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Nothing spoils numbers faster than a lot of arithmetic.

Peppermint Patty, The Peanuts, 4.12.1968

Of course she was aware, cognitively, that there was a life outside universities,
but she knew nothing about it,

D. Lodge, Nice Work

To isolate mathematics from the practical demands of the sciences is to invite
the sterility of a cow shut away from the bulls.

P. Chebychev

. . . you get to have such a high regard for the truth you can’t put courtesy first.
You want to, but you haven’t the heart.

E. D. Biggers, Charlie Chan . . .

Reality is software. What does it matter what system it’s running on?

R. Rucker, Postsingular

And thus there seems a reason in all things, even in law.

H. Melville, Moby Dick

What the eye does not see, the stomach does not get upset over.

J. K. Jerome, Three Men in a Boat

0



Contents

1 The univariate case 3
1.1 Polynomial basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Division with remainder . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Euclidean algorithm, greatest common divisors and principal ideals . . 5
1.1.3 Zeros of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Numerical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Polynomial Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Signal processing and generating functions . . . . . . . . . . . . . . . 18
1.2.3 Subdivision, differences and wavelets . . . . . . . . . . . . . . . . . . . 23
1.2.4 Prony and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Constructive ideal theory 31
2.1 Polynomial and Laurent ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 (Laurent) polynomials in several variables . . . . . . . . . . . . . . . . 31
2.1.2 Ideals and varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.3 Simple ideal operations . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.4 Ideal types: from radical to primary . . . . . . . . . . . . . . . . . . . . 36
2.1.5 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.6 Polynomial vs. Laurent ideals . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Degree: graded rings and polynomial degree . . . . . . . . . . . . . . . . . . 43
2.3 Division with remainder: making the impossible possible . . . . . . . . . . . 47

2.3.1 A different perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.2 Upper and lower sets and monomial ideals . . . . . . . . . . . . . . . . 48
2.3.3 Division with remainder: a naive monomial algorithm . . . . . . . . . 52
2.3.4 Division with remainder: a naive only algorithm . . . . . . . . . . . . . 56

2.4 Computing good bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.1 Good bases and division . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.2 Syzygies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.3 Buchberger’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.4.4 The Basissatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.4.5 The homogeneous way . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5 Elimination ideals and intersections . . . . . . . . . . . . . . . . . . . . . . . 73
2.5.1 Elimination ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.5.2 Ideal intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Polynomial zeros 75
3.1 Solving equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1.1 Zero dimensional ideals and the quotient space . . . . . . . . . . . . . 75

1



Contents

3.1.2 Making ideals radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.1.3 Finding the zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.1.4 Common eigenvectors of commuting families of matrices . . . . . . . 86

3.2 Zeros and their multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.1 Invariances and dualities . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.2 Multiple zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Interpolation 95
4.1 Basic aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1.2 Linear algebra and the difference to the univariate case . . . . . . . . . 97

4.2 Interpolation constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.1 Constructing point sets . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 Constructing spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Ideal interpolation constructions . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.1 Newton bases and ideals from points . . . . . . . . . . . . . . . . . . . 104
4.3.2 Least interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.3 Interpolation on grids . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.4 Universal interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Signal Processing 117
5.1 Signal spaces and filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Difference equations and their homogeneous solutions . . . . . . . . . . . . . 120

5.2.1 Systems of difference equations . . . . . . . . . . . . . . . . . . . . . . 121
5.2.2 Stirling numbers and Stirling operators . . . . . . . . . . . . . . . . . . 123
5.2.3 Exponential polynomials and multiplicities . . . . . . . . . . . . . . . 126
5.2.4 Finite dimensional shift invariant spaces . . . . . . . . . . . . . . . . . 127

5.3 Filterbanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.1 Dilation matrices and the Smith factorization . . . . . . . . . . . . . . 129
5.3.2 Fourier matrices and sampling . . . . . . . . . . . . . . . . . . . . . . 131
5.3.3 Filterbanks in symbol calculus . . . . . . . . . . . . . . . . . . . . . . 132
5.3.4 Matrix completion and interpolatory sequences . . . . . . . . . . . . . 136

2



The univariate case 1
If you’ve got it all and you’re still unhappy, what’s the point of everything?

(I. Rankin, Dead souls)

In this first chapter, we give a quick overview over the concepts we are going to consider in
this lecture and how they look in the univariate case. We will see in many instances that the
univariate case is extraordinarily simple and most of the lecture will deal with the problem
how we can extend the ideas and concepts step by step. Nevertheless, this chapter may serve
as a guideline and help to motivate the long way through the jungle of more sophisticated
algebraic concepts. To that end, we will sometimes consider a slightly eccentric perspective
of the respective problem, but the simple reason for that is the better compatibility with the
multivariate situation.

1.1 Polynomial basics

Polynomials are among the most classical and useful concepts in mathematics. As functions,
they can be represented by finitely many coefficients, hence stored and manipulated on a
computer.

Definition 1.1.1 (Polynomials & Laurent polynomials). The ring of polynomials Π =K[x] in
one variables with coefficients in the field K is defined as the set of all finite sums of powers
of x equipped with coefficients inK. Therefore, a POLYNOMIAL is an expression of the form

f (x) = ∑
k∈N0

fk xk , fk ∈K, #
{
k : fk 6= 0

}<∞. (1.1.1)

In the same way, a LAURENT POLYNOMIAL is of the form

f (x) = ∑
k∈Z

fk xk , fk ∈K, #
{
k : fk 6= 0

}<∞, (1.1.2)

and the ring of Laurent polynomials will be denoted byΛ.

The difference between polynomials and Laurent polynomials is that the latter also admit
negative powers of x and thus are not defined at x = 0. On the other hand, for any Laurent
polynomial f ∈ Λ there exist k ∈ Z and p ∈ Π such that f (x) = x−k p(x), and we can even
normalize k such that p(0) 6= 0, i.e., p0 6= 0, as long as f 6= 0. The monomials are units in the

ring Λ,
(
xk

)−1 = x−k , k ∈ Z, so it seems that the modification from polynomials to Laurent
polynomials is a very minor one. This is not true, we will see later that the two rings have a
totally different structure and that this has consequences.

Exercise 1.1.1 Determine the set of units in Π and Λ. Recall that a ∈ R is called a UNIT in the
ring R if there exists a−1 ∈ R such that a−1a = 1. For simplicity we only consider commutative
rings with unit element 1 here. ♦
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1 The univariate case

Remark 1.1.2. Sometimes Laurent polynomials are also introduced by writing y for x−1 and
then consider the bivariate Polynomials K[x, y] with the additional requirement that x y = 1.
Using ideal notation that we will introduce in more detail later, we can then write this as
Λ=K[x, y]/

〈
x y −1

〉
. This is called a LOCAL RING, cf. [Eisenbud, 1994].

Definition 1.1.3 (Degree & leading term). Let f ∈Π be a polynomial.

1. The DEGREE of f is defined as

deg f = max{k : fk 6= 0}, (1.1.3)

with the convention that the degree of the zero polynomial is −1.

2. The LEADING TERM of f is
λ( f ) := fdeg f xdeg f ∈Π, (1.1.4)

and the LEADING COEFFICIENT1 is κ( f ) := fdeg f ∈K.

3. A polynomial is called MONIC if κ( f ) = 1.

In Definition 1.1.3 we introduced the degree and the related concepts only for polynomials,
not for Laurent polynomials. This has a simple reason: there is no notion of degree for Lau-
rent polynomials, not even in the much more general multivariate context of a graded ring
that we will consider later.

The degree is a good measure for the complexity of a polynomial. In general, polynomials
get more complicated, oscillatory and misbehaving if the degree increases.

1.1.1 Division with remainder

Division with remainder, also called POLYNOMIAL DIVISION or LONG DIVISION is a standard
procedure in elementary algebra. Given f , g ∈Π it computes a decomposition

f = q g + r, q,r ∈Π, degr < deg g , (1.1.5)

where the polynomial r is called the REMAINDER of the division, written as ( f )g := r . This is a
common property between polynomials and integers and makes both of them examples of a
EUCLIDEAN RING, cf. [Gathen and Gerhard, 1999]. Let us recall the algorithm.

Algorithm 1.1.1 Division with remainder: f , g ∈Π, g 6= 0
1: p ← f
2: q ← 0
3: while deg p ≥ deg g do

4: q ← q + λ(p)

λ(g )

5: p ← p − λ(p)

λ(g )
g

6: end while
7: r ← p

1“κ” like “leading κoefficient”.
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1.1 Polynomial basics

Remark 1.1.4. The division algorithm is particularly simple if the polynomial g is monic as
then the division by λ(g ) only means a shift of the exponent of the monomial. Therefore, the
divisor polynomial is sometimes normalized before division which is critical if λK(g ) is small
relative to the other coefficient which in turn means that the “true” degree of g is smaller than
deg g . The problem with almost zero floating point numbers is well–known and discussed a
lot in the literature, cf. [Higham, 2002].

The procedure is indeed simple: We subtract polynomial multiples of g from p in such a way
that the leading terms of the two polynomials in the subtraction coincide, thus reducing the
degree by 1 in each step. Since the degree is finite, this procedure terminates after finitely
many steps and leaves the remainder r . Collecting the factors in each step gives q . Therefore,
Algorithm 1.1.1 computes the decomposition (1.1.5). In particular, q and r are unique.

Exercise 1.1.2 Prove the validity of Algorithm 1.1.1 and the uniqueness of q and r . ♦
Even if it is a triviality, let us remark it here: f is a multiple of g if and only if ( f )g = 0

in (1.1.5). We mention this property because its multivariate analogue will be the basis for
Gröbner basis constructions. Let us this for a somewhat strange definition which, on the
other hand, can be transferred to the multivariate case directly.

Definition 1.1.5. f ∈ Π is called DIVISIBLE by g ∈ Π if ( f )g = 0. We write this as g | f and say
that “g divides f ”.

1.1.2 Euclidean algorithm, greatest common divisors and principal ideals

Having defined divisibility, we can start to talk about common divisors and, of course, the
greatest among them.

Definition 1.1.6.

1. g ∈Π is called a DIVISOR of f ∈Π if g | f .

2. g ∈Π is called a COMMON DIVISOR of f1, . . . , fn ∈Π if g | f j , j = 1, . . . ,n.

3. g ∈ Π is called a GREATEST COMMON DIVISOR of f1, f2 ∈ Π, written as g = gcd( f1, f2) if
g is a common divisor of f1, f2 and whenever h is a common divisor of f1, f2 it follows
that h|g .

The greatest common divisor is not unique for polynomials. Indeed, c gcd( f1, f2), c ∈K \ {0},
is another greatest common divisor, and all gcds are of this form. In fact, in any ring any unit
multiple of g = gcd( f1, f2) is a gcd again: if a is a unit in R then

f j = q g = (
a−1q

)
(ag ), j = 1,2,

hence ag is a common divisor as well that is divided by any other common divisor, which
is shown in exactly the same way. If we would need it, we could make the common divisor
unique by choosing the monic gcd, i.e., selecting the greatest common divisor gcd∗ as

gcd∗( f1, f2) = xn +·· · = gcd( f1, f2)

κ
(
gcd( f1, f2)

) ,

cf. [Gathen and Gerhard, 1999]. But this is neither necessary nor overly useful, so we prefer
to live with the ambiguity. The computation of the gcd is done by the classical EUCLIDEAN

ALGORITHM based on iterated division with remainder. We give a slightly more advanced ver-
sion of this algorithm here, namely the EXTENDED EUCLIDEAN ALGORITHM in Algorithm 1.1.2.
The standard algorithm is obtained by considering the r j only.
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1 The univariate case

Algorithm 1.1.2 EXTENDED EUCLIDEAN ALGORITHM: f , g ∈Π\ {0}
1: r0 ← f , p0 ← 1, q0 ← 0
2: r1 ← g , p1 ← 0, q1 ← 1
3: j ← 1
4: while r j 6= 0 do
5: r j−1 = s j r j + r j+1 (Division with remainder, defines s j−1,r j+1)
6: p j+1 ← p j−1 − s j p j

7: q j+1 ← q j−1 − s j q j

8: j ← j +1
9: end while

10: gcd( f , g ) ← r j−1

11: p ← p j−1, q ← q j−1

Theorem 1.1.7. The extended euclidean algorithm

1. terminates after finitely many steps,

2. computes gcd( f , g ),

3. computes BÉZOUT COEFFICIENTS p, q ∈Π such that

gcd( f , g ) = f p + g q. (1.1.6)

Proof: We write the relation between the r j as

r j+1 =
(
r j−1

)
r j

, j ∈N, r0 = f , r1 = g ,

and since degr j+1 < degr j , the algorithm has to terminate after finitely many steps. By the
iteration

r j+1 = r j−1 − s j r j , j ∈N, (1.1.7)

and r0 = f , r1 = g , it follows inductively that gcd( f , g )|r j , j ∈N0. Choose n such that rn+1 =
0 6= rn , then (1.1.7) with j = n yields that rn |rn−1, and because of the backwards iteration

r j−1 = s j r j + r j+1, j = n −1, . . . ,1,

rn also divides rn−2,rn−3, . . . ,r1 = g ,r0 = f , hence rn = gcd( f , g ) as claimed in 2). (1.1.6) is the
case j = n of the invariance

p j f +q j g = r j , j = 0, . . . ,n, (1.1.8)

which we prove by induction. The initialization ensures the validity of (1.1.8) for j = 0,1 while
for j ≥ 1 we have that

p j+1 f +q j+1 g = (
p j−1 − s j p j

)
f + (

q j−1 − s j q j
)

g = (p j−1 f +q j−1g )− s j (p j f +q j g )

= r j−1 − s j r j = r j+1,

which completes the proof. �

The formulation of the extended euclidean algorithm in Algorithm 1.1.2 with all its indices is
inefficient and was only for the purpose of the proof of Theorem 1.1.7. The more appropriate
version is by means of a matrix.
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1.1 Polynomial basics

Algorithm 1.1.3 Matrix version of extended euclidean algorithm: f , g ∈Π\ {0}

1: R ←
(

f 1 0
g 0 1

)
=

(
r11 r12 r13

r21 r22 r23

)
2: r ← (r11)r21

3: while r 6= 0 do
4: s ← r11/r21

5: R ←
(
r21 r22 r23

r r12 − s r22 r13 − s r23

)
=

(
0 1
1 −s

)
R

6: r ← (r11)r21

7: end while

Example 1.1.8. Let us illustrate the algorithm by computing the gcd of

f = x3 +2x2 +x, g = x2 −1.

The matrix in Algorithm 1.1.2 then is computed as follows

(
x3 +2x2 +x 1 0

x2 −1 0 1

)
s = x +2

↓(
x2 −1 0 1
2x +2 1 −x −2

)

and since 2x +2 = 2(x +1)|x2 −1 the algorithm already terminates. The Bézout identity takes
the form (

x3 +2x2 +x
)− (x +2)

(
x2 −1

)= 2(x +1),

and if we want the normalized gcd, we simple have to divide both coefficients of the identity
by the leading coefficient of the gcd yielding

1

2

(
x3 +2x2 +x

)−(
1

2
x +1

)(
x2 −1

)= x +1.

The gcd computation by means of the extended euclidean algorithm will become the theoret-
ical backbone of this lecture, but unfortunately it has a small but relevant deficit: it does not
work in numerical accuracy. Since we care for numerical applications and mostly computa-
tions by means of floating point numbers which are contaminated by roundoff errors, or use
so called EMPIRICAL POLYNOMIALS whose coefficients are only determined up to a certain ac-
curacy, let us briefly have a look at a numerically stable method of determining the gcd which
will already make us acquainted with the spirit of many methods to follows. The approach is
taken from [Corless et al., 2004] though in principle even known earlier, cf. [Laidacker, 1969].
For simplicity, here we consider only the case that f and g have simple zeros, multiple zeros
make things a little bit more complex.

Exercise 1.1.3 Show that for any two polynomials f , g and any ε> 0 there exist polynomials
of fε and gε of the same degrees whose coefficient are smaller than ε in absolute value, such
that gcd

(
( f + fε), (g + gε)

)= 1. ♦
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1 The univariate case

Definition 1.1.9. For f , g ∈Π, deg f =: m, deg g =: n, the SYLVESTER MATRIX is defined as

S( f , g ) =



fm . . . f0
. . .

. . .
. . .

fm . . . f0

gn . . . g0
. . .

. . .
. . .

gn . . . g0


∈K(m+n)×(m+n), (1.1.9)

where the first block of rows is repeated n times, the second one m times.

One well–known property of the Sylvester matrix is that it encodes whether two polynomials
are coprime or not.

Theorem 1.1.10. detS( f , g ) 6= 0 if and only if gcd( f , g ) = 1.

This result is easily proved by noting that

S( f , g )

xm+n−1

...
1

=



xn−1 f (x)
...

f (x)
xm−1g (x)

...
g (x)


, (1.1.10)

hence xm+n−1

...
1

 ∈ kerS( f , g ) ⇔ x ∈ Z ( f , g ), (1.1.11)

so that s := rank S( f , g ) ≤ n +m −#Z ( f , g ). Note that even for polynomials with rational or
real coefficients, it is not relevant here whether the zero is real or complex. Indeed, if x is a
complex common zero of f and g , then we can write

xm+n−1

...
1

= a + i b, a,b ∈Rm+n

and

0 = S( f , g )(a + i b) = S( f , g )a + i S( f , g )b ⇒ 0 = S( f , g )a = S( f , g )b,

and the quadratic polynomial (·− x)(·− x) is a common divisor of f and g connected to this
pair of kernel elements.

We progress with a QR factorization of the Sylvester matrix,

S( f , g ) =Q

(
R B
0 0

)
, R ∈Rs×s , r j j 6= 0, B ∈Rs×(m+n−s),

8



1.1 Polynomial basics

where R is an upper triangular matrix with nonzero diagonal elements2. The polynomial

h(x) := eT
s

(
R B
0 0

)xm+n−1

...
1

= eT
s QT



xn−1 f (x)
...

f (x)
xm−1g (x)

...
g (x)


= eT

s

 p1(x)
...

pn+m(x)

 gcd( f , g )(x)

= rss xn+m−s +bs1xn+m−s−1 +·· ·+bs,n+m−s−1x +bs,n+m−s

has degree n +m − s and is a multiple of gcd( f , g ), so that deggcd( f , g ) ≤ n +m − s. By the
Bézout identity (1.1.6) there exist p, q such that p f + qg = gcd( f , g ). We can even show that
deg f ≤ n − 1 and deg g ≤ m − 1, see Proposition 1.2.5. Using this fact, we can write p :=(
pn−1, . . . , p0

)
and q := (

qm−1, . . . , q0
)

for the coefficients of p and q and get that

gcd( f , g )(x) = p(x) f (x)+q(x)g (x) = pT

xn−1

...
1

 f (x)+q T

xn−1

...
1

 g (x)

= (
pT , q T

)


xn−1 f (x)
...

f (x)
xm−1g (x)

...
g (x)


= (

pT , q T
)

Q

(
R B
0 0

)xn+m−1

...
1



=
(
Q

(
p
q

))T (
R B
0 0

)xn+m−1

...
1


hence gcd( f , g ) is a linear combination of the polynomials

eT
k

(
R B
0 0

)xn+m−1

...
1

 , k = 1, . . . , s

each of which is either zero or of degree exactly m +n −k since the diagonal elements of R
are nonzero. This shows that degh ≥ n +m − s, hence degh = n +m − s, so that indeed h is a
multiple of the gcd.

Remark 1.1.11. The value of this approach lies in the fact that it turns an algebraic problem
into a problem of linear algebra. We will see later in this lecture that the “nonlinearity” of
the problem is reflected by the fact that it is turned into an eigenvalue problem as determin-
ing the kernel of the Sylvester matrix corresponds to computing a structured basis for the
eigenspace with respect to the eigenvalue 0. Moreover, and this is the computational aspect,
we can rely on techniques from numerical linear algebra which often provides efficient and
numerically stable algorithms for such problems. This numerically oriented point of view for
the treatment of algebraic problems is fairly recent, see, for example [Stetter, 2005].

2By means of proper PIVOTING we can even ensure that the diagonal elements are positive and de-
creasing, cf. [Golub and van Loan, 1996].
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1 The univariate case

The advantage of the extended euclidean algorithm lies in the definition of the Bézout coef-
ficients and allows us a first simple touch with ideal theory – in its simplest form.

Definition 1.1.12 (Ideals).

1. A subset I ⊂ Π of polynomials is called an ideal if it is closed under addition and
multiplication with arbitrary polynomials, i.e.,

f , g ∈I , q ∈Π ⇒ f + g ∈I , q f ∈I . (1.1.12)

2. The ideal 〈F 〉 generated by set F ⊂Π is the CLOSURE of F under this operations:

〈F 〉 =
{ ∑

f ∈F

q f f : q f ∈Π
}

. (1.1.13)

3. An ideal I ⊂ Π is called a PRINCIPAL IDEAL if it is generated by a single polynomial,
that is, there exists f ∈Π such that I = 〈

f
〉

.

Now it is easy to see that any ideal of univariate polynomials is a principal ideal which is the
reason why they are called a PRINCIPAL IDEAL RING.

Theorem 1.1.13. Any ideal I in Π is a principal ideal, more precisely,

I = 〈
gcd( f : f ∈I \ {0})

〉
(1.1.14)

Proof: For any f0, f1 ∈I \ {0}, the Bézout identity (1.1.6) implies that g1 = gcd( f0, f1) ∈I . By
divisibility, f0, f1 ∈ 〈

g1
〉

. If I ⊆ 〈
g1

〉
we are done, otherwise there exists f2 ∈ (I \ {0}) \

〈
g1

〉
.

Then g2 := gcd( f2, g1) is a proper divisor of g1 and thus has lower degree than g1. By the same
argument as above we know that g2 ∈ I \ {0} and that f0, f1, f2 ∈ 〈

g2
〉

. After finitely many
repetitions of this process, say n of them, we either have

gn = 1 = gcd( f : f ∈I \ {0}) = gcd( f1, . . . , fn)

or
(I \ {0}) \

〈
gn

〉=;
and in both cases we can conclude that I = 〈

gn
〉

and being the generator of the ideal, gn

must be a divisor of all its members. �

Inspecting the proof of Theorem 1.1.13, we see that we proved even more, namely that poly-
nomial ideals have a certain finiteness. This is, of course, a consequence of Hilbert’s basissatz
that holds even in the multivariate case and a property that is shared by so–called NOETHE-
RIAN RINGS, cf. [Gröbner, 1968, Gröbner, 1970].

Corollary 1.1.14. For any ideal I ⊂ Π there exists finitely many polynomials f1, . . . , fn ∈ I
such that I = 〈

gcd
(

f1, . . . , fn
)〉

.

Even if the proof of Theorem 1.1.13 is not constructive since we do not know how to choose
an element of (I \ {0}) \

〈
gk

〉
, it is based on an algorithmic concept - or at least this was how

we had obtained the Bézout identity. This already justifies the slightly more complicated
approach in Algorithm 1.1.2.

Corollary 1.1.14 has another interesting interpretation: finding common zeros of polyno-
mials, in other words, solving a system of polynomial equations (in one variable) corresponds

10



1.1 Polynomial basics

to finding the zeros of the basis element of the ideal. Indeed, common zeros are a property of
the ideal,

f1(ξ) = ·· · = fn(ξ) = 0 ⇔
(

n∑
j=1

p j f j

)
(ξ) = 0, p j ∈Π,

and considering the generator of the (principal) ideal leads to an easier equation, defined by
a polynomial of lower degree. This is a concept that will become very important in several
variables.

1.1.3 Zeros of polynomials

A ZERO ξ of a polynomial f ∈ Π is an element ξ ∈ K such that f (ξ) = 0. This is the point
where the field becomes interesting. In finite fields the problem is quite intricate3 and has
applications for example in coding theory, cf. [Cohen et al., 1999, Gathen and Gerhard, 1999],
but we are only interested in “real” fields likeQ, R or C here. These are fields of characteristic
zero. Recall that the CHARACTERISTIC of a fieldK is the smallest number n such that

1+·· ·+1︸ ︷︷ ︸
n

= 0,

or zero if the above never happens. Finite fields have nonzero characteristic.
If a f (ξ) = 0 then (1.1.5) with g = ·−ξ yields that

f (x) = (x −ξ)q(x)+ c, c ∈K,

and substitution of ξ into this equality implies that c = 0. Hence,

f (ξ) = 0 ⇔ f = (·−ξ) q ⇔ f

·−ξ ∈Π, (1.1.15)

the existence of a zero is equivalent to the existence of a linear factorization. Whether or not
a polynomial has zeros or not depends on the underlying fieldK.

Example 1.1.15. The polynomial x2−2 has no zeros inQ, but zeros inR andC, the polynomial
x2 +1 has zeros only in C.

Much of algebraic geometry works over C and we will also do so, even if it sounds contra-
dictionary: REAL ALGEBRAIC GEOMETRY is significantly more complex, cf. [Basu et al., 2003,
Schmüdgen, 2017]. The reason why complex numbers are so popular is the following.

Theorem 1.1.16. The field C is ALGEBRAICALLY CLOSED: for any polynomial f ∈ C[x] there
exists ζ1, . . . ,ζn , n := deg f , and c ∈C\ {0} such that

f = c
n∏

j=1
(·−ζ j ). (1.1.16)

The proof uses a little bit of FUNCTION THEORY, cf. [Freitag and Busam, 2005, Hille, 1982],
namely the fact that polynomials are holomorphic and that holomorphic functions without
zeros in C have to be constant. Hence, as long as f is a non constant polynomials it has at
least one zero that can be divided off by (1.1.15), reducing the degree by 1. After finitely many
steps one is then left with a constant polynomial and that’s it.

What can be done for a single polynomial can be done for a finite number of polynomials
as well.

3Though in the end it is all combinatorics and could be checked by simply trying all values.
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1 The univariate case

Definition 1.1.17. ξ ∈K is called a COMMON ZERO of f1, . . . , fn ∈Π if

0 = f1(ξ) = ·· · = fn(ξ). (1.1.17)

We write Z ( f1, . . . , fn) ⊂K for the set of all common zeros of f1, . . . , fn .

Lemma 1.1.18. A point ξ ∈K is a common zero of f1, . . . , fn if and only if it is a zero of gcd( f1, . . . , fn).

Proof: Any zero of the gcd is a zero of all f j = g j gcd( f1, . . . , fn), and any common zero is a
zero of f1, f2, hence, again by (1.1.6), also of

gcd( f1, f2) = p1 f1 +p2 f2 ⇒ gcd( f1, f2)(ξ) = p1(ξ) f1(ξ)+p2(ξ) f2(ξ) = 0.

The rest is induction taking into account that

gcd( f1, . . . , fn) = gcd
(

fn ,gcd( f1, . . . , fn−1)
)= pn fn +qn gcd( f1, . . . , fn−1) =

n∑
j=1

p j f j .

�

The ideal theoretic interpretation of the above lemma is even more interesting. The principal
ideal

〈
f1, . . . , fn

〉
is generated by the BASIS {gcd( f1, . . . , fn)}, more precisely,

gcd( f1, . . . , fn) ∈ 〈
f1, . . . , fn

〉
and f1, . . . , fn ∈ 〈

gcd( f1, . . . , fn)
〉

, (1.1.18)

i.e.,
〈

f1, . . . , fn
〉 = 〈

gcd( f1, . . . , fn)
〉

, and all common zeros related to the ideal can be found in
this basis element as well. This is a concept that we can and will generalize to the multivariate
case and that is the basis for all efficient ideal computations.

The final question is: How can we compute zeros of a polynomial? Once we can do that,
common zeros are no problem any more as we simply4 determine the gcd first and then
compute its zeros. There is, of course, Newtons method or other analytic zero finding meth-
ods, see [Gautschi, 1997, Isaacson and Keller, 1966], but we want to apply a purely algebraic
method that reduces the problem to an eigenvalue problem. In that course, we restrict our-
selves to the case that the polynomial f has only simple zeros, degree n + 1 and is monic,
i.e.,

f (x) = (x −ζ0) · · · (x −ζn) , ζ j ∈C, j = 0, . . . ,n. (1.1.19)

Being monic is no restriction since the location of the zeros is independent of normalization.
Also, we do not care whether K = Q,R,C, the method works within any of these fields and
only the eigenvalue problem at the end may lead to complex numbers as also rational or real
matrices can have complex eigenvalues.

Definition 1.1.19. For f ∈Π, the QUOTIENT SPACE Π/
〈

f
〉

is the ring defined as (Π) f with the
multiplication

p ·q := (
pq

)
f , (1.1.20)

It is isomorphic to the vector space

Πn := {
g ∈Π : deg g ≤ n

}
, n = deg f −1. (1.1.21)

The difference between Πn and Π/
〈

f
〉

is that the latter has a well defined multiplication that
maps the ring to itself.

4This is actually not so simple, especially when done numerically, as can seen in [Corless et al., 2004].
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1.1 Polynomial basics

Example 1.1.20. For f = x2 − x +2 we have Π/
〈

f
〉 'Π1, but the product (x +1)(x −1) takes

the value x2 −1 inΠ, which does not belong toΠ1 any more, while inΠ/
〈

f
〉

we obtain

x2 −1− (x2 −x +2) = x −3

which is in the quotient space again.

We observe that the multiplication operator M f

Π/
〈

f
〉 3 p 7→ M f p := (

(·) p
)

f , M f :Π/
〈

f
〉→Π/

〈
f
〉

(1.1.22)

is a linear operator and therefore its action with respect to an arbitrary basis of Πn can be
expressed by means of a matrix.

Definition 1.1.21. Let B = {b0, . . . ,bn} be any basis ofΠn . The matrix

MB ( f ) =
(
mB

j k ( f ) : j ,k = 0, . . . ,n
)
∈Kn+1×n+1

defined by

M f b j =
n∑

k=0
mB

j k ( f )bk , j = 0, . . . ,n,

is called the COMPANION MATRIX of f with respect to the basis B .

Clearly, the companion matrix depends on the choice of the basis B as can be seen in the
following example.

Example 1.1.22. Let f = xn+1 + fn−1xn−1 +·· ·+ f0 ∈K[x], whereK=Q,R,C.

1. If B = {1, x, . . . , xn}, then

MB ( f ) =


0 − f0

1 − f1
. . .

...
1 − fn

 .

This is the so–called FROBENIUS COMPANION MATRIX.

2. If b0, . . . ,bn are a monic orthogonal polynomials with respect to any inner product (̇,·)
such that ( f ,Πn) = 0, the companion matrix takes the form

MB ( f ) =


−β1 γ2

1 −β2 γ3
. . .

. . .
. . .

1 −βn γn+1

1 −βn+1

 ,

where the β j and γ j are the coefficients in the three term recurrence. This is used for
the computation on Gaussian quadrature nodes, cf. [Gautschi, 1997, Sauer, 2019].

3. For ξ0, . . . ,ξn ∈K, using the basis b j = (·−ξ0) · · ·(·−ξ j−1
)
, j = 0, . . . ,n, we get the com-

panion matrix

MB ( f ) =


ξ0 − [ξ0] f

[ξ0,...,ξn+1] f

1 ξ1 − [ξ0,ξ1] f
[ξ0,...,ξn+1] f

. . .
. . .

...

1 ξn − [ξ0,...,ξn ] f
[ξ0,...,ξn+1] f



13



1 The univariate case

based on divided differences of f , first considered in [Calvetti et al., 2003]. If, by acci-
dent, ξ j = ζ j , then this matrix just consists of the diagonal and the subdiagonal.

More on these matrices and what can be done with them can be found in [Sauer, 2018a].

The main observation of the multiplication operator modulo f is now as follows. We define

` j =
∏
k 6= j

(·−ζk ) = f

·−ζ j
, j = 0, . . . ,n

and only note that, inΠ/
〈

f
〉

,

0 ≡ f = (·−ζ j )` j = M f ` j −ζ j ` j , j = 0, . . . ,n,

hence

M f ` j = ζ j ` j , j = 0, . . . ,n. (1.1.23)

This already proves the following theorem.

Theorem 1.1.23. If f is of the form (1.1.19), its zeros are exactly the eigenvalues of the multi-
plication operator and therefore of any companion matrix.

Remark 1.1.24. Even if the eigenvalues are the same, their numerical conditioning can be
different for different companion matrices and it can make sense to vary the basis.

There remains the question what to do if if f has multiple zeros. But this is easy since gcd( f , f ′)
has the same zeros as f , however as simple zeros.

1.2 Numerical applications

We next review some numerical applications that involve polynomials and how they look in
one variable. The rest of the lecture will be used to generalize these applications to several
variables.

1.2.1 Polynomial Interpolation

Interpolation is one of the most classical numerical problem, even the name already dates
back to Wallis in 1655, see [Bauschinger, 1900]. The interpolation problem is as follows: given
SITES x j ∈R and values y j ∈R, j = 0, . . . ,n, find a function f such that

f (x j ) = y j , j = 0, . . . ,n. (1.2.1)

In this generality, the problem has infinitely many solution, even if we require the function
to be continuous or to have some order of differentiability. Proper polynomials, on the other
hand, solve the problem.

Theorem 1.2.1. If x j ∈R, j = 0, . . . ,n, are pairwise disjoint sites, then there exists, for any y j ∈R,
j = 0, . . . ,n, a unique polynomial f ∈Πn such that (1.2.1) is satisfied.

14



1.2 Numerical applications

Proof: That there exists a solution can be seen from the explicit formula

f (x) =
n∑

j=0
y j

∏
k 6= j

x −xk

x j −xk
, (1.2.2)

and uniqueness follows since the difference of two interpolants f , g vanishes at all x j , hence

f − g = q (·−x0) · · · (·−xn), q ∈Π,

yielding q = 0 and f = g as otherwise the polynomial on the left hand side has degree ≤ n, the
one the right hand side degree ≥ n +1. �

Remark 1.2.2. Polynomial interpolation problems are usually formulated over R, but in fact
the field is irrelevant and the argument of the proof of Theorem 1.2.1 works in any field, even
in finite ones.

A particular role is played be the polynomial

ω=
n∏

j=0
(·−x j ) ∈Πn+1 (1.2.3)

that vanishes at all the sites. It allows us to rewrite (1.2.2) as

f =
n∑

j=0
y j

ω

(·−x j )ω′(x j )
,

a classical formula used for example by Gauss in [Gauss, 1816], see [Sauer, 2019]. To study the
action of interpolation on polynomials, we make the following definition.

Definition 1.2.3. Given X = {x0, . . . , xn}, the INTERPOLATION OPERATOR LX : Π→ Πn is de-
fined by LX f (X ) = f (X ), f ∈Π.

If we take any f ∈Π and write it in the form

f = qω+ r, r = ( f )ω,

a simple substitution yields that f (x j ) = r (x j ), j = 0, . . . ,n, hence

LX = (·)ω (1.2.4)

is simply a REMAINDER of division. Moreover, LX is a PROJECTION OPERATOR, i.e.,

LX
(
LX f

)= LX f ,

and satisfies
kerLX = {

f ∈Π : f (X ) = 0
}= 〈ω〉,

which is why polynomial interpolation is called an IDEAL PROJECTOR.

Remark 1.2.4. There are two interesting aspects of the simple identity (1.2.4):

1. If we interpret it in terms of ideals, the interpolant is simply the represented modulo
ideal in any quotient space Π/I , regardless of how we choose it5; this will become
relevant in several variables when there is no canonical representer like Πn and things
depend on geometry and not only on counting.

5Keep in mind that the space is only defined up to adding multiples of ω to its basis elements. The
canonical choiceΠn corresponds to using zero multiples.
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1 The univariate case

2. The formula also admits multiple points since

ω= (·−x0)µ0 · · · (·−xn)µn , µ j ∈N, j = 1, . . . ,n,

is also defined if the MULTIPLICITY µk of some site is > 1. The remainder, hence the
interpolant, is now of degree µ0 +·· ·+µn −1 and since(

d k

d xk
ω

)
(x j ) = 0 k = 0, . . . ,µ j −1, j = 0, . . . ,n,

it follows for any f ∈Π, k = 0, . . . ,µ j −1 and j = 0, . . . ,n that(
d k

d xk
r

)
(x j ) =

(
d k

d xk
f

)
(x j )−

k∑
`=0

(
k

`

)(
d k

d xk
ω

)
(x j )︸ ︷︷ ︸

=0

(
d k

d xk
q

)
(x j ) =

(
d k

d xk
f

)
(x j ),

hence the remainder performs HERMITE INTERPOLATION, interpolating µ j consecutive
derivatives at x j .

One can use interpolation to bound the degrees in the Bézout coefficients. To that end, let, for
simplicity, f , g be polynomials with simple zeros, for multiple zeros, Hermite interpolation
would have to be incorporated. Then we can show the following, cf. [DeVilliers et al., 2000].

Proposition 1.2.5. Let f , g ∈ Π be two polynomials of degree m,n, respectively, with simple
zeros. Then there exist p ∈Πn−1 and q ∈Πm−1 such that gcd( f , g ) = p f +qg .

Proof: Write the polynomials in factorized form

f (x) = fm

m∏
j=1

(
x −ζ j

)
, g (x) = gn

n∏
j=1

(
x −ζ′j

)
, gcd( f , g )(x) =

k∏
j=1

(
x −ζ j

)
,

hence ζ j = ζ′j , j = 1, . . . ,k. Now, we denote by p̃ ∈ Πn−k−1 and q̃ ∈ Πm−k−1 the unique solu-
tions of the interpolation problems

p(ξ′j ) = 1

f (ζ′j )
, j = k +1, . . . ,n, q(ξ j ) = 1

g (ζ j )
, j = k +1, . . . ,m,

then

p
f

gcd( f , g )
+q

g

gcd( f , g )
∈Πn+m−2k−1

takes the value 1 at the the n +m −2k point ζ j , j = k +1, . . . ,m and ζ′j , j = k +1, . . . ,n, hence,
by uniqueness of interpolation must be the constant polynomial 1. Then,

gcd( f , g ) = gcd( f , g )

(
p

f

gcd( f , g )
+q

g

gcd( f , g )

)
= p f +qg ,

which proves the claim. �

Corollary 1.2.6. The degrees of p and q in Proposition 1.2.5 can even be chosen as n − 1−
deggcd( f , g ) and m −1−deggcd( f , g ), respectively.
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1.2 Numerical applications

A different approach to interpolation is by pure linear algebra and uses only the vector space
properties of polynomials. If Φ= {φ0, . . . ,φn} is a basis of a finite dimensional space of func-
tions, at least defined on X , then the interpolant to X from this space can be written as

φ=
n∑

k=0
ak φk , ak ∈K,

and the interpolation problem takes the form

y j =φ(x j ) =
n∑

k=0
ak φk (x j ) = eT

j

φ0(x0) . . . φn(x0)
...

. . .
...

