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What are Integral
Transforms? 1

To understand one science perfectly means having a considerable knowledge of
all other sciences

(P. J. Brebner, Christopher Quarles College Professor and Master Detective)

As the name may suggest, an integral transform is a transform that involves
integrals. This, of course, is no help at all. So let us try to give an intuitive collection
of what we may mean with it.

1.1 General considerations

A transform 𝑇 takes a function 𝑓 from a function space X : { 𝑓 : 𝑋 → C} to a
function 𝑇 𝑓 from another function space Y = {𝑔 : 𝑌 → C}. In some cases, we will
have that 𝑋 = 𝑌 , but in many cases it will happen that 𝑌 ≠ 𝑋 . This can be for
various reasons:

1. The transform 𝑇 𝑓 may provide information of 𝑓 that is not so easily visible
from 𝑓 directly.

2. We may be interested in a function 𝑓 , but all we know is a measurement
𝑔 = 𝑇 𝑓 where 𝑇 usually models the physics of the acquisition process of
the measurements. This is what is usually called an inverse problem since
in order to find 𝑓 we have to invert 𝑇 in some way or another1 to obtain
𝑓 = 𝑇−1𝑔.

Usually a transform, be it integral or not, is only defined for certain functions, so
a careful definition of the space X and sometimes also of Y is usually important.

A transform is called an integral transform if it involves integrals of functions,
i.e., is of the form

𝑇 𝑓 (𝑦) =
∫
𝑋 ′
𝐹 ( 𝑓 , 𝑥, 𝑦)𝑑𝑥, 𝑋′ ⊂ 𝑋.

Of course, this is still very general as the function 𝐹 : X × 𝑋 ×𝑌 → C can be very
complicated as can be set 𝑋′ over which integration is performed; and if all that
is too easy for you, you may even replace 𝑑𝑥 by 𝑑𝜇(𝑥) where 𝜇 is some measure
on 𝑋 . In reality, however, many integral operators are of a simpler structure. In

1In many practical applications 𝑇 may not even be invertible or the inversion may numerically
difficult or ill-conditioned.
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1 What are Integral Transforms?

particular, many of them are based of a kernel 𝐾 : 𝑋 × 𝑌 → C and the integral
operator is of the form

𝑇 𝑓 (𝑦) =
∫
𝑋

𝐾 (𝑥, 𝑦) 𝑓 (𝑥)𝑑𝑥, 𝑓 ∈ X .

Such transforms are linear, i.e., 𝑇 (𝛼 𝑓 ) = 𝛼𝑇 𝑓 and 𝑇 ( 𝑓 + 𝑔) = 𝑇 𝑓 + 𝑇𝑔 and many
of their properties are usually derived from properties of the underlying kernel 𝐾 .

1.2 Some examples

But before we get lost in more of the unnecessary general stuff, let us consider
classical examples of integral transforms, in particular those that play a role in
what is going to follow.

Example 1.2.1 (Fourier transform). The Fourier transform of a function 𝑓 :
R𝑑 → C𝑑 is defined as

𝑇 𝑓 (𝜉) := 𝑓 (𝜉) :=
∫
R𝑑
𝑓 (𝑥)𝑒−𝑖𝜉 ·𝑥 𝑑𝑥, 𝜉 ∈ R𝑑 , (1.2.1)

where 𝜉 · 𝑥 = 𝜉1𝑥1 + · · · + 𝜉𝑑𝑥𝑑 denotes the inner product between 𝜉 and 𝑥. This
transform will be a fundamental tool in many of the things we consider later which
will be reason why will dedicate Chapter 2 to it.

Example 1.2.2 (Fourier series). Let T = R/2𝜋Z denote the torus where we identify
any two elements of R if they just differ by a multiple of 2𝜋. As a set, T ≃ [−𝜋, 𝜋],
but any addition and multiplication is well-defined on T in contrast to the interval.
For a function 𝑓 : T𝑑 → C, which has a 2𝜋-periodic extension to R𝑑 , we call

𝑇 𝑓 (𝛼) = 𝑓 (𝛼) = 1
(2𝜋)𝑑

∫
T
𝑓 (𝑥)𝑒−𝑖𝛼·𝑥 𝑑𝑥, 𝛼 ∈ Z𝑑 ,

the coefficients of the Fourier series of 𝑓 . Here we have a transform that maps
functions defined on T𝑑 to functions defined on Z𝑑 , so that the domain of the
function and the domain of its transform are not the same any more.

Note that both the Fourier transform and the Fourier series are integral trans-
forms with kernels, namely,

𝐾 (𝑥, 𝜉) = 𝑒−𝑖𝑥·𝜉 and 𝐾 (𝑥, 𝛼) = 1
(2𝜋)𝑑

𝑒−𝑖𝛼·𝑥 ,

respectively. Also observe that in both cases the transform is only defined for
functions that fulfill certain properties.

Example 1.2.3. A one-sided relative of the Fourier transform from Example 1.2.2
is the Laplace transform, defined as

𝑇 𝑓 (𝑠) :=
∫ ∞

0
𝑓 (𝑡)𝑒−𝑠𝑡 𝑑𝑡, 𝑠 ∈ C. (1.2.2)

While the function 𝑓 is only defined on R𝑑 , the Laplace transform, which plays
a role in theory of systems and electric circuits, has a complex parameter that is
usually interpreted as amplitude and frequency.
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1.3 Integration and spaces

Example 1.2.4 (Wavelet transform). A function 𝜓 with the property that2∫
R𝑑

���̂�(𝜉)��2
|𝜉 |1

𝑑𝜉 < ∞

is called a (admissible) wavelet and the associated wavelet transform is defined
as

𝑇 𝑓 (𝑥, 𝑢) =
∫
R𝑑
𝜓

(𝑥 − 𝑡
𝑢

)
𝑓 (𝑡) 𝑑𝑡, 𝑥 ∈ R𝑑 , 𝑢 ∈ R,

and has the property that the number of parameters of the transform is now even
greater than the number of parameters of the function itself. The wavelet transform
plays an important role in time-/frequency analysis.

Example 1.2.5 (Radon transform). A transform where function and transformed
function have a completely difference structure is the Radon transform that we
will consider in 2D here. For 𝑓 : R2 → R and a line

𝐿 = {𝑣0 + 𝑡𝑣 : 𝑡 ∈ R} ,

defined by the anchor point 𝑣0 ∈ R𝑠 and the direction 𝑣 ∈ R2 \ {0} one defines the
line integral

𝑇 𝑓 (𝐿) = 𝑅 𝑓 (𝐿) =
∫
R
𝑓 (𝑣0 + 𝑡𝑣) 𝑑𝑡. (1.2.3)

This is not a kernel integral and makes some stronger requirements on 𝑓 since the
integration is only over a line, which is a set of measure zero. What this means, we
will see in a moment. The Radon transform, introduced by Johan Radon in 1917
has a physical interpretation that makes is the foundation of computed tomography
as we will see later.

The list of examples that we have seen in this section is in no way exhaustive or
complete, but it already shows some of the basic concepts and questions that we
will encounter in the course of this lecture.

1.3 Integration and spaces

In this section we give a short and superficial introduction to what we me mean
when we talk about integrals. Those who want to know details are for example
referred to (Forster, 1984; Williamson, 1962). The most common integral in Anal-
ysis and Calculus3 courses is the Riemann integral based on the integration of
finite step functions on finite and mostly compact intervals. I works quite well for
continuous functions on compact domains but fails for nasty functions like

𝑓 (𝑥) =
{
0 𝑥 ∈ Q,
1 𝑥 ∈ R \ Q,

2This is called the admissibility condition and implies that
∫
𝜓 = 0.

3In the German system analysis is mostly calculus, the English and American system makes a
distinction that is also visible in the title of books.
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1 What are Integral Transforms?

for which the lower integral is zero and the upper is the interval length. Also it
notoriously troubled with infinite domains of integration, just try to compute∫ ∞

0
cos(𝑥)𝑑𝑥

by approximating it via
∫ 𝑅

0 cos(𝑥)𝑑𝑥 letting 𝑅 tend to ∞. It simply does not work
and actually the function cos(𝑥) is not integrable on R.

The Lebesgue integral on the other hand, is based on the notion of measurable
sets in R𝑑 and the defines for any countable decomposition of some measurable
𝐸 ⊂ R𝑑 into disjoint measurable sets 𝐸 𝑗 , 𝑗 ∈ N, the upper and lower sums

𝑆∗( 𝑓 ) =
∞∑︁
𝑗=1

(
sup
𝑥∈𝐸 𝑗

𝑓 (𝑥)
)
𝑚(𝐸 𝑗 ), 𝑆∗( 𝑓 ) =

∞∑︁
𝑗=1

(
inf
𝑥∈𝐸 𝑗

𝑓 (𝑥)
)
𝑚(𝐸 𝑗 ),

and then the upper and lower integrals∫ ↓

𝐸

𝑓 (𝑥)𝑑𝑥 := inf
𝐸1,𝐸2,...

𝑆∗( 𝑓 ),
∫ ↑

𝐸

𝑓 (𝑥)𝑑𝑥 := sup
𝐸1,𝐸2,...

𝑆∗( 𝑓 ),

which is “the smallest from above” and “the largest from below”; the always sat-

isfy
∫ ↓
𝐸
≥

∫ ↑
𝐸

and the function 𝑓 is called integrable if the two coincide. When
done properly this gives a proper notion of integration on R𝑑 that agrees with the
Riemann integral for 𝑓 ∈ 𝐶𝐶 (R𝑑), i.e., for all functions with compact support.

The integral has all nice properties that we expect of it, like linearity, positivity,
monotonicity and additivity, at least as long as things are finite. For infinite oper-
ations, like limits or interchange of integrals or integrals and limits, one has to be
careful. An example is the following result.

Theorem 1.3.1 (Lebesgue dominated convergence). If 𝑓𝑛, 𝑛 ∈ N, is a sequence of
integrable functions which is dominated, i.e, there exists an integrable function 𝑔 such
that4 | 𝑓𝑛 | ≤ 𝑔, with 𝑓𝑛 → 𝑓 , then 𝑓 is integrable and∫

𝑓 (𝑥) 𝑑𝑥 = lim
𝑛→∞

∫
𝑓𝑛 (𝑥) 𝑑𝑥. (1.3.1)

The point here is “dominated”. In general the limit would neither be integrable
nor would (1.3.1) hold without the sequence being dominated, cf. (Gelbaum and
Olmstedt, 1964). And there exist quite a few of such subtleties for Lebesgue in-
tegration. We will not dwell on them in this lecture as we want to focus on other
things and sometimes we may be a little bit “generous” in the arguments and refer
to the theory. If you feel uncertain, take the effort to consult the standard literature,
as in the end knowledge and even understanding is not a disadvantage.

Even the point evaluation of locally integrable functions is not a trivial issue. Of
course, we can write 𝑓 (𝑥), but since a locally integrable function can be modified

4This only has to hold almost everywhere, but we have not defined what this means nor do we
intend to do so.
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1.3 Integration and spaces

on a set of measure zero5, the evaluation is not well defined and 𝑓 ↦→ 𝑓 (𝑥) is
in no way a reasonable or continuous functional. To define a reasonable point
evaluation, we use the ball of radius 𝛿 around 𝑥,

𝐵𝛿 (𝑥) :=
{
𝑦 ∈ R𝑑 : |𝑦 − 𝑥 | ≤ 𝛿

}
, |𝐵𝛿 (𝑥) | =

∫
𝐵𝛿 (𝑥)

𝑑𝑡

to define the average

𝜇𝛿 𝑓 (𝑥) :=
1
𝑉𝛿

∫
𝐵𝛿 (𝑥)

𝑓 (𝑡) 𝑑𝑡 = 1
𝑉𝛿

∫
𝐵𝛿 (0)

𝑓 (𝑡 + 𝑥) 𝑑𝑡 (1.3.2)

at 𝑥.

Theorem 1.3.2 (Lebesgue). If 𝑓 is locally integrable, one has for almost all 𝑥 ∈ R𝑑
that

𝑓 (𝑥) = lim
𝛿→0

𝜇𝛿 𝑓 (𝑥). (1.3.3)

Any point 𝑥 for which (1.3.3) holds is called a Lebesgue point of 𝑓 and the
Lebesgue’s theorem, Theorem 1.3.2 states that the complement of the set of Lebesgue
points has measure zero. Modifying the function there in an appropriate way, gives
an integrable function where all points are Lebesgue points and we can assume that
(1.3.3) holds everywhere.

In this lecture we will consider some standard spaces of functions that will be of
use later.

Definition 1.3.3 (Continuous functions).

1. By 𝐶 (R𝑑) we define the vector space of continuous functions of R𝑑, which
are functions such that for any 𝑥 ∈ R𝑑 and any 𝜀 > 0 there exists 𝛿 > 0 such
that6

|𝑥 − 𝑦 | ≤ 𝛿 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝜀.

2. Moreover, we write 𝐶𝑢 (R𝑑) for the uniformly continuous function where
for any 𝜀 > 0 there exists 𝛿 > 0 such that for any 𝑥 ∈ R𝑑

|𝑥 − 𝑦 | ≤ 𝛿 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝜀.

3. By 𝐶00(R𝑑) we denote all functions 𝑓 from 𝐶 (R𝑑) that have compact sup-
port, that is, there exists a compact set Ω ⊂ R𝑑 such that 𝑓 (𝑥) = 0 for 𝑥 ∉ Ω.

4. An important and particularly nice class of functions is 𝐶∞00(R
𝑑), the set of a

infinitely differentiable functions with compact support.

Even if 𝐶∞00(R
𝑑) looks like a class of functions almost too good to be useful, they

actually are quite frequent and useful: they are dense in the integrable functions.

5Even worse, the spaces of integrable functions that we consider are only equivalence classes
modulo sets of measure zero.

6The norm | · | that measures the distance in R𝑑 is not relevant here as all norms on finite dimen-
sional spaces are equivalent. If this does not make sense to you, look it up.
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1 What are Integral Transforms?

Theorem 1.3.4. For any integrable 𝑓 and 𝜀 > 0 there exists 𝑔 ∈ 𝐶∞00(R
𝑑) such that∫

R𝑑
| 𝑓 (𝑥) − 𝑔(𝑥) | 𝑑𝑥 < 𝜀. (1.3.4)

A fundamental role will be played by functions whose powers are integrable
which form the basic spaces for integral transforms.

Definition 1.3.5 (𝐿𝑝 spaces).

1. For 1 ≤ 𝑝 < ∞ the 𝑝-norm is defined as

∥ 𝑓 ∥𝑝 :=
(∫
R𝑑
| 𝑓 (𝑥) |𝑝 𝑑𝑥

)1/𝑝
, 𝑓 : R𝑑 → C, (1.3.5)

and the 𝐿𝑝-space consists of all functions with finite 𝑝-norm:

𝐿𝑝 (R𝑑) :=
{
𝑓 : ∥ 𝑓 ∥𝑝 < ∞

}
(1.3.6)

2. For 𝑝 = ∞ we consider

∥ 𝑓 ∥∞ = ess-sup
{
| 𝑓 (𝑥) | : 𝑥 ∈ R𝑑

}
where the essential supremum allows to exclude the values of 𝑓 on a set of
measure zero. This is a somewhat ugly space.

3. The dual norm to ∥ · ∥𝑝 is ∥ · ∥𝑞 where 1/𝑝 + 1/𝑞 = 1, 1 < 𝑝 < ∞ as well as
the pair 1,∞.

Exercise 1.3.1 Show that

𝐶00(R𝑑) ⊂
⋂

1≤𝑝≤∞
𝐿𝑝 (R𝑑).

♦
A fundamental and frequently used property is that for 1/𝑝 + 1/𝑞 = 1 and 𝑓 ∈

𝐿𝑝 (R𝑑) as well as 𝑔 ∈ 𝐿𝑝 (R𝑑) one has that 𝑓 𝑔 ∈ 𝐿1(R𝑑) and the Hölder inequality

∥ 𝑓 𝑔∥1 ≤ ∥ 𝑓 ∥𝑝 ∥𝑔∥𝑞 (1.3.7)

holds. The special case 𝑝 = 𝑞 = 1
2 is known as the Cauchy-Schwarz inequality.

For 1 ≤ 𝑝 ≤ ∞, the space 𝐿𝑝 is a Banach space, i.e., a complete normed space.
“Normed” is clear since the spaces are defined by the norms ∥ · ∥𝑝, wile complete
means that any Cauchy sequence of functions in 𝐿𝑝 (R𝑑) has a limit, i.e., any
squence 𝑓𝑛, 𝑛 ∈ N, of functions with the property that for any 𝜀 there exists 𝑛0 ∈ N
such that

∥ 𝑓𝑛 − 𝑓𝑚 ∥𝑝 ≤ 𝜀, 𝑚, 𝑛 ≥ 𝑛0,
converges to a limit 𝑓 ∈ 𝐿𝑝 (R𝑛). The point is the existence of the limit and the
proof is not completely trivial, cf. (Williamson, 1962).

Exercise 1.3.2 Give an example of a normed linear space that is no Banach space.
What is the simplest example? ♦

8



The Mother of All
Transforms 2

If God were omnipotent and omniscient in any literal sense, he wouldn’t have
bothered to make the universe at all. There is no success where there is no
possibility of failure, no art without the resistance of the medium.

(R. Chandler, Playback)

The Fourier transform is the transform and it covers hardcore applications as well
as very deep and absctract mathematics like working on locally compact Abelian
groups (Gasquet and Witomski, 1998; Katznelson, 1976; Loomis, 1953).

2.1 Definition and Basic Properties

We begin with the Fourier transform of a function, defined on absolutely integrable
functions.

Definition 2.1.1 (Fourier transform). The Fourier transform of a function 𝑓 ∈
𝐿1(R𝑑) is defined as

F 𝑓 (𝜉) := �̂� (𝜉) :=
∫
R𝑑
𝑓 (𝑥) 𝑒−𝑖 𝜉𝑇𝑥 𝑑𝑥, 𝜉 ∈ R𝑑 . (2.1.1)

The Fourier transform maps functions defined on R𝑑 to functions defined on R𝑑 ,
however, the two instances of R𝑑 play a somewhat different role. The keyword is
dual group, cf. (Katznelson, 1976), but accidentially R𝑑 is its own dual. Here

𝑥𝑇𝜉 =

𝑑∑︁
𝑗=1

𝑥 𝑗𝜉 𝑗

is the standard inner product on R𝑑 yielding that

𝑒−𝑖 𝜉
𝑇𝑥 = 𝑒−𝑖(𝑥1𝜉1+···+𝑥𝑑𝜉𝑑) =

𝑑∏
𝑗=1

𝑒−𝑖𝑥 𝑗𝜉

Since1
��𝑒−𝑖𝑥 �� = 1 for 𝑥 ∈ R, we also have that

���𝑒−𝑖𝑥𝑇𝜉 ��� = 1 and therefore����∫
R𝑑
𝑓 (𝑥) 𝑒−𝑖 𝜉𝑇𝑥 𝑑𝑥

���� ≤ ∫
R𝑑

��� 𝑓 (𝑥) 𝑒−𝑖 𝜉𝑇𝑥 ��� 𝑑𝑥 = ∫
R𝑑
| 𝑓 (𝑥) | 𝑑𝑥,

1Just to make it clear: we are talking about the complex modulus here.
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2 The Mother of All Transforms

hence the Fourier transform is well-defined for 𝑓 ∈ 𝐿1(R𝑑). Historically, the Fourier
transform is a relatively modern concept, Fourier2 himself “only” introduced Fourier
series as a tool to solve the heat equation. Of course, Fourier series can do much
more, for example they form the foundation of musical acoustics (Benson, 2007;
Helmholtz, 1885).

Remark 2.1.2. 1. The physical and technical interpretation of the univariate
Fourier transform of a function, interprested as signal over time, is the con-
tribution of a certain frequency to the signal. To do so, the complex value

�̂� (𝜉) =
��� �̂� (𝜉)��� 𝑒𝑖 𝜃 (𝜉) is interpreted as amplitude

��� �̂� (𝜉)��� and phase 𝜃 (𝜉) asso-
ciated to the frequency.

2. The condition 𝑓 ∈ 𝐿1 ensures that��� �̂� (𝜉)��� ≤ ∥ 𝑓 ∥1 . (2.1.2)

Keep in mind, however, that the condition is only sufficient but not necessary
for the existence of the Fourier transform.

3. Sometimes the Fourier transform is equipped with a factor (2𝜋)𝑑/2, and we
will see soon why this is the case. However, when using various sources of
literature or libraries, it is important to check which factor is used there.
Otherwise it can lead to quite bad errors.

4. The Fourier transfrom not only exists on R𝑑 but on locally compact abelian
groups using the associated Haar measure, cf. (Loomis, 1953). This is a nice
theory intertwining mesure theory, algebra, topology and analysis, but not
needed in our applications here.

5. An important operation on R𝑑 is the translation operator 𝜏𝑦, 𝑦 ∈ R𝑑, defined
as

𝜏𝑦 𝑓 = 𝑓 (· + 𝑦) . (2.1.3)

Moreover, any nonsingular matrix 𝐴 ∈ R𝑑×𝑑 defines a dilation

𝜎𝐴 𝑓 = 𝑓 (𝐴·) . (2.1.4)

Proposition 2.1.3. For 𝑓 ∈ 𝐿1 we have that 𝑓 ∈ 𝐶𝑢 (R𝑑).

Proof: For 𝜉, 𝛿 ∈ R𝑑 , we estimate the difference��� �̂� (𝜉 + 𝛿) − �̂� (𝜉)��� =

����∫
R𝑑
𝑓 (𝑥)

(
𝑒−𝑖(𝜉+𝛿)

𝑇𝑥 − 𝑒−𝑖𝜉𝑇𝑥
)
𝑑𝑥

����
≤

∫
R𝑑
| 𝑓 (𝑥) |

���𝑒−𝑖𝜉𝑇𝑥 ���︸ ︷︷ ︸
=1

���𝑒−𝑖𝛿𝑇𝑥 − 1��� 𝑑𝑥;
2Jean Baptiste Fourier, 1768–1830, , French mathematician and politician, was not only member

of the “Académie des Sciences”, but also participated int the expedition of Napoleon Bona-
parte to Egypt as a scientific advisor. Later he became governor of the Department Isère with
its capital Grenoble where he supported Champollion and thus contributed to decyphering the
hieroglyphs.
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2.1 Definition and Basic Properties

since 𝑓 ∈ 𝐿1 there exists for any 𝜀 > 0 a number 𝑀 > 0 such that3∫
R𝑑\[−𝑀,𝑀]𝑑

| 𝑓 (𝑥) | 𝑑𝑥 < 𝜀

ist. Then, using Exercise 2.1.1,��� �̂� (𝜉 + 𝛿) − �̂� (𝜉)���
≤

∫
[−𝑀,𝑀]𝑑

| 𝑓 (𝑥) |
���𝑒−𝑖𝛿𝑇𝑥 − 1��� 𝑑𝑥 + ∫

R𝑑\[−𝑀,𝑀]𝑑
| 𝑓 (𝑥) |

���𝑒−𝑖𝛿𝑇𝑥 − 1��� 𝑑𝑥︸            ︷︷            ︸
≤2

≤
∫
[−𝑀,𝑀]𝑑

| 𝑓 (𝑥) |
���𝑒−𝑖𝛿𝑇𝑥 − 1��� 𝑑𝑥 + 2𝜀

≤ 𝑀 ∥𝛿∥1
∫
R𝑑
| 𝑓 (𝑥) | + 2𝜀 = 𝑀 ∥𝛿∥1 ∥ 𝑓 ∥1 + 2𝜀.

This expression can be made arbitrarily small indepently of 𝜉 since any given 𝜀

implies an 𝑀 and according to this number we can choose ∥𝛿∥1 ≤ 𝜖/(𝑀 ∥ 𝑓 ∥1) to
obtain ��� �̂� (𝜉 + 𝛿) − �̂� (𝜉)��� ≤ 3𝜀

independently of 𝜉. □

Exercise 2.1.1 Show: For 𝑎 ∈ R𝑑 and 1 ≤ 𝑝, 𝑞 ≤ ∞ such that 1/𝑝 + 1/𝑞 = 1, one
has ���𝑒−𝑖𝑎𝑇𝑥 − 1��� ≤ ∥𝑎∥𝑝 ∥𝑥∥𝑞 .

♦
The next is an important operation that is not only closely related to the Fourier

transform and of great value in signal processing, but can also be seen as an alter-
native multiplication of functions.

Definition 2.1.4 (Convolution). For 𝑓 , 𝑔 ∈ 𝐿 (R𝑑) we define the convolution

𝑓 ∗ 𝑔 :=
∫
R𝑑
𝑓 (· − 𝑡) 𝑔(𝑡) 𝑑𝑡 ∗ : 𝐿 (R) × 𝐿 (R) → 𝐿 (R), (2.1.5)

whenever the integral on the right hand side exists.

The convolution is symmetric since a simple change of variables yields

𝑓 ∗ 𝑔 =

∫
R𝑑
𝑓 (· − 𝑡) 𝑔(𝑡) 𝑑𝑡 =

∫
R𝑑
𝑓 (𝑡) 𝑔(· − 𝑡) 𝑑𝑡 = 𝑔 ∗ 𝑓 .

We also have that4

∥ 𝑓 ∗ 𝑔∥1 =

∫
R𝑑

����∫
R𝑑
𝑓 (𝑥 − 𝑡) 𝑔(𝑡) 𝑑𝑡

���� 𝑑𝑥 ≤ ∫
R𝑑

∫
R𝑑
| 𝑓 (𝑥 − 𝑡) 𝑔(𝑡) | 𝑑𝑡 𝑑𝑥

=

∫
R𝑑

∫
R𝑑
| 𝑓 (𝑥 − 𝑡) 𝑔(𝑡) | 𝑑𝑥 𝑑𝑡 =

∫
R𝑑

∫
R𝑑
| 𝑓 (𝑥) | | 𝑔(𝑡) | 𝑑𝑥 𝑑𝑡 = ∥ 𝑓 ∥1∥𝑔∥1,

3This is one of the “magic” properties of the Lebesgue integral
4The interchanging of the integrals due to Fubini’s theorem is yet another Lebesgue subtlety that

we are not working out in detail.
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2 The Mother of All Transforms

so that the convolution maps 𝐿1 × 𝐿1 to 𝐿1; this is the “multiplication” property
mentioned before.

Exercise 2.1.2 Show that
(
𝐿1(R𝑑), ∗

)
is a Banach algebra, i.e., a Banach space

with a multiplication operation “∗” that satisfies the usual laws of commutativity
and distributivity and is compatible with the norm of the Banach space. ♦

Next, we collect fundamental properties of the Fourier transform that we will
use frequently in what follows.

Theorem 2.1.5 (Properties of the Fourier transform). For 𝑓 ∈ 𝐿1, the following
holds true:

1. for any 𝑦 ∈ R𝑑 , (
𝜏𝑦 𝑓

)∧ (𝜉) = 𝑒𝑖𝑦𝑇𝜉 �̂� (𝜉), 𝜉 ∈ R𝑑 . (2.1.6)

That is, translations are turned into phase shifts.

2. for any nonsingular 𝐴 ∈ R𝑑×𝑑 one has

(𝜎𝐴 𝑓 )∧ (𝜉) =
�̂�
(
𝐴−𝑇𝜉

)
|det 𝐴| , 𝜉 ∈ R𝑑 . (2.1.7)

3. for 𝑔 ∈ 𝐿1,
( 𝑓 ∗ 𝑔)∧ (𝜉) = �̂� (𝜉) �̂�(𝜉), 𝜉 ∈ R𝑑 . (2.1.8)

4. if 𝜕
𝜕𝑥 𝑗

𝑓 ∈ 𝐿1, 𝑗 = 1, . . . , 𝑑, then(
𝜕

𝜕𝑥 𝑗
𝑓

)∧
(𝜉) = 𝑖𝜉 𝑗 �̂� (𝜉), 𝑗 = 1, . . . , 𝑑, 𝜉 ∈ R𝑑 . (2.1.9)

5. if (·) 𝑗 𝑓 ∈ 𝐿1, 𝑗 = 1, . . . , 𝑑, then �̂� is differentiable and

𝜕

𝜕𝜉 𝑗
�̂� (𝜉) =

(
−𝑖(·) 𝑗 𝑓

)∧ (𝜉), 𝑗 = 1, . . . , 𝑑, 𝜉 ∈ R𝑑 . (2.1.10)

6. if �̂� ∈ 𝐿1(R), then

𝑓 (𝑥) =
(
�̂�

)∨
(𝑥) := 1

(2𝜋)𝑑

∫
R𝑑
�̂� (𝜉) 𝑒𝑖𝑥𝑇𝜉 𝑑𝜉 (2.1.11)

Definition 2.1.6. The operation

𝑓 ↦→ 𝑓 ∨ :=
1
(2𝜋)𝑑

𝑓 ∧(−·)

is called the inverse Fourier transform.
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2.1 Definition and Basic Properties

Proof: For 1), we compute(
𝜏𝑦 𝑓

)∧ (𝜉) =

∫
R𝑑
𝑓 (𝑥 + 𝑦) 𝑒−𝑖𝜉𝑇𝑥 𝑑𝑥 =

∫
R𝑑
𝑓 (𝑥) 𝑒−𝑖𝜉 (𝑥−𝑦) 𝑑𝑥 = 𝑒𝑖𝑦𝑇𝜉

∫
R𝑑
𝑓 (𝑥) 𝑒−𝑖𝜉𝑇𝑥 𝑑𝑥

= 𝑒𝑖𝑦
𝑇𝜉 �̂� (𝜉),

and 2) we obtain because of

(𝜎𝐴 𝑓 )∧ (𝜉) =

∫
R𝑑
𝑓 (𝐴𝑥) 𝑒−𝑖𝜉𝑇𝑥 𝑑𝑥 =

��det 𝐴−1�� ∫
R𝑑
𝑓 (𝑥) 𝑒−𝑖𝜉𝑇 𝐴−1𝑥 𝑑𝑥 =

�̂�
(
𝐴−𝑇𝜉

)
|det 𝐴| ;

in both cases it is helpful that the transformations map R𝑑 bijectively to itself.
The statement 3) is due to

( 𝑓 ∗ 𝑔)∧ (𝜉) =

∫
R𝑑

(∫
R𝑑
𝑓 (𝑠)𝑔(𝑥 − 𝑠) 𝑑𝑠

)
𝑒−𝑖𝜉

𝑇𝑥 𝑑𝑥

=

∫
R𝑑

∫
R𝑑
𝑓 (𝑠) 𝑒𝑖𝜉𝑇 𝑠 𝑔(𝑥 − 𝑠) 𝑒𝑖𝜉𝑇 (𝑥−𝑠) 𝑑𝑠𝑑𝑥 = �̂� (𝜉) �̂�(𝜉),

while for 4) we use integration by parts which is justified since 𝐶00(R𝑑) is dense in
𝐿1(R𝑑) and yields for 𝑗 = 1, . . . , 𝑑(

𝜕

𝜕𝑥 𝑗
𝑓

)∧
(𝜉) =

∫
R𝑑

𝜕 𝑓

𝜕𝑥 𝑗
(𝑥)𝑒−𝑖𝜉𝑇𝑥 𝑑𝑥 = −

∫
R𝑑
𝑓 (𝑥) 𝜕

𝜕𝑥 𝑗
𝑒−𝑖𝜉

𝑇𝑥 𝑑𝑥

= 𝑖𝜉

∫
R𝑑
𝑓 (𝑥)𝑒−𝑖𝜉𝑇𝑥 𝑑𝑥 = 𝑖𝜉 �̂� (𝜉).

5) is obtained by computing for ℎ > 0 and 𝜂 ∈ R𝑑 the difference quotient

�̂� (𝜉 + ℎ𝜂) − �̂� (𝜉)
ℎ

=

∫
R𝑑
𝑓 (𝑥) 𝑒

−𝑖(𝜉+ℎ𝜂)𝑇𝑥 − 𝑒−𝑖𝜉𝑇𝑥
ℎ

𝑑𝑥

=

∫
R𝑑
𝑓 (𝑥) 𝑒−𝑖𝜉𝑇𝑥 𝑒

−𝑖ℎ𝜂𝑇𝑥 − 1
ℎ

𝑑𝑥.

Since

lim
ℎ→0

𝑒−𝑖ℎ𝜂
𝑇𝑥 − 1
ℎ

= lim
ℎ→0
(−𝑖𝜂𝑇𝑥) 𝑒−𝑖ℎ𝑥 = −𝑖𝜂𝑇𝑥

and since (
𝜂𝑇𝑥

)
𝑓 =

𝑑∑︁
𝑗=1

𝜂 𝑗 𝑥 𝑗 𝑓 (𝑥)

the Fourier integral exists and is linear in 𝜂 due to our assumption that (·) 𝑗 𝑓 ∈
𝐿1(R𝑑). Therefore, 𝑓 is differentiable and (2.1.10) follows by choosing 𝜂 = 𝑒 𝑗 ,
𝑗 = 1, . . . , 𝑑.

The proof of 6) requires a bit more effort and uses the Féjer kernel

𝐹𝜆 := 𝜆𝑑𝐹 (𝜆·) , 𝜆 > 0, 𝐹 (𝑥) := 1
(2𝜋)𝑑

∫
[−1,1]𝑑

𝑑∏
𝑗=1

(
1 −

��𝑡 𝑗 ��) 𝑒𝑖𝑥𝑡 𝑑𝑡, 𝑥 ∈ R𝑑 ,
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2 The Mother of All Transforms

which is the inverse Fourier transform of a hat function. These kernels have the
property5 that for any 𝑓 ∈ 𝐿1

(
R𝑑

)
lim
𝜆→∞
∥ 𝑓 − 𝑓 ∗ 𝐹𝜆∥1 = 0 (2.1.12)

holds, see (Katznelson, 1976, S. 124–126) for the case 𝑑 = 1 which can easily be
extended by a straightforward tensor product argument. Therefore6 some subse-
quence of 𝑓 ∗ 𝐹𝜆 → 𝑓 converges almost everywhere for 𝜆 → ∞, cf. (Forster, 1984,
S. 96), and we get for almost all 𝑥 ∈ R𝑑 that

𝑓 ∗ 𝐹𝜆 (𝑥) =
∫
R𝑑
𝑓 (𝑡) 𝐹𝜆 (𝑥 − 𝑡) 𝑑𝑡

=
1
(2𝜋)𝑑

∫
R𝑑
𝑓 (𝑡)

©«𝜆
∫

[−1,1]𝑑

𝑑∏
𝑗=1

(
1 − |𝜉 𝑗 |

)
𝑒𝑖(𝑥−𝑡)

𝑇𝜆𝜉 𝑑𝜉
ª®®¬ 𝑑𝑡

=
1
(2𝜋)𝑑

∫
R
𝑓 (𝑡)

∫
[−𝜆,𝜆]𝑑

𝑑∏
𝑗=1

(
1 −

��𝜉 𝑗 ��
𝜆

)
𝑒𝑖(𝑥−𝑡)

𝑇𝜉 𝑑𝜉 𝑑𝑡

=
1
(2𝜋)𝑑

∫
[−𝜆,𝜆]𝑑

𝑑∏
𝑗=1

(
1 −

��𝜉 𝑗 ��
𝜆

) ∫
R𝑑
𝑓 (𝑡) 𝑒−𝑖𝜉𝑇 𝑡 𝑑𝑡︸                 ︷︷                 ︸

= �̂� (𝜉)

𝑒𝑖𝑥
𝑇𝜉 𝑑𝜉

=
1
(2𝜋)𝑑

∫
[−√𝜆,√𝜆]

(1−1/√𝜆)𝑑≤ · ≤1︷           ︸︸           ︷
𝑑∏
𝑗=1

(
1 −

��𝜉 𝑗 ��
𝜆

)
�̂� (𝜉) 𝑒𝑖𝑥𝑇𝜉 𝑑𝜉

︸                                                   ︷︷                                                   ︸
→(2𝜋)−𝑑

∫
R𝑑

�̂� (𝜉) 𝑒𝑖𝑥𝑇 𝜉 𝑑𝜉

+ 1
(2𝜋)𝑑

∫
√
𝜆≤ |𝜉 𝑗 |≤𝜆

𝑑∏
𝑗=1

(
1 −

��𝜉 𝑗 ��
𝜆

)
�̂� (𝜉) 𝑒𝑖𝑥𝑇𝜉 𝑑𝜉

︸                                                     ︷︷                                                     ︸
→0

,

→ 1
(2𝜋)𝑑

∫
R𝑑
�̂� (𝜉) 𝑒𝑖𝑥𝑇𝜉 𝑑𝜉,

5That we do not prove here!
6One more of these statements that need some effort to be verified in detail.
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2.1 Definition and Basic Properties

since��������
∫

√
𝜆≤ |𝜉 𝑗 |≤𝜆

𝑑∏
𝑗=1

(
1 −

��𝜉 𝑗 ��
𝜆

)
�̂� (𝜉) 𝑒𝑖𝑥𝑇𝜉 𝑑𝜉

��������
≤

∫
√
𝜆≤ |𝜉 𝑗 |≤𝜆

𝑑∏
𝑗=1

�����1 −
��𝜉 𝑗 ��
𝜆

�����︸         ︷︷         ︸
≤1

��� �̂� (𝜉)��� ���𝑒𝑖𝑥𝑇𝜉 ���︸︷︷︸
=1

𝑑𝜉 ≤
∫

𝜉∈R𝑑\[−√𝜆,√𝜆]𝑑

��� �̂� (𝜉)��� 𝑑𝜉 → 0

da �̂� ∈ 𝐿1(R). Hence, the inverse Fourier transform �̂� ∨ is a uniformly continuous
function that coincides with 𝑓 almost everwhere, so that we may even assume 𝑓 is
continuous. □

Exercise 2.1.3 Prove the following statement without using (2.1.9): if 𝑓 , 𝑓 ′ ∈
𝐿1(R), then ( 𝑓 ′)∧ (0) = 0.
Hint: integration by parts. ♦

The next classic gives us information on the behavior of the Fourier transform
of a function “far out”.

Proposition 2.1.7 (Riemann-Lebesgue lemma). For 𝑓 ∈ 𝐿1(R𝑑), we have that

lim
|𝜉 |→∞

𝑓 (𝜉) = 0. (2.1.13)

Proof: If, in addition, 𝜕
𝜕𝑥 𝑗

𝑓 ∈ 𝐿1, 𝑗 = 1, . . . , 𝑛, then (2.1.13) is a direct consequence
of (2.1.9) and (2.1.2): 𝜕 𝑓𝜕𝑥 𝑗


1
≥

����( 𝜕 𝑓𝜕𝑥 𝑗
)∧
(𝜉)

���� = ��𝜉 𝑗 �� ��� �̂� (𝜉)��� 𝜉 ∈ R, 𝑗 = 1, . . . , 𝑑.

Summing over 𝑗 , we then find that

𝑑∑︁
𝑗=1

 𝜕 𝑓𝜕𝑥 𝑗

1
≥

��� �̂� (𝜉)��� 𝑑∑︁
𝑗=1

��𝜉 𝑗 �� = |𝜉 |1 ��� �̂� (𝜉)��� ,
hence, ��� �̂� (𝜉)��� ≤ 1

|𝜉 |1

𝑑∑︁
𝑗=1

 𝜕 𝑓𝜕𝑥 𝑗

1
→ 0, |𝜉 | → ∞.

For arbitrary 𝑓 ∈ 𝐿1 and 𝑔 ∈ 𝐶∞00(R
𝑑) such that7 ∥ 𝑓 − 𝑔∥1 ≤ 𝜀, we get, on the other

hand, that
𝜀 ≥ ∥ 𝑓 − 𝑔∥1 ≥

��� �̂� (𝜉) − �̂�(𝜉)��� ≥ ��� �̂� (𝜉)��� − |�̂�(𝜉) | ,
hence

lim
∥𝜉∥→∞

��� �̂� (𝜉)��� ≤ lim
∥𝜉∥→∞

|�̂�(𝜉) | + ∥ 𝑓 − 𝑔∥1 ≤ 𝜀,

7Once more it is the density of the smooth functions that is relevant here.
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2 The Mother of All Transforms

and since 𝜀 can be chosen arbitrarily small, the claim follows. □

The third classic is a result that tells us that properly normalized the Fourier
transform can be extended to an isometry on 𝐿2(R𝑑).

Theorem 2.1.8 (Parseval8/Plancherel). For 𝑓 , 𝑔 ∈ 𝐿1(R𝑑) ∩ 𝐿2(R𝑑) we have9∫
R𝑑
𝑓 (𝑥) 𝑔(𝑥) 𝑑𝑥 = 1

(2𝜋)𝑑

∫
R𝑑
�̂� (𝜉) �̂�(𝜉) 𝑑𝜉, (2.1.14)

and especially with 𝑓 = 𝑔,

∥ 𝑓 ∥2 =
1

(2𝜋)𝑑/2
∥ �̂� ∥2. (2.1.15)

Theorem 2.1.8 allows us to extend the Fourier transform to 𝐿2(R𝑑) by consider-
ing, for 𝑓 ∈ 𝐿2 a sequence

𝑓𝑛 := 𝜒[−𝑛,𝑛]𝑑 · 𝑓 ∈ 𝐿1 ∩ 𝐿2, 𝑛 ∈ N,

cf. Exercise 2.1.4, of “cut off” function that converge to 𝑓 for 𝑛 → ∞ in the norm
∥·∥2. Since, according to Theorem 2.1.8, �̂�𝑛+𝑘 − �̂�𝑛

2
=

( 𝑓𝑛+𝑘 − 𝑓𝑛)∧2 = (2𝜋)𝑑/2 ∥ 𝑓𝑛+𝑘 − 𝑓𝑛∥2 , 𝑘, 𝑛 ∈ N,

�̂�𝑛 is a Cauchy sequence and due to completeness it has a limit in 𝐿2, which we
define to be �̂� . This gives a formally correct and consistent definition of a Fourier
transform on 𝐿2(R𝑑).

This construction and (2.1.15) explain why the Fourier transform is often defined
as

�̂� (𝜉) = 1

(2𝜋)𝑑/2

∫
R𝑑
𝑓 (𝑥) 𝑒−𝑖𝜉𝑇𝑥 𝑑𝑥

since then it is an isometry on 𝐿2(R𝑑), i.e.,

∥ 𝑓 ∥2 = ∥ 𝑓 ∥2, 𝑓 ∈ 𝐿2(R𝑑). (2.1.16)

Exercise 2.1.4 If 𝑓 ∈ 𝐿2 is compactly supported, the 𝑓 ∈ 𝐿1. ♦
Proof of Theorem 2.1.8: We define

ℎ(𝑥) =
∫
R𝑑
𝑓 (𝑡) 𝑔 (𝑡 − 𝑥) 𝑑𝑡 = ( 𝑓 ∗ 𝑔(−·)) (𝑥), 𝑥 ∈ R𝑑 ,

so that ℎ(0) =
∫
𝑓 𝑔. Moreover,

ℎ̂(𝜉) = �̂� (𝜉) (𝑔(−·))∧ (𝜉)︸         ︷︷         ︸
=�̂�(𝜉)

= �̂� (𝜉) �̂�(𝜉), 𝜉 ∈ R𝑑 .

8Marc–Antoine Parseval des Chênes, 1755–1836, contemporary of Fourier, was quite involved
in the troubles of the French revolution and published 5 (five) papers in his lifetime, but all of
them were presented to the Académie des Sciences which was not ordinary

9Keep in mind that the complex inner product involves complex conjugation in order to be definite.
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2.2 Fourier Series and Periodization

If 𝑓 and 𝑔 are so “nice” that �̂� , �̂� ∈ 𝐿2 ist, for example when they are differentiable,
then (2.1.11) implies

1
(2𝜋)𝑑

∫
R𝑑
�̂� (𝜉) �̂�(𝜉) 𝑑𝜉 = 1

(2𝜋)𝑑

∫
R𝑑
ℎ̂(𝜉) 𝑒𝑖0𝜉 𝑑𝜉 = ℎ(0) =

∫
R𝑑
𝑓 (𝑥) 𝑔(𝑥) 𝑑𝑥,

which gives (2.1.14). And the Plancherel identity (2.1.15) is finally a direct con-
sequence of the Parseval formula (2.1.14). □

2.2 Fourier Series and Periodization

We obtain a different form of a Fourier transform if we consider functions on the
torus

T𝑑 := R𝑑/
(
2𝜋Z𝑑

)
≃ [−𝜋, 𝜋]𝑑 .

