e., the tensor product, of two copies of the field 

 
Q 2( )  over itself is 

 
Q 2( ) . Now consider 

 
Q 2( )  with  

• the total order T
1
, determined by 2 > 0 ,  

• the total order T
2
, determined by 2 < 0 , and  

• the partial order P = T
1
!T

2
.  

By co-completeness of the category POR, the fibre sum of the porings 
 
Q 2( ),T1( )  and 

 
Q 2( ),T2( )over 

 
Q 2( ),P( )  exists, say 

 

 

Q 2( ),P( ) !"! Q 2( ),T1( )
# # $

1

Q 2( ),T2( ) $2! "! A,Q( )

 

 
Looking only at the underlying rings, there is a canonical homomorphism 

 
f :Q 2( )!Q 2( )

Q 2( ) = Q 2( )" A , which must be surjective since otherwise the ring A 

can be replaced by the image of f. The maps !
1
 and !

2
 coincide on the underlying rings. 

Now taking into account that both maps are order preserving one gets !
1

2( )"Q  and 

!
2

2( )"#Q , which is possible only if A is the zero ring. Ω 
 
Construction – rings of quotients 
Suppose that A,P( )  is a poring and that S ! A  is a multiplicative subset. Let i

S
:A! A

S
 be 

the canonical homomorphism into the ring of quotients. The subset  
 

P
S
=

a

s
!t "S :a # s # t 2 "P

$
%
&

'
(
)
* A

S
 

 
is a partial order: The conditions P

S
+ P

S
! P

S
, P

S
!P

S
" P

S
, and A

S

2
! P

S
 are trivially 

satisfied. To see that P
S
!"P

S
= 0{ } , suppose that 

a

s
!P

S
"#P

S
, say a ! s ! t 2 "P  and 

!a " s "u
2
#P . Then also a ! s ! t 2 !u2 "P  and !a " s " t 2 "u2 #P . This implies a ! s ! t 2 !u2 = 0 , 
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and it follows that 
a

s
= 0 , which proves the claim. 

 The canonical homomorphism i
S
:A! A

S
 is a homomorphism of porings. The poring 

A
S
,P

S( )  is called the quotient poring of A,P( )  with denominators in S. The quotient poring 
has the same universal mapping property as quotient rings (without partial order): If 
f : A,P( )! B,Q( )  is a map of porings with f S( )! B

"  then there is a unique map 
fS : AS ,PS( )! B,Q( )  such that 

 
f = fS ! iS . 

 If S ! A  is multiplicative, then so is S
2
= s

2
s !S{ } . The canonical map 

A
S
2 ,P

S
2( )! A

S
,P

S( )  is an isomorphism. Thus, one may always assume that the set of 
denominators of a quotient poring consists of positive elements. 
 The construction can be applied to a partially ordered domain A,P( ) , in particular. The 
quotient poring construction yields a partial order of the quotient field, say qf A( ),Q( ) . By 

Zorn's Lemma there is a maximal partial order Q  of qf A( )  that contains Q. A simple 

argument shows that Q  is a total order of the field. Thus, composing the canonical map from 

A,P( )  to qf A( ),Q( )  with the map from qf A( ),Q( )  into its real closure one obtains an order 
preserving map into a real closed field.  
 
Construction – factor rings and convex ideals 
If f : A,P( )! B,Q( )  is a homomorphism of porings then the kernel is a convex ideal. An 
ideal I is said to be convex if it has the following property: If a,b !P  and if a + b !I  then 
a,b !I . The following statement is equivalent to the definition: If a ! c ! b  and if a,b !I  
then also c !I . Note that kernels of poring homomorphisms are also radical ideals since the 
codomain is reduced.  
 Now suppose that I ! A  is a convex radical ideal. The factor ring A I  is a reduced ring. 
Let ! :A" A I  be the canonical homomorphism. Then ! P( )" A I  is the positive cone of a 
partial order: Once again, the first three conditions are clearly satisfied, only the last one 
needs to be checked. So, let a + I !" P( )#$" P( ) , say a + I = p + I = !q + I , p,q !P . 
Then p + q !I , which implies p,q !I  (by convexity), and this means that a + I = 0 + I  in 
A I . The poring A I ,! P( )( )  is the factor poring of A,P( )  modulo I. 
 
The connection between the convex prime ideals of the poring A,P( )  and those of a quotient 
poring A

S
,P

S( ) , resp. those of a factor poring A I ,! P( )( ) , is the same as between the prime 
ideals of ring and the prime ideals of a quotient ring or, resp., a factor ring:  

• If S ! A  is a multiplicative subset then the bijective correspondence 
 

p !Spec A( ) p" S =#{ }$ Spec AS( ) : p$ p % AS , 

Spec AS( )! p "Spec A( ) p# S =${ } :q! iS
%1
q( )  

 
restricts to a bijection between the sets of convex prime ideals.  
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• If I ! A  is a convex radical ideal then the bijective correspondence 
 

p !Spec A( ) p " I{ }# Spec A I( ) : p#$ I p( ) , 

Spec A I( )! p "Spec A( ) p # I{ } :q!$ I

%1
q( )  

 
restricts to a bijection between the sets of convex prime ideals.  

It is also easy to check that the convex radical ideals of A I  correspond bijectively to the 
convex radical ideals of A that contain I.  
 If I is a convex radical ideal then it is the intersection of all prime ideals that are minimal 
among those containing it. In fact, these prime ideals are also convex: To prove this assertion, 
first one forms the partially ordered factor ring A I . Now the claim is the same as to say that 
the minimal prime ideals of this poring are convex. Thus, one may assume that I = 0( ) , and it 
suffices to show that every minimal prime ideal in a poring is convex.  
 Suppose that p is one of the minimal prime ideals of A. Then the quotient ring Ap  is a 
partially ordered field, and the canonical homomorphism A! Ap  is order preserving, hence 
the kernel, which is p, is convex. There is an order preserving homomorphism from the 
partially ordered field Ap  into a real closed field (see Example 6). Thus, the minimal prime 
ideal p is also the kernel of a homomorphism into a real closed field.  
 
It has just been shown that there exist many homomorphisms from porings to totally ordered 
fields, even to real closed fields; every convex prime ideal, in particular every minimal prime 
ideal is the kernel of such a homomorphism. These homomorphisms can be used to introduce 
the real spectrum of a poring. The real spectrum is a contravariant functor from the category 
POR to the category TOP of topological spaces. This is one of the most important and useful 
constructions in real algebraic geometry. It was first proposed by Coste and Roy, however 
without reference to partial orders; the adaptation to porings is a completely trivial matter. 
 Real spectra of porings are not arbitrary topological spaces, rather, they belong to the class 
of spectral spaces. This is the class of spaces that are homeomorphic to prime spectra of 
commutative rings. Spectral spaces were first introduced and studied by Hochster. In these 
lectures it is assumed that the prime spectra of rings are familiar to the audience.  
 The real spectrum functor is denoted by Sper. It will be defined in three steps: 

• The underlying set of Sper A,P( )  for a poring A,P( ) ; 
• the topology of Sper A,P( ) ; 
• the map Sper f( ) :Sper B,Q( )! Sper A,P( )  for a map f : A,P( )! B,Q( )  of porings. 

 First, the underlying set of Sper A,P( )  will be explained: Consider all homomorphisms 

from A,P( )  to real closed fields, f : A,P( )! R,R
2( ) . With each such homomorphism one 

associates the subset f !1 R2( )" A , which is called the prime cone associated with f.  
 Without reference to homomorphisms into real closed fields, a subset ! " A  is called a 
prime cone if it satisfies the following list of conditions: 

• ! +! " ! ; 
• ! "! # ! ; 
• P ! " ; 
• ! " #! = A ; 
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• ! " #!  is a prime ideal, the support of ! . 
One sees easily that f !1 R2( )  is a prime cone in this sense. The support of the prime cone 

f
!1
R
2( )  is exactly the kernel of f.  