φ0(xn) . . . φn(xn)


a0

...
an

 , j = 0, . . . ,n,

or, more compactly

y = (
φk (x j ) : j ,k = 0, . . . ,n

)
a, (1.2.5)

which corresponds to solving a linear system6 and (unique) solvability of the interpolation
problem can be decided entirely by linear algebra. The matrix in this system even has a spe-
cial name.

Definition 1.2.7. Given a finite set X ⊂ R and a finite set Φ of functions X → R, the associ-
ated COLLOCATION MATRIX is defined as

V (X ,Φ) :=
(
φ(x) :

x ∈X
φ ∈Φ

)
. (1.2.6)

In the case thatΦ= {1, x, . . . , xn} the matrix is called VANDERMONDE MATRIX, denoted by

Vn(X ) :=V
(
X , {1, . . . , xn}

)
. (1.2.7)

Remark 1.2.8. The terminology “collocation matrix” and “Vandermonde matrix” is not con-
sistent in the literature, often the matrix from (1.2.6) is called Vandermonde matrix even for
nonpolynomial systems or for a different basis ofΠn .

Note that if Φ,Φ′ are two bases of the same space, then there exists a nonsingular matrix A
such thatΦ′ = AΦ and hence

V (X ,Φ′) =V (X ,Φ) A,

so that collocation matrices are relatively invariant under changes of basis and essentially
depend on the space.

Linear algebra tells us that the interpolation problem has a unique solution if and only if
V (X ,Φ) is invertible which first implies that the matrix is a square one, i.e., #X = #Φ, and
that detV (X ,Φ) 6= 0. Now, we can derive the unique solvability of the polynomial interpola-
tion problem by different means.

Theorem 1.2.9. There exists c 6= 0 such that

detVn(X ) = c
∏
j 6=k

(
x j −xk

)
, X = {x0, . . . , xk }. (1.2.8)

6Surprisingly, this fact is rediscovered regularly, especially in the context of multivariate interpola-
tion. That does not increase its novelty, unfortunately.
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1 The univariate case

Proof: We first note that f (x0, . . . , xn) := detVn(X ) is a polynomial of (total) degree7 1
2 n(n +

1). This is a simple induction based on expanding the determinant with respect to the last
column:

f (x0, . . . , xn) =

∣∣∣∣∣∣∣
1 x0 . . . xn

0
...

...
. . .

...
1 xn . . . xn

n

∣∣∣∣∣∣∣
= (−1)n

xn
0

∣∣∣∣∣∣∣
1 x1 . . . xn−1

1 n
...

...
. . .

...
1 xn . . . xn−1

n n

∣∣∣∣∣∣∣+·· ·+ (−1)n xn
n

∣∣∣∣∣∣∣
1 x0 . . . xn−1

0 n
...

...
. . .

...
1 xn−1 . . . xn−1

n−1

∣∣∣∣∣∣∣


=
n∑

j=0
(−1)n+ j xn

j detVn−1
(
X \ {x j }

)
.

Moreover, f is a polynomial of degree n in each individual variable x j that vanishes in xk ,
k 6= j , as then the matrix has to identical rows. Hence, for any j = 0, . . . ,n,

f (x0, . . . , xn) =
(∏

k 6= j
(x j −xk )

)
g

(
x0, . . . , x j−1, x j+1, . . . , xn

)
,

hence any (x j −xk ), j 6= k, divides f and therefore there exists a polynomial g such that

f (x0, . . . , xn) = g (x0, . . . , xn)
∏
j 6=k

(x j −xk ),

and since the product on the right has 1
2 n(n +1) factors, hence degree 1

2 n(n +1), g must be a
constant polynomial. That the constant is nonzero follows from Theorem 1.2.1. �

Remark 1.2.10. Historically, polynomial interpolation in one variable is a more than classical
issue, investigate for example by Newton in his Principia where the NEWTON FORMULA for the
interpolant has been derived8. A nice summary has been given in [Bauschinger, 1900], later
translated into French in [Andoyer, 1906] by Andoyer who missed the difficulties of the mul-
tivariate case, cf. [Gasca and Sauer, 2000b]. Multivariate interpolation, on the other hand, is a
fairly recent issue except a few results by Jacobi [Jacobi, 1835] and Kronecker [Kronecker, 1866]
in the 19th century.

1.2.2 Signal processing and generating functions

SIGNAL PROCESSING, more precisely, digital signal processing in the sense of [Hamming, 1989]
is concerned with the action of filters on discrete signals.

Definition 1.2.11 (Spaces & filters).

1. By `(Z) we denote the space of all INFINITE SEQUENCES, i.e., all functionsZ→R. More-
over, `p (Z), 0 ≤ p ≤∞, stands for all sequences such that the “norm”9

‖c‖p :=
( ∑

k∈Z
|c(k)|p

)1/p

, ‖c‖∞ := sup
k∈Z

|c(k)|, ‖c‖0 := #{k : c(k) 6= 0},

7More on degrees for multivariate polynomials later, now only so much: the TOTAL DEGREE of a
monomial xα0

0 · · ·xαn
n is α0 +·· ·+αn and the total degree of a polynomial the maximal total degree

of its monomial components.
8It is by no means to expect that something that carries someones name has really been invented by

this person, so it is a worthwhile remark
9It is only a NORM for 1 ≤ p ≤∞, otherwise a so called QUASI NORM.
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1.2 Numerical applications

is finite.

2. For c,d ∈ `1(Z) we define the CONVOLUTION

c ∗d := ∑
k∈Z

c(·−k)d(k).

3. A FILTER F : `(Z) → `(Z) is a convolution operator

F c = f ∗ c, c ∈ `(Z),

with an IMPULSE RESPONSE f ∈ `0(Z).

The name impulse response is easily explained. If we use the PEAK SEQUENCE δ ∈ `(Z), δ(k) =
δk0, k ∈ Z, which is the identity in the CONVOLUTION ALGEBRA10, then f = Fδ, hence, in a
slightly ugly notation, F = (Fδ)∗.

Filters and convolutions can be put into an algebraic framework by turning sequences into
Laurent polynomials.

Definition 1.2.12. Let c ∈ `0(Z). The z–TRANSFORM c[ and the SYMBOL or GENERATING FUNC-
TION c] are defined as

c[(z) = ∑
k∈Z

c(k) z−k , c](z) = ∑
k∈Z

c(k) zk , z ∈C× :=C\ {0}. (1.2.9)

Remark 1.2.13. In principle, all the theory can be made in terms of z–transforms or symbols
as, due to

c[ = c]
(
(·)−1) and c] = c[

(
(·)−1)

they are almost completely equivalent except a few minor issues like the inverse z–transform,
cf. [Föllinger, 2000]. The z–transform is more common in signal processing while symbols
are more frequently used in mathematics. And generating functions are even meaningful for
infinitely supported sequences, but have to be handled with a bit of care.

The important of z–transforms and symbols becomes evident from the simple observation
that

(c ∗d)[ (z) = ∑
j∈Z

(c ∗d)k z− j = ∑
k∈Z

∑
j∈Z

c( j −k)d(k)zk− j z−k = ∑
k∈Z

d(k) z−k
∑
j∈Z

c( j −k) zk− j

= ∑
k∈Z

d(k) z−k
∑
j∈Z

c( j ) z− j ,

hence,

(c ∗d)[ = c[d [ and (c ∗d)] = (c ∗d)[
(
(·)−1)c[

(
(·)−1) d [

(
(·)−1)= c]d ]. (1.2.10)

In other words, the transforms modify the rater complicated operation of convolution into a
simple product of Laurent polynomials, an operation well compatible with the ring structure
ofΛ.

This algebraization becomes particularly useful when passing to filterbanks which com-
bine several filters to decompose a signal into several bands. To maintain the ratio between
the amount of data and the information contained in it, filterbanks use decimations.

10(Finitely supported) sequences with componentwise addition and convolution as a multiplication.
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1 The univariate case

Definition 1.2.14 (Down- & upsampling). Given a dilation factor m ∈N, the DOWNSAMPLING

OPERATOR ↓m is defined as
↓m : `(Z) → `(Z), c 7→ c(m·) (1.2.11)

and the UPSAMPLING OPERATOR as

↑m : `(Z) → `(Z), c(k) =
{

c(k/m), k ∈ mZ,

0, k 6∈ mZ,
k ∈Z. (1.2.12)

Moreover, we use the notation Zm =Z/mZ' {0, . . . ,m −1}.

Exercise 1.2.1 Show that ↓m↑m= I 6=↑m↓m and that

I = ∑
j∈Zm

τ j ↑m↓ τ− j . (1.2.13)

♦
Up- and downsampling can be computed in terms of z–transform, upsampling simply by
noting that

(↑m c)[ (z) = ∑
k∈Z

c(k) z−mk = c[
(
zm)

, (1.2.14)

while downsampling is based on the FOURIER IDENTITY

1

m

∑
k∈Zm

e−2πi j k/m =
{

1, j ∈ mZ,

0, j 6∈ mZ,
j ∈Z, (1.2.15)

which gives that

(↓m c)[ (zm) = ∑
j∈Z

c(m j )z−m j = ∑
j∈Z

c( j )z− j 1

m

∑
k∈Zm

e−2πi j k/m

= 1

m

∑
k∈Zm

∑
j∈Z

c( j )
(
e−2πi k/m z

)− j = 1

m

∑
k∈Zm

c[
(
e2πi k/m z

)
. (1.2.16)

Note that the UNIT ROOTS e2πi k/m , k ∈ Zm , can be seen as generalized signs; in the case of
m = 2 they are indeed ±1.

Exercise 1.2.2 Prove (1.2.15) or at least find a proof of it in the literature. ♦
Now we can define the concept of a univariate filterbank, cf. [Vetterli and Kovačević, 1995].

Definition 1.2.15 (Filterbank). A FILTERBANK consists of n ANALYSIS FILTERS F j with impulse
response f j , j ∈ Zn , and n SYNTHESIS FILTERS G j with impulse response g j , j ∈ Zn . It com-
putes the SUBBAND DECOMPOSITION

`(Z) 3 c 7→ F c := [↓m F j c : j ∈Zn
]=

 ↓m
(

f0 ∗ c
)

...
↓m

(
fn−1 ∗ c

)
 ∈ `(Z)n

and the SUBBAND RECONSTRUCTION

`(Z)n 3 c =

 c0
...

cn−1

 7→Gc = ∑
j∈Zn

G j ↑m c j =
∑

j∈Zn

g j ∗
(↑m c j

)
.

The filterbank is said to
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1.2 Numerical applications

1. provide PERFECT RECONSTRUCTION if GF = I ,

2. be CRITICALLY SAMPLED if m = n.

Filterbanks without perfect reconstruction loose information and thus make no sense, and
since the decimation ↓m in the analysis part just compensates the n components of the vec-
torized subband data, critically sampled filterbanks are by far the most popular ones. The
analysis filterbank can be depicted as

↗ F0 → ↓m → c0

c
...

...
...

↘ Fn−1 → ↓m → cn−1

(1.2.17)

and the synthesis filterbank takes the form

c0 → ↑m → G0 ↘
...

...
... ⊕→ c

cn−1 → ↑m → Gn−1 ↗
(1.2.18)

We can now describe the action of the filterbank by means of our algebraic tools. Beginning
with the synthesis part, we note that, by (1.2.16) and (1.2.10)

c[j (zm) = (↓m ( f j c)
)[ (zm) = 1

m

∑
k∈Zm

f [j

(
e−2πi k/m z

)
c[

(
e−2πi k/m z

)
, j ∈Zn ,

which can be vectorized as

 c[0(zm)
...

c[n−1(zm)

= 1

m

[
f [j

(
e−2πi k/m z

)
:

j ∈Zn

k ∈Zm

]
c[(z)

c[
(
e−2πi k/m z

)
...

c[
(
e−2πi (m−1)/m z

)

 (1.2.19)

Definition 1.2.16 (Modulation & polyphase). The matrix

F (z) = 1

m

(
f [j

(
e−2πi k/m z

)
:

j ∈Zn

k ∈Zm

)
∈Λn×m (1.2.20)

is called the ANALYSIS MODULATION MATRIX of the filterbank, the vector

c[p (z) :=
[

c[
(
e−2πi k/m z

)
: k ∈Zm

]
∈Λm (1.2.21)

is called the POLYPHASE VECTOR of the signal c. The SUBBAND DECOMPOSITION then takes the
form  c[0(zm)

...
c[n−1(zm)

= F (z)c[p (z). (1.2.22)

Synthesis is simpler. By (1.2.10) and (1.2.14) we have that

c̃[(z) := ∑
k∈Zn

(
gk ∗ (↑m ck )

)[ (z) = ∑
k∈Zn

g [k (z) (↑m ck )[ (z) = ∑
k∈Zn

g [k (z)ck (zm)

= (
g [0(z), . . . , g [n−1(z)

) c[0(zm)
...

c[n−1(zm)

 .
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1 The univariate case

Building the polyphase vector of the output c̃ and keeping in mind that
(
e−2πi j /m

)m = e−2πi j =
1, j ∈Zm , we thus get that

c̃[p (z) =
[

g [k

(
e−2πi j /m

)
:

j ∈Zm

k ∈Zn

] c[0(zm)
...

c[n−1(zm)

=: GT (z)

 c[0(zm)
...

c[n−1(zm)

 . (1.2.23)

Therefore, decomposition and immediate reconstruction yield

c̃[p (z) =G(z)T F (z)c[p (z)

and we get the fundamental theorem for the modulation matrices of a perfect reconstruction
filterbank.

Theorem 1.2.17. The filterbank provides perfect reconstruction if and only if GT (z)F (z) = I .

Remark 1.2.18. Eventually, the algebraic approach to filterbanks consists of encoding the
synthesis and the analysis part of the filterbank as matrices whose components are z–transforms,
hence Laurent polynomials. Since

(
a j k (z) : j ,k

)= (∑
`∈Z

a j k (`) z` : j ,k

)
= ∑
`∈Z

(
a j k (`) : j ,k

)
z` = ∑

`∈Z
A`z`,

such a matrix of Laurent polynomials can also be seen as a matrix valued Laurent polynomial
or a Laurent polynomial with matrix coefficients and thus as the z-transform or symbol of a
matrix valued sequence.

In a critically sampled filterbank we thus get perfect reconstruction iff, given F (z), we set11

G(z) = F−1(z). In other words, in this case the requirement of perfect reconstruction implies
that the analysis part completely determines the synthesis part and vice versa. Mathemati-
cally, this brings us to the question of when a matrix over a ring is invertible in the ring. This
is surprisingly simple.

Proposition 1.2.19. A square matrix A ∈ Rn×n has an inverse in Rn×n if and only if det A ∈ R×

is a unit in R.

Proof: If A has an inverse, then

det A det A−1 = det I = 1,

hence det A−1 = (det A)−1 in R. The converse follows from Cramer’s rule which says that(
A−1)

j k = (det A)−1 det A j k , j ,k = 1, . . . ,n,

where A j k ∈ R(n−1)×(n−1) stands for the matrix where the j th row and the kth column of A are
deleted. �

Remark 1.2.20. Theorem 1.2.17 has a different meaning depending on whether we want to
choose F ,G as polynomials or as Laurent polynomials, which plays a role if one is interested
in a causal filter. In the first case, an analysis filterbank can be completed if detF (z) ∈ C×, in
the second case if detF (z) = c zk , c ∈C×, k ∈Z.

11We can first do it pointwise but then have to ensure that the resulting function is a matrix of Laurent
polynomials again - this is the nontrivial fun part of it.
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1.2 Numerical applications

Hence, the question of constructing reasonable filterbanks boils down to construction a rea-
sonable F or G as the other one follows directly.

Example 1.2.21. We consider n = m = 2 and want to build

G(z) =
(

g [0(z) g [1(z)
g [0(−z) g [1(−z)

)
with detG(z) = 1. This is impossible if there exists z∗ such that g [0(z∗) = g [0(−z∗) = 0 as then
z−z∗ divides detG(z). If, on the other hand gcd

(
g [0, g [0(−·))= 1, then there exist p, q such that

p(z) g [0(z)+q(z) g [0(−z) = 1, (1.2.24)

hence, replacing z by −z in (1.2.24), also

p(−z) g [0(−z)+q(−z) g [0(z) = 1

and therefore
p(z)+q(−z)

2
g [0(z)+ p(−z)+q(z)

2
g [0(−z) = 1

and setting g [1(z) = p(z)+q(−z)
2 we obtain that detG(z) = 1. This can be summarized as follows:

A filter with impulse response g0 can be completed to a perfect reconstruction filter bank if and
only if gcd

(
g [0, g [0(−·))= 1.

1.2.3 Subdivision, differences and wavelets

Subdivision, is an iterative way to generate functions from discrete data by means of station-
ary operators, i.e. operators that do the same thing regardless of where it happens. Actually,
these operators are even convolutions. The fundamental monograph on subdivision is still
[Cavaretta et al., 1991], for a different, more geometric approach see [Peters and Reif, 2008,
Warren, 2001].

We start with a discrete sequence c ∈ `(Z) that we want to extend to a function c ′ : 1
2Z→

R by means of local and position independent rules. To that end, we choose two finitely
supported filters a0 and a1 and define

c ′
(

2 j +ε
2

)
:= ∑

k∈Z
aε(k)c( j −k) = (aε∗ c)( j ), j ∈Z, ε ∈ {0,1}, (1.2.25)

so that a1 is an INSERTION RULE that decides what happens at the new half-integer points and
a0 is a REPLACEMENT RULE determining how the integer values are handled – a0 = δ would
just leave them unchanged, such a subdivision operator is called INTERPOLATORY. To be able
to iterate the scheme, we renormalize c ′ to a sequence Z→ R, merge the two sequences into
one and define the following object.

Definition 1.2.22 (Subdivision operator). The SUBDIVISION OPERATOR with respect to the
MASK a ∈ `0(Z) is defined as

Sac := ∑
k∈Z

a(·−2k)c(k). (1.2.26)

Indeed, if we set a(2 ·+ε) := aε, ε ∈ {0,1}, which uniquely connects a and a0, a1, we see that

Sac(2 ·+ε) = ∑
k∈Z

a(2 ·+ε−2k)c(k) = ∑
k∈Z

aε(·−k)c(k) = c ′
(

j + ε

2

)
,

and Definition 1.2.22 makes sense as Sac = c ′(2·), that is, as a renormalization of the above
geometrically intuitive process.
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1 The univariate case

Remark 1.2.23. In terms of signal processing, the subdivision operator is actually a déjà-vu
as soon as we write it as a GENERALIZED CONVOLUTION

c ∗m d := ∑
j∈Z

c(·−m j )d( j ), m ≥ 1.

Besides c ∗1 d = c ∗d , we also have that Sac = a ∗2 c and we can of course also generalize
this to subdivision operator with arbitrary dilation factor, sometimes called “ARITY”. This fits
nicely into the preceding chapter since

c ∗m d = ∑
j∈Z

c(·−m j ) (↑m d) (m j ) = ∑
k∈Zm

∑
j∈Z

c(·−m j +k) (↑m d) (m j +k)︸ ︷︷ ︸
=0,k 6=0

= ∑
j∈Z

c(·− j ) (↑m d) ( j ) = c∗ ↑m d

which is indeed a piece of the synthesis part of a filterbank, so that

Sac = a∗ ↑2 c, c ∈ `(Z). (1.2.27)

The idea of subdivision is now to iterate Sa on some initial data c0 = c ∈ `(Z) and to consider
cn := Sn

a c as a function of 2−nZ with denser and denser pixels that eventually converges to a
function. The most common definition in this respect looks as follows.

Definition 1.2.24 (Convergence). The SUBDIVISION SCHEME, i.e., the sequence of operators
Sn

a : `(Z) → `(Z), n ∈N, with respect to the MASK a ∈ `0(Z) is said to be a CONVERGENT SUB-
DIVISION SCHEME if for any c ∈ `∞(Z) there exists a uniformly continuous function fc :R→R

such that
lim

n→∞sup
k∈Z

∣∣Sn
a c(k)− fc

(
2−nk

)∣∣= 0. (1.2.28)

Some well–known facts about convergent subdivision schemes are summarized in the next
theorem. Since we will not focus on analytic and convergence issues here, we refer, for exam-
ple, to [Cavaretta et al., 1991, Micchelli, 1995] for the quite elementary proofs.

Theorem 1.2.25 (Convergence of subdivision). Let a ∈ `0(Z) be a given mask.

1. The following statements are equivalent:

a) the subdivision scheme based on a converges,

b) there exists a BASIC LIMIT FUNCTION φ such that Sn
aδ→φ,

c) Sa1 = 1, where 1 ∈ `(Z) stands for the constant sequence, and there exists b ∈ `0(Z)
such that

a](z) = (z +1)b](z) (1.2.29)

and Sb is CONTRACTIVE, i.e.,

lim
n→∞

∥∥Sn
b c

∥∥
∞ = 0, c ∈ `∞(Z). (1.2.30)

2. The basic limit function is REFINABLE, i.e.,

φ= ∑
k∈Z

a(k)φ(2 ·−k). (1.2.31)
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1.2 Numerical applications

3. Any limit function is a so–called12 SEMIDISCRETE CONVOLUTION of the form

fc =
∑

k∈Z
φ(·−k)c(k) =:φ∗ c. (1.2.32)

While several of the above results are straightforward consequences of the linearity of the
subdivision operator, the convergence result 1c) requires some proof. Note, however, that
this is the principle of fixpoint iterations as in Newton’s method or the power method in nu-
merical analysis [Gautschi, 1997] and numerical linear algebra [Golub and van Loan, 1996],
respectively.

What is more relevant for our purposes is the preservation property Sa1 = 1 and the factor-
ization (1.2.29) – this is algebra and will turn out to be an ideal property in several variables.
The connection is made by a simple but important operator.

Definition 1.2.26 (Difference operator). The DIFFERENCE OPERATOR ∆ : `(Z) → `(Z) is de-
fined as ∆= τ− I .

Remark 1.2.27. Note that the difference operator can also be written as p(τ) for the poly-
nomial p(x) = x −1, where the variable is formally replaced by the shift operator. This alge-
braization of difference operators will play a fundamental role later.

Since δ is the unit in the convolution algebra on `(Z), we can also write ∆c = (τδ−δ)∗ c,
c ∈ `(Z) and thus note that the difference operator is indeed a CONVOLUTION OPERATOR. A
simple as this is, it means that with respect to symbols or z–transforms it is a MULTIPLIER.
This is easily verified:

(∆c)[(z) = ∑
k∈Z

(∆c)(k) z−k = ∑
k∈Z

(c(k +1)− c(k)) z−k = ∑
k∈Z

c(k)z1−k − ∑
k∈Z

c(k)z−k = (z −1)c[(z),

hence also

(∆c)](z) = (∆c)[(z−1) = (z−1 −1)c](z).

This permanent ambiguity between z and z−1 in symbol and z–transforms and forward and
backward differences13 is a continuous embarrassment in subdivision and can even be the
source for almost religious choices of one of them. In the end it does not matter, one just has
to be careful . . .

Another important property of the difference is that

∆c = 0 ⇔ τc = c ⇔ c ∈Π0, (1.2.33)

the KERNEL of the difference operator are exactly the constant sequences.

Exercise 1.2.3 Show that ker∆n =Πn−1, n ∈N. ♦
On the other hand, the difference operator is a minimal annihilator for arbitrary subdivision
operators concerning constants. More precisely.

Theorem 1.2.28. If m ∈ N and a ∈ `0(Z) is such that 0 = Sa1 := a ∗m 1, then there exists b ∈
`0(Z) such that Sa = Sb∆.

12At least by some people.
13The BACKWARDS DIFFERENCE is defined as τ−1 − I .

25



1 The univariate case

Proof: Since, for any a ∈ `0(Z) and ε ∈Zm

Sa1(ε+mk) = ∑
j∈Z

a(ε+mk −m j ) = ∑
j∈Z

a(ε−m j )

it follows that

Sa1 = 0 ⇔ ∑
j∈Z

a(ε−m j ) = 0, ε ∈Zm .

Thus,

a](1) = ∑
j∈Z

a( j ) = ∑
ε∈Zm

∑
j∈Z

a(ε−m j ) = 0

and, for j ∈Zm \ {0},

a]
(
e2πi j /m

)
= ∑

k∈Z
a(k)

(
e2πi j /m

)k = ∑
ε∈Zm

∑
j∈Z

a(ε−mk)
(
e2πi j /m

)ε−mk

= ∑
ε∈Zm

e2πiε j /m
∑
j∈Z

a(ε−mk)
(
e−2πi j /m

)mk = ∑
ε∈Zm

e2πiε j /m
∑
j∈Z

a(ε−mk)e−2πi j k︸ ︷︷ ︸
=1

= 0,

hence

a]
(
e2πi j /m

)
= 0, j ∈Zm , (1.2.34)

and therefore the polynomial

∏
j∈Zm

(
z −e2πi j /m

)
= zm −1 (1.2.35)

divides a], hence a](z) = (zm −1)b](z) for some b ∈ `0(Z). On the other hand,

(Sb∆)](z) = (b∗ ↑m ∆)] (z) = b](z) (zm −1) (1.2.36)

which completes the proof. �

Exercise 1.2.4 Prove (1.2.35). If you have no idea how, look up the notion of an mth root of
unity. ♦
If now Sa1 = 1, then∆Sa1 =∆1 = 0 and by Theorem 1.2.28 it follows that there exists b ∈ `0(Z)
such that

∆Sa = Sb∆ (1.2.37)

or, equivalently,

(z −1) a](z) = (zm −1)b](z) ⇔ a](z) = (
1+ z +·· ·+ zm−1) b](z). (1.2.38)

For m = 2, this is exactly (1.2.29). These factorizations can be iterated to describe preserva-
tion/reproduction of polynomials by a subdivision operator and we will generalize them to
several variables, encountering several differences. It will turn out, however, that (1.2.37) ex-
tends literally while (1.2.38) requires quite a few new concepts, especially that of a quotient
ideal.
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1.2 Numerical applications

1.2.4 Prony and moments

PRONY ’S PROBLEM is a problem in SPARSE RECONSTRUCTION. The task is to reconstruct a
function

f (x) =
n∑

j=1
f j eω j x , ω j ∈R+ iT, (1.2.39)

from its values at certain integers. The problem was raised and solved by R. Prony14 in
[Prony, 1795] already in 1795, but in the digital era it became reused, for example in the con-
text of multisource radar, cf. [Schmidt, 1986, Roy and Kailath, 1989]. The standing assump-
tion on the representation (1.2.39) is that it is efficient which means that n is the minimal
number of terms for the representation15 of f as a sum of exponentials. This implies that

ω j 6=ωk , j 6= k, and f j 6= 0, j = 1, . . . ,n. (1.2.40)

Moreover, we restrict the imaginary part of the frequencies to be in T = R/2πZ ' [−π,π) to
avoid ambiguities in the terms eω j . In summary, these properties ensure that the representa-
tion (1.2.39) is NONREDUNDANT.

Remark 1.2.29. Prony’s problem actually comes from a real world application in chemistry,
namely, the vaporization of alcohol. The function of the form (1.2.39) is a model for a liquid
that combines several unknown vaporization rates of the ingredients16 that are contained in
unknown relative quantities. Or, in a simplified way: what is the best time to start drinking a
glass of whisky17.

The interesting point about the problem (1.2.39) is that the determination of the coefficients
f j is a linear problem as soon as the FREQUENCIES ω j are known, but finding them makes the
problem nonlinear.

Prony’s trick can even be formulated in terms of digital signal processing: choosing a ∈
`0(Z), and denoting the restriction of the function f to Z by f as well, we can compute

a ∗ f ( j ) = ∑
k∈Z

a(k)
n∑
`=1

f`eω`( j−k) =
n∑
`=1

f`eω` j
∑

k∈Z
a(k)e−ω`k =

n∑
`=1

f`eω` j a[
(
eω`

)
and write this as

f ∗a =
(
eω` j :

j ∈Z
`= 1, . . . ,n

) f1
. . .

fn


a[ (eω1 )

...
a[ (eωn )

 ,

or, looking at a finite segment only, (a ∗ f )(0)
...

(a ∗ f )(n −1)

=

1 eω1 . . . (eω1 )n−1

...
...

. . .
...

1 eωn . . . (eωn )n−1


 f1

. . .

fn


a[ (eω1 )

...
a[ (eωn )

 (1.2.41)

14That is the name he uses on the original paper, his full name is Gaspard Clair François Marie Riche
de Prony

15This is the meaning of SPARSITY in this context.
16Like alcohol, water and some aromatic content.
17There are indeed situations when it becomes necessary to sacrifice oneself in the name of science

and to turn even mathematics into an experimental science.
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1 The univariate case

Noting that the first matrix on the right hand side of (1.2.41) is the Vandermonde matrix
Vn−1 ({eω1 , . . . ,eωn }) and therefore nonsingular as long as the frequencies are disjoint18, that
the middle matrix is diagonal with19 nonzero diagonal elements, we can draw the following
conclusion.

Proposition 1.2.30. A filter with impulse response a ∈ `0(Z) annihilates f if and only if a[ (eω j ) =
0, j = 1, . . . ,n.

This already is Prony’s strategy: given the sampled values of f , find an ANNIHILATING FILTER

a such that a ∗ f = 0, which only requires these discrete values, and then compute the zeros
of a[ to obtain the frequencies. And if we know the “magic” number n, we know that there
is a unique polynomial of degree n which vanishes at eω j , j = 1, . . . ,n, so if we look for an
annihilating filter with only n +1 consecutive nonzero “taps”, for example by enforcing

supp a := {k : a(k) 6= 0} ⊂ {0, . . . ,n},

then the resulting a[ has exactly n different zeros and gives the frequencies. To compute this
a, we note that

(a ∗ f )( j ) =
n∑

k=0
a(k) f ( j −k), j = 0, . . . ,n −1,

so that  (a ∗ f )(0)
...

(a ∗ f )(n −1)

=


f (0) f (−1) . . . f (−n)
f (1) f (0) . . . f (1−n)

...
...

. . .
...

f (n −1) f (n −2) . . . f (−1)


a(0)

...
a(n)

 .

Since any nonzero multiple of a[ has the same zeros as a[, we still have to normalize a which
we do by requiring that a(n) = 1. Then the normalized annihilating filter is found by solving

0 =

 (a ∗ f )(0)
...

(a ∗ f )(n −1)

=

 f (0) . . . f (1−n)
...

. . .
...

f (n −1) . . . f (0)


 a(0)

...
a(n −1)

+

 f (−n)
...

f (−1)

 ,

hence we solve  f (0) . . . f (1−n)
...

. . .
...

f (n −1) . . . f (0)


︸ ︷︷ ︸

=:F∈Cn×n

 a(0)
...

a(n −1)


︸ ︷︷ ︸

=:a∈Cn

=−

 f (−n)
...

f (−1)


︸ ︷︷ ︸

=: fn

(1.2.42)

and compute the zeros, for example as the eigenvalues of the Frobenius companion matrix
0 −a(0)
1 −a(1)

. . .
...

1 −a(n −1)

 = (
e2, . . . ,en ,F−1 fn

)= (
F−1 f1, . . .F−1 fn

)

=

 f (0) . . . f (1−n)
...

. . .
...

f (n −1) . . . f (0)


−1  f (−1) . . . f (−n)

...
. . .

...
f (n −2) . . . f (−1)


18Which they are according to (1.2.40).
19Again due to (1.2.40).
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1.2 Numerical applications

see Example 1.1.22. In particular, the computation of the annihilating filter and its zeros
only involves the 2n samples f (−n), . . . , f (n −1) which accidentally is precisely the number
of unknowns in (1.2.39). This works in principle if and only if the matrix f (0) . . . f (1−n)

...
. . .

...
f (n −1) . . . f (0)


is nonsingular and therefore the solution of (1.2.42) is unique. Since we do not like matrix
inverses in numerical computations, we turn everything into the GENERALIZED EIGENVALUE

PROBLEM  f (−1) . . . f (−n)
...

. . .
...

f (n −2) . . . f (−1)

x =λ

 f (0) . . . f (1−n)
...

. . .
...

f (n −1) . . . f (0)

x (1.2.43)

for which there exist numerical methods like the Q Z method, described, for example, in
[Golub and van Loan, 1996]. What is nice about (1.2.43) is that it computes the frequencies
directly from the samples of the data without applying any transformations to the problem.
There are of course other methods, see for example [Plonka and Tasche, 2014, Potts and Tasche, 2015].

The matrices occurring in (1.2.43) belong to a famous class.

Definition 1.2.31. A matrix A = (
a j k : j ,k

)
is called a TOEPLITZ MATRIX if there exists some

a ∈ `(Z) such that a j k = a( j −k).

Remark 1.2.32. It is easy to see that Toeplitz matrices are the matrix representation of the
convolution, seen as a linear operator Ta on `Z: Tac := a ∗ c.

Remark 1.2.33. The factorization (1.2.41) already hints which concepts we may need in the
multivariate case: construction of annihilating filters, Vandermonde matrices, i.e., polyno-
mial interpolation and (common) zeros of polynomials will become the essential tools here,
cf. [Sauer, 2017, Sauer, 2018b].

The relationship to moment problems becomes more visible if we write the annihilation con-
cept in a slightly different way by using the CORRELATION

c?d := ∑
j∈Z

c(·+k)d(k) (1.2.44)

Though this operation is no more symmetric, there is no fundamental difference to the con-
volution and in most application convolutions could be replaced by correlations20. Correla-
tions are represented by a different type of matrices.

Definition 1.2.34. A matrix A = (
a j k : j ,k

)
is called a HANKEL MATRIX if there exists some

a ∈ `(Z) such that a j k = a( j +k).

Remark 1.2.35. While Toeplitz matrices are constant on the diagonal and sub- and super-
diagonals, Hankel matrices are constant on the so-called antidiagonals. For example,

Hn = (
a( j +k) : j ,k = 0, . . . ,n

)=


f (0) f (1) . . . f (n)
f (1) f (2) . . . f (n +1)

...
...

. . .
...

f (n) f (n +1) . . . f (2n)


is such a typical Hankel matrix.

20This is comparable to the choice between z-transforms and symbol.
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1 The univariate case

Hankel matrices are classical objects in mathematics, in particular due to their immediate
relationship to the MOMENT PROBLEM.

Definition 1.2.36. Given a measure µ on R, the j th MOMENT of µ is defined as

µ( j ) :=
∫
R

x j dµ(x), j ∈N0. (1.2.45)

The sequence
(
µ( j ) : j ∈N0

)
is called the MOMENT SEQUENCE and moment problems consider

the question which sequences are moments for certain types of measures. Moreover, the
FOURIER TRANSFORM of the measure µ is defined as

µ̂(ξ) :=
∫
R

e−i xξdµ(x), ξ ∈R. (1.2.46)

Since the moment matrix

M =
(∫
R

x j xk dµ(x) : j ,k

)
= (

µ( j +k) : j ,k
)

is a Hankel matrix that describes the action of the linear functional f 7→ ∫
f dµ on polyno-

mials, Hankel matrices and Hankel operators naturally connect to moment problems. In the
special case of a signed DISCRETE MEASURE of the form

µ=
n∑

j=1
f j δi ω j , f j ,ω j ∈C,

whose Fourier transform takes the familiar form

µ̂(ξ) =
n∑

j=1
f j

∫
R

e−iξx dδi ω j (x) =
n∑

j=1
f j eω j ξ,

the task of reconstructing the locations and weights of the measure is then exactly Prony’s
problem where we reconstruct from the sequence

µ̂(k) =
n∑

j=1
f j

(
e−iω j

)k =
n∑

j=1
f j

∫
R

xk dδe−iω j (x) = µ̃( j )

which is the moment sequence of the discrete measure

µ̃=
n∑

j=1
f jδe−iω j

with the same weights and re-localized centers of mass.
In summary, Prony’s problem, finite discrete signed measures, Hankel or Toeplitz operators

of finite rank are all just different points of view for the same thing. This also holds true in
several variables and will enable us to combine all the theory that we learn in the sequel.
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Constructive ideal theory 2
Men invent new ideals because they dare not attempt old ideals. They look
forward with enthusiasm, because they are afraid to look back

(G. K. Chesterton, What’s wrong with the world)

In this chapter we make a systematic approach to the techniques needed for dealing with
ideals of multivariate polynomials. We will denote by K a field of characteristic zero, but
mainly have the three casesQ,R,C in mind. We will writeK× =K\ {0} for the units ofK.

2.1 Polynomial and Laurent ideals

We begin with carefully defining the necessary concepts for dealing with multivariate poly-
nomials. This needs some notation and terminology, in particular if we still want to write
things in a compact way. In all that we are doing, we will use s ∈ N for the number of vari-
ables1, so that polynomials can always be seen as functionsKs →K.

2.1.1 (Laurent) polynomials in several variables

We begin with some standard notation for multivariate objects.

Definition 2.1.1 (Multiindices, monomials and terms).

1. A MULTIINDEX α= (α1, . . . ,αs) ∈Zs is a tuple of integers. Its LENGTH is defined as |α| =
|α1|+· · ·+|αs |. Forα ∈Ns

0, we also define its FACTORIAL asα! :=α1! · · ·αs !. Moreover, we
use the partial ordering α≤β if α j ≤β j , j = 1, . . . , s.

2. A MONOMIAL in x ∈Ks is an expression

xα := xα1
1 · · ·xαs

s , α ∈Ns
0 or α ∈Zs . (2.1.1)

If we want to emphasize that we permit an arbitraryα ∈Zs , we will speak of a LAURENT

MONOMIAL. A TERM is an expression of the form c xα, c ∈K×.

3. A POLYNOMIAL is a finite linear combination of monomials overK,

f (x) = ∑
α∈Ns

0

fα xα, #
{
α : fα 6= 0

}<∞, (2.1.2)

1The more common use in algebra is to use n for the number of variables and d for the degree, in
analysis people often prefer to use d for the space dimension and n for the degree. This can be
confusing sometimes. The choice here is just a personal selection.
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2 Constructive ideal theory

a LAURENT POLYNOMIAL a finite linear combination of Laurent monomials,

f (x) = ∑
α∈Zs

fα xα, #
{
α : fα 6= 0

}<∞. (2.1.3)

The ring2 of all polynomials is written as Π=K[x], the ring of Laurent polynomials as
Λ.

4. The SUPPORT of a (Laurent) polynomial is the set of the indices of nonzero coefficients:

supp f := {
α ∈Zs : fα 6= 0

}
. (2.1.4)

It is worthwhile to record some simple and elementary consequences of these definitions.

Remark 2.1.2 (On Definition 2.1.1).

1. The zero polynomial is not considered to be a term.

2. Laurent monomials are only defined onKs×.

3. Any polynomial is a Laurent polynomial and any Laurent polynomial can be written as

f (x) = xα p(x), α ∈Zs , p ∈Π.