Keep in mind that the torus is more than just the set [−𝜋, 𝜋]𝑑 since all additions and
multiplications are well defined on the torus, just modulo 2𝜋 in each component.
Because of that, all functions from 𝐿𝑝

(
T𝑑

)
are 2𝜋 periodic which means that

𝑓 (· + 2𝜋𝛼) = 𝑓 , 𝛼 ∈ Z𝑑 (2.2.1)

and gives a natural extension of these functions to R𝑑 . The converse can also be
done.

Definition 2.2.1. The periodization of a function 𝑓 : R𝑑 → R is defined as

𝑓∗ =
∑︁
𝛼∈Z𝑑

𝑓 (· + 2𝜋𝛼) , (2.2.2)

provided that the sum on the right hand side exists.

That the sum on the right hand side exists relies on conditions on 𝑓 , for example,
the constant function 𝑓 = 1 cannot be periodized. Moreover, it depends on the
sense in which the function should exist, pointwise or as an element of a function
space like 𝐿𝑝.

Lemma 2.2.2 (Periodization). If 𝑓 ∈ 𝐿1
(
R𝑑

)
then 𝑓∗ ∈ 𝐿1

(
T𝑑

)
with ∥ 𝑓∗∥1 ≤ ∥ 𝑓 ∥1.

Proof: Since

∥ 𝑓∗∥1 =

∫
T𝑑
| 𝑓∗(𝑥) | 𝑑𝑥 =

∫
T𝑑

����� ∑︁
𝛼∈Z𝑑

𝑓 (𝑥 + 2𝜋𝛼)
����� 𝑑𝑥 ≤ ∫

T𝑑

∑︁
𝛼∈Z𝑑
| 𝑓 (𝑥 + 2𝜋𝛼) | 𝑑𝑥

=
∑︁
𝛼∈Z𝑑

∫
2𝜋𝛼+[−𝜋,𝜋]𝑑

| 𝑓 (𝑥 + 2𝜋𝛼) | 𝑑𝑥 =
∫
R𝑑
| 𝑓 (𝑥) | 𝑑𝑥 = ∥ 𝑓 ∥1 ,

we 𝑓∗ ∈ 𝐿1
(
T𝑑

)
and 2𝜋 periodicity of the function is obtained by shifting the

summation index in

𝑓∗ (· + 2𝜋𝛼) =
∑︁
𝛽∈Z𝑑

𝑓 (· + 2𝜋(𝛼 + 𝛽)) =
∑︁
𝛽∈Z𝑑

𝑓 (· + 2𝜋𝛽) = 𝑓∗

as 𝛽→ 𝛽 − 𝛼. □

Exercise 2.2.1 Give an example where ∥ 𝑓∗∥1 < ∥ 𝑓 ∥1. ♦
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2 The Mother of All Transforms

Definition 2.2.3. For 𝑓 ∈ 𝐿1(R𝑑), the 𝛼th Fourier coefficient is defined as

�̂�∗(𝛼) =
1
(2𝜋)𝑑

∫
T𝑑
𝑓 (𝑥) 𝑒−𝑖𝛼𝑇𝑥 𝑑𝑥, 𝛼 ∈ Z𝑑 , (2.2.3)

and the associated Fourier series is

𝑓∗(𝑥) ≃
∑︁
𝛼∈Z𝑑

�̂�∗(𝛼) 𝑒𝑖𝛼
𝑇𝑥 , 𝑥 ∈ T𝑑 , (2.2.4)

again provided the series converges.

Convergence of Fourier series is a nontrivial issue, even in one variable. There
exists even the example, due to Du Bois–Reymond in 1873, of a continuous function
whose Fourier series was divergent at some point. This observation even triggered
a new field of mathematics, Approximation Theory, cf. (Sauer, 2017).

Remark 2.2.4. In Fourier series, the function belongs to 𝐿1(T𝑑) while the Fourier
coefficients belong to Z𝑑 and the Fourier series takes them back to a function
defined on T𝑑 . Therefore, T𝑑 and Z𝑑 are dual groups in the vague way that we
mentioned before. In contrast to R𝑑 , there is no more self-duality.

That the Fourier coefficients of the periodization 𝑓∗ should be connected to the
Fourier series of 𝑓 , is shown by the following computation:

�̂�∗(𝛼) =
1
(2𝜋)𝑑

∫
T𝑑

∑︁
𝛽∈Z𝑑

𝑓 (𝑥 + 2𝜋𝛽) 𝑒−𝑖𝛼𝑇𝑥 𝑑𝑥

=
1
(2𝜋)𝑑

∑︁
𝛽∈Z𝑑

∫
T𝑑+2𝜋𝛽

𝑓 (𝑥) 𝑒−𝑖𝛼𝑇 (𝑥−2𝜋𝛽) 𝑑𝑥

=
1
(2𝜋)𝑑

∑︁
𝛽∈Z𝑑

∫
T𝑑+2𝜋𝛽

𝑓 (𝑥) 𝑒−𝑖𝛼𝑇𝑥 𝑒𝑖2𝜋𝛼𝑇 𝛽︸  ︷︷  ︸
=1

𝑑𝑥

=
1
(2𝜋)𝑑

∫
R𝑑
𝑓 (𝑥) 𝑒−𝑖𝛼𝑇𝑥 𝑑𝑥 = 1

(2𝜋)𝑑
�̂� (𝛼),

which brings us to our next result.

Theorem 2.2.5 (Poisson10 formula). If 𝑓 , �̂� ∈ 𝐿1 we have the Poisson summation
formula∑︁

𝛼∈Z𝑑
𝑓 (2𝜋𝛼) = 1

(2𝜋)𝑑
∑︁
𝛼∈Z𝑑

�̂� (𝛼) and
∑︁
𝛼∈Z𝑑

𝑓 (𝛼) =
∑︁
𝛼∈Z𝑑

�̂� (2𝜋𝛼) . (2.2.5)

10Siméon Denis Poisson, 1781–1840, student of Laplace and Legendre, between 300 and 400 pub-
lications on Mathematics and Physics.
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2.3 Distributions and a Strange Derivative

Proof: If the partial sums of 𝑓∗ converge11, then �̂� (𝛼) = �̂�∗(𝛼) f"ur 𝛼 ∈ Z𝑑, implies
that

1
(2𝜋)𝑑

∑︁
𝛼∈Z

�̂� (𝛼) =
∑︁
𝛼∈Z𝑑

�̂�∗(𝛼) 𝑒𝑖𝛼
𝑇0︸︷︷︸

=1

=

( ∑︁
𝛼∈Z𝑑

�̂�∗(𝛼) 𝑒𝑖𝛼
𝑇 ·
)
(0) = 𝑓∗(0)

=
∑︁
𝛼∈Z𝑑

𝑓 (0 + 2𝜋𝛼) =
∑︁
𝛼∈Z𝑑

𝑓 (2𝜋𝛼) ,

and yields the first identity. With this and (2.1.7) a “change of variables” gives∑︁
𝛼∈Z𝑑

𝑓 (𝛼) =
∑︁
𝛼∈Z𝑑

(
𝜎(2𝜋)−1𝐼 𝑓

)
(2𝜋𝛼) = 1

(2𝜋)𝑑
∑︁
𝛼∈Z𝑑

(
𝜎(2𝜋)−1𝐼 𝑓

)∧
(𝛼)

=
∑︁
𝛼∈Z𝑑

�̂� (2𝜋𝛼) .

□

Remark 2.2.6. The Poisson formula (2.2.5) is a pointwise statement and uses
evaluations of 𝑓 and 𝑓 only at the discrete points Z𝑑 and 2𝜋Z𝑑 , respectively. These
points are a set of measure zero and any 𝐿𝑝 function is defined only up to such
a set. However, since we assume that both 𝑓 , 𝑓 belong to 𝐿1, they also belong
to 𝐶𝑢 (R𝑑), since they are related by (inverse) Fourier transforms and therefore
the point evaluation is a continuous linear functional and all sums in (2.2.5) are
well-defined.

2.3 Distributions and a Strange Derivative

If we want a function for which the Fourier transform and the inverse Fourier are
defined, it has to be of the form 𝑓 , �̂� ∈ 𝐿1(R𝑑), at least so far. A way to bypass this is
to use objects that go beyond functions, but include 𝐿1 functions in a natural way.
This will be the concept of tempered distributions. For details on various types
of distributions see (Yosida, 1965) which is not easy to read, but a very compact
source of valuable information.

Definition 2.3.1 (Test functions and distributions).

1. A test function 𝑓 ∈ T
(
R𝑑

)
is a element of the linear space of 𝐶∞00(R

𝑑) with
uniformly bounded derivatives,

T
(
R𝑑

)
=

𝜙 ∈ 𝐶∞00
(
R𝑑

)
: sup
𝛼∈N𝑑

0

sup
𝑥∈R𝑑

���� 𝜕 |𝛼 |𝜕𝑥𝛼
𝜙(𝑥)

���� < ∞ (2.3.1)

topologized by the family of seminorms

|𝜙|𝛼 = max
𝑥∈R𝑑

���� 𝜕 |𝛼 |𝜕𝑥𝛼
𝜙(𝑥)

���� , 𝛼 ∈ N0. (2.3.2)

11Otherwise we would have to apply a proper summation method, like Féjer kernels, cf. (Sauer,
2017).
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2 The Mother of All Transforms

2. A sequence (𝜙𝑛 : 𝑛 ∈ N) of test functions is said to converge to some 𝜙 if there
is a compact set Ω ⊂ R𝑑 such that 𝜙𝑛 (𝑥) = 0, 𝑥 ∉ Ω and

lim
𝑛→∞
|𝜙𝑛 − 𝜙|𝛼 = 0, 𝛼 ∈ N𝑑0 . (2.3.3)

3. A distribution 𝑇 is a continuous linear functional12 𝑇 : T
(
R𝑑

)
→ C.

4. A distribution is called a regular distribution if there exists a function 𝑓 ∈
𝐿1

(
R𝑑

)
such that

𝑇 (𝜙) = 𝑇 𝑓 (𝜙) =
∫
R𝑑
𝑓 (𝑥)𝜙(𝑥) 𝑑𝑥, 𝜙 ∈ T (R𝑑). (2.3.4)

Remark 2.3.2. 1. The topology of test functions is needed to ensure that the
limit of test functions is a test function again and in particular compactly
supported. Even the limit of uniformly convergent compactly supported func-
tions need not be compactly suppoted any more as the example

𝑓𝑛 = 𝑓 𝜒[−𝑛,𝑛] , 𝑓 | [𝑘−1,𝑘] = 𝑓 | [−𝑘,1−𝑘] =
1
𝑘
, 𝑘 = 1, 2, . . . (2.3.5)

shows.

2. Any expression of the form (2.3.4) is a continuous linear functional since for
𝜙, 𝜙′ ∈ T (R𝑑) we also have that 𝜙 − 𝜙′ ∈ T (R𝑑) and

|𝑇 (𝜙) − 𝑇 (𝜙′) | ≤
∫
R𝑑
| 𝑓 (𝑥) | |𝜙(𝑥) − 𝜙′(𝑥) | 𝑑𝑥 ≤ max

𝑥∈R𝑑
|𝜙(𝑥) − 𝜙′(𝑥) | ∥ 𝑓 ∥1

≤ ∥𝜙 − 𝜙′∥ ∥ 𝑓 ∥1,

3. For 𝑥 ∈ R𝑑 the point evaluation 𝜙 ↦→ 𝜙(𝑥) is a continuous linear functional
T (R𝑑) since convergence in T (R𝑑) is uniform convergence of all derivatives,
hence especially uniform convergence and therefore pointwise convergence.
Hence 𝜙𝑛 → 𝜙 implies 𝜙𝑛 (𝑥) → 𝜙(𝑥).

4. While the point evaluation is a distribution, it is not a regular distribution -
there exists no 𝐿1 function that represents it. Nevertheless it is the limit of
the sequence

𝑇𝑛 (𝜙) =
∫
R𝑑
𝑓𝑛 (𝑡) 𝜙(𝑡) 𝑑𝑡, 𝑓𝑛 =

𝑛

2
𝜒[𝑥−1/𝑛,𝑥+1/𝑛] , (2.3.6)

of regular distributions. In other words, the regular distributions are not
closed.

12A functional is a mapping from a (function) space to the underlying field, in our case C. A
linear functional is continuous iff it is bounded, see (Kreyszig, 1978; Taylor and Lay, 1980;
Yosida, 1965).
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2.3 Distributions and a Strange Derivative

5. While we will use distributions as some replacements for functions, they have
the obvious problem that, in contrast to 𝑓 (𝑥) for a function, the “value” of a
distribution somewhere is not defined at all. They are just linear functionals.

6. Nevertheless, distributions are sometimes even called generalized functions.

Exercise 2.3.1 Turn (2.3.5) into an example where 𝑓 and all the 𝑓𝑛 are continuous.
♦

The example of the point evaluation shows us where the advantage of distribu-
tions lies: while the sequence 𝑓𝑛 from (2.3.6) does not converge13 in 𝐿1, it still
converges in the distributional sense, distributions are much more “forgiving”.
Moreover, regular distributions for differentiable 𝑓 motivate the definition of the
derivative of a distribution by simple partial integration:(

𝜕 |𝛼 |

𝜕𝑥𝛼
𝑇

)
(𝜙) =

∫
R𝑑

𝜕 |𝛼 |

𝜕𝑥𝛼
𝑓 (𝑥)𝜙(𝑥) 𝑑𝑥

= (−1) |𝛼 |
∫
R𝑑
𝑓 (𝑥) 𝜕

|𝛼 |

𝜕𝑥𝛼
𝜙(𝑥) 𝑑𝑥 = (−1) |𝛼 | 𝑇

(
𝜕 |𝛼 |

𝜕𝑥𝛼
𝜙

)
. (2.3.7)

The right hand side of (2.3.7) does not depend on 𝑓 any more and is a continuous
linear functional on T (R𝑑) due to the way how we normed the space, we have the
following observation.

Proposition 2.3.3. Any distribution is infinitely differentiable with(
𝜕 |𝛼 |

𝜕𝑥𝛼
𝑇

)
(𝜙) = (−1) |𝛼 | 𝑇

(
𝜕 |𝛼 |

𝜕𝑥𝛼
𝜙

)
.

Moreover, in contrast to functions, differentiation and limit can be exchanged
and a lot of things that were forbidden in Analysis of functions are possible for
distributions. One disadvantage, on the other hand, is that it is very difficult to
check for a given distribution whether it is positive. We not dwell on details here,
the basics of the theory are, for example, nicely summarized in (Forster, 1984).

To define a Fourier transform for distributions, we need a slightly different class
of distributions.

Definition 2.3.4 (Tempered distributions).

1. The Schwartz class14 S
(
R𝑑

)
consists of all rapidly decaying functions

S
(
R𝑑

)
=

{
𝑓 ∈ 𝐶∞

(
R𝑑

)
: sup
𝑥∈R𝑑

����𝑝(𝑥) 𝜕 |𝛼 |𝜕𝑥𝛼
𝑓 (𝑥)

���� < ∞, 𝑝 ∈ Π, 𝛼 ∈ N𝑑0} ,
(2.3.8)

13It also is not a Cauchy sequence!
14Named after Laurent Schwartz, one of the fathers of distribution theory, and note after Hermann

Amandus Schwarz, the Cauchy-Schwarz Schwarz.
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2 The Mother of All Transforms

with the topology based on the family

∥ 𝑓 ∥𝑚 := sup
𝑥∈R𝑑

max
|𝛼 |≤𝑚

max
𝑝∈Π𝑚

����𝑝(𝑥) 𝜕 |𝛼 |𝜕𝑥𝛼
𝑓 (𝑥)

���� , 𝑚 ∈ N0, (2.3.9)

of seminorms. This means that a sequence 𝑓𝑛 ∈ S (R𝑑) converges to 𝑓 ∈
S (R𝑑) if

lim
𝑛→∞

sup
𝑥∈R𝑑

sup
𝛼∈N𝑑

0

sup
𝑝∈Π

����𝑝(𝑥) 𝜕 |𝛼 |𝜕𝑥𝛼
( 𝑓𝑛 − 𝑓 ) (𝑥)

���� = 0. (2.3.10)

2. A tempered distribution 𝑇 is a continuous linear functional on S (R𝑑).

Note T
(
R𝑑

)
⊂ S

(
R𝑑

)
not only in the sense of an inclusion of sets, but also

with respect to the respective topology: the topology induced by (2.3.9) is stronger
than the one induced by (2.3.2) which means that any sequence that converges
with respect to the stronger distribution also converges with respect to the weaker
one, but maybe not conversely. Since the continous functionals for a superset are
a subset of the continuous functionals for the set15, any tempered distribution is
also a distribution so that the wording makes sense.

Proposition 2.3.5. 𝑓 ∈ S (R𝑑) if and only if 𝑓 ∈ S (R𝑑).

Proof: Since S (R𝑑) ⊂ 𝐿1(R𝑑) because of the fast decay, 𝑓 exists. By Theo-
rem (2.1.10),

𝜕 |𝛼 |

𝜕𝜉𝛼
𝑓 (𝜉) = ((−𝑖(·))𝛼 𝑓 ) (𝜉), 𝛼 ∈ N𝑠0 (2.3.11)

and since 𝑓 ∈ S (R𝑑) also implies that 𝑝 𝑓 ∈ S (R𝑑) for any 𝑝 ∈ Π, the right hand
side of (2.3.11) belongs to 𝐿1(R𝑑) and therefore the derivative on the left hand side
is a continuous function. Moreover, for any 𝑝 ∈ Π,

𝑝(𝜉) 𝜕
|𝛼 |

𝜕𝜉𝛼
𝑓 (𝜉) = (𝑝(−𝑖𝐷) (−𝑖(·))𝛼 𝑓 ) , (2.3.12)

where

𝑝(−𝑖𝐷) =
∑︁
𝛼

𝑝𝛼𝑖
|𝛼 | 𝜕

|𝛼 |

𝜕𝑥𝛼
, 𝑝 =

∑︁
𝛼

𝑝𝛼 (·)𝛼,

and the right hand side of (2.3.12) is still in S (R𝑑), so that the Riemann-Lebesque
Lemmma, Proposition 2.1.7, yields the fast decay. The converse is clear since the
inverse Fourier transform has the same properties. □

Exercise 2.3.2 Prove that S (R𝑑) ⊂ 𝐶𝑢 (R𝑑) (strict inclusion). ♦
Now we are in business: due to Proposition 2.3.5 we can apply the same idea

used for derivatives to define the Fourier transform 𝑇 of a tempered distribution as

𝑇 (𝜙) = 𝑇
(
𝜙

)
, 𝜙 ∈ S

(
R𝑑

)
; (2.3.13)

15Being continuous and linear on a larger set means more constraints.
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2.3 Distributions and a Strange Derivative

and the inverse Fourier transform is almost trivial:

𝑇∨(𝜙) = 𝑇
(
𝜙∨

)
, 𝜙 ∈ S

(
R𝑑

)
, (2.3.14)

which immediately yields that

𝑇∨(𝜙) = 𝑇∨
(
𝜙

)
= 𝑇

(
𝜙∨

)
= 𝑇 (𝜙), 𝜙 ∈ S

(
R𝑑

)
,

hence 𝑇∨ = 𝑇 . For the Fourier transform of tempered distributions we have similar
properties as for the Fourier transform of functions, for example,(

𝜕

𝜕𝑥 𝑗
𝑇

)∧
(𝜙) = −𝑇

(
𝜕

𝜕𝑥 𝑗
𝜙

)
= −𝑇

((
𝜕

𝜕𝑥 𝑗
𝜙

)∧)
= −𝑇

(
−𝑖𝜉 𝑗𝜙

)
=

(
𝑖𝑥 𝑗𝑇

) (
𝜙

)
=

(
𝑖𝑥 𝑗𝑇

)
(𝜙).

More on the Fourier transform for tempered distributions can be found in (Yosida,
1965).

What does all that have to do with derivative. Well, introducing the Laplace
operator

Δ =

𝑑∑︁
𝑗=1

𝜕2

𝜕𝑥2
𝑗

we note that due to (2.1.10)

(Δ 𝑓 )∧ (𝜉) =
𝑑∑︁
𝑗=1

(
−𝑖𝜉 𝑗

)2
𝑓 (𝜉) = − 𝑓 (𝜉)

𝑑∑︁
𝑗=1

(
𝜉 𝑗

)2
= −|𝜉 |22 𝑓 (𝜉), 𝜉 ∈ R𝑑 ,

and we can easily solve the differential equation16

Δ 𝑓 = 𝑔 ⇔ �̂� = −
(

1

| · |22

)∧
�̂� = −

(
|·|−22

)∧
�̂�

using the Fourier transform. The Laplace operator is a second order differential
operation which fits well with the exponent 2 in the norm. We generalize this idea
a little bit to obtain a fairly fundamental concept.

Definition 2.3.6 (Riesz potential). For 𝑟 ∈ R we define the Riesz potential17 of
order 𝑟 is defined via its Fourier transform as

(𝐼𝑟 𝑓 )∧ (𝜉) = |𝜉 |−𝑟2 �̂� (𝜉), 𝜉 ∈ R𝑑 . (2.3.15)

In this context, 𝑟 < 0 corresponds to a differential operator of order 𝑟, whiel for
𝑟 > 0 it corresponds to an “inverse” diffential operator which is some sort of integral
operator and has a smoothing effect.

16This is called the heat equation and solving it was Fourier’s original motivation to introduce
Fourier series.

17Marcel and Frederic Riesz were two brothers of equal mathematical success. In particular, both
contributed to Functional Analysis.
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2 The Mother of All Transforms

The Riesz potential can be understood as a differentiation of order 𝑟 where now
we can even define fractional derivatives of arbitrary order, which we will write
as Δ𝑟/2. For 𝑟 = 2 we recover the Laplace operator. For distributions, these “differ-
ential operators” are of course well-defined and we will call a function differentiable
of order 𝑟 > 0 in the Fourier sense if

lim
𝜉→∞

(
1 + |𝜉 |22

)𝑟/2
�̂� (𝜉) = 0. (2.3.16)

Replacing the decay rate |𝜉 |22 by 1 + |𝜉 |22 does not make a difference for |𝜉 |22, it only
makes our lives easier for |𝜉 | → 0.

Definition 2.3.7. The Sobolev space 𝐻𝑟
(
R𝑑

)
consists of all functions 𝑓 ∈ 𝐿2

(
R𝑑

)
for which the norm

∥ 𝑓 ∥2𝐻𝑟 :=
∫
R𝑑

(
1 + |𝜉 |22

)𝑟 ��� �̂� (𝜉)���2 𝑑𝜉 (2.3.17)

is finite.

And in fact, functions from the Sobolev space are differentiable, at least under
some conditions.

Theorem 2.3.8 (Sobolev embedding theorem). If 𝑟 > 𝑑
2+𝑘 , then 𝐻𝑟

(
R𝑑

)
⊂ 𝐶𝑘

(
R𝑑

)
.

Proof: Choose 𝛼 with |𝛼 | = 𝑘 and consider, for 𝑓 ∈ 𝐻𝑟 (R) the function 𝑔(𝜉) =
(−𝑖𝜉)𝛼 �̂� (𝜉), 𝜉 ∈ R𝑑 . To show that 𝑔 ∈ 𝐿1

(
R𝑑

)
, i.e., that∫

R𝑑
|𝑔(𝜉) | 𝑑𝜉 < ∞,

we choose 𝐶 > 0, split the integral and use the Cauchy-Schwarz inequalitly to
obtain∫

R𝑑
|𝑔(𝜉) | 𝑑𝜉 =

∫
∥𝜉∥2≤𝐶

|𝑔(𝜉) | 𝑑𝜉 +
∫

∥𝜉∥2≥𝐶

|𝑔(𝜉) | 𝑑𝜉

=

∫
∥𝜉∥2≤𝐶

���𝜉𝛼 �̂� (𝜉)��� 𝑑𝜉 + ∫
∥𝜉∥2≥𝐶

���𝜉𝛼 �̂� (𝜉)��� 𝑑𝜉
≤

√√√ ∫
∥𝜉∥2≤𝐶

|𝜉𝛼 |2

︸           ︷︷           ︸
≤𝐶𝑘

√√√ ∫
∥𝜉∥2≤𝐶

��� �̂� (𝜉)���2 𝑑𝜉
︸                   ︷︷                   ︸
≤
 �̂� 

2
=(2𝜋)𝑑/2∥ 𝑓 ∥2

+
√√√ ∫
∥𝜉∥2>𝐶

��� (1 + ∥𝜉∥22)𝑟/2 �̂� (𝜉)���2 𝑑𝜉︸                                      ︷︷                                      ︸
=∥ 𝑓 ∥𝐻𝑟

×

×
√√√ ∫
∥𝜉∥2>𝐶

��� (1 + ∥𝜉∥22)−𝑟/2 𝜉𝛼���2 𝑑𝜉.
The first three quantities are finite, and for the third integral we use the fact that
𝑟 > 𝑑

2 + 𝑘 and the polar coordinates 𝜉 = 𝑠𝑣, 𝑠 ∈ R+, ∥𝑣∥2 = 1 with 𝑑𝜉 = 𝑠𝑑−1𝑑𝑠 𝑑𝑣 to
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2.3 Distributions and a Strange Derivative

conclude that ∫
∥𝜉∥2>𝐶

����(1 + ∥𝜉∥22)−𝑟/2 𝜉𝛼����2 𝑑𝜉
=

∫ ∞

𝐶

∫
∥𝑣∥2=1

(
1 + 𝑠2

)−𝑟
𝑠2𝑘 (𝑣𝛼)2︸︷︷︸

≤1

𝑠𝑑−1 𝑑𝑣 𝑑𝑠

≤
(∫
∥𝑣∥=1

𝑑𝑣

) ∫ ∞

𝐶

(
1 + 𝐶−2

)
𝑠2𝑘−2𝑟+𝑑−1 𝑑𝑠;

the integral exists if the exponent is < −1 which is equivalent to 2𝑘 − 2𝑟 + 𝑑 < 0 or
𝑟 > 𝑘 + 𝑑

2 .
If 𝑔 ∈ 𝐿1(R𝑑), there exists the inverse Fourier transform

𝐹 (𝑥) := 𝑔∨(𝑥) = 1
(2𝜋)𝑑

∫
R𝑑
𝑔(𝜉) 𝑒𝑖𝑥𝑇𝜉𝑑𝜉

as a uniformly continuous function and since(
𝜕𝑘

𝜕𝑥𝛼
𝐹

)∧
(𝜉) = 𝑔(𝜉) =

(
𝜕𝑘

𝜕𝑥𝛼
𝑓

)∧
(𝜉)

the functions 𝑓 and 𝐹 have to coincide almost everywhere. □
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The Radon Transform
and Its Relatives 3

If your wish is to become really a man of science and not merely a petty exper-
imentalist, I should advise you to apply to every branch of natural philosophy,
including mathematics.

(M. Shelley, Frankenstein))

Now we will focus on the main integral transform of this lecture, namely the
Radon transform and its relatives. The main task of this chapter will be to define
and invert it formally and to consider questions of uniqueness of the transform.
Numerical methods will come later.

3.1 The Physical Motivation

The main importance of the Radon transform comes from its interpretation in the
context of Computed Tomography. If an X-ray beam is sent through inhomo-
geneous material, a part of its energy is absorbed by the material it passes, the
rest of the energy continues its way through the object, see Fig. 3.1.1. This model
ignores a lot of physical effects, like diffration or scattering of the beam, but it is
sufficient for our purposes here. Moreover, the usual assumption is that the ray
is monochromatic, i.e., it has only a certain well-defined wavelength; also this is not
really refleting the reality.

If we denote the material dependend absorption rate at 𝑥 by 𝑓 (𝑥), 𝑥 ∈ R2, and by
𝐼 (𝑥) the intensity there, then for another point on the beams, say 𝑥 + 𝛿 the energy

Figure 3.1.1: The basic idea of Computed Tomography: a ray (usually X-ray) is sent
through an object and the intensity at the other end is measured by a de-
tector. The absorption of energy can then be related to a line integral (left).
In the approximation, the ray is decomposed into small pieces (right).
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3 The Radon Transform and Its Relatives

approximately satisfies

𝐼 (𝑥 + 𝛿) − 𝐼 (𝑥) ≈ − 𝑓 (𝑥) 𝛿 𝐼 (𝑥), i.e., 𝐼 (𝑥 + 𝛿) ≈ 𝐼 (𝑥) (1 − 𝑓 (𝑥) 𝛿) ,

cf. (Olafsson and Quinto, 2006). To turn this multiplicative relationship into an
additive one, we take the logarithm of both sides and apply the Taylor expansion

log(1 − 𝑎𝑥) = −
∞∑︁
𝑗=1

𝑎 𝑗

(1 − 𝑎𝑦)

����
𝑦=0

𝑥 𝑗 = −
∞∑︁
𝑗=1

(𝑎𝑥) 𝑗 .

of the logarithm with respect to 𝛿 at 𝛿 = 0 to obtain

log 𝐼 (𝑥 + 𝛿) = log 𝐼 (𝑥) + log (1 − 𝑓 (𝑥) 𝛿) = log 𝐼 (𝑥) − 𝑓 (𝑥) 𝛿 +𝑂
(
𝛿2

)
≈ log 𝐼 (𝑥) − 𝑓 (𝑥) 𝛿,

that is, we have the approximate identity

log 𝐼 (𝑥 + 𝛿) log 𝐼 (𝑥) − 𝑓 (𝑥) 𝛿. (3.1.1)

Next, we decompose the line from the source 𝑥𝑆 to the detector 𝑥𝐷 into 𝑁 +1 pieces
of length 𝛿 and apply (3.1.1) iteratively to get

log
𝐼 (𝑥𝑆)
𝐼 (𝑥𝐷)

= −
(
log 𝐼 (𝑥𝐷) − log 𝐼 (𝑥𝑆)

)
= −

𝑁∑︁
𝑗=0

log 𝐼 (𝑥𝑆 + ( 𝑗 + 1)𝛿) − log 𝐼 (𝑥𝑆 + 𝑗𝛿) ≈
𝑛∑︁
𝑗=0

𝑓 (𝑥𝑆 + 𝑗𝛿) 𝛿,

which is a quadrature formula or Riemann sum, cf. (Heuser, 1984; Sauer, 2014)
for the line integral∫

[𝑥𝑆 ,𝑥𝐷]
𝑓 (𝑥) 𝑑𝑥 := ∥𝑥𝐷 − 𝑥𝑆∥

∫ 1

0
𝑓 (𝜆𝑥𝑆 + (1 − 𝜆)𝑥𝐷) 𝑑𝜆,

which we normalized such that
∫
[𝑥𝑆 ,𝑥𝐷]

1 𝑑𝑥 = ∥𝑥𝐷 − 𝑥𝑆∥ reproduces the length of
the line. This already is the Radon transform and asks for a formal definition.

3.2 Definition and Invertibility

Despite the two dimensional “practical” application in Section 3.1, we will define
the Radon transform on R𝑑 , in particular as this will guide us to other transforms1

for 𝑑 > 2.

Definition 3.2.1 (Hyperplanes and Radon transform).

1. The unit ball and the unit sphere in R𝑑 are denoted by

B𝑑 :=
{
𝑥 ∈ R𝑑 : |𝑥 |2 ≤ 1

}
and S𝑑−1 :=

{
𝑥 ∈ R𝑑 : |𝑥 |2 = 1

}
, (3.2.1)

respectively.

1Hint: the case 𝑑 = 2 is very special since lines and hyperplanes are the same.
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3.2 Definition and Invertibility

Figure 3.2.1: The sinogram of some object, computed with Matlabs radon function.

2. For 𝑣 ∈ S𝑑−1 and 𝑠 ∈ R, the hyperplace 𝐻 (𝑣, 𝑠), is defined as

𝐻 (𝑣, 𝑠) =
{
𝑥 ∈ R𝑑 : 𝑣𝑇𝑥 = 𝑠

}
. (3.2.2)

3. For 𝑣 ∈ S𝑑 and 𝑠 ∈ R the Radon transform of 𝑓 ∈ S (R𝑑) is defined as

𝑅 𝑓 (𝑣, 𝑠) :=
∫

𝑣𝑇𝑥=𝑠

𝑓 (𝑥) 𝑑𝑥, (3.2.3)

where 𝑑𝑥 denotes the (𝑑 − 1) dimensional area integral, i.e., integration over
a set of measure zero.

Remark 3.2.2. The “𝑑 − 1” for the sphere in R𝑑 may appear a bit strange, but
it is common use, a tradition motivated by the fact that the sphere is as (𝑑 − 1)
dimensional manifold.

In the plane, i.e., for 𝑑 = 2, the normalized vector can be parametrized uniquely
as 𝑣 =

(
cos 𝜃, sin 𝜃

)
for some 𝜃 ∈ [0, 𝜋], then the Radon transform can be written as

𝑅 𝑓 (𝜃, 𝑠) and we can arrange the two parameters as a two dimensional coordinate
grid. Such a sinogram which color codes the values of the Radon trasnform can
be seen in Fig. 3.2.1.

The definition of the integral in (3.2.3) may appear a bit strange, but we can
define in a more formal way as follows. Any orthogonal matrix2 𝑉 ∈ R𝑑×𝑑−1 with
𝑉𝑇𝑣 = 0 yields a parametrization∫

𝐻

𝑓 (𝑥) 𝑑𝑥 =
∫

𝑣𝑇𝑥=𝑠

𝑓 (𝑥) 𝑑𝑥 =
∫
R𝑑−1

𝑓 (𝑠𝑣 +𝑉𝑦) 𝑑𝑦 (3.2.4)

of the integral. Indeed, each point of the form 𝑧 = 𝑠𝑣 +𝑉𝑦 satisfies

𝑣𝑇 𝑧 = 𝑠 𝑣𝑇𝑣︸︷︷︸
=1

+ 𝑣𝑇𝑉︸︷︷︸
=𝑉𝑇𝑣=0

𝑦 = 𝑠,

2An orthogonal matrix 𝑉 ∈ R𝑑×𝑑−1 is a matrix with orthogonal columns which can conveniently
be written as 𝑉𝑇𝑉 = 𝐼. Note, however, that 𝑉𝑉𝑇 ≠ 𝐼 since 𝑉 is not a square matrix.
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3 The Radon Transform and Its Relatives

and lies on the hyperplane. The representation is independent of the chosen 𝑉 .
Indeed, if 𝑉1, 𝑉2 are two such matrices, then their columns span the orthogonal
complement of 𝑣 in R𝑑 , hence there exists a square matrix 𝑄 ∈ R𝑑 such that
𝑉2 = 𝑉1𝑄. Since

𝐼 = 𝑉2
𝑇𝑉2 = 𝑄

𝑇𝑉𝑇2 𝑉2𝑄 = 𝑄𝑇𝑄,

𝑄 is a ortgonal matrix with 𝑄−1 = 𝑄𝑇 and also 𝑉1 = 𝑉2𝑄𝑇 as well as

𝐼 = 𝑉𝑇1 𝑉1 = 𝑉
𝑇
1 𝑉2𝑄

𝑇 ⇔ 𝑄 = 𝑉𝑇1 𝑉2.

Then,∫
R𝑑−1

𝑓 (𝑠𝑣 +𝑉2𝑦) 𝑑𝑦 =
∫
R𝑑−1

𝑓 (𝑠𝑣 +𝑉1𝑄𝑦) 𝑑𝑦 = |det𝑄 |−1︸     ︷︷     ︸
=1

∫
R𝑑−1

𝑓 (𝑠𝑣 +𝑉1𝑦) 𝑑𝑦,

verifies that the definition in (3.2.4) is indeed independent of 𝑉 .

Remark 3.2.3 (Hyperplane trouble). 1. The hyperplane 𝐻 (𝑣, 𝑠) is a set of mea-
sure zero and since 𝐿𝑝 functions are only defined up to a set of measure zero,
we had to restrict the definition to continous functions for which such inte-
grals can be formed consistently.

2. The association (𝑣, 𝑠) ↦→ 𝐻 (𝑣, 𝑠) is ambiguous! Since 𝑣𝑇𝑥 = 𝑠 is equivalent
to (−𝑣)𝑇𝑥 = −𝑠, we also have that

𝐻 (𝑣, 𝑠) = 𝐻 (−𝑣,−𝑠), that is, 𝑅 𝑓 (𝑣, 𝑠) = 𝑅 𝑓 (−𝑣,−𝑠) (3.2.5)

which has to be considered once we ask questions about invertibility and in
particular injectivity of 𝑅 𝑓 .

Lemma 3.2.4 (Projection Slice Theorem). For 𝑓 ∈ S (R𝑑) and 𝑔 ∈ 𝐿∞ (R) we
have ∫

R
𝑔(𝑠) 𝑅 𝑓 (𝑣, 𝑠) 𝑑𝑠 =

∫
R𝑑
𝑓 (𝑥) 𝑔(𝑣𝑇𝑥) 𝑑𝑥, 𝑣 ∈ S𝑑−1. (3.2.6)

Proof: First, we substitute all definitions and choose 𝑉 such that 𝑉𝑇𝑣 = 0 to get∫
R
𝑔(𝑠) 𝑅 𝑓 (𝑣, 𝑠) 𝑑𝑠 =

∫
R
𝑔(𝑠)

∫
𝑣𝑇𝑥=𝑠

𝑓 (𝑥) 𝑑𝑥 𝑑𝑠

=

∫
R
𝑔(𝑠)

∫
R𝑑−1

𝑓 (𝑠𝑣 +𝑉𝑦) 𝑑𝑦 𝑑𝑠 =
∫
R

∫
R𝑑−1

𝑔(𝑠) 𝑓
(
[𝑣,𝑉]

[
𝑠

𝑦

] )
𝑑𝑦𝑑𝑠

=

∫
R𝑑
𝑔(𝑒𝑇1𝑥) 𝑓 ( [𝑣,𝑉] 𝑥) 𝑑𝑥 = |det [𝑣,𝑉] |

−1︸          ︷︷          ︸
=1

∫
R𝑑
𝑔

(
𝑒𝑇1 [𝑣,𝑉]

−1 𝑥
)
𝑓 (𝑥) 𝑑𝑥

=

∫
R𝑑
𝑔(𝑣𝑇𝑥) 𝑓 (𝑥) 𝑑𝑥,

since the matrix [𝑣,𝑉] is also orthogonal,(
𝑣𝑇

𝑉𝑇

) (
𝑣 𝑉

)
=

(
𝑣𝑇𝑣 𝑣𝑇𝑉

𝑉𝑇𝑣 𝑉𝑇𝑉

)
=

(
1 0
0 𝐼

)
,
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3.2 Definition and Invertibility

hence
𝑒𝑇1 [𝑣,𝑉]

−1 = 𝑒𝑇1 [𝑣,𝑉]
𝑇 = ( [𝑣,𝑉] 𝑒1)𝑇 = 𝑣𝑇 .

□

Note that Schwartz functions are also rapidly decaying and therefore the integral∫
R𝑑

∫
R𝑑
𝑔(𝑒𝑇1𝑥) 𝑓 ( [𝑣,𝑉] 𝑥) 𝑑𝑥

would even be defined for functions 𝑔 that increase a most polynomially, i.e. for
functions for which there exists a polynomial 𝑝 ∈ Π such that |𝑔(𝑥) | ≤ |𝑝(𝑥) |,
𝑥 ∈ R𝑑 .

Lemma 3.2.4 gives us a result for the Fourier transform of the Radon transform3

with respect to the offset 𝑠 by simply specializing 𝑔(𝑥) = 𝑒−𝑖𝜎𝑥 which turns (3.2.6)
into

(𝑅 𝑓 (𝑣, ·))∧ (𝜎) =
∫
R
𝑒−𝑖𝜎𝑠𝑅 𝑓 (𝑣, 𝑠) 𝑑𝑠 =

∫
R𝑑
𝑓 (𝑥) 𝑒−𝑖𝜎𝑣𝑇𝑥 𝑑𝑥 = �̂� (𝜎𝑣) .

Corollary 3.2.5 (Fourier Slice Theorem). For 𝑓 ∈ S (R𝑑) one has

(𝑅 𝑓 (𝑣, ·))∧ (𝜎) = �̂� (𝜎𝑣) , 𝑣 ∈ S𝑑−1, 𝜎 ∈ R. (3.2.7)

A side effect effect of the Fourier slice theorem is that it gives us a consistent
embedding on the Radon transform into 𝐿1(R𝑑).

Corollary 3.2.6. The mapping 𝑓 ↦→ 𝑅 𝑓 is injective on S (R𝑑).

Proof: Suppose that 𝑅 𝑓 = 𝑅 𝑓 ′, i.e., 𝑅 ( 𝑓 − 𝑓 ′) = 0, for some 𝑓 ≠ 𝑓 ′ ∈ 𝐿1(R𝑑).
Since we can write any 𝜉 ∈ R𝑑 as 𝜉 = 𝜎𝑣, 𝜎 ∈ R, 𝑣 ∈ S𝑑 , (3.2.7) implies that

( 𝑓 − 𝑓 ′)∧ (𝜉) = 0, 𝜉 ∈ R𝑑 ,

which is a contradiction. □

Exercise 3.2.1 Is the representation of 𝜉 as 𝜉 = 𝜎𝑣, 𝜎 ∈ R, 𝑣 ∈ S𝑑 unique? ♦

Exercise 3.2.2 Prove that the Fourier transform is injective. ♦
The fact that the Radon transform is injective gives us hope that there may be an

inverse of the Radon transform; and even if injectivity is, of course, only a necessary
condition for the existence of an inverse, this hope is justified.

Theorem 3.2.7 (Inverse Radon transform). For 𝑓 , �̂� ∈ S
(
R𝑑

)
,

𝑅∗𝐼1−𝑑𝑅 𝑓 = 𝑓 (3.2.8)

where

𝑅∗ 𝑓 (𝑥) = 1
2(2𝜋)𝑑−1

∫
S𝑑−1

𝑓

(
𝑣, 𝑥𝑇𝑣

)
𝑑𝑣, 𝑥 ∈ R𝑑 , (3.2.9)

denotes the dual Radon transform or backprojection.

3In accordance with the “engineering approach” to convert everything into its Fourier transform
from the very beginning.
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3 The Radon Transform and Its Relatives

Proof: Each point 0 ≠ 𝜉 ∈ R𝑑 can be written in two ways as 𝜉 = 𝜎𝑣, namely,
𝜎 = |𝜉 |2, 𝑣 = 𝜉/|𝜉 |2 and 𝜎 = −|𝜉 |2, 𝑣 = −𝜉/|𝜉 |2, which implies that∫

R𝑑
𝑔(𝜉) = 1

2

∫
R

∫
S𝑑−1

𝑔(𝜎𝑣) |𝜎 |𝑑−1 𝑑𝑣𝑑𝜎.

Taking this into account, we can expand the inverse Fourier transform of 𝑓 to
obtain

𝑓 (𝑥) =
1
(2𝜋)𝑑

∫
R𝑑
�̂� (𝜉) 𝑒𝑖𝑥𝑇𝜉 𝑑𝜉 = 1

2(2𝜋)𝑑

∫
R

∫
S𝑑
�̂� (𝜎𝑣) 𝑒𝑖𝑥𝑇 (𝜎𝑣) |𝜎 |𝑑−1 𝑑𝑣 𝑑𝜎

=
1

2(2𝜋)𝑑

∫
R

∫
S𝑑
(𝑅 𝑓 (𝑣, ·))∧ (𝜎) 𝑒𝑖𝑥𝑇 (𝜎𝑣) |𝜎 |𝑑−1 𝑑𝑣 𝑑𝜎

=
1

2(2𝜋)𝑑−1

∫
S𝑑

1
2𝜋

∫
R
(𝑅 𝑓 (𝑣, ·))∧ (𝜎) 𝑒𝑖(𝑥𝑇𝑣)𝜎 |𝜎 |𝑑−1 𝑑𝜎 𝑑𝑣

=
1

2(2𝜋)𝑑−1

∫
S𝑑

1
2𝜋

∫
R

(
𝐼1−𝑑𝑅 𝑓 (𝑣, ·)

)∧
(𝜎)𝑒𝑖(𝑥𝑇𝑣)𝜎 𝑑𝜎 𝑑𝑣

=
1

2(2𝜋)𝑑−1

∫
S𝑑

((
𝐼1−𝑑𝑅 𝑓 (𝑣, ·)

)∧)∨
(𝑥𝑇𝑣) 𝑑𝑣

=
1

2(2𝜋)𝑑−1

∫
S𝑑
𝐼1−𝑑𝑅 𝑓

(
𝑣, 𝑥𝑇𝑣

)
𝑑𝑣 = 𝑅∗𝐼1−𝑑𝑅 𝑓 (𝑥),

which already is (3.2.8). □

The name “dual Radon transform” needs some explanation; looking at the pro-
jection slice theorem, that is, at equation (3.2.6), we see that∫
S𝑑

∫
R
𝑔(𝑠) 𝑅 𝑓 (𝑣, 𝑠) 𝑑𝑠 𝑑𝑣 =

∫
S𝑑

∫
R𝑑
𝑔

(
𝑣𝑇𝑥

)
𝑓 (𝑥) 𝑑𝑥 𝑑𝑣

=

∫
R𝑑
𝑓 (𝑥)

∫
S𝑑
𝑔

(
𝑣𝑇𝑥

)
𝑑𝑣︸             ︷︷             ︸

=𝑅∗𝑔(𝑥)

𝑑𝑥 =

∫
R𝑑
𝑅∗𝑔(𝑥) 𝑓 (𝑥)𝑑𝑥.