 Given the prime cone ! , one can define a homomorphism into a real closed field in a 
rather natural way: The support ! " #!  is a prime ideal, hence A ! " #!  is a domain, let 
!

"
:A# A " $ %"  be the canonical map. It is an immediate consequence of the definition 

that !
"
"( )  is closed under addition and multiplication, that A ! " #!( )

2

$ %
!
!( ) , 

!
"
"( )#$!

"
"( ) = 0{ }  and !

"
"( )#$!

"
"( ) = A " % $" , i.e., !

"
"( )  is a total order of 

A ! " #! . The poring A ! " #! ,$
!
!( )( )  is denoted by A ! . Because of P ! " , the 

canonical map !
"
: A;P( )# A "  is order preserving. Passing from the totally ordered 

domain A !  to its quotient field, the total order of the ring extends uniquely to a total order 
of the field. The totally ordered quotient field is denoted by ! "( ) , the inclusion is denoted by 
i
!
:A ! "# !( ) . Finally, ! "( )  has a unique real closure ! "( )  with inclusion map 

j! :" !( )# $ !( ) . The composition 
 
!" = j" ! i" !#" : A,P( )$ ! "( )  is the desired 

homomorphism into a real closed field. Note that ! = "!

#1 " !( )
2( ) , i.e., !  is the prime cone 

associated with !" .  
 Note that the definition of the map !"  is essentially unique since the formation of the 
totally ordered factor ring A !  and of the quotient field ! "( )  are unique, whereas the 
formation of the real closure ! "( )  of ! "( )  is unique up to isomorphism.  
 Two maps into real closed fields are said to be equivalent if the associated prime cones 
agree. Thus, the prime cones of a poring correspond bijectively to the equivalence classes of 
maps into real closed fields. For each prime cone !  one picks once and for all the map !"  
(that has just been defined) as representative of the equivalence class. The field ! "( )  is 
called the real closed residue field at ! . 
 The set Sper A,P( )  consists of the prime cones of A,P( ) . The maps !"  can be combined 
to define the map !

A,P( ) : A,P( )" ! #( )
#$Sper A,P( )
% :a" !# a( )( )

#
. (The partial order on the 

product of real closed fields is defined componentwise, of course.) In the discussion of factor 
porings it has been shown that every minimal prime ideal is convex and is the kernel of some 
homomorphism into a real closed field, hence is the support of a point in the real spectrum. 
Thus, the homomorphism !

A,P( )  is injective. The elements of A are viewed as functions from 

the set Sper A,P( )  into the family ! "( )( )
"#Sper A,P( )

 of real closed fields. The value of a !A  at 

the point ! "Sper A,P( )  is !" a( ) . Viewing the elements of A as functions in this way, I will 
frequently use the notation a !( )  for the value of a at ! , i.e., a !( ) = "! a( ) . 
 The real spectrum is considered as a geometric object, the ring A as a ring of functions 
defined on the geometric object. In this way Sper A,P( )  is a far-reaching generalization of the 
affine space  Rn , and A is a generalization of the polynomial ring 

  
R X

1
,…,X

n[ ] .  
 Although the values of the "functions" a !A  at the different points of the real spectrum 
belong to different fields, the values have a definite sign at every point, either +1 or 0 or !1. 
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The euclidean topology of  Rn  is generated by the sets of positivity of polynomial functions, 

 
P F( ) = x !R

n
F x( ) > 0{ }  with F ranging in 

  
R X

1
,…,X

n[ ] . Viewing ring elements as 
functions on the real spectrum, one proceeds analogously and defines a topology on 
Sper A,P( )  through the subbasis consisting of the sets of positivity in the real spectrum: 
 

P a( ) = ! "Sper A,P( ) a !( ) > 0{ } , a !A . 
 
There is also another important topology on the real spectrum, which will be described below. 
To distinguish the topologies, the present one is referred to as the spectral topology.  
 The definition of the topological space Sper A,P( )  is complete now. However, spectral 
spaces always carry some additional structure – constructible subsets, the constructible 
topology and the specialization relation – which can be defined via the spectral topology. For 
real spectra these concepts will now be explained as explicitly as possible.  
 First of all, there are constructible subsets – they are the elements of the Boolean algebra 
of subsets generated by the sets P a( ) . The constructible sets generate a topology on the set 
Sper A,P( ) , which is called the constructible topology. In fact, the constructible sets form a 
basis of the constructible topology since the class of constructible sets is closed under finite 
intersections. It is clear from the definition that the constructible topology is finer than the 
spectral topology. It is frequently necessary to work with both topologies, in particular to 
consider the closure of a subset X ! Sper A,P( )  with respect to both topologies; X  denotes 

the closure with respect to the spectral topology,  X!  denotes the closure with respect to the 
constructible topology. 
 The constructible topology is always Boolean, i.e., totally disconnected and compact. 
Therefore the spectral topology is quasi-compact. Usually the spectral topology is not 
Hausdorff. There is a partial order, called specialization, on Sper A,P( )  that can be defined 

through the topology: ! " #  if and only if ! " #{ } . If this is the case, then !  is called a 
specialization of ! , and !  is a generalization of ! .  
 The topological description of the specialization relation is rather abstract. Everybody who 
works with real spectra must be aware of it. But there are other more easily accessible 
descriptions:  

• ! " #  if and only if ! " # ; or: 
• ! " #  if and only if ! " #! $ % " #%  and the canonical ring homomorphism 

A ! " A #  is also order preserving. 
 A constructible set is closed (or open) if and only if it contains every specialization (resp., 
every generalization) of each of its points.  
 The space of closed points in Sper A,P( )  is denoted by Spermax A,P( ) . This is a 
Hausdorff space. The minimal prime cones are the points that do not have any proper 
generalization; they are called generic points. The generic points also form a subspace of the 
spectrum, which, however, is not compact in general.   
 It is a very important property of real spectra (prime spectra usually do not have this 
property) that the specializations of any point ! , i.e., the elements of !{ } , form a chain: If 
! " #,$  then either ! " #  or ! " # . In particular, there is a unique maximal specialization 
of ! , namely the union of all the prime cones that contain !  is itself a prime cone. Thus 
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there is a specialization map spec :Sper A,P( )! Spermax A,P( )  that sends a prime cone to 
its unique maximal specialization. The map spec is continuous, and the space Spermax A,P( )  
is compact (recall that the space is Hausdorff).  
 The specialization relation can be used to visualize the real spectrum in a graph-theoretic 
way. The underlying set of the real spectrum Sper A,P( )  becomes a graph if one defines the 
edges to be the two-element sets !,"{ }  that consist of two comparable prime cones. The 
connected components of the graph are the sets of generalizations of the maximal prime 
cones. Each connected component is a tree, the entire spectrum is a forest. The following 
picture shows a few trees of the forest. Large prime cones are at the top of the diagram, small 
ones are at the bottom.  
 
 

 
 

 
The roots of the trees are the maximal prime cones, the leaves are the generic points of the 
spectrum. A point of a tree is called a branching point if it is the smallest common 
specialization of two incomparable prime cones. (If there is a common specialization at all 
then there always exists a first one.) 
 The next example contains a first discussion of the real spectrum of a ring of continuous 
functions.  
 
Example 12 
The ring 

 
C X,R( )  of continuous functions associated with a completely regular topological 

space is a poring. The support map is a homeomorphism in this case. Therefore the real 
spectrum can be identified with the prime spectrum.  
 Every point x !X  defines the evaluation map 

 
x̂ :C X,R( )! R , hence a point 

 
e
x
!Sper C X,R( )( ) . The prime cone e

x
 is maximal since its support is a maximal ideal. 