This representation is not unique, but can be made unique by requesting that p(0) 6= 0,
hence the support of p cannot be shifted any further and α is then a maximal choice
since

f (x) = xα−β xβp(x)︸ ︷︷ ︸
∈Π

, β ∈Ns
0,

would be a valid representation as well.

4. Polynomials are expressions with finite support in Ns
0, Laurent polynomials expres-

sions with finite support in Zs .

Definition 2.1.3 (Differential operators). Given a polynomial f ∈ Π, the associated PARTIAL

DIFFERENTIAL OPERATOR f (D) is obtained by formally replacing x by the differential ∂
∂x , that

is,

f (D) = ∑
α∈Ns

0

fα
∂α

∂xα
, f = ∑

α∈Ns
0

fα (·)α. (2.1.5)

Definition 2.1.4. An INNER PRODUCT (·, ·) on Π is, in the case of K ⊆ R a symmetric, definite
bilinear form, for C only a definite sesquilinear form, that is

( f , g ) = (g , f ), ( f , f ) ∈R+.

Example 2.1.5. The simplest way to define an inner product would be to just take the inner
product of the coefficients,

( f , g ) = ∑
α∈Ns

0

fα gα, (2.1.6)

but a nicer one is
( f , g ) = (

f (D)g
)

(0) = ∑
α∈Ns

0

α! fα gα. (2.1.7)

2This means that we will not only add and multiply by field elements as in a vector space, but also
multiply polynomials with each other, following Gen 1:28.
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2.1 Polynomial and Laurent ideals

Exercise 2.1.1 Prove that the two bilinear forms in (2.1.6) and (2.1.7) are inner products in
R[x] and verify (2.1.7). Deriver their extensions to C[x]. ♦

Remark 2.1.6. The inner product from (2.1.7) is, among others, known as the FISHER INNER

PRODUCT or BOMBIERI INNER PRODUCT and has been used in various instances, for example
also by Gröbner in [Gröbner, 1937].

The inner product (2.1.7) has another property that allows us get an explicit Riesz represen-
tation of point evaluations when extending the inner product properly.

Definition 2.1.7 (Power series). The algebraK(x) of FORMAL POWER SERIES overK consists of
all expressions of the form

f (x) = ∑
α∈Ns

0

fα xα, fα ∈K. (2.1.8)

A sequence fn , n ∈N, is said to be CONVERGENT to f ∈K(x) if for any finiteΩ⊂Ns
0 there exists

an n0 ∈N such that

fn,α = fα, α ∈Ω, n ≥ n0. (2.1.9)

For y ∈Ks we define the element ey ∈K(x) as

ey (x) := ∑
α∈Ns

0

yα

α!
xα. (2.1.10)

Recall the classical fact3 that the product of two power series( ∑
α∈Ns

0

fα xα
)( ∑

α∈Ns
0

gα xα
)
= ∑
α,β∈Ns

0

fαgβ xα+β = ∑
α∈Ns

0

( ∑
0≤β≤α

fα−βgβ

)
xα

relies on the CAUCHY PRODUCT of the coefficients which is indeed a convolution and com-
putes any coefficient of the product from only finitely many coefficients, hence the product
is well–defined inK(x).

Since the product in (2.1.7) is well–defined when f or g has finite support, we can extend
it toK[x]×K(x) and have the following simple but extremely useful result that has been used
in many applications, cf. [Boor and Ron, 1992, Mourrain, 2016].

Theorem 2.1.8. For any f ∈Π and x ∈K, we have that

f (x) = ( f ,ex ). (2.1.11)

Proof: We only have to note that, due to (2.1.7),

( f ,ex ) = ∑
α∈N0

α! fα
xα

α!
= ∑
α∈N0

fα xα = f (x)

to verify (2.1.11). �

3In one variable it is part in any calculus lecture.
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2 Constructive ideal theory

2.1.2 Ideals and varieties

Now we get to the fundamental concept of this lecture.

Definition 2.1.9 (Ideal). An IDEAL I in a ring R is a subset that is closed under addition and
under multiplication with arbitrary elements from R, i.e., I +I =I , I ·R =I . A TRIVIAL

IDEAL is either I = {0} and I = R. An ideal that does not equal R is called PROPER.

Trivial ideals can be identified easily: they either consist only of 0 or they contain units.

Lemma 2.1.10. An ideal I ⊂ R satisfies I = R if and only if I ∩R× 6= ;.

Proof: The direction “⇒” is trivial and if r ∈I for some r ∈ R× then

a = ar−1r ∈ r ·R =I , a ∈ R,

hence I = R. �

Corollary 2.1.11. An ideal I ⊂K[x] is trivial in the sense I =K[x] if and only if 1 ∈I .

Remark 2.1.12. If the ring R contains a field K, as our (Laurent) polynomials do, then any
ideal is also aK vector space; nonlinearity enters due to the multiplication of polynomials.

Remark 2.1.13. If I and J are ideals, then I ∩J is an ideal as well as the defining closed-
ness conditions are preserved individually.

In the sequel we will only consider ideals inΠ andΛ and forget about more general rings. The
first observation is that there are two simple ways to generate ideals.

Example 2.1.14 (Ideal constructions).

1. If F is a finite subset ofΠ orΛ, then its COMPLETION with respect to ideal operations,

〈F 〉Π :=
{ ∑

f ∈F
g f f : g f ∈Π

}
, 〈F 〉Λ :=

{ ∑
f ∈F

g f f : g f ∈Λ
}

, (2.1.12)

are ideals in Π and Λ, respectively, the ideals GENERATED BY F . Note, however, that
for F ⊂ Π the ideals 〈F 〉Π and 〈F 〉Λ are clearly different. Normally, we will drop the
subscript in (2.1.12) if it is clear in which of the two rings the ideal is formed.

2. If X ⊂Ks , then the set

I (X ) :=IX := {
f : f (X ) = {0}

}
(2.1.13)

of all elements VANISHING at X is an ideal as well, called the ZERO IDEAL4 of X . Note,
that in the case of ideals inΛwe have to require that X ⊂Ks×.

The first simple observation is that the solution of a SYSTEM OF EQUATIONS F (x) = 0, F ⊂Π, is
a matter of the ideal 〈F 〉 and not of the specific equations F . Indeed,

f (x) = 0, f ∈ F ⇒ ∑
f ∈F

g f (x) f (x) = 0, g f ∈Π, ⇒ f (x) = 0, f ∈ 〈F 〉,

and since the converse is trivial due to F ⊆ 〈F 〉, we can conclude that

F (x) = 0 ⇔ 〈F 〉(x) = 0. (2.1.14)

This is the reason why the next definition restricts to ideals without any loss of generality.

4The German terminology NULLSTELLENINDEAL is somewhat nicer.
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2.1 Polynomial and Laurent ideals

Definition 2.1.15. For an ideal I ⊂Π the associated VARIETY is defined as

V (I ) := {
x ∈Ks : f (x) = 0, f ∈I

}
, (2.1.15)

and for I ⊂Λ,
VΛ(I ) := {

x ∈Ks
× : f (x) = 0, f ∈I

}
. (2.1.16)

The connection between polynomial ideals and varieties is expressed in the following result
whose proof can be found in [Cox et al., 1996, p. 168–171]. So we first focus on polynomial
ideals and point out similarities and differences later in Section 2.1.6, where we will also show
how to reduce Laurent ideals to polynomial ideals

Theorem 2.1.16 (NULLSTELLENSATZ). LetK be an algebraically closed field5.

1. If I ⊂K[x] is an ideal with V (I ) =;, then I =K[x].

2. If f ∈ I (V (I )) then there exists some m ∈N such that f m ∈I .

Remark 2.1.17. Theorem 2.1.16 gives two versions of the famous Nullstellensatz. The state-
ment 1) is usually called the WEAK NULLSTELLENSATZ and proved by induction on the number
of variables in which way it can be seen the generalization of the fact that the only univariate
polynomials over C that have no zero must be constant. Statement 2) is known as HILBERT’S

NULLSTELLENSATZ and already addresses some of the problems caused by multiplicity of ze-
ros.

2.1.3 Simple ideal operations

There are elementary operations that we can apply to an ideal. They are defined as follows.

Definition 2.1.18 (Ideal operations). Let I ,J be two ideals.

1. The sum and the product are defined as

I +J := {
f + g : f ∈I , g ∈J

}
, J ·J := 〈

f g : f ∈I , g ∈J
〉

. (2.1.17)

2. The QUOTIENT IDEAL I : J is defined as

I : J := {
f ∈Π : f ·J ⊆I

}
(2.1.18)

Proposition 2.1.19. I +J , I J and I : J are ideals and satisfy

I ·J ⊆I ,J ⊆I +J , I : J ⊇I . (2.1.19)

Proof: The I +J is an ideal follows for f , f ′ ∈I , g , g ′ ∈J from

( f + g )+ ( f ′+ g ′) = ( f + f ′)+ (g + g ′), p( f + g ) = p f +pg ∈I +J

and is trivial for I J . Also the inclusions are immediate. The quotient ideal is an ideal since
for f , f ′ ∈I : J

( f + f ′)J = {( f + f ′)g : g ∈J } ⊆ { f g + f ′g ′ : g , g ′ ∈J } = f ·J + f ′ ·J ⊆I +I =I

and, for p ∈Π,
p f J = f (pJ ) ⊆ f J ⊆I .

Hence, it is an ideal, the inclusion follows from I ·J ⊆J . �
5In particular,K=C.
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2 Constructive ideal theory

2.1.4 Ideal types: from radical to primary

In view of Theorem 2.1.16, we define some more terminology on polynomial ideals.

Definition 2.1.20. An ideal I is called

1. RADICAL IDEAL if I =p
I where the RADICAL of I is defined as

p
I = {

f ∈Π : f m ∈I for some m
}

. (2.1.20)

2. MAXIMAL IDEAL if I 6=Π and I ⊆J for some ideal J implies J =I or J =Π.

3. PRIME IDEAL if f g ∈I implies either f ∈I or g ∈I .

4. PRIMARY IDEAL if f g ∈I implies either f ∈I or g m ∈I for some m ≥ 1.

Remark 2.1.21. Some remarks concerning the concepts from Definition 2.1.20:

1. By definition we have that I ⊆p
I .

2. Maximal ideals also play a fundamental role in functional analysis, namely, in the con-
text of BANACH ALGEBRAS, cf. [Yosida, 1965].

3. The relationship between primary and prime ideals is a radical one. Indeed, see [Cox et al., 1996,
p. 207], for any primary ideal I its radical

p
I is prime and is indeed the smallest

prime ideal containing I .

In terms of these definitions we can rephrase Statement 2 of Theorem 2.1.16 as follows.

Corollary 2.1.22 (STRONG NULLSTELLENSATZ). If K is algebraically closed then I (V (I )) =p
I for any ideal inK[x].

Proposition 2.1.23. For any variety V ⊆Ks , the ideal I (V ) is radical.

Proof: For f ∈ p
I (V ) we have 0 = f m(x), x ∈ V , i.e., 0 = f (x), x ∈ V , hence f ∈ I (V ). This

shows that
p

I (V ) ⊆ I (V ) and since the converse inclusion is true by definition, the two ideals
coincide. �

Also maximal and prime ideals share a close relationship.

Proposition 2.1.24. Let I ⊂K[x] be a maximal ideal.

1. I is prime.

2. IfK is algebraically closed, then there exists z = (z1, . . . , zs) ∈Ks such that

I = 〈(·)− z〉 := 〈
(·) j − z j : j = 1, . . . , s

〉
. (2.1.21)

Proof: For 1) suppose that I is not prime, hence here exist f , g 6∈I such that f g ∈I . Then
I ⊂ 〈

f
〉+I since the ideal on the right hand side contains f which does not belong to I .

On the other hand,
〈

f
〉+I = K[x] would imply that 1 ∈ 〈

f
〉+I , that is, there exist h ∈ I

and p ∈K[x] such that 1 = p f +h, hence

g = g ·1 = g (p f +h) = p g f︸︷︷︸
∈I

+g h︸︷︷︸
∈I

∈I ,
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2.1 Polynomial and Laurent ideals

which is a contradiction. Consequently, I is prime as claimed.
For statement 2) we note that, by the Nullstellensatz I 6=Π implies that V (I ) 6= ;, hence

there exists some z ∈V (I ). This implies together with Theorem 2.1.22 that

I (z) ⊇ I (V (I )) =
p

I =I

since, by 1), I is prime, hence equals the smallest prime ideal containing I which is
p

I ,
see Remark 2.1.21. Therefore,

I ⊆ I (z) = 〈
(·) j − z j : j = 1, . . . , s

〉⊂K[x]

and maximality of I finally implies that I = I (z). �

Exercise 2.1.2 Show that

I (z) = 〈
(·) j − z j : j = 1, . . . , s

〉
, z ∈K,

holds for any algebraically closed field. ♦
Primary ideals form the building blocks of polynomial ideals. In fact, any ideal I inK[x] can
be written as a finite intersection of primary ideals. There is an even more advanced version
of it, the LASKER-NOETHER THEOREM that describes the situation in detail. It can be found,
with its proof6 in [Cox et al., 1996, Theorem 7 and 9, p. 208], which we repeat in a summarized
form.

Theorem 2.1.25 (Lasker–Noether). Every polynomial ideal I ⊆ K[x] has a finite minimal
primary decomposition

I =
n⋂

j=1
I j , I j primary, (2.1.22)

where7
√

I j are distinct and I j 6⊃⋂
k 6= j Ik . Moreover, the proper prime ideals among

√
I :

〈
f
〉

,

f ∈K[x], are exactly
√

I j , j = 1, . . . ,n.

Dimension theory of ideals in general is a nontrivial issue, see [Cox et al., 1996] and [Gröbner, 1970],
but one special case is easy to describe already at this point. Since it is the most relevant one
in our applications, we give the definition here.

Definition 2.1.26. I ⊆K[x] withK algebraically closed is called a ZERO DIMENSIONAL IDEAL

if the associated variety is finite: #V (I ) <∞.

An immediate consequence of the primary decomposition from the Lasker-Noether Theo-
rem is as follows.

Theorem 2.1.27. Any zero dimensional ideal has a primary decomposition of the form

I = ⋂
z∈V (I )

〈·− z〉kz , kz ∈N, z ∈V (I ). (2.1.23)

6The proof is quite elementary but the necessary details would distract us too far from what we want
to do here.

7This is the definition of minimal.
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2 Constructive ideal theory

The intuition behind the proof of Theorem 2.1.27 is that
p

I is a zero dimensional prime
ideal that can be decomposed into its maximal parts

p
I = ⋂

z∈V (I )
〈(·)− z〉

and then the “local multiplicities” are handled by passing to the primary parts. We will not
give a detailed proof here as we will consider more precise statements with exact multiplicity
of zeros later on.

2.1.5 Bases

The next definition is fundamental for all the theory we deal with later.

Definition 2.1.28 (Ideal basis). A set F ⊂ Π or F ⊂ Λ is called a basis for an ideal I ⊂ Π or
I ⊂Λ if I = 〈F 〉Π or I = 〈F 〉Λ, respectively. If the context is clear, we simply write I = 〈F 〉.

The following result ensures that ideals can be handled on a computer and justifies the exis-
tence of computer algebra systems like Maple or Mathematica. It is Hilbert’s famous Basis-
satz.

Theorem 2.1.29 (BASISSATZ). Any ideal inΠ has a finite basis.

The proof of this fundamental result can be found in all books on algebraic geometry, for
example in [Gröbner, 1968], but also in [Cox et al., 1996, Eisenbud, 1994]. For our purposes
so far it suffices to believe it, following the famous quote

The proof of the Hilbert Basis Theorem is not mathematics; it is theology.

(P. Gordan)8

Once we represent ideals by means of their finite bases, we have to figure out whether and
how we can perform ideal operations by means of the bases; later we will also determine how
this can be done efficiently. In what follows, we consider the case of two ideals

I = 〈F 〉, J = 〈G〉, F,G ⊂K[x], #F,#G <∞. (2.1.24)

Addition is indeed simple.

Lemma 2.1.30. I +J = 〈F ∪G〉.

Proof: For p ∈I and q ∈J we write

p = ∑
f ∈F

p f f and q = ∑
g∈F

qg g ,

and get
p +q = ∑

f ∈F
p f f + ∑

g∈F
qg g = ∑

h∈F∪G
ph h.

�

8In [Eisenbud, 1994] this statement is attributed to the “reigning king of invariants” who happened
to work in Gießen and Erlangen, but not in Passau. In the online Math Tutor [MacTutor, 2003], it
can even be found twice, as due to Paul Gordan and Camille Jordan, but Gordan seems to be more
likely.
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2.1 Polynomial and Laurent ideals

Lemma 2.1.31. I ·J = 〈
f g : f ∈ F, g ∈G

〉
.

Proof: By definition, an arbitrary element of I ·J is of the form

a =
n∑

j=1
b j p j q j , b j ∈Π, p j ∈I , q j ∈J , j = 1, . . . ,n,

and the respective bases yield

a =
n∑

j=1
b j

( ∑
f ∈F

p j f f

) ( ∑
g∈G

q j g g

)
= ∑

f ∈F

∑
g∈G

(
n∑

j=1
b j p j f q j g

)
f g ,

which proves the claim. �

The IDEAL INTERSECTION is more complex and based on the following result.

Lemma 2.1.32. InK[x, t ] one has

I ∩J = (
t I + (1− t )J

)∩K[x]. (2.1.25)

Hence, any basis of 〈tF + (1− t )G〉∩K[x] is a basis of I ∩J .

Proof: We denote the ideal on the right hand side of (2.1.25) by H . For f ∈I ∩J , we have
the trivial identity

f = (t + (1− t )) f = t f + (1− t ) f ∈ tI + (1− t )J =H

hence I ∩J ⊆H . If, on the other hand, we can write p ∈K[x, t ] as

p(x, t ) = t f (x)+ (1− t )g (x)

then

p(x,0) = 0 f (x)+ (1−0) g (x) = g (x) ∈J ,

and

p(x,1) = 1 f (x)+ (1−1) g (x) = f (x) ∈I ,

and if p ∈H , i.e., p(x, t ) = p(x), is independent of t , then p(x) ∈I ∩J , hence I ∩J ⊇H .
�

To really compute the ideal intersection, we need to be able to determine a basis of 〈tF + (1− t )G〉
with t being eliminated. Such an elimination ideal can be computed by means of Gröbner
bases.

The last step is how to determine a basis for the quotient ideal which will be based on
the ideal intersection and relies on the following observations that enable us to compute the
basis step by step.

Theorem 2.1.33 (Properties of quotient ideals).

1. For ideals I ,J ,J ′ the following holds:

I : (J +J ′) = (I : J )∩ (I : J ′). (2.1.26)
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2 Constructive ideal theory

2. If F is a basis of I ∩〈
g
〉

, then

F /g :=
{

f

g
: f ∈ F

}
(2.1.27)

is a basis of I :
〈

g
〉

.

Proof: For 1) we first observe that f ∈I : (J +J ′) means

f (g + g ′) ∈I , g ∈J , g ′ ∈J ′,

which holds in particular for g = 0 or g ′ = 0, hence

f g ∈I , f g ′ ∈I , g ∈J , g ′ ∈J ′ ⇒ f ∈ (I : J )∩ (I : J ′),

and the inclusion "‘⊆"’ in (2.1.26) is verified. If, conversely, f ∈ (I : J )∩ (I : J ′), then

f J ⊆I , f J ′ ⊆I ⇒ f (J +J ′) ⊆I ,

gives "‘⊇"’ and completes the proof of (2.1.26).
For p ∈ 〈

F /g
〉

and q = h g ∈ 〈
g
〉

we have that

pq = hg
∑
f ∈F

p f
f

g
= ∑

f ∈F
(hp f ) f ∈ 〈F 〉 =I ∩〈

g
〉⊆I ,

hence p ∈ I :
〈

g
〉

, that is,
〈

F /g
〉 ⊆ I :

〈
g
〉

. For the converse we assume that p ∈ I :
〈

g
〉

,
yielding, in particular, that pg ∈I . On the other hand pg ∈ 〈

g
〉

, implying pg ∈ I ∩〈
g
〉= 〈F 〉

or

pg = ∑
f ∈F

q f f ⇒ p = ∑
f ∈F

q f
f

g
∈ 〈

F /g
〉

. (2.1.28)

Since F ⊂I ∩〈
g
〉

, it follows that

f ∈ F ⇒ f ∈ 〈
g
〉 ⇒ f = g f g

an therefore the quotients f /g in (2.1.28) are really polynomials9. In total we have shown that
also

〈
F /g

〉⊇I :
〈

g
〉

holds, so that
〈

F /g
〉=I :

〈
g
〉

or F /g , respectively, is a basis of I :
〈

g
〉

.
�

2.1.6 Polynomial vs. Laurent ideals

In principle10 things are very simple: any monomial is a unit in Λ and this enables us to
transform any Laurent ideal into a polynomial ideal. Nevertheless, we have to be careful as
the simple example

f (x, y) = x y−1 −1 = y−1 (
x − y

)
shows that coincides, up to units, with f̃ (x, y) = x − y . This looks innocent, but the “equiva-
lent” polynomial f̃ has a zero at x = y = 0, which is forbidden for Laurent polynomials. This
discrepancy in varieties is a clear sign that we have to be more careful and find a more delicate
approach.

9And not arbitrary rational functions.
10Principles are always dangerous, the only more dangerous thing is to insist in them.
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2.1 Polynomial and Laurent ideals

Definition 2.1.34. The POLYNOMIAL PART P (J ) of a Laurent ideal J ⊆Λ is defined as P (J ) :=
J ∩Π.

Exercise 2.1.3 Show that P (I ) is a polynomial ideal. ♦
Polynomial parts of Laurent ideals have a very special structure.

Proposition 2.1.35. A polynomial ideal I ⊆ Π is of the form I = P (J ) for a Laurent ideal
J if and only if for f ∈Π and 1 ≤ j ≤ s we have that

x j f (x) ∈I ⇒ f ∈I . (2.1.29)

Proof: Set I := P (J ) ⊂J . Since x−1
j ∈Λ, j = 1, . . . , s, it follows for f ∈I that

x j f (x) ∈I ⊂J ⇒ f (x) = x−1
j

(
x j f (x)

) ∈I ∩Π= P (J ) =I .

Hence, (2.1.29) is necessary for polynomial parts of Laurent ideals.
Conversely, let I be a polynomial ideal satisfying (2.1.29), F ⊂ I a basis of I and J :=

〈F 〉Λ, yielding
I ⊆J ∩Π= P (J ).

If P (J ) 6=I , there exist Laurent polynomials g f ∈Λ, f ∈ F , with the property that

g = ∑
f ∈F

g f f ∈ P (J ) \I .

Choosing a monomial m ∈Π such that m g f ∈Π, f ∈ F , we get that

m g = ∑
f ∈F

(
m g f

)
f ∈ 〈F 〉Π =I ,

and a repeated application of (2.1.29), namely, that for α ∈Zs we have

xα f (x) ∈I ⇒ f ∈F

allows us to conclude from m g ∈I the contradiction g ∈I . Therefore I = P (J ). �

Remark 2.1.36. Proposition 2.1.35 tells us how to compute the polynomial parts of a Laurent
ideal J , again by means of completion: we start with a basis of J , transform that into
a basis consisting of polynomials by multiplying with proper monomials, and check if the
polynomial ideal I generated by these polynomials satisfies (2.1.29), which we can rewrite

I :
〈

z j
〉=I , j = 1, . . . ,n, (2.1.30)

If strict inclusion holds in (2.1.30), we extend I into a basis of I :
〈

z j
〉

, otherwise we have
constructed a basis for the polynomial part P (J ).

Example 2.1.37. In the context of
p

3 subdivision [Kobbelt, 2000] one is interested in the ideal
J = 〈

x y−2 −1, x2 y−1 −1
〉

whose associated polynomial basis elements x−y2 and x2−y have
the common but SPURIOUS ZERO x = y = 0. This can also be recognized in the polynomial part
that is of the form

P (J ) = 〈
y2 −x, x2 − y, x y −1

〉= 〈
y2 −x, x2 − y

〉+〈
x y −1

〉
,

where the additional polynomial takes care of the unwanted zero.
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Proposition 2.1.38 (Laurent ideals).

1. A zero dimensional polynomial ideal I is the polynomial part P (J ) of a Laurent ideal
J if and only if

f (z) 6= 0, z ∈Cs
×, f ∈I . (2.1.31)

2. For Laurent ideals J ,J ′ one has

P
(
J : J ′)= P

(
J

)
: P

(
J ′) (2.1.32)

and
P

(
J k

)
= P

(
J

)k , k ∈N. (2.1.33)

Proof: Being zero dimensional, I has a finite associated variety X = V (I ) and thus a pri-
mary decomposition

I = ⋂
x∈X

〈z −x〉kx , kx ∈N, x ∈X .

Because of (2.1.30), I = P (J ) for some Laurent ideal J iff

〈z −x〉kx :
〈

z j
〉= 〈z −x〉kx , j = 1, . . . ,n, x ∈ X ,

which is in turn equivalent to

zk 6∈
√

〈z −x〉kx = 〈z −x〉 ⇒ xk 6= 0,

which yields the first claim 1).
To prove (2.1.32) we choose f ∈ P (J ) : P

(
J ′), this is, f P

(
J ′)⊂ P

(
J

)
and therefore〈

f
〉
ΛJ ′ = {g ( f h)︸︷︷︸

∈J

: g ∈Λ, h ∈J ′} ⊂J .

Consequently,
f ∈ (

J : J ′)∩Π= P
(
J : J ′)

which means that P (J ) : P
(
J ′)⊆ P

(
J : J ′). Conversely, one has for any f ∈ P

(
J : J ′)

that
Π⊃ f P

(
J ′)⊂ f J ′ ⊂J ⇒ f P

(
J ′)⊂ P

(
J

)
and therefore also P (J ) : P

(
J ′)⊇ P

(
J : J ′).

Since, according to (2.1.19) J k ⊆J holds for any Laurent ideal J ⊆Λ and any k ∈N, we
have V

(
J k

)⊇V (J ). On the other hand, f ∈J implies f k ∈J k and f k (x) = 0 also yields
f (x) = 0, i.e. x ∈V (J ), so that V

(
J k

)⊇V (J ). Hence

V
(
J k

)
=V (J ) ⊂Cn

×,

because of 1). The converse direction of 1) also implies that P
(
J k

)
is the polynomial part of

a Laurent ideal, due to which, according to Proposition 2.1.35,

P
(
J k

)
:
〈

z j
〉= P

(
J k

)
, j = 1, . . . ,n.

If F is a basis of P (J ) and therefore also of J , then the polynomials{ ∏
f ∈F

f k f :
∑
f ∈F

k f = k

}
⊂ P

(
J

)k

is also a basis of J k and by Proposition 2.1.35 this yields (2.1.33). �
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2.2 Degree: graded rings and polynomial degree

2.2 Degree: graded rings and polynomial degree

In one variable the notion of the degree of a polynomial was clear from intuition and has
never been questioned: it is simple the maximal index of nonzero coefficients or, which is the
same, the largest exponent appearing in the monomial representation. If we want to derive
an analogy in several variables, the direct analogy would force us to order multiindices before
the even more general question pops up: what type of object should a degree be? A minimal
condition for a degree, and inspection of proofs shows that this is mostly what we use is that

deg( f + g ) ≤ max{deg f ,deg g }, deg
(

f · g
)= deg f +deg g , f , g ∈Π. (2.2.1)

Abstractly spoken, the concept of a degree connects the multiplicative structure of polyno-
mials with the additive structure of N0, at least in the case of univariate polynomials. Which
implies that degrees should at least be something for which an addition is well-defined. Such
structures can be defined formally.

Definition 2.2.1. A MONOID Γ is a commutative additive semigroup, i.e., closed under addi-
tion, with a neutral element 0.

Example 2.2.2. The setsNs
0 andZs , s ≥ 1, are monoids while 2N is a semigroup but no monoid

- it lacks the neutral element.

The definition of a graded ring, from which we will derive the notion of degree afterwards,
consist precisely of impose the structure of a monoid on a ring in a consistent fashion. This
will still mean that different monoids can lead to different notions of degree for the same ring
R, even the same monoid can lead to different structures. This will give us a liberty of choice
that we can use, for example, to derive numerically robust methods.

Definition 2.2.3 (Graded ring & grading monoid). A commutative ring R with unit is called
GRADED RING11 if there exists a GRADING MONOID Γ such that

1. R has the direct sum decomposition

R =⊕
γ∈Γ

Rγ (2.2.2)

into additive subgroups Rγ ⊆ R, γ ∈ Γ, of R. Direct sum means that Rγ∩Rγ′ = {0}, γ 6= γ′,
and that the representation

r = ∑
γ∈Γ

rγ, rγ ∈ Rγ,

is unique.

2. the summands have the property

Rγ ·Rγ′ ⊆ Rγ+γ′ , γ,γ′ ∈ Γ. (2.2.3)

We call any element of the summands Rγ, γ ∈ Γ, a HOMOGENEOUS ELEMENT of R and write

R0 = ⋃
γ∈Γ

Rγ (2.2.4)

for the set of all homogeneous elements.

11Therefore, whenever we speak of a grading and a graded ring, commutativity and the existence of a
unit are included.

43
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Remark 2.2.4. The transfer of additive to multiplicative structures is, of course, property 2),
more precisely (2.2.3).

Example 2.2.5 (Gradings of K[x]). One can come up with various gradings for multivariate
polynomials:

1. The TOTAL DEGREE is obtained with Γ=N0 and

Πk := spanK

{
xα : |α| = k

}
.

2. GRADING BY MONOMIALS uses Γ=Nn
0 and

Πα = spanK

{
xα

}
.

3. For s = 1 the gradings in 1) and 2) coincide.

4. A more general grading can be obtained as follows: let v j ∈Ks , j = 1, . . . , s, be linearly
independent vectors and define the linear polynomials ` j (x) = vT

j x, x ∈Ks , j = 1, . . . , s.

Defining `α := `α1
1 · · ·`αn

n , the homogeneous spaces

Πk = spanK

{
`α : |α| = k

}
, Πα = spanK

{
`α

}
, k ∈N0, α ∈Ns

0,

both induce a grading that turnsK[x] into a graded ring.

Having generalized the notion of a term into homogeneous elements, we need a largest ho-
mogeneous element to extend the concept of degree. This forces us to order the monoid.

Definition 2.2.6 (Well ordering). An ordering “<” on a monoid Γ is called WELL ORDERING if

1. it is a TOTAL ORDER, that is

γ,γ′ ∈ Γ γ 6= γ′ ⇒ γ< γ′ or γ′ < γ.

2. it is COMPATIBLE with the semigroup operation “+”, that is,

γ< γ′ ⇒ γ+η< γ′+η, η ∈ Γ.

3. each STRICTLY DESCENDING sequence γ1 > γ2 > ·· · of monoid elements is finite.

Remark 2.2.7. Property 3) connects fundamentally to polynomial ideals where we have the
so called ASCENDING CHAIN CONDITION: any strictly increasing sequence of ideals I1 ⊂I2 ⊂
·· · has to be finite. Indeed, this is what makes polynomials a NOETHERIAN RING. For more
details see once more [Cox et al., 1996]12.

It is easy to see that for any well ordering we know the minimal element in advance.

Lemma 2.2.8. If “<” is a well ordering on the monoid Γ, then 0 < γ for all γ ∈ Γ\ {0}.

Proof: Supposing that there exists γ< 0 we get

γ= γ+0 > γ+γ=: 2γ= 2γ+0 > 2γ+γ= 3γ> ·· ·
and thus the strictly decreasing sequence kγ, k ∈ N, is infinite, in contradiction to Defini-
tion 2.2.6, 3). �
12The reader may get the idea that this a good book and worthwhile to read. I am not objecting.
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Definition 2.2.9 (Term order). A grading on K [x] is called a TERM ORDER if Γ=Ns
0 and Πα =

span
{

xα
}
, α ∈Nn

0 .

Remark 2.2.10 (Well orderings).

1. The only well ordering onN0 is the canonical one since 0 < 1 already implies k < k+1 <
k +2 < ·· · for any k ∈N0.

2. There is no well ordering on Z as Lemma 2.2.8 enforces k > 0 and −k > 0 for any k 6= 0,
leading to the contradiction 0 < k + (−k) = 0 due to the compatibility property 2).

3. On Ns
0 there exists a multitude of well orderings from which one can choose the most

appropriate for a specific application. The classics are:

a) LEXICOGRAPHICAL term order (“lex”): for α 6=β ∈Nn
0 we set

α≺l β ⇔ α j =β j , j = 1, . . . ,k −1, αk <βk .

b) GRADED LEXICOGRAPHICAL term order (“gradlex”): for α 6=β ∈Nn
0 we define

α≺g β ⇔ |α| < |β| oder |α| = |β|, α≺l β.

In the “gradlex” ordering the lexicographical ordering plays the role of “tie breaker” for
multiindices of the same length.

There is an important interaction between grading and units.

Lemma 2.2.11. If R is a graded by a well ordered monoid, it units satisfy R× ⊆ R0.

Proof: Write r ∈ R× and its inverse s = r−1 with respect to the direct sum decomposition as

r = ∑
γ∈Γ

rγ and s = ∑
γ∈Γ

sγ,

i.e., with respect to its homogeneous components. Then we get for η ∈ Γ,

Rη = 1 ·Rη = (r s)Rη =
∑

γ,γ′∈Γ
rγsγ′Rη︸ ︷︷ ︸
∈Rγ+γ′+η

,

and since γ+γ′ > 0 if γ,γ′ 6= 0, the uniqueness of the direct sum decomposition implies that
rγ = sγ = 0 for γ ∈ Γ\ {0}. �

Corollary 2.2.12. The only grading for Laurent polynomials is the TRIVIAL GRADING Λ = R0

and Rγ = {0}, γ ∈ Γ\ {0}.

Proof: As a vector space,Λ is generated by units that belong to R0, so all elements ofΛ belong
to R0. �

Exercise 2.2.1 Show that the trivial grading is a grading (easy). ♦
Sometimes gradings will be interesting where R0 is as small as possible, somehow the coun-
terpiece to the trivial grading.

Definition 2.2.13 (Strict grading). A grading is called a STRICT GRADING if R0 = R×.
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Returning to our concrete ring Π=K[x], we can now use the concept of the graded ring with
a well ordered monoid to finally define a degree, just recalling that the degree was the max-
imal index of a nontrivial homogeneous component. And this we have for any well ordered
grading monoid forΠ.

Definition 2.2.14 (Degree). Let Γ be a well ordered grading monoid forK[x]. For the13

Π 3 f = ∑
γ∈Γ

fγ fγ ∈Πγ, (2.2.5)

we define

1. the (Γ-)DEGREE of f as

δΓ( f ) := max
{
γ ∈ Γ : fγ 6= 0

} ∈ Γ. (2.2.6)

2. the (Γ-)LEADING PART of f as

λΓ( f ) := fδΓ( f ) ∈Π0. (2.2.7)

Exercise 2.2.2 Show that the decomposition (2.2.5) contains only finitely many nonzero
terms. ♦

Exercise 2.2.3 Show that δΓ
(

f · g
)= δΓ (

f
)+δΓ (

g
)

and λΓ
(

f · g
)=λΓ (

f
) ·λΓ (

g
)
. ♦

Remark 2.2.15.

1. We can also consider the degree and the leading part as mappings for Π to Γ and Π0,
respectively.

2. In the case of a term order, the leading part is a term, i.e., a multiple of a monomial,
and thus usually called the LEADING TERM of the polynomial. In the case of the total
degree the leading part is a HOMOGENEOUS POLYNOMIAL or FORM and therefore called
the LEADING FORM.

3. Strictly speaking, degree and leading part depend of the monoid Γ and the well order-
ing “<” which together form the grading monoid. For example, if we consider the poly-
nomial f (x, y) = 2x2 y2 +3x3 with the “lex” grading, then δ( f ) = (3,0) and λ( f ) = 3x3,
while “gradlex” gives δ( f ) = (2,2) and λ( f ) = 2x2 y2.

To get acquainted to this somewhat lesser known concept, let us consider some more exam-
ples.

Example 2.2.16 (Weighted total degree). We choose 0 6=ω ∈Ns
0, Γ=N0 as monoid14 and

Πk = spanK

{
xα : ωTα= k

}
, k ∈N0.

If ω = (1, . . . ,1), we rediscover the total degree. The associated grading is also called the H-
GRADING where “H” stands for “homogeneous”.

It is not forbidden here that ω j = 0 for one or several values of j . If, for example, ω2 = ·· · =
ωn = 0, the we consider the polynomial only as a polynomial in x1 and take the usual degree
of that one. In particular, Π0 consists of all linear combinations if monomials of the form
xα2

2 · · ·xαn
n and is therefore of infinite dimension. And the grading is not strict any more.

13It is unique by definition, see Definition 2.2.3, 1).
14There is only one well ordering for this one . . .
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2.3 Division with remainder: making the impossible possible

Example 2.2.17 (Matrix grading). What we could do with vectors15, can also be done with
matrices, for example in the following setup: let m ∈N, 0 6= M ∈Nm×s

0 , let ≺ be a well ordering
onNm

0 . The we set
Πβ = spanK

{
xα : Mα=β}

, β ∈Nm
0 .

Here it can happen thatΠβ = {0} for some values of β. A few particular cases are as follows:

1. The case m = 1 is the situation of Example 2.2.16.

2. For M = 2I we get thatΠβ = {0} whenever β j ∈ 2N+1 for at least one j ∈ {1, . . . , s}.

3. Setting m = s +1 and choosing ≺ as the lex ordering onNm
0 , the matrix

M =


1 . . . 1
1

. . .

1


describes the gradlex ordering. Indeed, any term order can be reduced to the lexico-
graphic one by means of matrix multiplication which allows us to parameterize term
orders.

4. If ≺m is a well ordering onNs
0 and M ∈Nm×s

0 , then the ordering ≺s onNs
0, defined by

α≺n β ⇐⇒ Mα≺m Mβ, α,β ∈Nn
0 ,

is a well ordering if and only if kerZs M = {
α ∈Zs : Mα= 0

} = {0}; this requirement is
needed to able to compare two different elements, hence of a total order.

Example 2.2.18. It is even possible to grade with R, more precisely with a finitely generated
submonoid of R. To that end, let ω ∈Rs+ be a vector whose components are linearly indepen-
dent overQ, that is, {

q ∈Qn : ωT q = 0
}= {0},

for example ω= (
1,
p

2,π
)T

. Then

α≺β ⇐⇒ ωTα︸︷︷︸
∈R

<ωTβ︸︷︷︸
∈R

is even a term order

Definition 2.2.19. A grading is called MONOMIAL GRADING if all homogeneous spaces Πγ,
γ ∈ Γ are spanned by monomials as aK vector space.