In other words, 𝑅∗ is adjoint of 𝑅 if we consider the function 𝑔, defined on R, as
a function on S𝑑 × R that is constant in the first variable, 𝑔(𝑣, 𝑠) := 𝑔(𝑠). This is a
natural and canonical way to introduce additional variables into a function.

The formula
𝑅−1 = 𝑅∗𝐼1−𝑑 (3.2.10)

for the inverse Radon transform in 𝑑 variables is definitely beautiful and elegant,
it only has one disadvantage: it does not work numerically or in practice, at least
according to (Natterer and Wübbeling, 2001). But the reason is not hard to under-
stand: the Riesz potential 𝐼1−𝑑 multiplies the Fourier transform with |𝜎 |𝑑−1 which
amplifies the high frequency oscillatory content in the signal 𝑅 𝑓 and thus increases
the noise in the measurements.

Exercise 3.2.3 Implement the Radon inversion by means of (3.2.10) and test it. ♦
To overcome this problem, we have to include some denoising or smoothing into

the inversion, and this is where the convolution comes for our rescue.
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3.2 Definition and Invertibility

Theorem 3.2.8 (Filtered backprojection). For 𝑓 ∈ 𝐿1
(
R𝑑

)
and 𝑔 ∈ 𝐿1

(
S𝑑 × R

)
,

(𝑅∗𝑔) ∗ 𝑓 = 𝑅∗ (𝑔 ∗ 𝑅 𝑓 ) . (3.2.11)

Proof: By definition, we have for 𝑥 ∈ R𝑑 ,

((𝑅∗𝑔) ∗ 𝑓 ) (𝑥) =
∫
R𝑑
(𝑅∗𝑔) (𝑡) 𝑓 (𝑥 − 𝑡) 𝑑𝑡

=
1

2(2𝜋)𝑑−1

∫
R𝑑

∫
S𝑑
𝑔

(
𝑣, 𝑣𝑇 𝑡

)
𝑓 (𝑥 − 𝑡) 𝑑𝑣 𝑑𝑡

=
1

2(2𝜋)𝑑−1

∫
R𝑑

∫
S𝑑
𝑔

(
𝑣, 𝑣𝑇 (𝑥 − 𝑡)

)
𝑓 (𝑡) 𝑑𝑣 𝑑𝑡

=
1

2(2𝜋)𝑑−1

∫
S𝑑

∫
R

∫
R𝑑−1

𝑔

(
𝑣, 𝑣𝑇 (𝑥 − 𝑠𝑣 −𝑉𝑦)

)
𝑓 (𝑠𝑣 +𝑉𝑦) 𝑑𝑦 𝑑𝑠 𝑑𝑣

=
1

2(2𝜋)𝑑−1

∫
S𝑑

∫
R
𝑔

(
𝑣, 𝑣𝑇𝑥 − 𝑠

) ∫
R𝑑−1

𝑓 (𝑠𝑣 +𝑉𝑦) 𝑑𝑦︸                     ︷︷                     ︸
=

∫
𝑣𝑇 𝑦=𝑠

𝑓 (𝑦) 𝑑𝑦=𝑅 𝑓 (𝑣,𝑠)

𝑑𝑠 𝑑𝑣

=
1

2(2𝜋)𝑑−1

∫
S𝑑
(𝑔(𝑣, ·) ∗ 𝑅 𝑓 (𝑣, ·))

(
𝑣, 𝑣𝑇𝑥

)
𝑑𝑣 = 𝑅∗ (𝑔 ∗ 𝑅 𝑓 ) ,

which also shows how the convolutions in (3.2.11) have to be understood. □

Remark 3.2.9. Let us recall once more how the convolutions work here: if it in-
volves a function defined on R𝑑 , we use the “normal” convolution, if the function
is defined on S𝑑 × R, on the other hand, the convolution only accesses the second
argument which belongs to R. This makes sense and is only reasonable since the
convolution involves a translation and this is not so clear on S𝑑−1, in contrast to
T𝑑, by the way.

Remark 3.2.10. In principle or on an abstract level, the filtered backprojection
(3.2.11) determines 𝑓 as the solution of a linear system, namely

𝑇 𝑓 = 𝑏, 𝑇 : 𝑓 ↦→ (𝑅∗𝑔) ∗ 𝑓 , 𝑏 = 𝑅∗ (𝑔 ∗ 𝑦) . (3.2.12)

where 𝑦 = 𝑅 𝑓 is the measurement. However, this is an interaction of operators and
functions and not of matrices and vectors4 in finite dimensional spaces. To solve
this numerically, the equation has to be discretized.

The filter 𝑔 in (3.2.12) which gives the method its name, can be chosen freely,
at least in principle. In practice, the concrete choice of the filter is a fundamental
issue that strongly influences the behavior of the algorithm and usually requires
some experience. The filtered backprojection has to advantages:

1. We can avoid the Riesz potential which corresponds to a differentiation and
only have to compute backprojections.

2. To solve linear operator equations of the form 𝑇 𝑓 = 𝑏, a lot of methods are
known that can even be adapted to over- and underdetermined problems.
Usually, we will face the latter here since normally it is practically and tech-
nically impossible to measure 𝑅 𝑓 (𝑣, 𝑠) for all 𝑣 ∈ S𝑑−1 and 𝑠 ∈ R.

4Elements of function spaces are vectors as well.
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3 The Radon Transform and Its Relatives

3.3 Further Transforms

In two dimensions, the case 𝑑 = 2, the Radon transform is a model of X-ray tomog-
raphy. For 𝑑 > 2, this is no more the case as we integrate over affine hyperplanes
then. To that end, we define two other transforms as in (Natterer, 1986).

Definition 3.3.1. For 𝑓 ∈ S (R𝑑) and 𝑣 ∈ S𝑑−1, we define

1. the X-ray transform

𝑋 𝑓 (𝑣, 𝑥) :=
∫
R
𝑓 (𝑥 + 𝑡𝑣) 𝑑𝑡, 𝑥 ∈ R𝑑 , (3.3.1)

2. the divergent beam transform

𝐷 𝑓 (𝑣, 𝑥, ) :=
∫ ∞

0
𝑓 (𝑥 + 𝑡𝑣) 𝑑𝑡, 𝑥 ∈ R𝑑 . (3.3.2)

These transforms have some obvious properties, for example,

1. 𝑋 𝑓 (𝑣, 𝑥) = 𝑋 𝑓 (−𝑣, 𝑥),

2. 𝑋 𝑓 (𝑣, 𝑥 + 𝜆𝑣) = 𝑋 𝑓 (𝑣, 𝑥), 𝜆 ∈ R,

3. 𝑋 𝑓 (𝑣, 𝑥) = 𝐷 𝑓 (𝑣, 𝑥) + 𝐷 𝑓 (−𝑣, 𝑥),

and, in addition,
lim
𝜆→∞

𝐷 𝑓 (𝑣, 𝑥 − 𝜆𝑥) = 𝑋 𝑓 (𝑣, 𝑥).

The second property 2) makes it reasonable to restrict the X-ray transform to pairs

𝑇S𝑑−1 :=
{
(𝑣, 𝑥) : 𝑣 ∈ S𝑑−1, 𝑥 ∈ R𝑑 , 𝑣𝑇𝑥 = 0

}
≃ S𝑑−1 × R𝑑−1, (3.3.3)

the set of which consists of a point on the sphere and the tangent plane there5.
Moreover, the Radon transform can be written in terms of the X-ray transform

in the following way. Given 𝑣 ∈ S𝑑−1, we choose any 𝑤 ∈ S𝑑−1 such that 𝑣𝑇𝑤 = 0
and integrate the X-ray transform in this direction over the hyperplane,

𝑅 𝑓 (𝑣, 𝑠) =
∫

𝑥∈𝑤⊥,𝑣𝑇𝑥=𝑠

𝑋 𝑓 (𝑤, 𝑥) 𝑑𝑥

Here we take into account (3.3.3) to factor out ambiguities.
The geometrical difference between the Radon transform and the X-ray trans-

form are shown in Fig. 3.3.1. In both cases, we have the direction 𝑣, depicted in red
and the orthogonal plane 𝑣⊥. In the Radon transform, integration is performed
over the hyperplane 𝑣⊥ and the region of integration is shifted parallel to 𝑣 by the
offset parameter 𝑠 ∈ R. In the X-ray transform, on the other hand, we integrate
along the red ray and shift the ray; since shifts along the ray make no sense, we
can restrict these shifts to shifts within the hyperplane.

5This is called the tangent bundle.
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Figure 3.3.1: Comparison of Radon and X-ray transform. In the Radon transform (left) the
plane is moved along the direction 𝑣 (red) while in the X-ray transform the
direction is moved in the plane 𝑣⊥ (right).

Remark 3.3.2. The direction 𝑣 and the shifts 𝑠 ∈ R and 𝑥 ∈ 𝑣⊥ can be seen as a
parameter and another variable that depends on this parameter. This is why the
transforms are also written as

𝑅𝑣 𝑓 = 𝑅 𝑓 (𝑣, ·) : R→ R and 𝑋𝑣 𝑓 = 𝑋 𝑓 (𝑣, ·) : 𝑣⊥ → R (3.3.4)

with 𝑅𝑣 𝑓 ∈ S (R) and 𝑋𝑣 𝑓 ∈ S (𝑣⊥). Convolutions and Fourier transforms are
then applied to these functions.

There is also an analog of the Fourier Slice theorem for the X-ray transform.

Theorem 3.3.3. For 𝑓 ∈ S (R𝑑) we have

(𝑋 𝑓 (𝑣, ·))∧ (𝜉) = 𝑓 (𝜉), 𝑣 ∈ S𝑑−1, 𝜉 ∈ 𝑣⊥. (3.3.5)

Proof: We again define 𝑉 ∈ R𝑑×𝑑−1 as the orthogonal matrix such that 𝑣⊥ = 𝑉R𝑑−1,
i.e., 𝑉𝑇𝑣 = 0, write 𝜉 = 𝑉𝜂 as well as �̂� =

(
𝑣 𝑉

)
∈ R𝑑×𝑑 , and compute

(𝑋 𝑓 (𝑣, ·))∧ (𝜉) =
∫
𝑣⊥
𝑒−𝑖𝜉

𝑇𝑥

∫
R
𝑓 (𝑥 + 𝑣𝑡) 𝑑𝑡 𝑑𝑥

=

∫
R𝑑−1

∫
R
𝑒

−𝑖𝜉𝑇
(
𝑣 𝑉

) (0
𝑦

)
𝑓

( (
𝑣 𝑉

) (
𝑡

𝑦

))
𝑑𝑡 𝑑𝑦 =

∫
R𝑑
𝑒−𝑖𝜉

𝑇�̂�𝑥 𝑓 (�̂�𝑥) 𝑑𝑥

=

∫
R𝑑
𝑒−𝑖𝜉

𝑇𝑥 = 𝑓 (𝜉) = 𝑓 (𝑉𝜂),

which is correct since

𝜉𝑇
(
𝑣 𝑉

) (
0
𝑦

)
=

(
0 𝜉𝑇𝑉

) (
0
𝑦

)
=

(
0 𝜉𝑇𝑉

) (
𝑡

𝑦

)
= 𝜉𝑇

(
𝑣 𝑉

) (
𝑡

𝑦

)
,

which shows that 𝜉 ∈ 𝑣⊥ is essential for the validity of (3.3.5). □

Also the X-ray transform has an inversion formula whose proof follows in some
way dual lines to the one for the Radon transform.
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Theorem 3.3.4 (Inverse X-ray transform). For 𝑓 ∈ S (R𝑑),

𝑋∗𝐼−1𝑋 𝑓 = 𝑓 , (3.3.6)

with the dual X-ray transform

𝑋∗ 𝑓 =
1

2𝜋 |S𝑑−2 |

∫
S𝑑−1

𝑓 (𝑣,𝑉𝑉𝑇 ·) 𝑑𝑣. (3.3.7)

Remark 3.3.5. Note that 𝑉𝑉𝑇𝑥 is the orthogonal projection of 𝑥 on the hyper-
plane spanned by the complement matrix 𝑉 , i.e. to 𝑣⊥. Indeed,

𝑣𝑇𝑃𝑉𝑥 := 𝑣𝑇𝑉︸︷︷︸
=0

𝑉𝑇𝑥 = 0, 𝑥 ∈ R𝑑 ,

hence 𝑃𝑣R𝑑 = 𝑣⊥ since rank 𝑃𝑉 = 𝑑 − 1; 𝑃𝑉 is also easily verified to be a projection:

𝑃2𝑉 = 𝑉 𝑉𝑇𝑉︸︷︷︸
=𝐼

𝑉𝑇 = 𝑉𝑉𝑇 = 𝑃𝑉 .

Nevertheless, keep in mind that 𝑉𝑉𝑇 ≠ 𝐼, only 𝑉𝑇𝑉 = 𝐼.

Proof: We use the integral formula∫
R𝑑
𝑔(𝜉) 𝑑𝜉 = 1

|S𝑑−2 |

∫
S𝑑−1

∫
𝑣⊥
|𝜂 |2 𝑔(𝜂) 𝑑𝜂𝑑𝑣 (3.3.8)

from (Natterer, 1986, VII.(2.8)) for the inverse Fourier transform

𝑓 (𝑥) =
1
(2𝜋)𝑑

∫
R𝑑
𝑒𝑖𝑥

𝑇𝜉 𝑓 (𝜉)︸     ︷︷     ︸
=𝑔(𝜉)

𝑑𝜉 =
1
(2𝜋)𝑑

1
|S𝑑−2 |

∫
S𝑑−1

∫
𝑣⊥
|𝜂 |2 𝑒𝑖𝑥

𝑇𝜂 𝑓 (𝜂) 𝑑𝜂𝑑𝑣

=
1
(2𝜋)𝑑

1
|S𝑑−2 |

∫
S𝑑−1

∫
𝑣⊥
|𝜂 |2 𝑒𝑖𝑥

𝑇𝜂 (𝑋 𝑓 (𝑣, ·))∧ (𝜂) 𝑑𝜂𝑑𝑣

=
1
(2𝜋)𝑑

1
|S𝑑−2 |

∫
S𝑑−1

∫
R𝑑−1
|𝑉𝑦 |2 𝑒𝑖𝑥

𝑇𝑉𝑦 (𝑋 𝑓 (𝑣, ·))∧ (𝑉𝑦) 𝑑𝑦𝑑𝑣

=
1
(2𝜋)𝑑

1
|S𝑑−2 |

∫
S𝑑−1

∫
R𝑑−1
|𝑉𝑦 |2 𝑒𝑖(𝑠𝑣+𝑉𝑉

𝑇𝑥)𝑇𝑉𝑦 (𝑋 𝑓 (𝑣, ·))∧ (𝑉𝑦) 𝑑𝑦𝑑𝑣

=
1
(2𝜋)𝑑

1
|S𝑑−2 |

∫
S𝑑−1

∫
R𝑑−1
|𝑧 |2 𝑒𝑖(𝑉𝑉

𝑇𝑥)𝑇 𝑧 (𝑋 𝑓 (𝑣, ·))∧ (𝑧) 𝑑𝑧𝑑𝑣

=
1

2𝜋 |S𝑑−2 |

∫
S𝑑−1

𝐼−1𝑋 𝑓 (𝑣,𝑉𝑉𝑇𝑥) 𝑑𝑣,

which completes the proof. □

Again, up to normalization6, the dual X-ray transform is indeed a dual to the

6That normalization is sometimes an unavoidable issue, we already learned at the beginning from
the Fourier transform.
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X-ray transform as the computation∫
S𝑑−1

∫
R𝑑−1

𝑋 𝑓 (𝑣,𝑉𝑦)𝑔(𝑉𝑦) 𝑑𝑦𝑑𝑣 =
∫
S𝑑−1

∫
R𝑑−1

∫
R
𝑓 (𝑡𝑣 +𝑉𝑦)𝑔(𝑉𝑦) 𝑑𝑡𝑑𝑦𝑑𝑣

=

∫
S𝑑−1

∫
R𝑑

∫
R
𝑓 (�̂�𝑥)𝑔(𝑉𝑉𝑇�̂�𝑥) 𝑑𝑥𝑑𝑣 =

∫
S𝑑−1

∫
R𝑑
𝑓 (𝑥)𝑔(𝑉𝑉𝑇𝑥) 𝑑𝑥𝑑𝑣

=

∫
R𝑑
𝑓 (𝑥)

∫
S𝑑−1

𝑔(𝑣,𝑉𝑉𝑇𝑥) 𝑑𝑣𝑑𝑥 = 2𝜋
��S𝑑−2�� ∫

R𝑑
𝑓 (𝑥)𝑋∗𝑔(𝑥) 𝑑𝑥

shows, where we set 𝑥 =
(
𝑡

𝑦

)
and note that

𝑉𝑇�̂�𝑥 = 𝑉𝑇
(
𝑣 𝑉

) (
𝑡

𝑦

)
=

(
𝑉𝑇𝑣 𝑉𝑇𝑉

) (
𝑡

𝑦

)
=

(
0 𝐼

) (
𝑡

𝑦

)
= 𝑦.

Finally, there is also a filtered backprojection for the X-ray transform and the proof
follows the same computational lines as the one for the Radon transform.

Theorem 3.3.6. For 𝑓 ∈ S (R𝑑) and 𝑔 ∈ 𝐿1(S𝑑−1 × R𝑑) we have

(𝑋∗𝑔) ∗ 𝑓 = 𝑋∗(𝑔 ∗ 𝑋 𝑓 ), (3.3.9)

Proof: We compute

(𝑋∗𝑔 ∗ 𝑓 ) (𝑥) =
∫
R𝑑
𝑋∗𝑔(𝑥 − 𝑡) 𝑓 (𝑡) 𝑑𝑡

=
1

2𝜋 |S𝑑−2 |

∫
S𝑑−1

𝑔

(
𝑣,𝑉𝑉𝑇 (𝑥 − 𝑡)

)
𝑓 (𝑡) 𝑑𝑣𝑑𝑡

=
1

2𝜋 |S𝑑−2 |

∫
S𝑑−1

∫
R

∫
R𝑑−1

𝑔

(
𝑣,𝑉𝑉𝑇 (𝑥 − 𝑠𝑣 −𝑉𝑦)

)
𝑓 (𝑠𝑣 +𝑉𝑦) 𝑑𝑠𝑑𝑦𝑑𝑣

=
1

2𝜋 |S𝑑−2 |

∫
S𝑑−1

∫
R𝑑−1

𝑔

(
𝑣,𝑉𝑉𝑇𝑥 −𝑉𝑦

) ∫
R
𝑓 (𝑠𝑣 +𝑉𝑦) 𝑑𝑠 𝑑𝑦𝑑𝑣

=
1

2𝜋 |S𝑑−2 |

∫
S𝑑−1

∫
R𝑑−1

𝑔

(
𝑣,𝑉𝑉𝑇𝑥 −𝑉𝑦

)
𝑋 𝑓 (𝑣,𝑉𝑦) 𝑑𝑦𝑑𝑣

=
1

2𝜋 |S𝑑−2 |

∫
S𝑑−1
(𝑔 ∗ 𝑋 𝑓 )

(
𝑣,𝑉𝑉𝑇𝑥

)
𝑑𝑣 = 𝑋∗(𝑔 ∗ 𝑋 𝑓 ),

where we note that the convolution 𝑔 ∗ 𝑋 𝑓 ran only over 𝑥 ∈ 𝑣⊥ in accordance to
what we said before. □

It follows that the method of applying the filtered backprojection sketched in
Remark 3.2.10 can also be applied to the X-ray transform, but of course also the
same practical challenges are present.

Remark 3.3.7. In our computations we frequently used the substitution trick∫
R

∫
𝑣⊥
𝑓 (𝑡𝑣 + 𝑤)𝑑𝑤𝑑𝑡 =

∫
R

∫
R𝑑−1

𝑓 (𝑡𝑣 +𝑉𝑦)𝑑𝑦𝑑𝑡 =
∫
R𝑑
𝑓 (�̂�𝑥) 𝑑𝑥 =

∫
R𝑑
𝑓 (𝑥) 𝑑𝑥

with 𝑥 =

(
𝑡

𝑦

)
and using the fact that �̂� is orthogonal, hence | det �̂� | = 1. In the

future, we may keep computations simpler and do this transform implicitly. It is a
good exercise, however, to work out the explicit form.
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3 The Radon Transform and Its Relatives

3.4 Uniqueness for Compactly Supported Functions

We have already seen in Corollary 3.2.6 that the Radon transform is injective,
hence, as a consequence 𝑅 𝑓 = 0 implies that 𝑓 = 0. In this section, we collect
some more results of this type. Such results are especially nice if 𝑓 is compactly
supported which is the standard assumption in Computed Tomography – objects
without compact support would not fit into the machine. Many of the results are
based on the fact that the Fourier transform of a compactly supported continous
function is analytic, i.e., infinitely differentiable and its Taylor series converges
everywhere. Let us recall the basics.

Definition 3.4.1. 1. A polynomial 𝑝 is a function of the form

𝑝(𝑥) =
∑︁
𝛼∈N𝑑

0

𝑝𝛼 𝑥
𝛼 =

∑︁
𝛼∈N𝑑

0

𝑝𝛼 𝑥
𝛼1
1 · · · 𝑥

𝛼𝑑
𝑑
, #{𝛼 : 𝑝𝛼 ≠ 0} < ∞;

if the number of nonzero terms is infinite, we speak of a power series. By Π

we denote the space of all polynomials.

2. A polynomial is called homogeneous of degree 𝑛 if it is of the form

𝑝(𝑥) =
∑︁
|𝛼 |=𝑛

𝑝𝛼 𝑥
𝛼, |𝛼 | :=

𝑑∑︁
𝑗=1

𝛼 𝑗 .

We denote the vector space of all homogeneous polynomials of degree 𝑛 by
Π0
𝑛 and write

Π𝑛 =

𝑛⊕
𝑗=1

Π0
𝑗

fot the space of all polynomials of total degree (at most) 𝑛.

Any polynomial and any power series can be written in terms of its homogeneous
components as

𝑝(𝑥) =
∞∑︁
𝑛=0

𝑝𝑛 (𝑥), 𝑝𝑛 ∈ Π0
𝑛 .

Moreover, any homogeneous polynomial of degree 𝑛 has the property that

𝑝(𝜆𝑥) =
∑︁
|𝛼 |=𝑛

𝑝𝛼 𝜆
|𝛼 |𝑥𝛼 = 𝜆𝑛𝑝(𝑥). (3.4.1)

Being equipped with this machinery, we can state the first result which defines
certain sets of directions that yield uniqueness via the Radon transform.

Proposition 3.4.2. Let V ⊆ S𝑑−1 be a set of directions such that 𝑝(V ) = 0 implies
𝑝 = 0 for any homogeneous polynomial. If 𝑓 ∈ 𝐶∞00(R

𝑑) and 𝑅 𝑓 (V , ·) = 0, then 𝑓 = 0.
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3.4 Uniqueness for Compactly Supported Functions

Proof: Since 𝑓 ∈ 𝐶∞00(R
𝑑), the Fourier transform 𝑓 is analytic and can thus be

written as

𝑓 (𝜉) =
∞∑︁
𝑛=0

𝑎𝑛 (𝜉), 𝑎𝑛 ∈ Π0
𝑛 .

The assumption on 𝑓 yields that

0 = (𝑅 𝑓 (𝑣, ·))∧ (𝜎) = 𝑓 (𝜎𝑣) =
∞∑︁
𝑛=0

𝜎𝑛𝑎𝑛 (𝑣), 𝑣 ∈ V , 𝜎 ∈ R.

Hence, 𝑎𝑛 = 0, 𝑛 ∈ N0, yielding 𝑓 = 0 and therefore 𝑓 = 0. □

We also get a nice result for the X-ray transform.

Proposition 3.4.3. If 𝑓 ∈ 𝐶∞00(R
𝑑) and 𝑋 𝑓 (𝑣, ·) = 0 for infinitely many 𝑣 ∈ S𝑑−1, then

𝑓 = 0.

Proof: The assumption implies by Theorem 3.3.3 that 0 = 𝑓 (𝜉) for 𝜉 ∈ 𝑣⊥ for an
infinite set V ⊆ S𝑑−1 of directions. Hence, for any such 𝑣, and 𝜂 ∈ R𝑑, 𝜂 = 𝑣𝑇𝜂 𝑣+𝜉,
𝜉 ∈ 𝑣⊥ we have that

𝑓 (𝜂) = 𝑓 (𝜂) − 𝑓 (𝜉) =
∑︁
𝛼∈N𝑑

0

1
𝛼!
𝜕 |𝛼 |

𝜕𝑥𝛼
𝑓 (𝜉)

(
𝑣𝑇𝜂

) |𝛼 |
𝑣𝛼 =

∞∑︁
𝑛=1

(
𝑣𝑇𝜂

)𝑛
𝑝𝑛 (𝑣)

for some 𝑝𝑛 ∈ Π0
𝑛, 𝑛 ∈ N, hence 𝑓 (𝜂) = (𝑣𝑇𝜂)𝑔𝑣 for any 𝑣 ∈ V . Thus

𝑓 (𝜂) = 𝑔(𝜂)
∏
𝑣∈V

𝑣𝑇𝜂

has a zero of infinite order at 𝜂 = 0 from which we conclude that 𝑓 = 0 and therefore
𝑓 = 0. □

Unfortunately, a finite number of directions will never do the job. To that end,
we consider the following result which is of a slightly more technical nature than
Proposition 3.4.3.

Proposition 3.4.4. Let 𝑣1, . . . , 𝑣𝑛 ∈ S𝑑−1, Ω ⊂ R𝑑 compact and7 𝑓 ∈ 𝐶∞0 (Ω). For
each Ω′ ⊂ Ω◦ there exists a function 𝑔 ∈ 𝐶∞0 (Ω) that coincides with 𝑓 on Ω′ but satisfies
𝑋𝑔(𝑣 𝑗 , ·) = 0, 𝑗 = 1, . . . , 𝑛.

Proof: This time we enforce a factor of the form
∏
𝑣𝑇
𝑗
𝜂 in the Fourier transform.

To that end, set

𝑞(𝑥) =
𝑛∏
𝑗=1

𝑣𝑇𝑗 𝑥 =
∑︁
|𝛼 |≤𝑛

𝑞𝛼 𝑥
𝛼,

and set

𝑞(−𝑖𝐷) = 𝑞
(
−𝑖 𝜕
𝜕𝑥

)
:=

∑︁
|𝛼 |≤𝑛

𝑞𝛼 (−𝑖) |𝛼 |
𝜕 |𝛼 |

𝜕𝑥𝛼
.

7The set 𝐶∞0 (Ω) consists of all infinitely differentiable functions on Ω that vanish on the boundary
𝜕Ω of Ω.
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3 The Radon Transform and Its Relatives

Now, we construct a function ℎ such that

𝑞(−𝑖𝐷)ℎ = 𝑓 . (3.4.2)

For 𝑛 = 1, the equation takes the form

−𝑖𝑣𝑇1∇ℎ = 𝑓 , ∇ℎ =

(
𝜕
𝜕𝑥 𝑗
ℎ : 𝑗 = 1, . . . , 𝑑

)
,

and a solution is the line integral

ℎ(𝑥) = 𝑖
∫ 𝑠

0
𝑓 (𝑡 𝑣1 + 𝑦) 𝑑𝑡, 𝑥 = 𝑠𝑣1 + 𝑦, 𝑦 ∈ 𝑣⊥;

this is the fundamental theorem of integration and differentiation. For 𝑛 > 1, we
repeat the construction inductively taking into account that

𝑞(𝐷)ℎ =

(
−𝑖𝑣𝑇1∇

)
· · ·

(
−𝑖𝑣𝑇𝑛∇

)
ℎ.

Finally, choose any “mask” function 𝜓 ∈ 𝐶∞0 (Ω) which is 1 on Ω′ and set 𝑔 =

𝑞(−𝑖𝐷) (𝜓ℎ), so that, for 𝑥 ∈ Ω′,

𝑔(𝑥) = 𝑞(−𝑖𝐷) ( 𝜓︸︷︷︸
≡1

ℎ) (𝑥) = 𝑞(−𝑖𝐷)ℎ(𝑥) = 𝑓 (𝑥).

Then, by Theorem 2.1.5, 4)

�̂�(𝜉) = 𝑞(𝜉) (𝜓ℎ)∧ (𝜉),

and therefore, by Theorem 3.3.3, for 𝑗 = 1, . . . , 𝑛 and 𝜉 ∈ 𝑣⊥
𝑗
,(

𝑋𝑔(𝑣 𝑗 , ·)
)∧ (𝜉) = �̂�(𝜉) = 𝑞(𝜉) (𝜓ℎ)∧ (𝜉) = (𝑣𝑇1 𝜉) · · · (𝑣𝑇𝑗 𝜉)︸︷︷︸

=0

· · · (𝑣𝑇𝑛 𝜉) (𝜓ℎ)∧ (𝜉) = 0,

which gives 𝑋𝑔(𝑣 𝑗 , ·) = 0 as claimed since the X-ray transform is only considered
on the complement of the respective direction. □

In other words: infinitely many directions yield uniqueness in the X-ray transform,
finitely many don’t. Here, we have a clear cut and, first of all, this is not very
promising. Obiously, we can only measure finitely many rays in practice as the
number of pixels on a detector and the number of measurements are clearly finite.
Note, however, ℎ = 𝑓 − 𝑔 satisfies ℎ(Ω′) = 0 but still 𝑋ℎ(𝑣, ·) = 𝑋 𝑓 (𝑣, ·), so all
information on 𝑓 is squeezed into the possibly small domain Ω \Ω′.

The Fourier transform �̂� of 𝑔 vanishes of high order at the origin. Since

�̂�(0) =
∫
R𝑑
𝑒−𝑖0

𝑇𝑥𝑔(𝑥) 𝑑𝑥 =
∫
Ω

𝑔(𝑥) 𝑑𝑥,

the function 𝑔 must oscillate on Ω. Higher orders of the zero yield even more
oscillations as the following argument shows. Let

𝑞𝐽 (𝜉) =
∏
𝑘∈𝐽

𝑣𝑇𝑗 𝜉, 𝐽 ⊂ {1, . . . , 𝑛},
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3.4 Uniqueness for Compactly Supported Functions

then

0 = 𝑞𝐽 (𝐷)�̂�(0) = (𝑞𝐽 (−𝑖·)𝑔)∧ (𝜉) =
∫
Ω

𝑔(𝑥)𝑞𝐽 (−𝑖𝑥) 𝑑𝑥,

hence 𝑔 is perpendicular to the space spanned by the 𝑞𝐽 . These vanishing mo-
ments are known in wavelet theory, cf. (Mallat, 2009) and imply a certain amount
of oscillarion of 𝑔 on Ω. This makes 𝑔 a “noisy” function.

We finish this section with a result on the (realistic) divergent beam transform
that we have not considered yet. Here, we restrict the support of the function to
the unit ball and locate the X-ray source outside the unit ball.

Theorem 3.4.5. Let X ∈ R𝑑 \B𝑑 be an infinite set and 𝑓 ∈ 𝐶∞00(B
𝑑). If 𝐷 𝑓 (·, 𝑥) = 0,

𝑥 ∈ X , then 𝑓 = 0.

Proof: Let8 𝑣∗ be an accumulation point of
{
𝑥
|𝑥 |2 : 𝑥 ∈ X

}
and choose 𝜀 > 0 such

that 𝑓 is supported on 𝐵1−2𝜀 (0) = {𝑥 : |𝑥 |2 ≤ 1 − 2𝜀}; this is possible due to the
assumption that the compact support of 𝑓 is contained in the interior9 of B𝑑 . Since

𝑥𝑇𝑣∗ = |𝑥 |2︸︷︷︸
>1

(
𝑥

|𝑥 |2

)𝑇
𝑣∗︸      ︷︷      ︸

→1

≥ 1 − 𝜀
2

for infinitely many points sufficiently close to the accumulation point 𝑣∗, we can
find an open neighborhood 𝑈 (𝑣∗) ⊂ S𝑑−1 of 𝑣∗ such that

#X ′ =
{
𝑥 : 𝑥𝑇𝑣 > 1 − 𝜀, 𝑣 ∈ 𝑈 (𝑣∗)

}
= ∞

and we have infinitely many footpoints for infinitely many rays. Now, for 𝑥 ∈ X ′

and 𝑣 ∈ 𝑈 (𝑣∗),∫
S𝑑−1

𝐷 𝑓 (𝑤, 𝑥) (𝑣𝑇𝑤)1−𝑑 𝑑𝑤 =

∫
S𝑑−1

∫ ∞

0
𝑓 (𝑥 + 𝑡𝑤) (𝑣𝑇𝑤)1−𝑑 𝑑𝑡𝑑𝑤

=

∫
R𝑑
𝑓 (𝑥 + 𝑦) (𝑣𝑇 𝑦)1−𝑑 𝑑𝑦 =

∫
R𝑑
𝑓 (𝑦)

(
𝑣𝑇 (𝑦 − 𝑥)𝑇

)1−𝑑
𝑑𝑦

=

∫
|𝑦 |2<1−2𝜀

𝑓 (𝑦)
(
𝑣𝑇 𝑦 − 𝑣𝑇𝑥

)1−𝑑
𝑑𝑦, (3.4.3)

due to the support of 𝑓 , where

𝑣𝑇 𝑦 − 𝑣𝑇𝑥 < |𝑣 |2︸︷︷︸
=1

|𝑦 |2 − 𝑣𝑇𝑥︸︷︷︸
>1−𝜀

≤ (1 − 2𝜀) − (1 − 𝜀) = −𝜀

whenever 𝑓 (𝑦) ≠ 0, hence
(
𝑣𝑇 𝑦 − 𝑣𝑇𝑥

)1−𝑑 is well defined as is the integral itself.

8This is correct: we choose the direction according to the points from where they emerge.
9Recall that, by definition, 𝐶00 (Ω) is the set of continuous functions with a compact support
Ω′ ⊂ Ω◦.
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3 The Radon Transform and Its Relatives

Replacing10 𝑦 in (3.4.3) by 𝑦 = 𝑠𝑣 + 𝑤, 𝑤 ∈ 𝑉⊥, we this get∫
S𝑑−1

𝐷 𝑓 (𝑤, 𝑥) (𝑣𝑇𝑤)1−𝑑 𝑑𝑤 =

∫
R𝑑
𝑓 (𝑦)

(
𝑣𝑇 𝑦 − 𝑣𝑇𝑥

)1−𝑑
𝑑𝑦

=

∫
R

∫
𝑣⊥
𝑓 (𝑠𝑣 + 𝑤)

(
𝑣𝑇 (𝑠𝑣 − 𝑤) − 𝑣𝑇𝑥

)1−𝑑
𝑑𝑤𝑑𝑠

=

∫
R

(
𝑠 − 𝑣𝑇𝑥

)1−𝑑 ∫
𝑣⊥
𝑓 (𝑠𝑣 + 𝑤)𝑑𝑤︸                ︷︷                ︸
=𝑅 𝑓 (𝑣,𝑠)

𝑑𝑠 =

∫
R

(
𝑠 − 𝑣𝑇𝑥

)1−𝑑
𝑅 𝑓 (𝑣, 𝑠) 𝑑𝑠,

and the assumption that 𝐷 𝑓 (·, 𝑥) = 0, 𝑥 ∈ X , allows us to conclude that

0 =

∫
R

(
𝑠 − 𝑣𝑇𝑥

)1−𝑑
𝑅 𝑓 (𝑣, 𝑠) 𝑑𝑠, 𝑣 ∈ 𝑈 (𝑣∗), 𝑥 ∈ X ′. (3.4.4)

The power series expansion(
𝑠 − 𝑣𝑇𝑥

)1−𝑑
=

∞∑︁
𝑛=0

(−1)𝑛 (𝑛 + 𝑑 − 2)!(𝑑 − 2)!
(𝑣𝑇𝑥)1−𝑑−𝑛

𝑛!
𝑠𝑛

=

∞∑︁
𝑛=0

(−1)𝑛
(
𝑛 + 𝑑 − 2

𝑛

)
︸                ︷︷                ︸

=:𝑐𝑛≠0

(𝑣𝑇𝑥)1−𝑑−𝑛 𝑠𝑛

converges uniformly in 𝑈 (𝑣∗) ×X ′ for |𝑠 | ≤ 1 − 2𝜀, so that

0 =

∞∑︁
𝑛=0

𝑐𝑛 (𝑣𝑇𝑥)1−𝑑−𝑛
∫
R
𝑠𝑛𝑅 𝑓 (𝑣, 𝑠) 𝑑𝑠, 𝑣 ∈ 𝑈 (𝑣∗), 𝑥 ∈ X ′. (3.4.5)

As we will see in Proposition 3.5.1, there exist homogeneous polynomials 𝑝𝑛 ∈ Π0
𝑛

such that ∫
R
𝑠𝑛𝑅 𝑓 (𝑣, 𝑠) 𝑑𝑠 = 𝑝𝑛 (𝑣), 𝑣 ∈ S𝑑−1,

and therefore

0 =

∞∑︁
𝑛=0

𝑐𝑛
𝑝𝑛 (𝑣)
(𝑥𝑇𝑣)𝑛

, 𝑣 ∈ 𝑈 (𝑣∗), 𝑥 ∈ X ′.

The set {𝑤 ∈ R𝑑 : #𝑤𝑇X ′ < ∞} is at most a (𝑑 − 1)-dimensional subspace of R𝑑 ,
see Exercise 3.4.2. Since 𝑈 (𝑣∗) is open, there exists for almost any 𝑣 ∈ 𝑈 (𝑣∗), a
sequence 𝑥 𝑗 ∈ X ′, 𝑗 ∈ N, such that all the numbers

𝑡 𝑗 := (𝑣𝑇𝑥 𝑗 )−1 ∈
(
0,

1
1 − 𝜀

]
𝑗 ∈ N,

are disjoint and therefore the power series

𝑔𝑣 (𝑡) :=
∞∑︁
𝑛=0

𝑐𝑛𝑝𝑛 (𝑣) 𝑡𝑛

10Our standard trick.
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has infinitely many zeros11. This implies that all 𝑝𝑛 vanish on a dense subset
of 𝑈 (𝑣∗), hence, being their polynomials, 𝑝𝑛 = 0, 𝑛 ∈ N0, and the density of
monomials yields that 𝑅 𝑓 (𝑣, ·) = for any 𝑣 ∈ S𝑑−1, hence 𝑓 = 0. □

Exercise 3.4.1 Show in one line that a homogeneous polynomial is uniquely defined
by its values on S𝑑−1. ♦

Exercise 3.4.2 To complete the proof of Theorem 3.4.5 assume that X ⊂ R𝑑 \B𝑑
and show that:

1. {𝑤 : #𝑤𝑇X < ∞} is a linear subspace,

2. for any finite Y ⊂ R𝑑 there exist only finitely many 𝑤 ∈ R𝑑 such that #𝑤𝑇Y <

#Y .
Hint: consider {𝑦 − 𝑦′ : 𝑦, 𝑦′ ∈ Y }.

Use this to show that {𝑤 : #𝑤𝑇X < ∞} is a linear subspace of R𝑑 of dimension at
most 𝑑 − 1. ♦

Remark 3.4.6. The proof of Theorem 3.4.5 is quite remarkable. It tells us that
the principal direction of the beams is the one determined by the12 accumulation
point of the projections of X on the unit sphere. The open neighborhood 𝑈 (𝑣∗)
then represents a small cone around this principal direction to get an infinity of
directions.

3.5 Consistency

In the proof of Theorem 3.4.5 we already used the fact that the integral of the Radon
transform against a homogeneous polynomial gives a homogeneous polynomial
again. We will prove that important fact and show that in fact it even characterizes
the Radon transform and the X-ray transform.

Proposition 3.5.1. For 𝑓 ∈ S (R𝑑) and 𝑛 ∈ N0, there exist homogeneous polynomials
𝑝𝑛 and 𝑞𝑛 of degree 𝑛 such that∫

R
𝑠𝑛 𝑅 𝑓 (𝑣, 𝑠) 𝑑𝑠 = 𝑝𝑛 (𝑣), 𝑣 ∈ S𝑑−1, (3.5.1)

and ∫
𝑣⊥
(𝑥𝑇 𝑦)𝑛𝑋 𝑓 (𝑣, 𝑥) 𝑑𝑥 = 𝑞𝑛 (𝑦), 𝑦 ∈ 𝑣⊥; (3.5.2)

moreover, the polynomial 𝑞𝑛 is independent of 𝑣.

Proof: For (3.5.1), we compute∫
R
𝑠𝑛 𝑅 𝑓 (𝑣, 𝑠) 𝑑𝑠 =

∫
R
𝑠𝑛

∫
𝑣⊥
𝑓 (𝑠𝑣 + 𝑤) 𝑑𝑤𝑑𝑠

=

∫
R

∫
𝑣⊥

(
(𝑠𝑣 + 𝑤)𝑇𝑣

)𝑛
𝑓 (𝑠𝑣 + 𝑤) 𝑑𝑤𝑑𝑠 =

∫
R𝑑
(𝑥𝑇𝑣)𝑛 𝑓 (𝑥) 𝑑𝑥,

11And these zeros have an accumulation point if X ′ is bounded.
12If there are several ones, the argument holds for each of them, pick your favorite.
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which is a homogeneous polynomial with respect to 𝑣. (3.5.2) is obtained in almost
the same way by∫

𝑣⊥
(𝑥𝑇 𝑦)𝑛𝑋 𝑓 (𝑣, 𝑥) 𝑑𝑥 =

∫
𝑣⊥
(𝑥𝑇 𝑦)𝑛

∫
R
𝑓 (𝑥 + 𝑡𝑣) 𝑑𝑡𝑑𝑥

=

∫
R𝑑

(
(𝑧 − 𝑡𝑣)𝑇 𝑦

)𝑛
𝑓 (𝑧)𝑑𝑧 =

∫
R𝑑
(𝑧𝑇 𝑦)𝑛 𝑓 (𝑧)𝑑𝑧,

which is independent of 𝑣 as claimed. □

What makes Proposition 3.5.1 remarkable is the fact that is also has a converse.
This also motivates the following definition which we give before we state and proof
the converses.

Definition 3.5.2. The conditions (3.5.1) and (3.5.2) are called Helgasson consis-
tency conditions for the Radon transform and the X-ray transform, respectively.

Theorem 3.5.3 (Consistency of the Radon transform). If 𝑔 ∈ S (S𝑑−1 × R) is an
even function, i.e., 𝑔(−𝑣,−𝑠) = 𝑔(𝑣, 𝑠) and∫

R
𝑔(𝑣, 𝑠)𝑠𝑛 𝑑𝑠 = 𝑝𝑛 (𝑣), 𝑝𝑛 ∈ Π0

𝑛 , 𝑛 ∈ N0, (3.5.3)

then there exists 𝑓 ∈ S (R𝑑) such that 𝑔 = 𝑅 𝑓 .