Clearly, the map 
 
e : X! Sper C X,R( )( ) : x! e

x
 is injective. One checks without difficulty 

that 
 
im e( )! Sper C X,R( )( )  is a dense subspace, hence also a dense subspace of 

 
Spermax C X,R( )( ) , and that e is a homeomorphism onto its image.  

 The closure of im e( )  in 
 
Sper C X,R( )( )  with respect to the constructible topology is the 
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subspace of the so-called prime z-cones of 
 
C X,R( ) ; this subspace is denoted by 

 
z-Sper C X,R( )( ) . A prime cone 

 
! " C X,R( )  is a prime z-cone if the following condition is 

satisfied: If 
 
f !C X,R( ) , if g !"  and if x !X g x( ) " 0{ }# x !X f x( ) " 0{ }  then also 

f !" . Usually not every prime cone is a prime z-cone. The importance of prime z-cones lies 
in the fact that they can be described "geometrically", i.e., the decision whether or not a 
function f belongs to a prime z-cone only depends on its set of nonnegativity, 
x !X f x( ) " 0{ } . Maximal prime cones, minimal prime cones and branching points are 

always z-cones. Ω 
 
To complete the definition of Sper as a contravariant functor on the category POR, it remains 
to describe the action of Sper on the POR-maps. So, let f : A,P( )! B,Q( )  be an order 
preserving homomorphism. If ! "Sper B,Q( )  is a prime cone then ! = f

"1 #( )  is a prime 
cone of A,P( ) . Thus, there is a map of sets, Sper f( ) :Sper B,Q( )! Sper A,P( ) :" ! f

#1 "( ) . 
In fact, this map is continuous with respect to both the spectral topology and the constructible 
topology.  
 It is important to note that the map f : A,P( )! B,Q( )  does not only define a map between 
the real spectra, but it also defines a map between the real closed residue fields at !  and 
! = f

"1 #( ) : First there is an order preserving homomorphism f! :A " # B ! , which 
extends uniquely to a homomorphism between the totally ordered quotient fields, 
! f ," :! #( )$! "( ) , and then, in a final step, to a homomorphism ! f ," :! #( )$ ! "( )  of the 
real closed residue fields. 
 One more property of the functorial maps Sper f( ) :Sper B,Q( )! Sper A,P( )  that is 
frequently useful is their convexity: Suppose that !

1
" !

2
 in Sper B,Q( )  and that there is some 

! "Sper A,P( )  with f !1 "
1( ) # $ # f

!1 "
2( ) . Then there exists a prime cone ! "Sper B,Q( ) , 

!
1
" ! " !

2
, such that ! = f

"1 #( ) .  
 Each prime cone ! "Sper A,P( )  has the support ! " #! , which is a prime ideal. Thus, 
there is a map from the real spectrum to the prime spectrum, supp :Sper A,P( )! Spec A( ) . 
The support map is continuous and preserves inclusion. Sometimes it is true that the support 
map is a homeomorphism. For example, rings of continuous functions have this property. 
(Therefore, in the study of rings of continuous functions it is not really necessary to consider 
the real spectrum.) On the other hand, for polynomial rings over the real numbers the support 
map is never a homeomorphism.  
 There are very substantial applications of the real spectrum in real algebra and geometry, 
notably in semi-algebraic geometry. Here I want to concentrate on its uses in connection with 
the category POR. 
 
In every category the monomorphisms and the epimorphisms are particularly important 
classes of maps. A map f : X! Y  is a monomorphism if the following holds: Any two maps 
a,b :T ! X  coincide if the compositions 

 
f ! a  and 

 
f !b  coincide. Dually, a map f : X! Y  

is an epimorphism if: the two maps g,h :Y ! Z  coincide whenever the compositions 
 
g ! f  

and 
 
h ! f  coincide.  
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 In categories of algebraic structures the monomorphisms are frequently easy to describe – 
very often they are the injective homomorphisms. This is also true in the category POR. 
Epimorphisms are much harder; in many categories they do not have to be surjective. It is 
extremely useful to have a good description of epimorphisms. For the category of rings, for 
example, characterizations can be found in the notes of the Seminaire Samuel of 1967/68. 
Apparently, no characterization is known for reduced rings. However, in the category POR 
the following can be proved: 
 
Theorem 13 (Schwartz, Madden) 
The map f : A,P( )! B,Q( )  in POR is an epimorphism if and only if the map Sper f( )  is 

injective and, for every ! "Sper B,Q( ) , the map ! f ," :! f
#1 "( )( )$ ! "( )  of the real closed 

residue fields is an isomorphism. Ω 
 
The result has many applications. One area of applications is the study of functorial 
extensions of porings. To give a first impression of these applications one such construction is 
explained briefly. 
 A direct product of totally ordered rings with the componentwise partial order is a poring. 
In fact, this partial order is even a lattice-order, i.e., for any two elements there exist both a 
supremum and an infimum. Every subring of such a direct product that is also a sub-lattice is 
called an f-ring. For example, rings of continuous functions are f-rings.  
 Compared with arbitrary porings, f-rings have many special properties, e.g., the support 
map from the real spectrum to the prime spectrum is a homeomorphism onto the image. There 
is a functorial way to associate a "smallest" f-ring with every poring. This smallest f-ring 
contains a large amount of information about the original poring. It can be used in the 
following way: An arbitrary poring may be difficult to understand and work with. In such a 
case it may help to pass to the associated f-ring, which is frequently easier to understand, to 
solve the problem for the f-ring and then to try to transfer the solution from the f-ring to the 
poring.  
 Here is the construction of the smallest f-ring containing a poring: Every poring A,P( )  can 
be considered as a subring of a product of real closed fields using the map 
!

A,P( ) : A,P( )" ! #( )
#$Sper A,P( )
%  that was introduced before. It is easy to see that every 

intersection of sub-f-rings of ! "( )
"#Sper A,P( )
$  is a sub-f-ring as well. Thus there is a smallest 

sub-f-ring ! A,P( )" # $( )
$%Sper A,P( )
&  that contains the image of !

A,P( ) . Restricting the 

codomain of !
A,P( )  one obtains an injective map !

A,P( ) : A,P( )"! A,P( ) , i.e., the 
construction enlarges the poring and yielding an f-ring.  
 The construction is functorial and has the following universal property: Every 
homomorphism f : A,P( )! B,Q( )  into an f-ring has a unique extension 

f :! A,P( )" B,Q( )  to a homomorphism between f-rings. Thus the maps with domain A,P( )  
are very closely related to the maps with domain ! A,P( ) . The maps !

A,P( )  are epimorphisms 
of porings, which is one of their most useful properties. Therefore it is extremely important in 
this context that the epimorphisms in POR have a characterization that can be applied easily 
in many concrete situations. It is also noteworthy that the functorial map Sper !

A,P( )( )  is 
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always a homeomorphism. 
 There are a large number of other similar functorial constructions in the category POR. 
Schwartz and Madden started a systematic study of such constructions.  
 
The notion of a convex subring of a poring will be introduced now. Convex subrings occur 
naturally and frequently in the study of porings. They have many applications, in real 
algebraic geometry, in real algebra and in topology.  
 