2.3 Division with remainder: making the impossible possible

The simple idea behind efficient, computable bases, is to lift the division by remainder to
the multivariate situation. In principle, this is impossible since K[x] is a euclidean ring only
if s = 1, i.e., in the univariate case. Nevertheless, this should not prevent us from trying to
naively extend the algorithm, then analyze the problems and find a way to overcome them.
Since the approach severely relies on the notion of a degree, we will only consider polynomial
ideals in this section.

15Which are in fact only tuples in Example 2.2.16.
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2 Constructive ideal theory

2.3.1 A different perspective . . .

The key to a successful algorithmic handling of ideal bases will be yet another division with
remainder. This is not fully intuitive and does not suggest itself since for s > 1 the ring K[x]
is not a euclidean ring any more. This forces us to change our point of view a little bit and
consider division with remainder from a different perspective. As we have seen before, in
s = 1 for any given f ∈K[x] each polynomial g ∈K[x] can be written as

g (x) = p(x) f (x)+ r (x), degr < deg f , (2.3.1)

where uniqueness of the REMAINDER r was a consequence of the degree requirement that
is imposed in (2.3.1). Since this in turn was due to the fact that the degree is a euclidean
function, cf. [Gathen and Gerhard, 1999] we have to consider things from a more general
point of view if want to generalize the idea:

1. the polynomials p(x) g (x) is an element of the principal ideal
〈

g
〉

.

2. If we assume that f (x) = fn xn +·· · then degr < deg f is also equivalent to the fact that
r contains no term of the form rn xn ,rn+1xn+1, . . . , that is, no term that is a multiple of
the leading term λ( f ) of f .

Divisibility by leading terms is now a concept that we can extend to the multivariate case as
long as we work on terms only. Let us illustrate this idea by means of a (very) simple exam-
ple16.

Example 2.3.1. Let us fix α ∈Nn
0 and consider division with remainder by the principal ideal

F = {
xα

}
. Since any polynomial

g (x) = ∑
β∈Nn

0

gβ xβ ∈Π

can be decomposed into

g (x) =
( ∑
β∈α+Nn

0

gβ xβ−α
)

xα︸ ︷︷ ︸
∈〈F 〉

+ ∑
β∈Nn

0 \(α+Nn
0 )

gβ xβ, (2.3.2)

hence an ideal and a divisible part, the monomial f (x) = xα splits the support of f into two
parts: the terms divisible by xα and those not divisible by the monomial. This decomposition
is illustrated in Fig. 2.3.1.

To advance this idea, we need some further concepts that will be introduced in the next sub-
section.

2.3.2 Upper and lower sets and monomial ideals

It is never a bad a idea to begin by defining the objects one is going to study. In particular, as
they will play a fundamental role later.

Definition 2.3.2 (Upper/lower sets & monomial ideals).

16As we will see soon, the example is even too simple.
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2.3 Division with remainder: making the impossible possible

α

Figure 2.3.1: The exponents that belong to the cone α+N2
0 spanned by α = (1,2) and those

that do not belong to this cone. This yields the decomposition of the support
of a polynomial (light gray region) into a “division” and a “remainder” part as in
(2.3.2).

1. For a subset A ⊂Ns
0 we denote by x A = {xα :α ∈ A} the set of all monomials indexed by

A and byΠA = span x A the vector space spanned by these monomials.

2. A ⊂Ns
0 is called a LOWER SET if

α ∈ A ⇒ {β :β≤α} ⊆ A (2.3.3)

and it is called an UPPER SET if

α ∈ A ⇒ α+Ns
0 ⊆ A. (2.3.4)

3. An ideal I ⊂ Π is called a MONOMIAL IDEAL if there exists some set A ⊆ Ns
0 such that

I = 〈
x A

〉
.

Remark 2.3.3 (Upper and lower sets).

1. There exist various names for upper sets, for example ORDER CLOSED IDEAL.

2. Moreover, any upper set is clearly of infinite cardinality, for lower sets this can vary: Ns
0

and {0} are both (extreme) forms of nontrivial lower sets.

3. The principal lower and upper sets are of the form

L(α) := {
β ∈Ns

0 :β≤α}
and U (α) :=α+Ns

0, (2.3.5)

for some α ∈ Ns
0. L(α) is a higher dimensional cuboid, U (α) a cone, more precisely, a

shifted octant.

Lemma 2.3.4. Lower and upper sets are closed under union and intersection and the comple-
ment of an upper set is a lower set and vice versa.
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2 Constructive ideal theory

Proof: If L,L′ are lower sets and andα ∈ L∩L′, then L(α) ⊆ L and L(α) ⊂ L′, hence L(α) ⊆ L∩L′;
for α ∈ L ∪L′ suppose that α ∈ L, then L(α) ⊆ L ⊆ L ∪L′. Literally the same proof, replacing L
by U works for upper sets.

If U is an upper set and α 6∈U the assumption L(α)∩U 6= ; would result in the existence of
some β ∈U with β≤ α, hence α ∈U (β) ⊆U , which is a contradiction. The same way, we get
for a lower set L and α 6∈ L that β ∈U (α)∩L would result in α ∈ L(β) ⊆ L. �

Remark 2.3.5. The above argument about complements is based on the simple observation
that

α ∈ L(β) ⇔ β ∈U (α) (2.3.6)

for any α,β ∈Ns
0.

Definition 2.3.6. The BORDER of a lower set L ⊂Ns
0 is defined as17

∂L :=
(

s⋃
j=1

L+ε j

)
\ L. (2.3.7)

Theorem 2.3.7 (Upper sets). Let U ⊆Ns
0 be an upper set.

1. U is generated by the border if its complement, that is,

U =U (∂L) = ⋃
α∈∂L

U (α), L :=Ns
0 \U , (2.3.8)

with the convention that ∂;= {0}.

2. Any upper set is finitely generated, i.e., there exists A ⊂Ns
0, #A <∞, such that U =U (A).

3. Any upper set U is minimally generated by the finite set

G(U ) := {α ∈U : L(α)∩U = {α}} , i.e., U =U (G(U )). (2.3.9)

Proof: For 1) we choose any α ∈U and check whether L(α)∩U 6= {α}. If yes, we replace α by
one element of this set which we can do only finitely many times since we strictly decrease
one column of α in each step. After finitely many steps we thus find an element β such that
α ∈ U (β) and β cannot be reduced any further. This means that either β = 0 in which case
U =Ns

0 and the claim holds by convention, otherwise β−ε j 6∈U , hence β−ε j ∈ L even for all
j such that β j > 0, so that indeed β= γ+ε j for some γ ∈ L and j ∈ {1, . . . , s}.

For 2) we modify the proof of [Cox et al., 1996, §4, Theorem 5] to fit for subsets of Ns
0. To

that end, we perform by induction on s, where the case s = 1 is easy: any upper set of the form
{k ∈N : k ≥ m} and m = minU is the generator18 of the upper set. So suppose that the claim
has been verified for some s ≥ 1 and let U ⊆Ns+1

0 be an upper set inNs+1
0 . Define

Ns
0 3U ′ := {

α ∈Ns
0 : (α,k) ∈U for some k ∈N0

}
as the projection of U on Ns

0. The set U ′ is an upper set since U is an upper set, hence, by
induction, it is generated by a finite set A′, U ′ =U (A′). By definition of U ′ there exist uniquely

17Note that we always use the SET DIFFERENCE in the sense that A \ B = {a ∈ A : a 6∈ B} and do not
require that the “removed” set B is originally a subset of A.

18This reminds us a lot of principal ideals and that is no accident.
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2.3 Division with remainder: making the impossible possible

defined minimal19 numbers kα, α ∈ A′, such that (α,kα) ∈U ′; set k∗ = max{kα :α ∈ A′}. Next,
we define the “slices”

Uk = {
α ∈Ns

0 : (α,k) ∈U
}

, k = 0, . . . ,k∗−1,

which are upper sets again and therefore, by induction, there exist A′
k ⊂Ns

0, such that

Uk =U (A′
k ), #A′

k <∞, k = 0, . . . ,k∗−1.

We now claim that

U =U (A), A := {
(α,kα) :α ∈ A′}∪ k∗−1⋃

k=0

{
(α,k) :α ∈ A′

k

}
. (2.3.10)

Indeed, if (β,k) ∈U , then β ∈U ′. If k ≥ k∗, we use the fact that

β ∈ ⋃
α∈A′

U (α) β ∈U (α) for some α ∈ A′

to write (β,k) as
(β,k) = (α,kα)+ (

β−α,k −kα
)︸ ︷︷ ︸

∈Ns+1
0

∈U ((α,kα)) ,

while for k < k∗ we use the fact that now β ∈U (A′
k ), hence β ∈U (α) for some α ∈ A′

k and thus

(β,k) = (α,k)+ (β−α,0) ∈U ((α,k)) ,

which verifies (2.3.10) and thus completes the proof of part 2).
For 3) we first note that any generator of U must generate G(U ) since α ∈ U (β) for some

α,β ∈U implies that β ∈ L(α), hence G(U ) ⊆ A for the generating set A from 2). Hence, all we
have to show is that G(U ) is finite and generates U . For anyα ∈ A from the finite generating set
A we can find by the construction used to prove statement 1), a β ∈G(U ) such that α ∈U (β),
hence there exists a finite20 set B ⊆ G(U ) such that A ⊂ U (G(U )), hence U = U (A) = U (B).
This implies that G(U ) ⊆ B ⊆G(U ), hence B =G(U ) is the finite minimal generator for U . �

Remark 2.3.8. Statement 2) in Theorem 2.3.7 is known as DICKSON’S LEMMA. Among others,
we will use it later to give a constructive proof of Hilbert’s Basissatz, Theorem 2.1.29.

To apply Theorem 2.3.7 to (monomial) ideals, we need to make the connection between
monomial ideals and upper sets. This is quite a direct one.

Proposition 2.3.9. A monomial xβ lies in the monomial ideal
〈

x A
〉

if and only if β ∈U (A).

Proof: The direction “⇐” follows from the definition as β = α+γ for some α ∈ A and γ ∈Ns
0

yields
xβ = xα+γ = xα xγ ∈ 〈

x A〉
.

For the converse direction, we note that xβ ∈ 〈
x A

〉
implies that

xβ = ∑
α∈A

pα(x) xα

and since supp p(·)α ⊆U (α), we get that

xβ ∈ ⋃
α∈A

U (α) =U (A)

which proves “⇒”. �
19Since U is an upper set, (α,k) ∈U implies that (α,k +1) ∈U .
20At most one β for each element of the finite set A
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2 Constructive ideal theory

Corollary 2.3.10. Any monomial ideal is finitely generated.

Proof: The monomials contained in
〈

x A
〉

are exactly xU (A) and even if A is infinite, there

exists a finite A′ such that U (A) =U (A′), then
〈

x A
〉= 〈

x A′〉
. �

2.3.3 Division with remainder: a naive monomial algorithm

After that little bit of theory on upper and lower sets, we return to naively performing division
with remainder. A few names for that purpose that fix the intuition from the beginning of this
section.

Definition 2.3.11. Let F ⊂ Π, #F < ∞, and choose the grading monoid Γ = Nn
0 so that all

homogeneous spaces consist of single monomials.

1. By

λ(F ) =λΓ(F ) = {
λΓ( f ) : f ∈ F

}
we denote the leading terms appearing in F .

2. We say that the finite set F or the ideal 〈F 〉 DIVIDES g ∈ Π with REMAINDER r , if there
are polynomials g f ∈Π such that

g = ∑
f ∈F

g f f + r, (2.3.11)

and no element of λ(F ) divides any homogeneous component of r , i.e., any term in r .

3. We call a representation (2.3.11) of g a G-REPRESENTATION if it also satisfies the DEGREE

CONSTRAINT

δΓ(g ) ≥ δΓ
(
g f f

)
, δΓ(g ) ≥ δΓ (r ) . (2.3.12)

Remark 2.3.12. One intuition for a G-representation is that it is efficient since it does not con-
tain unnecessary redundant terms. Imaging one summand on the right hand side of (2.3.11)
has a larger degree than g , then there must be another summand compensating that and the
excessive degree was simply unnecessary and should have been omitted from the beginning.

The “G” in the G-representation relates, no surprise, to Gröbner bases. And even if we do
not know yet whether something like that exists, we can already define this most important
concept.

Definition 2.3.13. A finite set F ⊂ I is called a GRÖBNER BASIS for the ideal I if any g ∈ I
has a G-representation with respect to F , i.e.,

g = ∑
f ∈F

g f f , δ(g ) ≥ δ(g f f ). (2.3.13)

Note that the representation in (2.3.11) is not really well-defined.

Remark 2.3.14. Neither the “coefficients” g f nor the remainder r in (2.3.11) are unique. For
example,

F = {
x y −2, x2 +2y −1

}=:
{

f1, f2
} ⊂K[x, y],
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2.3 Division with remainder: making the impossible possible

and g (x) = x2 y admit the two representations

g (x, y) = g1(x, y) f1(x, y) + g2(x, y) f2(x) + r (x, y)
x2 y = x

(
x y −2

) + 0
(
x2 +2y −1

) + 2x
= 0

(
x y −2

) + y
(
x2 +2y −1

) + y −2y2.

For the lex order they both are even G-representation so that we need not hope to achieve
uniqueness by simply bounding the degree.

The first step is an algorithm that naively extends the idea of division with remainder to term
orders. The only difference is that in Algorithm 2.3.1 we do not only divide by a single poly-
nomial but by a finite set that defines an ideal. This is reasonable since we are not working in
an principal ideal ring any more.

Algorithm 2.3.1 DIVISION WITH REMAINDER; g ∈Π, F ⊂Π, term order Γ
1: r ← 0, g f ← 0, f ∈ F .
2: while g 6= 0 do
3: if Exists f ∈ F such that λ( f )|λ(g ) then
4:

g f ← g f +
λ(g )

λ( f )
, g ← g − λ(g )

λ( f )
f (2.3.14)

5: else
6:

r ← r +λ(g ), g ← g −λ(g ) (2.3.15)

7: end if
8: end while
9: Result:

g = ∑
f ∈F

g f f + r, δ(g ) ≥ δ(g f f ),δ(r ). (2.3.16)

Remark 2.3.15. We can rephrase the crucial steps in Algorithm 2.3.1 also in terms of our up-
per and lower set terminology. In a term order the check whether λ( f ) divides λ(g ) for some
f is exactly the question whether δ(g ) ∈U

(
δ( f )

)
for some f ∈ F , hence we check whether

δ(g ) ∈U (δ(F )) . (2.3.17)

If this is the case, then we reduce by means of the function f . Note that

1. this adds multiples of lower degree components of f to g as soon as f is not only a
monomial

2. this modification is no more unique as soon as there are several polynomials f with
δ(g ) ∈U

(
δ( f )

)
, and this can and will effect further steps of the algorithm.

If, on the other hand (2.3.17) is not true, we move the leading term directly into the remainder
and thus have that

suppr ⊆Ns
0 \U (δ(F )) (2.3.18)

is automatically a lower set. This simple observation will become relevant later.
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Of course, we have to verify that the algorithm keeps what it promises.

Proposition 2.3.16. Algorithm 2.3.1 terminates after finitely many steps and computes a G-
representation (2.3.16).

Proof: We denote by g j the value of g in the j th step of Algorithm 2.3.1, initialized by g0 := g

and with the iteration g j+1 = g − λ(g j )
λ( f ) f and g j+1 = g j −λ(g j ) in (2.3.14) and (2.3.15), respec-

tively.
Since in each step of the algorithm the leading of g j is eliminated, we immediately have

that
δ

(
g j+1

)< δ(
g j

)
, j = 0,1,2, . . .

so that after finitely many steps we have to arrive at the zero polynomial since any grading is
based on a well ordering. Therefore the algorithm terminates.

The more important property, namely (2.3.16) is proved by verifying the invariant

g = g j +
∑
f ∈F

g f f + r, j = 0,1,2, . . . (2.3.19)

which is trivially true for j = 0 by the way how g f and r are initialized. Proceeding inductively,
we observe that if δ(g j ) ∈U (δ(F )), then, denoting the updated g f by g̃ f ,

g j+1 +
∑
f ∈F

g̃ f f + r =
(

g j −
λ

(
g j

)
λ( f )

f

)
+ ∑

f ′∈F \{ f }
g f ′ f ′+

(
g f +

λ
(
g j

)
λ( f )

)
f

= g j +
∑
f ∈F

g f f + r,

while for δ(g j ) 6∈U (δ(F ))

g j+1 +
∑
f ∈F

g̃ f f + r̃ = (
g j −λ

(
g j

))+ ∑
f ∈F

g̃ f f + (
r +λ(

g j
))= g j +

∑
f ∈F

g f f + r,

which advances (2.3.19) from j to j +1. The degree constraints in (2.3.16), on the other hand,
are enforced by the design of the algorithm. �

Example 2.3.17. To illustrate how the algorithm works, we consider the polynomials F ={
x y −2, x2 +2y −1

}= { f1, f2} and the gradlex order with x > y from Remark 2.3.14.

1. For g (x, y) = x3 + y3 +1 we get21

j g λ
(
g
)

g f1 g f2 r
0 x3 + y3 +1 x3 0 0 0
1 y3 −2x y +x +1 y3 0 x 0

2 −2x y +x +1 −2x y 0 x y3

3 x +5 x −2 x y3

4 5 5 −2 x y3 +x

5 0 0 −2 x y3 +x +5

and the G-representation

g =−2
(
x y −2

)+x
(
x2 +2y −1

)+ y3 +x +5

of g with respect to F .

21We always mark the objects that are updated.
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2. For g (x, y) = x2 y we get

j g λ
(
g
)

g f1 g f2 r
0 x2 y x2 y 0 0 0
1 2x 2x x 0 0
2 0 0 x 0 2x

or

j g λ
(
g
)

g f1 g f2 r
0 x2 y x2 y 0 0 0
1 −2y2 + y −2y2 0 y 0

2 y y 0 y −2y2

3 0 0 0 y −2y2 − y

depending on whether we use f1 or f2 in the first step.

This second example above already helps us to see the problem of our naive extension: nei-
ther the G-representation nor the remainder and unique and thus well-defined in general.
But we also can identify the source of this ambiguity. If in some step of Algorithm 2.3.1 there
are several f ∈ F such that δ(g ) ∈U

(
δ( f )

)
, then different choices lead to different values of g

with which the algorithm proceeds and may come to different results. This is something that
cannot happen in a principal ideal ring.

Of course, we could make the algorithm unique and the results well-defined by numbering
the elements of F as f1, . . . , fn and always choose the first f from the list whose leading term
divides the leading term of g . While this is possible and indeed leads to a well-defined be-
havior of the algorithm, it is not satisfactory at all as now the algorithm depends on the order
of F which is usually irrelevant and totally arbitrary.

What is so important about unique representation and, in particular, unique remainders.
One reason is that unique remainders help us to solve a fundamental problem in computa-
tional ideal theory.

Definition 2.3.18. The IDEAL MEMBERSHIP PROBLEM consist of determining for given g ∈ Π
and F ⊂Πwhether g ∈ 〈F 〉
Indeed, whenever a G-representation ends up with r = 0, then g can be represented with re-
spect to F and therefore belongs to 〈F 〉. And if we had a unique remainder, the r = 0 would be
the only possible remainder for any ideal element and the ideal membership is solved by sim-
ply computing a division with remainder. The good news is that there are bases which have
this property and that we already know them by hearsay from (2.3.13) in Definition 2.3.11.
The following result will not be proved now, as it will follow from a slight more general one
that we will state and prove a little bit later.

Theorem 2.3.19. If G is a Gröbner basis for 〈G〉 in f ∈Π admits the G-representations

f = ∑
g∈G

fg g + r = ∑
g∈G

f ′
g g + r ′,

then r = r ′.

Based on Theorem 2.3.19, we can introduce another fundamental notion.

Definition 2.3.20. Let F ⊂ Π and G a Gröbner basis for 〈F 〉. Then the unique remainder r
from Algorithm 2.3.1, starting from some h ∈Π is called the NORMAL FORM of h with respect
to G , in short νG (h).
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Remark 2.3.21. The normal form depends, strictly speaking, not only on h and G , but also
on the grading. Since term orders always use Γ=Ns

0, the chosen term order becomes relevant
and indeed the normal form is usually (but not always) strongly dependent on the term order.
Therefore, speaking of a Gröbner basis always includes the assumption that the parameters
of the grading have been fixed appropriately.

Corollary 2.3.22. If G is a Gröbner basis22 then

f ∈ 〈G〉 ⇔ νG ( f ) = 0.

Since νG ( f ) can be computed, the ideal membership problem is decidable.

2.3.4 Division with remainder: a naive only algorithm

Our next goal is to extend the division algorithm 2.3.1 to arbitrary gradings ofΠ and to define
the respective generalization of Gröbner bases. This is indeed straightforward since we only
have to plugin different notions of degree.

Definition 2.3.23 (Γ-basis). A finite23 set G ⊂Π is called aΓ-BASIS for the ideal I with respect
to the grading Γ if

f ∈I ⇒ f = ∑
g∈G

fg g , δΓ( f ) ≥ δΓ( fg g ), g ∈G . (2.3.20)

In the case of a term order, we also call it a GRÖBNER BASIS, for the homogeneous grading by
total degree an H-BASIS.

Remark 2.3.24. Recently, also the name MACAULAY BASIS for an H-basis has become pop-
ular in the literature since theses bases were introduced by MACAULAY in [Macaulay, 1916]
even long before the invention of Gröbner bases in [Buchberger, 1965], cf. [Buchberger, 1985,
Buchberger, 1998] for some historical myths and legends on Gröbner bases. But since the
name “H-basis” which comes from a concept of homogenization and dehomogeneization,
cf. [Gröbner, 1970, Möller and Sauer, 2000a], was good enough for Macaulay and Gröbner,
there seems no real reason or justification for a different terminology.

Unfortunately, Algorithm 2.3.1 cannot be extended directly since it relies fundamentally on
properties of monomials:

1. monomials either divide each other or not, and in the latter case they are significantly
different. Divisibility is a clear, simple and well–defined property. Classical homoge-
neous polynomials, almost never divide each other and on the other hand are almost
never totally different. As an example consider the (homogeneous) form x2 + y2 and
the form x3 + y3. No divisibility at all, but still quite a bit in common.

2. For any monomial xα, 0 6= α ∈Nn
0 there always exists at least one other monomial xβ,

dividing this one, any nonzero multiindex is contained in several upper sets. Therefore,
there is always a chance to eliminate monomials if the divisor set is appropriate. Also
this property is lost for homogeneous polynomials where, for example x2 + y2 is no
more divisible by linear forms.

22Which always means “a Gröbner basis for the ideal it generates”.
23Finiteness is not really needed, we add it for convenience since the Basissatz tells us anyway that

bases can be chosen finite and in fact we will find out that starting with a finite basis will end with
a finite Γ-basis.
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2.3 Division with remainder: making the impossible possible

The solution to this problem given in [Sauer, 2001] is to introduce a gradual notion of divis-
ibility for homogeneous elements of an arbitrary grading that does not simply distinguish
between “divisible” and “not divisible” but considers a concept of “more or less divisible”. If,
in addition, one aims for numerical stability, for example when the coefficients are only given
as FLOATING POINT numbers, then orthogonality is almost self–suggesting.

To be able to handle inner products appropriately, we suppose that the underlying field K
is embedded in C which essentially means K = Q, some algebraic extension of Q, K = R or
K=C. An INNER PRODUCT is then a nondegenerate sesquilinear form(

f + f ′, g
) = (

f , g
)+ (

f , g
)

,
(
λ f , g

) = λ
(

f , g
)(

f , g + g ′) = (
f , g

)+ (
f , g ′) ,

(
f ,λg

) = λ
(

f , g
)(

f , g
) = (

g , f
) (

f , f
) 6= 0.

To obtain a reasonable Hilbert space we have to require ( f , f ) > 0, which we usually will en-
sure, but for our purposes it would actually suffice if the inner product were DEFINITE as then

W ⊂Π ⇒ W ∩W ⊥ = {0}, W ⊥ := {
f ∈Π : ( f ,W ) = 0

}
. (2.3.21)

Recall also the inner products we already mentioned in (2.1.6) or (2.1.7). Once we have an
inner product, hence orthogonality, we can build a relationship between the inner product
and the grading to obtain a generalized concept of divisibility.

Definition 2.3.25. Let Γ be a GRADING24 and (·, ·) : Π×Π→K and inner product of polyno-
mials.

1. For a finite set F ⊂Π and γ ∈ Γwe denote by

Vγ(F ) :=
{ ∑

f ∈F
g f λ( f ) : g f ∈Πγ−δ( f )

}
⊆Πγ (2.3.22)

the homogeneous subspace generated by the leading parts of λ(F ) in Πγ and hence
also inΠ.

2. In (2.3.22) we use the convention that Πγ−η = {0} if γ−η is undefined in Γ, that is, if
η 6∈ γ+Γ.

3. For γ ∈ Γwe denote by

Wγ(F ) :=V ⊥
γ (F ) :=ΠγªVγ(F ) = {

g ∈Πγ :
(
g ,Vγ(F )

)= 0
}

the ORTHOGONAL COMPLEMENT of Vγ(F ) inΠγ and write

V (F ) =⊕
γ∈Γ

Vγ(F ), W (F ) =⊕
γ∈Γ

Wγ(F )

belong to the Vγ(F ), γ ∈ Γ, or to their orthogonal components.

4. We say that F ⊂Π DIVIDES g ∈Πwith REMAINDER r ∈Π, if

g = ∑
f ∈F

g f f + r, r ∈W (F ). (2.3.23)

24That is, a grading monoid equipped with a well ordering.
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Remark 2.3.26 (Orthogonality & grading).

1. Vγ(F ) is a K vector space since any grading must satisfy K ⊆ Π0 and therefore g ∈
Πγ−δ( f ) implies thatK · g ⊆Πγ−δ( f ).

2. In the case of a term order the concepts from Definition 2.3.25 do not give anything
new. Since for β ∈Nn

0

Vβ(F ) =


Πβ, β ∈ ⋃

f ∈F

(
δ( f )+Nn

0

)
,

{0}, β 6∈ ⋃
f ∈F

(
δ( f )+Nn

0

)
,

see Fig. 2.3.2, we have r ∈ W (F ) if and only if no term from λ(F ) divides any term r ,
hence, suppr ⊆Ns

0 \U (δ(F )) as before.

W(F)

V(F)
F

Figure 2.3.2: A finite part of the sets V (F ) and W (F ) for F consisting of the three monomials
x y4, x3 y3 and x4.

3. While for term orders the inner product plays no role, this is not true for general grad-
ings. It turns out that, not as a big surprise, good choices are the inner products from
(2.1.6) and (2.1.7).

Example 2.3.27. With the H-grading by homogeneous forms we can provide a more inter-
esting example for this concept. Considering, for example, F = {

x2 + y2
}
, the inner product

product
(

f , f ′)= f (D) f ′(0) and g = x3 + y3, then the first relevant V3(F ) has the form

V3(F ) = spanK

{
x3 +x y2, x2 y + y3} ,

and the basis elements elements are even orthogonal. This implies

W3(F ) = spanK

{
x3 −3x y2,3x2 y − y3}

and the decomposition is

g (x) =
(

3

4
x + 3

4
y

)(
x2 + y2)︸ ︷︷ ︸

∈V3(F )

+
(

1

4
x3 − 3

4
x2 y − 3

4
x y2 + 1

4
y3

)
︸ ︷︷ ︸

∈W3(F )

.
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2.3 Division with remainder: making the impossible possible

Now we have all tools available to give a more general version of Algorithm 2.3.1 for arbitrary
gradings in Algorithm 2.3.2 and then also to advance the theory.

Algorithm 2.3.2 DIVISION WITH REMAINDER; g ∈Π, F ⊂Π, grading Γ
1: r ← 0, g f ← 0, f ∈ F .
2: while g 6= 0 do
3: γ← δ(g ), h ←λ(g )
4: Homogeneous orthogonal projection: find h f ∈Πγ−δ( f ), f ∈ F , such that

Vγ(F ) ⊥ r ′ := h − ∑
f ∈F

h f λ( f ) (2.3.24)

5: Set

g ← g − ∑
f ∈F

h f f − r ′, r ← r + r ′, g f ← g f +h f , f ∈ F (2.3.25)

6: end while
7: Result:

g = ∑
f ∈F

g f f + r, δ(g ) ≥ δ(g f f ),δ(r ), r ∈W (F ). (2.3.26)

For formalism, we extend the concept of a G-representation, which was attached exclusively
to a term order, to more general gradings.

Definition 2.3.28 (Γ- and H-representations). A Γ-REPRESENTATION of g ∈ with respect to a
finite set F is an expression of the form

g = ∑
f ∈F

g f f + r, δΓ(g ) ≥ δΓ(g f f ),δΓ(r ). (2.3.27)

In the case of the HOMOGENEOUS GRADING by total degree, we also call (2.3.27) a H-REPRESENTATION

Proposition 2.3.29. Algorithm 2.3.2 terminates after finitely many steps and determines a Γ-
representation (2.3.26) with the additional property that r ∈W (F ).

Proof: The proof closely resembles that of Proposition 2.3.16 and like there we denote by g j

the value of g in the j th step of the algorithm, initialized with g0 = g . Since the homogeneous
factors h f are chosen such that δ

(
h f f

)= δ(
h f ′ f ′), f , f ′ ∈ F , we have that

λ

( ∑
f ∈F

h f f − r j

)
= ∑

f ∈F
h f λ( f )−λ(

r j
)= h j =λ

(
g j

)
,

and the degree reduces in each step, that is δ
(
g j+1

)< δ(
g j

)
.

Correctness, i.e., the validity of (2.3.26) again follows from the invariance

g = g j +
∑
f ∈F

g f f + r, j = 0,1,2, . . . ,
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2 Constructive ideal theory

which trivially holds for j = 0 by setup and which can be proved inductively by noticing that

g j+1 = g j −
∑
f ∈F

h f f − r j = g − ∑
f ∈F

g f f − r − ∑
f ∈F

h f f − r j

= g − ∑
f ∈F

(
g f +h f

)︸ ︷︷ ︸
=:g̃ f

f − r + r j︸ ︷︷ ︸
=:r̃

where g̃ f and r̃ stand for the updated values after performing (2.3.25). �

Of course, we cannot expect some general uniqueness of the Γ-representation or the remain-
der for more general gradings if this already fails for any term order. However, things are
different for a Γ-basis. So we now give the generalized version of Theorem 2.3.19, this time
even with a proof.

Theorem 2.3.30. For a Γ-basis G and any two Γ-representations

f = ∑
g∈G

fg g + r = ∑
g∈G

f ′
g g + r ′, r,r ′ ∈W (G),

of the same function f one has r = r ′.

Proof: Suppose r 6= r ′. Since the polynomial

0 6= q := r − r ′ = ∑
g∈G

(
f ′

g − fg

)
g

belongs to the ideal I = 〈G〉, it has a Γ-representation

q = ∑
g∈G

qg g , δ
(
qg g

)≤ δ(q) (2.3.28)

with respect to the Γ-basis G . Considering the leading parts in (2.3.28), we find that

0 6=λ(q) = ∑
g∈G ′

λ
(
qg

)
λ(g ) ∈Vδ(q) (G) , G ′ = {

g ∈G : λ
(
qg g

)=λ(q)
} 6= ;.

In particular, λ(q) ∈ V (G). On the other hand the remainders have the property that r,r ′ ∈
W (G), hence q = r − r ′ ∈W (G) and therefore λ(q) ∈W (G). This yields

λ(q) ∈W (G)∩V (G) = {0},

contradicting q 6= 0. �

To close the section we finally give, in generalization of Definition 2.3.20, the concept of a
normal form for arbitrary gradings.

Definition 2.3.31. Let G be a Γ-Basis of I . Then the NORMAL FORM of f ∈Πwith respect to G
or I , written as νG ( f ) or νI ( f ), is defined as the remainder of the division in Algorithm 2.3.2.

To show that the notion νI makes sense and really depends on the ideal I only, we have to
show that any two potentially different Γ-bases lead to the same remainder. So let us do that.

Lemma 2.3.32. If G ,G ′ are both a Γ-basis for the ideal I = 〈G〉 = 〈
G ′〉, then νG ( f ) = νG ′( f ),

f ∈Π.
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2.4 Computing good bases

Proof: For g ′ ∈G ′ ⊂ 〈G〉 let

g ′ = ∑
g∈G

hg ′,g g , δ
(
hg ′,g g

)≤ δ(
g ′) ,

be the Γ-representation of g with respect to the Γ-basis G , and let

f = ∑
g ′∈G ′

fg ′ g ′+νG ′( f ), δ
(

fg ′ g ′)≤ δ( f ),

be the Γ-representation of f with respect to G ′. Then

f = ∑
g ′∈G ′

fg ′ g ′+νG ′( f ) = ∑
g ′∈G ′

fg ′

( ∑
g∈G

hg ′,g g

)
+νG ′( f )

= ∑
g∈G

( ∑
g ′∈G ′

fg ′hg ′,g

)
︸ ︷︷ ︸

=: fg

g +νG ′( f )

is also a Γ-representation since

δ
(

fg g
) = δ(g )+δ

( ∑
g ′∈G ′

fg ′hg ′,g

)
≤ δ(g )+max

g ′∈G ′

(
δ

(
hg ′,g

)+δ(
fg ′

))
≤ max

g ′∈G ′

(
δ(g )+δ(

hg ′,g
)+δ(

fg ′
))≤ max

g ′∈G ′

(
δ

(
g ′)+δ(

fg ′
))≤ δ(

f
)

,

and Theorem 2.3.30 allows us to conclude that νG ( f ) = νG ′( f ). �

Remark 2.3.33. To be precise, the normal form depends on the ideal and on the grading
parameters, in particular the inner product used in Algorithm 2.3.2. And indeed, different
inner products can lead to different remainders. Since we never vary the inner product “on
the fly” and always consider it fixed, this is not a problem, however.

Once we have a unique normal form, we can talk about quotient spaces.

Definition 2.3.34. For an ideal I ⊂ Π, we define the associated QUOTIENT SPACE Π/I as
νI (Π) with the operations

f + f ′ := νI ( f + f ′), f · f ′ := νI ( f · f ′), f , f ′ ∈Π/I . (2.3.29)

Remark 2.3.35. Defining the addition in (2.3.29) is notational overkill since Π/I is always a
K vector space due to the linearity of the division process. But it is also not wrong.

Exercise 2.3.1 Show that νI ( f + f ′) = νI ( f )+νI ( f ′), f , f ′ ∈Π. ♦

2.4 Computing good bases

In the preceding chapter we have seen that Γ-bases would be an extremely useful tool be-
cause they would allow us to extend the concept of division with remainder to multivariate
polynomials, thus making the non-euclidean ring some sort of unique. This leads to two
fundamental questions:
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2 Constructive ideal theory

1. For which ideals I ⊆Π and for which gradings does there exist a Γ-basis? Do they exist
at all?

2. If they exist, can we efficiently construct such a basis, for example from another given
basis, i.e., given F can we find a Γ-basis G such that 〈F 〉 = 〈G〉.

Fortunately the answer to both questions is “yes”, so let us also try to convince ourselves by
proving that fact.

2.4.1 Good bases and division

The fundamental tool used in the construction of Γ-bases is the following characterization by
means of the division algorithm 2.3.2.

Proposition 2.4.1. A finite set G ⊂Π is a Γ-basis if and only for any q = (
qg : g ∈G

) ∈ΠG such
that

δ
(
q ·G)

:= δ
( ∑

g∈G
qg g

)
< max

g∈G
δ

(
qg g

)
(2.4.1)

the division algorithm 2.3.2 gives the remainder

r = νG (q ·G) = 0. (2.4.2)

Proof: If G is a Γ-basis then the polynomial f := q ·G ∈ 〈G〉 has, by Definition 2.3.23 a Γ-
representation with respect to G and remainder 0, which, by Theorem 2.3.30 implies that
νG (q ·G) = 0.

For the direction “⇐” we use an approach that was given in [Möller, 1988] for the construc-
tion of a Gröbner basis. Denoting by rG ( f ), f ∈Π, the remainder obtained in Algorithm 2.3.2,
we thus assume that rG

(
q ·G) = 0 whenever δ

(
q ·G) < maxδ

(
qg g

)
, q ∈ΠG . Any f ∈ 〈G〉 has,

by definition, a representation

f = ∑
g∈G

fg g , fg ∈Π, g ∈G . (2.4.3)

which need not be a Γ-representation and our goal will be to transform it into

f = ∑
g∈G

f ′
g g , δ

(
f ′

g g
)
≤ δ( f ), g ∈G ,

as that would prove that G is a Γ-basis. Supposing that (2.4.3) is no Γ-representation, we set

γ := max
g∈G

δ
(

fg g
)> δ( f ) and J := {

g ∈G : δ
(

fg g
)= γ}

,

so that the specific choice of q as

q = (
qg : g ∈G

)
mit qg =

{
λ

(
fg

)
, g ∈ J ,

0 g 6∈ J ,
g ∈G , (2.4.4)

has the property
δ

(
q ·G)< γ= max

g∈G
δ

(
qg g

)
.

By the division algorithm and our assumptions on G we thus get a Γ-representation

q ·G = ∑
g∈G

q ′
g g + rG

(
q ·G)︸ ︷︷ ︸
=0

= ∑
g∈G

q ′
g g , δ

(
q ′

g g
)
< γ.
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Thus,

f = ∑
g∈G

fg g = ∑
g∈G\J

fg g + ∑
g∈J

(
fg −λ

(
fg

))
g + ∑

g∈J
λ

(
fg

)
g︸ ︷︷ ︸

=q·g=q ′·g
= ∑

g∈G\J
fg g + ∑

g∈J

(
fg −λ

(
fg

))
g + ∑

g∈G
q ′

g g (2.4.5)

=:
∑

g∈G
f 1

g g

and since all representations in (2.4.5) have degree < γ, we can conclude that

δ( f ) ≤ δ
(

f 1
g g

)
< γ, g ∈G .

We proceed in the same way, set γ1 := maxg δ
(

f 1
g g

)
and if still γ1 > δ( f ), we use the same

argument to obtain γ2 < γ1 with associated coefficients f 2
g , g ∈G , and so on. Since a grading

is always based on a well ordering by definition, this process must terminate after finitely
many, say N , steps, where γN = δ( f ) as otherwise we could reduce the degree even further.
But then f ′

g := f N
g , g ∈G , yields a Γ-representation for f which proves that G is a Γ-basis. �

Remark 2.4.2. It is worthwhile to note that Proposition 2.4.1 is only a property of degrees and
grading. That we used orthogonal projections when needed, makes the algorithm work but
does not affect this result in any way.

The proof of Proposition 2.4.1 shows us that we can even get a stronger statement: in the
crucial step (2.4.4) we even chose the vector q in such a way that all its entries were homo-

geneous polynomials, i.e., we not only had q ∈ ΠG but even q ∈ (
Π0

)G
. The requirement

δ
(
q ·G)< γ then means that

q ·λ(G) = ∑
g∈J

qg λ(g ) = 0. (2.4.6)

Such tuples have a cute name and a story of their own which will be told in the next subsec-
tion.