Proof: The first step is straightforward. In view of Fourier Slice Theorem 3.2.5, we
define 𝑓 by its Fourier transform

𝑓 (𝜎𝑣) = (𝑔(𝑣, ·))∧(𝜎), 𝑣 ∈ S𝑑 , 𝜎 ∈ R, (3.5.4)

which is well-defined since 𝑔 is even and hence

𝑓 ((−𝜎) (−𝑣)) = (𝑔(−𝑣, ·))∧ (−𝜎) = (𝑔(−𝑣, ·))∧ (−𝜎) = (𝑔(−𝑣,−·))∧ (𝜎) = 𝑓 (𝜎𝑣).

The main task is to show that the 𝑓 defined this way really belongs to S (R𝑑). To
encorporate polynomials, we write the exponential as

𝑒−𝑖𝑡 =
𝑛−1∑︁
𝑗=0

(−𝑖𝑡) 𝑗
𝑗 !
+ 𝑒𝑛 (−𝑖𝑡), 𝑒𝑛 (𝑡) = 𝑡𝑛

∞∑︁
𝑗=0

𝑡 𝑗

( 𝑗 + 𝑛)! , (3.5.5)

where 𝑒 : R → R is an analytic function with a zero of order 𝑛 at the origin.
Therefore, by (3.5.3),

𝑓 (𝜎𝑣) = (𝑔(𝑣, ·))∧(𝜎) =
∫
R
𝑒−𝑖𝜎𝑠𝑔(𝑣, 𝑠) 𝑑𝑠

=

𝑛−1∑︁
𝑗=0

(−𝑖𝜎) 𝑗
𝑗 !

∫
R
𝑠 𝑗𝑔(𝑣, 𝑠) 𝑑𝑠 +

∫
R
𝑒𝑛 (−𝑖𝜎𝑠)𝑔(𝑣, 𝑠) 𝑑𝑠

=

𝑛−1∑︁
𝑗=0

(−𝑖𝜎) 𝑗
𝑗 !

𝑝 𝑗 (𝑣) +
∫
R
𝑒𝑛 (−𝑖𝜎𝑠)𝑔(𝑣, 𝑠) 𝑑𝑠

=

𝑛−1∑︁
𝑗=0

(−𝑖) 𝑗
𝑗 !

𝑝 𝑗 (𝜎𝑣) +
∫
R
𝑒𝑛 (−𝑖𝜎𝑠)𝑔(𝑣, 𝑠) 𝑑𝑠,
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3.5 Consistency

hence

𝑓 (𝜉) =
𝑛−1∑︁
𝑗=0

(−𝑖) 𝑗
𝑗 !

𝑝 𝑗 (𝜉) +
∫
R
𝑒𝑛 (−𝑖𝜎𝑠)𝑔(𝑣, 𝑠) 𝑑𝑠, 𝜉 ∈ R𝑑 . (3.5.6)

Differentiablity of the polynomial part is no problem, for the integral, we have to
express 𝜕

𝜕𝜉
by 𝜕

𝜕𝑣
and 𝜕

𝜕𝜎
, which is getting a bit technical. Since 𝜎 = |𝜉 |2 and 𝑣 = 𝜉

𝜎
,

the chain rule gives13

𝜕

𝜕𝜉 𝑗
=
𝜕𝜎

𝜕𝜉 𝑗

𝜕

𝜕𝜎
+

𝑑∑︁
𝑘=1

𝜕𝑣𝑘

𝜕𝜉 𝑗

𝜕

𝜕𝑣𝑘
=
𝜉 𝑗

|𝜉 |2
𝜕

𝜕𝜎
+ 1
𝜎

𝑑∑︁
𝑘=1

𝛿 𝑗 𝑘
𝜕

𝜕𝑣𝑘
= 𝑣 𝑗

𝜕

𝜕𝜎
+ 1
𝜎

𝜕

𝜕𝑣 𝑗
.

Taking into accout that 𝑒𝑛 (𝑡) = 𝑡𝑛𝑏𝑛 (𝑡) with 𝑏 ∈ 𝐶∞(R) and differentiating under
the integral sign14, we get that

𝜕

𝜕𝜉 𝑗
(−𝑖𝜎𝑠)𝑛𝑏𝑛 (−𝑖𝜎𝑠)𝑔(𝑣, 𝑠) =

(
𝑣 𝑗

𝜕

𝜕𝜎
+ 1
𝜎

𝜕

𝜕𝑣 𝑗

)
𝜎𝑛 ((−𝑖𝑠)𝑛𝑏𝑛 (−𝑖𝜎𝑠)) 𝑔(𝑣, 𝑠)

= 𝜎𝑛−1𝑣 𝑗
(
(−𝑖𝑠)𝑛𝑏(−𝑖𝜎𝑠) + 𝜎(−𝑖𝑠)𝑛+1𝑏′𝑛 (−𝑖𝜎𝑠)

)
𝑔(𝑣, 𝑠)

+𝜎𝑛−1
(
(−𝑖𝑠)𝑛𝑏(−𝑖𝜎𝑠) 𝜕

𝜕𝑣 𝑗
𝑔(𝑣, 𝑠)

)
.

It follows that if a function ℎ is of the form

ℎ(𝑣, 𝜎) = 𝜎𝑛𝑏(𝜎)𝑎(𝑣), 𝑏 ∈ 𝐶∞(R), 𝑎 ∈ S (S𝑑−1),

then 𝜕 |𝛼 |

𝜕𝜉𝛼
ℎ is of the same form with 𝑛 replaced by 𝑛 − |𝛼 |, and in particular with

|𝛼 | = 𝑛 we have that

𝜕 |𝛼 |

𝜕𝜉𝛼
𝑓 (𝜉) =

∫
R
𝑏(−𝑖𝜎𝑠)𝑎(𝑣, 𝑠) 𝑑𝑥, 𝑏 ∈ 𝐶∞(R), 𝑎 ∈ S (S𝑑−1), (3.5.7)

and the function 𝑓 is indeed 𝐶∞. Rapid decay is obtained by muliplying with
𝜉𝛼 = 𝜎 |𝛼 |𝑣𝛼 and taking into account that 𝑔 is a Schwartz function. □

Theorem 3.5.4 (Consistency of the X-ray transform). If 𝑔 ∈ S (𝑇S𝑑−1×) satisfies
𝑔(·, 𝑥) = 0 for |𝑥 |2 ≥ 𝑐 and∫

𝑣⊥
(𝑥𝑇 𝑦)𝑛𝑔(𝑣, 𝑥) 𝑑𝑥 = 𝑞𝑛 (𝑦), 𝑦 ∈ 𝑣⊥, 𝑞𝑛 ∈ Π0

𝑛 , 𝑛 ∈ N0, (3.5.8)

with 𝑞𝑛 being independent of 𝑣, then there exists 𝑓 ∈ S (R𝑑) such that 𝑔 = 𝑋 𝑓 .

Proof: We will eventually use Theorem 3.5.3 for the proof. To that end, we set for
𝑣 ∈ S𝑑−1,

ℎ𝑣 (𝑤, 𝑠) :=
∫

{𝑥∈𝑣⊥:𝑤𝑇𝑥=𝑠}

𝑔(𝑣, 𝑥) 𝑑𝑥, 𝑤 ∈ 𝑣⊥, (3.5.9)

13There is a little bit more to it, we take the “physicist approach” here
14Check why we are permitted to do so.
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3 The Radon Transform and Its Relatives

which is well-defined due to the compact support of 𝑔 with respect to the second
variable, and compute for 𝑛 ∈ N0∫

R
𝑠𝑛ℎ𝑣 (𝑤, 𝑠) 𝑑𝑠 =

∫
R

∫
{𝑥∈𝑣⊥:𝑤𝑇𝑥=𝑠}

𝑠𝑛𝑔(𝑣, 𝑥) 𝑑𝑥𝑑𝑠

=

∫
R

∫
{𝑥∈𝑣⊥:𝑤𝑇𝑥=𝑠}

(𝑥𝑇𝑤)𝑛𝑔(𝑣, 𝑥) 𝑑𝑥𝑑𝑠 =
∫
𝑣⊥
(𝑥𝑇𝑤)𝑛𝑔(𝑣, 𝑥) 𝑑𝑥 = 𝑞𝑛 (𝑤),

which implies by Theorem 3.5.3 that ℎ𝑣 = 𝑅 𝑓 for some 𝑓 . Since 𝑞𝑛 does not depend
on 𝑣 by assumption, so does ℎ𝑣. For 𝑑 = 2 this is sufficient since then (3.5.9) says
that 𝑔 = ℎ𝑣 = 𝑅 𝑓 = 𝑋 𝑓 . For 𝑛 > 2, we consider, for fixed 𝑣, 𝑤 ∈ 𝑣⊥ and 𝑠 ∈ R, the
integral∫
{𝑥∈𝑣⊥:𝑤𝑇𝑥=𝑠}

𝑋 𝑓 (𝑣, 𝑥) 𝑑𝑥 =
∫

{𝑥∈𝑣⊥:𝑤𝑇𝑥=𝑠}

∫
R
𝑓 (𝑥 + 𝑡𝑣) 𝑑𝑡𝑑𝑥

=

∫
𝑣⊥∩𝑤⊥

∫
R
𝑓 (𝑠𝑤 + 𝑦 + 𝑡𝑣) 𝑑𝑡𝑑𝑦 =

∫
𝑤⊥

𝑓 (𝑠𝑤 + 𝑥) 𝑑𝑥 = 𝑅 𝑓 (𝑤, 𝑠) = ℎ(𝑤, 𝑠).

In other words, the Radon transforms of 𝑔(𝑣, ·) and 𝑋 𝑓 (𝑣, ·) coincide on 𝑣⊥ for
any 𝑣 ∈ S𝑑−1 and since the Radon transform is injective, it follows that 𝑔 = 𝑋 𝑓 . □

Remark 3.5.5. As shown in (Natterer, 1986, II.4), there is even a support property
for 𝑓 in Theorem 3.5.3 and Theorem 3.5.4: if 𝑔(𝑣, 𝑠) = 0 for |𝑠 | ≥ 𝑎 or 𝑔(𝑣, 𝑥) = 0
for |𝑥 |2 ≥ 𝑎, respectively, then 𝑓 (𝑥) = 0 for |𝑥 | ≥ 𝑎. This is due to an explicit
inversion formula based on Gegenbauer polynomials, see (Natterer, 1986, II.2,
Theorem 2.3).

3.6 Stability

The results in Section 3.4 about uniqueness showed that for compactly supported
functions, the Radon transform and the X-ray transform are injective, that is, if
the transforms as linear operators yield zero, them the function must be zero.
However, there exist even quantitative statements in terms of proper norms which
we are going to consider now. Let us start with the norms, as an extension of what
we encountered in (2.3.17).

Definition 3.6.1. The Sobolev norm ∥ · ∥𝐻𝑟 (R𝑑) is defined as

∥ · ∥2
𝐻𝑟 (R𝑑) :=

∫
R𝑑

(
1 + |𝜉 |22

)𝑟 �� 𝑓 (𝜉)��2 𝑑𝜉, (3.6.1)

and the Sobolev space 𝐻𝑟 (R𝑑) consists of all functions for which this norm is
finite. Moreover, we define the Sobolev spaces 𝐻𝑟 (S𝑑−1×R) and 𝐻𝑟 (𝑇S𝑑−1) for the
Radon transform and the X-ray transform by

∥ 𝑓 ∥2
𝐻𝑟 (S𝑑−1×R) :=

∫
S𝑑−1

∫
R
(1 + 𝜎2)𝑟

�� 𝑓𝑣 (𝜎)��2 𝑑𝜎𝑑𝑣 (3.6.2)
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and

∥ 𝑓 ∥2
𝐻𝑟 (𝑇S𝑑−1) :=

∫
S𝑑−1

∫
𝑣⊥

(
1 + |𝜂 |22

)𝑟 �� 𝑓𝑣 (𝜂)��2 𝑑𝜂𝑑𝑣, (3.6.3)

respectively.

A stronger and quantitative form of invertibility is given by the following concept.
In fact, an operator is stable in the sense of Definition 3.6.2 if it is continuous and
has a continuous inverse.

Definition 3.6.2. A linear operator 𝑇 : 𝑋 → 𝑌 between two Banach spaces is
called stable if there exist two constants 0 < 𝐴 < 𝐵 < ∞ such that

𝐴∥ 𝑓 ∥𝑋 ≤ ∥ 𝑓 ∥𝑌 ≤ 𝐵∥ 𝑓 ∥𝑋 , 𝑓 ∈ 𝑋. (3.6.4)

Since it will become relavant in the proof of the following theorem, let us recall
the following important concept.

Definition 3.6.3. For Ω ⊆ R𝑑 we denote by 𝐶∞00(Ω) the set of all compactly sup-
ported 𝐶∞ functions 𝑓 such that supp 𝑓 ⊂ Ω◦, i.e., the compact support is a subset
of the interior of Ω.

With respect to the correct spaces15, the Radon transform and the X-ray trans-
form are indeed stable.

Theorem 3.6.4. For any compact Ω ⊂ R𝑑 and 𝑟 > 0 there exist constants 0 < 𝐴𝑟 <

𝐵𝑟 (Ω) < ∞ such that

𝐴𝑟 ∥ 𝑓 ∥𝐻𝑟 (R𝑑) ≤ ∥𝑅 𝑓 ∥𝐻𝑟+(𝑑−1)/2) (S𝑑−1×R) ≤ 𝐵𝑟 (Ω)∥ 𝑓 ∥𝐻𝑟 (R𝑑) (3.6.5)

and
𝐴𝑟 ∥ 𝑓 ∥𝐻𝑟 (R𝑑) ≤ ∥𝑋 𝑓 ∥𝐻𝑟+1/2 (𝑇S𝑑−1) ≤ 𝐵𝑟 (Ω)∥ 𝑓 ∥𝐻𝑟 (R𝑑) (3.6.6)

hold for any 𝑓 ∈ 𝐶∞00(R
𝑑).

Remark 3.6.5. The notation in (3.6.5) and (3.6.6) is deliberate and correct: the
proof will show that only the upper bound depends on Ω.

Proof: To prove (3.6.5), we use the Fourier Slice Theorem for the Radon transform
to compute

∥𝑅 𝑓 ∥2
𝐻𝑟+(𝑑−1)/2) (S𝑑−1×R) =

∫
S𝑑−1

∫
R
(1 + 𝜎2)𝑟+(𝑑−1)/2

��(𝑅 𝑓 (𝑣, ·))∧ (𝜎)��2 𝑑𝜎𝑑𝑣
=

∫
S𝑑−1

∫
R
(1 + 𝜎2)𝑟+(𝑑−1)/2

�� 𝑓 (𝑣𝜎)��2 𝑑𝜎𝑑𝑣
= 2

∫
S𝑑−1

∫ ∞

0
(1 + 𝜎2)𝑟+(𝑑−1)/2

�� 𝑓 (𝑣𝜎)��2 𝑑𝜎𝑑𝑣
= 2

∫
R𝑑
|𝜉 |1−𝑑2 (1 + |𝜉 |

2
2)
𝑟+(𝑑−1)/2 �� 𝑓 (𝜉)��2 𝑑𝜉,

15And these will be ones we just introduced in Definition 3.6.1 – what a coincidence.
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while for (3.6.6) we use

∥𝑋 𝑓 ∥2
𝐻𝑟+1/2 (𝑇S𝑑−1) =

∫
S𝑑−1

∫
𝑣⊥

(
1 + |𝜂 |22

)𝑟+ 12 ��(𝑋 𝑓 (𝑣, ·))∧ (𝜂)��2 𝑑𝜂𝑑𝑣
=

∫
S𝑑−1

∫
𝑣⊥

(
1 + |𝜂 |22

)𝑟+ 12 �� 𝑓 (𝜂)��2 𝑑𝜂𝑑𝑣
=

��S𝑑−2�� ∫
R𝑑
|𝜉 |−12 (1 + |𝜉 |

2
2)
𝑟+ 12

�� 𝑓 (𝜉)��2 𝑑𝜉,
which are both of the form

𝐹 (𝛼) = 𝐶𝛼
∫
R𝑑
|𝜉 |−𝛼2 (1 + |𝜉 |

2
2)
𝑟+ 𝛼

2
�� 𝑓 (𝜉)��2 𝑑𝜉, 1 ≤ 𝛼 ≤ 𝑑 − 1, (3.6.7)

for 𝛼 = 𝑑 − 1 and 𝛼 = 1. Since 𝛼 > 0,

|𝜉 |−𝛼2 =

(
|𝜉 |22

)−𝛼/2
≥

(
1 + |𝜉 |22

)−𝛼/2
,

it follows that

𝐹 (𝛼) ≥ 𝐶𝛼
∫
R𝑑
(1 + |𝜉 |22)

𝑟
�� 𝑓 (𝜉)��2 𝑑𝜉 = 𝐶𝛼 ∥ 𝑓 ∥2𝐻𝑟 (R𝑑) , (3.6.8)

which is the lower estimate in (3.6.5) and (3.6.6).
For the upper estimate we note that for |𝜉 |2 ≥ 1,

|𝜉 |22 ≥
1
2

(
1 + |𝜉 |22

)
⇒ |𝜉 |−𝛼2 ≤ 2𝛼/2

(
1 + |𝜉 |22

)−𝛼/2
and therefore ∫

|𝜉 |2≥1

|𝜉 |−𝛼2 (1 + |𝜉 |
2
2)
𝑟+ 𝛼

2
�� 𝑓 (𝜉)��2 𝑑𝜉

≤ 2𝛼/2
∫
|𝜉 |2≥1

(
1 + |𝜉 |22

)−𝛼/2
(1 + |𝜉 |22)

𝑟+ 𝛼
2
�� 𝑓 (𝜉)��2 𝑑𝜉

≤ 2𝛼/2
∫
R𝑑
(1 + |𝜉 |22)

𝑟
�� 𝑓 (𝜉)��2 𝑑𝜉 = 2𝛼/2∥ 𝑓 ∥2

𝐻𝑟 (R𝑑) .

To estimate the remaining integral, we first note that∫
|𝜉 |2≤1

|𝜉 |−𝛼2 (1 + |𝜉 |
2
2)
𝑟+ 𝛼

2
�� 𝑓 (𝜉)��2 𝑑𝜉 ≤ max

|𝜉 |2≤1

�� 𝑓 (𝜉)��2 ∫
|𝜉 |2≤1

|𝜉 |−𝛼2 (1 + |𝜉 |
2
2)
𝑟+ 𝛼

2 𝑑𝜉

and the integral is some constant independent of 𝑓 , cf. Exercise 3.6.1. We choose
a function 𝜓 ∈ 𝐶∞00(R

𝑑) that is equal to one on Ω = supp 𝑓 and set 𝜓𝜉 := 𝑒−𝑖𝜉
𝑇 · 𝜓.
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3.6 Stability

Then, by Theorem 2.1.8,

�� 𝑓 (𝜉)��2 =

����∫
Ω

𝑒−𝑖𝜉
𝑇𝑥 𝑓 (𝑥) 𝑑𝑥

����2 = ����∫
R𝑑
𝜓𝜉 (𝑥) 𝑓 (𝑥) 𝑑𝑥

����2 = 1
(2𝜋)𝑑

����∫
R𝑑
�̂�𝑥 (𝜂) 𝑓 (𝜂) 𝑑𝜂

����2
=

1
(2𝜋)𝑑

����∫
R𝑑

(
1 + |𝜂 |2

)−𝑟/2
�̂�𝜉 (𝜂)

(
1 + |𝜂 |2

)𝑟/2
𝑓 (𝜂) 𝑑𝜂

����2
≤ 1
(2𝜋)𝑑

(∫
R𝑑

(
1 + |𝜂 |2

)−𝑟 ���̂�𝜉 (𝜂)��2 𝑑𝜂) (∫
R𝑑

(
1 + |𝜂 |2

)𝑟
𝑓 (𝜂) 𝑑𝜂

)
=

1
(2𝜋)𝑑

(∫
R𝑑

(
1 + |𝜂 |2

)−𝑟 ���̂�𝜉 (𝜂)��2 𝑑𝜂) ∥ 𝑓 ∥2𝐻𝑟 (R𝑑) ,

and since

�̂�𝜉 (𝜂) =
∫
R𝑑
𝑒−𝑖𝜂

𝑇𝑥𝑒−𝑖𝜉
𝑇𝑥𝜓(𝑥) 𝑑𝑥 = �̂�(𝜂 + 𝜉),

it follows that∫
R𝑑

(
1 + |𝜂 |2

)−𝑟 ���̂�𝜉 (𝜂)��2 𝑑𝜂 =

∫
R𝑑

(
1 + |𝜂 |2

)−𝑟 ���̂�(𝜂 + 𝜉)��2 𝑑𝜂
=

∫
R𝑑

(
1 + |𝜂 − 𝜉 |22

)−𝑟 ���̂�(𝜂)��2 𝑑𝜂
is a continuous function in 𝜉 and therefore

max
|𝜉 |2≤1

�� 𝑓 (𝜉)��2 ≤ ∥ 𝑓 ∥𝐻𝑟 (R𝑑) max
|𝜉 |≤1

1
(2𝜋)𝑑

∫
R𝑑

(
1 + |𝜂 |22

)−𝑟 ���̂�𝜉 (𝜂)��2 𝑑𝜂 =: 𝐶2∥ 𝑓 ∥2𝐻𝑟 (R𝑑) .

(3.6.9)
In summary,

𝐹 (𝛼)

≤
∫
|𝜉 |2≥1

|𝜉 |−𝛼2 (1 + |𝜉 |
2
2)
𝑟+ 𝛼

2
�� 𝑓 (𝜉)��2 𝑑𝜉 + ∫

|𝜉 |2≤1

|𝜉 |−𝛼2 (1 + |𝜉 |
2
2)
𝑟+ 𝛼

2
�� 𝑓 (𝜉)��2 𝑑𝜉

≤
(
2𝛼/2 + 𝐶2

)
∥ 𝑓 ∥2

𝐻𝑟 (R𝑑) ,

which gives the upper estimates and completes the proof. □

Exercise 3.6.1 Show that∫
|𝜉 |2≤1

|𝜉 |−𝛼2 (1 + |𝜉 |
2
2)
𝑟+ 𝛼

2 𝑑𝜉 < ∞, 1 ≤ 𝛼 ≤ 𝑑 − 1.

Hint: Use polar coordinates. ♦

The constant 𝐶2 in (3.6.9) depends on Ω and grows with the size of Ω. However,
in many situations this is not that bad.
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3 The Radon Transform and Its Relatives

Example 3.6.6. Let us consider a simple example where Ω𝜆 := 𝜆Ω, 𝜆 ≥ 1, and
accordingly 𝜓𝜆 = 𝜓(·/𝜆) and 𝜓𝜆

𝜉
= 𝑒−𝑖𝜉

𝑇 ·𝜓(·/𝜆) Thus, by (2.1.7), �̂�𝜆
𝜉
= 𝜆𝑑�̂� (𝜆(· + 𝜉))

and therefore

1
(2𝜋)𝑑

∫
R𝑑

(
1 + |𝜂 |22

)−𝑟 ����̂�𝜆𝜉 (𝜂)���2 𝑑𝜂
=

𝜆𝑑

(2𝜋)𝑑

∫
R𝑑

(
1 + |𝜂 − 𝜉 |22

)−𝑟 ���̂�(𝜆𝜂)��2 𝑑𝜂
=

1
(2𝜋)𝑑

∫
R𝑑

(
1 + |𝜂/𝜆 − 𝜉 |22

)−𝑟 ���̂�(𝜂)��2 𝑑𝜂.
Although this is monotonically increasing in 𝜆, the above term is bounded inde-
pendently of 𝜆 and 𝜉 by

1
(2𝜋)𝑑

∫
R𝑑

���̂�(𝜂)��2 𝑑𝜂 =
1
(2𝜋)𝑑

∥�̂�∥22 = ∥𝜓∥
2
2

which therefore gives an upper bound of 𝐵𝑟 (Ω𝜆) independently of 𝜆.

3.7 The Limited Source Problem

In many practical applications, especially in more than two dimensions, the X-ray
source is not located at all positions around the object, for example on 𝐵𝜌 (0) for
some 𝜌 > 1 if 𝑓 is supported on B𝑑 , but one can only move the source along some
curve. Let’s make this formal.

Definition 3.7.1. Let 𝑎 : 𝐼 → R𝑑 \B𝑑 be a differentiable curve, then the associated
measurements along the curve are

𝐷 𝑓 (𝑣, 𝑎(𝑢)), 𝑣 ∈ S𝑑−1, 𝑢 ∈ 𝐼 . (3.7.1)

Remark 3.7.2. It is a standard assumption in Differential Geometry of curves that
the curve 𝑎 has a 𝐶1 parametrization. Then the arc length

ℓ𝑎 (𝑥) :=
∫
𝑢≤𝑥
| ¤𝑎(𝑢) |2 𝑑𝑢, 𝑥 ∈ 𝐼,

with ¤𝑎 = 𝑑
𝑑𝑢
𝑎, is well-defined. Note that there is a subtle difference between the

curve 𝑎(𝐼) as a subset of R𝑑, and the curve as a function 𝐼 → R𝑑 . In fact, there are
three classical ways to parametrize a curve:

1. with a free parameter 𝑢 ∈ 𝐼, usually to describe the curve 𝑎 in terms of simple
functions,

2. with respect to the arc length which means that | ¤𝑎 |2 = 1 and yields the intrinsic
geometric parametrization,

3. with respect to the time 𝑡 which gives a physical meaning to the derivatives,
namely ¤𝑎 as the velocity, ¥𝑎 as the acceleration and 𝑎 (3) as the so-called jerk.
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3.7 The Limited Source Problem

By means of appropriate reparametrization one can, of course, switch between
the different types of parametrization.

The obvious question is whether this information is sufficient to reconstruct am
function 𝑓 ∈ 𝐶∞00(B

𝑑). And indeed, the answer is positive as soon as the curve is
nontrivial, i.e., #𝑎(𝐼) ≠ 1. Since 𝑎 is differentiable16, it must assume infinitely many
different values since with any two disjoint points there is a whole curve connecting
them. Theorem 3.4.5 then tells us that the divergent beam transform is injective.
The situation become worse, however, if we ask for stable reconstruction, that is,
an estimate as in Theorem 3.6.4. This is impossible in general.

Example 3.7.3. Suppose there exists a hyperplane 𝐻 = (𝑣, 𝑠) such that 𝐻 ∩
𝑎( [0, 1]) = ∅ but 𝐻 ∩ B𝑑 ≠ ∅. Then choose any 𝑓 ∈ 𝐶∞00(B

𝑑) such that 𝑓 (𝐻) ≠ 0,
i.e., there existst some 𝑥 ∈ 𝐻 such that 𝑓 (𝑥) ≠ 0. The hyperplane 𝐻 cuts R𝑑 into
the halfspace 𝐻+ = {𝑥 : 𝑣𝑇𝑥 − 𝑠 > 0}, the halfspace 𝐻− = {𝑥 : 𝑣𝑇𝑥 − 𝑠 < 0} and 𝐻
itself. Finally, define

𝑓+(𝑥) =
{
𝑓 (𝑥), 𝑥 ∈ 𝐻+
0, 𝑥 ∉ 𝐻+,

which leads to a discontinuous function. However, the function

(𝑣, 𝑡) ↦→ 𝐷 𝑓 (𝑣, 𝑎(𝑡))

is 𝐶∞ provided that 𝑎 is a smooth curve17 since any ray from 𝑎(𝑡) meets 𝑓 transver-
sally only. So, 𝑓 can be reconstructed, but since it has no finite Sobolev norm18,
there cannot be a stable embedding.

The example suggests that the source of the trouble may be the fact that there
exists a hyperplane through the object that does not meet the curve 𝑎. This suggests
the following definition due to Tuy (Tuy, 1983).

Definition 3.7.4 (Tuy’s condition). A differentiable curve 𝑎 : 𝐼 → R𝑑 \ B𝑑 is
said to satisfy Tuy’s condition if for any 𝑥 ∈ B𝑑 and any 𝑤 ∈ S𝑑−1 there exists
𝑢 = 𝑢(𝑥, 𝑤) ∈ 𝐼, such that

𝑤𝑇 (𝑥 − 𝑎(𝑢)) = 0 and 𝑤𝑇 ¤𝑎(𝑢) ≠ 0. (3.7.2)

This condition means that any hyperplane through our “measurement region”
B𝑑 intersects with 𝑎 and that the intersection is transversally, i.e., that 𝑎 does not
run within the plane, but “pierces” the plane. If Tuy’s condition holds true, we get
a stable analytic inverse formula.

Example 3.7.5. A circle around B𝑑 does obviously not satisfy Tuy’s connection
while a helical curve around the cylindery containing the ball satisfies it.
16And therefore continuous.
17Sometimes being at least differentiable is even part of the definition of a curve.
18The Sobolev embedding theorem says that all functions of sufficiently high smoothness must be

differentiable.
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3 The Radon Transform and Its Relatives

Theorem 3.7.6. If 𝑎 satisfies Tuy’s condition and 𝑓 ∈ 𝐶∞00(B
𝑑), then

𝑓 (𝑥) = 1
(2𝜋)𝑑

∫
S𝑑−1

1
𝑣𝑇 ¤𝑎 (𝑢(𝑥, 𝑣))

𝜕𝐺

𝜕𝑢
(𝑢(𝑥, 𝑣), 𝑣) 𝑑𝑣, 𝑥 ∈ B𝑑 , (3.7.3)

where
𝐺 (𝑢, 𝑣) = (𝐷 𝑓 (·, 𝑎(𝑢)))∧ (𝑣), 𝑢 ∈ [0, 1], 𝑣 ∈ S𝑑−1.

Proof: We first extend 𝐷 𝑓 to 𝑦 ∈ R𝑑 by19

𝐷 𝑓 (𝑦, 𝑥) :=
∫ ∞

0
𝑓 (𝑥 + 𝑡𝑦) 𝑑𝑡 = |𝑦 |−12

∫ ∞

0
𝑓

(
𝑥 + 𝑡 𝑦|𝑦 |2

)
𝑑𝑡 =

1
|𝑦 |2

𝐷 𝑓

(
𝑦

|𝑦 |2
, 𝑥

)
.

This function has a Fourier transform (𝐷𝑥 𝑓 )∧ := (𝐷 𝑓 (·, 𝑥))∧ defined as20

(𝐷𝑥 𝑓 )∧(𝜉) =

∫
R𝑑
𝑒−𝑖𝜉

𝑇 𝑦𝐷𝑥 𝑓 (𝑦) 𝑑𝑦 =
∫
R𝑑
𝑒−𝑖𝜉

𝑇 𝑦

∫ ∞

0
𝑓 (𝑥 + 𝑡𝑦) 𝑑𝑡𝑑𝑦

=

∫ ∞

0

∫
R𝑑
𝑒−𝑖𝜉

𝑇 𝑦 𝑓 (𝑥 + 𝑡𝑦) 𝑑𝑡𝑑𝑦 =
∫ ∞

0
𝑡−𝑑

∫
R𝑑
𝑒−𝑖𝜉

𝑇 (𝑦−𝑥)/𝑡 𝑓 (𝑦) 𝑑𝑡𝑑𝑦

=

∫ ∞

0
𝑡−𝑑𝑒𝑖𝜉

𝑇𝑥/𝑡
∫
R𝑑
𝑒−𝑖𝜉

𝑇 𝑦/𝑡 𝑓 (𝑦) 𝑑𝑡𝑑𝑦 =
∫ ∞

0
𝑡−𝑑𝑒𝑖𝜉

𝑇𝑥/𝑡 𝑓

(
𝜉

𝑡

)
𝑑𝑡

=

∫ ∞

0
𝑡𝑑−2𝑒𝑖𝑡𝜉

𝑇𝑥 𝑓 (𝑡𝜉) 𝑑𝑡.

This looks similar to the inverse Fourier transform in polar coordinates,

𝑓 (𝑥) = 1
(2𝜋)𝑑

∫
S𝑑−1

∫ ∞

0
𝑡𝑑−1𝑒𝑖𝑡𝑥

𝑇𝜉 𝑓 (𝑡𝜉) 𝑑𝑡𝑑𝜉, (3.7.4)

except the incorrect power of 𝑡. Therefore, we consider 𝑥 = 𝑎(𝑢). i.e.,(
𝐷𝑎(𝑢) 𝑓

)∧ (𝜉) = ∫ ∞

0
𝑡𝑑−2𝑒𝑖𝑡𝜉

𝑇𝑎(𝑢) 𝑓 (𝑡𝜉) 𝑑𝑡

and take the derivative with respect to 𝑢,

𝑑

𝑑𝑢

(
𝐷𝑎(𝑢) 𝑓

)∧ (𝜉) =

∫ ∞

0
𝑡𝑑−2𝑒𝑖𝑡𝜉

𝑇𝑎(𝑢)
(
𝑖𝑡𝜉𝑇 ¤𝑎(𝑢)

)
𝑓 (𝑡𝜉) 𝑑𝑡

=

(
𝑖𝜉𝑇 ¤𝑎(𝑢)

) ∫ ∞

0
𝑡𝑑−1𝑒𝑖𝑡𝜉

𝑇𝑎(𝑢) 𝑓 (𝑡𝜉) 𝑑𝑡,

that is,∫ ∞

0
𝑡𝑑−1𝑒𝑖𝑡𝑥

𝑇𝑎(𝑢) 𝑓 (𝑡𝜉) 𝑑𝑡𝑑𝜉 = 1
𝑖𝜉𝑇 ¤𝑎(𝑢)

𝑑

𝑑𝑢

(
𝐷𝑎(𝑢) 𝑓

)∧ (𝜉), 𝜉 ∈ S𝑑−1. (3.7.5)

19This a homogeneous extension of order −1.
20Since 𝐷𝑥 𝑓 (0) is not well-defined, a careful proof would first use

(𝐷𝑥 𝑓 )∧ (𝜉) =
∫
|𝑦 |>𝜀

𝑒−𝑖 𝜉
𝑇 𝑦𝐷𝑥 𝑓 (𝑦) 𝑑𝑦, 𝜀 > 0,

and then consider the limit 𝜀 → 0.
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3.7 The Limited Source Problem

No we make use of Tuy’s condition: For each 𝑥 and 𝜉 there exists 𝑢(𝑥, 𝜉) such that
𝜉𝑇𝑥 = 𝜉𝑇𝑎(𝑥, 𝜉), so that we can substitute (3.7.5) into (3.7.4) to obtain (3.7.3) after
replacing 𝜉 by 𝑣. □

The point of the inversion formula (3.7.3) is that all terms appearing there are
nice and well-defined. If 𝑓 is smooth, then 𝑡𝑑−1 𝑓 (𝑡𝑣) decays rapidly with 𝑡 and the
integral

(𝐷𝑎 (𝑢) 𝑓 )∧ (𝑣) =
∫ ∞

0
𝑡𝑑−1𝑒𝑖𝑡𝑣

𝑇𝑎(𝑢) 𝑓 (𝑡𝑣) 𝑑𝑡

is well defined and smooth with respect to 𝑢 and 𝑣. Averaging that over 𝑣 only
makes ist smoother. In other words: if Tuy’s condition is satisfied, a stable recon-
struction can be expected.

Let us try to understand the geometric meaning of (3.7.3). One starts with
the point 𝑥 for which one wants to reconstruct21 𝑓 and looks, for any 𝑣 ∈ S𝑑−2,
at the hyperplane with normal 𝑣 that passes through 𝑥. By Tuy’s condition, the
hyperplane intersects the curve in at least one point with parameter 𝑢 = 𝑢(𝑥, 𝑣)
such that 𝑣𝑇 ¤𝑎(𝑢) ≠ 0. Then the function (𝐷𝑎 (𝑢) 𝑓 )∧ (𝑣) is tracked along the curve
and this derivative is evaluated at 𝑢(𝑥, 𝑣).

Note that the intersection parameter 𝑢(𝑥, 𝑣) can be chosen in a continous way
despite the fact that it need not be unique. In particular, if we fix 𝑥 and vary
the direction 𝑣 along a continuous curve on S𝑑−1, then the intersections from a
subcurve of 𝑎.

Remark 3.7.7. 1. If we assume that 𝑎 is intrinsically parametrized with respect
to the arc length, then 𝑣𝑇 ¤𝑎(𝑢) is the (cosine of the) angle between the normal
to hte hyperplane and the tangent to the curve. In other words: the flatter the
curve intersects the plane, the larger the number

(
𝑣𝑇 ¤𝑎(𝑢)

)−1 and the smaller
the derivative of 𝐺 must be in order to obtain a finite value 𝑓 (𝑥). This of
course amplifies any small errors in the measurements and leads to numerical
instability.

2. If 𝑎 is parametrized with respect to time, then the factor
(
𝑣𝑇 ¤𝑎(𝑢)

)−1 becomes
smaller if the speed increased along the curve, but of course the increased
speed also increases the derivative with respect to 𝑢 of 𝐺.

3. More precisely, let 𝜑 : 𝐼′ → 𝐼 be a reparametrization of the curve 𝑎, that is, a
surjective function with ¤𝜑 > 0, then, with 𝑎𝜑 = 𝑎 ◦ 𝜑, the chain rule gives

¤𝑎𝜑 (𝑢) = ¤𝑎 (𝜑(𝑢)) ¤𝜑(𝑢) and
𝜕𝐺𝜑

𝜕𝑢
(𝑢, 𝑣) = 𝜕𝐺

𝜕𝑢
(𝜑(𝑢), 𝑣) ¤𝜑(𝑢),

and the formula (3.7.3) turns out to be invariant under reparametrizations.

4. In other words: the formula (3.7.3) depends on the curve, not on its parametriza-
tion.

21Yes, in this respect the reconstruction is a pointwise one.
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Signal Processing and the
Filtered Backprojection 4

Nothing spoils numbers faster than a lot of arithmetic.

((Peppermint Patty, The Peanuts, 4.12.1968))

We already encountered the filtered backprojection in Theorem 3.2.8, but so
far it is a result in terms of convolutions; to relate it to filters and to build re-
construction algorithms based on the filtered backprojection, we will give a short
introduction to continuous and discrete signal processing and then return to the
filtered backprojection itself.

4.1 Signals and Filters

While “backprojection” is just another name for the dual Radon transform and thus
easily explained, the meaning of “filtered” needs some more concepts; digital or
discrete signal processing is explained for example in (Hamming, 1989; Schüßler,
1992).

In the general sense of Signal Processing, a signal is simply an element from a
function space, for example, 𝑓 ∈ 𝐿𝑝 (R𝑑) or 𝑓 ∈ S (R𝑑), or maybe the images of
the Radon or the X-ray transform.

Definition 4.1.1. A filter is an Operator from a signal space 𝑋 to a signal space
𝑌 .

Of course, on this level of generality almost everything is signal and filter; there-
fore, the common understanding of a filter means an important subclass of filters.

Definition 4.1.2 (Filter). An operator 𝐹 : 𝐿𝑝
(
R𝑑

)
→ 𝐿𝑝

(
R𝑑

)
is called a linear

and time invariant filter or LTI filter or simply a filter if

1. 𝐹 is linear, i.e., it is a linear operator,

2. 𝐹 is time invariante, that is, ist:

(𝐹 𝑓 ) (· + 𝑦) = 𝐹 ( 𝑓 (· + 𝑦)) , 𝑦 ∈ R𝑑 .

Usually one also assumes that 𝐹 is continuous or, equivalently, bounded.

Exercise 4.1.1 Show that an operator 𝐹 : 𝑋 → 𝑌 on Banach spaces 𝑋,𝑌 is
continuous if and only if it is bounded. (Riesz and Sz.-Nagy, 1955, S. 149) ♦
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4 Signal Processing and the Filtered Backprojection

Using the translation operator from (2.1.3) in Remark 2.1.2, time invariance can
also be written as the commuting property

𝐹𝜏𝑦 = 𝜏𝑦𝐹, 𝑦 ∈ R𝑑 . (4.1.1)

Moreover, LTI filters have a very nice representation which is based on the following
concept.

Definition 4.1.3. The impulse response of a filter 𝐹 is the distribution 𝑓 = 𝐹𝛿

obtained by applying the filter to the Dirac distribution 𝛿, definiert by 𝛿𝜙 = 𝜙(0).

Remark 4.1.4. The distributional definition of the impulse response is obtained
by applying the filter to the sequence of functions or regular distributions 𝑓𝑛 :=
𝑛
2 𝜒[−1/𝑛,1/𝑛] ∈ 𝐿𝑝 (R) which yields a sequence of functions 𝐹 𝑓𝑛. This sequence may
not converge in 𝐿𝑝 (R𝑑), but it converges in the distributional sense.

The following result is presented and “proven” in a handwaving fashion by mix-
ing functions and distributions in a very naive and incorrect way; it can also be
done correctly, however, with more effort, see (Gasquet and Witomski, 1998). Nev-
ertheless, it explains the particular role of convolutions in signal processing.

Proposition 4.1.5. An operator 𝐹 is a filter if and only 𝐹𝑔 = 𝑓 ∗ 𝑔, where 𝑓 is the
impulse response of 𝐹.

Proof: To write the filter as a convolution, we use the trivial1 identity

𝑔(𝑥) = (𝑔 ∗ 𝛿) (𝑥) =
∫
R𝑑
𝑔 (· − 𝑡) 𝛿(𝑡) 𝑑𝑡 =

∫
R𝑑
𝑔 (𝑡) 𝛿(𝑥 − 𝑡) 𝑑𝑡,

and generously change the order of integration to obtain

𝐹𝑔 = 𝐹

∫
R𝑑
𝑔 (𝑡) 𝛿(· − 𝑡) 𝑑𝑡 =

∫
R𝑑
𝑔 (𝑡) 𝐹𝛿(· − 𝑡) 𝑑𝑡 =

∫
R𝑑
𝑔 (𝑡) 𝑓 (· − 𝑡) 𝑑𝑡 = 𝑓 ∗ 𝑔.

For the converse, linearity is obvious and(
𝜏𝑦𝐹𝑔

)
(𝑥) = (𝐹𝑔) (𝑥 + 𝑦) =

∫
R𝑑
𝑓 (𝑡) 𝑔 (𝑥 + 𝑦 − 𝑡) 𝑑𝑡

=

∫
R𝑑
𝑓 (𝑡) 𝜏𝑦𝑔 (𝑥 − 𝑡) 𝑑𝑡 =

(
𝑓 ∗ 𝜏𝑦𝑔

)
(𝑥)

implies time invariance. □

Ignoring such banalities as mathematical correctness, nasty details and existence
of objects, the concept of a filter is equivalent to that of a convolution or, when
passing to the Fourier transform, to a multiplication:

𝐹𝑔 = 𝑓 ∗ 𝑔 ⇔ (𝐹𝑔)∧ = �̂� �̂�.

The Fourier transform �̂� of the impulse response 𝑓 is called the transfer function
of the filter 𝐹 and due to the linear relation between the filtered function and the
function itself, sometimes people speak of a linear system.

Let us look at some not so standard example of filters.

1And formally incorrect . . .
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4.1 Signals and Filters

Example 4.1.6 (Partial differential operators). Any partial differential operator
with constant coefficients is a filter. ein Filter! Indeed, writing the partial differ-
ential operator 𝐹 of order 𝑛 as

𝐹 =
∑︁
|𝛼 |≤𝑛

𝑎𝛼
𝜕 |𝛼 |

𝜕𝑥𝛼
, 𝑎𝛼 ∈ R, |𝛼 | ≤ 𝑛,

and applying it to a sufficiently smooth function 𝑔, we get for any 𝜉 ∈ R𝑑 due to
(2.1.9) that

(𝐹𝑔)∧ (𝜉) =
∑︁
|𝛼 |≤𝑛

𝑎𝛼

(
𝜕 |𝛼 |

𝜕𝑥𝛼
𝑔

)∧
(𝜉) =

∑︁
|𝛼 |≤𝑛

𝑎𝛼 (−𝑖𝜉)𝛼 �̂�(𝜉) = �̂� (𝜉) �̂�(𝜉)

with the polynomial transfer function

�̂� (𝜉) =
∑︁
|𝛼 |≤𝑛
(−𝑖) |𝛼 |𝑎𝛼 𝜉𝛼, 𝜉 ∈ R𝑑 .