Definition 14 
Suppose that B,Q( )  is a poring and that A ! B  is a subring. Then A is convex if, for all 
a !A  and all b !B , the inequality !a " b " a  implies b !A . Ω 
 
A priori the convex subring A ! B,Q( )  does not have to carry a partial order. But it can 
always be endowed with the restriction of the partial order of B,Q( ) . 
 It is easy to find convex subrings of a given poring by forming convex hulls: If A ! B,Q( )  

is any subring then Conv B A( ) = b !B "a !A :#a $ b $ a{ }  is a convex subring, the 

convex hull of A in B,Q( ) . Clearly, Conv B A( )  is the smallest convex subring of B,Q( )  that 
contains A. Among all convex subrings there is a smallest one, namely 

 
Conv B Z( ) . This 

subring will be called the ring of bounded elements; in the literature it is also referred to as the 
real holomorphy ring of B,Q( ) .  
 
Example 15 
If K ,T( )  is a totally ordered field and A ! K  is a subring then the convex hull Conv K A( )  
is a valuation ring. Valuation rings also occur in other contexts, e.g., number theory. The 
convex valuation rings arising in real  algebra are rarely Noetherian, which contrasts sharply 
with the situation in number theory, where many valuation rings are Noetherian.  
 The formation of convex hulls in totally ordered fields is a very natural construction. 
Therefore non-Noetherian valuation rings play a considerable role in the theory of porings. Ω  
 
Example 16 
The ring of bounded elements in a ring 

 
C X,R( )  of continuous functions is denoted by 

 
C

!
X,R( ) . This ring is another important invariant of the topological space X; it has been used 

and studied intensively by topologists.  
 The Stone-Cech compactification of a completely regular space is a topological 
construction. It is a compact space, usually denoted by !X , that contains X as a dense 
subspace and has a universal property: If f : X! Y  is any continuous map into a compact 
space then there is a unique extension f :!X" Y . (Note that this is the same kind of 
universal property as the one of the functorial f-ring extension of porings described earlier.) 
 The Stone-Cech compactification can be constructed in various different ways. Two of 
them will be described here: Suppose that 

 
A ! C X,R( )  is a subring that contains  R  and 

separates the points of X, i.e., for each pair of distinct  points x, y !X  there is some a !A  
with a x( ) ! a y( ) . The evaluation maps 

 
x̂ :A ! C X,R( )" R  at the points of X are surjective 

ring homomorphisms into a real closed field, hence they define maximal points e
A
x( )  in the 
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real spectrum of A. This defines a map e
A
: X! Spermax A( ) : x! e

x
. The map e

A
 is 

injective because A separates the points of X. In fact, e
A

 is a homeomorphism onto a dense 
subspace of the compact space Spermax A( ) , i.e., Spermax A( )  is a compactification of X. 
Choosing A to be 

 
C X,R( )  or 

 
C

!
X,R( ) , one obtains the Stone-Cech compactification in both 

cases.  
 The fact that the same construction applied to both rings yields the same compactification 
looks like a marvelous coincidence. However, there is a deeper reason behind this apparent 
coincidence, which will be explained later in this lecture. Ω 
 
Important questions about convex extensions of porings are: 

• If A ! B,Q( )  is a convex subring, how close is the connection between the algebraic 
properties of the two rings or between their prime spectra or between their real spectra? 

• If A,P( )  is a poring, do there exist extensions A,P( )! B,Q( )  that are convex? How 
can they be determined? 

 
In the study of convex extensions there is a sharp dichotomy between two cases, depending 
on whether or not the rings involved satisfy the bounded inversion property: 
 
Definition 17 
A poring A,P( )  has bounded inversion if the set 1+ P = 1+ p p !P{ }  consists of units. Ω 
 
Partially ordered fields and rings of continuous functions have the bounded inversion 
property, polynomial rings over the real numbers – regardless of the partial order – do not 
have bounded inversion. More generally, if A is a reduced ring that can be partially ordered 
then the polynomial ring A X[ ]  can also be partially ordered. Choosing any partial order P of 

the polynomial ring, the poring A X[ ],P( )  cannot have bounded inversion since A X[ ]
!

= A
! .  

 If the poring A,P( )  has bounded inversion and if Q is a weakening of the partial order P, 
i.e., Q ! P , then A,Q( )  has bounded inversion  as well. 
 The notion of bounded inversion was first introduced by Henriksen, Isbell and Johnson in 
the study of lattice-ordered algebras. However it is important also in the context of general 
porings. A very useful characterization is: 
 
Proposition 18 (Knebusch, Zhang) 
The poring A,P( )  has bounded inversion if and only if all maximal ideals are convex. Ω  
 
It follows immediately from this proposition, or from the definition, that factor porings of 
porings with bounded inversion also have bounded inversion. The corresponding statement 
about quotient porings is false. (If a poring with bounded inversion has a prime ideal that is 
not convex then the partially ordered localization at this prime ideal does not have bounded 
inversion.) 
 Rings with bounded inversion always have "many" bounded elements: Suppose that A,P( )  

has bounded inversion and that 0 < a !A . Then 1+ a !A" , and 0 <
1

1+ a
=
1+ a

1+ a( )
2
< 1. 
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Also, 1+ a2 !A" , and 0 <
a

1+ a
2
< 1 . Thus, every principle ideal a( )  has a bounded 

generator, namely 
a

1+ a
2

.  

 Without bounded inversion the situation can be entirely different: 
 
Example 19 
In the polynomial ring 

 
R X[ ] , partially ordered by the sums of squares, the only bounded 

elements are the constant polynomials. Thus, only the trivial ideals are generated by bounded 
elements. Ω 
 
Given a subring A ! B,Q( )  of a poring, there are two related conditions involving convexity 
– the subring may be convex or it may contain the subring 

 
Conv B Z( )  of bounded elements. 

In general these are different conditions: A convex subring always contains the bounded 
elements, but usually the converse is not true. However: 
 
Proposition 20 
If B,Q( )  has bounded inversion then the subring A is convex if and only if it contains the 
subring of bounded elements.  
 
Proof 
It has been noted already that one implication is always true (without any assumption about 
bounded inversion). Conversely, suppose that A contains all bounded elements. If !a " b " a  

with a !A  and b !B  then !1 < !
a

1+ a
2
"

b

1+ a
2
"

a

1+ a
2
< 1  shows that 

b

1+ a
2

 is bounded, 

hence 
b

1+ a
2
!A , and b !A . Ω 

 
Example 21 
Let 

 
A = R X,Y[ ]  with the total order in which  1! X  and Y is positive and infinitely large 

compared with all powers of X. The subring of bounded elements is the field of real numbers. 
The polynomial ring 

 
R Y[ ]  contains the bounded elements, but is not convex. Ω 

 
Assuming that A ! B,Q( )  is convex and that A is equipped with the partial order P = A!Q  
one may ask whether bounded inversion for one of the two porings implies bounded inversion 
for the other one.  
 
Proposition 22 
IfA ! B,Q( )  is convex, if A is carries the partial order P = A!Q  and if B,Q( )  has bounded 
inversion then A,P( )  has bounded inversion. Ω 
 
Example 23 
Let A,P( )  be a poring with bounded inversion, let B = A X[ ]  be the polynomial ring in one 

variable and let Q be the positive cone generated by P and B
2

! . Then A ! B,Q( )  is 
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convex, and B,Q( )  does not have bounded inversion (which is easy and has already been 
mentioned).  