2.4.2 Syzygies

Syzygies play a fundamental in the study of polynomial ideals and related problems. So let us
define what this is.

Definition 2.4.3. Let F ⊂Π be finite.

1. s ∈ΠF is called a SYZYGY s ·F = 0.

2. A module over a ring R is a set that is closed under addition and multiplication with
elements of R.

3. The SYZYGY MODULE of a set F ⊂Πwill be denoted by

S(F ) =
{

s ∈ΠF : 0 = s ·F := ∑
f ∈F

s f f

}
.
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2 Constructive ideal theory

Remark 2.4.4. The name syzygy is composed from the Greek words “σvς” = “together” and
“ζvγoν” = “yoke” and originally means something bound together like two oxen pulling a
cart. The word was already used in Greek astrononomy, its Latin translation is “coniunctio”
which lives on in “conjunction”. The word “syzygy” has one more meaning that is pointed out
in [Eisenbud, 1994].

Remark 2.4.5 (Simple module properties).

1. S(F ) is a module overΠ, as for s, s′ ∈ S(F ) and g , g ′ ∈Πwe have that

0 = g (s ·F )+ g ′ (s′ ·F
)= (g s + g s′) ·F,

hence g s + g ′ s′ ∈ S(F ).

2. Any ideal is a module, tuples of polynomials form modules.

3. Intuitively modules can be interpreted as some sort of “vector spaces over rings”. This
is why we use the dot notation for syzygies that reminds of an inner product.

4. Vector spaces are modules over fields.

5. The module S(F ) is FINITELY GENERATED, see [Gröbner, 1970]. This means that there
exists a finite set S ⊂ S(F ) such that

S(F ) =
{∑

s∈S
qs s : qs ∈Π

}
. (2.4.7)

Definition 2.4.6. A set S such that (2.4.7) holds is called a BASIS for the syzygy module S(F ).

The next lemma characterizes Γ-bases in terms of syzygies. It looks innocent, but is the key
tool for their construction by division with remainder. In Gröber basis terms it says that “every
syzygy of leading terms must reduce to zero”.

Lemma 2.4.7. Let G ⊂Π be finite and S ∈ S (λ(G)) be a basis for the syzygy module of leading
terms of G. Then G is a Γ-basis if and only if rG (s ·G) = 0, s ∈ S.

Proof: According to Proposition 2.4.1, G is a Γ-basis if and only if rG (s ·G) = 0 for all s ∈
S (λ(G)). So all we have to show is that is suffices to consider a basis of the syzygy module.

If already rG (s ·G) 6= 0 for some s ∈ S, then rG (s ·G) = 0, s ∈ S (λ(F )), is trivially impossible.
If conversely

S (λ(F )) 3 t = ∑
s∈S

qs s, qs ∈Π,

is an arbitrary syzygy of leading parts, then the assumption that any element of S reduces to
zero leads to

t ·G = ∑
g∈G

tg g = ∑
g∈G

∑
s∈S

qs sg g = ∑
s∈S

qs
∑

g∈G
sg g = ∑

s∈S
qs (s ·G)

and

rG (t ·G) = ∑
s∈S

rG
(
qs (s · g )

)= 0
∑
s∈S

qs rG (s · g ) = 0,

since the division algorithm factorized of multiples. �
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2.4 Computing good bases

2.4.3 Buchberger’s algorithm

Lemma 2.4.7 already hints how to construct a Γ-basis by successively enlarging or completing
a given basis of the ideal until all syzygies of leading terms reduce to zero:

1. Determine a finite basis S of S (λ(F )).

2. If rF (s ·F ) = 0 for all s ∈ S, then, by Lemma 2.4.7, the set F is a Γ-basis and we are done.

3. If not, there must be an s∗ ∈ S such that

0 6= f ∗ := rF
(
s∗ ·F

)= s∗ ·F︸ ︷︷ ︸
∈〈F 〉

− ∑
f ∈F

g f f︸ ︷︷ ︸
∈〈F 〉

∈ 〈F 〉.

4. By this observation the enlarged basis still maintains
〈

F ∪{
f ∗}〉= 〈F 〉, but also has the

property that
rF∪{ f ∗}

(
s∗ ·F

)= 0,

and therefore now reduces the bad syzygy to zero. In other words: enlarging the basis
makes is more Γish.

5. Repeat the process with F ∪{
f ∗}

instead of F .

In principle this is already the Γ-version of Buchberger’s algorithm which was developed by
in 1965 by Bruno Buchberger, [Buchberger, 1965] in a PhD thesis supervised by Gröbner.

Algorithm 2.4.1 BUCHBERGER’S ALGORITHM: F ⊂Π finite basis of I .
1: repeat
2: Determine finite basis S of S (λ(F )).
3: G ← {rF (s ·F ) : s ∈ S} \ {0}.
4: F ← F ∪G .
5: until G =;.
6: Result: Γ-basis F for I .

And yes, it works.

Theorem 2.4.8. Algorithm 2.4.1 terminates after finitely many steps and yields a Γ-basis for
the ideal.

Remark 2.4.9. Algorithm 2.4.1 relies on the construction of a finite basis for the syzygies of
leading terms. We will see very soon that this is easy and can be done explicitly whenever
one considers only a term order. This is the reason why Gröbner bases are by far the most
popular computational ideal bases, in particular as different term orders provide quite some
flexibility. Moreover, once a Gröbner basis has been computed for an ideal, it is possible to
compute a basis of the module of syzygies, see [Buchberger, 1985]. Conceptionally, however,
this is not satisfactory.

Lemma 2.4.10. Let F ⊂Π be finitely and Γ a term order. The the syzygy module S (λ(F )) of the
leading terms of F is generated by the S-POLYNOMIALS s

(
f , f ′), f , f ′ ∈ F , f 6= f ′, whose nonzero

components are defined as

s
(

f , f ′)
f =

λ
(

f ′)
xα

, s
(

f , f ′)
f ′ =−λ( f )

xα
, α= min

{
δ( f ),δ

(
f ′)} , (2.4.8)

where the minimum in (2.4.8) has to be understood in a componentwise sense.
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α δ (f’)

(f)δ

Figure 2.4.3: The geometric interpretation of α in (2.4.8) as maximal multiindex that gener-
ates a cone or upper set α+Ns

0 which contains δ( f ) as well as δ
(

f ′). In this
sense, xα can be understood as gcd

(
λ

(
f
)

,λ
(

f ′)).

S-polynomials are the simplest form of syzygies imaginable as they are syzygies among two
polynomials that can easily be computed by hand. That they nevertheless generate all other
syzygies is a lucky accident but very special for the case of a term order.
Proof of Lemma 2.4.10: Since any syzygy can be decomposed into its homogeneous compo-
nents25, i.e., into terms, we can assume that s ∈ S(F ) is a HOMOGENEOUS SYZYGY, that is, there
exists β ∈Nn

0 such that

s f λ
(

f
) ∈Πβ, also s f λ

(
f
)= c j xβ, f ∈ F.

If s ∈ S(F ) is a nontrivial syzygy where two nonzero terms sum to zero, then there exist at least
two polynomials f , f ′ ∈ F as indices such that s f , s f ′ 6= 0. In particular,

β ∈ (
δ( f )+Nn

0

)∩ (
δ
(

f ′)+Nn
0

)⊂α+Nn
0 .

There exists a term g ′ ∈Πβ−δ( f ′) with

s f λ( f ) = g ′λ
(

f ′)= d xβ, d ∈K,

which allows us to conclude that

s ·λ(F ) = ∑
h∈F \{ f }

shλ(h)+ s f λ( f )− g ′λ
(

f ′)︸ ︷︷ ︸
=g s f , f ′

+g ′λ
(

f ′)=: s′ ·λ(F )+ (
g s f , f ′

) ·λ(F ),

and consequently s′ = s − g s f , f ′ ∈ S(F ) has one less nonzero entry than s. Iterating this pro-
cedure, we eventually obtain the decomposition into S-polynomials. �

To prove termination of Buchberger’s algorithm we need one more characterization of Γ-
bases, based on the concept of a HOMOGENEOUS IDEAL which is an ideal H such that f ∈H
implies that all homogeneous components of f belong to the ideal again:

H 3 f = ∑
γ∈Γ

fγ ⇒ fγ ∈H , γ ∈ Γ. (2.4.9)

25A polynomial is the zero polynomial if and only if all its homogeneous components are zero.
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This concept has been defined in [Gröbner, 1970] for the classical homogeneous grading by
total degree, in the context of a term order it is nothing but a monomial ideal. Indeed, if H
has a basis F ⊂Π0 of Γ-FORMS26, the H obviously is a homogeneous ideal. If, conversely, H
is a homogeneous ideal and F a basis for H = 〈F 〉, then the set

F 0 := {
fγ : f ∈ F, γ ∈ Γ}⊂Π0

of homogeneous parts appearing in F belongs to H as well, generates27 F ⊆ 〈
F 0

〉
and there-

fore
H = 〈F 〉 ⊆ 〈

F 0〉.

We can summarize this as follows.

Lemma 2.4.11. An ideal H ⊂Π is a homogeneous ideal if and only if it has a basis consisting
of homogeneous polynomials.

Remark 2.4.12. A monomial ideal is exactly a homogeneous ideal if the underlying grading is
by term order. Otherwise it is an ideal generated by (Γ-)forms which explains the old German
name FORMENIDEAL used for such ideals in [Gröbner, 1970].

Remark 2.4.13. There is a different approach to homogeneous ideals as ideals where multi-
plication is allowed only for homogeneous polynomials and addition only for homogeneous
polynomials of the same degree.

The last observation is once more very easy to prove but fundamental for the termination of
Buchberger’s algorithm.

Lemma 2.4.14. For any ideal I = 〈G〉 ⊂Π one has:

1. the ideals 〈λ(G)〉 and 〈λ(I )〉 are each a homogeneous ideal.

2. G is a Γ-basis for I if and only if 〈λ(I )〉 = 〈λ(G)〉.

Proof: 1): both ideal are generated by homogeneous polynomials and thus are homoge-
neous ideals by Lemma 2.4.11. For 2) we assume that G is a Γ-basis, so that f ∈ I has a
Γ-representation

f = ∑
g∈G

fg g ,

which implies that
λ( f ) = ∑

{g : δ( fg g)=δ( f )}
λ

(
fg

)
λ(g ) ∈ 〈λ(G)〉.

If, conversely, f ∈ I and λ( f ) = h ·λ(G), then f −h ·G also belongs to I but has a strictly
smaller degree. Proceeding with the leading part of this polynomial, we iteratively get all
homogeneous components of a Γ-representation of f . �

Proof of Theorem 2.4.8: Proposition 2.4.1 states that termination of Algorithm 2.4.1, which
means that all syzygies of leading parts reduce to zero, indeed classifies F as a Γ-basis.

It remains to prove termination. To that end, we note that 0 6= g := rF (s ·F ) means that28

λ(g ) ∈ Wδ(g )(F ), hence g ∈ 〈F 〉, but λ(g ) 6∈ 〈λ(F )〉. Replacing F by F ′ = F ∪ {g } it follows that

26As generalized homogeneous parts.
27The inclusion even holds true in terms of vector spaces.
28Now we again use our particular form of the reduction algorithm 2.3.2.
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〈
F ′〉= 〈F 〉 but 〈λ (F )〉 is a proper subset of

〈
λ

(
F ′)〉. Since polynomials are a Noetherian ring,

such a strictly ascending chain of ideal has to be finite, hence after finitely many steps there
cannot be any more s ∈ S(F ) such that rF (s ·F ) 6= 0, as otherwise we could increase the homo-
geneous ideal even further. �

Remark 2.4.15. Of course, the Buchberger1.0 that we defined in Algorithm 2.4.1 is not really
efficient and far from being optimal. How to handle syzygies, which to ignore and which to
really compute and how to this in the best possible way, has been an issue ever since the
introduction of Gröbner bases in 1965 and there exist a vast literature on this.

2.4.4 The Basissatz

The efforts of the preceding chapter, in particular the construction of Gröbner bases allows
us to give a proof of Hilbert’s Basissatz that we quoted in Theorem 2.1.29. The method is a
follows.
Proof of Theorem 2.1.29: Let I be an arbitrary ideal and let Γ=Ns

0 stand for the grading by
an arbitrary term order. Then the ideal

λ(I ) := 〈
λ( f ) : f ∈I

〉
generated by all leading terms in I is a monomial ideal. By Corollary 2.3.10 this ideal is
finitely generated, hence there exists a finite set H ⊂Π of monomials such that λ(I ) = 〈G0〉.
Since any h ∈ G0 is of the form h = λ( f ) for some f ∈ I , we can write G0 = λ(G) for some
finite set G ⊂I , hence 〈G〉 ⊆I and since

〈λ(G)〉 = 〈G0〉 =λ(I ),

Lemma 2.4.14 yields that G is even a Gröbner basis for I . Hence, the ideal is finitely gener-
ated. �

Since any ideal has a finite basis29 and since we have Buchberger’s algorithms and its gen-
eralizations to transform this basis into a Γ basis, we can state the following fundamental
result.

Theorem 2.4.16 (Γ bases). For any grading Γ, any ideal has a finite Γ-basis.

2.4.5 The homogeneous way

For the homogeneous grading the computation of a basis of the module of syzygies is non-
trivial. There is a method in [Buchberger, 1985] that computes a basis for the syzygy module
for any finite set of polynomials, but to use Gröbner basis especially in a situation where one
wants to avoid term orders is contraintuitive. For the homogeneous grading there is an illus-
trative way to compute syzygies by means of linear algebra which also leads to an efficient
way of doing reduction.

Definition 2.4.17. Let f ∈ Π. By f k := (
fα : |α| = k

) ∈ Krk , rk := r s
k = (k+s−1

s−1

)
we denote the

COEFFICIENT BLOCK of the homogeneous component of degree k.

29And we have no way to handle ideals other than working on bases.
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Any polynomial f of degree n is then represented by the coefficient blocks f k , k = 0, . . . ,n,
and with the MONOMIAL BLOCKS xk = (xα : |α| = k), we get the convenient notation

f (x) =
n∑

k=0
f T

k xk , λ( f )(x) = f T
deg f xdeg f , (2.4.10)

which has a quite univariate flavor. To that end, we identify f with the block vector

f ' f =

 f 0
...

f deg f

 . (2.4.11)

Next, we represent multiplication by monomials.

Definition 2.4.18. The HOMOGENEOUS LIFTING MATRIX Ln,k ∈Krn×rk , k ≤ n, is defined as

Ln,k = (
Lα,k : |α| = n −k

)
, Lα,k := ∑

|β|=k
eα+βeT

β , α ∈Ns
0. (2.4.12)

The function of the lifting matrix is easily seen when considering, for a homogeneous poly-
nomial f ∈Π0

k ,

(
Lα,k f k

)T xn =
( ∑
|β|=k

eα+βeT
β f k

)T

xn = ∑
|β|=k

fβeT
α+βxn = ∑

|β|=k
fβxβ+α = xα

(
f T

k xk
)

; (2.4.13)

is is simply the multiplication of the homogeneous polynomial by (·)α. In the same way,
Ln,k f k generates a matrix whose columns are the coefficient vectors of all multiplications
of the homogeneous polynomial f T

k xk with all monomials of degree n −k.

Remark 2.4.19. The computation of V n(F ) is numerically cheap and without roundoff errors
since it only consists of redistributing the coefficient vectors.

Definition 2.4.20. Given a finite set F ⊂Π of polynomials, we define the matrix

V n(F ) =
(
Ln,deg f f deg f : f ∈ F

)
∈Krn×N , n ∈N0, N = ∑

f ∈F
rn−deg f , (2.4.14)

and call it the GENERATING MATRIX for Vn(F ) ⊂ Π0
n . We use the convention that Ln,k is an

empty matrix if n < k and rk = 0 for k < 0.

Remark 2.4.21. Note that V n(F ) is a somewhat complicated object. It is first indexed by f ,
yielding the matrices

(V n(F )) f = Ln,deg f f deg f

which are in turn indexed by α to yield the well defined column vector(
(V n(F )) f

)
α
=

(
Ln,deg f f deg f

)
α
= Lα,deg f f deg f .

This means that any such matrix can be multiplied from the right hand side with block vectors
h indexed as h f ,α where

V n(F )h = ∑
f ∈F

∑
|α|=n−deg f

h f ,αLα,deg f f deg f ∈Crn .
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The whole intention of this construction is that the range of V n(F ) consists of the coefficient
vectors of the polynomials that span Vn(F ).

Lemma 2.4.22. For n ∈N0 and g ∈Π0
n we have that

g ∈Vn(F ) ⇔ g n ∈V n(F )Kn . (2.4.15)

Proof: g ∈ Vn(F ) if and only if there exist homogeneous polynomials h f = ∑
h f ,α(·)α, f ∈ F ,

such that
g = ∑

f ∈F
h f f = ∑

f ∈F

∑
|α|=n−deg f

h f ,α(·)α f

which is, by (2.4.13), equivalent to

g n = ∑
f ∈F

h f ,α

∑
|α|=n−deg f

Lα,deg f f deg f =
∑
f ∈F

h f ,α

∑
|α|=n−deg f

(
Ln,deg f f deg f

)
α

= ∑
f ∈F

Ln,deg f f deg f h f =V n(F )h, h = (
h f : f ∈ F

)
,

in the sense that h is a concatenation of column vectors. �

Now we can use a standard concept of numerical linear algebra to efficiently perform the
reduction step. We embed everything into the most general caseK=C.

Theorem 2.4.23 (SVD). For any matrix A ∈ Cm×n there exist unitary matrices U ∈ Cm×m and
V ∈Cn×n and a diagonal matrix Σ ∈Rm×n with nonnegative diagonal elements such that

A =UΣV H . (2.4.16)

Definition 2.4.24 (SVD). The decomposition in (2.4.16) is called SINGULAR VALUE DECOM-
POSITION of A or SVD, for short. Each column of U is called a left SINGULAR VECTORS, the
columns of V are the right singular vectors. Any diagonal element σ j is called SINGULAR

VALUE, the number of nonzero singular values coincides with the rank r of the matrix. Often
one uses the THIN SVD

A =
r∑

k=1
σk uk vT

k = [
U(1:r ) U(r+1:m)

](
Σr 0
0 0

)[
V(1:r ) V(r+1:n)

]H , Σr :=

σ1
. . .

σr

 ,

(2.4.17)
where σ1 ≥ ·· · ≥σr > 0, hence Σr is nonsingular.

Remark 2.4.25 (SVD).

1. The SVD can be computed efficiently and is one of the most important tools in numer-
ical linear algebra. For some computational details see [Golub and van Loan, 1996].

2. One important application for the SVD is the computation of the KERNEL of A, ker A :=
{x : Ax = 0}. In fact, it follows directly from (2.4.17) that the columns of V(r+1:n) are an
orthonormal basis for the kernel. The SVD is a RANK REVEALING FACTORIZATION.

3. In the same fashion we can also determine the range of A: the columns of U(1:r ) form
an orthonormal basis for the range and the columns of U(r+1:m) an orthonormal basis
for the orthogonal complement of the range in Cm .
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4. Numerically, the rank of a matrix is determined by computing its SVD and thresholding
the singular values; depending on how aggressive this thresholding is performed, the
rank may be over- or underestimated.

The observation 3) already shows us how to compute the coefficient vectors for Vn(F ) and
Wn( f ) – an immediate consequence of Remark 2.4.25 and Lemma 2.4.22.

Lemma 2.4.26. Let
V n(F ) = [V n ,W n]Σ [Rn ,Sn]H (2.4.18)

be a thin SVD of V n(F ), then the columns of V n are the coefficient vectors of an orthonormal
basis of Vn(F ) and the columns of W n are an orthonormal basis of Wn(F ).

This allows us to give an efficient reduction algorithm for the single reduction step in the
division with remainder algorithm. To that end, we note that to approximate g n by V n(F ) we
have to find h such that

0 =V H
n

(
g n −V n(F )h

)
(2.4.19)

that is,

V H
n g n = V H

n V n(F )h =V H
n [V n ,W n]H

(
Σr 0
0 0

)
[Rn ,Sn]H h = [I ,0]

(
Σr 0
0 0

)
[Rn ,Sn]H h

= [Σr ,0]

(
R H

n

S H
n

)
h =Σr R H

n h,

hence, choosing h as one solution of the underdetermined system

R H
n h =Σ−1

r V H
n g n ,

for example
h = RnΣ

−1
r V H

n g n (2.4.20)

does the job since R H
n Rn = I r is an r × r identity matrix. The vector h can be decomposed

into
h = [

h f : f ∈ F
]

, h f ∈Crn−rdeg f ,

where
h f (x) = hT

f xn−deg f = ∑
|α|=n−deg f

h f ,αxα

is the corresponding polynomial. The coefficients of h f f are then obtained, again by means
of (2.4.13) as

(h f f )(x) = ∑
|α|=n−deg f

h f ,αxα
deg f∑
k=0

f T
k xk =

deg f∑
k=0

∑
|α|=n−deg f

xα f T
k xk h f ,α

=
deg f∑
k=0

∑
|α|=n−deg f

(
Lα,k f k

)T xk+|α|h f ,α =
deg f∑
k=0

( ∑
|α|=n−deg f

h f ,αLα,k f k

)T

xn−deg f +k

=
deg f∑
k=0

(
V n−deg f +k

(
{ f k }

)
h f

)T xn−deg f +k =
deg f∑
k=0

(
V n−k

(
{ f deg f −k }

)
h f

)T
xn−k

=
n∑

k=0

(
V n−k

(
{ f deg f −k }

)
h f

)T
xn−k =

n∑
k=0

(
V k

(
{ f deg f −n+k }

)
h f

)T
xk
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hence ∑
f ∈F

(h f f )(x) =
n∑

k=0

(
V k

({
f deg f −n+k : f ∈ F

})
h

)T
xk ,

and we can compute the reduction of g explicitly as

g 0
...

g n

−


V 0

({
f deg f −n : f ∈ F

})
...

V n

({
f deg f : f ∈ F

})
RnΣ

−1
r V H

n g n . (2.4.21)

The according procedure is given in Algorithm 2.4.2.

Algorithm 2.4.2 ORTHOGONAL REDUCTION: F ⊂Π finite set, g ∈Π.
1: n ← deg g
2: Compute V n(F ) and the SVD (2.4.18)
3: Replace g 0

...
g n

←

g 0
...

g n

−


V 0

({
f deg f −n : f ∈ F

})
...

V n

({
f deg f : f ∈ F

})
RnΣ

−1
r V H

n g n

Remark 2.4.27. Even if the expression in (2.4.21) looks scary, the computational effort is
mostly due to the SVD. The V k matrices are all generated by only shuffling the coefficients
of the homogeneous parts and the computation of h is done by means of simple matrix mul-
tiplications.

In addition to projection and reduction, we can also find the syzygies of a certain degree in
the SVD of the matrix V n(F ).

Definition 2.4.28. s ∈ S(λ(F )) is called a SYZYGY OF DEGREE n if s f ∈Π0
n−deg f .

Lemma 2.4.29. The columns of the matrix Sn from (2.4.18), seen as s f ,α, f ∈ F , |α| = n−deg f ,
define a basis of all syzygies of degree n in the sense that( ∑

|α|=n−deg f
s f ,αxα : f ∈ F

)
∈ΠF ,

(
s f ,α : |α| = n −deg f , f ∈ F

) ∈ Sn (2.4.22)

are a basis for all syzygies of degree n.

Proof: A vector s = (
s f ,α : |α| = n −deg f , f ∈ F

)
defines a syzygy as in (2.4.22) if and only

V n(F ) s = 0 which in turn holds true if and only if s = Sn a for some vector a. �

Lemma 2.4.29 can be used to determine syzygies of leading terms and thus perform Buch-
berger’s algorithm: compute the kernels of V n(F ) and reduce any nonzero element in these
kernels. The main question, however, is when to stop. This is easy for zero dimensional ide-
als, cf. [Möller and Sauer, 2000b], but unclear for higher dimensions.
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2.5 Elimination ideals and intersections

To finish this chapter, we give a very special type of ideals and complete our method for ideal
intersection and therefore also for the computation of quotient ideals.

2.5.1 Elimination ideals

The idea of elimination ideals is much older than Gröber or even H-bases and dates back to
Kronecker. It relies on the “natural” to solve for a simple variable, then eliminate this variable
by substituting the solution and thus reducing the number of variables by one. Repeating
this, one would end up with all solutions of a system of equations. We will see that lex Gröbner
bases play a crucial role here, which was one of the original applications of Gröbner bases and
recovered them after almost being forgotten. Indeed, it was a paper by Trinks [Trinks, 1978]
that renewed and even triggered the interest in Gröbner bases by focusing on the lex Gröbner
basis and its connection to elimination ideals.

Definition 2.5.1. For an ideal I ⊆Π, the set

Ik :=I ∩K [x1, . . . , xk ] , k = 1, . . . , s, (2.5.1)

is called the kth ELIMINATION IDEAL of I .

Elimination ideals allow us to solve a system of polynomial equations in quite an old-fashioned
way:

1. The ideal I1 is generated by univariate polynomials in x1 only, hence is a principal
ideal. We “only” have to compute the gcd of these generators and find the generator
for I1.

2. The zeros of this generator are the x1-components of all common zeros of I .

3. We substitute each of these finitely many zeros for x1 and consider I2. Since x1 is
fixed, this is again a principal ideal, generated by a single polynomial whose zeros we
can determine.

4. Proceeding this way, we finally arrive at I =In and computed all solutions.

So all we need is a basis for the elimination ideals and here the lex term order is exactly the
answer.

Theorem 2.5.2. If I ⊂Π is an ideal and G a Gröbner basis of I with respect to the lex term
order with x1 < x2 < ·· · < xn , then

Ik = 〈G ∩K [x1, . . . , xk ]〉 inK [x1, . . . , xk ] .

Proof: We set Gk =G∩K [x1, . . . , xk ] and fix k ∈ 1, . . . ,n. Any f ∈Ik ⊆I has a G-representation

f = ∑
g∈G

fg g , δ
(

fg g
)≤ δ( f ). (2.5.2)

If g ∈G \Gk , then g contains at least one of the variables xk+1, . . . , xn which implies that δ(g ) >
δ( f ) and the respective coefficient fh in the G-representation (2.5.2) has to be zero. Therefore,

f = ∑
g∈Gk

fg g ,

and by the same argument δ
(

fg
) < δ( f ) allows us to conclude that fg ∈K [x1, . . . , xk ]. Hence

f has a G-representation inK [x1, . . . , xk ] by means of Gk as claimed. �
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Remark 2.5.3. Unfortunately, the convincing idea of elimination ideals has some severe draw-
backs:

1. the lex Gröbner basis is usually the most difficult one to compute and the effort grows
exponentially in the degree of the polynomials in F .

2. The univariate polynomial that generates the principal ideal I1 and forms the starting
point for the computation of the zeros will usually have a very large degree, namely the
total number of all common zeros of I . This makes it impossible to explicitly find the
zeros of this polynomial and makes numerical computations fairly ill-conditioned.

3. And to make it even worse, the substitution of inaccurate components of the zeros can
make the successive computation of other components even worse, and this is in no
way a purely theoretical phenomenon.

4. Actually it is a well-known fact, cf. [Farouki and Rajan, 1987, Wilkinson, 1984] that the
zeros of a polynomial are very sensitive to changes in the coefficients.

In other words: Forget it!

2.5.2 Ideal intersection

We still have to finalize the INTERSECTION of two ideals I and I ′, given by bases F and F ′.
By means of (2.1.25) from Lemma 2.1.32 and a proper grading this is now very easy. Indeed,
we first compute a basis of tI + (1− t )I ′, namely{

t f + (1− t ) f ′ : f ∈ F, f ′ ∈ F ′}=: F∩ (2.5.3)

and then find in H∩ the polynomials that are independent of t . To that end, we use a term
order with x ≺ t , for example

(x, t )α,k ≺ (x, t )α
′,k ′ ⇔

{
k < k ′,
k = k ′, α≺α′,

and compute a Gröber basis G ⊂K[x, t ] of 〈F∩〉 with respect to this term order, and look for
all elements in this bases that do not contain t , i.e., we consider the elimination ideal

〈F∩〉∩K[x].

By Theorem 2.5.2 a basis for this ideal is G∩K[x], hence this is also a basis for the intersection.
The simple algorithm is summarized in Algorithm 2.5.1.

Algorithm 2.5.1 IDEAL INTERSECTION: F,G ⊂Π Γ-bases.

1: H ← {
t f (x)+ (1− t )g (x) : f ∈ F, g ∈G

} ∈K[x, t ].
2: Compute a Γ-basis H with x ≺ t from H
3: Result: Γ-basis H ∩K[x] for 〈F 〉∩〈G〉.
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Polynomial zeros 3
Any damn fool, he maintained, could think of questions; it was answers that
separated the men from the boys. If you couldn’t answer your own questions
it was either because you hadn’t worked on them hard enough or because
they weren’t real questions.

(D. Lodge, The Campus Trilogy)

Finally, we get to the situation of finding zeros of polynomials. Indeed, we will look at
common zeros of a finite set of polynomials, or, which is the same, the common zeros of the
associated ideal.

3.1 Solving equations

Definition 3.1.1. Given a finite set F , solving the polynomial system of equations F (X ) = 0
corresponds to finding the zero set

Z (F ) = {x ∈Ks : F (x) = 0} := {x ∈Ks : f (x) = 0, f ∈ F }. (3.1.1)

Since for x ∈Ks we almost trivially have that

F (x) = 0 ⇔ ∑
f ∈F

g f (x) f (x) = 0, h f ∈Π ⇔ 〈F 〉(x) = 0

the set Z (F ) = Z (〈F 〉) depends on the IDEAL 〈F 〉 and not on the specific BASIS F .

Remark 3.1.2. From an abstract point of view, many algebraic techniques to solve polyno-
mial systems of equations correspond to a CHANGE OF BASIS from which the solutions can be
read off more easily. The most prominent case for that is the elimination ideal and the change
to a lex Gröbner basis.

3.1.1 Zero dimensional ideals and the quotient space

Now we can start to give a formal definition of zero dimensional ideals which will be the only
ideals we are interested in in the following. The first concept, based on the preceding chapter
is that of the quotient space.

Definition 3.1.3. Given an ideal I , a grading Γ and an inner product (·, ·) onΠ×Π, the NOR-
MAL FORM SPACE or QUOTIENT SPACE or INVERSE SYSTEM Π/I is defined as

Π/I = νI (Π) = {
νI ( f ) : f ∈Π}

, (3.1.2)

where the NORMAL FORM νI ( f ) is the remainder of division by the division with remainder
of Algorithm 2.3.2 with respect to a Γ-basis of I .
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3 Polynomial zeros

Remark 3.1.4 (Quotient spaces).

1. By 2.3.30 the normal form νI is independent of the Γ-basis, hence Π/I is indeed
well-defined and depends on I only.

2. The linearity of the reduction process implies that

νI ( f + g ) = νI ( f )+νI (g ), νI (c f ) = c νI ( f ), f , g ∈Π, c ∈K,

henceΠ/I is aK-vector space.

3. The normal form is an IDEAL PROJECTION:

νI
(
νI ( f )

)= νI ( f ) (3.1.3)

and
νI ( f ) = 0 ⇔ f ∈I . (3.1.4)

4. The name “inverse system” is due to Macaulay and has been followed up by Gröbner in
[Gröbner, 1937]. In the world of Gröbner bases, the name has almost been forgotten,
however.

Example 3.1.5. On standard example for the homogeneous grading is that I = 〈F 〉 where
F ⊂Πn andΠ0

n = spanλ(F ). Then

Vk (F ) =
{

{0}, k < n,

Π0
k , k ≥ n,

Wk (F ) =
{
Π0

k , k < n,

{0}, k ≥ n,
k ∈N0.

Then Π/I = W (F ) = Πn−1 gives the total degree analogy of the univariate case. Note that
under the condition thatΠ0

n = spanλ(F ) the quotient space depends only the total degree n.

Example 3.1.6. As a more concrete and very simple situation we consider the following three
bases in C[x, y], namely

F1 =
{

x(x −1), x y, y(y −1)
}

, F2 =
{

x(x −1), x y, y2} , F3 =
{

x2, x y, y2} . (3.1.5)

In all three cases λ(F j ) = {x2, x y, y2},Π/
〈
I j

〉=Π1, I j := 〈
F j

〉
, while is can be easily seen that

the zero sets Z j := Z (IJ ) satisfy

Z1 = {(0,0), (1,0), (0,1)}, Z2 = {(0,0), (1,0)}, Z3 = {(0,0)}, (3.1.6)

In other words, the quotient space alone does not give information about the underlying
ideal.

Definition 3.1.7. The ideal I is called ZERO DIMENSIONAL if dimΠ/I <∞.

Next we will show that any zero dimensional ideal has only finitely many common zeros by
extending the multiplication operators from (1.1.22) in an almost straightforward way. How-
ever, we will have to slightly vary the notation.

Definition 3.1.8. For q ∈Π the MULTIPLICATION OPERATOR Mq :Π/I →Π/I is defined as

Mq f := M [q] f := νI (q f ), f ∈Π/I . (3.1.7)
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3.1 Solving equations

Lemma 3.1.9. The multiplication operators are linear and commute, i.e., for f , f ′ ∈ Π/I ,
c,c ′ ∈K and q, q ′ ∈Πwe have

Mq (c f + c ′ f ′) = c Mq f + c ′ Mq f ′, Mq Mq ′ f = Mqq ′( f ) = Mq ′Mq f . (3.1.8)

Proof: The first property follows from the linearity of normal forms,

Mq (c f + c ′ f ′) = νI
(
q(c f + c ′ f ′)

)= c νI
(
q f

)+ c ′νI
(
q f ′) ,

for the second one we write q ′ f = νI (q ′ f )+ g , g ∈I , and note that

Mqq ′ f = νI
(
qq ′ f

)= νI
(
q

(
νI (q ′ f )+ g

))= νI
(
q νI (q ′ f )+q g

)
= νI

(
q νI (q ′ f )

)+νI
(
q g

)= Mq Mq ′ f ,

since qg ∈I implies that νI
(
q g

)= 0. �

Remark 3.1.10. Note that the proof of the commuting property only uses the fact that the
normal form is a linear operator whose kernel is an ideal.

Next, we again choose a basis P for the finite dimensional vector space Π/I and represent
the multiplication operator in terms of P ,

Mq := M [q] =
(
mq

p,p ′ : p, p ′ ∈ P
)
∈KP×P , Mq p = ∑

p ′∈P
mq

p,p ′ p ′. (3.1.9)

By Lemma 3.1.9, any matrices Mq and Mq ′ , q, q ′ ∈Π commute.

Definition 3.1.11. The matrix Mq from (3.1.9) is called to MULTIPLICATION TABLE for multi-
plication by q with respect to the basis P .

Remark 3.1.12. From now on, we use Mq to denote the operator and its matrix represen-
tation with respect to a basis P . To keep notation simple, we will not specify the basis P
explicitly, even if it can significantly affect the matrices as shown in Example 1.1.22 for the
univariate case. Usually, we will always start with an ideal that defines a quotient space and
then assume that a basis for this quotient space has been fixed.

Example 3.1.13. Let us compute the multiplication tables Mx and My for the three ideals.

1. With respect to I1 we get the multiplications

x ·1 = x → x, x · x = x2 → x, x · y = x y → 0 ⇒ Mx =
0 0 0

1 1 0
0 0 0

 ,

and analogously

y ·1 = y → y, y · x = x y → 0, y · y = y2 → y ⇒ My =
0 0 0

0 0 0
1 0 1

 .

Here rows and columns are indexed by means of the basis elements (1, x, y) ofΠ1.
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2. In the same way, we obtain for I2 that

x ·1 = x → x, x · x = x2 → x, x · y = x y → 0 ⇒ Mx =
0 0 0

1 1 0
0 0 0

 ,

and analogously

y ·1 = y → y, y · x = x y → 0, y · y = y2 → 0 ⇒ My =
0 0 0

0 0 0
1 0 0

 .

3. The simplest case, however, is I3 where we have that

x ·1 = x → x, x · x = x2 → 0, x · y = x y → 0 ⇒ Mx =
0 0 0

1 0 0
0 0 0

 ,

and analogously

y ·1 = y → y, y · x = x y → 0, y · y = y2 → 0 ⇒ My =
0 0 0

0 0 0
1 0 0

 .

Now the companion matrix idea extends to the multivariate case using multiplication tables.

Theorem 3.1.14. For z ∈ Z (I ) and q ∈ Π, the number q(z) is a eigenvalue of Mq and the
associated eigenvector is independent of q if I is radical.

Lemma 3.1.15. A zero dimensional ideal has only finitely many zeros, more precisely

#Z (I ) ≤ dimΠ/I . (3.1.10)

Proof: Let Z ⊆ Z (I ) be any finite set of common zeros of I and let, for given z ∈ Z , vz,z ′ ∈Ks ,
z ′ ∈ Z \ {z} be vectors such that vT

z,z ′(z − z ′) 6= 0, z ′ ∈ Z \ {z}. We define the polynomials

`z := νI

( ∏
z ′∈Z

vT
z,z ′

(·− z ′)
vT

z,z ′ (z − z ′)

)
∈Π/I , z ∈ Z . (3.1.11)

Since

`z := ∏
z ′∈Z

vT
z,z ′

(·− z ′)
vT

z,z ′ (z − z ′)
+ g

for some g ∈I , it follows that

`z (z ′) = δz,z ′ , z, z ′ ∈ Z .

and in particular the polynomials `z , z ∈ Z , are linearly independent which implies that #Z ≤
dimΠ/I . Since Z was an arbitrary finite subset of Z (I ), this yields (3.1.10). �

This already gives a first view in the direction of interpolation.
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Corollary 3.1.16. If I is zero dimensional, the space Π/I always allows for interpolation at
Z (I ) by means of

L f := ∑
z∈Z (I )

f (z)`z , (3.1.12)

which satisfies Ln f (z) = f (z), z ∈ Z (I ).

Proof of Theorem 3.1.14: By Lemma 3.1.15, the set Z (I ) is finite and we can again use the
finitely many polynomials `z , z ∈ Z (I ), defined in (3.1.11). Then, for z ∈ Z (I )

Mq`z = νI (q`z ) = q`z + g = ∑
z ′∈Z

q(z ′)`z (z ′)`z ′ + gz + g = q(z)`z + gz + g (3.1.13)

for some g ∈I , gz ∈
p

I . If I is radical, then indeed Mq`z = q(z)`z , otherwise the subspace

L⊥ := {
f ∈Π/I : L f = 0

}
is nontrivial and we have the decomposition

Π/I = L (Π/I )+L⊥.