This example also highlights the problem that we are facing here: the impulse
response 𝑓 = �̂� ∨ is not well-defined as a function, only as a distribution since the
only polynomial belonging to some 𝐿𝑝 space or to the Schwartz space is the zero
polynomial. This is the reason why we have to switch to distributions eventually.

Particular classes of filters are described by means of their frequency response,
i.e., by the way how they act on certain frequencies in the sense of parameters of
the Fourier transform.

Definition 4.1.7 (High, Low & Band). Let 0 < 𝐶1 < 𝐶2 ∈ R. A filter 𝐹 is called

1. low pass filter if 𝑓 (𝜉) = 0 for |𝜉 | > 𝐶1,

2. high pass filter if 𝑓 (𝜉) = 0 for |𝜉 | < 𝐶1,

3. band pass filter if supp �̂� ⊆ [𝐶1, 𝐶2]𝑑 , i.e., 𝑓 (𝜉) = 0 for 𝜉 ∉ [𝐶1, 𝐶2]𝑑 .
The ideal low pass filter would naturally be the characteristic function of some

cube centered around the origin, for example2 with the transfer function �̂� =

𝜒[−1,1]𝑑 , which leads to the sinc function which is an abbreviation for sinus car-
dinalis; the function is

𝑓 (𝑥) = 1
𝜋𝑑

sinc 𝑥, sinc 𝑥 :=
𝑑∏
𝑗=1

sin 𝑥 𝑗
𝑥 𝑗

,

and can be seen in Fig. 4.1.1. As we will see soon, the sinc function is of great
theoretical importance, but has significant deficits in practice, cf. (Gasquet and
Witomski, 1998).

Exercise 4.1.2 Show that

𝜒∨[−𝐶,𝐶]𝑑 (𝑥) =
(
𝐶

𝜋

)𝑑
sinc𝐶𝑥, 𝑥 ∈ R𝑑 . (4.1.2)

♦
2The we normalieze the bandwidth to [−1, 1] is no conceptual restriction.
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Figure 4.1.1: The function 𝑓 (𝑥) = sinc 𝑥.

4.2 Bandlimited Functions and Shannon

If we imagine for a moment a sound record, then we realize that the technical
equipment like microphones can only record a certain frequency range, in many
cases 20-20000 Hz which is related to the ability of human hearing3. Thus, the
spectrum 𝑓 of such a recording has a compact support – it is bandlimited.

Definition 4.2.1. A function 𝑓 ∈ 𝐿1
(
R𝑑

)
is called bandlimited if there exist some

bounded set Ω ⊂ R𝑑 such that supp �̂� ⊆ Ω, i.e., supp 𝑓 is a compact set4.

From the above perspective, bandlimited functions seem to be the only ones
that exist in a “real” world of recording data. And they are even nicer, they are as
smooth as we want. Let us recall the argument.

Proposition 4.2.2. If 𝑓 ∈ 𝐿1
(
R𝑑

)
is bandlimited, then 𝑓 ∈ 𝐶∞

(
R𝑑

)
.

Proof: Since 𝑓 is uniformly continuous, it belongs to 𝐿1(R𝑑) if it is compactly
supported and the same holds true for the functions 𝑔𝛼 := (−𝑖·)𝛼 𝑓 , 𝛼 ∈ N𝑑0 , hence
they have an inverse Fourier transform

𝑓𝛼 := 𝑔∨𝛼 =

(
(−𝑖·)𝛼 �̂�

)∨
∈ 𝐶𝑢 (R𝑑).

But by Theorem 2.1.5, 𝑓𝛼 =
𝜕 |𝛼 | 𝑓
𝜕𝑥𝛼

, hence 𝑓 has derivatives of any order. □

Going beyond 𝑓 ∈ 𝐿1 and requesting that 𝑓 and �̂� are both smooth, i.e., 𝑓 , �̂� ∈
𝐶∞

(
R𝑑

)
, one embeds everything into C𝑑 and obtians a classic from functional

analysis, cf. (Yosida, 1965, S. 161), where it is proved of tempered distributions.
Although the proof is not too hard, we will only quote the result here without a
proof.

3And equipment that exceeds these restrictions in expensive like hell.
4By definition, the support supp 𝑓 of a function 𝑓 is the closure of {𝑥 : 𝑓 (𝑥) ≠ 0}, hence always

closed and therefore compact if and only if it is bounded.
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4.2 Bandlimited Functions and Shannon

Theorem 4.2.3 (Paley–Wiener). A holomorphic5 function 𝐹 : C𝑑 → C is the Fourier
transform

𝐹 (𝑧) =
∫
R𝑑
𝑓 (𝑥) 𝑒−𝑖𝑧𝑇𝑥 𝑑𝑥, 𝑧 ∈ C𝑑 ,

of a function 𝑓 ∈ 𝐶∞
(
R𝑑

)
whose support is contained in [−𝑀, 𝑀]𝑑 , if for any 𝑛 > 0

there exists a constant 𝐶 > 0 such that

|𝐹 (𝑧) | ≤ 𝐶 (1 + |𝑧 |)−𝑛 𝑒𝑀 |ℑ𝑧 | .

In the “reality” of thechnical applications, we are usually not dealing with func-
tions defined on a continuum, but with discrete measurements, the functions are
sampled. The fundamental theorem that connects samples and functions is the
famous sampling theorem that we will consider next.

Definition 4.2.4. For ℎ > 0, the sampling operator 𝑆ℎ maps a function 𝑓 : R𝑑 →
R to the sequence

𝑆ℎ 𝑓 =

(
𝑓 (ℎ𝛼) : 𝛼 ∈ Z𝑑

)
. (4.2.1)

Given a function 𝜙, the associated quasi interpolant is defined as

𝑄ℎ 𝑓 = 𝑆ℎ 𝑓 ∗ 𝜙 =
∑︁
𝛼∈Z𝑑

𝑆ℎ 𝑓 (𝛼) 𝜙 (· − 𝛼) , (4.2.2)

provided that the sum exists.

The question is now whether, when and how we can reconstruct 𝑓 from its
samples 𝑆ℎ 𝑓 and what the influence of the function 𝜙 is in this process. The answer
is the celebrated Shannon6 Sampling Theorem that shows that reconstruction is
possible and this even with a universal choice of 𝜙, namely,

sinc 𝜋 := sinc (𝜋·) .

Theorem 4.2.5 (Shannon Sampling Theorem). If 𝑓 ∈ 𝐿1
(
R𝑑

)
is a bandlimited

function with supp �̂� ∈ [−𝑇,𝑇]𝑑 and ℎ < ℎ∗ = 𝜋
𝑇

, then

𝑓 = (𝑆ℎ 𝑓 ∗ sinc 𝜋)
(
ℎ−1·

)
=

∑︁
𝛼∈Z𝑑

𝑓 (ℎ𝛼)
𝑑∏
𝑗=1

sin 𝜋
(
𝑥 𝑗/ℎ − 𝛼 𝑗

)
𝜋

(
𝑥 𝑗/ℎ − 𝛼 𝑗

) . (4.2.3)

Hence, 𝑓 can be reconstructed exactly from the samples.

Remark 4.2.6. The coupling between the bandwidth 𝑇 of 𝑓 and the sampling
distance ℎ is on of the most important concepts of digital signal processing and
provides the link between the discrete and the continous world. Therefore a few
remarks on this fundamental result are in order:

5Complex differentiation is not so obvious and the driving force behind Function Theory, cf.
(Fisher, 1990; Hille, 1982).

6Claude Elwood Shannon, 1916–2001, electrical engineer and mathematician, one of the fathers
of the theory of digital signal processing, invented the word “bit” and developed chess pro-
gramms (before 1950).
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1. In the literature, the sampling frequency 1/ℎ, also called the Nyquist fre-
quency is said to be half the bandwidth. This is due to to some normaliza-
tions, but also due to the fact that the bandwidth is often defined as the width
of the frequency support which is 2𝑇 in our case.

2. The sinc function is no good practical way to reconstruct functions from
signals as it has no finite support, decays quite slowly, namely like 1/𝑥 and is
just an 𝐿1 function. Hence cutting of the expansion is not easy and prone to
errors.

3. In many cases the sampling distance ℎ is chosen as ℎ∗/𝑘 for some 𝑘 ∈ N
which is then called 𝑘 -fold oversampling.

4. Some proofs of the sampling theorem in the engineering literature (Grünin-
gen, 1993; Schüßler, 1992) and the arguments there are not formally correct
and only provide intuition. A good example for the opposite is (Mallat, 1999).
The proof in this lecture is a modification of the one from (Kammeyer and
Kroschel, 1998).

5. While Shannon published his theorem in 1949 in (Shannon, 1949), the result
itself was given earlier as a result on infinite cardinal by Whittaker (Whit-
taker, 1935) in 1935, and Kotelnikov (Kotelnikov, 1933) gave a similar result
even earlier. This is the reason why it is frequently referred to as Shannon-
Whittaker-Kotelnikov theorem nowadays.

Proof of Theorem 4.2.5: Since 𝑓 is bandlimited, 𝑓 ∈ 𝐿1
(
R𝑑

)
and the orthgonality

of complex exponentials on T𝑑 yields for ℎ > 0 and 𝛼 ∈ Z𝑑

𝑆ℎ 𝑓 (𝛼) =
1
(2𝜋)𝑑

∫
T𝑑
(𝑆ℎ 𝑓 )∧ (𝜃) 𝑒𝑖𝛼

𝑇𝜃 𝑑𝜃, (𝑆ℎ 𝑓 )∧ (𝜃) :=
∑︁
𝛽∈Z𝑑

𝑆ℎ 𝑓 (𝛽) 𝑒−𝑖𝛽
𝑇𝜃 ,

(4.2.4)
but also

𝑆ℎ 𝑓 (𝛼) = 𝑓 (ℎ𝛼) = �̂� ∨(ℎ𝛼) = 1
(2𝜋)𝑑

∫
R𝑑
�̂� (𝜉) 𝑒𝑖ℎ𝛼𝑇𝜉 𝑑𝜉

=
1
(2𝜋)𝑑

∑︁
𝛽∈Z𝑑

∫
ℎ−1(2𝜋𝛽+[−𝜋,𝜋]𝑑)

�̂� (𝜉) 𝑒𝑖ℎ𝛼𝑇𝜉 𝑑𝜉

=
1
(2𝜋)𝑑

∑︁
𝛽∈Z

ℎ−𝑑
∫

2𝜋𝛽+[−𝜋,𝜋]𝑑

�̂�

(
ℎ−1𝜉

)
𝑒𝑖𝛼

𝑇𝜉 𝑑𝜉

=
1

(2𝜋ℎ)𝑑
∑︁
𝛽∈Z𝑑

∫
T𝑑
�̂�

(
ℎ−1(𝜉 + 2𝜋𝛽)

)
𝑒𝑖𝛼

𝑇𝜉 𝑑𝜉

=
1

(2𝜋ℎ)𝑑

∫
T𝑑

©«
∑︁
𝛽∈Z𝑑

�̂�

(
ℎ−1(𝜉 + 2𝜋𝛽)

)ª®¬ 𝑒𝑖𝛼𝑇𝜉𝑑𝜉, =: 1
(2𝜋)𝑑

∫
T𝑑
𝐹 (𝜉) 𝑒𝑖𝛼𝑇𝜉 ,
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which means that

𝑆ℎ 𝑓 (𝛼) =
1
(2𝜋)𝑑

∫
T𝑑
𝐹 (𝜉) 𝑒𝑖𝛼𝑇𝜉 , 𝐹 :=

1
ℎ𝑑

∑︁
𝛽∈Z𝑑

�̂�

(
· + 2𝜋𝛽
ℎ

)
; (4.2.5)

the function 𝐹 is a periodization of the Fourier transform and up to the factor ℎ−1

exactly the same as (2.2.2). Moreover, 𝐹 ∈ 𝐶
(
T𝑑

)
⊂ 𝐿1

(
T𝑑

)
is 2𝜋 periodic and

since 𝑓 is bandlimted, the sum in (4.2.5) is even finite for any 𝑥 ∈ R𝑑 . Since the
exponentials 𝑒𝑖𝛼

𝑇 ·, 𝛼 ∈ Z𝑑, form a complete orthonormal system7, we can conclude
from (4.2.4) and (4.2.5) that

ℎ−𝑑
∑︁
𝛽∈Z𝑑

�̂�

(
𝜉 + 2𝜋𝛽

ℎ

)
= 𝐹 (𝜉) = (𝑆ℎ 𝑓 )∧ (𝜉) =

∑︁
𝛽∈Z𝑑

𝑓 (ℎ𝛽) 𝑒−𝑖𝛽𝑇𝜉 , 𝜉 ∈ T𝑑 . (4.2.6)

If ℎ is so small that

ℎ−1 [−𝜋, 𝜋]𝑑 ⊇ [−𝑇,𝑇]𝑑 ⇐⇒ [−𝜋, 𝜋]𝑑 ⊇ [−𝑇ℎ, 𝑇ℎ]𝑑 ⇐⇒ 𝑇ℎ < 𝜋

⇐⇒ ℎ <
𝜋

𝑇
,

we get for 𝑗 = 1, . . . , 𝑑 and 𝜉 ∈ T𝑑 that

ℎ−1 (𝜉 + 2𝜋𝛽) 𝑗 >
𝑇

𝜋

(
−𝜋 + 2𝜋𝛽 𝑗

)
≥ 𝑇

(
−1 + 2𝛽 𝑗

)
≥ 𝑇,

whenever 𝛽 𝑗 > 0, and that ℎ−1 (𝜉 + 2𝜋𝛽) 𝑗 < −𝑇 whenever 𝛽 𝑗 < 0. This, however,
means that the sum of the left hand side of (4.2.6) consists only of the term with
𝛽 = 0 and replacing 𝜉 by ℎ𝜉 we get

�̂� (𝜉) = ℎ𝑑
∑︁
𝛼∈Z𝑑

𝑓 (ℎ𝛼) 𝑒−𝑖ℎ𝛼𝑇𝜉 .

7A standard result in Analysis.

61



4 Signal Processing and the Filtered Backprojection

−π π −π π

Figure 4.2.1: Periodization of a function with too large support. The overlap makes it
impossible to reconstruct the function uniquely from the periodization; of
course the dark gray function in the right hand image has to be extended
periodically.

Therefore, since 𝑇 < 𝜋/ℎ, the 𝑇 -bandlimitedness of 𝑓 yields

𝑓 (𝑥) = 1
(2𝜋)𝑑

∫
R𝑑
�̂� (𝜉) 𝑒𝑖𝑥𝑇𝜉 𝑑𝜉

=
1
(2𝜋)𝑑

∫
[−𝑇,𝑇]𝑑

�̂� (𝜉) 𝑒𝑖𝑥𝑇𝜉 𝑑𝜉 =
(
ℎ

2𝜋

)𝑑 ∫
[−𝑇,𝑇]𝑑

∑︁
𝛼∈Z

𝑓 (ℎ𝛼) 𝑒𝑖(𝑥−ℎ𝛼)
𝑇𝜉 𝑑𝜉

=

(
ℎ

2𝜋

)𝑑 ∑︁
𝛼∈Z

𝑓 (ℎ𝛼)
∫

ℎ−1T𝑑

𝑒𝑖(𝑥−ℎ𝛼)
𝑇𝜉 𝑑𝜉

=

(
ℎ

2𝜋

)𝑑 ∑︁
𝛼∈Z𝑑

𝑓 (ℎ𝛼)
𝑑∏
𝑗=1


𝑒𝑖(𝑥 𝑗−ℎ𝛼 𝑗)𝜉

𝑖
(
𝑥 𝑗 − ℎ𝛼 𝑗

) �����𝜋/ℎ
𝜉=−𝜋/ℎ


=

∑︁
𝛼∈Z

𝑓 (ℎ𝛼)
𝑑∏
𝑗=1

𝑒𝑖(𝑥 𝑗−ℎ𝛼 𝑗)𝜋/ℎ − 𝑒−𝑖(𝑥 𝑗−ℎ𝛼 𝑗)𝜋/ℎ
2𝑖︸                                 ︷︷                                 ︸

=sin 𝜋(𝑥 𝑗/ℎ−𝛼 𝑗)

ℎ

𝜋

1
(𝑥 𝑗 − ℎ𝛼 𝑗 )︸          ︷︷          ︸

=(𝜋(𝑥 𝑗/ℎ−𝛼 𝑗))−1

=
∑︁
𝛼∈Z𝑑

𝑓 (ℎ𝛼)
𝑑∏
𝑗=1

sin 𝜋
(
𝑥 𝑗/ℎ − 𝛼 𝑗

)
𝜋

(
𝑥 𝑗/ℎ − 𝛼 𝑗

) = (𝑆ℎ 𝑓 ∗ sinc 𝜋) (·/ℎ),

which is (4.2.3). □

The clou in the proof of Theorem 4.2.5 is to consider the “Poisson sum”∑︁
𝛼∈Z𝑑

�̂�

(
𝜉 + 2𝜋𝛼

ℎ

)
= ℎ𝑑

∑︁
𝛼∈Z𝑑

𝑓 (ℎ𝛼) 𝑒−𝑖𝛼𝑇𝜉 , 𝜉 ∈ T𝑑 , (4.2.7)

cf. (2.2.5), that combines the periodization of the Fourier transform of a function
with the Fourier series of the sampling sequence; in principle, this works without the
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assumption that 𝑓 is bandlimited8 or that the sampling is sufficiently fine. But if ℎ
is so large that the function �̂�

(
ℎ−1·

)
has a support larger than the invterval [−𝜋, 𝜋],

the overlapping parts of the periodization contaminate the function, see Fig.4.2.1,
and a reconstruction of 𝑓 and therefore of 𝑓 becomes impossible.

But things are even worse: since we combine frequencies that have nothing to
do with each other and which are now considered modulo 2𝜋, the reconstruction
of an undersampled signal can lead to unwanted effects that are called aliasing.
Their removal, called antialiasing, is an important task in many applications of
signal and image processing.

4.3 More on the Filtered Backprojection

Once we know at least some basics of signal processing and know what the “filtered”
in the name means, it is getting time to have a look at the filtered backprojection
from a numerical perspective. To that end, we start with the measurement 𝑦 :=
𝑅 𝑓 ∈ S

(
S𝑑 × R

)
and also precompute the dual Radon transform 𝐺 := 𝑅∗𝑔 ∈

𝐿1(R𝑑) of the filter 𝑔 ∈ 𝐿1(R), more precisely, the impulse response of the filter that
we are considering. This reconstruction function 𝑔 is a free parameter in our
reconstruction process and it usually can be chosen from a full library of possible
filters, according to the concrete situation at hand.

With the definitions above, (3.2.11) takes the form

𝐺 ∗ 𝑓 = 𝑅∗ (𝑔 ∗ 𝑦) . (4.3.1)

The ideal filter would be 𝐺 = 𝛿 as then we can directly write down the solution

𝑓 = 𝑅∗ (𝑔 ∗ 𝑦) . 𝑔 = (𝑅∗)−1 𝛿.

But whenever something becomes so simple, there might be a catch to it. Of
course, the problem here is that, although 𝛿 is a formal identity for the “convolution
product”

𝛿 ∗ 𝑓 (𝑥) = 𝑓 (𝑥),
this identity only holds in the sense of distributions, not of functions, and we should
not expect that there are functions such that 𝑅∗𝑔 = 𝛿.

Exercise 4.3.1 What are the Fourier transform �̂� and the inverse Fourier transform
𝛿∨ of the 𝛿 distribution, respectively. ♦

To simplify notation a bit in the following, we write for 𝑔 ∈ 𝐿1
(
S𝑑 × R

)
,

�̂� (𝑣, 𝜎) = �̂�𝑣 (𝜎) (𝑔(𝑣, ·))∧ (𝜎), 𝑣 ∈ S𝑑 , 𝜎 ∈ R. (4.3.2)

In particular for numerical applications, it makes a lot of sense, to choose the filter
as simple as possible and a good approach in this direction is to exploit suitable
symmetries that are in accordance with the underlying transformation. In the case
of the Radon transform this is of course the ambiguity

𝑅 𝑓 (𝑣, 𝑠) = 𝑅 𝑓 (−𝑣,−𝑠),
8Of course, in order for the left hand side of (4.2.7) to exist, some sort of decay of 𝑓 should be

incorporated.
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4 Signal Processing and the Filtered Backprojection

that we noticed quite early in Remark 3.2.3. Resepcting this ambiguity, we get a
usefuly formula for the dual Radon transform of our filter.

Theorem 4.3.1. If 𝑔 ∈ S
(
S𝑑−1 × R

)
is an even function, i.e., 𝑔(𝑣, 𝑠) = 𝑔(−𝑣,−𝑠),

then

(𝑅∗𝑔)∧ (𝜉) = |𝜉 |1−𝑑2 �̂�

(
𝜉

|𝜉 |2
, |𝜉 |2

)
, 𝜉 ∈ R𝑑 \ {0}. (4.3.3)

To prove the theorem, we need a little computation that gives yet another rela-
tionship between the Radon transform, the dual Radon transform and the Riesz
potential.

Lemma 4.3.2. For 𝑓 ∈ S
(
R𝑑

)
,

(𝑅∗𝑅 𝑓 )∧ (𝜉) = |𝜉 |1−𝑑2 �̂� (𝜉), (4.3.4)

that is, 𝑅∗𝑅 = 𝐼𝑑−1.

Remark 4.3.3.

1. As we have already seen, the Riesz potential 𝐼𝑟 can be understood as some
sort of differential operator, at least if 𝑟 < 0, otherwise it takes the form of
a (smoothing) integral operator. Usually, such operators that are defined by
multplication of the Fourier transform with the norm of the argument are
called pseudodifferential operators.

2. Being a multiplication of the Fourier transform, (4.3.4) is nothing but a con-
volution of 𝑓 with the filter

(
| · |1−𝑑2

)∨. The only drawaback here is that in the
case 𝑑 = 2 we take the inverse Fourier transform of a function that does not
belong to 𝐿1(R2) as it decays only like |𝜉 |−12 .

Exercise 4.3.2 Compute the impulse response of the transfer function 𝐹 (𝜉) =
𝑓 (𝜉) = ∥𝜉∥1−𝑑2 . ♦
Proof: The proof is similar to the one of the inversion formula in Theorem 3.2.7,
but this time we consider(

𝐼𝑑−1 𝑓
)
(𝑥) = 1

(2𝜋)𝑑

∫
R𝑑
|𝜉 |1−𝑑2 �̂� (𝜉) 𝑒𝑖𝜉𝑇𝑥 𝑑𝜉

=
1

2(2𝜋)𝑑

∫
R

∫
S𝑑−1
|𝜎𝑣 |1−𝑑︸  ︷︷  ︸
=|𝜎 |1−𝑑

�̂� (𝜎𝑣) 𝑒𝑖𝑥𝑇 (𝜎𝑣) |𝜎 |𝑑−1 𝑑𝑣 𝑑𝜎

=
1

2(2𝜋)𝑑−1

∫
S𝑑

1
2𝜋

∫
R
(𝑅 𝑓 (𝑣, ·))∧ (𝜎) 𝑒𝑖𝜎 𝑥𝑇𝑣 𝑑𝜎 𝑑𝑣

=
1

2(2𝜋)𝑑−1

∫
S𝑑
𝑅 𝑓

(
𝑣, 𝑣𝑇𝑥

)
𝑑𝑣 = (𝑅∗𝑅) 𝑓 (𝑥)

to obtain (4.3.4). □

Proof of Theorem 4.3.1: We recall from equation (3.5.5) in the proof of Theo-
rem 3.5.3 that whenever 𝑔 is an even function such that �̂�𝑣 ∈ 𝐿1(R) for any 𝑣 ∈ S𝑑−1,
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then the inverse Fourier transform 𝑓 of the function such that �̂�𝑣 (𝜎) for 𝜉 = 𝜎𝑣

satisfies9 𝑔 = 𝑅 𝑓 . Supposing that 𝑔 is “sufficiently nice” such that this is possible,
we then get that 𝑅∗𝑔 = 𝑅∗𝑅 𝑓 = 𝐼𝑑−1 𝑓 , and because of (3.2.7) we have for 𝜉 ≠ 0,

(𝑅∗𝑔)∧ (𝜉) = |𝜉 |1−𝑑2 �̂� (𝜉) = |𝜉 |1−𝑑2 �̂�

(
|𝜉 | 𝜉|𝜉 |2

)
= |𝜉 |1−𝑑2 𝑅 𝑓

(
𝜉

|𝜉 |2
, ·
)∧
( |𝜉 |) = |𝜉 |1−𝑑2 �̂�

(
𝜉

|𝜉 |2
, |𝜉 |2

)
,

which completes the proof. □

Remark 4.3.4. The extension of (4.3.6) to 𝜉 = 0 is not obvious since |𝜉 |1−𝑑 leads to
a pole of order 𝑑 − 1 there; this is the price to be payed for the smoothing effect of
𝐼𝑑−1 with respect to the high frequencies. So, in order for (4.3.6) to be well-defined
at 𝜉 = 0, we request �̂�(𝑣, 𝜎) to have a zero of order 𝑑 − 1 at 𝜎 = 0, that is,

0 =

∫
R
𝑔𝑣 (𝑠)𝑠𝑘 𝑑𝑠, 𝑘 = 0, . . . , 𝑑 − 1,

see the discussion after Proposition 3.4.4. Once more, this is a wavelet-like property
and requires that 𝑔 has a certain oscillation property that depends on the dimension
of the space in which it is applied.

Since the inversion formula also exists for the X-ray transform, it comes as no
surprise that similar results exist there as well. The counterpart of Lemma 4.3.2 is
the following result.

Lemma 4.3.5. For 𝑓 ∈ S
(
R𝑑

)
,

(𝑋∗𝑋 𝑓 )∧ (𝜉) = |𝜉 |−12 �̂� (𝜉), (4.3.5)

that is, 𝑋∗𝑋 = 𝐼 .

Proof: We compute, again with the help of (3.3.8),

𝐼 𝑓 (𝑥) = 1
(2𝜋)𝑑

∫
R𝑑
|𝜉 |−12 𝑓 (𝜉)𝑒𝑖𝜉𝑇𝑥 𝑑𝜉

=
1
(2𝜋)𝑑

1
|S𝑑−2 |

∫
S𝑑−1

∫
𝑣⊥
|𝜂 |2 |𝜂 |−12 𝑓 (𝜂) 𝑒𝑖𝜂𝑇𝑥 𝑑𝜂𝑑𝑣

=
1
(2𝜋)𝑑

1
|S𝑑−2 |

∫
S𝑑−1

∫
𝑣⊥
(𝑋 𝑓 (𝑣, ·))∧ (𝜂) 𝑒𝑖𝜂𝑇𝑥 𝑑𝜂𝑑𝑣

=
1
2𝜋

1
|S𝑑−2 |

∫
S𝑑−1

𝑋 𝑓

(
𝑣,𝑉𝑉𝑇𝑥

)
𝑑𝑣 = 𝑋∗𝑋 𝑓 (𝑥),

which gives (4.3.5). □

This again allows us to conveniently compute the Fourier transform of 𝑋∗𝑔 for
some filter 𝑔.

9The consistency conditions (3.5.3) “only” server the purpose of ensuring that 𝑓 ∈ S (R𝑑), i.e.,
to prove smoothness and decay.

65



4 Signal Processing and the Filtered Backprojection

Theorem 4.3.6. If 𝑔 ∈ S
(
𝑇S𝑑−1

)
satisfies 𝑔(·, 𝑥) = 0 for |𝑥 |2 ≥ 𝐶, then

(𝑋∗𝑔)∧ (𝜉) = |𝜉 |−12 �̂�(𝑣,𝑉𝑉𝑇𝜉) 𝑣 ∈ S𝑑−1, 𝜉 ∈ R𝑑 \ {0}. (4.3.6)

Proof: Again we make use of the fact that 𝑔 = 𝑋 𝑓 for some 𝑓 : R𝑑 → R, see
Theorem 3.5.4, and so, for any 𝑣 ∈ S𝑑−1,

(𝑋∗𝑔)∧ (𝜉) = (𝑋∗𝑋 𝑓 )∧ (𝜉) = |𝜉 |−12 𝑓 (𝜉) = |𝜉 |−12 𝑓

(
𝑣𝑣𝑇𝜉 +𝑉𝑉𝑇𝜉

)
= |𝜉 |−12 (𝑋𝑣 𝑓 )∧(𝑉𝑉𝑇𝜉) = |𝜉 |

−1
2 �̂�(𝑣,𝑉𝑉𝑇𝜉).

as in (4.3.5). □

4.4 Radial Filters for the Radon Transform

In practice, one makes an even more fundamental simplification in terms of sym-
metry by requesting that 𝑔 is independent of 𝑣 and defines it as a radial function

𝑔 (𝑣, 𝑠) = 𝜙(𝑠), 𝑣 ∈ S𝑑 , 𝑠 ∈ R. (4.4.1)

Of course, in view of Theorem 4.3.1 we choose 𝑔 as an even radial function which
means that 𝜙 has to be an even function, i.e., 𝜙(𝑠) = 𝜙(−𝑠). Theorem 4.3.1,

𝐺 (𝜉) = (𝑅∗𝑔)∧ (𝜉) = |𝜉 |1−𝑑2 𝜙 ( |𝜉 |2) , 𝜉 ∈ R𝑑 ,

is also a radial function and according to Remark 4.3.4, 𝜙 should also vanish of
some order at the origin.

Our goal is the reconstruction of bandlimited functions as those are the ones
that are, according to Shannon, accessible from discrete samples10. Let us denote,
like in Definition 4.2.1 the compact support of the Fourier transform by Ω, then
the ideal filter for the reconstruction would be

(𝑅∗𝑔)∧ (𝑥) = �̂� (𝜉) = 𝜒Ω(𝜉) =
{
1, 𝜉 ∈ Ω,
0, 𝜉 ∉ Ω,

𝜉 ∈ R𝑑 ,

i.e., �̂� = | · |𝑑−1𝜒Ω, as then

(𝐺 ∗ 𝑓 )∧ = �̂� 𝑓 = 𝜒Ω 𝑓 = 𝑓

and therefore
𝐺 ∗ 𝑓 = (𝐺 ∗ 𝑓 )∧∨ = �̂� ∨ = 𝑓 .

The function �̂� is radial if Ω has radial symmetry, and we can choose Ω = 𝐵𝜔 (0) =
𝜔B𝑑 as the ball with radius 𝜔. For a little more liberty in the choice of the filter,
we rely on a univariate transfer function 𝜓 with the property

𝜓(𝜉) ∼ 1, |𝜉 | ≤ 1, 𝜓(𝜉) = 0, |𝜉 | > 1.

10But we only proved that bandlimited is a sufficient condition for reconstruction, we did not say
anything about the necessity.
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Figure 4.4.1: The radial sinc function, 𝐺 (𝑥) = sinc 𝜋 ( |𝑥 |2) plotted in 2D as an example of
a radial function. Later we will only show the univariate “distance” part of
the filters in the images.

Then we set

𝐺 (𝜉) := 𝜓
(
|𝜉 |2
𝜔

)
, i.e. �̂�(𝜉) =: �̂� ( |𝜉 |2) = |𝜉 |𝑑−12 𝜓

(
|𝜉 |2
𝜔

)
, (4.4.2)

and now the impulse response 𝑔 also depends on the dimension 𝑑. Note that this
construction automatically deals with the problem mentioned in Remark 4.3.4.

In practice, the band one wants to reconstruct is of fundamental importance:
cutting off too many high frequencies results in a loss of details, keeping to many
high frequencies results in noise. And dropping low frequency content can lead to
a more or less constant shift in the values that affects the contrast.

For a first example, we keep it simple and choose 𝜔 = 1 and the ideal lowpass
𝜓 = 𝜒Ω for Ω = B𝑑 . For 𝑑 = 2 this leads to

𝐺 = sinc |𝑥 |2 and �̂�(𝜉) =
(
(·)𝜒[−1,1]

)
( |𝜉 |2) = 𝜙 ( |𝜉 |2) , 𝜙 = | · | 𝜒[−1,1] ,

see Fig.4.4.1. According to (Natterer and Wübbeling, 2001), this filter was pro-
posed by Ramachandran und Lakshminarayanan which was abbreviated to the
more catchy and easier to remember name of Ram-Lak filter.

The function 𝜌(𝑠) can now be computed from its Fourier transform

�̂�(𝜎) = |𝜎 |𝑑−1 𝜒[−1,1] (𝜎), 𝜎 ∈ R,
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where for 𝑑 = 2 we obtain the classical Ram-Lak filter as

𝜌(𝑠) =
1
2𝜋

∫
R
|𝜎 | 𝜒[−1,1] (𝜎) 𝑒𝑖𝜎𝑠 𝑑𝜎 =

1
2𝜋

∫ 1

−1
|𝜎 |𝑒𝑖𝜎𝑠 𝑑𝜎

= −
∫ 0

−1
𝜎𝑒𝑖𝜎𝑠 𝑑𝜎 +

∫ 1

0
𝜎𝑒𝑖𝜎𝑠 𝑑𝜎

= −
[
𝜎
𝑒𝑖𝜎𝑠

𝑖𝑠

]0
−1
+

∫ 0

−1

1
𝑖𝑠
𝑒𝑖𝜎𝑠 𝑑𝜎 +

[
𝜎
𝑒𝑖𝜎𝑠

𝑖𝑠

]1
0
−

∫ 1

0

1
𝑖𝑠
𝑒𝑖𝜎𝑠 𝑑𝜎

=
𝑒𝑖𝑠 − 𝑒−𝑖𝑠

𝑖𝑠︸     ︷︷     ︸
=2𝑠−1 sin 𝑠

+
[
1
−𝑠2

𝑒𝑖𝜎𝑠
]0
−1
−

[
1
−𝑠2

𝑒𝑖𝜎𝑠
]1
0
= 2 sinc 𝑠 − 𝑒

𝑖𝑠 − 2 + 𝑒−𝑖𝑠
−𝑠2

= 2sinc 𝑠 −

(
𝑒𝑖𝑠/2 − 𝑒−𝑖𝑠/2

)2
(2𝑖𝑠/2)2

= 2sinc 𝑠 −
(
sinc

𝑠

2

)2
.

The sharp edges of Ram-Lak in the Fourier domain, i.e., its low order of smooth-
ness, lead to a bad decay rate of 𝜌 itsel, cf. Theorem 2.3.8, and lead to artifacts
in practical applications, see (Olafsson and Quinto, 2006). These artifacts can be
reduced by using the filter based ony 𝜙 = 𝜒[−1,1] cos 𝜋·2 which is globally continuous
and whose associated 𝜌 decays much faster, see Fig. 4.4.2. In 1974, Shepp and
Logan proposed to use 𝜙 = 𝜒[−1,1] sinc 𝜋·

2 which switches the role of Fourier trans-
form and function since the sinc function is the (inverse) Fourier transform of the
characteristic function.

Exercise 4.4.1 Compute the function 𝜌 for 𝜙 = 𝜒[−1,1] cos 𝜋·2 . ♦

Unfortunately, an explicit computation of 𝑔 is not easy already in the case of the
Ram-Lak filter since

𝑔(𝑥) =
1
(2𝜋)𝑑

∫
R𝑑
�̂�(𝜉) 𝑒𝑖𝜉𝑇𝑥 𝑑𝜉 = 1

(2𝜋)𝑑

∫
R𝑑
|𝜉 |𝑑−12 𝜒[−1,1] ( |𝜉 |2) 𝑒𝑖𝜉

𝑇𝑥 𝑑𝜉

=
1

2(2𝜋)𝑑

∫
R

∫
S𝑑−1
|𝜎 |𝑑−1𝜒[−1,1] (𝜎) 𝑒𝑖𝜎𝑣

𝑇𝑥 |𝜎 |𝑑−1 𝑑𝑣𝑑𝜎

=
1

2(2𝜋)𝑑

∫
R

(∫
S𝑑−1

𝑒𝑖𝜎𝑣
𝑇𝑥 𝑑𝑣

)
︸               ︷︷               ︸

=:𝐽0 (𝜎 |𝑥 |2)

|𝜎 |2𝑑−2𝜒[−1,1] (𝜎) 𝑑𝜎,

where 𝐽0 is a so-called Bessel function11; these very particular special functions ask
for a separate treatment which will be provided in the next section.

11Friedrich Wilhelm Bessel, 1784–1846, German astronomer, contemporary and friend of Gauss.
Being director of the Prussian Observatory at Königsberg, he developed these functions in his
studies of planetary orbits.
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Figure 4.4.2: The functions �̂� (upper row) and 𝜌 (lower row) for Ram-Lak (left) and the cos-
filter (right). As suggestet by the theory, the cos-filter decays much faster.

4.5 Bessel Functions

When computing the Fourier transform of a radial function, i.e., of a function of
the form 𝑓 (𝑥) = 𝜙 ( |𝑥 |2), some strange effect happens, namely

𝑓 (𝜉) =

∫
R𝑑
𝑓 (𝑥)𝑒−𝑖𝜉𝑇𝑥 𝑑𝑥 = 1

2

∫
R

∫
S𝑑−1

𝑓 (𝜎𝑣) 𝑒𝑖𝜎𝜉𝑇𝑣 |𝜎 |𝑑−1 𝑑𝑣 𝑑𝜎

=
1
2

∫
R

(∫
S𝑑−1

𝑒−𝑖𝜎𝜉
𝑇𝑣 𝑑𝑣

)
𝜙(𝜎) |𝜎 |𝑑−1 𝑑𝜎,

so that the integral

Ψ(𝜎, 𝜉) =
∫
S𝑑−1

𝑒−𝑖𝜎𝜉
𝑇𝑣 𝑑𝑣 (4.5.1)

can be expected to have a special meaning. We can expect Ψ to be a radial function
with respect to 𝜉 since we can write the inner product as

𝜉𝑇𝑣 = |𝜉 |2 |𝑣 |2︸︷︷︸
=1

sin 𝜃 = |𝜉 |2 sin 𝜃, 𝜃 ∈ [−𝜋, 𝜋],

and if 𝑣 varies over S𝑑−1, the integral runs over all values of 𝜃, independently of
𝜉; this is simply the symmetry of the unit sphere. For example, in 𝑑 = 2 we can
paramaterize 𝑣 as

𝑣 =
𝜉⊥ cos 𝜃 + 𝜉 sin 𝜃

∥𝜉∥ ,
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and obtain that

Ψ(𝜎, 𝜉) = Ψ (𝜎, |𝜉 |2) =
∫ 𝜋

−𝜋
𝑒−𝑖𝜎 |𝜉 |2 sin 𝜃 𝑑𝜃 = 𝐽 (𝜎 |𝜉 |2) = 𝐽 (𝜎 |𝜉 |2)

for

𝐽 (𝑥) :=
∫ 𝜋

−𝜋
𝑒−𝑖𝑥 sin 𝜃 𝑑𝜃, 𝑥 ∈ R. (4.5.2)

The general case is obtained by writing 𝑣 as

𝑣 =
𝜉 sin 𝑡 + 𝑤 cos 𝜃

|𝜉 |2
, 𝑤 ∈ S𝑑−1 ∩ 𝜉⊥ =

{
𝑦 ∈ S𝑑−1 : 𝜉𝑇 𝑦 = 0

}
∼ S𝑑−2,

and decomposing the integral into∫
S𝑑−1

𝑒−𝑖𝜉
𝑇𝑣 𝑑𝑣 =

∫
T

∫
S𝑑−2

𝑒−𝑖 |𝜉 |
−1
2 𝜉𝑇 (𝜉 sin 𝜃+𝑤 cos 𝜃) 𝑑𝑤 𝑑𝜃

=

(∫
S𝑑−2

𝑑𝑤

)
︸       ︷︷       ︸

=|S𝑑−2 |

∫
T
𝑒−𝑖 |𝜉 |2 sin 𝜃 𝑑𝜃 =

��S𝑑−2�� 𝐽 ( |𝜉 |2) .
with the function 𝐽 of (4.5.2). In summary, the spherical integral∫

S𝑑−1
𝑒−𝑖𝜉

𝑇𝑣 𝑑𝑣

yields always the Bessel function 𝐽 as a radial function, the ambient dimension 𝑑
only affects this via the constant

��S𝑑−2�� that we already know from the transforma-
tion (3.3.8). Thus, a radial function 𝑓 = 𝜙 ( |𝜉 |2) always has the Fourier transform

𝑓 (𝜉) =
��S𝑑−2�� ∫

R
𝜙(𝜎) 𝐽 (𝜎 |𝜉 |2) |𝜎 |𝑑−1 𝑑𝜎. (4.5.3)

The operation in (4.5.3) is an integral transform for 𝜙 in which the role of the
exponential is taken by the Bessel function 𝐽; lots of formulas for Bessel functions
and different ways of representing them can be found in (Abramowitz and Stegun,
1972).

What can we say about the function 𝐽? It is real valued since∫ 𝜋

−𝜋
𝑒−𝑖𝑥 sin 𝜃𝑑𝜃 =

∫ 0

−𝜋
𝑒−𝑖𝑥 sin 𝜃𝑑𝜃 +

∫ 𝜋

0
𝑒−𝑖𝑥 sin 𝜃𝑑𝜃 =

∫ 𝜋

0
𝑒−𝑖𝑥 sin 𝜃 + 𝑒𝑖𝑥 sin 𝜃 𝑑𝜃

= 2
∫ 𝜋

0
cos (𝑥 sin 𝜃) 𝑑𝜃 = 2

∫ 𝜋

0
cos (𝑥 cos(𝜃 − 𝜋)) 𝑑𝜃

= 2
∫ 0

−𝜋
cos (𝑥 cos 𝜃) 𝑑𝜃 = 2

∫ 𝜋

0
cos (𝑥 cos 𝜃) 𝑑𝜃.

and this formula also suggests a proper normalization via 𝐽 (0) = 1.

Definition 4.5.1. The Bessel function of the first kind12 is defined as

𝐽0(𝑥) =
1
𝜋

∫ 𝜋

0
cos (𝑥 cos 𝜃) 𝑑𝜃, 𝑥 ∈ R+. (4.5.4)
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Figure 4.5.1: The Bessel function 𝐽0 in the interval [0, 50], looks like a sine-like damped
oscillation.

𝐽0 is an even function and therefore can be easily extended to 𝑥 < 0 although
it suffices to consider 𝐽0 on R+. Some important basic propeties of the Bessel
function, taken from (Jackson, 1941), are as follows.

Theorem 4.5.2 (Properties of the Bessel function). The Bessel function 𝐽0 from (4.5.4)

1. satisfied the second order differential equation

𝑓 ′′(𝑥) + 1
𝑥
𝑓 ′(𝑥) + 𝑓 (𝑥) = 0, 𝑥 ∈ R. (4.5.5)

2. The zeros 𝜆1 < 𝜆2 < . . . of 𝐽0 fulfill(
𝑘 − 1

2

)
𝜋 < 𝜆𝑘 <

(
𝑘 + 1

2

)
𝜋, 𝑘 ∈ N. (4.5.6)

3. For any two zeros 𝜆 ≠ 𝜇 of 𝐽0 one has∫ 1

0
𝑥 𝐽0(𝜆𝑥) 𝐽0(𝜇𝑥) 𝑑𝑥 = 0; (4.5.7)

the functions 𝐽0(𝜆 𝑗 ·), form an orthonormal system of functions.

Proof: For (4.5.5) we take derivatives of the integrand,

𝑑

𝑑𝑥
cos (𝑥 cos 𝜃) = − sin (𝑥 cos 𝜃) cos 𝜃

as well as
𝑑2

𝑑𝑥2
cos (𝑥 cos 𝜃) = − cos (𝑥 cos 𝜃) cos2 𝜃

12There is also a second kind and the parameter can be varied as 𝐽𝛼, 𝛼 ∈ R.
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and obtain with a little bit of partial integration that

𝐽′′0 (𝑥) +
1
𝑥
𝐽′0(𝑥) + 𝐽0(𝑥)

=
1
𝜋

∫ 𝜋

0

(
1 − cos2 𝜃

)
cos (𝑥 cos 𝜃) − 1

𝜋 𝑥

∫ 𝜋

0
cos 𝜃 sin (𝑥 cos 𝜃) 𝑑𝜃

=
1
𝜋

∫ 𝜋

0

(
1 − cos2 𝜃

)
cos (𝑥 cos 𝜃)

+ 1
𝜋𝑥
[sin 𝜃 sin (𝑥 cos 𝜃)]𝜋0︸                     ︷︷                     ︸

=0

− 1
𝜋𝑥

∫ 𝜋

0
𝑥 sin2 𝜃 cos (𝑥 cos 𝜃) 𝑑𝜃

=
1
𝜋

∫ 𝜋

0

(
1 − cos2 𝜃 − sin2 𝜃

)
︸                    ︷︷                    ︸

=0

cos (𝑥 cos 𝜃) = 0.