 To prove convexity, suppose that !a " #
i
$ X

i

i=0

r

% " a . Assume that 0 < r  and !
r
" 0 . Then 

there exists a minimal prime ideal q ! A  that does not contain !
r
, and there is an order 

preserving homomorphism f :A! "  with kernel q into a real closed field. It follows that 

f ! r( ) " 0 , and the polynomial f ! i( ) " Xi

i=0

r

# $% X[ ]  is not constant. The homomorphism 

F :B! " X[ ]  defined by F A= f  and F X( ) = X  is order preserving, where ! X[ ]  is 
partially ordered by the sums of squares (which is the same as the partial order defined by the 

positive semi-definite polynomials). The inequality !a " #
i
$ X

i

i=0

r

% " a  yields 

! f a( ) " f # i( ) $ Xi

i=0

r

% " f a( ) . Thus the values of the non-constant polynomial 

f ! i( ) " Xi

i=0

r

# $% X[ ]  are bounded. This is impossible, and the subring A is convex, as 

claimed. Ω 
 
Every poring can be extended to a poring with bounded inversion: The subset 1+ P  of the 
poring A,P( )  is clearly multiplicative, consists of positive elements and does not contain 
zero-divisors (since the minimal prime ideals are convex). The quotient ring A

1+P
,P
1+P( )  has 

bounded inversion and contains A,P( )  as a subring.  
 The importance of bounded inversion in connection with convex subrings is evident from 
the following  
 
Theorem 24 (Knebusch, Zhang) 
Suppose that the poring B,Q( )  and its subring A,P( )  (with P = A!Q ) both have bounded 
inversion. Then A is convex in B if and only if A ! B  is a Prüfer extension, i.e.: given any 
intermediate ring A ! C ! B  the extension A ! C is an epimorphism in the category of rings. 
Moreover, if the equivalent conditions hold, then B = A

S
, where S = s !A 0 < s & s !B

"{ } . 
Ω 
 
This result establishes very strong algebraic connections between a poring and a convex 
subring. The next question is how the real spectra of the two rings are related. It is clear that 
the canonical map Sper B,Q( )! Sper A,P( )  is a homeomorphism onto the image and that the 
image is a generically closed subset of Sper A,P( ) . Thus, Sper B,Q( )  can be identified with 
this subspace of Sper A,P( ) . The proof of a result of Zhang in connection with results by 
Knebusch and Zhang show that the subspace contains all minimal prime cones in Sper A,P( ) . 
Even more can be said with an additional hypothesis.  
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Proposition 25 
Suppose that B,Q( )  is a poring with bounded inversion and that A,P( ) , P = A!Q , is a 
convex subring. Assume that the support map of B restricts to an injective map 
Spermax B,Q( )! Spec B( ) . Then the following holds: If !," #Sper B,Q( )  have a common 
specialization ! "Sper A,P( )  then there is a common specialization in Sper B,Q( ) . 
 
Proof 
Assume by way of contradiction that !  and !  do not have a common specialization in 
Sper B,Q( ) . Then the maximal specializations in Sper B,Q( )  are distinct, and both specialize 
to ! . Thus, one may assume that !  and !  are distinct points of Spermax B,Q( ) . The 
supports of ! , !  and !  are denoted by r, p and q. The hypothesis implies that p ! q ; 
without loss of generality one may assume that q is not contained in p. The subset 
! = " + q = x + y x #" & y #q{ }$ B  has the following properties: 

• ! + ! " ! ; 
• ! "! # ! ; 
• Q ! " ; 
• ! " #! = B ; 
• ! " #!  is an ideal of B that contains p properly.  

One checks that ! " #! p  is convex in the totally ordered domain B p  (with the total order 
! p ). Since !  is a maximal point of the real spectrum there are no non-trivial convex ideals 
in B p , hence ! " #! = B . Thus !1"# $ !# , and !1 = x + y , x !" , y !q . The convexity 

of A implies 
1

1+ y
2
,

y

1+ y
2
!A , hence the identity !

1

1+ y
2
=

x

1+ y
2
+

y

1+ y
2

 shows that also 

x

1+ y
2
!A . Moreover, 

x

1+ y
2
!"  and 

y

1+ y
2
!q . The restrictions of !  and !  to A are 

denoted by !"  and !" , the supports by !p  and !q ; both are contained in r. The 
homomorphisms A !p " A r  and A !q " A r  are both order preserving. In B q  one has 

1+ y
2
+ q = 1+ q , hence 

1

1+ y
2
+ !q = 1+ !q  holds in A !q , which yields !

1

1+ y
2
+ r = !1+ r  

in A r .  On the other hand, the identity !
1

1+ y
2
+ "p =

x

1+ y
2
+

y

1+ y
2
+ "p  in A !p  is 

mapped to !
1

1+ y
2
+ r =

x

1+ y
2
+

y

1+ y
2
+ r  in A r . It follows from !

1

1+ y
2
+ r = !1+ r , 

y

1+ y
2
+ r = 0 + r  and 

x

1+ y
2
! "#  that !1+ r =

x

1+ y
2
+ r "# r , which implies !1"# , a 

contradiction. Ω 
 
The result can be applied whenever the larger of the two rings has bounded inversion and its 
support map is a homeomorphism onto its image. Note that bounded inversion holds 
automatically if the support map is a homeomorphism. This applies to all rings of continuous 
functions. For f-rings with bounded inversion the support map is a homeomorphism onto its 
image, but it needs not be surjective. It also happens that the support map is injective on 
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Spermax B,Q( ) , but does not map Spermax B,Q( )  homeomorphically onto its image:  
 
Example 26 
Suppose that B is a field with two total orders T

1
and T

2
. Assume that there is a T

1
-convex 

valuation ring V
1
! B  that has rank 1 and is not T

2
-convex; let M

1
 be its maximal ideal. 

(E.g., one may define 
 
B = R X[ ] , the total order T

1
 by the condition  0 < X !1  and the total 

order T
2
 by the condition  0 < X !1!1 . Then the natural valuation ring of B,T

1( )  is 

 
V
1
= R X[ ]

X( )
 with maximal ideal M

1
= X !V

1
.) The poring V

1
,V
1
!T

1
!T

2( )  has bounded 
inversion. Its real spectrum has three points: T

1
, T

2
 and T

1
+ M

1
. The two points T

2
 and 

T
1
+ M

1
 are maximal in Sper V1,V1!T1!T2( ) , whereas T

1
! T

1
+ M

1
. The supports of T

2
 and 

T
1
+ M

1
 are 0( )! M

1
, which shows that the support map is injective on the maximal real 

spectrum, but is not a homeomorphism onto the image. Ω 
 
The Proposition and the considerations preceding it yield the following intuitive picture of the 
relationship between the real spectra of B,Q( )  and its convex subring A,P( ) : As pointed out 
before, in graph-theoretical terms, the real spectrum of A,P( )  is a forest; the trees are the 
generalizations of the maximal points. Looking only at one single tree, the minimal points 
belong to Sper B,Q( ) , and if Sper B,Q( )  contains a prime cone !  then it contains all its 
generalizations. The Proposition says that all branching points of the tree must be contained in 
Sper B,Q( ) .  
 
 

     
  Not admissible  admissible 
 
 
It is now possible to understand the fact that the two, a priori different, compactifications of a 
completely regular space X (constructed via the maximal real spectrum of the ring 

 
C X,R( )  of 

all continuous functions or via the maximal real spectrum of the ring 
 
C

!
X,R( )  of bounded 

continuous functions) both lead to the Stone-Cech compactification of X: The map  
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Spermax C X,R( )( )! Sper C X,R( )( )! Sper C"

X,R( )( ) spec
# $# Spermax C

"
X,R( )( )  

 
is a continuous map of compact spaces. It is injective by the Proposition, surjective since X 
can be considered as a dense subspace both of 

 
Spermax C

!
X,R( )( )  and 

 
Spermax C X,R( )( ) . 