For g ∈ L⊥ we have that

Mq g = νI (qg ) = ∑
z ′∈Z

q(z ′)g (z ′)`z ′ + g ′ = g ′ ∈ L⊥,

hence L⊥ is invariant under Mq for any q . Assuming that L⊥
z \ {0} 3 gz := Mq`z − q(z)`z , as

otherwise `z is an eigenvector, we consider the KRYLOV SPACES

Kn := span
{(

Mq −q(z)I
)k gz : k = 0, . . . ,n −1

}
, k ≥ 1,

and note that1 dimKn = max{n,n0} for some n0 ≥ 1. Hence, there exists some sequence
α1, . . . ,αn0 such that

gz =
n0∑

k=1
αk

(
Mq −q(z)I

)k gz .

Setting

g∗
z :=

n0∑
k=1

αk
(
Mq −q(z)I

)k−1 gz

we then get that

(
Mq −q(z)I

)(
`z − g∗

z

) = gz −
(
Mq −q(z)I

)( n0∑
k=1

αk
(
Mq −q(z)I

)k−1 gz

)

= gz −
n0∑

k=1
αk

(
Mq −q(z)I

)k gz = 0,

hence `z − g∗
z is an eigenvector for the eigenvalue q(z) as claimed. �

1Indeed, if Kn+1 = Kn , that is,
(
Mq −q(z)I

)n gz ∈ Kn , we can conclude that

(
Mq −q(z)I

)n gz =
n−1∑
k=0

αk
(
Mq −q(z)I

)n gz

hence, (
Mq −q(z)I

)n+1 gz =
(
Mq −q(z)I

)(n−1∑
k=0

αk
(
Mq −q(z)I

)n gz

)
∈ Kn+1 = Kn ,

so that the dimension either increases by one or stays constant forever. This is a standard argument
from numerical linear algebra and useful, for example, in the context of CONJUGATE GRADIENTS.
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Remark 3.1.17. If the zero dimensional ideal I is a radical ideal then dimΠ/I = #Z (I )
and therefore the polynomials `z , z ∈ Z (I ) form a basis of the quotient space. Therefore,
L⊥ = {0} is trivial and the `z as defined in (3.1.11) are the unique elements of the quotient
space with `z (z ′) = δz,z ′ , z, z ′ ∈ Z (I ). Otherwise `z is only defined up to an element from L⊥,
i.e., `′z = `z + gz , gz ∈ L⊥ also have the same interpolation properties, and this ambiguity is
reflected in the fact that we do not get eigenvectors but only principal vectors. And it is not
surprise that the above proof was using concepts of the proof of the Jordan normal form in
[Fischer, 1984].

Example 3.1.18. We can determine the eigenstructure, more precisely the JORDAN NORMAL

FORM of the multiplication tables in each of our three examples. The normal form and the
generalized eigenvalues are computed by the symbolic toolbox of octave. The call looks, for
example, as follows2

>> pkg load symbolic;
>> A = sym( [ 0 1 0 ; 0 1 0 ; 0 0 0 ] );
>> [gevs,JnF] = jordan( A)
gevs = (sym 3×3 matrix)

1 0 1
0 0 1
0 1 0

JnF = (sym 3×3 matrix)

0 0 0
0 0 0
0 0 1

and gives a matrix of generalized eigenvalues and the Jordan normal form of the matrix. The
Jordan normal forms are now as follows:

I1 Mx ∼
0 0 0

0 0 0
0 0 1

 , My ∼
0 0 0

0 0 0
0 0 1

 .

I2 Mx ∼
0 0 0

0 0 0
0 0 1

 , My ∼
0 1 0

0 0 0
0 0 0

 .

I3 Mx ∼
0 1 0

0 0 0
0 0 0

 , My ∼
0 1 0

0 0 0
0 0 0

 .

This shows the difference in the multiplication tables: in the radical ideal I1 both multiplica-
tion tables are diagonalizable as predicted by Theorem 3.1.14, for I2 one multiplication table
is diagonalizable, the other one, My , has a nontrivial Jordan block and I3 has Jordan blocks
in both multiplication tables.

Already the simple Example 3.1.18 shows that we have to be a bit more careful with the eigen-
structure of the multiplication tables that seems to tell us a lot about the underlying structure.

2After installing the package from the Sourceforge page and calling pgk install from Octave.
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3.1.2 Making ideals radical

Theorem 3.1.14 shows that the situation is favorable if the underlying I is a radical ideal.
This corresponds to the univariate case where we assumed the zeros to be simple. In one
variable it is easy to get rid of multiplicities by simply considering f /gcd( f , f ′) which has the
same zeros as f but without multiplicities and is easy to compute. In several variables this
will also be possible and give us a tool to compute the radical of a given ideal. And it will be
based on multiplication tables again.

Remark 3.1.19. Even in a single variable, multiple zeros are troublemakers, be it for algo-
rithms like Newton’s method [Gautschi, 1997] or for eigenvalue methods. Therefore, remov-
ing multiplicities is always worthwhile if one is interested only in finding the variety Z (I ).

In terms of computational algebra our goal is, given a basis F for the ideal 〈F 〉 to determine
the a basis G for the radical

〈G〉 =
√

〈F 〉 :=
{

g ∈Π : g k ∈ 〈F 〉, k ≥ k0

}
whose zeros can then be determined by the eigenvalue method – even if this will need some
more effort. To that end we use the so-called TRACE METHOD from [González-Vega et al., 1999].
Again, we shift the focus from the ideal to the computationally accessible basis of the basis.

To achieve the goal of computing the radical, we need a refined version of Theorem 3.1.14
in the form of a generalized eigenspaces decomposition based on a replacement of the func-
tions `z . For this approach that is a modification of the one in [Cohen et al., 1999, Chapter 2]
we need an algebraically closed field now.

Proposition 3.1.20. Let I ⊂ C[x] be a zero dimensional ideal. Then there exist polynomials
mz , z ∈ Z (I ), such that

m2
z = mz , mz (z ′) = δz,z ′ , mz mz ′ = 0, z, z ′ ∈ Z (I ), (3.1.14)

and ∑
z∈Z (I )

mz = 1. (3.1.15)

Remark 3.1.21. The properties (3.1.14) and (3.1.14) are satisfied by the `z from the preceding
chapter if I is a radical ideal, in general we can only ensure that

1−∑
z
`z , `2

z −`z , `z`z ′ ∈ L⊥

which would be too weak for what follows.

Proof: We nevertheless begin with the `z and note that (`z`z ′) (Z (I )) = 0 yields, by means
of the Nullstellensatz, Theorem 2.1.16, that (`z`z ′)m ∈ I for some m ≥ 1, hence, pz := `m

z ∈
Π/I satisfies3 pz pz ′ = 0. Moreover,

pz (z) = `z (z)m = 1m = 1

Therefore, the polynomials in I and {pz : z ∈ Z (I )} have no common zeros in the alge-
braically closed field C, so that〈

I ∪ {pz : z ∈ Z (I )}
〉=Π ⇒ 1 = g + ∑

z∈Z (I )
qz pz for some g ∈I , qz ∈Π,

3Since we work modulo I here.

81



3 Polynomial zeros

and the polynomials mz := νI
(
qz pz

)
, z ∈ Z (I ), satisfy (3.1.15). In addition,

mz (z ′) = qz (z ′)`z (z ′)m = 0, z ′ 6= z,

yields, together with (3.1.15), that mz (z) = 1, while mz (z ′) = 0, z ′ 6= z, follows from the fact
that mz is a multiple of `z . Finally,

mz = mz 1 = mz

( ∑
z∈Z (I )

mz

)
= m2

z +
∑

z ′ 6=z
mz mz ′ = m2

z

completes the last claim in (3.1.14). �

Remark 3.1.22. It has to be emphasized that all multiplications in the above proof are per-
formed in the quotient space Π/I , hence modulo I . Note however, that this is not an inte-
gral ring, there are lots of zerodivisors.

The polynomials mz help us to decomposeΠ/I into principal subspaces with good proper-
ties.

Proposition 3.1.23. The subspaces

Mz := mz · (Π/I ) = {
νI (mz f ) : f ∈Π/I

}
, z ∈ Z (I ), (3.1.16)

form a direct sum decomposition ofΠ/I and are invariant under any multiplication operator
with eigenvalue q(z).

Proof: Again, linearity of the remainder4 implies that any Mz is a linear subspace of Π/I .
That any f ∈Π/I can be represented as a sum follows from

f = f ·1 = f

( ∑
z∈Z (I )

mz

)
= ∑

z∈Z (I )
f mz

while uniqueness is a consequence of

0 = ∑
z∈Z (I )

fz mz ⇒ 0 = mz

( ∑
z ′∈Z (I )

fz ′ mz ′

)
= fz m2

z = fz mz ,

hence all components of the representation must be zero. Invariance under multiplication
follows directly from the definition of Mz . Finally, we consider, for q ∈Π

qmz =
(
q −q(z)

)
mz +q(z)mz

and note that since
(
q −q(z)

)
mz vanishes at Z (I ), there exists some n ≥ 1 such that 0 =(

q −q(z)
)n mz . Hence, by the first property of (3.1.14)

0 = (Mq −q(z) I )nmz = (Mq −q(z) I )nmn
z = (

(Mq −q(z) I )mz
)n

implies that (Mq − q(z) I )mz is a nilpotent element in Mz and therefore q(z) is the unique
eigenvalue associated to this space; the eigenvector can be constructed by from mz by the
Krylov space method used in the proof of Theorem 3.1.14. �

4Just recall that this follows from the uniqueness of remainder when dividing by a Γ-basis as then
both νI ( f )+νI (g ) and νI ( f + g ) are candidates for the same remainder, hence must coincide.
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Definition 3.1.24. Let P be a basisΠ/〈F 〉, 〈F 〉 zero dimensional.

1. For z ∈ Z (I ) denote by µ(z) the MULTIPLICITY of the zero, defined as

µ(z) = dimMz . (3.1.17)

2. For q ∈Πwe define the TRACE MATRIX Tq ∈KP×P as

Tq = (
trace M

[
qpp ′] : p, p ′ ∈ P

)
. (3.1.18)

Remark 3.1.25. Defining multiplicity of a zero as in (3.1.17), that is, as a number, is insuffi-
cient and ignores structural concepts. We will give a more appropriate and powerful defini-
tion soon.

Example 3.1.26. That counting is insufficient, can already be seen by the following simple
example: A simple common zero z means that f (z) = 0, a double zero that f (z) = 0 and that
some DIRECTIONAL DERIVATIVE q(D) f (z) = 0, q ∈Π0

1, but a TRIPLE ZERO could either involve a
second, linearly independent, directional derivative q ′(D) f (z) = 0, q ′ ∈Π0

1, or a second order
derivative, in that case q2(D) f (z) = 0, with the q from the double zero.

Exercise 3.1.1 Show: If #F = 1, then any zero has multiplicity at least s. ♦

Example 3.1.27. To derive the trace matrices for I1, I2 and I3, we have to compute M1 = 1,
Mx , My and Mx y , Mx2 and My2 . To compute Mx y we note that for I1 we get

x y ·1 = x y → 0, x y · x = x2 y → 0, x y · y = x y2 → 0 ⇒ Mx y = 0,

but since we only used the common basis element x y for reduction, the same holds true for
the other two ideals as well.

1. For I2 the remaining two multiplication tables compute as

x2 ·1 → x, x2 · x → x2 → x, x2 · y → 0 ⇒ Mx2 =
0 0 0

1 1 0
0 0 0

 ,

and

y2 ·1 → y, y2 · x → 0, y2 · y → y2 → y ⇒ My2 =
0 0 0

0 0 0
1 0 1

 ,

2. for I2 we get

x2 ·1 → x, x2 · x → x2 → x, x2 · y → 0 ⇒ Mx2 =
0 0 0

1 1 0
0 0 0

 ,

as well as

y2 ·1 → 0, y2 · x → 0, y2 · y → 0 ⇒ My2 = 0
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3. while I3 gives

x2 ·1 → 0, x2 · x → 0 x2 · y → 0 ⇒ Mx2 = 0

and

y2 ·1 → 0, y2 · x → 0, y2 · y → 0 ⇒ My2 = 0.

Thus, the symmetric trace matrices

T = T1 :

trace M1 trace Mx trace My

trace Mx trace Mx2 trace Mx y

trace My trace Mx y trace My2


take the form

T1(I1) =
3 1 1

1 1 0
1 0 1

 , T1(I2) =
3 1 0

1 1 0
0 0 0

 , T1(I3) =
3 0 0

0 0 0
0 0 0

 ,

and the kernels are trivial or spanned by the third or the second and the third unit vector,
respectively.

The symmetric trace matrix is very useful. To see why, we consider a coefficient vector v =(
vp : p ∈ P

) ∈ Cp and the associated polynomial f = v ·P ∈ Π/I . Since the trace of a ma-
trix is the sum of its eigenvalues and since the eigenvalues of Mq are q(z), z ∈ Z (I ) with
multiplicity µ(z), we obtain for v = (

vp : p ∈ P
) ∈CP that

v H Tq v = ∑
p,p ′∈P

(
Tq

)
p,p ′ vp vp ′ = ∑

p,p ′∈P

(
trace M

[
qpp ′]) vp vp ′

= trace M

[ ∑
p,p ′∈P

q · vp p · vp ′ p ′
]
= trace M

[
q · ∣∣ f

∣∣2
]

, f = v ·P = ∑
p∈P

vp p ∈ P,

= ∑
z∈Z (I )

µ(z) q(z)
∣∣ f (z)

∣∣2 ,

hence

v H Tq v = ∑
z∈Z (I )

µ(z) q(z) |(v ·P ) (z)|2 . (3.1.19)

This already suffices to prove a statement that characterizes the polynomials in Π/I which
vanish on Z (I ), that is, the polynomials that prevent I from being radical.

Theorem 3.1.28. For a polynomial f = v ·P ∈Π/I , v ∈CP , we have that

f (Z (I )) = 0 ⇔ T1 v = 0. (3.1.20)

Proof: “⇒”: for w ∈Cn we define g := w ·P and get that

wT T1 v = ∑
z∈Z (I )

µ(z) g (z) f (z)︸︷︷︸
=0

= 0,

and since w was arbitrary, this implies that T1 v = 0.
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3.1 Solving equations

Algorithm 3.1.1 RADICAL COMPUTATION: F ⊂Π such that 〈F 〉 is zero dimensional.
1: Compute a Γ-basis G of 〈F 〉 and the quotient spaceΠ/〈G〉 = νG (Π).
2: Compute a basis P ofΠ/〈G〉.
3: Compute the multiplication tables Mpp ′ , p, p ′ ∈ P and the trace matrix

T1 ←
(
trace Mpp ′ : p, p ′ ∈ P

)
4: Determine by SVD a basis V of

kerT1 := {
v ∈K|P | : T1 v = 0

}
.

5: Compute a Γ-basis R of 〈F ∪V ·P〉
6: Result: Γ-basis R such that

p
I = 〈R〉.

For “⇐” assume that T1 v = 0 and let vz ∈ CP be the linear independent vectors such that
mz = vz ·P , z ∈ Z (I ), with the mz from (3.1.14). Then we get that

0 = vT
z 0 = vT

z T1 v = ∑
z ′∈Z (I )

µ
(
z ′) mz

(
z ′)︸ ︷︷ ︸

=δz,z′

f
(
z ′)= f (z), z ∈ Z (I ),

from which we conclude that f (Z (I )) = 0. �

This eventually allows us to design an algorithm that removes multiplicities of zeros or, in
other words, computes the radical of an ideal.

Example 3.1.29. We can now give the radicals of our examples, namely
√

I1 =I1√
I2 =

〈
x(x −1), x y, y2, y

〉= 〈
x(x −1), y

〉
,

√
I3 =

〈
x2, x y, y2, x, y

〉= 〈
x, y

〉
,

which are exactly the ideals of all polynomials vanishing at (0,0) and (1,0) or (0,0), respec-
tively.

3.1.3 Finding the zeros

Now we only have to put together the tools we built so far to get an algorithm for finding the
common zeros of a zero dimensional ideal. After passing to the radical, the multiplication
tables are diagonalizable and have only Jordan blocks of size 1× 1 and since the respective

eigenvectors are the `z , z ∈ Z
(p

I
)
, we can use them to connect the solution. Especially the

eigenvalues of the coordinate multiplications M(·) j , j = 1, . . . , s, are the coordinate projections
z j of the zeros.

Remark 3.1.30. In principle, Algorithm 3.1.2 works well, but it runs into problems if there
are z, z ′ ∈ Z (I ) and j ∈ {1, . . . , s} such that z j ≈ z ′

j as then the eigenvalue of M(·) j becomes a
double one and the eigenvectors cannot be determined any more – any linear combination
of the two eigenvectors is an eigenvector again.

To overcome the problem of multiple eigenvalues in the multiplication tables one could switch
to different coordinate projections as any set of multiplication tables MvT

j (·) with linearly in-

dependent v j ∈ Cs would do the job; however, predicting the proper v j is difficult again,
though they are “bad” only on a set of measure zero. We will use a different approach that di-
rectly computes the joint eigenvalues of commuting matrices, thus making use of the struc-
ture of the multiplication tables. This approach will be derived in Section 3.1.4.

85



3 Polynomial zeros

Algorithm 3.1.2 COMMON ZEROS: F ⊂Π such that 〈F 〉 is zero dimensional.

1: Compute a Γ-basis G of
p〈F 〉 by Algorithm 3.1.1.

2: InΠ/〈G〉 compute the multiplication tables M(·) j .
3: Compute the eigenvalues λ j k and eigenvectors and v j k of M(·) j , k =

1, . . . ,dimΠ/〈G〉.
4: for dok = 1, . . . ,dimΠ/〈G〉
5: v ← v1k

6: zk ← (
λ j k ′ : v j k ′ = v, j = 1, . . . , s

)
7: end for
8: Result: Common zeros zk , k = 1, . . . ,dimΠ/〈G〉

3.1.4 Common eigenvectors of commuting families of matrices

Before we define the algorithm for computing the common eigenvectors, we first give some
special ones among them a special name.

Definition 3.1.31. The j th COMPANION MATRIX M j is defined as the multiplication table M(·) j ,
j = 1, . . . , s.

Remark 3.1.32. According to Theorem 3.1.9, the companion matrices form a commuting
family of matrices and these matrices are DIAGONALIZABLE if the ideal I is a radical ideal as in
this case the polynomial `z , z ∈ Z (I ), form an eigenvector basis of Π/I . Writing `z = vz ·P ,
vz ∈ CP , for some basis P of the quotient space, and setting V = [vz : z ∈ Z (I )] ∈ CP×Z (I ), it
follows that

M j V =V diag
(
z j : z ∈ Z (I )

) ⇔ V −1M j V = diag
(
z j : z ∈ Z (I )

)
, j = 1, . . . , s,

(3.1.21)
hence the companion matrices for a radical ideal are JOINTLY DIAGONALIZABLE by means of
V .

Example 3.1.33. The case I1 of Example 3.1.6 shows which problem can nevertheless occur.
If we use eigenvalue computations of Mx and My be means of octave, we get

>> [l,E] = eig( [ 0 0 0 ; 1 1 0 ; 0 0 0 ] )
l =

0.00000 0.70711 0.00000
1.00000 -0.70711 0.00000
0.00000 0.00000 1.00000

E =

Diagonal Matrix

1 0 0
0 0 0
0 0 0
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3.1 Solving equations

and

>> [l,E] = eig( [ 0 0 0 ; 0 0 0 ; 1 0 1 ] )
l =

0.00000 0.70711 0.00000
0.00000 0.00000 1.00000
1.00000 -0.70711 0.00000

E =

Diagonal Matrix

1 0 0
0 0 0
0 0 0

which allows us to identify the zeros (1,0) and (0,1) by means of the eigenvectors

0
0
1

 and

0
1
0

.

The third common eigenvector,

 1
−1
1

 is not found by the eig command, but can obtained by

properly combining the last two eigenvectors of the two matrices - for multiple eigenvectors
only one basis of the eigenspace can be computed, and this basis is not unique.

Remark 3.1.34. The problem of not finding proper joint eigenvectors has been recognized
and solved in [Möller and Tenberg, 2001]; here we give a more symmetric modification of
their algorithm from [Sauer, 2018a]. Note, however, that the algorithm by Möller and Tenberg
can even be extended to zero finding for non-radical ideals.

The idea of the algorithm that computes and relates the common eigenvectors of the com-
muting family of companion matrices for a radical zero dimensional ideal I , we make use
of the convenient approach to identify a matrix A ∈ Cn×m with the at most m-dimensional
subspace ACm of Cn spanned by the columns of the matrix. Since an element in intersection
of the subspaces A∩B must be of the form

Av = B w ⇔ Av −B w = 0 ⇔ (
A | −B

)( v
w

)
the intersection can be determined as the kernel of the COMPOUND MATRIX

(
A | −B

)
, where

good old SVD comes in handy again and immediately gives Algorithm 3.1.3. Some more in-
formation about adapting the threshold in this method can be found in [Sauer, 2018a].
Next, a little bit of convenient notation.

Definition 3.1.35. For a diagonalizable matrix A ∈ Cn×z we denote by Λ(A) = (λ,E), λ ∈ Cn ,
E = [e1, . . . ,en] the EIGENSTRUCTURE of A, that is,

Ae j =λ j e j , j = 1, . . . ,n.
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3 Polynomial zeros

Algorithm 3.1.3 SUBSPACE INTERSECTION: A ∈Cn×a , B ∈Cn×b , threshold τ> 0.

1: Compute SVD UΣV ∗ ← (
A | −B

)
2: Compute numerical rank r ← max{k :σk > τ}
3: Set

C ← 1

2

(
AV1:a,r+1:a+b +BVa+1:a+b,r+1:a+b

) ∈Cn×a+b−r

4: Result: C = A∩B .

We write the eigenvalues with multiplicities as (λ̂,µ) ∈Cm ×Nm for some m ≤ n which means
that λ is a permutation of

(λ̂1, . . . , λ̂1︸ ︷︷ ︸
µ1

, . . . , λ̂m , . . . , λ̂m︸ ︷︷ ︸
µm

)

and λ̂ j 6= λ̂k , j 6= k.

Remark 3.1.36. The eigenstructure Λ(A) is what matlab or octave computes with the eig
command.

The method to compute the joint eigenspace and thus the zeros is given in Algorithm 3.1.4.

Algorithm 3.1.4 EIGENSPACE INTERSECTION: M jC
n×n jointly diagonalizable.

1:
(
(λ̂,µ),E

)
:= (λ,E) ←Λ(M1)

2: Partition
V = (

V1 | . . . |Vm
)← EP, P permutation,

such that
M j Vk = λ̂kVk , k = 1, . . . ,m

3: `← m
4: for j = 2, . . . , s do
5: (λ,E) ←Λ

(
V −1M j V

)
6: Partition as E = (

E1 | . . . |Em
)

7: Vk ← (
Vk ∩V E1 | . . . |Vk ∩V Em

)
, k = 1, . . . ,`

8:

`← ∑̀
k=1

#{t : dim(Vk ∩V Et ) ≥ 1} (3.1.22)

9: end for
10: Result: C = A∩B .

Remark 3.1.37 (Eigenspace intersection method).

1. The partitioning requested in Step 2 of Algorithm 3.1.4 comes for free when using the
function eig in matlab or octave as it orders the eigenvalues according to some cri-
terion.

2. The variable ` encodes the number of blocks in the actual partition.
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3.1 Solving equations

3. The PREDIAGONALIZATION by means of V in Step 5 is not necessary, but improves the
computational performance: whenever a column of V is already an eigenvalue of M j

for an eigenvalue λ, we get that

V −1M j V =



∗ . . . ∗ 0 ∗ . . . ∗
...

. . .
...

...
...

. . .
...

∗ . . . ∗ 0 ∗ . . . ∗
0 . . . 0 λ 0 . . . 0
∗ . . . ∗ 0 ∗ . . . ∗
...

. . .
...

...
...

. . .
...

∗ . . . ∗ 0 ∗ . . . ∗


,

which significantly eases the work of the eig function.

4. The operation in (3.1.22) counts the new number of pieces in the partition of V . If
Vk ∩V E j = {0} would be trivial, it can be represented by an empty matrix and thus even
omitted.

Theorem 3.1.38. If M j , j = 1, . . . , s, are companion matrices of a zero dimensional radical
ideal, then Algorithm 3.1.4 computes a matrix V that simultaneously diagonalizes the matrices
M j .

Proof: We first prove by induction that after j steps the blocks V1, . . . ,V` of V are exactly the
nontrivial intersections of eigenspaces of M1, . . . , M j and for j = s this proves our theorem
since these intersections must be one-dimensional and consist of the `z , z ∈ Z (I ). For j = 1,
the statement is exactly the setup in Step 2 of the algorithm and to advance the induction
hypothesis, we note that, by definition of E in step j +1, we have

M j+1V Et =V V −1M j+1V Et︸ ︷︷ ︸
=λ̂t Et

= λ̂t V Et , t = 1, . . . ,m,

hence any such intersection Vk ∩V Et is a joint eigenspace of M j+1 and, by induction, also
one of M1, . . . , M j , which completes the induction.

Moreover, E and V are nonsingular, hence Cn =V E1 ⊕·· ·⊕V Em and therefore

Vk =Vk ∩Cn =Vk ∩
( m⊕

t=1
V Et

)
=

m⊕
t=1

(Vk ∩V Et ),

which yields Cn =V1 ⊕·· ·⊕V` at each step j and proves that V contains all intersections. �

Example 3.1.39. We continue Example 3.1.33 and start with the decomposition

Mx ∼
1

0
0

 ,

0
p

2 0
1 −p2 0
0 0 1

 ⇒ V =
 0

p
2 0

1 −p2 0
0 0 1

 .

With the direct decomposition5

My ∼
1

0
0

 ,

0
p

2 0
0 0 1
1 −p2 0

 ⇒ [V E1 |V E2] =
 0

p
2 0

0 0 1
1 −p2 0


5Without the prediagonalization step.
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3 Polynomial zeros

We compute the intersections

V1∩V E1 = {0}, V1∩V E2 = span

0
1
0

 , V2∩V E1 = span

0
0
1

 , V2∩V E1 = span


p

2
−p2
−p2

 ,

and found the three normalized eigenvectors

0
1
0

,

0
0
1

, 1p
3

 1
−1
−1

 and

V =

0 0
p

3
1 0 −p3
0 1 −p3


has the property that

V −1MxV =
1

0
0

 , V −1MxV =
0

1
0

 ,

from which we can read off the zeros (1,0), (0,1) and (0,0).

3.2 Zeros and their multiplicity

We now come to one of the fundamental chapters in this lecture, namely a precise description
of multiple zeros of polynomials. To my knowledge, this is due to Gröbner [Gröbner, 1939],
see also [Gröbner, 1970].

3.2.1 Invariances and dualities

We begin with some fundamental concepts.

Definition 3.2.1 (Invariances). A set P ⊂Π=K[x] is called

1. SHIFT INVARIANT if

f ∈P ⇒ f (·+ y) ∈P , y ∈Ks , (3.2.1)

2. D-INVARIANT or DIFFERENTIATION INVARIANT if

f ∈P ⇒ q(D) f ∈P , q ∈Π. (3.2.2)

3. By τy , y ∈Ks , we denote the SHIFT OPERATOR, τy f := f (·+ y).

Remark 3.2.2. Specifying y = 0 or q = 1, we immediately see that the direction “⇐” is also
valid in (3.2.1) and (3.2.2), respectively.

It is worthwhile to note that the two invariance concepts are in fact the same one.

Proposition 3.2.3. A subspace P ⊂Π is shift invariant if and only it is D-invariant.
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Proof: If P is shift invariant, then all the polynomials 1
h (τhy − I ) f , h ∈R+, belong to the finite

dimensional closed space P ∩Πdeg f −1 by means of (3.2.3). Therefore, the limit D y f , the
DIRECTIONAL DERIVATIVE with respect to y of f , also belongs to P . Conversely, the TAYLOR

FORMULA

τy f = f (·+ y) = ∑
α∈Ns

0

∂|α| f
∂xα

(·) yα

α!

immediately implies that τy f is a finite linear combination of derivatives of f , hence shift
invariance follows from D-invariance. �

Exercise 3.2.1 Prove the formula

f (x + y) = ∑
|α|≤deg f

fα
∑
β≤α

(
α

β

)
xβyα−β, x, y ∈Ks . (3.2.3)

♦

Lemma 3.2.4. If P ⊂Π is a nontrivial D-invariant space, then 1 ∈P .

Proof: Choose 0 6= f ∈ P , then f (D) f is a nonzero constant that belongs to P since the
space is D-invariant. �

Next, we extend “our” inner product.

Definition 3.2.5. By (·, ·)z , z ∈Ks , we denote the bilinear form

( f , g )z := (
f (D)g

)
(z) = (

f ,τz g
)

. (3.2.4)

Since

( f , g )z = ( f ,τz g ) = (τz g , f ) = (
(τz g )(D) f

)
(0) = (

(τz g )(D)τ−z f
)

(z) = (
τz g ,τ−z f

)
z ,

the bilinear form is not symmetric for z 6= 0. But still it has the fundamental property that

( f q, g )z = ( f (D)q(D)g )(z) = (
f , q(D)g

)
z . (3.2.5)

Proposition 3.2.6. For z ∈Ks let F ,G ⊆Π be related by

F := ker(·,G )z := {
f ∈Π : ( f ,G ) = 0

}
, G := ker(F , ·)z := {

g ∈Π : (F , g ) = 0
}

. (3.2.6)

Then F is an ideal if and only if G is D-invariant.

Proof: F and G are both closed under addition since the form is bilinear. Let F be an ideal
and q ∈Π. Then, for any g ∈G

0 = (q f , g )z = ( f , q(D)g )z , f ∈F ,

hence G is D-invariant. For the converse, we note that for f ∈F we have that

0 = ( f , q(D)g )z = (q f , g )z , g ∈G ,

hence q f ∈F and thus F is an ideal. �

Definition 3.2.7. A pair F ,G ⊆Π for which (3.2.6) holds is called a DUAL PAIR of subspaces.
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3 Polynomial zeros

3.2.2 Multiple zeros

First a small bit of terminology.

Definition 3.2.8. The POINT EVALUATION FUNCTIONAL δz :Π→K, z ∈Ks is defined as δz f =
f (z).

Now we are in position to characterize zero dimensional ideals in terms of zeros and their
multiplicities.

Theorem 3.2.9. Let K be an algebraically closed field6. An ideal I ⊆Π is zero dimensional if
and only if there exist a finite set Z (I ) ⊂ Ks and finite dimensional D-invariant spaces Qz ,
z ∈ Z (I ), such that

I = ⋂
z∈Z (I )

kerδz ◦Qz (D) = {
f ∈Π : q(D) f (z) = 0, q ∈Qz , z ∈ Z (I )

}
(3.2.7)

Proof: Suppose the I is zero dimensional. Since for any z ∈Ks the set G ⊥(z) = ker(I , ·)z is
a D-invariant subset ofΠ. By Lemma 3.2.4 it is either trivial or contains 1 and since the latter
implies that I (z) = 0, we can conclude that

G ⊥(z)

{
= {0}, z 6∈ Z (I ),

⊇Π0, z ∈ Z (I ).
(3.2.8)

Set Qz =G ⊥(z). Then, again by Proposition 3.2.6

J := ⋂
z∈Z (I )

ker(·,Qz )z (3.2.9)

is an intersection of ideals, hence an ideal, and since (I ,Qz )z = 0, it follows that I ⊆J and
Z (I ) = Z (J ). Therefore,

ker(J , ·)z ⊆ ker(I , ·)z =Qz

and a strict inclusion I ⊂ J would imply a strict inclusion above. But this is impossible
since (3.2.9) implies that (J ,Qz )z = 0, hence ker(J , ·)z ⊇Qz .

For the converse, we first note that each Iz := ker(δz ◦Qz (D)) is a primary ideal with vari-
ety {z}. Since Qz is finite dimensional, it follows that

degQz = max
q∈Qz

deg q <∞

and therefore
(
q(D)τ−z f

)
(z) = 0 for any f ∈ Π0

k for k > degQz , so that Vk (Iz ) = Π0
k for

k > degQz and Π/Iz ⊆ W (Iz ) ⊆ ΠdegQz is finite dimensional. This carries over to the in-
tersections. �

Exercise 3.2.2 Prove that the intersection of two zero dimensional ideals is zero dimensional
again, in particular

dimΠ/(I ∩J ) ≤ dimΠ/I +dimΠ/J .

♦
6Alternatively one could request Z ⊂K, the ALGEBRAIC CLOSURE ofK.
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3.2 Zeros and their multiplicity

Definition 3.2.10. The space Qz is called the (structural) MULTIPLICITY of the zero at z ∈
Z (I ). The SCALAR MULTIPLICITY is µ(z) := dimQz . Moreover, we use the notation

Iz := kerδz ◦Qz (D) = {
f ∈Π :

(
q(D) f

)
(z) = 0, q ∈Qz

}
(3.2.10)

for the local primary components.

For more information on the dimensionality of the associated quotient spaces, it pays off to
use a slight extension of Theorem 2.1.8.

Corollary 3.2.11. For f , q ∈Π and z ∈Ks we have that

(
q(D) f

)
(z) = ( f , q ez ), ez := ∑

α∈Ns
0

zα

α!
(·)α = ezT (·). (3.2.11)

Proof: By (2.1.11),
(q(D) f )(z) = (q(D) f ,ez ) = (

f , qez
)

.

�

Proposition 3.2.12 (Dimensions). For any zero dimensional ideal I in a algebraically closed
fieldKwe have that

dimΠ/Iz = dimQz (3.2.12)

and
dimΠ/I = ∑

z∈Z (I )
dimQz . (3.2.13)

Proof: Let Pz be a basis ofΠ/Iz and Qz a basis of Qz and consider the matrix

G :=
(
(p, qez ) :

p ∈ Pz

q ∈Qz

)
If the rank of this matrix is smaller than #Qz then there exists v ∈KQz such that Gv = 0, hence

0 = (Π/I , (v ·Qz )ez )

and since any f ∈Π can be written as νI ( f )+ f ′, f ′ ∈Iz = ker(·,Qz ez ), it follows that(
f , (v ·Qz )ez

)= (
νI ( f ), (v ·Qz )ez

)+ (
f ′, (v ·Qz )ez

)= 0,

from which we conclude that v ·Qz = 0 and thus v = 0. Hence, rank G = #Qz = dimQz which
proves (3.2.12). The same argument, now taking into account the linear independence of all
qez , q ∈Qz , z ∈ Z (I ), also verifies (3.2.13). �

Example 3.2.13. Let us consider triple zeros at (0,0). One choice is that Q0 =Π1 which leads
to

I = 〈
x2, x y, y2〉, Π/I =Π1 (3.2.14)

or we can choose Q0 = {1, p, q} where p is an affine polynomial of the form7 p = ax +by and
q = ux2 + v x y +w y2 + cx +d y . To ensure D-invariance, we have to consider

∂q

∂x
= 2ux + v y + c,

∂q

∂y
= v x +2w y +d

7We can drop the constant part as it is covered by the constant in the basis.
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and choose the parameters in such a way that both derivatives are contained in span {1, p},
yielding8

2u

a
= v

b
,

v

a
= 2w

b
,

hence, if we write v =αab, we get u = α
2 a2 and w = α

2 b2, yielding

q(x, y) = α

2

(
a2x2 +2abx y +b2 y2)+ cx +d y = α

2

(
ax +by

)2 + cx +d y = α

2
p(x, y)2 + cx +d y,

so the general case is
Q0 = span {1, p, p2 +`}, ` ∈Π0

1.

If q ∈Π0
1 is such that (q, p) = 0, i.e., q(x, y) = bx −ay , then

I = 〈
q, p3〉, Π/I = span {1, p, p2},

with the special cases

I = 〈
x3, y

〉
, Π/I = span {1, x, x2} and I = 〈

x, y3〉, Π/I = span {1, y, y2}

of pure partial derivatives.

8The special cases that either a = 0 and b = 0 have to be considered separately, but they are simpler
as they lead to I = 〈

x, y3
〉

and I = 〈
x3, y

〉
, respectively.
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Interpolation 4
Il est manifeste que l’interpolation des fonctions de plusiers variables ne de-
mande aucun principe nouveau, car dans tout ce qui précède le fait que la
variable indépendante était unique n’a souvent joué aucun rôle.

It is clear that the interpolation of functions of several variables does not de-
mand any new principles because in the above exposition the fact that the
variable was unique has not played frequently any role.

(H. Andoyer in [Andoyer, 1906])

INTERPOLATION can be seen as a RECOVERY PROBLEM:

Given SITES X ⊂Ks , #X <∞, and y ∈KX find f ∈Π such that

f (X ) = y, i.e., f (x) = yx , x ∈X . (4.0.1)

The task in (4.0.1) is to reconstruct or recover a function f in a structured way from finite
information on the function, in this case from the value at certain points.

Multivariate interpolation is a fairly recent topic, especially compared to the fact that the
univariate case is already covered in [Newton, 1687] and that, according to [Bauschinger, 1900]
the name has been coined by J. Wallis as early as even 1655.

The oldest work on multivariate interpolation can be found in [Jacobi, 1835, Kronecker, 1866],
for details see [Gasca and Sauer, 2000b]. Systematic studies began around 1900 in the context
of algebraic geometry, numerically it was considered in [Radon, 1948]. In all what follows,
we only consider the case of finitely many interpolation conditions, avoiding concepts like
TRANSFINITE INTERPOLATION or interpolation along curves.

4.1 Basic aspects

We begin by collecting some very elementary facts about polynomial interpolation and mainly
giving a series of definitions and very straightforward results.

4.1.1 Terminology

The simplest type of interpolation problem is the one defined in (4.0.1) that depends only on
point evaluations.

Definition 4.1.1. An interpolation problem is called a LAGRANGE INTERPOLATION problem if
the result depends on function values only, i.e., if it is of the form (4.0.1).

Lemma 4.1.2. The Lagrange interpolation problem is always solvable.
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4 Interpolation

Proof: Use

f = ∑
x∈X

yx
∏

x ′ 6=x

(x −x ′)H (·−x ′)
‖x −x ′‖2

2

. (4.1.1)

�

In general, we can start with a finite set θ :Π→K of linear functionals defined on the polyno-
mials; linear independence means that

0 = ∑
θ∈Θ

cθθ( f ) = 0, f ∈Π ⇔ cθ = 0, θ ∈Θ.

Definition 4.1.3. Let Θ⊂Π′, #Θ<∞. The GENERALIZED INTERPOLATION PROBLEM consist of
finding, for any y ∈KΘ a polynomial f ∈Π such that

Θ( f ) = y, i.e., θ( f ) = yθ, θ ∈Θ. (4.1.2)

The functionals inΠ′ can be easily embedded into the formal power series since

θ( f ) = ( f ,eθ), eθ(x) := ∑
α∈Ns

0

θ ((·)α)

α!
xα, (4.1.3)

see the proof of Theorem 2.1.8.
Now we can classify generalized schemes in various ways, originally due to Birkhoff [Birkhoff, 1979].