Next we use the transform of variable 𝜃 → 𝜋 − 𝜃 in∫ 𝜋/2

0
cos (𝑥 cos 𝜃) 𝑑𝜃 =

∫ 𝜋

𝜋/2
cos

(
𝑥 cos(𝜋 − 𝜃)︸       ︷︷       ︸
=cos(−𝜃)=cos 𝜃

)
𝑑𝜃 =

∫ 𝜋

𝜋/2
cos (𝑥 cos 𝜃) 𝑑𝜃,

which yields, together with (4.5.4), the alternative formula

𝐽0(𝑥) =
2
𝜋

∫ 𝜋/2

0
cos (𝑥 cos 𝜃) 𝑑𝜃. (4.5.8)

Another transform 𝜏 = 𝑥 cos 𝜃 with

𝑑𝜏 =
𝑑𝜏

𝑑𝜃
𝑑𝜃 = −𝑥 sin 𝜃 𝑑𝜃 = −

√︁
𝑥2 − 𝑥2 cos2 𝜃 𝑑𝜃 = −

√︁
𝑥2 − 𝜏2 𝑑𝜃,

yields

𝐽0(𝑥) =
2
𝜋

∫ 𝑥

0

cos 𝜏
√
𝑥2 − 𝜏2

𝑑𝜏. (4.5.9)

The denominator can be written as
√︁
(𝑥 + 𝜏) (𝑥 − 𝜏) which behaves for 𝜏 → 𝑥 as 𝑡

1
2

for 𝑡 → 0 and thus constitutes an integrable singularity. If 𝑥 =
(
𝑘 + 1

2

)
𝜋, 𝑘 ∈ N, the

integrand has its zeros at
(
𝑗 + 1

2

)
𝜋, 𝑗 = 0, . . . , 𝑘 , which is clear for 𝑗 < 𝑘 and an

application of the l’Hospital rule for 𝑗 = 𝑘 . Now we fix 𝑘 ∈ N0, set 𝑥 =

(
𝑘 + 1

2

)
𝜋

and define

𝑐 =

∫ 𝜋/2

0

cos 𝜏
√
𝑥2 − 𝜏2

𝑑𝜏,

as well as

𝑑 𝑗 =

�����∫𝑗𝜋+[− 𝜋
2 ,

𝜋
2 ]

cos 𝜏
√
𝑥2 − 𝜏2

𝑑𝜏

����� , 𝑗 = 1, . . . , 𝑘 . (4.5.10)
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We have that 0 < 𝑐 < 𝑑1 < · · · < 𝑑𝑘 since the denominator in (4.5.10) decreases
with increasing 𝑗 by the definition of 𝑥. Moreover,

𝜋

2
𝐽0 (𝑥)

=
𝜋

2
𝐽0

((
𝑘 + 1

2

)
𝜋

)
=

∫ 𝜋/2

0

cos 𝜏
√
𝑥2 − 𝜏2

𝑑𝜏 +
𝑘∑︁
𝑗=1

∫
𝑗+[−𝜋/2,𝜋/2]

cos 𝜏
√
𝑥2 − 𝜏2

𝑑𝜏

= 𝑐 +
𝑘∑︁
𝑗=1

(−1) 𝑗𝑑 𝑗 =


𝑐 +

𝑚∑︁
𝑗=1

(
𝑑2 𝑗 − 𝑑2 𝑗−1

)
, 𝑘 = 2𝑚,

(𝑐 − 𝑑1) +
𝑚∑︁
𝑗=1

(
𝑑2 𝑗 − 𝑑2 𝑗+1

)
, 𝑘 = 2𝑚 + 1,

and since all summands are positive for even 𝑘 and negative for odd 𝑘 , the sign of

𝐽0

((
𝑘 + 1

2

)
𝜋

)
behaves like (−1)𝑘 , 𝑘 ∈ N0. Since the Bessel function is continuous,

this eventually yields (4.5.6).
The orthogonality (4.5.7) follows from the differential equation13 (4.5.5). Indeed,∫ 1

0
𝑥𝐽0 (𝜆𝑥) 𝐽0 (𝜇𝑥) 𝑑𝑥 = −

∫ 1

0
𝑥

(
𝐽′′0 (𝜆𝑥) +

1
𝜆𝑥
𝐽′0(𝜆𝑥)

)
𝐽0 (𝜇𝑥) 𝑑𝑥

= −
∫ 1

0
𝐽′′0 (𝜆𝑥) 𝑥𝐽0 (𝜇𝑥) 𝑑𝑥 −

1
𝜆

∫ 1

0
𝐽′0(𝜆𝑥) 𝐽0(𝜇𝑥) 𝑑𝑥

= −
[
1
𝜆
𝐽′0(𝜆𝑥)𝑥𝐽0 (𝜇𝑥)

]1
0︸                    ︷︷                    ︸

=0

+1
𝜆

∫ 1

0
𝐽′0(𝜆𝑥)𝐽0(𝜇𝑥) 𝑑𝑥

+1
𝜆

∫ 1

0
𝐽′0(𝜆𝑥) 𝑥𝐽

′
0(𝜇𝑥) 𝑑𝑥 −

1
𝜆

∫ 1

0
𝐽′0(𝜆𝑥) 𝐽0(𝜇𝑥) 𝑑𝑥

=
1
𝜆

∫ 1

0
𝐽′0(𝜆𝑥) 𝑥𝐽

′
0(𝜇𝑥) 𝑑𝑥.

The same computation can be done by substituting the differential equation for
𝐽0(𝜇𝑥) which analogously yields∫ 1

0
𝑥𝐽0 (𝜆𝑥) 𝐽0 (𝜇𝑥) 𝑑𝑥 =

1
𝜇

∫ 1

0
𝐽′0(𝜆𝑥) 𝑥𝐽

′
0(𝜇𝑥) 𝑑𝑥,

hence also

(𝜆 − 𝜇)
∫ 1

0
𝑥𝐽0 (𝜆𝑥) 𝐽0 (𝜇𝑥) 𝑑𝑥

=

∫ 1

0
𝐽′0(𝜆𝑥) 𝑥𝐽

′
0(𝜇𝑥) 𝑑𝑥 −

∫ 1

0
𝐽′0(𝜆𝑥) 𝑥𝐽

′
0(𝜇𝑥) 𝑑𝑥 = 0,

13This is a fairly standard trick that also finds its application in the world of orthogonal polynomials,
cf. (Szegö, 1939).
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and this proves orthogonality of Bessel functions with different zeros 𝜆, 𝜇. And∫ 1

0
𝑥 𝐽20 (𝜆𝑥) 𝑑𝑥 > 0

is obvious. □

With the Bessel functions we can compute decompositions into orthogonal series
just like the Fourier series do with the exponentials 𝑒𝑖𝑘 ·; this is done by expanding
𝑓 into

𝑓 ∼
∑︁
𝑘∈N

𝑓𝑘 𝐽0 (𝜆𝑘 ·) , 𝑓𝑘 =

∫ 1

0
𝑥 𝑓 (𝑥) 𝐽0 (𝜆𝑘𝑥) 𝑑𝑥∫ 1

0
𝑥 𝐽20 (𝜆𝑘𝑥) 𝑑𝑥

which is a discrete Bessel transform.
An interesting aspect are the asymptotics of Bessel functions, i.e., the question how

𝐽0(𝑥) behaves for 𝑥 →∞. This is neither trivial nor simple. According to (Jackson,
1941), one method for such results is to show that 𝑓 (𝑥) =

√
𝑥 𝐽0(𝑥) satisfies the

differential equation

𝑓 ′′(𝑥) +
(
1 − 1

4 𝑥2

)
𝑓 (𝑥) = 0,

which yields asymptotics of the form

𝐽0(𝑥) = 𝛼
sin(𝑥 + 𝜑)
√
𝑥

+ 𝑟 (𝑥)
𝑥3/2

, sup
𝑥∈R+
|𝑟 (𝑥) | < ∞;

Jackson refers to (Courant and Hilbert, 1931) there. A behavior like 𝑥−1/2 is not
great, but at least the function decays at a defined rate, other than for example
sine and cosine functions.

The index “0” in 𝐽0 suggests that there may be other Bessel functions of order
𝑛 ∈ N0 and, yes, those exist, satisfy the differential equation

𝑓 ′′(𝑥) + 1
𝑥
𝑓 ′(𝑥) +

(
1 − 𝑛

2

𝑥2

)
𝑓 (𝑥) = 0,

and can be written as

𝐽𝑛 (𝑥) =
1
𝜋

∫ 𝜋

0
cos (𝑥 cos 𝜃 − 𝑛 (𝜋 − 𝜃)) 𝑑𝜃, (4.5.11)

or, with proper normalization,

𝐽𝑛 (𝑥) =
1
2𝜋

∫ 𝜋

−𝜋
𝑒𝑖𝑥 sin 𝜃−𝑖𝑛𝜃 𝑑𝜃. (4.5.12)

geschrieben werden. They have properties like the ones we described in Theo-
rem 4.5.2 for order 0, cf. (Benson, 2007; Jackson, 1941).

A nice application of Bessel functions is to solve the euqation

𝜙 = sin (𝜔𝑡 + 𝑥𝜙) , (4.5.13)
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for 𝜙, which has the explicit solution

𝜙 =

∞∑︁
𝑛=1

2𝐽𝑛 (𝑛𝑥)
𝑛𝑥

sin 𝑛𝜔𝑡. (4.5.14)

And (4.5.13) is no artificial problem, the equation apppears naturally in plane-
tary motions but also with frequency modulated sythesizers, see (Benson, 2007),
where one can find quite some material about the role of Bessel functions in music
synthesis.

4.6 Fourier Reconstruction and the FFT

The conceptionally simplest way to compute an inverse Radon transform, even
simpler than filtered backprojection, is to just use the Fourier Slice Theorem, stated
as Corollary 3.2.5. Recall that it says that

(𝑅 𝑓 (𝑣, ·))∧ (𝜎) = 𝑓 (𝜎𝑣), (4.6.1)

hence, if 𝑦 ∈ S (S𝑑−1 ×R) is the measurement function, then we can reconstruct 𝑓
from its Fourier transform

𝑓 (𝜎𝑣) = 1
2

(
(𝑦(𝑣, ·))∧ (𝜎) + (𝑦(−𝑣, ·))∧ (−𝜎)

)
; (4.6.2)

here, we symmetrize the measurement into an even function14 which just repro-
duces 𝑦 if it has the proper structure. What we get is, no surprise,

𝑓 (𝑥) =
1
(2𝜋)𝑑

∫
R𝑑
𝑒𝑖𝑥

𝑇𝜉 𝑓 (𝜉) 𝑑𝜉

=
1

2(2𝜋)𝑑

∫
R

∫
S𝑑−1

𝑒𝑖𝜎𝑣
𝑇𝑥 |𝜎 |𝑑−1

(
(𝑦(𝑣, ·))∧ (𝜎) + (𝑦(−𝑣, ·))∧ (−𝜎)

)
𝑑𝑣𝑑𝜎.

But: how shall we compute this numerically as there are two integrals involved and
numerical integration is a topic by its own, especially in several variables.

This brings us to the question how the Fourier transform is implemented numer-
ically, and here we usually rely on the Fast Fourier Transform, also known as FFT.
To that end, it is reasonable to first define what the fast Fourier transform does
fast.

Definition 4.6.1 (DFT). 1. For 𝑛 ∈ N we use Z𝑛 := Z/𝑛Z to denote the integers
modulo 𝑛 which we usually represent15 as {0, . . . , 𝑛 − 1}.

2. For a vector
𝑐 ∈ ℓ(Z𝑑𝑛) :=

{
𝑐 : Z𝑑𝑛 → C

}
we define the discrete Fourier transform of DFT of 𝑐 as

𝑐 := ©«
∑︁
𝛽∈Z𝑑𝑛

𝑐(𝛽)𝑒2𝜋𝑖𝛼𝑇 𝛽/𝑛 : 𝛼 ∈ Z𝑑𝑛
ª®¬ . (4.6.3)

14Nice exercise: any function 𝑓 : R→ R can be written as the sum of an odd and an even function.
And: what is the problem with odd functions in several variables?

15In the same way as the torus R/2𝜋Z is represented by [0, 2𝜋] or [−𝜋, 𝜋].
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Remark 4.6.2. 1. The DFT maps ℓ(Z𝑑𝑛) to itself and depends on the dimension
of the vector 𝑐 we apply it to.

2. The intuition of the DFT is that we first form the trigonometric polynomial

𝑓 (𝜉) =
∑︁
𝛽∈Z𝑑𝑛

𝑐(𝛽)𝑒𝑖𝛽𝑇𝜉

and the sample this function uniformly over the torus at the points 2𝜋 𝛼
𝑛

for
𝛼 ∈ Z𝑑𝑛 .

3. This is by far not the most general way to define a DFT. One simple extension
which is relevant in practice is to consider a different length in each coordi-
nate, i.e., to consider Z𝜈 = Z𝜈1 × · · · × Z𝜈𝑑 for some 𝜈 ∈ N𝑑 . The situation
from (4.6.3) is the special case 𝜈 = (𝑛, . . . , 𝑛). Since the extension is pretty
straightforward but notationally intricate, we will stick with the “uniform”
case here.

The DFT is closely related to the periodic convolution

𝑐 ∗ 𝑑 := 𝑐 ∗𝑛 𝑑 :=
∑︁
𝛼∈Z𝑑𝑛

𝑐(· − 𝛼) 𝑑 (𝛼) ∈ ℓ(Z𝑑𝑛), 𝑐, 𝑑 ∈ ℓ(Z𝑑𝑛), (4.6.4)

where the subtraction in the argument has to be performed modulo Z𝑑𝑛 . It is straigh-
forward to show that

𝑐 𝑑 = (𝑐 ∗𝑛 𝑑)∧ (4.6.5)

holds for the DFT.

Exercise 4.6.1 Prove (4.6.5). ♦

The DFT can be seen as a matrix-vector multiplication

𝑐 = 𝑉𝑛𝑐, 𝑉𝑛 := 𝑉 𝑑𝑛 :=
(
𝑒2𝜋𝑖𝛼

𝑇 𝛽/𝑛 :
𝛼 ∈ Z𝑑𝑛
𝛽 ∈ Z𝑑𝑛

)
, (4.6.6)

with the Fourier matrix 𝑉𝑛.

Remark 4.6.3. Note that in (4.6.6) we index the matrix with multiindices, not with
“normal” linear indices. This reflects the structure of such a matrix but in order
to use, for example, standard matrix software, one would have to impose a total
ordering on Z𝑑𝑛 . This could be a lexicographical ordering

𝛼 ≺𝑙 𝛽 iff 𝛼 𝑗 = 𝛽 𝑗 , 𝑗 < 𝑘, 𝛼𝑘 = 𝛽𝑘 ,

or a graded lexicographical ordering

𝛼 ≺𝑙 𝛽 iff |𝛼 | < |𝛽 | or |𝛼 | = |𝛽 |, 𝛼 ≺𝑙 𝛽.

These “real” matrices, however, will not show a visible structure any more
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Exercise 4.6.2 Compute the lexicographically and graded lexicographically or-
dered Fourier matrices for 𝑑 = 3 and 𝑛 = 3. ♦

The Fourier matrix has the interesting property that its entries

(𝑉𝑛)𝛼,𝛽 = 𝑒2𝜋𝑖𝛼
𝑇 𝛽/𝑛 = 𝑒2𝜋𝑖(𝛼1𝛽1+···+𝛼𝑑𝛽𝑑)/𝑛 =

𝑑∏
𝑗=1

𝑒2𝜋𝑖𝛼 𝑗 𝛽 𝑗/𝑛, 𝛼, 𝛽 ∈ Z𝑑𝑛 , (4.6.7)

are the products of the entries of univariate Fourier matrices. Such matrices are
known as a particular structure that plays a fundamental role in (numerical) Linear
Algebra, cf. (Horn and Johnson, 1985; Marcus and Minc, 1969; Van Loan, 2000;
Van Loan, 2009).

Definition 4.6.4. The Kronecker product 𝐴 ⊗ 𝐵 of two matrices 𝐴 ∈ C𝑚×𝑛 and
𝐵 ∈ C𝑚′×𝑛′ is the matrix

𝐴 ⊗ 𝐵 =
©«
𝑎11𝐵 . . . 𝑎1𝑛𝐵
...

. . .
...

𝑎𝑚1𝐵 . . . 𝑎𝑚𝑛𝐵

ª®®¬ ∈ R𝑚𝑚
′×𝑛𝑛′ . (4.6.8)

It is immediate from the definition (4.6.8) that the components of 𝐴 × 𝐵 run
exactly over all products 𝑎 𝑗 𝑘𝑏 𝑗 ′𝑘 ′ , 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑗 ′ ≤ 𝑚′, 1 ≤ 𝑘′ ≤ 𝑛′,
hence, if we write(

𝑐𝛼,𝛽 :
𝛼 ∈ Z𝑚 × Z𝑚′
𝛽 ∈ Z𝑛 × Z𝑛′

)
= 𝐶 := 𝐴 ⊗ 𝐵 =

(
𝑎𝛼1,𝛽1𝑏𝛼2,𝛽2 :

𝛼 ∈ Z𝑚 × Z𝑚′
𝛽 ∈ Z𝑛 × Z𝑛′

)
, (4.6.9)

then we immediately see that the multiindex notation reveals the structure of the
Kronecker product as a proper natural ordering. By induction, this formula is
easily to higher order Kronecker products.

Lemma 4.6.5. For 𝐴𝑝 =
(
𝑎
𝑝

𝑗 𝑘

)
∈ R𝑚 𝑗×𝑛 𝑗 , 𝑝 = 1, . . . , 𝑞, the product can be indexed such

that

𝐴1 ⊗ · · · ⊗ 𝐴𝑞 =
(
𝑎𝛼,𝛽 :

𝛼 ∈ Z𝑚1 × · · · × Z𝑚𝑞

𝛽 ∈ Z𝑛1 × · · · × Z𝑛𝑞

)
, 𝑎𝛼,𝛽 =

𝑞∏
𝑝=1

𝑎
𝑝

𝛼𝑝 ,𝛽𝑝
. (4.6.10)

Proof: For 𝑞 = 2, the claim is (4.6.9), while otherwise we write

𝑞+1⊗
𝑝=1

𝐴𝑝 = 𝐴1 ⊗ ©«
𝑞+1⊗
𝑝=2

𝐴𝑝
ª®¬

=

©«
𝑎111

⊗𝑞+1
𝑝=2 𝐴𝑝 . . . 𝑎11,𝑛1

⊗𝑞+1
𝑝=2 𝐴𝑝

...
. . .

...

𝑎1
𝑚1,1

⊗𝑞+1
𝑝=2 𝐴𝑝 . . . 𝑎1𝑚1,𝑛1

⊗𝑞+1
𝑝=2 𝐴𝑝

ª®®®¬
and since, by the induction hypothesis,

𝑎1𝑗 𝑘

𝑞+1⊗
𝑝=2

𝐴𝑝 =
©«𝑎1𝑗 𝑘

𝑞+1∏
𝑝=2

𝑎
𝑝

𝛼𝑝 ,𝛽𝑝
:
𝛼 ∈ Z𝑚2 × · · · × Z𝑚𝑞+1
𝛽 ∈ Z𝑛2 × · · · × Z𝑛𝑞+1

ª®¬ ,
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we can simply set16

𝑎𝛼,𝛽 = 𝑎
1
𝛼1,𝛽1

©«
𝑞+1⊗
𝑝=2

𝐴𝑝
ª®¬(𝛼2,...,𝛼𝑞+1),(𝛽1,...,𝛽𝑞+1) = 𝑎1𝛼1,𝛽1

𝑞+1∏
𝑝=2

𝑎
𝑝

𝛼𝑝 ,𝛽𝑝
,

𝛼 ∈ Z𝑚1 × · · · × Z𝑚𝑞+1 ,

𝛽 ∈ Z𝑛1 × · · · × Z𝑛𝑞+1 ,

to advance the induction hypothesis. □

Now, (4.6.7) and Lemma 4.6.5 tell us that Fourier matrices have a simple struc-
ture.

Corollary 4.6.6. The Fourier matrix in 𝑑 variables is a Kronecker product of 𝑑 univariate
Fourier matrices:

𝑉 𝑑𝑛 = 𝑉1
𝑛 ⊗ · · · ⊗ 𝑉1

𝑛︸           ︷︷           ︸
𝑑

. (4.6.11)

Remark 4.6.7. If we would work with different 𝑛 in different dimensions, i.e.,
𝑐 ∈ ℓ

(
Z𝑛1 × · · ·Z𝑛𝑑

)
, then the DFT is given by the matrix

𝑉 𝑑𝑛 =

𝑑⊗
𝑗=1

𝑉1
𝑛 𝑗
,

and only the bookkeeping becomes a bit more intricate.

Finally, also the inverse of a Kronecker product is simple.

Lemma 4.6.8. If 𝐴1, . . . , 𝐴𝑞 are nonsingular, then so is 𝐴1 ⊗ · · · ⊗ 𝐴𝑞 and

©«
𝑞⊗
𝑝=1

𝐴𝑝
ª®¬
−1

=

𝑞⊗
𝑝=1

𝐴−1𝑝 . (4.6.12)

Proof: Again we start with 𝑞 = 2, i.e.,

(𝐴 ⊗ 𝐵)
(
𝐴−1 ⊗ 𝐵−1

)
=

©«
𝐴 𝑏11 . . . 𝐴 𝑏1,𝑛′

...
. . .

...

𝐴 𝑏𝑚′,1 . . . 𝐴 𝑏𝑚′,𝑛′

ª®®¬
©«
𝐴−1 𝑏−111 . . . 𝐴 𝑏−11,𝑛′

...
. . .

...

𝐴 𝑏−1
𝑚′,1 . . . 𝐴 𝑏−1

𝑚′,𝑛′

ª®®¬
=

(
𝑛′∑︁
𝑟=1

𝐴𝐴−1𝑏 𝑗𝑟𝑏
−1
𝑟𝑘 :

𝑗 = 1, . . . , 𝑚′

𝑘 = 1, . . . , 𝑛′

)
=

(
𝐼 𝛿 𝑗 𝑘 :

𝑗 = 1, . . . , 𝑚′

𝑘 = 1, . . . , 𝑛′

)
= 𝐼 ⊗ 𝐼 = 𝐼,

and use induction for the general case. □

Now we have all tools to show that the DFT is invertible.

16To be honest: this proof is not mathematics but bookkeeping, but that is worth the while.
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Proposition 4.6.9. Up to normalization, the Fourier matrix is unitary17, i.e.,

𝑉−1𝑛 =
1
𝑛𝑑
𝑉𝐻𝑛 . (4.6.13)

Proof: By Corollary 4.6.6, Lemma 4.6.8 and Exercise 4.6.3, it suffices to compute
the inverse of the univariate DFT 𝑉1

𝑛 . Denoting by

𝑊𝑛 :=
1
𝑛
(𝑉1
𝑛 )𝐻 =

1
𝑛

[
𝑒−2𝜋𝑖 𝑗 𝑘/𝑛 : 𝑗 , 𝑘 ∈ Z𝑛

]
=:

1
𝑛

[
𝜔− 𝑗 𝑘 : 𝑗 , 𝑘 ∈ Z𝑛

]
,

with 𝜔 := 𝑒2𝜋𝑖/𝑛, we observe that

(𝑉𝑛𝑊𝑛) 𝑗 𝑘 =
1
𝑛

∑︁
ℓ∈Z𝑛

𝜔 𝑗ℓ 𝜔−ℓ𝑘 =
1
𝑛

∑︁
ℓ∈Z𝑛

(
𝜔 𝑗−𝑘

)ℓ
.

Hence, the diagonal elements are

(𝑉𝑛𝑊𝑛) 𝑗 𝑗 =
1
𝑛

∑︁
ℓ∈Z𝑛

(
𝜔0

)ℓ
=
𝑛

𝑛
= 1

while for the off-diagonal elements with 𝑗 ≠ 𝑘 we obtain

(𝑉𝑛𝑊𝑛) 𝑗 𝑘 =
1
𝑛

𝑛−1∑︁
ℓ=0

(
𝜔 𝑗−𝑘

)ℓ
=
1
𝑛

𝜔0 −
(
𝜔 𝑗−𝑘 )𝑛

1 − 𝜔 𝑗−𝑘 =
1
𝑛

1 − (𝜔𝑛) 𝑗−𝑘

1 − 𝜔 𝑗−𝑘 ;

since 𝜔𝑛 = 1 and −𝑛 < 𝑗 − 𝑘 < 𝑛, hence 𝜔 𝑗−𝑘 ≠ 1, we obtain that

(𝑉𝑛𝑊𝑛) 𝑗 𝑘 =
1
𝑛

1 − 1 𝑗−𝑘
1 − 𝜔 𝑗−𝑘 = 0

hence 𝑉𝑛𝑊𝑛 = 𝐼 and therefore 𝑊𝑛 = 𝑉
−1
𝑛 since 𝑉𝑛 is a square matrix18. □

Exercise 4.6.3 Show that (𝐴 ⊗ 𝐵)𝑇 = 𝐴𝑇 ⊗ 𝐵𝑇 and (𝐴 ⊗ 𝐵)𝐻 = 𝐴𝐻 ⊗ 𝐵𝐻 . ♦
The computation of a univariate DFT appears to have a complexity of 𝑂 (𝑛2),

since it is the multiplication of a matrix and a vector and the usual effort for this
process is 𝑂 (𝑛2). This can be improved and the idea behind the FFT is strikingly
simple: let us suppose that 𝑛 = 2𝑚 is an even number and remark that

𝜔2 = 𝑒2𝜋𝑖2/𝑛 = 𝑒2𝜋𝑖/𝑚 =: 𝜔𝑚, 𝜔𝑛 := 𝜔,

then we get for any 𝑐 ∈ ℓ (Z𝑛) and 𝑗 ∈ Z𝑛 that

𝑐𝑛 ( 𝑗) =
∑︁
𝑘∈Z𝑛

𝑐(𝑘) 𝜔 𝑗 𝑘 =
∑︁
𝑘∈Z𝑚

𝑐(2𝑘) 𝜔2 𝑗 𝑘 +
∑︁
𝑘∈Z𝑚

𝑐(2𝑘 + 1) 𝜔 𝑗 (2𝑘+1)

=
∑︁
𝑘∈Z𝑚

𝑐(2𝑘) 𝜔 𝑗 𝑘
𝑚 + 𝜔 𝑗

∑︁
𝑘∈Z𝑚

𝑐(2𝑘 + 1) 𝜔 𝑗 𝑘
𝑚

= (𝑐(2·))∧𝑚 ( 𝑗) + 𝜔 𝑗 (𝑐(2 · +1))∧𝑚 ( 𝑗),
17This is the complex version of orthogonality, namely 𝐴𝐴𝐻 = 𝐼 where 𝐴𝐻 = 𝐴

𝑇
.

18Keep in mind that for non-square matrices there is a difference between a left inverse and a right
inverse.
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which is
𝑐𝑛 = 𝑐

∧
𝑛 = (𝑐(2·))∧𝑚 + 𝜔· (𝑐(2 · +1))∧𝑚 . (4.6.14)

The FFT simply consists of applying this computational rule recursively, which of
course requires that 𝑛 = 2𝑘 for some 𝑘 , at least in our naive form.

What is now the value of this representation? If we assume that the values
𝜔, . . . , 𝜔𝑛−1 are precomputed and available in a table19, the naive version of the
DFT as a matrix-vector mulitplication of an 𝑛 × 𝑛 matrix with an 𝑛-vector would
require 𝑂

(
𝑛2

)
operations. So let us check what a computation via (4.6.14) would

need and call that number 𝐹 (𝑛). Then (4.6.14) tells us that for the computation of
𝑐𝑛 we first have to compute the two DFTs of length 𝑚 = 𝑛/2 on the right hand side
(cost of 2𝐹 (𝑛/2)), then multiply the second result componentwise with the vector(
𝜔 𝑗 : 𝑗 ∈ Z𝑛

)
(cost of 𝑛) and the add them componentwise20 (cost of 𝑛). Hence,

the total effort in (4.6.14) is 2 (𝐹 (𝑛/2) + 𝑛), which leads to the recurrence relation

𝐹 (𝑛) = 2 (𝐹 (𝑛/2) + 𝑛) . (4.6.15)

For a dyadic 𝑛 = 2ℓ with ℓ ∈ N, we thus get

𝐹 (𝑛) = 2𝑘𝐹
(
2ℓ−𝑘

)
+ 𝑘 2ℓ+1, 𝑘 = 1, . . . , ℓ, (4.6.16)

which follows by induction from the fact that for 𝑘 = 1 (4.6.16) is just (4.6.15) while
the inductive step is

𝐹 (𝑛) = 2𝑘𝐹
(
2ℓ−𝑘

)
+ 𝑘 2ℓ+1 = 2𝑘 2

(
𝐹

(
2ℓ−𝑘−1

)
+ 2ℓ−𝑘

)
+ 𝑘 2ℓ+1

= 2𝑘+1𝐹
(
2ℓ−𝑘−1

)
+ 2ℓ+1 + 𝑘 2ℓ+1 = 2𝑘+1𝐹

(
2ℓ−𝑘−1

)
+ (𝑘 + 1) 2ℓ+1.

Considering (4.6.16) for the special case 𝑘 = ℓ = log2 𝑛, this becomes

𝐹 (𝑛) = 2ℓ︸︷︷︸
=𝑛

𝐹 (1) + ℓ 2ℓ+1︸︷︷︸
=2𝑛 log2 𝑛

= 𝑛
(
2 log2 𝑛 + 𝐹 (1)

)
= 𝑂

(
𝑛 log2 𝑛

)
,

which is significantly better than the 𝑂
(
𝑛2

)
of the naive matrix-vector multiplica-

tion. Indeed, 𝑂
(
𝑛 log2 𝑛

)
is a typical asymptotic complexity21 for methods based

on the principle of divide and conquer, and is often derived as a consequence of the
so-called master theorem, (Steger, 2001).

This complexity results holds not only for numbers 𝑛 that are powers of 2. If ℓ
is chosen such that 2ℓ−1 < 𝑛 ≤ 2ℓ, then we can simply replace 𝑛 by 2ℓ and embed
the original signal into a larger one, for example by padding it, i.e., adding zeros.
Then the computational cost

2ℓ𝐹 (1) + 2ℓ 2ℓ ≤ 2𝑛 𝐹 (1) + 2 log2(2𝑛) 2𝑛 = 2𝑛 𝐹 (1) + 4𝑛
(
log2 𝑛 + 1

)
= 2𝑛

(
2 log2 𝑛 + 𝐹 (1) + 2

)
,

19They are the same for all 𝑐 ∈ ℓ (Z𝑛) and could be held in some cache; and even if they were not
precomputed, the effort for that is 𝑂 (𝑛).

20The vectors are 𝑚-periodic and will simply be extended by periodicity.
21And the constant here is very moderate!
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is increased by a factor of two, hence the asymptotic complexity of 𝑂
(
𝑛 log2 𝑛

)
still

remains valid.
To extend the FFT to multivariate data, we again make use of a computational

operation for Kronecker products; to prove it, we need another definition.

Definition 4.6.10. The vectorization 𝑣(𝐴) ∈ R𝑚𝑛 of a matrix 𝐴 ∈ R𝑚×𝑛 is defined
as

𝑣 =

©«

𝑎11
...

𝑎𝑚1
...

𝑎1𝑛
...

𝑎𝑚𝑛

ª®®®®®®®®®®®®¬
=

©«
𝑎1
...

𝑎𝑛

ª®®¬ , 𝐴 =
(
𝑎1 . . . 𝑎𝑛

)
. (4.6.17)

The following cute formula for Kronecker products is classical and can be found,
for example, in (Horn and Johnson, 1991; Marcus and Minc, 1969).

Proposition 4.6.11. For 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈ R𝑝×𝑞 and 𝑋 ∈ R𝑛×𝑝 we have

𝑣(𝐴𝑋𝐵) = (𝐵𝑇 ⊗ 𝐴)𝑣(𝑋). (4.6.18)

Before proving the proposition, let us first check that the dimensions coincide
on both sides of (4.6.18). Since 𝐴𝑋𝐵 ∈ R𝑚×𝑞 the expression on the left hand side
is a vector of size 𝑚𝑞, the Kronecker product on the right hand side belongs to
R𝑞𝑚×𝑝𝑛 and 𝑣(𝑋) is an 𝑛𝑝–vector, so the right hand side indeed also gives a vector
of size 𝑚𝑞.

Proof: We write 𝑋 =
(
𝑥1 . . . 𝑥𝑝

)
in terms of it colums, 𝐵 =

(
𝑏 𝑗 𝑘 :

𝑗 = 1, . . . , 𝑝
𝑘 = 1, . . . , 𝑞

)
and get for the ℓth column of the product that

(𝐴𝑋𝐵)ℓ = 𝐴𝑋𝐵𝑒ℓ = 𝐴𝑋
(
𝑏 𝑗ℓ : 𝑗 = 1, . . . , 𝑝

)
= 𝐴

©«
𝑝∑︁
𝑗=1

𝑥 𝑗𝑏 𝑗ℓ
ª®¬ =

𝑝∑︁
𝑗=1

𝑏 𝑗ℓ 𝐴𝑥 𝑗 =
(
𝑏1ℓ𝐴 . . . 𝑏𝑝ℓ𝐴

)
𝑣(𝑋)

=

(
(𝐵𝑒ℓ)𝑇 ⊗ 𝐴

)
𝑣(𝑋)

and therefore

𝑣(𝐴𝑋𝐵) =
©«
(𝐴𝑋𝐵)1

...

(𝐴𝑋𝐵)𝑞

ª®®¬ =
©«
(
(𝐵𝑒1)𝑇 ⊗ 𝐴

)
𝑣(𝑋)

...(
(𝐵𝑒𝑝)𝑇 ⊗ 𝐴

)
𝑣(𝑋)

ª®®¬ =
©«
(
(𝐵𝑒1)𝑇 ⊗ 𝐴

)
...(

(𝐵𝑒𝑝)𝑇 ⊗ 𝐴
)ª®®¬ 𝑣(𝑋)

=
©«
©«
(𝐵𝑒1)𝑇
...

(𝐵𝑒𝑝)𝑇

ª®®¬ ⊗ 𝐴
ª®®¬ 𝑣(𝑋) = (𝐵𝑇 ⊗ 𝐴)𝑣(𝑋)
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as claimed. □

The “Kronecker trick” (4.6.18) allows us to compute the product of a Kronecker
product 𝐴1 ⊗ · · · ⊗ 𝐴𝑠, 𝐴 𝑗 ∈ R𝑚 𝑗×𝑛 𝑗 and a vector 𝑥 ∈ R𝑛, 𝑛 = 𝑛1 · · · 𝑛𝑞, which we
interprete as 𝑣(𝑋) for a matrix 𝑋 ∈ R𝑛2···𝑛𝑞×𝑛1 . We obtain

(𝐴1 ⊗ · · · ⊗ 𝐴𝑞)𝑥 = (𝐴1 ⊗ · · · ⊗ 𝐴𝑞)𝑣(𝑋) = (𝐴2 ⊗ · · · ⊗ 𝐴𝑞)𝑋𝐴𝑇1
=: (𝐴2 ⊗ · · · ⊗ 𝐴𝑞)𝑋1

where
𝑋1 = 𝑋𝐴

𝑇
𝑗 = (𝐴 𝑗𝑋𝑇 )𝑇 ∈ R𝑛2···𝑛𝑠×𝑛1 .

is computed by determining the products

𝐴𝑥 𝑗 , 𝑥 𝑗 =
©«
𝑥 𝑗1
...

𝑥𝑖,𝑛1

ª®®¬ , 𝑗 = 1, . . . , 𝑛2 · · · 𝑛𝑠 .

of 𝐴 with the rows of 𝑋 . If 𝐴 𝑗 = 𝑉1
𝑛 in the case of the multivariate DFT, then each

of these products can be computed by means of the FFT which costs 𝑂 (𝑛1 log 𝑛1),
but we have to compute it for 𝑛2 · · · 𝑛𝑠 columns, so the total cost is(

𝐶 𝑛1 log 𝑛1
)
𝑛2 · · · 𝑛𝑠 = 𝐶𝑛 log 𝑛1.

Applying the same procedure to all 𝑛1 columns of 𝑋1 needs 𝐶
(
𝐶 𝑛2 log 𝑛2

)
𝑛3 · · · 𝑛𝑠

operations, and since there are 𝑛1 of these columns, the cost is

𝑛
(
𝐶 𝑛2 log 𝑛2

)
𝑛3 · · · 𝑛𝑠 = 𝐶𝑛 log 𝑛2.

Proceeding iteratively, it is easy to see that the total cost for the 𝑑-dimensional FFT
for a signal of the form (4.6.3) has a cost of

𝐶

𝑑∑︁
𝑗=1

𝑛 log 𝑛 𝑗 = 𝐶𝑛 log(𝑛1 · · · 𝑛𝑑) = 𝐶𝑛 log 𝑛,

with the same constant 𝐶 as in the one-dimensional case.
In most applications, also in the ones we are considering here, the measurements

are equidistant samples

𝑐(𝛼) = (𝑆ℎ 𝑓 ) (𝛼), 𝛼 ∈ Z𝑑𝑛 ,

on an 𝑛 × · · · × 𝑛 grid. If we compute the DFT 𝑐 of this signal 𝑐, then we compute,
from the mathematical point of view, a discretization of the associated trigonomet-
ric polynomial

𝑐(𝜉) =
∑︁
𝛼∈Z

𝑐(𝛼) 𝑒𝑖𝛼𝑇𝜉 =
∑︁
𝛼∈Z

𝑓 (ℎ𝛼) 𝑒𝑖𝛼𝑇𝜉

on the grid 2𝜋Z𝑁/𝑁 , that is,

(𝑆ℎ 𝑓 )∧ = 𝑐𝑛 (𝛼) =
∑︁
𝛽∈Z𝑁

𝑓 (ℎ𝛽) 𝑒−2𝑖𝜋𝛽𝑇𝛼/𝑛, 𝛼 ∈ Z𝑑𝑛 . (4.6.19)
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Figure 4.6.1: The modulus of the DFT of the sinc function. The substantial artifacts that
we observe at the boundary we see nasty artifacts that cannot be explained
by discretization alone.

Remark 4.6.12. (4.6.19) shows that there is no direct connection between the
vector (𝑆ℎ 𝑓 )∧ and what one usually wants to compute, namely the discretization
of 𝑓 , the Fourier transform of the function 𝑓 that was originally sampled.

It should come as no surprise that this leads to artifacts again.

Example 4.6.13. Let us consider the DFT of a sampled univariate sinc -function
whose Fourier transform is22 a characteristic function. We sample this function, in
octave notation via

>> N = 512; c = sinc( 100*pi*(0:N-1)/N );

at locations that are no integers. The result of a DFT combined with the operation
fftshift23 is depicted in Fig. 4.6.1 and shows that this bandpass filter has a severe
overshooting at the high frequencies.

To approximate the function 𝑓 itself, we incorporate a so-called quasi inter-
polant which is defined, for a function 𝜙 ∈ 𝐿00(R𝑑) as

𝑄ℎ,𝜙𝑐 := 𝜙 ∗ 𝑐
(
ℎ−1·

)
=

∑︁
𝛼∈Z𝑑𝑛

𝑐(𝛼)𝜙
(
ℎ−1 · −𝛼

)
=

∑︁
𝛼∈Z𝑑𝑛

𝑓 (ℎ𝛼) 𝜙
(
ℎ−1 · −𝛼

)
; (4.6.20)

if 𝜙 is even a cardinal function, that is, 𝜙 |Z𝑑 = 𝛿, then 𝑄ℎ,𝜙 (ℎ𝛼) = 𝑆ℎ 𝑓 (𝛼) = 𝑓 (ℎ𝛼),
𝛼 ∈ Z𝑑𝑛 , and the data is even interpolated without and “quasi”. But in general, one
at least hopes to obtain a reasonable approximation.

If we assume24 that 𝑄ℎ,𝜙𝑐 approximates the function 𝑓 , meaning that
 𝑓 −𝑄ℎ,𝜙𝑐


1

is small, then the Fourier transform of 𝑄ℎ,𝜙𝑐 is also a good approximation of the
Fourier transform 𝑓 of 𝑓 and we can compute the latter from the samples as(
𝑄ℎ,𝜙𝑐

)∧ (𝜉) = (𝜎ℎ−1 (𝜙 ∗ 𝑐))∧ (𝜉) = ℎ (𝜙 ∗ 𝑐)∧ (ℎ𝜉) = ℎ 𝜙(ℎ𝜉) 𝑐(ℎ𝜉), 𝜉 ∈ R𝑑 .
22Or at least should be.
23This is an octave function that shifts the zero frequency into the middle of the vector.
24Otherwise we definitely made a mistake with the quasi interpolant.
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Figure 4.6.2: Filtering of the function from Fig. 4.6.1 with cardinal splines of order 0, 1, 2, 3.
The outliers become smaller with increasing order, however for the price of
a bump at the boundary.

If we replace 𝜉 by ℎ−1𝜉, in this identity, and then discretize 𝜉 on the discrete torus
T𝑛 := 2𝜋

𝑛
Z𝑑𝑛 , we obtain

𝑓

(
2𝛼𝜋
𝑛ℎ

)
≈

(
𝑄ℎ,𝜙𝑐

)∧ (
2𝛼𝜋
𝑛ℎ

)
= ℎ𝑑 𝜙

(
2𝛼𝜋
𝑛

)
𝑐(𝛼), 𝛼 ∈ Z𝑑𝑛 . (4.6.21)

This simple formula eventually connects the discrete Fourier transform 𝑐 = (𝑆ℎ 𝑓 )∧
of the samples with an approximate discretization of the Fourier transform 𝑓 of 𝑓
and also explains the practical relationship:

1. The sampling rate ℎ determines which frequencies of 𝑓 are really encoded
in the DFT 𝑐. The smaller ℎ is, the smaller this frequency range becomes.
This, of course, should come as no surprise.

2. The frequency resolution as the number of entries of the spectrum that
are computer depends on the number 𝑛 of the samples. The larger 𝑛 is, the
more precisely the spectrum is represented and the smaller is the distance
between these frequencies. If 𝑛 is small, on the other hand, more entries will
be combined into one. Of course, the computational effort increases with 𝑛
as well.

3. One cannot decouple these two parameters so easily. Normally the discrete
data results from sampling over a substantial range or period of size 𝑛ℎ, so
that a high sampling rate will usually be related to a high frequency resolution
as well.

4. If tensor product cardinal spline functions

𝜙(𝑥) =
𝑑∏
𝑗=1

𝜒 ∗ · · · ∗ 𝜒︸       ︷︷       ︸
𝑚

of order 𝑚 are chosen for the quasi interpolant, the correction filter 𝜙 is
simply a power of products of the sinc function; since we sample only the
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first “hill” of this function which decreases faster with increasing order of the
spline, a larger value of 𝑚 results in a stronger damping of unwanted high
frequency contributions, see Fig. 4.6.2.

5. If we simply drop or ignore 𝜙 in (4.6.20), then we replace 𝜙 by 𝜒[0,1]𝑑 , which
means that 𝜙 = sinc and instead of 𝑓 one discretizes the interpolatory recon-
struction from the sampling theorem, Theorem 4.2.5. Although this sounds
like a great idea, at least for band limited functions, the approximation qual-
ity is more on the poor side due to the slow decay of the sinc function.

4.7 Back to Fourier Reconstruction

As mentioned several times, the Radon transform is only known for finitely many
discrete values in practical applications. In the most classical case this is done
by sampling uniformly distributed directions 𝑣 𝑗 , 𝑗 = 0, . . . , 𝑝 − 1 and offsets 𝑠𝑘 ,
𝑘 = −𝑞, . . . , 𝑞, more precisely, according to the following definition.