A continuous bijective map of compact spaces is a homeomorphism, hence 

 
Spermax C X,R( )( ) ! Spermax C"

X,R( )( ) , and the two compactifications coincide.  
 The Proposition can also help to recognize whether or not a given poring has a convex 
extension: Suppose that  

• A,P( )  is a poring with bounded inversion, 
• the support map of A,P( )  is injective, and that 
• in Spermax A,P( )  there is a subspace Z that is dense with respect to the constructible 

topology and consists only of branching points and minimal points of Sper A,P( ) .  
Assume that A,P( )! B,Q( )  is a convex extension and that B,Q( )  has bounded inversion. 
Then the Theorem of Knebusch and Zhang shows that B is a quotient ring of A, say B = A

S
, 

where S is a multiplicative subset of positive elements of A. In particular, the support map of 
B,Q( )  is also injective. Given any element s !S \ A" ,  

 
Sper B,Q( )! P s( ) = " #Sper A,P( ) s "( ) > 0{ }$ Sper A,P( ) . 

 
The constructible set V s( ) = ! "Sper A,P( ) s !( ) = 0{ }  is non-empty, hence contains some 

element of Z. Since Sper B,Q( )  contains all minimal prime cones of A,P( )  it follows that 
Z !V s( )  consists of branching points. There are incomparable points !," #Sper A,P( )  that 
have a point ! "Z #V s( )  as their first common specialization. On may assume that !  and 
!  are minimal prime cones, which implies that they belong to Sper B,Q( ) . Since there is a 
common specialization in Sper A,P( ) , namely ! , there must also be a common specialization 
in Sper B,Q( )  (by the Proposition). However, this contradicts the choice of ! , !  and ! . The 
contradiction shows that S ! A

" , hence A = B . Thus, A,P( )  does not have any proper 
convex extension with bounded inversion.  
 These considerations apply to rings of continuous functions: Assume that X is a completely 
regular space and that every point has a countable neighborhood basis (i.e., the space satisfies 
the first countability axiom). It is claimed that 

 
C X,R( )  does not have any proper convex 

extension with bounded inversion.  
 The subset 

 
e
x
x !X{ }" Spermax C X,R( )( )  is dense in the constructible topology. Since 

 
C X,R( )  has bounded inversion and the support map is bijective, it suffices to show that 
every prime cone e

x
 is either minimal or is a branching point of 

 
Sper C X,R( )( ) . If the point x 

is isolated then the prime cone e
x
 is clearly minimal. So, assume that x is not isolated. Then 

there is a neighborhood basis for x that consists of a properly decreasing sequence 
 
V
n( )

n!N
 of 

open sets with 
  

x{ } = V
n

n!N

! . For each  1 ! n "N , pick a point x
n
!V

n"1
\V

n
. The map 
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! :
1

n
1 " n #N

$
%
&

'
(
)
* 0{ }+ X , 

1

n
! x

n
, 0! x , is a homeomorphism onto a closed subset of 

X. Since 
 
x
n
n !N{ }" x{ }# X  is a compact subset in a completely regular space, the 

restriction map  
 

  

C X,R( )! C x
n
n "N{ }# x{ },R( ) $ C

1

n
1 % n "N

&
'
(

)
*
+
# 0{ },R

,
-.

/
01

 

 

is surjective. Therefore 
  

Sper C
1

n
1 ! n "N

#
$
%

&
'
(
) 0{ },R

*
+,

-
./

*

+,
-

./
 can be identified with a closed 

subspace of 
 
Sper C X,R( )( ) , and it suffices to show that 

  

e0 !Sper C
1

n
1 " n !N

#
$
%

&
'
(
) 0{ },R

*
+,

-
./

*

+,
-

./
 is a branching point.  

 Let 
 

D
1
=

1

n
1 ! n "N odd

#
$
%

&
'
(

, 
 

D
2
=

1

n
1 ! n "N even

#
$
%

&
'
(

. Let 
 
U
1
 and 

 
U
2
 be free 

ultrafilters on D
1
 and D

2
. Then 

 
P
1
= U U !U

1{ }  and 
 
P
2
= U U !U

2{ }  are prime filters 

of closed sets on 
 

1

n
1 ! n "N

#
$
%

&
'
(
) 0{ } . They are incomparable, and the unique prime filter 

that contains them both is the fixed ultrafilter belonging to the point 0. Now  
 

   

e
1
= f !C

1

n
1 " n !N

#
$
%

&
'
(
) 0{ },R

*
+,

-
./
0U !P

1
1u !U : f u( ) 2 0

#
$
%

&
'
(

, 

   

e
2
= f !C

1

n
1 " n !N

#
$
%

&
'
(
) 0{ },R

*
+,

-
./
0U !P

2
1u !U : f u( ) 2 0

#
$
%

&
'
(

 

 
are incomparable prime cones, and e

0
 is the first (and only) common specialization. Thus, e

0
 

is a branching point.  
 As a consequence, no metric spaces has a convex extension with bounded inversion. 
 
Finally, I turn to convex extensions of porings without bounded inversion. This is an 
important topic because numerous porings that arise in real algebraic geometry do not have 
bounded inversion, and therefore the preceding considerations are not applicable. It is clear 
(and has been mentioned) that polynomial rings over the real numbers, for example, do not 
have bounded inversion. In fact, no finitely generated  R -algebra of positive transcendence 
degree has bounded inversion. This can be seen as follows: 
 Assume that A,P( )  is a partially ordered finitely generated  R -algebra of positive 
transcendence degree with bounded inversion. Thus, all maximal ideals of A are convex. The 
minimal prime ideals 

 
p
1
,…, p

r
 are convex, and the maximal ideals of A pi  are convex with 

respect to the partial order P + p
i
p
i
. Thus, each A pi  has bounded inversion as well. 

Among the A pi  there is one with positive transcendence degree. Therefore one may assume 
that A is a domain.  
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 Noether's Normalization Theorem says that A is an integral extension of a polynomial ring 

  
R X

1
,…,X

k[ ] , where 
 
1 ! k = trdeg

R
A . The Going-up Theorem holds for the integral 

extension 
  
R X

1
,…,X

k[ ]! A , hence every maximal ideal 
   
m ! R X

1
,…,X

k[ ]  extends to a 
maximal ideal  M ! A . If 

    
R X

1
,…,X

k[ ] m ! C  (and there are such maximal ideals) then also 

  
A M ! C , the maximal ideal  M ! A  is not convex with respect to any partial order, and A 
cannot have bounded inversion, a contradiction.  
 There is a stronger variant of the above result: Suppose that A is a finitely generated  R -
algebra of positive transcendence degree. Let B ! A  be a sub-algebra, also of positive 
transcendence degree, not necessarily finitely generated. Then B cannot have bounded 
inversion with respect to any partial order.  
 Exactly as above, the problem can be reduced to the case that B is a domain.  
 Once again, it suffices to prove that there is a maximal ideal  M ! B  with 

  
B M ! C . 

First, pick a transcendence basis 
 
t
1
,…,t

s
 for B over  R , and consider the extension 

  
R t

1
,…,t

s[ ]! A  of Noetherian domains. Chevalley's Theorem says that the image of 

Spec A( )  in 
  
Spec R t1,…,t

s[ ]( )  is constructible, i.e., is a finite union of sets U !C , where 

  
U ! Spec R t1,…,t

s[ ]( )  is open and 
  
C ! Spec R t1,…,t

s[ ]( )  is closed. The 0-ideal belongs to 
the constructible set, hence 0( )!U "C  for some U and C. Since 0( )  is the unique generic 

point of 
  
Spec R t1,…,t

s[ ]( )  it follows that 
  
C = Spec R t1,…,t

s[ ]( ) , i.e., U !C =U . The sets 

  
D a( ) = p !Spec R t1,…,t

s[ ]( ) a " p{ } , 
  
a !R t

1
,…,t

s[ ] , form a basis of the topology of 

  
Spec R t1,…,t

s[ ]( ) . Thus there is some 
  
a !R t

1
,…,t

s[ ] , a ! 0 , such that D a( )!U . There is 

some maximal ideal 
 
m !D a( )  with 

    
R t

1
,…,t

s[ ] m ! C . By the choice of  m  there exists a 
prime ideal  p! A  with 

   
m = p!R t

1
,…,t

s[ ] . Then  M = p! B  is a prime ideal, and 

   
R t

1
,…,t

s[ ] m ! B M  is an algebraic extension (since 
 
t
1
,…,t

s
 is a transcendence basis of B). 