Definition 4.1.4 (Ideal interpolation). A generalized interpolation problem is called an IDEAL

INTERPOLATION problem if its kernel

kerΘ := { f ∈Π :Θ( f ) = 0}

is an ideal.

Remark 4.1.5. Lagrange interpolation is ideal interpolation since
{

f ∈Π : f (X ) = 0
}

is an
ideal.

By Theorem 3.2.9 any zero dimensional ideal Z (I ) can be written as the kernel of D-invariant
spaces of differential conditions evaluated at Z (I ). Hence any ideal interpolation problem
can be interpreted as a Hermite interpolation problem where consecutive derivatives have to
be interpolated.

Definition 4.1.6. A HERMITE INTERPOLATION problem consists of the conditions

(q(D) f )(x) = yq,x , q ∈Qx , x ∈X , (4.1.4)

where Qx is a basis of the D-invariant subspace Qx ⊂Π. A generalized interpolation problem
that is not ideal is called a HERMITE-BIRKHOFF INTERPOLATION problem.

Remark 4.1.7. D-invariance takes care of the derivatives being consecutive.

Example 4.1.8. A simple Hermite-Birkhoff interpolation problem is to interpolate ∂ f /∂x at
some point, but not the function value.

Definition 4.1.9. A linear subspace P ⊆Π is called an INTERPOLATION SPACE for the gener-
alized interpolation problem with respect to Θ⊂Π′ if for any y ∈KΘ there exists p ∈P such
thatΘ(p) = y . It is called a UNIQUE INTERPOLATION SPACE if the INTERPOLANT p is unique.
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4.1 Basic aspects

4.1.2 Linear algebra and the difference to the univariate case

As long as linear functionals are involved, we can use obvious linear algebra to describe the
solvability of interpolation problems. The following concept is fundamental for that purpose.

Definition 4.1.10. For P ⊆Π andΘ⊂Π′, the associated VANDERMONDE MATRIX is defined as

V (P,Θ) :=
(
θ(p) :

θ ∈Θ
p ∈ P

)
(4.1.5)

and describes interpolation with respect to Θ on P . In the case of Lagrange interpolation
problems we simply write V (P,X ) and in the case of Hermite interpolation we use V (P, (X ,Q))
where Q = (Qx : x ∈X ) is a vector of bases for the D-invariant spaces Qx .

With the Vandermonde matrix we can write the interpolation problem as

y =V (P,Θ)v, v ∈KP , (4.1.6)

as thenΘ(v ·P ) = y . Standard linear algebra gives us the following observation.

Theorem 4.1.11. Let P be a basis for P ⊆Π and Θ⊂Π′ be a finite set of linearly independent
functionals. Then

1. P is an interpolation space forΘ if and only if rank V (P,Θ) ≥ #Θ,

2. P is an unique interpolation space forΘ if and only if V (P,Θ) is invertible.

Even if this theorem is almost trivial as it is only a reformulation of the problem, it gives
us some insight into the differences between the univariate and the multivariate case. In
the univariate case, as shown in Theorem 1.2.1, any n + 1 pairwise distinct points could be
uniquely interpolated by Πn . This makes Πn a so-called HAAR SPACE where interpolation is a
matter of counting and dimension only. This is lost in higher dimensions and it is not even a
matter of polynomials.

Example 4.1.12. If X ⊂ R2 contains an open set or a branch, then there exists no Haar space
for functions defined on X .

Proof: Given X with #X ≥ 2, we choose x, x ′ ∈ X , x 6= x ′, and two continuous functions
u, v : [0,1] → X such that

u(0) = v(1) = x, u(1) = v(0) = x ′, u(t ) 6= v(t ), t ∈ [0,1],

and u(t ), v(t ) 6∈ X \ {x, x ′}. In other words: u and v switch x and x ′ continuously without
violating the fact that the points are different. Now let Φ with #Φ = #X an arbitrary linearly
independent set of functions X →R.

D(t ) = det

(
φ(y) :

φ ∈Φ
y ∈ {u(t ), v(t )}∪ (

X \ {x, x ′}
) )

, t ∈ [0,1],

is continuous in t and satisfies D(0) = −D(1), due to which there must exist t∗ ∈ [0,1] such
that D (t∗) = 0, so that interpolation at {u(t∗), v(t∗)}∪ (

X \ {x, x ′}
)

, v (t∗) , x3, . . . , xn is impos-
sible. This procedure is shown graphically in Fig. 4.1.1 �

In fact, it turns out that Haar spaces exist in the univariate case only:
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x1
x2

v

u

1

2
3

Figure 4.1.1: Switching the points x = x1 and x ′ = x2, somewhere in between interpolation
has to fail. On the right hand side the procedure for a branch, cf. [Lorentz, 1966,
S. 25]), which works like shuffling trains on a railroad track.

Theorem 4.1.13 (MAIRHUBER’S THEOREM, [Mairhuber, 1956]). For a compact metric space X
there exist nontrivial1 Haar spaces if and only if X is homeomorphic to a compact subset of the
TORUS T.

Example 4.1.12 has some important consequences that we list next.

Remark 4.1.14 (Multivariate interpolation).

1. For each subspace P ⊂Π of polynomials with basis P there exist configurations X of
sites such that detV (P,X ) = 0, hence interpolation is not solvable in general on this
set. Interpolation is not a matter of counting but of geometry.

2. Each nontrivial subspace P with basis P has a dual set of points X , #X = #P , for
which detV (P,X ) 6= 0. This is easily proved by induction on #P , where #P = 1 is simply
the fact that a basis element is by definition not identically zero. For the induction step,
we pick some p ∈ P , find a point x where p(x) 6= 0 and apply the induction hypothesis
to

P ′ =
{

p ′− p ′(x)

p(x)
p : p ′ ∈ P \ {p}

}
to obtain a set2 X ′ such that detV (P ′,X ′) 6= 0. Then, with X = {x}∪X ′,

detV (P,X ) =±p(x) det
(
V (P ′,X ′)A

) 6= 0,

where A is the nonsingular matrix that switches between the bases P and {p}∪P ′.

3. If #P = #X such that detV (P,X ) = 0, we know that detV (P, ·) is a nonzero polynomial
in the components of the sites and thus only vanishes on a set of measure zero. In
other words: polynomials are an almost Haar space.

4. Nevertheless it is the set of measure zero that causes trouble and can make polynomial
interpolation problems arbitrarily ill-conditioned even if the points are well-separated.

1Φ= {0} andΦ=C are Haar spaces but not interesting.
2Since P ′(x) = 0 we cannot have x ∈X ′.
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4.2 Interpolation constructions

In the univariate case any Hermite interpolation problem can be expressed as the limit of La-
grange interpolation problems with COALESCING POINTS which means that in the limit some
of the interpolation points collapse into a single one and the direction of collapsing3 deter-
mines the directional derivative. This does no more in such a straightforward way in the
multivariate case.

Example 4.1.15. For any h > 0, the Lagrange interpolation problem at

Xh := {(0,0), (h,0), (0,h), (1,1), (1+h,1), (1,1+h)}

has a unique solution inΠ2, as can be easily seen from considering the Vandermonde matrix

V (P,Xh) =



1 0 0 0 0 0
1 h 0 h2 0 0
1 0 h 0 0 h2

1 1 1 1 1 1
1 1+h 1 (1+h)2 1+h 1
1 1 1+h 1 1+h (1+h)2

 , P = {1, x, y, x2, x y, y2}.

whose determinant is −4h5. The limit problem, on the other hand, would be a Hermite in-
terpolation with

X = {(0,0), (1,1)}, Q(0,0) =Q(1,1) =Π1

which is not solvable in Π2 as it defines 4 conditions on the line connecting the two interpo-
lation points.

4.2 Interpolation constructions

In view of the examples of the preceding section it becomes clear that in several variables
even the question when an interpolation problem is (uniquely) solvable depends on the
space P and the set of functionals Θ or, in the simpler case of Lagrange interpolation prob-
lems, the set X of sites. There are essentially two directions of research, namely

1. given a space P determine X or even Θ such that the associated interpolation prob-
lem is (uniquely) solvable,

2. given a set Θ of functionals or X of sites, find a space P that allows for (unique) in-
terpolation.

There are even examples of constructions that do both at the same time, cf. [Gasca and Sauer, 2000a],
but mostly the above two approaches persist as can be seen in surveys about multivariate
polynomial interpolation like [Gasca and Sauer, 2000c, Gasca and Sauer, 2000b, Lorentz, 2000,
Sauer, 2006].

4.2.1 Constructing point sets

Since historically people started by constructing interpolation sets, we will follow the chronol-
ogy here and start with two classical constructions due to Radon4 [Radon, 1948] and Chung
and Yao and comment on some of their connections. Both constructions are based on hyper-
planes and both give sites X that allow for unique interpolation in the total degree spaceΠn

for some n ≥ 0.
3Yes, this is more complex in the multivariate situation.
4Yes, the guy with the famous transform in computerized tomography.
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4 Interpolation

Definition 4.2.1. A HYPERPLANE H ⊂ K is the zero set of an affine function h(x) = vT x + c,
that is

H = {
x ∈Ks : h(x) = 0

}
. (4.2.1)

We make the convention that the NORMAL VECTOR v of the hyperplane is NORMALIZED such
that ‖v‖2 = 1. This defines it up to sign.

Remark 4.2.2. Since we aim for unique interpolation in Πn , the associated set Xn of sites
must satisfy #Xn = dimΠn = (n+s

s

)
.

Radon’s construction is inductive on n and s, taking into account that the case n = 0 is really
simple: nonzero constant function interpolate nicely at a single point. Univariate interpola-
tion on which the recurrence by s is based is also simple as the points only have to be distinct.

Now suppose that a set Xn forΠn has been constructed, then one chooses a hyperplane H
such that H ∩Xn =; and rd = (n+s

s−1

)
points X 0

n+1 on this hyperplane that allow for interpola-
tion by Πn+1 in s −1 variables. Setting Xn+1 :=Xn ∪X 0

n+1, we obtain the set we are looking
for.

Theorem 4.2.3. The set Xn+1 constructed above admits unique interpolation forΠn+1.

Proof: We construct the LAGRANGE FUNDAMENTAL POLYNOMIALS `x ∈ Πn+1 with `x (x ′) =
δx,x ′ , x, x ′ ∈ Xn+1, which also proves the existence of a unique interpolant for any values
to be interpolated.

For x ∈Xn we use the fact that h(x) 6= 0 by definition of H and the fundamental polynomi-
als `′x ∈Πn with respect to XN to define

`x := h

h(x)
`′x , x ∈Xn

with the requested properties.
For x ∈X 0

n+1 we write the points as X 0
n+1 := y∗+V Yn+1, where the columns of V ∈Ks×s−1

complete v to an orthonormal basis ofKs . The polynomials

`′x := `0
x

(
V H (·− y∗))

, `0
x ∈K[y1, ,̇ys−1], x ∈X 0

n+1,

then satisfy `′x (x ′) = δx,x ′ , x, x ′ ∈X 0
n+1 and can be easily transformed into the Lagrange fun-

damental polynomials

`x := `′x −
∑

x ′∈Xn

`′x (x ′)`x ′ ∈Πn+1, x ∈X 0
n+1,

which completes the fundamental basis and the proof. �

Remark 4.2.4. The original construction given by Radon in [Radon, 1948] only considered
the case s = 2 and distinct points on added lines.

The other construction by Chung and Yao [Chung and Yao, 1977] is, in some way, an almost
straightforward formulation of simple factorizable fundamental polynomials.

Definition 4.2.5. A set X ⊂Ks is said to satisfy the GEOMETRIC CHARACTERIZATION of degree
n if for any x ∈X there exist hyperplanes Hx, j , j = 1, . . . ,n, such that

x 6∈
n⋃

j=1
Hx, j , X \ {x} ⊂

n⋃
j=1

Hx, j . (4.2.2)

X is called a GC SET of degree n if it satisfies the geometric characterization of degree n.
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4.2 Interpolation constructions

Theorem 4.2.6. Any set X that satisfies the geometric characterization of degree n admits
unique interpolation in Πn .

Proof: By

`x =
n∏

j=1

hx, j

hx, j (x)
, x ∈X ,

the Lagrange fundamental polynomials are given explicitly. �

Definition 4.2.7. A collection Hn := {H1, . . . , Hn} of hyperplanes is said to be IN GENERAL

POSITION if any s of them intersect in a single point:

⋂
H∈H

H = {xH } , H ∈
(
Hn

s

)
:= {

H ⊆Hn : #H = s
}

.

The intersection points points xH , H ∈ (Hn+s
s

)
are called a NATURAL LATTICE of degree n.

Proposition 4.2.8. Any natural lattice of degree n is a GC set.

Proof: Fixing H ∈ (Hn+s
s

)
, we only have to note that for any xH ′ ∈ X \ {xH } there exists a

hyperplane H ′ ∈Hn+s \H with xH ′ ∈ H ′, which is exactly the geometric characterization. �

Figure 4.2.2: Natural lattices with star-shaped intersections, showing the hyperplanes (left)
and the points (right) for degree 4 and degree 6.

If one tries to construct natural lattices, it turns out that they easily become quite large and
“flat”. It is, however, possible to construct such lattices in two variables by means of regu-
lar polyhedra, yielding point configurations that can be given explicitly and are located on
concentric circles, cf. [Sauer and Xu, 1996]. This triggered quite a few constructions, most
remarkably the so-called PADUA POINTS5 [Bos et al., 2007, Caliari et al., 2006] in 2D that pro-
vide very good numerical conditioning in the sense that their Lebesgue constant grows very
moderately.

In addition, there is a famous conjecture in bivariate polynomial interpolation due to Gasca
and Maeztu [Gasca and Maeztu, 1982].

Conjecture 4.2.9. In 2D any GC set can be obtained by the Radon construction, that is, if X is
a GC set of degree n then there exist lines containing n, n −1,. . . , 1 points.

The case n = 1 of Conjecture 4.2.9 is trivial, the case n = 2 is a simple counting argument given
in [Gasca and Maeztu, 1982]. n = 3 has been proved by Bush [Busch, 1990] and so far6 it is
known to hold true up to n = 5 with a very complicated and tricky proof [Hakopian et al., 2009,
Hakopian et al., 2014]. Indeed it has turned out that this problem has some very interesting
deep connections to algebraic geometry [Fieldsteel and Schenck, 2017] and relies strongly on
ideals and syzygies, cf. [Carnicer and Sauer, 2018].

5They even have a Wikipedia page.
6June 2019.
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4 Interpolation

4.2.2 Constructing spaces

The opposite approach is to consider the set of sites, X , or, more generally, the set Θ of
functionals as given and to construct an appropriate unique interpolation space P . The
spaces are conveniently described by their behavior on polynomials itself, i.e., by the action
of the interpolation operator L :Π→P .

The question of existence of such spaces is easily solved as long as the interpolation prob-
lem is an ideal one.

Theorem 4.2.10. For each ideal interpolation problem there exists at least one unique inter-
polation space.

Proof: Since the problem is ideal, I = kerΘ is an ideal and, due to the general assumption
that dimΘ<∞, Proposition 3.2.12 implies thatΠ/I is finite dimensional. For an any grading
Γ there exists a Γ basis G for I and the normal form space P := νI (Π) is well defined and
has dimension #Θ. Let P denote any basis of P . Since any v ∈KP such that

0 =V (P,Θ) v = (
θ(v ·P ) : θ ∈Θ) ⇒ v ·P ∈ (Π/I )∩I = {0},

must satisfy v = 0, the Vandermonde matrix V (P,Θ) is nonsingular and therefore P is a
unique interpolation space. �

Definition 4.2.11. The CANONICAL INTERPOLATION SPACE for an ideal interpolation problem
with respect to Θ ⊂ Π′ is νI (Π), where I := kerΘ. The FUNDAMENTAL POLYNOMIAL `θ is
defined as

`θ := vθ ·P := (
V (P,Θ)−1eθ

) ·P, θ ∈Θ. (4.2.3)

Remark 4.2.12. The existence of the fundamental polynomials follows from the proof of The-
orem 4.2.10 where the nonsingularity of the Vandermonde matrix has been shown. The fun-
damental polynomials satisfy

θ′(`θ) = θ′(vθ ·P ) = eθ′VP,Θvθ = eT
θ′VP,ΘV (P,Θ)−1eθ = eT

θ′eθ = δθ,θ′ (4.2.4)

as expected.

Definition 4.2.13. The DEGREE of a subspace P ⊂ Π with respect to a given grading Γ is
defined as

δ(P) = sup{δ(p) : p ∈P}. (4.2.5)

If P is finite dimensional, the “sup” in (4.2.5) can be replaced by “max”.

Definition 4.2.14 (Minimal degree & degree reducing). A unique interpolation space P ⊂Π
with respect toΘ⊂Π′ is called

1. of MINIMAL DEGREE if any unique interpolation space Q ⊂Π satisfies δ(Q) ≥ δ(P).

2. DEGREE REDUCING if
δ

(
LΘ f

)≤ δ( f ), f ∈Π, (4.2.6)

where LΘ :Π→P denotes the INTERPOLATION OPERATOR defined by

θ
(
LΘ f

)= θ( f ), θ ∈Θ. (4.2.7)

Proposition 4.2.15. Any degree reducing interpolation space is of minimal degree.
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4.2 Interpolation constructions

Proof: Let P be a degree reducing space, LΘ :Π→P the associated interpolation operator
and assume that Q is a unique interpolation space of smaller degree, δ(Q) < δ(P). Let `′

θ
∈

Q, θ ∈Θ, be the fundamental polynomials, then, since P is degree reducing,

δ(`θ) = δ(
LΘ`

′
θ

)≤ δ(
`′θ

)≤ degQ < deg(P), θ ∈Θ,

which means that any f ∈P satisfies

δ( f ) = δ
( ∑
θ∈Θ

θ( f )`θ

)
≤ max

θ∈Θ
δ(`θ) < degP (4.2.8)

which is a contradiction. �

From (4.2.8) we get the following conclusion.

Corollary 4.2.16. For any unique interpolation space we have that max{δ(`θ) : θ ∈Θ} = δ(P).

Exercise 4.2.1 Show that if P = Πn is a unique interpolation space for the sites X then
deg`x = n, x ∈X . ♦
Theorem 4.2.17. The canonical interpolation space is degree reducing.

Proof: The fact that for any Γ basis G

f = ∑
g∈G

fg g +νI ( f )

is a Γ-representation implies that δ
(
νI ( f )

)≤ δ( f ), hence interpolation is degree reducing. �

Remark 4.2.18. The canonical interpolation space νI (Π) and its basis `θ are a template for
any other unique interpolation space. Indeed let `′

θ
be the fundamental polynomials of an-

other unique interpolation space, then`θ−`θ ∈I . In other words: any unique interpolations-
pace P can be written as

P = span
{
`θ+ fθ : fθ ∈I , θ ∈Θ}

(4.2.9)

where `θ are the fundamental polynomials of the canonical interpolation space. Not, how-
ever, that in most cases the space in (4.2.9) will not be degree reducing any more, this will be
elaborated in Section 4.3.1.

In the case of a monomial grading, that is, a Gröbner basis, the canonical interpolation space
is particularly simple.

Example 4.2.19. If Γ is a monomial grading, then the monomial ideal λ(I ) is of the form
λ(I ) = span {xU } for some upper set U ⊆Ns

0. Hence, the canonical interpolation space takes
the form

νI (Π) = span {x A}, A =Ns
0 \U . (4.2.10)

In other words, canonical interpolation spaces with respect to monomial gradings always
correspond to lower sets.

Definition 4.2.20. For A ⊂Ns
0, we denote by

ΠA := span {x A} =
{ ∑
α∈A

fα (·)α : fα ∈K
}

(4.2.11)

the monomial space generated by the exponents from the set A.

We can express the observations from Example 4.2.19 in the following way.

Corollary 4.2.21. For any ideal interpolation problem based on Θ⊂Π′ there exists a lower set
A ⊂Ns

0 such thatΠA is a unique interpolation space with respect toΘ.
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4.3 Ideal interpolation constructions

We now take a closer look at properties of canonical interpolation spaces.

4.3.1 Newton bases and ideals from points

Newton bases are a useful way of describing Lagrange interpolation problems and provide a
nice equivalence between the existence of such a basis and degree reduction that also allows
us to create “ideals from points”.

Definition 4.3.1. A subspace Q ⊆Π is called HOMOGENEOUSLY GENERATED if

Q =⊕
γ∈Γ

(
Q∩Πγ

)
. (4.3.1)

Proposition 4.3.2. Any canonical interpolation space P ⊂Π is homogeneously generated and

Wγ(I ) :=Wγ(G), I = 〈G〉, (4.3.2)

depends only on I , not on the particular Γ-basis.

Proof: If f = ∑
γ fγ ∈P , then fγ ∈ Wγ (G), for a Γ basis G of I = kerΘ. If we apply reduction

to one of these components fγ then its projection on Vγ(G) is zero and therefore νI
(

fγ
)= fγ,

hence fγ ∈ νI (Π) =P . In other words,

Wγ(G) = νI
(
Wγ(G ′)

)
for any two Γ-bases G , G ′ of I , hence depends only on I . �

If P is a homogeneously generated space, the we can order the set of all relevant homoge-
neous spaces

ΓP = {
γ ∈ Γ : P ∩Πγ 6= {0}

}
,

by size and write it as
ΓP = {

γ0, . . . ,γm}
, m = #ΓP −1. (4.3.3)

For k = 0, . . . ,m this defines natural subspaces

P0
k =P ∩Πγk , Pk =

k⊕
j=0

P0
j , P0

k ⊆Pk ⊆P . (4.3.4)

of P . This allows us to extend the basic concept of the NEWTON APPROACH to several vari-
ables, namely interpolation by increasing degree with polynomials that vanish at “earlier”
points.

Definition 4.3.3 (Newton basis). A subset

N =
m⋃

k=0
Nk , Nk ⊂Pk ,

of P is called a NEWTON BASIS provided that

1. there exists a decomposition X =X0 ∪·· ·∪Xm such that

Nk
(
X j

)= 0, 0 ≤ j < k ≤ m, Nk (Xk ) = I , k = 0, . . . ,m, (4.3.5)
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2. and
Πγ =

(
λ(N )∩Πγ

)⊕λ (I (X )) , γ ∈ Γ. (4.3.6)

Remark 4.3.4. Condition (4.3.5) generalizes the main idea of the Newton approach, namely
that

(·−x0) · · · (·−xk−1)

vanishes at the “earlier” points x0, . . . , xk−1, we only normalized the polynomial differently to
make it 1 and xk instead of monic. Condition (4.3.6), on the other hand, does not exist in the
univariate case, it is a (necessary) ideal theoretic extension.

Lemma 4.3.5. If P is a canonical interpolation space, then

ΓP = {
γ ∈ Γ : Wγ (I ) 6= {0}

}
.

Proof: For each γ ∈ ΓP there exist a polynomial 0 6= p ∈Πγ∩P since, by Proposition 4.3.2 P
is homogeneously generated. Since p = νI (p) ∈Wγ (I ) and therefore

{0} 6= {p} ⊂ ΓI := {
γ ∈ Γ : Wγ (I ) 6= {0}

}
,

we conclude that ΓP ⊆ ΓI . Conversely, if γ ∈ ΓI , there exists 0 6= f ∈ Wγ (I ) whose normal
form is f = νI ( f ) ∈P , hence γ ∈ ΓP , that is ΓI ⊆ ΓP . �

We can now give a construction of a Newton basis that is actually a generalization or applica-
tion of the Gram-Schmidt orthogonalization process.

To that end, we recall (4.3.3), begin with P0 =P ∩Πγ0 , choose a basis P0 of P0 and form
the matrix

P0(X ) = (
p(x) : p ∈ P0, x ∈X

) ∈KP0×X .

If there exists v ∈KP0 such that

0 = vT P0(X ) = (∑
p∈P0

vp p(x) : x ∈ X
)= (v ·P0)(X ),

then v ·P0 ∈P∩I , hence v = 0. This the rows of rank P0(X ) = #P0 and7 there exists X0 ⊆X ,
#X0 = dimP0, such that P0 (X0) is nonsingular. The rows of the inverse8 P0 (X0)−1, are
coefficient vectors for polynomials, giving

N0 := P0 (X0)−1 P0 (4.3.7)

as a vector of polynomials with

N0 (X0) = P0 (X0)−1 P0 (X0) = I .

This introduces a 1−1 relationship between N0 and X0 and allows us to index N0 = (nx : x ∈X0)
or X0 = [xn : n ∈ N0], whichever we find more convenient.

The next step consists in setting X ′
1 =X \X0 as the set of “free” points, to choose a basis

P ′
1 of P1 :=P ∩Πγ1 to make this basis vanish at X0 by

P1 = P ′
1 −N T

0 P ′
1 (X0) , i.e., p := p ′− ∑

x∈X0

p ′(x)nx , p ′ ∈ P1.

7Since dimP0 ≤ dimP = #X the matrix has fewer rows than columns.
8Note that the inverse of a matrix inKP0×X belongs toKX ×P0 .
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Indeed,
P1 (X0) = P ′

1 (X0)−N0 (X0)︸ ︷︷ ︸
=I

P ′
1 (X0) = P ′

1 (X0)−P1 (X0) = 0

hence P1 ∈ P0 +P1 ⊆ P satisfies the annihilation part of (4.3.5). With the same argument
as above we again obtain that rank P1

(
X ′

1

)= #P1 = dimP1 as vT P1
(
X ′

1

)= 0 yields that v ·P1

vanishes at X ′
1 but also at X0 by construction of P1, hence v ·P1 ∈ I and therefore v = 0.

Thus, there are points X1 ⊆X ′
1 , such that P1 (X1) is invertible, yielding

N1 := P1 (X1)−1 P1. (4.3.8)

The general step with index k works in exactly the same way: we set

X ′
k :=X \

k−1⋃
j=0

X j ,

choose a basis P ′
k of Pk := P ∩Πγk and ensure, since the block matrix appearing in (4.3.9)

has identity matrices on the diagonal,

Pk := P ′
k −

(
P ′

k (X0) . . .P ′
k (Xk−1)

)N0 (X0) . . . N0 (Xk−1)
. . .

...
Nk−1 (Xk−1)


 N0

...
Nk−1

 (4.3.9)

that
Pk

(
X j

)= 0, j = 0, . . . ,k −1.

Since, by the meanwhile well-known argument, rank Pk (Xk ) = #Pk = dimPk there exists
Xk ⊆X ′

k ⊆X , such that Pk (Xk ) is nonsingular, giving

Nk := Pk (Xk )−1 Pk . (4.3.10)

Remark 4.3.6. This procedure can be seen as a Gram-Schmidt process, but also as a block-
wise GAUSSIAN ELIMINATION applied to the Vandermonde matrix9 P (X ) where P is a graded
basis of P , cf. [Boor, 1994]. In terms of numerical linear algebra, (4.3.9) could also be inter-
preted as a BACK SUBSTITUTION.

Remark 4.3.7. The choice of Xk , k = 0, . . . ,m, is not unique in general, quite the contrary,
the generic case is that any subset of X ′

k of proper cardinality can be chosen as Xk . The
strategy to choose these points can be seen as a PIVOTING STRATEGY, yet another concept
from numerical linear algebra.

The following statement just summarized the construction, there is nothing left to prove.

Theorem 4.3.8. The polynomials N = [Nk : k = 0, . . . ,m] constructed above form a Newton
basis of P .

But this is only half of the truth. In fact, the existence of a Newton basis even characterizes
degree reducing interpolation spaces, at least as soon as the are homogeneously generated.

Theorem 4.3.9. A homogeneously generated subspace P ⊂ Π is a degree reducing interpola-
tion space with respect to X ⊂Kn if and only if it has a Newton basis.

9To be precise: the transpose of the Vandermonde matrix.
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4.3 Ideal interpolation constructions

Proof: The trick in the proof is to connect everything to the canonical interpolation space
P∗ := νI (Π) and its Newton basis, which we denote by N∗.
“⇒”: We set N := LP (N∗) and since N (X ) = N∗(X ), the property (4.3.5) is already satisfied.
Writing f ∈Π as f = g +νI ( f ), g ∈I =I (X ), we get

LP f = LP
(
g +νI ( f )

)= LP g︸ ︷︷ ︸
=0

+LPνI ( f ) = LPνI ( f )

and since LP and the normal form operation are degree reducing, it follows that

δ
(
LP f

)= δ(
LPνI (X )( f )

)≤ δ(
νI (X )( f )

)= δ(
νI (X )

(
LP f

))≤ δ(
LP f

)
,

hence δ
(
LP f

) = δ
(
νI ( f )

) =: γ. Both leading terms therefore have the same degree γ = γk

and
qx :=λ (nx )−λ(

n∗
x

) ∈Vγ (I ) , x ∈Xk .

This implies that

Πγ = span
{
λ

(
n∗

x

)
: x ∈Xk

}+Vγ (I )

= span
{
λ (nx )−qx : x ∈Xk

}+Vγ (I )

⊆ span
{
λ (nx ) : x ∈Xk

}+ span
{

qx : x ∈Xk
}︸ ︷︷ ︸

⊆Vγ(I )

+Vγ (I )

= (
λ(N )∩Πγ

)+Vγ (I ) ⊆Πγ,

hence
Πγ =

(
λ(N )∩Πγ

)+Vγ (I ) ,

which is (4.3.6).
“⇐”: Since P = span N is an interpolation space and the matrix

N (X ) =


N0 (X0) N0 (X1) . . . N0 (Xm)

N1 (X0) N1 (X1)
. . .

...
...

. . .
. . . Nm−1 (Xm)

Nm (X0) . . . Nm (Xm−1) Nm (Xm)

=


I ∗ . . . ∗
0 I

. . .
...

...
. . .

. . . ∗
0 . . . 0 I


is nonsingular and upper triangular, we can write the interpolant to f ∈Π as

LP f = (
f (X0) . . . f (Xm)

)
N (X )−T

 N0
...

Nm

 .

To verify degree reduction, we use (4.3.6) and set N∗ = νI (N ). The normal forms share the
interpolation properties of N , hence form a Newton basis and satisfy N∗(X ) = N (X ), so
that the coefficient of LP f and LP∗ with respect to the Newton bases are the same, namely
N (X )−1 f (X ) = (N (X )∗)−1 f (X ). Now (4.3.6) tells us together with

λ
(
N∗
γ

)
−λ(

Nγ

) ∈Vγ (I (X )) , Γ ∈ ΓP ,

that
γ= δ

(
N∗
γ

)
= δ

(
N∗
γ

)
, γ ∈ ΓP = Γ∗,

107



4 Interpolation

and since the normal form is degree reducing, P must be a degree reducing interpolation
space. �

The final step is the construction of a Γ-basis for I =I (X ) from the set X of sites. This
will repeat the construction of the Newton basis, but without knowing ΓP – instead, we will
determine it from the sites as well. The next result is fairly obvious from the definition of a
well-ordering, nevertheless we will give a quick proof for the sake of completeness.

Lemma 4.3.10. Each subset Γ′ ⊆ Γ of a well-ordered monoid has a smallest element.

Proof: For γ0 ∈ Γ′ we consider Γ′1 =
{
γ ∈ Γ′ : γ< γ0

}
. If Γ′1 =;, then γ0 is minimal, otherwise

we choose γ1 ∈ Γ′1, satisfying γ1 < γ0, and so on, yielding a strictly descending chain γ0 > γ1 >
γ2 > ·· · end which has to be finite and yields the minimal element. �

We start the construction with γ = minΓ, which has to exist according to Lemma 4.3.10. To
be honest, this in not necessary in the initial step since Lemma 2.2.8 tells us that γ = 0 is
the choice. The we choose a basis10 P of Πγ and consider the matrix P (X ), whose rank is
between 0 and #X . Even if the basis P is infinite, this rank is always finite. This allows us
to find in P (X ) a square and nonsingular11 of maximal rank. Associated to this matrix are
subsets Pγ ⊆ P and Xγ ⊆X , such that Pγ

(
Xγ

)
is a maximal nonsingular submatrix of P (X )

and after reordering P and X we have, setting Pγ := P \ Pγ and Xγ := X \ Xγ the block
representation

P (X ) =
Pγ

(
Xγ

)
Pγ

(
Xγ

)
Pγ

(
Xγ

)
Pγ

(
Xγ

)=
(

I 0

Pγ
(
Xγ

)
Pγ

(
Xγ

)−1 I

)(
Pγ

(
Xγ

)
Pγ

(
Xγ

)
0 ∗

)
.

The “∗” part in the matrix on the right hand side must be zero as otherwise the rank of the
matrix would exceed Pγ

(
Xγ

)
, hence also P (X ) and therefore

(
Pγ

(
Xγ

)
Pγ

(
Xγ

)
0 0

)
=

(
I 0

−Pγ
(
Xγ

)
Pγ

(
Xγ

)−1 I

)Pγ
(
Xγ

)
Pγ

(
Xγ

)
Pγ

(
Xγ

)
Pγ

(
Xγ

) . (4.3.11)

Therefore,
Qγ := Pγ−Pγ

(
Xγ

)
Pγ

(
Xγ

)−1 Pγ

satisfies Qγ (X ) = 0, hence Qγ ⊂I . The construction can be summarized as follows:

1. Pγ and Xγ admit unique interpolation: detPγ(Xγ) 6= 0.

2. Subsets Qγ with Qγ(X ) = 0, hence Qγ ⊂I .

3. Together, these subsets generateΠγ:

Πγ = Pγ⊕Qγ (4.3.12)

Thus, the decomposition from (4.3.12) is a very useful one: the subset Pγ can be transformed
into a part of a Newton basis N by,

Nγ := Pγ
(
Xγ

)−1 Pγ,

10This can be infinite, so a little bit of care is necessary here.
11For a nonsingular matrix, square is redundant.
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4.3 Ideal interpolation constructions

the other subset, Qγ, is part of an ideal basis Q; we add Nγ to N , Qγ to Q and replace X by
X ′ = X \ Xγ, just as in the previous construction for the Newton basis for the canonical
interpolation space.

The set Q consists of polynomials that vanish at X so that I =I (X ) ⊆ 〈Q〉, in particular,
we do not have to search for interpolation polynomials any more in the spaces Vη(Q), η> γ,
as those are leading parts of polynomials in the ideal. The next degree to check is therefore

γ′ := min
{
η≥ γ : Wη (Q) 6= {0}

}
,

which exists by Lemma 4.3.10. We choose P as a basis of Wγ′(Q) and by subtracting inter-
polants with respect to the our Newton basis built so far, we can again ensure that P

(
Xη

)= 0,
η≤ γ, without changing the degree of any element of P as the homogeneous terms we started
with have degree γ′ > γ. The next step is to decompose the P

(
X ′) by means of kernel and

range into ideal and interpolation polynomials. In such a step it may well happen that either
Pγ′ = Xγ′ = ; or Qγ′ = ;, the cases being mutually exclusive since Pγ′ and Qγ′ generate the
nontrivial vector space Wγ′(Q). After the update step

N = N ∪Pγ′
(
Xγ′

)−1 Pγ′ (4.3.13)

Q = Q ∪Qγ′ (4.3.14)

X ′ = X ′ \Xγ′ (4.3.15)

we continue with the iteration with the effect that in each step either X ′ is strictly reduced
or 〈λ(Q)〉h is strictly enlarged, maybe even both. Since this can be done only finitely many
times, the procedure terminates with as final γ ∈ Γ such that

Πη =Vη(Q), η> γ,

By construction we also have that

λ (I )∩
(⊕
η≤γ

Πη

)
⊂ ⊕
η≤γ

Vη(Q),

since each polynomial from the ideal whose leading part does not belong to Vγ(Q) for some
γ ∈ Γ has been explicitly added to the ideal. Together with Q ⊂I (X ) and taking into account
that 〈λ(Q)〉h =⊕

γ∈ΓVγ(Q) as well as Lemma 2.4.14, we can conclude that

λ (I (X )) ⊆Vγ(Q) ⊆λ (I (X )) ,

which proves our final result.

Theorem 4.3.11. The set Q ⊂I (X ) is s Γ-basis for the ideal I =I (X ).

4.3.2 Least interpolation

There is an almost explicit way to give the interpolation space for ideal interpolation prob-
lems due to Carl de Boor and Amos Ron [Boor and Ron, 1990, Boor and Ron, 1992] which was
originally motivated by ideas from box spline theory [Boor and Ron, 1991]. For that purpose,
we need some more notation and one assumption.
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4 Interpolation

Definition 4.3.12 (Least part). Let

K�x� :=
{

f (x) = ∑
α∈Ns

0

fα xα : fα ∈K
}

(4.3.16)

denote the ring of all FORMAL POWER SERIES. Given a grading Γ and f ∈K(x), with homoge-
neous decomposition f =∑

fγ, we denote by

δ↓( f ) := max
{
γ : fα = 0,α< γ}

(4.3.17)

the LEAST DEGREE of f and by
λ↓( f ) := fδ↓( f )

the MINIMAL FORM or LEAST PART of f . Given a subspace F ⊂K(x), we denote by

λ↓(F ) := {
λ↓( f ) : f ∈F

}⊆Π (4.3.18)

the subspace of all least parts in F .

Remark 4.3.13. Since formal power series usually have no maximal or leading part, the only
chance is to look at the origin in order to get a finite quantity.

Definition 4.3.14. The grading Γ is said to be COMPATIBLE with the inner product ( f , g ) =
(g (D) f )(0) if

(
Πγ,Πγ′

)= 0 for γ 6= γ′.
Examples for compatible gradings are all monomial gradings as well as the standard homo-
geneous grading. In fact, the approach from [Boor and Ron, 1992] is only considering the
homogeneous grading the simplest nontrivial case where these ideas become relevant. The
extension to compatible gradings is straightforward.
The following result, due to de Boor and Ron, [Boor and Ron, 1990], is based on the duality
between polynomials and exponential polynomials defining the functionals of an ideal inter-
polation problem, according to 3.2.9.

Theorem 4.3.15 (Least interpolation). Let an ideal interpolation problem be given by sites
X ⊂Ks and D-invariant multiplicity spaces Qx with bases Qx , x ∈X . Then

λ↓ (F ) , F = span
{

qex : q ∈Qx , x ∈X
}

(4.3.19)

is a degree reducing unique interpolation space.

Proof: We first recall that I = ker(·,F ) as used in the proof of Theorem 3.2.9. For γ ∈ Γ we
define

Fγ :=λ↓ (F )∩Πγ
and note that for g ∈I , δ(g ) ≤ γ, and f ∈F with λ↓( f ) ∈Fγ we have, by the assumption that
the grading is compatible, that

0 = (g , f ) =
( ∑
γ′≤γ

gγ′ ,
∑
γ′≥γ

fγ′

)
= (gγ, fγ) =

{(
λ(g ),λ↓( f )

)
, δ(g ) = γ,

0, δ(g ) < γ.