Definition 4.7.1 (Parallel scanning). In parallel scanning with resolution 𝜌 > 0,
the Radon transform 𝑅 𝑓 is measured for the parameters

𝑣 𝑗 ∈ S𝑑−1 𝑗 = 0, . . . , 𝑝 − 1, (4.7.1)

𝑠𝑘 =
𝜌𝑘

𝑞
, 𝑘 = −𝑞, . . . , 𝑞, (4.7.2)

that is, we know the 𝑝(2𝑞 + 1) values

𝑦 𝑗 𝑘 = 𝑦
(
𝑣 𝑗 , 𝑠𝑘

)
= 𝑅 𝑓

(
𝑣 𝑗 , 𝑠𝑘

)
, 𝑗 = 0, . . . , 𝑝 − 1, 𝑘 = −𝑞, . . . , 𝑞.

Remark 4.7.2. For 𝑑 = 2, the 𝑣 𝑗 can be explicitly written as

𝑣 𝑗 =

(
cos 𝜑 𝑗
sin 𝜑 𝑗

)
, 𝜑 𝑗 =

𝜋 𝑗

𝑝
, 𝑗 = 0, . . . , 𝑝 − 1. (4.7.3)

Moreover, the Radon transform and the X-ray transform coincide in this case. The
geometry is depicted in Fig. 4.7.1.

Remark 4.7.3. The resolution of the offsets in (4.7.2) reflects the fundamental
assumption that the object to be measured in of finite size and contained in in the
ball 𝐵𝜌 = 𝐵𝜌 (0) of radius 𝜌 around the origin, in other words,

𝑓 (𝑥) = 0, ∥𝑥∥2 > 𝜌. (4.7.4)

In accordance with the Shannon sampling theorem, Theorem 4.2.5, on the other
hand, we would also like the function 𝑓 to be bandlimited. This, however, contra-
dicts the finite support requested in (4.7.4), as a consequence of the Heisenberg
uncertainty principle. Therefore, there will be no exact reconstructions25 any more,
only approximation; but this is just numerical reality.

25Which in general would be impossible for finite data anyway.
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Figure 4.7.1: Parallel scan geometry: bundles of parallel lines intersect the object at differ-
ent angles.

For each 𝑗 ∈ Z𝑝 and the associated 𝑣 𝑗 , we therefore can compute a discrete
approximation 26

(
𝑅(𝑣 𝑗 , ·)

)∧ (𝜉) ≈ 𝑞
𝜌

𝑞∑︁
𝑘=−𝑞

𝑒−𝑖𝑠𝑘𝜉𝑅 𝑓 (𝑣 𝑗 , 𝑠𝑘 ) =
𝑞

𝜌

𝑞∑︁
𝑘=−𝑞

𝑒
−𝑖𝑘 𝜌

𝑞
𝜉
𝑅 𝑓 (𝑣 𝑗 , 𝑠𝑘 ). (4.7.5)

The way of approximating an integral by a finite number of point evaluations
is not only the idea behind the Riemann sum in the definition of the Riemann
integrarl, it is also a fundamental concept in Numerical Analysis, cf. (Gautschi,
1997; Isaacson and Keller, 1966).

Definition 4.7.4. A quadrature formula for an integral 𝐼 ( 𝑓 ) :=
∫
𝑓 (𝑥)𝑤(𝑥)𝑑𝑥 is

a sum of the form

𝑄( 𝑓 ) =
𝑀∑︁
𝑗=0

𝑤 𝑗 𝑓 (𝑥 𝑗 ).

The quadrature formula based on equidistant sampling that we used in (4.7.5) is
known as the rectangular rule.

Sampling (4.7.5) at 𝜉ℓ =
2𝜋𝑞

𝜌(2𝑞+1) ℓ, we get for27 ℓ ∈ Z2𝑞+1 that(
𝑅(𝑣 𝑗 , ·)

)∧ (𝜉ℓ) ≈ (
𝑅(𝑣 𝑗 , ·)

)∧
2𝑞+1 (ℓ) =

(
𝑅(𝑣 𝑗 , ·)

)∧ (
2𝜋𝑞

𝜌(2𝑞 + 1) ℓ
)

=
𝑞

𝜌

∑︁
𝑘∈Z2𝑞+1

𝑒−2𝜋𝑖𝑘ℓ/(2𝑞+1)𝑅 𝑓 (𝑣 𝑗 , 𝑠𝑘 ) = 𝑐 𝑗 (ℓ), (4.7.6)

where

𝑐 𝑗 =

(
𝑞

𝜌
𝑅 𝑓 (𝑣 𝑗 , 𝑠𝑘 ) : 𝑘 ∈ Z2𝑞+1

)
.

26The difference between two points 𝑠𝑘 is 𝜌

𝑞
, hence the approximation for the integral is an expres-

sion of the form ∫
𝑓 (𝑥) 𝑑𝑥 = 1

ℎ

𝑀∑︁
𝑗=0

𝑓 (ℎ 𝑗),

where 𝑀ℎ is the length of the region of integration.
27Here we use Z2𝑞+1 with the representer set {−𝑞, . . . , 𝑞}.
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Figure 4.7.2: Two different domains for the Fourier transform. It can be determined from
the Radon transform on the polar grid (left) but has to be transferred to the
cartesian grid (right).

Therefore, (4.7.6) can be computed by an FFT and everything that has been said
about the computational and numerical aspects of the FFT above can be applied
here.

By (4.6.1) we thus approximate

𝑐 𝑗 (𝑘) ≈ 𝑓
(
𝑣 𝑗𝜉𝑘

)
, 𝑗 ∈ Z𝑝, 𝑘 ∈ Z2𝑞+1,

and therefore we know 𝑓 on the polar grid. Here is the problem with the Fourier
approach: we can determine the Fourier transform on the polar grid, but in order
to apply an (inverse) FFT, the values have to be available on the rectangular grid,
see Fig. 4.7.2.

The transformation of the Fourier transform is performed by interpolation: let
𝑄 = [𝑎1, 𝑏1] × · · · × [𝑎𝑑 , 𝑏𝑑] be a d-dimensional cube such that

𝑣 𝑗𝜉𝑘 ∈ 𝑄, 𝑗 ∈ Z𝑝, 𝑘 ∈ Z2𝑞+1,

and find a function 𝜑 : 𝑄 → C such that

𝜑(𝑣 𝑗𝜉𝑘 ) = 𝑐 𝑗 (𝑘), 𝑗 ∈ Z𝑝, 𝑘 ∈ Z2𝑞+1, (4.7.7)

from which one can determine 𝑓 on a grid of the form Z𝑑𝑛 by

𝑓 |Z𝑑𝑛 =

(
𝜑(ℎ𝛼 + 𝛼0) : 𝛼 ∈ Z𝑑𝑛

)∨
,

again by means of an FFT. Of course, the quality of the reconstruction depends
significantly on the interpolation process; details can be seen in (Natterer, 1986).

Remark 4.7.5 (Interpolation and Fourier method).

1. The simplest method mentioned in (Natterer, 1986) is a nearest neighbor inter-
polation: for any grid point 𝜉𝛼 := 𝛼0 + ℎ𝛼 use the value 𝑐 𝑗 (𝑘) such that��𝜉𝛼 − 𝑣 𝑗𝜉𝑘 �� = min

𝑗 ′,𝑘 ′

��𝜉𝛼 − 𝑣 𝑗 ′𝜉𝑘 ′ �� .
2. Since the points are more dense in the interior of the circle, the deviation

between the next point in the polar and the cartesian grid becomes larger
away from the origin. This is yet another reason to apply low pass filters.
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4.8 Reconstruction by Filtered Backprojection

Reconstruction by means of the filtered backprojection involves filtering, i.e., a
convolution, as well as the dual Radon transform which can also be expressed in
terms of a Fourier transform as shown in (4.3.6). To write the right hand side of the
reconstruction formula (4.3.1) in this way, we let 𝑦 = 𝑦(𝑣, 𝑠) be the measurement
function with Fourier transform �̂�𝑣 (𝜎), 𝜎 ∈ R. Next, we pick a radial filter with
�̂�(𝜎) = |𝜎 |𝑑−1𝜓(𝜎) and thus

(𝑔 ∗ 𝑦)∧(𝜉) = |𝜉 |𝑑−12 �̂�𝜉/|𝜉 |2 ( |𝜉 |2) �̂� ( |𝜉 |2) ,

which leads to
(𝑅∗(𝑔 ∗ 𝑦))∧ (𝜉) = �̂�𝜉/|𝜉 |2 ( |𝜉 |2) 𝜓 ( |𝜉 |2) . (4.8.1)

Hence, the Fourier method to filtered backprojection compares (4.8.1) with

((𝑅∗𝑔) ∗ 𝑓 )∧ (𝜉) = (𝑅∗𝑔)∧ (𝜉) 𝑓 (𝜉) = |𝜉 |1−𝑑2 𝜓 ( |𝜉 |2) 𝑓 (𝜉).

Now �̂� cancels in this representation and it seems that the backprojection filter
plays no role. That the factors cancels is actually due to a somewhat cyclical
reasoning since it is this cancellation that makes the filtered backprojection work
in Theorem 3.2.8; and practically it plays a role again due to the incompatibility
of grids that we encountered in the last section.

Now we assume that 𝑓 ∈ 𝐶∞00(Ω) is compactly supported and consider a more
direct discretization for the reconstruction from the Radon transform by means of

𝐺 ∗ 𝑓 = 𝑅∗ (𝑔 ∗ 𝑦) (4.8.2)

where 𝐺 by construction is “almost ‘𝛿” and therefore we have to provide a dis-
cretization for the convolution integral

(𝑔 ∗ 𝑦) (𝑣, 𝑠) =
∫
R𝑑
𝑔 (𝑠 − 𝑡) 𝑦 (𝑣, 𝑠) 𝑑𝑠 =

∫
Ω

𝑔 (𝑠 − 𝑡) 𝑦 (𝑣, 𝑠) 𝑑𝑠, (4.8.3)

since we assumed that 𝑦(𝑣, ·) vanishes outside Ω, where we can assume that Ω =

𝐵𝜌 (0) for some 𝜌 > 0. For bandlimited functions, the integral can even be com-
puted exactly from (infinitely many) samples, which is yet another sampling theo-
rem in the tradition of Shannon, see (Natterer and Wübbeling, 2001, Theorem 4.1).

Lemma 4.8.1. If 𝑓 ∈ 𝐿1(R𝑑) is 𝑇 -bandlimited and 0 < ℎ < 𝜋
𝑇

, then∫
R𝑑
𝑓 (𝑥) 𝑑𝑥 = ℎ𝑑

∑︁
𝛼∈Z𝑑

𝑓 (ℎ𝛼). (4.8.4)

Proof: The proof relies on the Poisson Summation Formula, Theorem 2.2.5; we
set 𝑔 = ℎ𝑑 𝑓 (ℎ·), so that (2.2.5) and (2.1.7) yields

ℎ𝑑
∑︁
𝛼∈Z𝑑

𝑓 (ℎ𝛼) =
∑︁
𝛼∈Z𝑑

𝑔(𝛼) =
∑︁
𝛼∈Z𝑑

�̂� (2𝛼𝜋) =
∑︁
𝛼∈Z𝑑

(
ℎ𝑑 𝑓 (·/ℎ)

)∧
(2𝛼𝜋)

=
∑︁
𝛼∈Z

�̂�

(
2𝛼𝜋
ℎ

)
= �̂� (0) +

∑︁
𝛼≠0

�̂�

(
2𝛼𝜋
ℎ

)
. (4.8.5)
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Since for 𝛼 ≠ 0, ����2𝛼𝜋ℎ ����
2
≥ |2𝛼𝑇 |2 = 2 |𝛼 |2︸︷︷︸

>1

> 𝑇

the sum on the right hand side of (4.8.5) vanishes and

ℎ𝑑
∑︁
𝛼∈Z𝑑

𝑓 (ℎ𝛼) = �̂� (0) =
∫
R𝑑
𝑓 (𝑥) 𝑑𝑥

remains. □

As already mentioned, a function cannot be compactly supported and bandlim-
ited at the same time, so that Lemma (4.8.1) is nice to have but cannot be satisfied.
Having to give up one of them, we relax the Fourier condition.

Definition 4.8.2. A function 𝑓 ∈ 𝐿1(R𝑑) is called essentially bandlimited with
bandwidth 𝑇 or essentially 𝑇 -bandlimited for short, if there exists some28 𝜀 > 0 such
that ∫

|𝜉 |≥𝑇

�� 𝑓 (𝜉)�� 𝑑𝜉 < 𝜀. (4.8.6)

One can show that for essentially bandlimited functions the Shannon Sampling
Theorem holds up to an error of 𝐶𝜀 if ℎ < 𝜋

𝑇
where the constant 𝐶 can be given

explicitly and independently of 𝑓 . Something similar holds for (4.8.4) since 𝑓 is a
uniformly continuous function.

To sketch the main idea in the bivariate case, let assume that the 𝑠-sampling is
fine enough for the Quadrature in Lemma 4.8.1 to be (almost) exact, then we can
approximate the convolution integral by

(𝑔 ∗ 𝑦) (𝑣, 𝑠) ≈ 𝜌
𝑞

𝑞∑︁
𝑘=−𝑞

𝑔

(
𝑠 − 𝜌 𝑘

𝑞

)
𝑦

(
𝑣,
𝜌 𝑘

𝑞

)
. (4.8.7)

For the numerical treatment of the backprojection

𝑅∗ (𝑔 ∗ 𝑦) (𝑥) = 1
2𝜋

∫
S2
(𝑔 ∗ 𝑦)

(
𝑣, 𝑣𝑇𝑥

)
𝑑𝑣, 𝑥 ∈ R2, (4.8.8)

we have to make sure that for any 𝑥 ∈ R2 the function

ℎ(𝑣) = (𝑔 ∗ 𝑦)
(
𝑣, 𝑣𝑇𝑥

)
, 𝑣 ∈ S2 ≃ T

is essentially bandlimited, that is, that its Fourier coefficients29

ℎ̂(𝑘) =
∫
T
𝑒−𝑖𝑘𝜃 (𝑔 ∗ 𝑦)

(
𝑣𝜃 , 𝑣

𝑇
𝜃 𝑥

)
, 𝑣𝜃 =

(
cos 𝜃
sin 𝜃

)
28This is part of the definition which therefore defines 𝑇 and an associated 𝜀 that should of course

be small.
29Since S1 ≃ T, we can interpret this in terms of 2𝜋-periodic functions.
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4 Signal Processing and the Filtered Backprojection

Figure 4.8.1: The nature of a ridge function (left) and the idea of the reconstruction as an
overlay of rotated ridge functions (right).

are neglegible for large |𝑘 | which allows us to apply Lemma 4.8.1 to (4.8.8) giving
the final simple discretization

𝑓 (𝑥) ≈ (𝐺 ∗ 𝑓 ) (𝑥) = 𝜋𝜌

𝑝𝑞

𝑝−1∑︁
𝑗=0

𝑞∑︁
𝑘=−𝑞

𝑔

(
𝑣𝑇𝑗 𝑥 −

𝜌 𝑘

𝑞

)
𝑦 𝑗 𝑘 (4.8.9)

of the reconstruction.

Remark 4.8.3. The formula (4.8.9) has a nice geometric interpretation. For each
𝑗 , the function

𝜋𝜌

𝑝𝑞

𝑞∑︁
𝑘=−𝑞

𝑔

(
𝑣𝑇𝑗 𝑥 −

𝜌 𝑘

𝑞

)
𝑦 𝑗 𝑘 (4.8.10)

is a so-called ridge function, i.e., a function of the form

𝑓 (𝑥) = 𝑔(𝑣𝑇𝑥), 𝑓 : R𝑑 → R, 𝑔 : R→ R. (4.8.11)

Such functions are constant along 𝑣⊥, see Fig. 4.8.1, which is easily seen by writing
𝑥 = 𝜆𝑣 + 𝑦, 𝑦 ∈ 𝑣⊥ and then noting that

𝑓 (𝑥) = 𝑔
(
𝑣𝑇 (𝜆𝑣 + 𝑦)

)
= 𝑔

(
𝜆 |𝑣 |22

)
.

These ridge functions depend on the data 𝑦 𝑗 𝑘 , 𝑘 = −𝑞, . . . , 𝑞, i.e., on the measure-
ments of the 𝑗th parallel beam, and thus can already be computed after this mea-
surement is finished without waiting for the other measurements. As also shown in
Fig. 4.8.1, these ridge functions are rotated over the reconstruction domain30 and
summed up. Making use of such geometric observations not only gives insight into
reconstruction, but also allows for fast implementations of the algorithm.

To finally check for the validity of the discretization, let us fix 𝑥 ∈ R2 and look

30Here it makes good sense to choose it circular.
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at ℎ. Since we restricted the support of �̂� to [−𝜔, 𝜔], see (4.4.2), we have

ℎ(𝑣) = (𝑔 ∗ 𝑦)
(
𝑣, 𝑣𝑇𝑥

)
=

(
(𝑔 ∗ 𝑦)∧

)∨ (
𝑣, 𝑣𝑇𝑥

)
= (�̂� �̂�)∨

(
𝑣, 𝑣𝑇𝑥

)
=

1
2𝜋

∫
R
�̂�(𝜎) �̂� (𝑣, 𝜎) 𝑒𝑖𝜎𝑣𝑇𝑥 𝑑𝜎 =

1
2𝜋

∫ 𝜔

−𝜔
�̂�(𝜎) �̂� (𝑣, 𝜎)︸   ︷︷   ︸

=(𝑅 𝑓 )∧ (𝑣,𝜎)

𝑒𝑖𝜎𝑣
𝑇𝑥 𝑑𝜎

=
1
2𝜋

∫ 𝜔

−𝜔
�̂�(𝜎) �̂� (𝜎𝑣) 𝑒𝑖𝜎𝑣𝑇𝑥 𝑑𝜎 =

1
2𝜋

∫ 𝜔

−𝜔
�̂�(𝜎)

∫
R2
𝑓 (𝑡) 𝑒−𝑖𝜎𝑣𝑇 𝑡 𝑑𝑡 𝑒𝑖𝜎𝑣𝑇𝑥 𝑑𝜎

=
1
2𝜋

∫
|𝑡 |2≤𝜌

𝑓 (𝑡)
∫ 𝜔

−𝜔
�̂�(𝜎) 𝑒𝑖𝜎𝑣𝑇 (𝑥−𝑡) 𝑑𝜎 𝑑𝑡

and therefore

ℎ̂(𝑘) = 1
2𝜋

∫
|𝑡 |2≤𝜌

𝑓 (𝑡)
∫ 𝜔

−𝜔
�̂�(𝜎)

∫
T
𝑒𝑖𝜎𝑣

𝑇
𝜃
(𝑥−𝑡)−𝑖𝑘𝜃 𝑑𝜃︸                  ︷︷                  ︸

∼𝐽𝑘 (𝜎∥𝑥−𝑡∥2)

𝑑𝜎 𝑑𝑡, 𝑘 ∈ Z. (4.8.12)

Now the asymptotics of the Bessel functions can be used to verify that indeed the
function is essentially bandlimited.

Remark 4.8.4.

1. There exist quantitative estimates for all parts of these reconstruction meth-
ods; they are sometimes tedious but important and valuable since they not
only show which quality of reconstruction can be guaranteed but often also
highligh which parameters are critical. We will not consider them here as
they would be a lecture of its own, but only refer to (Natterer, 1986; Natterer
and Wübbeling, 2001).

2. In the same way, backprojection methods usually have to be crafted for any
scan geometry separately. Again, see (Kak and Slaney, 2001) or (Natterer
and Wübbeling, 2001). We will consider a more universal technique, called
Algebraic Reconstruction Technique or ART, in the next chapter.

3. For example, in fan beam scans where the projections are not computed along
parallel rays but along rays emerging fan-like from the source, one makes use
of the fact that in 2D the Radon transform and the X-ray transform are in
fact the same. But the computations are quite a bit more complicated.
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Algebraic Reconstruction
Techniques 5

Art is never finished, only abandoned.

(Leonardo da Vinci)

In the last chapter, we consider a totally different type of reconstruction algo-
rithm, called Algebraic Reconstruction Technique (ART ). It consists of writing the
reconstruction problem as a linear system

𝐴𝑥 = 𝑏 ⇔ 𝑎𝑇𝑗 𝑥 = 𝑏 𝑗

where each component of 𝑥 corresponds to a pixel or voxel of the solution and
each equation 𝑎𝑇

𝑗
𝑥 = 𝑏 𝑗 to one projection datum. The approach is highly flexible,

but

1. it is difficult to make statements about the existence of solutions, in particular
since 𝐴𝑥 = 𝑏 can be overdetermined1 or underdertermined2,

2. the vector 𝑥 can and will be very large.

Especially the second point will limit us to special and rather simple iterative meth-
ods since keeping the whole matrix 𝐴 or even the vector 𝑥 in memory can be quite
nontrivial.

5.1 The Setup

To discretize the tomography problem, we put a pixel or voxel grid over the area
of measurement and assume that the data is piecewise constant on this grid, see
Fig. 5.1.1. Any ray that we shoot through the domain, say ray number 𝑗 , intersects
some grid elements 𝑘1( 𝑗), . . . , 𝑘𝑛( 𝑗) ( 𝑗), where both the number and the index of the
element depend on 𝑗 . Now we use the assumption that the value there is constant,
then the contribution of the intersection of the ray with this element is the length
of the intersection, say 𝑎𝑘ℓ ( 𝑗), and the whole discrete line integral is

𝑛( 𝑗)∑︁
ℓ=1

𝑎𝑘ℓ ( 𝑗) 𝑥𝑘ℓ ( 𝑗)

which should be 𝑏 𝑗 . If we write this as 𝑎𝑇
𝑗
𝑥 = 𝑏 𝑗 , 𝑗 = 1, . . . , 𝑀, where 𝑀 denotes

the number of projections, then we found a linear system 𝐴𝑥 = 𝑏 to be solved.

1There will usually be no solution.
2We have to decide between a lot of solutions.
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l

Figure 5.1.1: Main idea of the ART discretization. We put a grid into the domain of interest
and then reconstruct values on this grid (left). Then rays are traced through
the grid an the length of the intersection of the ray with a grid element defines
the contribution of this element to the discretized line integral (right).

Definition 5.1.1. The matrix 𝐴 of the above discretization is called the system
matrix and depends only on the scan geometry.

This approach has two obvious advantages:

1. it works with arbitrary scan geometries since any projection is simply one
linear equation and the origin and the direction of the beam can be encoded
in the system matrix,

2. the resolution of the measurements and the resolution of the reconstruction
can be decoupled.

As nice as this advantages are, they do not come for free. First, of all, the relation-
ship between resolutions affect the solvability of the problem:

1. if the resolution of the reconstruction is too high, it can happen that some
voxels are not visited by any ray and the system is definitely underdetermined
as the value of these voxels does not affect the right hand side.

2. If the resolution is too small, the system may become overdetermined and
unsolvable; just consider the extremal case of a single grid element and a
non-constant function.

The main problem, however, is the size of the system. Modern flat panel detectors
used in industrial tomography have a resolution of 1000 × 1000 pixel, so a single
image already gives 108 equations and 200 − 1000 of these images are not a rarity,
which means that we may easily have 1011 − 1012 equations. If we now try to
reconstruct 10003 voxels3, then also have 1012 variables.

Remark 5.1.2. It first occurs that the such linear system of the size 1012 × 1012 is
out of scope for almost any type of computer. However, the matrices are sparse,
that is, the number of entries in each row of the matrix is small relative to the size
of the matrix. If, for example, the grid is an 𝑁 × 𝑁 × 𝑁 one, then we have 𝑁3

variables, but any ray we shoot only has 𝑂 (𝑁) entries that can be determined on
the fly while tracing the line.

3This is no longer considered to be really large, the good objects have something like 6𝑘×10𝑘×10𝑘 .

94



5.2 Naive Kaczmarz

The observation of Remark 5.1.2 suggests that we should use an iterative solver
for the linear system that uses rows of the matrix 𝐴. Such an algorithm is the
classical Kaczmarz algorithm from (Kaczmarz, 1937), which we will consider next.

5.2 Naive Kaczmarz

Definition 5.2.1. We write a matrix 𝐴 ∈ R𝑀×𝑁 as

𝐴 =

(
𝑎𝑇
𝑗
: 𝑗 = 1, . . . , 𝑀

)
=

©«
𝑎𝑇1
...

𝑎𝑇
𝑀

ª®®¬ , 𝑎 𝑗 ∈ R𝑁 , (5.2.1)

and therefore the linear system 𝐴𝑥 = 𝑏 as

𝑎𝑇𝑗 𝑥 = 𝑏 𝑗 , 𝑗 = 1, . . . , 𝑀. (5.2.2)

Note that (5.2.2) means that

0 = 𝑎𝑇𝑗 𝑥 − 𝑏 𝑗 ⇔ 𝑥 ∈ 𝐻 (𝑎 𝑗 , 𝑏 𝑗 ),

so that a condition of the linear system is satisfied iff 𝑥 lies on the respective hyper-
plane. If it does not, it sounds like a reasonable idea to improve this condition by
projecting 𝑥 on this hyperplane.

Definition 5.2.2. The update step of the Kaczmarz algorithm consist of

𝑥 → 𝑥 + 1

|𝑎 𝑗 |22
𝑎 𝑗

(
𝑏 𝑗 − 𝑎𝑇𝑗 𝑥

)
. (5.2.3)

Since the update step (5.2.3) is undefined at best if 𝑎 𝑗 = 0, we clearly exclude
this situation. The meaning of (5.2.3) is clear if we note that

𝑎𝑇𝑗

(
𝑥 + 1

|𝑎 𝑗 |22
𝑎 𝑗

(
𝑏 𝑗 − 𝑎𝑇𝑗 𝑥

))
= 𝑎𝑇𝑗 𝑥 +

𝑎𝑇
𝑗
𝑎 𝑗

|𝑎 𝑗 |22︸︷︷︸
=1

(
𝑏 𝑗 − 𝑎𝑇𝑗 𝑥

)
= 𝑏 𝑗 .

This means that the update step “corrects” 𝑥 in such a way that the 𝑗th equation
is satisfied. Moreover, 𝑥 is modified by multiple of 𝑎 𝑗 , the normal vector to the
hyperplane 𝐻 (𝑎 𝑗 , 𝑏 𝑗 ) which gives the geometric interpretation of (5.2.3) as the
projection of 𝑥 onto 𝐻 (𝑎 𝑗 , 𝑏 𝑗 ).

Definition 5.2.3. The Kaczmarz algorithm computes the sequence

𝑥 (𝑛) = 𝑥 (𝑛−1) + 𝛿(𝑛)
𝑗 (𝑛) 𝑎 𝑗 (𝑛) := 𝑥

(𝑛−1) +
𝑏 𝑗 (𝑛) − 𝑎𝑇𝑗 (𝑛)𝑥

(𝑛−1)��𝑎 𝑗 (𝑛) ��22 𝑎 𝑗 (𝑛) , 𝑛 ∈ N, (5.2.4)

starting with some initial value 𝑥 (0) and some choice 𝑛 ↦→ 𝑗 (𝑛) of rows. For the
particular choice 𝑗 (𝑘𝑁 + ℓ) = ℓ, 𝑘 ∈ N, ℓ ∈ Z𝑁 , we speak of the cyclic Kaczmarz
algorithm, see Fig. 5.2.1.
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Figure 5.2.1: One cycle in the cyclic Kaczmarz algorithm for three equations in 2d.

Definition 5.2.4. By

𝐴𝑇R𝑀 :=

𝑀∑︁
𝑗=1

𝛼 𝑗𝑎 𝑗 : 𝛼 𝑗 ∈ R
 ⊆ R𝑁 (5.2.5)

we denote the span of the rows of 𝐴.

And this simple algorithm really works. This is indeed surprising since, in con-
trast to other iterative methods like the Jacobi method or Gauss-Seidel iteration the
Kaczmarz method needs no requirements on the underlying matrix like being di-
agonally dominant or symmetric and positive definite4.

Theorem 5.2.5. If the system 𝐴𝑥 = 𝑏 has a solution, then the cyclic Kaczmarz algorithm
converges to a solution 𝑥∗ and if the starting vector 𝑥 (0) ∈ 𝐴𝑇R𝑀 , then the solution is of
minimal norm.

Proof: Let 𝑥 be a solution of 𝐴𝑥−𝑏, then, using the abbreviation 𝑗 = 𝑗 (𝑛), we have

4And usually the system matrices of tomography have neither of these properties.
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for 𝑛 ∈ N,���𝑥 (𝑛) − 𝑥���2
2
=

�����𝑥 (𝑛−1) + 1��𝑎 𝑗 ��22 𝑎 𝑗
(
𝑏 𝑗 − 𝑎𝑇𝑗 𝑥 (𝑛−1)

)
− 𝑥

�����2
2

=

���𝑥 (𝑛−1) − 𝑥���2
2
+ 2

(
𝑥 (𝑛−1) − 𝑥

)𝑇
𝑎 𝑗��𝑎 𝑗 ��22

(
𝑏 𝑗 − 𝑎𝑇𝑗 𝑥 (𝑛−1)

)
+

(
𝑏 𝑗 − 𝑎𝑇𝑗 𝑥 (𝑛−1)

)2��𝑎 𝑗 ��42 |𝑎 𝑗 |22

=

���𝑥 (𝑛−1) − 𝑥���2
2
− 2

(
𝑏 𝑗 − 𝑎𝑇𝑗 𝑥 (𝑛−1)

)2��𝑎 𝑗 ��22 +

(
𝑏 𝑗 − 𝑎𝑇𝑗 𝑥 (𝑛−1)

)2��𝑎 𝑗 ��22
=

���𝑥 (𝑛−1) − 𝑥���2
2
− 1��𝑎 𝑗 ��22

���𝑎 𝑗 (𝑏 𝑗 − 𝑎𝑇𝑗 𝑥 (𝑛−1))���22
|𝑎 𝑗 |22

=

���𝑥 (𝑛−1) − 𝑥���2
2
−

��𝑥 (𝑛) − 𝑥 (𝑛−1) ��22
|𝑎 𝑗 |22

.

Therefore, ���𝑥 (𝑛) − 𝑥���2
2
=

���𝑥 (𝑛−1) − 𝑥���2
2
−

��𝑥 (𝑛) − 𝑥 (𝑛−1) ��22
|𝑎 𝑗 (𝑛) |22

(5.2.6)

yields that the sequence |𝑥 (𝑛)−𝑥 |2 is monotonically decreasing, strictly if 𝑎𝑇
𝑗
𝑥 (𝑛−1) ≠

𝑏 𝑗 , and therefore ist must converge for any 𝑥 (0) since it is bounded from below by
0. This implies that

lim
𝑛→∞

��𝑥 (𝑛) − 𝑥 (𝑛−1) ��22
|𝑎 𝑗 (𝑛) |42

= 0 = lim
𝑛→∞

���𝑥 (𝑛) − 𝑥 (𝑛−1) ���
2
, (5.2.7)

and since |𝑥 (𝑛) |2 is bounded, there exists a subsequence 𝑘 (𝑛) such that 𝑥𝑘 (𝑛) → 𝑥∗

for some 𝑥∗ ∈ R𝑁 .
Since ���𝑥𝑘 (𝑛)+ℓ − 𝑥∗���

2
≤

ℓ∑︁
𝑗=0

���𝑥𝑘 (𝑛)+ 𝑗+1 − 𝑥𝑘 (𝑛)+ 𝑗 ���
2︸                         ︷︷                         ︸

→0

+
���𝑥𝑘 (𝑛) − 𝑥∗���

2︸        ︷︷        ︸
→0

→ 0,

it also follows that 𝑥𝑘 (𝑛)+ℓ → 𝑥∗ for any ℓ ∈ N. Now we make use of the cyclic
version of the algorithm and consider the sequence 𝑘 (𝑛) modulo 𝑁 ; since there
are only finitely many possibilities, the sequence 𝑘 (𝑛) must contain infinitely many
values of the form 𝑘 (𝑛) = 𝑁 𝑘′(𝑛) + 𝑚 for at least one 𝑚 ∈ Z𝑁 . For all of them, we
have that

𝑏𝑚 = 𝑎𝑇𝑚𝑥
𝑁 𝑘 ′ (𝑛)+𝑚 → 𝑎𝑇𝑚𝑥

∗,

hence (𝐴𝑥∗)𝑚 = 𝑏𝑚. Passing to the sequence 𝑘 (𝑛) +ℓ, we get (𝐴𝑥∗)𝑚+ℓ = 𝑏𝑚+ℓ where
the summation in the index takes place in Z𝑁 . Hence 𝐴𝑥∗ = 𝑏.

Now let 𝑥′ be the limit of another convergent subsequence and consider the
sequence ���𝑥 (𝑛) − 𝑥∗���

2
−

���𝑥 (𝑛) − 𝑥′���
2

(5.2.8)
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which converges to a unique limit due to (5.2.6) since both sequences converge
individually. But for the subsequence converging to 𝑥∗ the limit of (5.2.8) is −|𝑥∗ −
𝑥′|2 while for the one converging to 𝑥′ it is |𝑥′ − 𝑥∗ |2 = |𝑥∗ − 𝑥′|2, which gives
0 = |𝑥∗− 𝑥′|2, and the limit is independent of the subsequence and satsfies 𝐴𝑥∗ = 𝑏.
Since the sequence is bounded and all convergent subsequences have the same
limit, it finally follows that

lim
𝑛→∞

𝑥 (𝑛) = 𝑥∗, 𝐴𝑥∗ = 𝑏. (5.2.9)

It remains to prove the minimality of the norm. To that end we note that 𝑥 (0) ∈
𝐴𝑇R𝑀 implies that 𝑥 (𝑛) ∈ 𝐴𝑇R𝑀 , 𝑛 ∈ N, since the update step (5.2.3) only adds
multiples of rows of 𝐴. Hence, 𝑥∗ = 𝐴𝑇 𝑦∗ for some 𝑦∗ ∈ R𝑀 and for any solution 𝑥
of 𝐴𝑥 = 𝑏 we have that

𝐴𝑥 = 𝑏 = 𝐴𝑥∗ = 𝐴𝐴𝑇 𝑦∗ ⇒ 0 = 𝐴

(
𝑥 − 𝐴𝑇 𝑦∗

)
so that 𝑦∗ is the least squares solution of 𝐴𝑇 𝑦 = 𝑥 or the projection of 𝑥 on 𝐴𝑇R𝑀

and hence of smaller or the same norm. □

Remark 5.2.6. Since trivially 0 ∈ 𝐴𝑇R𝑀 for any matrix 𝐴 ∈ R𝑀×𝑁 , the Kaczmarz
algorithm always converges to a minimal norm solution if 𝑥 (0) = 0.

Remark 5.2.7. From the proof we can extract two important ingredients that make
the Kaczmarz algorithm work.

1. The equation 𝑗 (𝑛) has to be chosen in such a way that the update step really
modifies 𝑥 (𝑛) which requires that

𝑏 𝑗 (𝑛) − 𝑎𝑇𝑗 (𝑛)𝑥
(𝑛−1) ≠ 0.

If we could find no such 𝑗 (𝑛), then 𝐴𝑥 (𝑛−1) = 𝑏 and the problem has been
completely solved already.

2. The squared improvement towards a solution 𝑥 is

𝛾 𝑗 :=

(
𝑏 𝑗 − 𝑎𝑇𝑗 𝑥 (𝑛−1)

)2��𝑎 𝑗 ��22 =

(
𝑏 𝑗

|𝑎 𝑗 |2
−
𝑎𝑇
𝑗
𝑥 (𝑛−1)

|𝑎 𝑗 |2

)2
. (5.2.10)

which is the gain of the scaled system whose rows are unit vectors. In order
to find best directions, these numbers have to be checked. It is an advantage
in terms of performance to precompute or at least cache these norms or to
compute the normalized versions.

3. It is impossible that 𝑗 (𝑛 + 1) = 𝑗 (𝑛), so the projection changes is every step.

4. To ensure that the solution satisfied at the equations, one has to guarantee
that all 𝑗 = 1, . . . , 𝑀 appear infinitely many times in the sequence 𝑗 (𝑛).
Even if the sequence 𝑘 (𝑛) may only have one accumulation point, the shifted
sequences 𝑘 (𝑛) + ℓ, ℓ ∈ Z𝑀 , will take care of the other equations.
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5.2 Naive Kaczmarz

Figure 5.2.2: An overdetermined system of three equations in 2 variables that does not
have a solution. Then it can happen that the sequence of projections cycles
between the lines and thus never converges.

5. The existence of a solution is fundamental for the convergence of the al-
gorithm. This is not only a technical issue of the proof. Fig. 5.2.2 shows
a simple example where the algorithm will not converge in the case of an
overdetermined system without a solution.

Example 5.2.8. The easiest way to mess up the algorithm would be to take 𝑗 (𝑛) = 𝑗

for some fixed 𝑗 . We then have that 𝑥 (𝑛) = 𝑥 (1) which obviously converges, but can
only guarantee that (𝐴𝑥)1 = 𝑏1.

Remark 5.2.9 (Computational effort of the Kaczmarz algorithm). Let us have a
brief look at the number of computations occuring in the Kaczmarz algorithm:

1. Any evaluation of the stepwidth

𝛿 𝑗 :=
𝑏 𝑗 − 𝑎𝑇𝑗 𝑥 (𝑛−1)

|𝑎 𝑗 |22

takes 2𝑁 operations for the inner product 𝑎𝑇
𝑗
𝑥 (𝑛−1) and maybe the same for

computing5 |𝑎 𝑗 |22. Together with one subtraction and the division the com-
plete effort is 4𝑁 + 3 or 2𝑁 + 3 depending on whether |𝑎 𝑗 |22 is precomputed.

2. Precomputaion of |𝑎 𝑗 |22 can be avoided by scaling the system which could
actually be done “on the fly” when accessing a row for the first time.

3. The update step 𝑥 (𝑛) = 𝑥 (𝑛−1) + 𝛿 𝑗 𝑎 𝑗 also consist of 2𝑁 operations.

4. In summary, a full cycle of the Kaczmarz algorithm costs 4𝑀𝑁 or 6𝑀𝑁
operations6.

5So precomputing or caching could accelerate the algorithm by a factor of 2.
6Keep in mind, however, that we do not consider the effort of generating the row 𝑎 𝑗 or handling

the storage.
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5 Algebraic Reconstruction Techniques

The fact that a full cycle of the Kaczmarz algorithm can be really costly is well-
known and it appears to be necessary since otherwise we cannot guarantee that we
really get convergence in all components. Therefore, there are different selection
strategies for 𝑗 (𝑛), the simplest being a random choice; in fact, this strategy even
works surprisingly well, but cannot ensure convergence. Another strategy is more
successful but not for free.

Definition 5.2.10. The pivot 𝑗∗ ∈ {1, . . . , 𝑀}

𝛾 𝑗∗ = max
𝑗=1,...,𝑀

𝛾 𝑗 = max
𝑗=1,...,𝑀

(
𝑏 𝑗 − 𝑎𝑇𝑗 𝑥 (𝑛−1)

)2��𝑎 𝑗 ��22 (5.2.11)

indexes the equation such that the (quadratic) gain���𝑥 (𝑛−1) − 𝑥���2
2
−

���𝑥 (𝑛) − 𝑥���2
2

is maximized. The pivoted Kaczmarz algorithm uses 𝑗 (𝑛) = 𝑗∗.

The pivoted Kaczmarz algorithm searches 𝑀 values 𝛾 𝑗 , so one step costs 2𝑀𝑁
or 4𝑀𝑁 operations which is just 1

2 or 2
3 of the effort for the full cycle. However, the

search operations can be performed in parallel which could speed up the process
significantly.

Theorem 5.2.11. If the system 𝐴𝑥 = 𝑏 has a solution, then the pivoted Kaczmarz algo-
rithm converges to a solution 𝑥∗.

Proof: Instead of 𝐴𝑥 = 𝑏 we consider the scaled system

𝐴′𝑥 =:
©«

1
|𝑎1 |22

. . .
1
|𝑎𝑀 |22

ª®®®¬ 𝐴𝑥 =
©«

1
|𝑎1 |22

. . .
1
|𝑎𝑀 |22

ª®®®¬ 𝑏 =: 𝑏′,

and note that because of (5.2.10), pivoting chooses the same sequence 𝑗 (𝑛) for
𝐴′𝑥 = 𝑏′. By pivoting, the sequence |𝑥 (𝑛) − 𝑥 |22 decays in a strictly monotonic way,
hence

0 = lim
𝑛→∞

���𝑏′𝑗∗ (𝑛) − 𝑎𝑇𝑗∗ (𝑛)𝑥 (𝑛−1) ��� = lim
𝑛→∞

max
𝑗=1,...,𝑀

���(𝐴′𝑥 (𝑛−1) − 𝑏′) 𝑗 ��� = lim
𝑛→∞
|𝐴′𝑥 (𝑛) − 𝑏 |∞,

hence at least a subsequence of 𝑥 (𝑛) converges to a solution. That all subsequences
converge to the same limit follows by the same argument based on (5.2.8) as in the
proof of Theorem 5.2.5. And clearly 𝐴𝑥 = 𝑏 if and only if 𝐴′𝑥 = 𝑏′. □

Since parallelization capabilities are usually limited in practice, one could also
incorporate batch pivoting by decomposing {1, . . . , 𝑀} = 𝐽1∪· · ·∪ 𝐽𝑛 and cycle over
the 𝑛 pivots

𝛾 𝑗∗
𝑘
= max

𝑗∈𝐽𝑘
𝛾 𝑗 , 𝑘 = 1, . . . , 𝑛.

Exercise 5.2.1 Prove that batch pivoting converges. ♦
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5.3 SOR Methods for the Kaczmarz Algorithm

5.3 SOR Methods for the Kaczmarz Algorithm

The Kaczmarz algorithm can be related to relaxation methods which extends to
an algorithm with a defined behavior even if the system 𝐴𝑥 = 𝑏 has no solution. In
presenting this method, we follow the exposition from (Natterer, 1986). Here we
decompose the system matrix 𝐴 into blocks of the form

𝐴 =
(
𝐴 𝑗 : 𝑗 = 1, . . . , 𝑚

)
=

©«
𝐴1
...

𝐴𝑚

ª®®¬ , 𝐴 𝑗 ∈ R𝑀 𝑗×𝑁 ,
𝑚∑︁
𝑗=1

𝑀 𝑗 = 𝑀. (5.3.1)

In the preceding section we considered the special case 𝑀 𝑗 = 1 and 𝑚 = 𝑀 .
Moreover, we assume that 𝐴 𝑗R𝑁 = R𝑀 𝑗 which means that 𝑀 𝑗 ≤ 𝑁 and that the
matrices 𝐴 𝑗 all are of full rank. This can also be expressed as the linear map
𝐴 : R𝑁 → R𝑀 𝑗 being surjective or onto. The linear system to be solved now takes
the form

𝐴 𝑗𝑥 = 𝑏 𝑗 , 𝑗 = 1, . . . , 𝑚. (5.3.2)

Let 𝑃 𝑗 : R𝑁 → R𝑁 denote the orthogonal projections onto the affine subspace
𝐴 𝑗𝑥 = 𝑏 𝑗 , i.e.,

𝐴 𝑗𝑃 𝑗𝑥 = 𝑏 𝑗 , 𝑃 𝑗𝑥 = 𝑥 + 𝐴𝑇𝑗 𝑦, 𝑦 ∈ R𝑀 𝑗 . (5.3.3)

The second condition is due to orthogonality7: 𝑥 − 𝑃 𝑗𝑥 ∈ (ker 𝐴)⊥ = span 𝐴𝑇 . This
implies that

𝑏 𝑗 = 𝐴 𝑗

(
𝑥 + 𝐴𝑇𝑗 𝑦

)
= 𝐴 𝑗𝑥 + 𝐴 𝑗 𝐴

𝑇
𝑗︸︷︷︸

∈R𝑀𝑗×𝑀𝑗

𝑦 ⇔ 𝑦 =

(
𝐴 𝑗 𝐴

𝑇
𝑗

)−1
(𝑏 𝑗 − 𝐴 𝑗𝑥);

our assumption that 𝐴 𝑗 has full rank yields that 𝐴 𝑗 𝐴𝑇𝑗 is a symmetric and strictly
positive matrix which has an inverse. This leads to the modified update step

𝑥 ↦→ 𝑃 𝑗𝑥 = 𝑥 + 𝐴𝑇𝑗
(
𝐴 𝑗 𝐴

𝑇
𝑗

)−1
(𝑏 𝑗 − 𝐴 𝑗𝑥), (5.3.4)

which generalizes (5.2.3).