This implies 
  
B M ! C , and the proof is finished. 

 
Partially ordered finitely generated  R -algebas and their convex subrings (frequently under 
the name "real holomorphy rings") have been used and studied by real algebraists. But the 
relationship between the real spectra or between the prime spectra of the rings involved is still 
mostly a riddle. The question whether a given partially ordered algebra has a proper convex 
extension has not been studied at all, so far. The methods of Knebusch and Zhang (using 
Prüfer extensions) are not applicable in this setting.  
 As a first step towards the study of convex extensions of partially ordered finitely 
generated  R -algebras it is reasonable to look for examples of such extensions. It has been 
pointed out repeatedly in these lectures that polynomial rings always yield convex extensions. 
It is not clear what other constructions can be used to provide examples. The idea that is 
pursued here is to look for quotient rings that are convex extensions of a given poring: 

• Given a poring A,P( )  and a multiplicative set S of positive non-zero divisors, when is 
it true that A,P( )! A

S
,P

S( )  is a convex extension? 
• Given a poring A,P( )  and a multiplicative set S of positive non-zero divisors, when is 

it true that A contains the ring of bounded elements of A
S
,P

S( )? 
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It has been shown that the two questions are equivalent if bounded inversion is assumed. An 
example has been given above that shows that the two questions are not equivalent without 
bounded inversion. The main point of the present discussion is precisely that bounded 
inversion is not assumed, hence one may expect different answers to these questions.  
 In this lecture the considerations must be limited to the most elementary facts. Thus, only 
special cases and very special examples will be presented.  
 The positive element s in the poring A,P( )  is said to satisfy the first convexity condition if 
0 ! a ! s  implies a ! s( ) . S. Larson studied conditions of this type (in particular, an n-th 
convexity condition for every natural number n) in connection with f-rings. 
 To  start with,  there are two easy observations about the first convexity condition: 
 
Lemma 27 
Suppose that A is a ring with two partial orders P and !P , P ! "P . If the element s !P  has 
the first convexity condition with respect to !P , then it has the first convexity property also 
with respect to P.  Ω 
 
Lemma 28 
Given the poring A,P( ) , let s,t !P  with D s( )! Specmin A( )" D t( )! Specmin A( ) . If t ! s  
satisfies the first convexity condition then s has the first convexity property as well. In 
particular, if A is a domain, if s,t !P \ 0{ }  and if s ! t  has the first convexity property then 
both s and t have the first convexity property. 
 
Proof 
If 0 ! a ! s  then 0 ! t "a ! t " s  and the first convexity condition for t ! s  yields an element 
c !A  such that t !a = c ! t ! s( ) . It is claimed that a = c ! s . It suffices to show that 
a + q = c ! s + q  for each minimal prime ideal q ! A .  
 If q !V s( )  then the inequality 0 ! a ! s  and convexity of q imply 
0 + q ! a + q ! s + q = 0 + q , and the claim is clear. Now suppose that q !D s( ) , hence also 
q !D t( ) . Then the factor b + q  can be cancelled from the equality 
t + q( ) ! a + q( ) = t + q( ) ! c ! s + q( ) . Ω 

 
The next result shows the importance of the first convexity condition in connection with 
convex extensions.  
 
Proposition 29 
Let A,P( )  be a poring containing the rational numbers, let s !P  be a non-zero divisor (so 
that A can be considered as a subring of the poring A

s
,P

s( ) ).  
(a) All bounded elements of A

s
,P

s( )  are contained in A if and only if all powers of s satisfy 
the first convexity condition.  

(b) The ring A is convex in A
s
,P

s( )  if and only if, for all  n !N , the principle ideal s
n( )  is 

convex.  
 
Proof 
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(a) First assume that A contains the bounded elements. If 0 ! a ! sn  then 0 !
a

s
n
! 1  in A

s
, 

and the assumption implies that 
a

s
n
!A , hence a =

a

s
n
! s

n
" s

n( ) . 

 On the other hand, suppose that 0 ! a ! sn  implies a ! s
n( ) . It is claimed that 

a

s
n
!A if  

!k "
a

s
n
" k  (with a !A ,  k,n !N ). Adding k to the inequality and dividing by 2 ! k one may 

assume that 0 !
a

s
n
! 1 . The definition of the partial order P

s
 implies that 0 ! a " s2"r ! sn+2"r  

with a suitable  r !N . The hypothesis yields an element c !A  such that a ! s2!r = c ! sn+2!r . 
Since s is a non-zero divisor it follows that a = c ! sn " s

n( ) . 

(b) Suppose that A is convex, and let 0 ! a ! b " sn  with b !A . Then 0 !
a

s
n
! b  in A

s
, and it 

follows that 
a

s
n
!A , hence a =

a

s
n
! s

n
" s

n( ) .  

 Conversely, suppose that 0 ! a ! b " sn , b !A  and  n !N , implies a ! s
n( ) . If 0 !

a

s
n
! b  

in A
s
 then it follows that 0 ! a " s2"r ! b " sn+2"r  with  r !N . The hypothesis yields an element 

c !A  such that a ! s2!r = c ! sn+2!r , and this implies a = c ! sn " s
n( ) .  Ω 

 
The Proposition raises the question which elements in a concretely given poring satisfy the 
first convexity condition and which principal ideals are convex. If it is possible to give a 
complete characterization of these elements then one can recognize for which quotient 
porings A

s
,P

s( )  the ring of bounded elements is contained in A, or A is convex in A
s
,P

s( ) . 
 
Example 30 
The polynomial ring 

 
R T[ ]  in one variable carries many different partial orders. Important 

examples are cones of positive semi-definite polynomials: Let  K ! R  be a one-dimensional 
semi-algebraic set, i.e., a finite union of intervals (open, closed, half-open, finite or infinite, 
degenerate or not) at least one of which is not reduced to a single point. Then  
 

 
P
K
= a !R T[ ] " x !K :a x( ) # 0{ }  

 
is a partial order. It is immediately clear that P

K
= P

K
, i.e., one may assume that K is a closed 

semi-algebraic set. It will be necessary to distinguish three different classes of points of K: 
• K

1
 is the set of isolated points; 

• K
2
 is the set of boundary points; 

• K
3
 is the set of interior points. 

The set of polynomials s !P
K

 with the first convexity condition will be determined.  
 Assume that s !P

K
 satisfies the first convexity condition. Let 

 
!
1
<… <!

r
 be the different 



Niels Schwartz  Convex extensions of Partially Ordered Rings 
 

 
 page 24 of 26 

roots of s in K with multiplicities 
 
µ
1
,…,µ

r
. Then s = F ! "

i
T #$

i( )( )
µ
i

i=1

r

% , where F is 

nowhere 0 on K and 
 
!
1
,…,!

r
" +1,#1{ } . There is a polynomial F

1
 that  

• is nowhere 0 on K,  
• has the same distribution of signs as F on the connected components of K,  
• has deg F1( ) ! deg F( ) ,  
• is relatively prime with F, and 
• satisfies F

1
x( ) < F x( )  for all x !K . 

(If 
 
!
1
,…,!

t
 are the real roots of F with multiplicities 

 
!
1
,…,!

t
 then F = ! "G " T # $ j( )

% j

j=1

t

&  

with 
 
! "R

#  and G a product of monic irreducible quadratic factors. There is a small positive 
real number !  such that !

j
" #,!

j
+ #( )$ K =%  for every j. Pick some 

!
j
" #

j
$ %,#

j
+ %( ) \ #

j{ } . There is a small positive real number !  such that 

F
1
= ! "# " T $%

j( )
& j

j=1

t

'  meets all the requirements.) 

 The properties of F
1
 imply that 0 < F

1
! "

i
T #$

i( )( )
µ
i

i=1

r

% < s . The first convexity property 

yields a polynomial H such that F
1
! "

i
T #$

i( )( )
µ
i

i=1

r

% = H ! s . Canceling all linear factors of 

the form T !"
i
 one gets F

1
= H !F . Since F and F

1
 are relatively prime it follows that F 

must be constant.  
 So far it has been shown that the polynomial s is hyperbolic and all its roots are in K. 

Hence, up to a positive constant factor, it can be written in the form s = !
i
T "#

i( )( )
µ
i

i=1

r

$ .  

 Suppose that !
j
"K

1
 and that µ

j
! 2 . There is some ! > 0  such that 

!
j
" #,!

j
+ #( )$ K = !

j{ } . Pick any element !
j
" #

j
$ %,#

j
+ %( ) \ #

j{ }  and define 

G = T !" j( ) # T ! $ j( ) . There is a positive constant !  such that 0 ! " #G ! T $% j( )
2

, hence  
 

0 ! " #G # $i # T %& i( )( )
µi

i' j

( # $ j # T %& j( )( )
µ j %2

! s . 

 
Now ! "G " #i " T $% i( )( )

µi

i& j

' " # j " T $% j( )( )
µ j $2  is a multiple of s, but the multiplicity of the 

root ! j  is µ j  for s and µ j
!1 for ! "G " #i " T $% i( )( )

µi

i& j

' " # j " T $% j( )( )
µ j $2 . This  is 

impossible, and therefore isolated points of K cannot be multiple roots of s. 
 Next, assume that ! j

"K
3
 and that µ j  is odd. Then s changes sign at ! j , and this 

contradicts the hypothesis that s is non-negative on K. Thus, s has even multiplicity at inner 
points of K. 
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 Now let s = !
i
T "#

i( )( )
µ
i

i=1

r

$  be a polynomial that is non-negative on K, has roots only in 

K, with multiplicity 1 for isolated points and with even multiplicity for inner points. It is 
claimed that s has the first convexity property: Suppose that 0 ! F ! s . It suffices to prove 
that each ! j  is a root of F with multiplicity at least µ j .  

 If ! j
"K

1
 then F !

j( ) = 0 , and the multiplicity is at least µ j
= 1. 

 If !
j
"K

2
# K

3
, then F !

j( ) = 0 , and there is a half open interval I (either 

I = !
j
,!

j
+ "#$ )  or I = !

j
" #,!

j( $% ) with 0 ! F
I
! s

I
. This implies that the multiplicity of 

!
j  as a root of F is at least µ j .  

 Altogether, the non-negative polynomials in 
 
R T[ ]  with the first convexity property have 

been determined completely. Now the Proposition shows: The positive polynomials s for 
which 

 
R T[ ]  contains all bounded elements of 

 
R T[ ]

s
 are those that have only real roots, all 

of them in K, but not isolated, and with even multiplicity if a root is an inner point of K.  
 Next, the question will be answered for which positive polynomials 

 
s !R T[ ]  (with partial 

order P
K

 as above) the extension 
 
R T[ ]! R T[ ]

s
is convex. Of course, if this is the case then 

 
R T[ ]  contains the bounded elements of 

 
R T[ ]

s
, and s must be one of the polynomials 

described above. It is conceivable that convexity of the extension 
 
R T[ ]! R T[ ]

s
 entails 

additional restrictions for s. However, this is not the case:  
 Let s be a polynomial that is non-negative on K, has only real roots, all of them in K, but 
not isolated, and with even multiplicity if a root is an inner point of K. Now assume that there 
are 

 
0 < a,b !R T[ ]  and  1 ! n "N  such that 0 ! a ! b " sn . Then, as before, every root !  of s 

(with multiplicity µ ) is a root of a with multiplicity at least n !µ . Thus, a is a multiple of sn .  
 The discussion shows that 

 
R T[ ]! R T[ ]

s
 is a convex extension if and only if 

 
R T[ ]  

contains the bounded elements of 
 
R T[ ]

s
. Ω 

 
Example 31 
Consider the polynomial ring 

 
R T[ ]  with the sums of squares as partial order (i.e., the 

positive cone is formed by the positive semi-definite polynomials). Then the extension 

 
R T[ ]! R T[ ]

T
2  is convex. Now consider the intermediate ring 

 

R T[ ]
T !1( )

2

T
2

"

#
$
$

%

&
'
'

. The 

bounded elements of 
 
R T[ ]

T
2  are contained in 

 
R T[ ] , hence also in 

 

R T[ ]
T !1( )

2

T
2

"

#
$
$

%

&
'
'

. It will 

be shown that 
1

T
2

 belongs to the convex hull of 
 

R T[ ]
T !1( )

2

T
2

"

#
$
$

%

&
'
'

, but not to the ring itself.  

 First assume that 
 

1

T
2
!R T[ ]

T "1( )
2

T
2

#

$
%
%

&

'
(
(

, say 
 

1

T
2
= F

0
+ F

1
!
T "1( )

2

T
2

+…+ F
k
!

T "1( )
2

T
2

#

$
%

&

'
(

k

 

with 
  
F
0
,…,F

k
!R T[ ] . Pick a representation of this type with k as small as possible. It is 
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clearly impossible that k = 0 . If k = 1 , one obtains the equation 1 = F
0
!T

2
+ F

1
! T "1( )

2  of 
polynomials, and this also leads to a contradiction immediately. So, assume that k ! 2 . Then 
there is an equation 

 
T
2!k"2

= F
0
!T

2!k
+…+ F

k"1
! T "1( )

2!k"2

!T
2
+ F

k
! T "1( )

2!k . All 
summands, except for the last one, are divisible by T 2 , which implies that F

k
= T

2
!G . It 

follows that 
 
T
2!k"2

= F
0
!T

2!k
+…+ F

k"1
! T "1( )

2!k"2

!T
2
+G ! T "1( )

2!k

!T
2 , and T 2  can be 

cancelled from the equation. This yields  
 

 

1

T
2
= F

0
+ F

1
!
T "1( )

2

T
2

+…+ F
k"1 +G ! T "1( )

2( ) !
T "1( )

2

T
2

#

$
%

&

'
(

k"1

, 

 

and this contradicts  the minimality of k. Thus, 
 

1

T
2
!R T[ ]

T "1( )
2

T
2

#

$
%
%

&

'
(
(

. 

 Finally, the inequality 0 !
1

T
2
! 2 + 2 "

T #1( )
2

T
2

 shows that 
1

T
2

 is in the convex hull of 

 

R T[ ]
T !1( )

2

T
2

"

#
$
$

%

&
'
'

, i.e., the convex hull of 
 

R T[ ]
T !1( )

2

T
2

"

#
$
$

%

&
'
'

 is 
 
R T[ ]

T
2 . Ω 

 
The list of examples can be continued. In a polynomial ring with several variables, again with 
the partial order consisting of the polynomials that are positive semi-definite on a closed 
semi-algebraic, there is a similar relationship between elements with first convexity property 
and the geometry of the semi-algebraic set as the one observed in the first example above.  
 Many more results concerning these questions are available, the investigations are still in 
progress. The approach to convexity questions described above, i.e., asking for the convex 
extensions of a given poring, will also improve the understanding of convex subrings and real 
holomorphy rings.  