Exercise 5.3.1 Show that (5.3.4) and (5.2.3) coincide for 𝑀 𝑗 = 1. ♦

Remark 5.3.1. The formula (5.3.4) is not a way to really compute the update as
the computation of matrix inverses is inefficient and numerically unstable. The
same holds true for the explicit computation of 𝐴 𝑗 𝐴𝑇𝑗 which leads to a quadrati-
cally conditioned system of equations. What one is really doing is first compute
the residual 𝑟 = 𝑏 𝑗 − 𝐴 𝑗𝑥, then solve the system 𝐴 𝑗 𝐴

𝑇
𝑗
𝑦 = 𝑟 based on a 𝑄𝑅 factor-

ization of 𝐴 𝑗 only and finally compute 𝐴𝑇
𝑗
𝑦. Note that, like the norms |𝑎 𝑗 |2 in the

previous section, the factorizations of the 𝐴 𝑗 can be precomputed to speed up the
computations.

7And the classical result R𝑛 = ker 𝐴 ⊕ span 𝐴𝑇 whenever 𝐴 ∈ R𝑚×𝑛 has full rank.
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5 Algebraic Reconstruction Techniques

Now, we use a slightly different approach and also restrict ourselves to the cyclic
version of the algorithm by combining 𝑚 successive steps into a single one.

Definition 5.3.2. For a given relaxation parameter 𝜔 ∈ (0, 2), we define the
relaxation of the projection as

𝑃 𝑗 ,𝜔 := (1 − 𝜔)𝐼 + 𝜔𝑃 𝑗 . (5.3.5)

If 𝜔 < 1 one speaks of underrelaxation, for 𝜔 > 1 of overrelaxation. Moreover,
we define

𝑃𝜔 = 𝑃𝑚,𝜔 · · · 𝑃1,𝜔. (5.3.6)

Relaxation is in some way compensating (for 𝜔 < 1) or overdoing (for 𝜔 > 1)
the improvement provided by the projection. For 𝜔 = 1 it reduces to the standard
algorithm. Moreover, the definition (5.3.6) simply combines all 𝑚 relaxed projec-
tions into a single projection step, so we consider a cyclic version of the Kaczmarz
algorithm. The convergence indeed looks familiar to us.

Theorem 5.3.3. If the problem 𝐴𝑥 = 𝑏 has a solution and 𝑥 (0) ∈ 𝐴𝑇R, then, for any
0 < 𝜔 < 2, the sequence

𝑥 (𝑛+1) = 𝑃𝜔𝑥
(𝑛) (5.3.7)

of the cyclic relaxed Kaczmarz algorithm converges to a solution 𝑥∗ of minimal norm, i.e.,
𝐴𝑥∗ = 𝑏 and 𝐴𝑥 = 𝑏 implies |𝑥 |2 ≥ |𝑥∗ |2.

Assume that 𝑥∗ ∈ R𝑁 is a solution of 𝐴𝑥 = 𝑏, hence of 𝐴 𝑗𝑥∗ = 𝑏 𝑗 , then the
iteration (5.3.4) takes the form

𝑃 𝑗𝑥 = 𝑥 + 𝐴𝑇𝑗
(
𝐴 𝑗 𝐴

𝑇
𝑗

)−1
𝐴 𝑗 (𝑥∗ − 𝑥) =: 𝑥 +𝑄 𝑗 (𝑥∗ − 𝑥), (5.3.8)

where8

𝑄 𝑗 := 𝐴𝑇𝑗
(
𝐴 𝑗 𝐴

𝑇
𝑗

)−1
𝐴 𝑗 , 𝑗 = 1, . . . , 𝑚,

now defines a linear projection with

𝑄2 = 𝑄𝑇𝑗𝑄 𝑗 = 𝐴
𝑇
𝑗 (𝐴 𝑗 𝐴𝑇𝑗 )−𝑇 𝐴 𝑗 𝐴𝑇𝑗 (𝐴 𝑗 𝐴𝑇𝑗 )−1𝐴 𝑗 = 𝑄 𝑗 .

We will continued to work with the linear projections 𝑄 𝑗 and define, in the same
way as in (5.3.5) and (5.3.6) the matrices 𝑄 𝑗 ,𝜔 and 𝑄𝜔.

Definition 5.3.4. The operator norm of a matrix 𝐴 ∈ R𝑝×𝑞 is defined as

∥𝐴∥ := ∥𝐴∥2 := max
𝑥≠0

|𝐴𝑥 |2
|𝑥 |2

= max
|𝑥 |2=1

|𝐴𝑥 |2. (5.3.9)

8Do not make the mistake to compute

𝐴𝑇𝑗

(
𝐴 𝑗𝐴

𝑇
𝑗

)−1
𝐴 𝑗 = 𝐴

𝑇
𝑗 𝐴
−𝑇
𝑗 𝐴−1𝑗 𝐴 𝑗 = 𝐼,

which is only admissible if 𝐴 𝑗 is square and nonsingular, as this never happens in the situations
we consider.
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5.3 SOR Methods for the Kaczmarz Algorithm

Since9

∥𝑄∥ = ∥𝑄2∥ ≤ ∥𝑄∥2,

it follows that10

∥𝑄 𝑗 ∥ ≤ 1, 𝑗 = 1, . . . , 𝑚, (5.3.10)

Since

|𝑄 𝑗 ,𝜔𝑥 |22 = 𝑥
𝑇𝑄𝑇𝑗,𝜔𝑄 𝑗 ,𝜔𝑥 = 𝑥

𝑇
(
(1 − 𝜔)𝐼 + 𝜔𝑄 𝑗

)2
𝑥

= (1 − 𝜔)2 |𝑥 |22 + 2𝜔(1 − 𝜔) 𝑥
𝑇𝑄 𝑗𝑥︸ ︷︷ ︸

=𝑥𝑇𝑄2
𝑗
𝑥

+𝜔2 𝑥𝑇𝑄2
𝑗𝑥︸ ︷︷ ︸

=|𝑄 𝑗𝑥 |22

= |𝑥 |22 −
(
2𝜔 − 𝜔2

)
+

(
2𝜔(1 − 𝜔) + 𝜔2

)
|𝑄 𝑗𝑥 |22 = |𝑥 |

2
2 + 𝜔(2 − 𝜔)

(
|𝑄 𝑗𝑥 |22 − |𝑥 |

2
2

)
,

i.e.,

|𝑄 𝑗 ,𝜔𝑥 |22 − |𝑥 |
2
2 = 𝜔(2 − 𝜔)

(
|𝑄 𝑗𝑥 |22 − |𝑥 |

2
2

)
. (5.3.11)

Since ∥𝑄 𝑗 ∥ ≤ 1, for |𝑥 |2 ≤ 1, hence |𝑄 𝑗𝑥 | ≤ 1, (5.3.11) yields |𝑄 𝑗 ,𝜔𝑥 |22 − |𝑥 |
2
2 ≤ 0,

and therefore 𝑄 𝑗 ,𝜔

 ≤ 1, 0 ≤ 𝜔 ≤ 2, (5.3.12)

which also explains the restrictions on 𝜔. The contractivity of the linear projections
can now be used for the convergence proof of Theorem 5.3.3.

This, however, needs some preliminary observations. The first says that for
sequences where 𝑄𝜔 is not contractive, the limit of the iteration is the identity.

Lemma 5.3.5. If 0 < 𝜔 < 2 and 𝑥 (𝑛) is a sequence such that

|𝑥 (𝑛) |2 ≤ 1, lim
𝑛→∞

���𝑄𝜔𝑥 (𝑛) ���
2
= 1, (5.3.13)

then
lim
𝑛→∞
(𝐼 −𝑄𝜔) 𝑥 (𝑛) = 0. (5.3.14)

Proof: We use induction on the number 𝑚 of factors of 𝑄𝜔. For11 𝑚 = 1, we have
by (5.3.11) that���(𝐼 −𝑄𝜔) 𝑥 (𝑛) ���2

2
=

���(𝐼 − (1 − 𝜔)𝐼 − 𝜔𝑄1) 𝑥 (𝑛)
���2
2

= 𝜔2
���(𝐼 −𝑄1)𝑥 (𝑛)

���2
2
= 𝜔2

(���𝑥 (𝑛) ���2
2
−

���𝑄1𝑥
(𝑛)

���2
2

)
=

𝜔

2 − 𝜔

(���𝑥 (𝑛) ���2
2
−

���𝑄1,𝜔𝑥
(𝑛)

���2
2

)
=

𝜔

2 − 𝜔

(���𝑥 (𝑛) ���2
2
−

���𝑄𝜔𝑥 (𝑛) ���2
2

)
,

hence, if
��𝑄𝜔𝑥 (𝑛) ��22 ≤ ��𝑥 (𝑛) ��22 ≤ 1 coverges to 1 this implies (5.3.14).

9The operator norm is submultiplicative, i.e., ∥𝐴𝐵∥ ≤ ∥𝐴∥∥𝐵∥; try to verify this by yourself.
10Projections are weakly contractive.
11This is the SOR algorithm for a single matrix without any cylcles.
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For the induction step 𝑚 − 1→ 𝑚, we write

𝑄𝜔 = 𝑄𝑚,𝜔𝑄𝑚−1,𝜔 · · ·𝑄1,𝜔 =: 𝑄𝑚,𝜔𝑄′𝜔

and note that

𝐼 −𝑄𝜔 = 𝐼 −𝑄′𝜔 +
(
𝑄′𝜔 −𝑄𝜔

)
=

(
𝐼 −𝑄′𝜔

)
−

(
𝐼 −𝑄𝑚,𝜔

)
𝑄′𝜔. (5.3.15)

Since ���𝑄𝜔𝑥 (𝑛) ���
2
=

���𝑄𝑚,𝜔𝑄′𝜔𝑥 (𝑛) ���
2
≤ ∥𝑄𝑚,𝜔∥︸  ︷︷  ︸

≤1

���𝑄′𝜔𝑥 (𝑛−1) ���
2
≤

���𝑥 (𝑛−1) ���
2
, (5.3.16)

the assumptions (5.3.13) ensure that
��𝑄′𝜔𝑥 (𝑛−1) ��2 → 1 and thus (𝐼 −𝑄′𝜔)𝑥 (𝑛) → 0 by

the induction hypothesis. Moreover, setting 𝑦 (𝑛) = 𝑄′𝜔𝑥
(𝑛), (5.3.16) yields that

1←
���𝑄𝜔𝑥 (𝑛) ���

2
≤

���𝑄𝑚,𝜔𝑦 (𝑛) ���
2
≤

���𝑦 (𝑛) ���
2
≤

���𝑥 (𝑛−1) ���
2
,

and therefore, by the case 𝑚 = 1,
(
𝐼 −𝑄𝑚,𝜔

)
𝑦 (𝑛) → 0. Substituing this into (5.3.15)

advances the induction hypothesis and proves the claim. □

Definition 5.3.6. The kernel ker 𝐴 of a matrix 𝐴 is defined as the subspace

ker 𝐴 := {𝑥 ∈ R𝑛 : 𝐴𝑥 = 0} . (5.3.17)

Lemma 5.3.7. For 0 < 𝜔 < 2, the sequence 𝑄𝑘
𝜔, 𝑘 ∈ N0, converges to the orthogonal

projection matrix 𝑇 onto ker(𝐼 −𝑄𝜔).

Proof: Being a projection means that (𝐼 − 𝑇) (𝐼 − 𝑄𝜔) = (𝐼 − 𝑄𝜔) and mapping
to the kernel means (𝐼 − 𝑄𝜔)𝑇 = 0. The first of these identities is equivalent to
𝑇 (𝐼 −𝑄𝜔) = 0, hence the two identities are in turn equivalent to

𝑇𝑄𝜔 = 𝑇 = 𝑄𝜔𝑇. (5.3.18)

Hence
𝑇 = 𝑇𝑄𝑘

𝜔 = 𝑄𝜔𝑇𝑄
𝑘−1
𝜔 = · · · = 𝑄𝑘

𝜔𝑇, 𝑘 ∈ N0,

and since for any 𝑥 ∈ R𝑛 the sequence��𝑄𝑘
𝜔𝑥

��
2 = ∥𝑄𝜔∥︸︷︷︸

≤1

��𝑄𝑘−1
𝜔 𝑥

��
2 ≤

��𝑄𝑘−1
𝜔 𝑥

��
2

is decreasing and bounded from below by 0, it must converge to some limit

𝑞 = lim
𝑘→∞

��𝑄𝑘
𝜔𝑥

��
2 .

If 𝑞 = 0 then
𝑇𝑥 = lim

𝑘→∞
𝑇𝑄𝑘

𝜔𝑥 = 0 = lim
𝑘→∞

𝑄𝑘
𝜔𝑥
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as claimed. If 𝑞 > 0, on the other hand, we consider the bounded sequence

𝑔𝑘 :=
𝑄𝑘
𝜔𝑥��𝑄𝑘
𝜔𝑥

��
2

, 𝑘 ∈ N,

with |𝑔𝑘 |2 = 1 and

|𝑄𝜔𝑔𝑘 |2 =
��𝑄𝑘+1

𝜔 𝑥
��
2��𝑄𝑘

𝜔𝑥
��
2

→ 𝑞

𝑞
= 1, 𝑘 →∞.

Hence, by the preceding Lemma 5.3.5,

0 = lim
𝑘→∞
(𝐼 −𝑄𝜔)𝑔𝑘 = lim

𝑘→∞
(𝐼 −𝑄𝜔)𝑄𝑘

𝜔𝑥 = lim
𝑘→∞

𝑄𝑘
𝜔 (𝐼 −𝑄𝜔)𝑥.

Hence 𝑄𝑘
𝜔𝑦 → 0 for any 𝑦 of the form (𝐼 − 𝑄𝜔)𝑥 while for 𝑥 ∈ ker(𝐼 − 𝑄𝜔), i.e.,

𝑄𝜔𝑥 = 𝑥, we trivially have that 𝑄𝑘
𝜔 = 𝐼. □

Lemma 5.3.8. For 0 < 𝜔 < 2,

ker (𝐼 −𝑄𝜔) =
𝑚⋂
𝑗=1

(
𝐼 −𝑄 𝑗

)
. (5.3.19)

Proof: If 𝑄 𝑗 ,𝜔𝑥 = 𝑥, 𝑗 = 1, . . . , 𝑚, then clearly 𝑄𝜔𝑥 = 𝑥, and the inclusion ⊇ is
settled. Suppose now that 𝑄𝜔𝑥 = 𝑥, then

|𝑥 |2 = |𝑄𝜔𝑥 |2 = ©«
𝑚∏
𝑗=2

∥𝑄 𝑗 ,𝜔∥ª®¬ |𝑄1,𝜔𝑥 |2 ≤ |𝑄1,𝜔𝑥 |2 ≤ |𝑥 |2,

hence |𝑄1,𝜔𝑥 |22−|𝑥 |
2
2 = 0 from which (5.3.11) allows us to conclude that |𝑄1𝑥 |22−|𝑥 |

2
2 =

0, i.e., 𝑥 ∈ ker(𝐼 −𝑄1) or 𝑥 = 𝑄1𝑥 = 𝑄1,𝜔𝑥. But then, as above,

|𝑥 |2 = |𝑄𝜔𝑥 |2 =
��𝑄𝑚,𝜔 · · ·𝑄2,𝜔𝑄1,𝜔𝑥

��
2 =

��𝑄𝑚,𝜔 · · ·𝑄2,𝜔𝑥
��
2 ,

and thus 𝑥 ∈ ker(𝐼 − 𝑄2). Iterating the argument, we thus get 𝑥 ∈ ker(𝐼 − 𝑄 𝑗 ),
𝑗 = 1, . . . , 𝑚, which is the inclusion ⊆. □

Now, we can complete the convergence proof for the Kaczmarz algorithm.
Proof of Theorem 5.3.3: Let 𝑥∗ be an arbitrary solution of 𝐴𝑥 = 𝑏, then

𝑃 𝑗𝑥 − 𝑥∗ = 𝑄 𝑗 (𝑥 − 𝑥∗), 𝑃 𝑗 ,𝜔𝑥 − 𝑥∗ = 𝑄 𝑗 ,𝜔 (𝑥 − 𝑥∗), 𝑃𝜔𝑥 − 𝑥∗ = 𝑄𝜔 (𝑥 − 𝑥∗).

Hence,
𝑃𝑘𝜔𝑥 = 𝑥

∗ +𝑄𝑘
𝜔 (𝑥 − 𝑥∗), (5.3.20)

and, by Lemma 5.3.7,

𝑥 (𝑛) = 𝑃𝑛𝜔𝑥
(0) = 𝑥∗ +𝑄𝑛𝜔

(
𝑥 (0) − 𝑥∗

)
→ 𝑥∗ + 𝑇

(
𝑥 (0) − 𝑥∗

)
= (𝐼 − 𝑇)𝑥∗ + 𝑇𝑥 (0) ,

where 𝑇 projects onto

ker 𝐴 =

𝑚⋂
𝑗=1

ker 𝐴 𝑗 ,

and if 𝑥 (0) = 𝐴𝑇 𝑦 for some 𝑦, then 𝑇𝑥 (0) = 0 and the algorithm converges to the
minimal norm projection (𝐼 − 𝑇)𝑥∗. □
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Remark 5.3.9. The convergence rate of the Kaczmarz algorithm is geometric, or,
as one would say in Numerical Analysis, linear. From (5.3.20) we know that���𝑥 (𝑛) − 𝑥∗���

2
=

���𝑄𝑛𝜔 (
𝑥 (0) − 𝑥∗

)���
2

From Lemma 5.3.5 we know that the only possible eigenvalue 𝜆 of 𝑄𝜔 with |𝜆 | = 1
is 𝜆 = 1 and that all other eigenvalues 𝜆 satisfy |𝜆 | < 1. Let 𝑢 be the respective
normalized eigenvector, 𝑄𝜔𝑢 = 𝑢, |𝑢 |2 = 1, and write

𝑥 (0) − 𝑥∗ = 𝛼𝑢 + 𝑣, 𝑣 ∈ 𝑢⊥,

then |𝑄𝜔𝑣 |2 ≤ 𝜆′|𝑣 |2, where 𝜆′ < 1 is the second largest eigenvalue of 𝑄𝜔, and
therefore ���𝑥 (𝑛) − 𝑥∗���

2
=

��𝑄𝑛𝜔 (𝛼𝑢 + 𝑣)��2 = ��𝛼𝑢 +𝑄𝑛𝜔𝑣��2 ≥ 𝛼 |𝑢 |2︸︷︷︸
=1

−
��𝑄𝑛𝜔𝑣��2 ,

hence
𝛼 ≤

���𝑥 (𝑛) − 𝑥∗���
2
+ (𝜆′)𝑛 |𝑣 |2 → 0,

i.e., 𝛼 = 0 and ���𝑥 (𝑛) − 𝑥∗���
2
≤ (𝜆′)𝑛 |𝑣 |2,

which is linear convergence.

Remark 5.3.10. Although the convergence takes place independently of 𝜔, over-
relaxation usually accelerated the convergence, often by chosing 𝜔 ∼ 1.5.

5.4 More on SOR

Now, we will consider aspects of the SOR Kaczmarz that are of a more theoretical
nature. To that end, we assume that the algorithm was started with a proper
initialization 𝑥 (0) = 𝐴𝑇 𝑦 (0), which leads to 𝐴𝑇 𝑦 (𝑛) := 𝑥 (𝑛) ∈ 𝐴𝑇R𝑀 . With the block
representation

𝑦 =
©«
𝑢1
...

𝑢𝑚

ª®®¬ , 𝑢𝑘 ∈ R𝑀𝑘 , hence 𝑥 = 𝐴𝑇 𝑦 =
(
𝐴𝑇1 . . . 𝐴𝑇𝑚

) ©«
𝑢1
...

𝑢𝑚

ª®®¬ =

𝑛∑︁
𝑘=1

𝐴𝑇𝑘𝑢𝑘

we can rewrite the recurrence (5.3.4) for the first 𝑚 steps in two ways as

𝑥 ( 𝑗) = 𝑥 (0) +
𝑗∑︁
𝑘=1

𝐴𝑇𝑘𝑢𝑘

= 𝑃 𝑗 ,𝜔𝑥
( 𝑗−1) = (1 − 𝜔)𝑥 ( 𝑗−1) + 𝜔

(
𝑥 ( 𝑗−1) + 𝐴𝑇𝑗 (𝐴 𝑗 𝐴𝑇𝑗 )−1

(
𝑏 − 𝐴 𝑗𝑥 ( 𝑗−1)

))
= 𝑥 (0) +

𝑗−1∑︁
𝑘=1

𝐴𝑘𝑢𝑘︸             ︷︷             ︸
=𝑥 ( 𝑗−1)

+𝜔 𝐴𝑇𝑗 (𝐴 𝑗 𝐴𝑇𝑗 )−1
(
𝑏 − 𝑥 (0)

)
− 𝜔 𝐴𝑇𝑗 (𝐴 𝑗 𝐴𝑇𝑗 )−1𝐴 𝑗

𝑗−1∑︁
𝑘=1

𝐴𝑘𝑢𝑘 ,
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i.e.,

𝐴𝑇𝑗 𝑢 𝑗 = 𝜔 𝐴
𝑇
𝑗 (𝐴 𝑗 𝐴𝑇𝑗 )−1

(
𝑏 − 𝐴 𝑗𝑥 (0) − 𝐴 𝑗

𝑗−1∑︁
𝑘=1

𝐴𝑇𝑘𝑢𝑘

)
.

Multplying both sides from the left with 𝐴 𝑗 we thus get

𝐴 𝑗 𝐴
𝑇
𝑗 𝑢 𝑗 = 𝜔 𝐴 𝑗 𝐴

𝑇
𝑗 (𝐴 𝑗 𝐴𝑇𝑗 )−1︸             ︷︷             ︸

=𝐼

(
𝑏 − 𝐴 𝑗𝑥 (0) − 𝐴 𝑗

𝑗−1∑︁
𝑘=1

𝐴𝑇𝑘𝑢𝑘

)
,

hence

𝑢 𝑗 = 𝜔(𝐴 𝑗 𝐴𝑇𝑗 )−1
(
𝑏 − 𝐴 𝑗𝑥 (0) − 𝐴 𝑗

𝑗−1∑︁
𝑘=1

𝐴𝑇𝑘𝑢𝑘

)
(5.4.1)

or

©«
𝐴1𝐴

𝑇
1

. . .

𝐴𝑚𝐴
𝑇
𝑚

ª®®¬︸                      ︷︷                      ︸
=:𝐷

𝑦 = 𝜔

(
𝑏 − 𝐴𝑥 (0)

)
− 𝜔

©«
0

𝐴2𝐴
𝑇
1 0

...
. . .

. . .

𝐴𝑚𝐴
𝑇
1 . . . 𝐴𝑚𝐴

𝑇
𝑚−1 0

ª®®®®¬︸                              ︷︷                              ︸
=:𝐿

𝑦. (5.4.2)

Remark 5.4.1. (5.4.1) and (5.4.2) are the relaxation of the (iterative) Jacobi method
for the solution of the symmetric linear system

𝐵𝑦 = 𝑑, 𝐵 := 𝐴𝐴𝑇 =
©«
𝐴1𝐴

𝑇
1 . . . 𝐴1𝐴

𝑇
𝑚

...
. . .

...

𝐴𝑚𝐴
𝑇
1 . . . 𝐴𝑚𝐴

𝑇
𝑚

ª®®¬ , 𝑑 := 𝑏 − 𝐴𝑥 (0) .

The Jacobi method consist of decomposing 𝐵 = 𝐿 + 𝐷 + 𝐿𝑇 where 𝐿 is a lower
triangular matrix and 𝐷 a nonsingular block diagonal one and then iterating

𝑦 (𝑛) = 𝐷−1
(
𝑏 − 𝐿𝑦 (𝑛−1)

)
,

cf. (Golub and van Loan, 1996; Sauer, 2013). In fact, (5.4.2) is the block version of
the algorithm where the iteration is again multiplied by the relaxation parameter
𝜔 ∈ (0, 2), where 𝜔 = 1 is once more the standard case.

Solving in (5.4.2) for 𝑢, we find that

𝑦 = 𝜔 (𝐷 + 𝜔𝐿)−1
(
𝑏 − 𝐴𝑥 (0)

)
which is well defined since 𝐷+𝐿 is a block upper triangular matrix with nonsingular
diagonal blocks. This allows us to rewrite the cyclic Kaczmarz algorithm as

𝑥 (𝑛) = 𝑃𝜔𝑥
(𝑛−1) = 𝑥 (𝑛−1) + 𝐴𝑇 𝑦 (𝑛) = 𝑥 (𝑛−1) + 𝜔𝐴𝑇 (𝐷 + 𝜔𝐿)−1

(
𝑏 − 𝐴𝑥 (𝑛−1)

)
=

(
𝐼 − 𝜔𝐴𝑇 (𝐷 + 𝜔𝐿)−1𝐴

)
𝑥 (𝑛−1) + 𝜔𝐴𝑇 (𝐷 + 𝜔𝐿)−1𝑏 (5.4.3)

=: 𝐵𝜔𝑥
(𝑛−1) + 𝑏𝜔. (5.4.4)
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The goal is now to relate the iteration (5.4.4) to the successive overrelaxation or
SOR method for a symmetric system of the form

𝑏 = 𝐴𝐴𝑇 𝑦 = (𝐿 + 𝐷 + 𝐿𝑇 )𝑦. (5.4.5)

The modified Gauss-Seidel iteration then reads as12

𝑦 (𝑛) = (1 − 𝜔)𝑦 (𝑛−1) + 𝜔𝐷−1
(
𝑏 − 𝐿𝑦 (𝑛) − 𝐿𝑇 𝑦 (𝑛−1)

)
, (5.4.6)

hence

(𝐷 + 𝜔𝐿)𝑦 (𝑛) = 𝜔𝑏 + 𝐷𝑦 (𝑛−1) − 𝜔 (𝐷 + 𝐿𝑇 )︸     ︷︷     ︸
=𝐴𝐴𝑇−𝐿

𝑦 (𝑛−1)

= 𝜔

(
𝑏 − 𝐴𝐴𝑇 𝑦 (𝑛−1)

)
+ (𝐷 + 𝜔𝐿)𝑦 (𝑛−1) ,

and therefore

𝑦 (𝑛) =
(
𝐼 − 𝜔(𝐷 + 𝜔𝐿)−1𝐴𝐴𝑇

)
𝑦 (𝑛−1) + 𝜔(𝐷 + 𝜔𝐿)−1𝑏 =: 𝐶𝜔𝑦 (𝑛−1) + 𝑐𝜔, (5.4.7)

which already looks very much like (5.4.3). In fact, 𝐴𝑇𝐶𝜔 = 𝐵𝜔𝐴
𝑇 and 𝐴𝑇𝑐𝜔 = 𝑏𝜔.

Hence, if we set 𝑥 (𝑛−1) = 𝐴𝑇 𝑦 (𝑛−1) in (5.4.4), then

𝑥 (𝑛) = 𝐵𝜔𝐴
𝑇 𝑦 (𝑛−1) + 𝑏𝜔 = 𝐴𝑇

(
𝐶𝜔𝑦

(𝑛−1) + 𝑐𝜔
)
= 𝐴𝑇 𝑦 (𝑛) ,

hence the iteration (5.4.7) is the restriction of (5.4.4) on 𝐴𝑇R𝑀 .

Remark 5.4.2. It is important to note that in all this derivation we never inverted 𝐴
or 𝐴𝐴𝑇 , we only used 𝐷−1 which is allowed since this is the block diagonal matrix
with diagonal elements 𝐴 𝑗 𝐴𝑇𝑗 and those were assumed to be nonsingular.

There are strong relations between the two iterations.

Lemma 5.4.3 (Properties of the iteration).

1. The iteration (5.4.3)leaves 𝐴𝑇R𝑀 invariant.

2. The eigenspace of 𝐵𝜔 with respect to the eigenvalue 1 is ker 𝐴.

3. All eigenvalues 𝜆 with 𝜆 ≠ 1 of 𝐵𝜔 and 𝐶𝜔 coincide.

Proof: 1) follows since

𝐵𝜔𝐴
𝑇 𝑦 + 𝑏𝜔 = 𝐴𝑇 (𝐶𝜔𝑦 + 𝑐𝜔) ∈ 𝐴𝑇R𝑀 ,

for 2) we note that
𝑥 = 𝐵𝜔𝑥 = 𝑥 − 𝜔𝐴𝑇 (𝐷 + 𝜔𝐿)−1𝐴𝑥

12This can be perfomed efficiently in such a way that any 𝑥 (𝑛)
𝑗

depends only on 𝑥 (𝑛)1 , . . . , 𝑥
(𝑛)
𝑗−1, i.e.,

in a reasonably iterative way.
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if and only if
𝐴𝑇 (𝐷 + 𝜔𝐿)−1𝐴𝑥 = 0 (5.4.8)

which holds for 𝐴𝑥 = 0. Conversely, (5.4.8) implies that

(𝐷 + 𝜔𝐿)−1𝐴𝑥 = 𝑧, 𝑧 ∈ ker 𝐴𝑇 , i.e., 𝐴𝑇 𝑧 = 0,

hence,

𝑧𝑇 (𝐷 + 𝜔𝐿)𝑧 = 𝑧𝑇 𝐴𝑥 = (𝐴𝑇 𝑧)𝑇︸  ︷︷  ︸
=0

𝑥 = 0 = 𝑧𝑇 (𝐷 + 𝜔𝐿)𝑇 𝑧︸            ︷︷            ︸
=(𝑧𝑇 (𝐷+𝜔𝐿)𝑧)𝑇

= 𝑧𝑇
(
𝐷 + 𝜔𝐿𝑇

)
𝑧,

and therefore

0 = 𝑧𝑇
(
2𝐷 + 𝜔𝐿 + 𝜔𝐿𝑇

)
𝑧 = 𝑧𝑇

(
(2 − 𝜔)𝐷 + 𝜔𝐴𝐴𝑇

)
𝑧;

since the matrix inside is symmetric and strictly positive definite, this implies 𝑧 = 0
and also 𝐴𝑥 = (𝐷 +𝜔𝐿)𝑧 = 0. Hence, (5.4.8) holds if and only if 𝐴𝑥 = 0 which can
be rephrased as

ker 𝐴𝑇 ∩ (𝐷 + 𝜔𝐿)−1 𝐴R𝑁 = {0}. (5.4.9)

For 3), we assume that 𝜆 ≠ 1 is an eigenvalue of 𝐵𝜔, i.e., there exists 𝑥 ≠ 0 such
that

𝜆𝑥 = 𝐵𝜔𝑥 =

(
𝐼 − 𝜔𝐴𝑇 (𝐷 + 𝜔𝐿)−1𝐴

)
𝑥, i.e., (1 − 𝜆)𝑥 = 𝜔𝐴𝑇 (𝐷 + 𝜔𝐿)−1𝐴𝑥,

which implies that 𝑥 ∈ 𝐴𝑇R𝑀 ⊥ ker 𝐴. We write 𝑥 = 𝐴𝑇 𝑦, and 𝑥 = 0 together with
(5.4.9) yields that 𝑦 ∈ (𝐷 + 𝜔𝐿)−1 𝐴R𝑁 , hence

𝑥 = 𝐴𝑇 (𝐷 + 𝜔𝐿)−1 𝐴𝑧

for some 𝑧 ≠ 0. Consequently,

0 = 𝐵𝜔𝑥 − 𝜆𝑥 = (𝐵𝜔 − 𝜆𝐼) 𝐴𝑇 (𝐷 + 𝜔𝐿)−1 𝐴𝑧 =
(
𝐵𝜔𝐴

𝑇 − 𝜆𝐴𝑇
)
(𝐷 + 𝜔𝐿)−1 𝐴𝑧

= 𝐴𝑇 (𝐶𝜔 − 𝜆𝐼) (𝐷 + 𝜔𝐿)−1 𝐴𝑧.

Since 𝐶𝜔 (𝐷 + 𝜔𝐿)−1 𝐴R𝑁 ⊆ (𝐷 + 𝜔𝐿)−1 𝐴R𝑁 , again (5.4.9) yields that

(𝐶𝜔 − 𝜆𝐼) (𝐷 + 𝜔𝐿)−1 𝐴𝑧, (5.4.10)

and 𝜆 is an eigenvalue of 𝐶𝜔 with eigenvector (𝐷 + 𝜔𝐿)−1 𝐴𝑧. Conversely, let 𝜆 be
an eigenvalue of 𝐶𝜔 with eigenvector 𝑦, then

(𝐵𝜔 − 𝜆𝐼) 𝐴𝑇 𝑦 = 𝐵𝜔𝐴𝑇 𝑦 − 𝜆𝐴𝑇 𝑦 = 𝐴𝑇𝐶𝜔𝑦 − 𝜆𝐴𝑇 𝑦 = 𝐴𝑇 (𝐶𝜔𝑦 − 𝜆𝑦) = 0

shows that 𝜆 is also an eigenvalue of 𝐵𝜔. □

The lesson from the lemma is the fact that the Kaczmarz iteration (5.4.4) pro-
duces a sequence of elements of 𝐴𝑇R𝑀 and this subspace contains no eigenvectors
for the eigenvalue 1, those are in the orthogonal complement ker 𝐴 - this follows
form the key observation (5.4.9). If we now start the Kaczmarz iteration with
𝑥 (0) = 𝐴𝑇 𝑦 (0), then we produce a sequence of elements of this subspace and now
properties of the restriction of the matrix 𝐵𝜔 to this subspace become relevant.
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Definition 5.4.4. The spectral radius13 𝜌(𝐴) of a square matrix 𝐴 ∈ R𝑛×𝑛 is
defined as

𝜌(𝐴) = max {|𝜆 | : det (𝐴 − 𝜆𝐼) = 0, 𝜆 ∈ C} , (5.4.11)

that is, as the largest modulus of eigenvalues.

The proof of the following lemma is a slight variation of the fact that the Gauss-
Seidel method converges for symmetric positive definite matrices, cf. (Golub and
van Loan, 1996; Sauer, 2013).

Lemma 5.4.5. The restriction 𝐵′𝜔 of 𝐵𝜔 on 𝐴𝑇R𝑀 satisfies 𝜌(𝐵′𝜔) < 1.

Proof: By Lemma 5.4.3, 3), we can also consider the eigenvalues ≠ 1 of 𝐶𝜔, i.e.,

(1 − 𝜆)𝑦 = 𝜔(𝐷 + 𝜔𝐿)−1𝐴𝐴𝑇 𝑦 = (𝐷 + 𝜔𝐿)−1
(
𝜔𝐷 + 𝜔𝐿 + 𝜔𝐿𝑇

)
𝑦

= (𝐷 + 𝜔𝐿)−1
(
𝐷 + 𝜔𝐿 + (𝜔 − 1)𝐷 + 𝜔𝐿𝑇

)
𝑦

= 𝑦 + (𝐷 + 𝜔𝐿)−1
(
(𝜔 − 1)𝐷 + 𝜔𝐿𝑇

)
𝑦,

or
𝜆(𝐷 + 𝜔𝐿)𝑦 =

(
(1 − 𝜔)𝐷 − 𝜔𝐿𝑇

)
𝑦. (5.4.12)

We normalize 𝑦 such that14 |𝑦 |2
𝐷
:= 𝑦𝐻𝐷𝑦 = 1 and multiply (5.4.12) from the left

by 𝑦𝐻 yielding
𝜆(1 + 𝜔 𝑦𝐻𝐿𝑦︸︷︷︸

=:𝑎

) = (1 − 𝜔) − 𝜔 𝑦𝐻𝐿𝑇 𝑦︸ ︷︷ ︸
=𝑎

,

that is, 𝜆(1 + 𝜔𝑎) = 1 − 𝜔 − 𝜔𝑎. Since

0 ≤ 𝑦𝑇 𝐴𝐴𝑇 𝑦 = 𝑦𝑇 (𝐷 + 𝐿 + 𝐿𝑇 )𝑦 = 1 + 𝑎 + 𝑎 = 1 + 2𝛼, 𝑎 = 𝛼 + 𝑖𝛽,

the real part 𝛼 of 𝑎 satisfies 𝛼 ≥ −1
2 . Hence,

|𝜆 |2 = ((1 − 𝜔) − 𝜔𝑎) ((1 − 𝜔) − 𝜔𝑎)(1 + 𝜔𝑎) (1 + 𝜔𝑎)

=
(1 − 𝜔)2 − 2𝜔(1 − 𝜔)𝛼 + 𝜔2(𝛼2 + 𝛽2)

1 + 2𝜔𝛼 + 𝜔2𝛼2 + 𝛽2
=
((1 − 𝜔) − 𝜔𝛼)2 + 𝜔2𝛽2

(1 + 𝜔𝛼)2 + 𝜔2𝛽2
, (5.4.13)

and since

((1 − 𝜔) − 𝜔𝛼)2 − (1 + 𝜔𝛼)2 = 𝜔(𝜔 − 2) − 2𝜔(2 − 𝜔)𝛼 = −𝜔(2 − 𝜔)︸     ︷︷     ︸
>0

(2𝛼 + 1)︸    ︷︷    ︸
≥0

,

the numerator in (5.4.13) is smaller than the denominator and we have that |𝜆 | < 1
whenever 𝛼 > −1

2 , which occurs iff 𝑦 ∈ 𝐴𝑇R𝑀 by means of Lemma 5.4.3. □

13Even if the spectral radius is defined by complex eigenvalues, it can be computed in real terms
as 𝜌(𝐴) = lim ∥𝐴𝑛∥1/𝑛 with an arbitrary matrix norm.

14The eigenvalue as well as the eigenvector can be complex, even if all our matrices were real so
far.
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5.4 More on SOR

Remark 5.4.6. (5.4.13) is the core argument in favor of SOR. The goal is to reduce
the value |𝜆 | for all eigenvalues of modulus < 1 by an appropriate 𝜔. Obviously,
the relationship is far from trivial, but is is easy to see that the value of |𝜆(𝜔) |2

of (5.4.13) is 1 if 𝜔 = 0, 2 while for 𝜔 = 1 it is 𝛼2+𝛽2
(1+𝛼)2+𝛽2 < 1, as long as 𝛼 > −1

2 .
Therefore, the function must assume its minimum for some 𝜔, but to determine
this value, we must know the eigenstructure of 𝐶𝜔 which is impossible to determine
in practice. Nevertheless, there are results and many heuristics, usually 𝜔 ∼ 1.5
seems to be a good choice.

Lemma 5.4.7 (Banach Fixpoint Theorem, adapted). If 𝜌(𝐵′𝜔) < 1 and 𝑥 (0) ∈
𝐴𝑇R𝑀 , then the iteration (5.4.4) converges to a unique fixpoint 𝑥∗ with

(𝐼 − 𝐵𝜔)𝑥∗ = 𝑏𝜔. (5.4.14)

Proof: By Lemma 5.4.3, we know that 𝑥 (0) ∈ 𝐴𝑇R𝑀 implies that15 𝑥 (𝑛) ∈ 𝐴𝑇R𝑀 ,
hence 𝑥 (𝑛) = 𝐵′𝜔𝑥

(𝑛−1) + 𝑏𝜔 for any 𝑛 ∈ N. For convergence, we note that, with
𝜌 := 𝜌(𝐵′𝜔) = ∥𝐵′𝜔∥, that���𝑥 (𝑛+1) − 𝑥 (𝑛) ���

2
=

���𝐵𝜔 (
𝑥 (𝑛) − 𝑥 (𝑛−1)

)���
2
=

���𝐵′𝜔 (
𝑥 (𝑛) − 𝑥 (𝑛−1)

)���
2

≤ ∥𝐵′𝜔∥
���𝑥 (𝑛) − 𝑥 (𝑛−1) ���

2
= 𝜌

���𝑥 (𝑛) − 𝑥 (𝑛−1) ���
2
≤ · · · ≤ 𝜌𝑛

���𝑥 (1) − 𝑥 (0) ���
2
,

hence���𝑥 (𝑛+𝑘) − 𝑥 (𝑛) ���
2
≤

𝑘−1∑︁
𝑗=0

���𝑥 (𝑛+ 𝑗+1) − 𝑥 (𝑛+ 𝑗) ���
2
≤

𝑘−1∑︁
𝑗=0

𝜌𝑛+ 𝑗
���𝑥 (1) − 𝑥 (0) ���

2
≤ 𝜌𝑛

��𝑥 (1) − 𝑥 (0) ��2
1 − 𝜌 ,

which shows that 𝑥 (𝑛) is a Cauchy sequence that converges to a limit 𝑥∗ ∈ 𝐴𝑇R𝑀
which satsfies 𝑥∗ = 𝐵𝜔𝑥∗ + 𝑏𝜔. Since for any two fixpoints 𝑥∗, 𝑥† ∈ 𝐴𝑇R𝑀 ,

|𝑥∗ − 𝑥† |2 =
��𝐵𝜔𝑥∗ + 𝑏𝜔 − 𝐵𝜔𝑥† − 𝑏𝜔�� = ���𝐵′𝜔 (

𝑥∗ − 𝑥†
)���
2
≤ 𝜌 |𝑥∗ − 𝑥† |2,

it follows that |𝑥∗ − 𝑥† |2 = 0 and thus uniqueness. □

Theorem 5.4.8. For any 0 < 𝜔 < 2 and any 𝑥 (0) ∈ 𝐴𝑇R𝑀 , especially for 𝑥 (0) = 0, the
SOR Kaczmarz iteration (5.4.4) converges to a unique limit 𝑥∗ such that

𝐴𝑇 (𝐷 + 𝜔𝐿)−1(𝐴𝑥∗ − 𝑏) = 0 (5.4.15)

that solves If the system 𝐴𝑥 = 𝑏 has a solution, then 𝑥∗ is the solution of minimal norm, if
the problem has no solution, then 𝑥∗ = 𝑥† +𝑂 (𝜔) where

𝑥† = argmin
𝑥∈𝐴𝑇R𝑀

|𝐴𝑥 − 𝑏 |2
𝐷−1 := (𝐴𝑥 − 𝑏)

𝑇𝐷−1(𝐴𝑥 − 𝑏)

15This is a condition in the Banach fix point theorem which is easily overlooked: The iteration has
to map a certain set or space to itself and be a contraction there.
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Proof: Convergence and (5.4.15) follow directly from Lemma 5.4.7. If 𝑏 = 𝐴𝑥′ for
some 𝑥′, and 𝑥∗ = 𝐴𝑇 𝑦∗, then (5.4.9) implies that 𝐴𝑥′ = 𝐴𝐴𝑇 𝑦∗ and this is the least
square solution from 𝐴𝑇R𝑚. For the last statement, we set 𝜔 = 0 in (5.4.15) and
consider the scaling

𝐴𝑇𝐷−1(𝐴𝑥 − 𝑏) = (𝐷−1/2𝐴)𝑇
(
(𝐷−1/2𝐴)𝑥 − 𝐷−1/2𝑏

)
.

The rest is standard least-squares theory. □

Remark 5.4.9. The convergence issue is more tricky that in appears. In particular,
the recurrence (5.4.7) for the 𝑦 (𝑛) only converges if 𝑐𝜔 ∈ (𝐷 + 𝜔𝐿)−1𝐴R𝑛 which
is equivalent to 𝐴𝐴𝑇 𝑦 = 𝑏 having a solution. Otherwise, it could happen that
𝑐𝜔 = 𝑐′𝜔 + 𝑤, 𝑤 ≠ 0, 𝐴𝑇𝑤 = 0, and this 𝑤 would be added to 𝑦 (𝑛) in any iteration,
giving 𝑦 (𝑛) = 𝑧(𝑛) + 𝑛𝑤, where 𝑧(𝑛) is a convergent series while the 𝑦 (𝑛) obviously
diverge. This nuisance however, is not affecting

𝑥 (𝑛) = 𝐴𝑇 𝑦 (𝑛) = 𝐴𝑇
(
𝑧(𝑛) + 𝑛𝑤

)
= 𝐴𝑇 𝑧(𝑛) .

This is what eventually makes the 𝑥 (𝑛) converge unconditionally provided the initial
value is chosen properly.

5.5 Inverse Problems and Regularization
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