Therefore,
Fγ⊕

(
λ(I )∩Πγ

)=Πγ,

and
rank

((
Fγ, qex

)
: q ∈Qx , x ∈X

)= rank
(
Fγ,Fγ

)= dimFγ,

which is exactly the decomposition of (4.3.12), so that the nontrivial spaces Fγ even deter-
mine the homogeneous parts for a Newton basis. �
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4.3.3 Interpolation on grids

The simplest, but not oldest way12 to construct multivariate interpolation problems is to con-
sider the tensor product case as many, but not all, things have a very univariate flavor then.

Definition 4.3.16 (Grid). For finite sets X j =
{

x j ,k : 0 ≤ k < #X j
}⊂K, j = 1, . . . , s, and a lower

set A ⊂Ns
0, the GRID X A is defined as

X A := {
xα := (

x1,α1 , . . . , xs,αs

)
:α ∈ A

}
. (4.3.20)

Remark 4.3.17. Since the univariate point sets are finite, the lower set A must also be finite
which is the standing assumption whenever we speak of a grid.

Example 4.3.18 (Rectangular and triangular grids). The two most prominent examples of
grids, considered already in [Isaacson and Keller, 1966] are the following:

1. The RECTANGULAR GRID uses the hypercube

A = [0, (#X1)×·· ·× (#Xs)] := {
α ∈Zs : 0 ≤α j ≤ #X j , j = 1, . . . , s

}
(4.3.21)

as index set.

2. The TRIANGULAR GRID of order n uses

A = {
α ∈Ns

0 : |α| ≤ n
}

, n ≤ min
j=1,...,s

#X j . (4.3.22)

Figure 4.3.3: A rectangular (left) and a triangular (right) grid extracted from the same univari-
ate distribution of points. Not that along the diagonals the points of the triangu-
lar grid to not have to lie on a straight line. Configurations of the type are the
so-called PRINCIPAL LATTICES introduced in [Lee and Phillips, 1988]; they also
belong to the context of the geometric characterization from Definition 4.2.5.

It is not hard to guess an interpolation space for grids. The result itself is a consequence of
Theorem 4.3.23 that even shows thatΠA is the canonical interpolation space for X A .

Corollary 4.3.19. For any grid X A the spaceΠA is a unique interpolation space.

More fascinating is the fact from [Sauer, 2004] which can even be seen as a sort of converse to
Corollary 4.3.19, namely that any canonical interpolation space even must beΠA under quite
mild assumptions. Let us recall their definition.

12This is [Jacobi, 1835, Borchardt, 1860, Kronecker, 1866], dealing with so-called COMPLETE INTERSEC-
TION.
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4 Interpolation

Definition 4.3.20. A grading Γ is called a MONOMIAL GRADING ifΠγ is spanned by monomials
as a K-vector space and it is called a STRICT GRADING if δ( f ) = 0 implies that f is a constant
polynomial, see also Definition 2.2.13.

Remark 4.3.21. Any strict monomial grading can be refined to a term order by

(·)α ≺ (·)β ⇔ δ
(
(·)α)< δ(

(·)α)
or δ

(
(·)α)= δ(

(·)α)
, (·)α ≺∗ (·)β (4.3.23)

where ≺∗ is an arbitrary term order, for example the lexicographic one. This is indeed the
procedure that refines the homogeneous grading into gradlex.

Definition 4.3.22 (Universal basis). A finite set G ⊂I is called a UNIVERSAL Γ-BASIS or UNI-
VERSAL BASIS, for short, if it is a Γ-basis for each strict monomial grading.

In other words, the existence of a universal basis tells us that the grading is in fact irrelevant
for the basis. This carries over to some interpolation problems.

Theorem 4.3.23. If Γ is a strict monomial grading and A ⊂ Ns
0 a lower set, then ΠA is the

canonical interpolation space of X A .

To prove Theorem 4.3.23, we consider the upper set U =Ns
0 \ A and its minimal generating set

G(U ) from (2.3.9). The crucial observation is as follows.

Proposition 4.3.24. The polynomials

fα :=
s∏

j=1

α j−1∏
k=0

(
(·) j −x j ,k

)
, α ∈G(U ), (4.3.24)

are a universal Γ-basis for I =I (X ).

Proof: We first note that fα = (·)α+q where all powers of monomials in q belong to L(α)\{α} ⊂
A, hence

fα ∈ (·)α+ΠA , α ∈G(U ). (4.3.25)

To see that fα ∈I , we choose any β ∈ A, hence β 6∈U (α) so that there must exist at least one
index j with β j <α j and thus

α j−1∏
k=0

(
(xβ) j −x j ,k

)= α j−1∏
k=0

(
x j ,β−x j ,k

)= 0. (4.3.26)

Hence
〈

fα :α ∈G(U )
〉⊆I .

Next, we refine the grading Γ into a term order Γ∗ as pointed out in Remark 4.3.21 and
continue with Γ∗, showing that the fα form a Gröbner basis with respect to the term order Γ∗.
Since the grading still is strict, we have λ

(
(·) j −x j ,k

) = (·) j and thus λ( fα) = (·)α. For α,α′ ∈
G(U ) set η := max(α,α′), i.e., U (α) ∩U (α′) = U (η). With arbitrary values13 x j ,k , k ≥ #X j ,
j = 1, . . . , s, we define

gα :=
s∏

j=1

η j∏
k=α j

(
(·) j −x j ,k

)
, gα′ :=

s∏
j=1

η j∏
k=α′

j

(
(·) j −x j ,k

)
, (4.3.27)

13We are simply adding sites that are irrelevant for X A , hence change nothing with the interpolation
problem.
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and note that λ(gα) = (·)η−α as well as λ(gα′) = (·)η−α′
and

gα fα = gα′ fα′ =
s∏

j=1

η j∏
k=0

(
(·) j −x j ,k

)
.

Consequently, we can write the S-polynomials for α,α′ as

s
(

fα, fα′
)= (·)η−α fα− (·)η−α′

fα′

= (
(·)η−α− gα

)
fα−

(
(·)η−α′ − gα′

)
fα′ = (

λ(gα)− gα
)

fα−
(
λ(gα′)− gα′

)
fα′ ,

and since δ
(
λ(gα)− gα

)< δ(gα) = δ ((·)α) and the same forα′, any S-polynomial for two poly-
nomials reduces to zero by means of these two polynomials. By Lemma 2.4.7, this means that
F = {

fα :α ∈G(U )
}

is a Gröbner basis with respect to the grading Γ∗ regardless of the original
Γ and the refinement, hence a UNIVERSAL GRÖBNER BASIS.

By (4.3.25), Π/
〈

fα :α ∈G(U )
〉 = ΠA and since

〈
fα :α ∈G(U )

〉 ⊆ I , this yields that Π/I ⊆
ΠA and dimΠ/I = #X A = #A = dimΠA finally implies that the two quotient spaces and thus
also the ideals coincide. �

Proof of Theorem 4.3.23: Any canonical interpolation space is of the form νG (Π) for some Γ-
basis of I . But since

{
fα :α ∈G(U )

}
is such aΓ-basis and the quotient space does not depend

on the concrete choice of the basis by Theorem 2.3.30, it can only beΠA = ν{ fα}(Π). �

Corollary 4.3.25. For the rectangular grids the only canonical interpolation space is the related
space of tensor product polynomials.

4.3.4 Universal interpolation

We close the chapter on interpolation by giving a partial answer to the following question:

Given a number N , what is the dimension of a space P ⊂Π such that P is an
interpolation space for any X ⊂Ks , #X = N .

To my knowledge14 this problem is still unsolved. Nevertheless, these magic spaces deserve
to be named.

Definition 4.3.26. P ⊂ Π is called a UNIVERSAL INTERPOLATION SPACE of order N if it is an
interpolation space for any X ⊂Π, #X = N .

Remark 4.3.27 (Universal interpolation).

1. By Theorem 4.1.13 any universal interpolation space in s ≥ 2 variables must satisfy
dimP > N , hence there exists no universal unique interpolation space as that would
be a Haar space.

2. ΠN−1 is a universal interpolation space of order N as it contains the fundamental poly-
nomials from (4.1.1).

The dimension of theΠN−1 is
(N+s

s

)≈ N s and thus grows polynomially in N but exponentially
in s. There exists, however, a smaller universal interpolation space.

14As in June 2019
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4 Interpolation

Definition 4.3.28. The HYPERBOLIC CROSS Υn ⊂Zs of degree n is defined as

Υn :=
{
α ∈Zs :

s∏
j=1

(
1+|α j |

)≤ n

}
, n ∈N0. (4.3.28)

For its POSITIVE OCTANT we writeΥ+
n :=Υn ∩Ns

0.

The positive octant Υ+
N of the hyperbolic cross is significantly smaller than {α : |α| ≤ N −1} ⊃

Υ+
N since

#Υ+
n ≤ n

(
logn

)s−1 , (4.3.29)

cf. [Lubich, 2008]. Despite of that it is sufficient for interpolation.

Theorem 4.3.29. ΠΥ+
N

is a degree reducing universal interpolation space of order N .

The proof of Theorem 4.3.29 consists of two simple observations that are of some indepen-
dent interest.

Definition 4.3.30. Denote by L the set of all lower sets inNs
0 and by

Ln := {
A ∈L : #A = n

}
, n ∈N, (4.3.30)

the set of all lower sets of cardinality n.

In what follows we consider degree reduction with respect to the total degree.

Lemma 4.3.31. The space ΠAN is a degree reducing universal interpolation space for as ideal
interpolation problems with respectΘ ∈Π′, #Θ≤ N , where

AN :=
N⋃

j=1

⋃
A∈L j

A (4.3.31)

is the union of all lower sets of cardinality ≤ N .

Proof: Let I = kerΘ, choose a Gröbner basis with respect to an arbitrary term order, then
the associated degree reducing canonical interpolation space is of the form νI (Π) = ΠA for
some A ∈L#Θ. The union of all such sets is then defines a universal interpolation space. �

Lemma 4.3.32. The set AN from (4.3.31) is the positive octant of the hyperbolic cross, i.e.,

N⋃
j=1

⋃
A∈L j

A =ΥN , N ∈N0. (4.3.32)

Proof: Any α ∈ AN belongs to some lower set A ⊇ L(α), hence

(1+α1) · · · (1+αs) = #L(α) ≤ #A ≤ N ,

so that AN ⊆ ΥN . Conversely, if α ∈ ΥN , then there exists, by the same argument, L(α) is
a lower set of cardinality ≤ N that contains α, hence α ∈ AN and, consequently, ΥN ⊆ AN .
Together, these two inclusion yield the claim. �

Theorem 4.3.29 can be improved in the sense that the hyperbolic cross is even the minimal
universal interpolation space. More precisely, we can state the following result.
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4.3 Ideal interpolation constructions

Theorem 4.3.33. If A ⊂Ns
0 defines a degree reducing universal interpolation spaceΠA of order

N , then Υ+
N ⊆ A. Hence the hyperbolic cross is the unique minimal degree reducing universal

interpolation space spanned by monomials.

Again, the proof is based on two intermediate results that make explicit use of the homoge-
neous grading.

Lemma 4.3.34. If A ⊂ Ns
0 induces a degree reducing interpolation space ΠA with respect to a

set X ⊂Ks with interpolation operator L :Π→ΠA , then

H := {
hα = (·)α−L(·)α :α ∈ ∂A

}
(4.3.33)

is an H-basis of I :=I (X ).

Proof: If we write qα := (·)α−L(·)α, α ∈ Ns
0, then qα = 0, α ∈ A, since A is an interpolation

space and deg qα ≤ |α| since α is degree reducing. Moreover, x A and Q = {qα : α 6∈ A} form a
basis ofΠ. Hence, any f has a H-representation

f = L f + ( f −L f ) = L f + ∑
α6∈A

fα qα, fα ∈K,

with respect to the infinite H-basis Q. Moreover, Qn+1 := Q ∩Πn+1, n := degΠA , is a finite
H-basis for I asΠ0

n+1 ⊆λ(Qn+1). Now we fix α ∈Ns
0, j ∈ {1, . . . , s}, write

L(·)α = ∑
β∈A

cβ(·)β

and note that

qα+ε j (x)−x j qα(x) = xα+ε j −L(·)α+ε j (x)−xα+ε j +x j L(·)α(x)

= x j L(·)α(x)−L(·)α+ε j (x) = ∑
β∈A

cβ xβ+ε j −L(·)α+ε j (x)

= ∑
β∈∂A

cβ−ε j xβ+ ∑
β∈A\∂A

cβ−ε j xβ−L(·)α+ε j (x)

= ∑
β∈∂A

cβ−ε j qβ(x)+ ∑
β∈∂A

cβ−ε j L(·)β(x)+ ∑
β∈A\∂A

cβ−ε j xβ−L A(·)α+ε j (x)

= ∑
β∈∂A

cβ−ε j qβ(x)+p(x), p ∈ΠA ,

Since qα+ε j and (·) j qα belong to I , hence vanish at X , it follows that

p(X ) = qα+ε j (X )− (
(·) j qα

)
(X )− ∑

β∈∂A
cβ−ε j qβ(X ) = 0,

hence p ∈I ∩ΠA and thus p = 0, so that, replacing α by α−ε j ,

qα ∈ (·) j qα−ε j +
〈

qα :α ∈ ∂A
〉

(4.3.34)

as long as α−ε j is defined, α ∈Ns
0 \ A, i.e., α 6∈G

(
Ns

0 \ A
)
, cf. Theorem 2.3.7. Any such qα can

such be reduced until α ∈ ∂A. �

An inspection of the proof shows that we can replace ∂A even by G
(
Ns

0 \ A
)
.
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4 Interpolation

Corollary 4.3.35. Under the assumptions of Lemma 4.3.34,

H := {
hα = (·)α−L(·)α :α ∈G

(
Ns

0 \ A
)}

(4.3.35)

is a nonredundant H-basis of I :=I (X ).

The second result shows that any ΠA can be seen as a normal form interpolation space as
soon as it is degree reducing.

Lemma 4.3.36. If A ⊂ Ns
0 induces a degree reducing interpolation space, then there exists an

inner product (·, ·)A :K→K such thatΠA = νI (Π) with respect to a reduction algorithm based
on (·, ·)A .

Proof: We construct the inner product by setting (Πn ,Πn′)A = 0, n 6= n′ and also

(
(·)α, (·)β

)
A

:=
(
(·)α, (·)β

)
, |α| = |β| = n,

{
n < min{|α| :α ∈Ns

0 \ A},

n > deg A.

In the remaining cases use the basis H of Theorem 4.3.33, and note that

Π0
n = (Vn (〈H〉))+ span

{
xBn

}
, Bn := {β ∈Ns

0 \ A : |β| = n}

Let Hn denote any basis of Vn (〈H〉), arrange this basis with xBn into a basis Qn of Π0
n and

compute the Gramian G = (Qn ,Q H
n ) which is a hermitian and positive definite matrix, hence

can be written as G = Y Y H . We define

( f , g )A := (Y −1 f ,Y −1g ), f , g ∈Π0
n ,

by means of the coefficient vectors of f and g . Then

(Qn ,Q H
n )A = (Y −1Qn ,Q H

n Y H ) = Y −1(Qn ,Qn)Y −H = Y −1GY −H = Y −1 (
Y Y H )

Y −H = I ,

and in particular
(
Vn (〈H〉) , (·)Bn

)= 0, hence Wn (〈H〉) = span {xBn } and thereforeΠA = νI (Π).
�

Proof of Theorem 4.3.33: Let B ⊂ Ns
0 be any lower set with #B = N and consider B as an

interpolation grid. By assumption on A there exists B ′ ⊆ A such that ΠB ′ is a degree reducing
unique interpolation space for X = B . By Lemma 4.3.34, the polynomials (·)β−L(·)β, β ∈ ∂B ′,
form a Gröbner basis for I (B) andΠB ′ = νI (Π) with respect to the coefficient inner product.
On the other hand, there exists an inner product such that ΠB is normal form interpolation
space with respect to this product and since normal form spaces for for grid interpolation are
unique by Theorem 4.3.23, it follows that B ′ = B , hence B ⊆ A for any lower set B such that
#B = N . �
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Signal Processing 5
There are things that are facts, in a statistical sense, on paper, on a tape
recorder, in evidence. And there are things that are facts because they have
to be facts, because nothing makes any sense otherwise.

(R. Chandler, Playback)

Now we get to the application of ideals in signal processing. Especially, we will re-use some
of the concepts of interpolation, but in particular the concept of a zero and its multiples will
help us in understanding properties of filters.

5.1 Signal spaces and filters

Definition 5.1.1 (Signal spaces). A SIGNAL c is a function from Zs → R and the vector space
of all doubly infinite signals is denoted by `(Zs). Moreover,

1. by `p (Zs), 0 ≤ p ≤∞, we denote the vector spaces of all signals for which the p-NORM

‖c‖p :=
( ∑
α∈Zs

|cα|p
)1/p

, 0 < p <∞ (5.1.1)

is finite, with the extension

‖c‖0 := #supp (c) := #{α : c(α) 6= 0}, ‖c‖∞ := sup
α∈Zs

|cα| . (5.1.2)

2. the PULSE SIGNAL or simply PULSE δ ∈ `(Zs) is defined as δ(α) = δα,β.

3. the j th PARTIAL SHIFT OPERATOR τ j , j = 1, . . . , s, is defined as τ j c := c(· + ε j ), and its
powers as τα = τα1

1 · · ·ταs
s , that is, ταc = c(·+α), α ∈Zs .

4. the ONE-SIDED SIGNAL SPACE is defined as `(Ns
0) = {c :Ns

0 → R} with the canonical ex-
tensions to `p (Ns

0).

5. the PARTIAL DIFFERENCE OPERATOR ∆α has the form ∆α = (τ− I )α and for q ∈ Π the
DIFFERENCE OPERATOR q(τ) is defined as

q(τ) = ∑
α∈Ns

0

qατ
α, q = ∑

α∈Ns
0

qα (·)α. (5.1.3)

Exercise 5.1.1 Prove the formula

∆α = (−1)|α|
∑
β≤α

(−1)|β|
(
α

β

)
τβ, α ∈Ns

0, (5.1.4)

where
(α
β

)
:= (α1

β1

) · · ·(αs
βs

)
and β≤α means that β j ≤α j , j = 1, . . . , s. ♦
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5 Signal Processing

Remark 5.1.2. For 0 ≤ p < 1 the expression ‖c‖p is not a norm any more since it is not convex
and violates the triangle inequality, which makes optimization quite difficult. Nevertheless,
they have some importance and one speaks of a QUASI NORM is such cases. Here we will only
use ‖ ·‖0 and also that for formal convenience only.

Remark 5.1.3. The more natural extension of q(D) would be a difference operator q(∆) but
since

q(∆) = ∑
|α|≤deg q

qα∆
α = ∑

|α|≤deg q
qα (−1)|α|

∑
β≤α

(−1)|β|
(
α

β

)
τβ

= ∑
|α|≤deg q

τβ (−1)|β|
∑
α≥β

(−1)|α|
(
α

β

)
qα =:

∑
|α|≤deg q

q̃βτ
β = q̃(τ),

any such operator can be expressed in terms of q(τ).

Exercise 5.1.2 Can every difference operator of the form q(τ) also be written as q̃(∆)? ♦

Definition 5.1.4 (Filter).

1. A FILTER, more precisely an LTI FILTER (Linear Time Invariant), F is a linear operator
F : `(Zs) → `(Zs) that commutes with translation:

ταF = Fτα, α ∈Zs . (5.1.5)

2. The IMPULSE RESPONSE f of a filter F is defined as f := Fδ ∈ `(Zs).

3. An FIR FILTER (Finite Impulse Response) is a filter with finitely supported impulse re-
sponse, i.e., Fδ ∈ `0(Zs).

Definition 5.1.5 (z-transform & Convolution).

1. Given a signal c ∈ `(Zs), its z-TRANSFORM and SYMBOL are the (formal) power series

c[(z) = ∑
α∈Zs

c(α) z−α, c](z) = ∑
α∈Zs

c(α) zα (5.1.6)

respectively, defined on Cs×. If c ∈ `0(Zs) then c[,c] ∈Λ.

2. The CONVOLUTION of two signals c,d ∈ `(Zs) is defined as

c ∗d := ∑
α∈Zs

c(·−α)d(α) = ∑
α∈Zs

d(α)τ−αc = d [(τ)c, (5.1.7)

and their CORRELATION as

c?d := ∑
α∈Zs

c(·+α)d(α) = ∑
α∈Zs

d(α)ταc = d ](τ)c. (5.1.8)

Remark 5.1.6.

1. The z-transform of infinitely supported functions has to be taken with care as then the
radius of convergence of the underlying series has to be considered.
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5.1 Signal spaces and filters

2. Convolution and correlation are only defined if the infinite sums involved converge.
This is the case if, for example c,d ∈ `2(Zs) or d ∈ `0(Zs). In the latter case convolution
and correlations are the same as a difference operator.

3. Convolution is commutative, correlation is not.

4. Since

‖c ∗d‖1 = ∑
α∈Zs

∣∣∣∣∣ ∑
β∈Z2

c(α−β)d(β)

∣∣∣∣∣≤ ∑
β∈Z2

|d(β)| ∑
α∈Zs

|c(α−β)| = ∑
β∈Z2

|d(β)| ∑
α∈Zs

|c(α)|

= ‖c‖1 ‖d‖1,

the correlation of two `1 signals is `1 again and convolution introduces a commutative
MULTIPLICATION on `1(Zs) with neutral element δ. This way, `1(Z2) can be turned into
the so-called CONVOLUTION ALGEBRA1.

Exercise 5.1.3 Show that c,d ∈ `2(Zs) implies that c ∗d ∈ `1(Zs). ♦
The next two results are classical and extend trivially2 from the univariate case.

Proposition 5.1.7 (Filters & transforms).

1. For c,d ∈ `(Zs) one has

(c ∗d)[ = c[d [, (c?d)[ = c[d [
(
(·)−1)= c[d ], (5.1.9)

as well as
(c ∗d)] = c]d ], (c?d)](z) = c]d ]

(
(·)−1)= c]d [. (5.1.10)

2. A linear operator F : `(Z) → `(Z) is a filter if and only if F c = f ∗ c, c ∈ `(Zs).

Proof: For 1) we only prove (5.1.9) by considering

(c ∗d)[(z) = ∑
α∈Zs

∑
β∈Zs

c(α−β)d(β)z−α = ∑
β∈Zs

d(β)z−β ∑
α∈Zs

c(α−β)z−α+β = c[(z)d [(z)

and, in the same way

(c ∗d)[(z) = (c ∗d)[(z) = ∑
α∈Zs

∑
β∈Zs

c(α+β)d(β)z−α = ∑
β∈Zs

d(β)zβ
∑
α∈Zs

c(α+β)z−α−β

= c[(z)d [(z−1).

For 2), “⇒”, we use the trivial reformulation

c = ∑
α∈Zs

c(α)τ−αδ

and the commutativity property (5.1.5) to find that

F c = F

( ∑
α∈Zs

c(α)τ−αδ

)
= ∑
α∈Zs

c(α)Fτ−αδ= ∑
α∈Zs

c(α)τ−αFδ= ∑
α∈Zs

c(α)τ−α f = f ∗ c

1An ALGEBRA is a vector space, here even a normed one, with compatible multiplication.
2Only by formal extension.
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5 Signal Processing

while the converse, “⇐”, follows from the fact that

τα( f ∗ c) =
(
τα f [(τ)

)
c =

(
f [(τ)τα

)
= f [(τ)

(
ταc

)= f ∗ (ταc),

due to the commutativity of polynomial multiplication. �

Exercise 5.1.4 Prove (5.1.10) without being surprised that the proof is extremely similar to
that of (5.1.9). ♦
In the sequel we will be interested in FIR filters only, so we record the following consequence
of Proposition 5.1.7 for further convenience.

Corollary 5.1.8. Any FIR filter F can be written as F c = f ∗ c, f ∈ `0(Zs) or as

F c = f [(τ)c, c ∈ `(Zs). (5.1.11)

Proof: By (5.1.7) we have
f ∗ c = c ∗ f = f [(τ)c,

(5.1.11) follows immediately. �

5.2 Difference equations and their homogeneous solutions

A difference equation is an expression of the form

q(τ)u = v, q ∈Π, u, v ∈ `(Zs). (5.2.1)

More precisely, it is a linear difference equation with CONSTANT coefficients but since we nei-
ther consider nonlinear equations nor variable coefficients3, we will keep the above shorter
definition.

As usual with linear operators, we are interested in the KERNEL of the operator, i.e., the
solutions of the homogeneous equation

q(τ)u = 0.

Some of those can be determined quite easily.

Definition 5.2.1. For θ ∈Cs×, we define the signal cθ ∈ `(Zs) as

cθ = θ(·) = (
α 7→ θα :α ∈Zs) . (5.2.2)

We call cθ an EXPONENTIAL SIGNAL.

Remark 5.2.2 (Exponential signals).

1. We require θ j 6= 0 since then we do not have the problem to explain what 00 means;
moreover, we will soon see that θ will correspond to a (forbidden) zero of a Laurent
polynomial.

2. With ω := logθ := (
logθ j : j = 1, . . . , s

)
we can also write cθ = eω = eω

T (·) and have yet
another reason to request θ ∈Cs×.

3Anyway, this is more common in the context of partial differential equations.
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5.2 Difference equations and their homogeneous solutions

Now we make a simple and elementary computation that will turn out to be fundamental for
all that follows in this section. For θ ∈Cs× we consider

q(τ)cθ =
∑
α∈Zs

qατ
αθ(·) = ∑

α∈Zs

qαθ
(·)+α = θ(·) ∑

α∈Zs

qαθ
α = q(θ)cθ,

which we can summarize as follows.

Proposition 5.2.3 (Difference operators & exponential signals). The exponential signal cθ is
an eigenvector of any difference operator c 7→ q(τ)c, q ∈Π, with eigenvalue q(θ). In particular,

q(τ)cθ = 0 ⇔ q(θ) = 0. (5.2.3)

Despite its simple proof, Proposition 5.2.3 is of fundamental importance for what follows.

Remark 5.2.4.

1. The kernel of the difference operator is obviously related to the zeros of the polynomial
q .

2. Since, by (5.1.11), any FIR filter is equivalent to a difference equation defined by the
z-transform of its impulse response, the two concepts are mainly equivalent.

3. Any difference operator or filter that is not not the identity, i.e., q = 1 or f = δ, has
a z-transform that vanishes on a whole variety and therefore the kernel is an infinite
dimensional subspace. This is not the case for s = 1.

4. Indeed, the case s = 1 is very classic and investigated for quite some time, cf.[Goldberg, 1958,
Jordan, 1965]

5.2.1 Systems of difference equations

Obviously, a single difference equation will never have a finite dimensional kernel as single
polynomial can have no simple zeros. To that end, the multivariate case requires us to con-
sider several equations simultaneously.

Definition 5.2.5. A SYSTEM OF DIFFERENCE EQUATIONS is given as a finite set Q ⊂Π of poly-
nomials and v ∈ `(Zs)Q and consists of finding u ∈ `(Zs) such that

Q(τ)u = v, i.e., q(τ)u = vq , q ∈Q. (5.2.4)

A system of HOMOGENEOUS DIFFERENCE EQUATIONS is the case when v = 0.

Remark 5.2.6. Homogeneous difference equations depend on 〈Q〉, not on the specific choice
Q. Indeed, since trivially p(τ)0 = 0, any solution of Q(τ)u = 0 satisfies

0 = gq (τ)0 = gq (τ)q(τ)0 = (
gq q

)
(τ) = 0 ⇒

( ∑
q∈Q

gq g

)
(τ)u = 0, gq ∈Π, q ∈Q,

that is,
Q(τ)u = 0 ⇔ 〈Q〉(τ)u = 0. (5.2.5)

We will be interested in homogeneous difference equations whose solution space is finite
dimensional. To that end, we use a straightforward generalization of Proposition 5.2.3.
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5 Signal Processing

Proposition 5.2.7. For any finite Q ⊂Π and θ ∈Cs× we have that

Q(τ)cθ = 0 ⇔ θ ∈ Z (〈Q〉) . (5.2.6)

Proof: From Proposition 5.2.3 we know that q(τ)cθ = 0 iff q(θ) = 0, hence

Q(τ)cθ = 0 ⇔ q(τ)cθ = 0, q ∈Q, ⇔ Q(θ) = 0 ⇔ 〈Q〉(θ) = 0,

which gives (5.2.6). �

This already allows us to characterize kernels of partial difference equations in a simple4 sit-
uation.

Definition 5.2.8. A subspace F ⊂ `(Zs) is called SHIFT INVARIANT if ταF ⊆F , α ∈Zs . Given
F ⊂ `(Zs), the shift invariant space generated by F is

S(F ) := span
{
τα f :α ∈Zs , f ∈ F

}
.

If #F = 1, i.e., F = { f }, then the resulting shift invariant space S( f ) spanned by a single signal
is sometimes also called a PRINCIPAL SHIFT INVARIANT SPACE5.

Example 5.2.9. The simplest example of a principal shift invariant space is again the signal
cθ from (5.2.2). Since

ταcθ = θ(·)+α = θα cθ,

is follows that dimS(cθ) = 1 for any θ ∈ Cs×. But also the converse is true. If dimS( f ) = 1 for
some f , then there exist θ j ∈C such that

θ j f = τε j f = f
(·+ε j

)
,

yielding τα f = θα f , α ∈Zs , and thus, evaluating at 0,

f (α) = (
τα f

)
(0) = θα f (0)

from which is follows that f = θ(·) and that θ ∈Cs× as otherwise f = 0 and dimS( f ) = 0.

Corollary 5.2.10. For f ∈ `(Zs) one has that

dimS( f ) = 1 ⇔ f = cθ, θ ∈Cs
×. (5.2.7)

But there is also a connection between solutions of systems of homogeneous difference equa-
tions and shift invariance that we will explore next. Let us begin with a simple observation.

Lemma 5.2.11. The space kerQ(τ) is shift invariant.

Proof: For f ∈ kerQ(τ) = ker〈Q〉(τ) and α ∈Ns
0 we have that

Q(τ)
(
τα f

)= (
(·)αQ

)
(τ) f = 0

since (·)αQ ⊂ 〈Q〉 and due to (5.2.5). �

Lemma 5.2.12. If 0 6= f ∈ `0(Zs) then dimS( f ) =∞.

Proof: Since Ω := supp f ⊂Zs is a finite set, there exists α ∈Zs such that ταΩ∩Ω=;, hence
all the sets τkαΩ, k ∈Z, are disjoint and τkα f linearly independent. �

4In a double sense: it is simple since the zeros are simple.
5In obvious analogy to the concept of a principal ideal.
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5.2 Difference equations and their homogeneous solutions

5.2.2 Stirling numbers and Stirling operators

We continue defining some numbers that will be of particular use in what follows.

Definition 5.2.13. The multivariate STIRLING NUMBERS of the second kind KARAMATA’S NO-
TATION, cf. [Graham et al., 1998, p. 257ff] are defined as differences of zero{ν

κ

}
:= 1

κ!
∆κ0ν := 1

κ!

(
∆κ(·)ν) (0), κ,ν ∈Ns

0. (5.2.8)

The Stirling numbers of the first kind are defined as[ν
κ

]
:= 1

κ!

(
Dκ(·)ν

)
(0), (5.2.9)

with the FALLING FACTORIALS or POCHHAMMER SYMBOLS6

(·)α =
s∏

j=1

α j−1∏
k=0

(
(·) j −k

)
, α ∈Ns

0 (5.2.10)

and Dα = ∂|α|
∂xα as abbreviation for the partial derivatives.

Obviously we have that

0 =
{ν
κ

}
=

[ν
κ

]
, ν 6≥ κ, (5.2.11)

which allows us to extend Sterling numbers to arbitrary pairsν,κby convention, where nonzero
values only occur for κ≤ ν.

Remark 5.2.14. Stirling numbers are a well investigated topic since the play a quite im-
portant role in analysis and analytic number theory. Therefore I refer to a statement from
[Gould, 1971]: “. . . aber es mag von Interesse sein, daß mindestestens tausend Abhandlun-
gen in der Literatur existieren, die sich mit den Stirlingschen Zahlen beschäftigen. Es ist also
sehr schwer, etwas Neues über die Stirlingschen Zahlen zu entdecken.”

Note that by (5.1.4)

∆κ(·)ν = (τ− I )κ(·)ν = (−1)|κ|
∑
α≤κ

(
κ

α

)
(−1)|α| (·+α)ν = (−1)|κ|

∑
α≤κ

(
κ

α

)
(−1)|α|

∑
β≤ν

(
ν

β

)
αν−β(·)β

and evaluation at 0 leaves only the termβ= 0 in the second sum and gives the explicit formula

{ν
κ

}
= ∑
α≤κ

(
κ

α

)
(−1)|κ|−|α|αν. (5.2.12)

Moreover, the Leibniz rule for the difference,

∆α( f g ) = ∑
β≤α

∆β f τβ∆α−βg , α ∈Ns
0, (5.2.13)

yields that

∆κ(·)ν+ε j =∆κ (
(·)ν(·)ε j

)=∆κ(·)ν τκ(·)ε j︸ ︷︷ ︸
=κ j

+∆κ−ε j (·)ντκ−ε j ∆ε j (·)ε j︸ ︷︷ ︸
=1

= κ j∆
κ(·)ν+∆κ−ε j (·)ν

6The integer version of (4.3.24).
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and thus the recurrence relation{ν+ε j

κ

}
= (

κ j ∆
κ(·)ν+∆κ−ε j (·)ν) (0) = κ j

{ν
κ

}
+

{
ν

κ−ε j

}
. (5.2.14)

Exercise 5.2.1 Prove (5.2.13) by using the univariate formula

∆n( f g ) =
n∑

k=0

(
∆k f

) (
τk∆n−k g

)
,

cf. [Boor, 2005]. ♦
Next recall the Taylor formula and the Newton formula of interpolation at integers giving

f = ∑
α∈Ns

0

1

α!
Dα f (0)(·)α = ∑

α∈Ns
0

1

α!
∆α f (0)(·)α, f ∈Π,

and switch the roles of functionals and polynomials between these two.

Definition 5.2.15. The STIRLING OPERATOR of the first kind L1 : Π→ Π and the one of the
second kind, L2 :Π→Π, are defined as

L1 f := ∑
α∈Ns

0

1

α!
Dα f (0)(·)α, L2 f := ∑

α∈Ns
0

1

α!
∆α f (0)(·)α. (5.2.15)

The name is due to the following observations.

Proposition 5.2.16. The operators L1,L2 satisfy

L1 = L−1
2 (5.2.16)

and(
L1 f

)′
α = ∑

β∈Ns
0

[
β

α

]
f ′
α,

(
L2 f

)
α = ∑

β∈Ns
0

{
β

α

}
fα, f = ∑

α∈Ns
0

fα(·)α = ∑
α∈Ns

0

f ′
α(·)α. (5.2.17)

Proof: For f ∈Πwe have that

L1L2 f = ∑
α,β∈Ns

0

1

α!
∆α f (0)

1

β!

(
Dβ(·)α

)
(0)︸ ︷︷ ︸

=α!δα,β

(·)β =
∑
α∈Ns

0

1

α!
∆α f (0)(·)α = f ,

which proves (5.2.16). For the explicit expression of the second kind operator we just note
that the definition yields

L2 f = ∑
α,β∈Ns

0

fα
1

β!

(
∆β(·)α

)
(0)(·)β = ∑

β∈Ns
0

(·)β ∑
α∈Ns

0

{
β

α

}
fα.

The expression for L1 f is done in the same way. �

Corollary 5.2.17. We have

∑
γ∈Ns

0

{
α

γ

}[
γ

β

]
= δα,β, α,β ∈Ns

0. (5.2.18)
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Definition 5.2.18. In the sequel we use L := L2 with L−1 = L1.

Finally an important property for multiplicity spaces: the Stirling operator respects D invari-
ance.

Proposition 5.2.19. Q ⊂Π is D-invariant if and only if LQ is D-invariant.

Proof: For “⇒” we choose f ∈Π and α ∈Ns
0 and compute

DαL f = ∑
β∈Ns

0

1

β!
∆β f (0)Dα(·)β = ∑

β≥α

1

β!
∆β f (0)

β!

(β−α)!
(·)β−α

= ∑
β≥α

∆β−α∆α f (0)
1

(β−α)!
(·)β−α = ∑

β∈Ns
0

1

β!
∆β

(
∆α f

)
(0)(·)β = L∆α f ,

i.e.,
DαL = L∆α, α ∈Ns

0, (5.2.19)

From (5.2.19) we also get that

L−1Dα = L−1DαLL−1 = L−1L∆αL−1 =∆αL−1, α ∈Ns
0, (5.2.20)

and (5.2.19) implies that DαLq = L∆αq ∈ LQ, q ∈Q. whenever Q is D-invariant, hence shift
invariant, see Proposition 3.2.3 since then ∆αq ∈Q.

Conversely, “⇐” follows since for any q ′ = Lq ∈ LQ, q ∈Q, that

∆αq =∆αL−1Lq =∆αL−1q ′ = L−1 Dαq ′︸ ︷︷ ︸
∈LQ

∈ L−1LQ =Q

which completes the proof. �

The last concept that we introduce in this section is a variation of the derivative operator that
will turn out to be quite useful in simplifying things.

Definition 5.2.20. The modified partial differential operator is defined as

∂∗
∂∗x j

:= (·) j
∂

∂x j
, j = 1, . . . , s, and Dα

∗ := ∂|α|∗
∂∗xα

, α ∈Ns
0. (5.2.21)

This operator is sometimes also called the θ-OPERATOR.

Lemma 5.2.21. The θ-operator is well defined, in particular

Dα
∗ = ∑

β≤α

{
α

β

}
(·)βDβ, α ∈Ns

0. (5.2.22)

Proof: We use induction on |α|, where the case |α| = 1 is just the definition in (5.2.21). More-

over, we note that for j = 1, . . . , s, taking into account that
{
α
β

}
6= 0 only for β≤α, cf. (5.2.8),

D
α+ε j
∗ = (·) j

∂

∂x j
D∗
α = (·) j

∂

∂x j

∑
β≤α

{
α

β

}
(·)βDβ = ∑

β≤α

{
α

β

} (
β j (·)βDβ+ (·)β+ε j Dβ+ε j

)
= ∑

β≤α
β j

{
α

β

}
(·)βDβ+ ∑

β≤α+ε j

{
α

β−ε j

}
(·)βDβ

= ∑
β≤α+ε j

(
β j

{
α

β

}
+

{
α

β−ε j

})
(·)βDβ = ∑

β≤α+ε j

{
α+ε j

β

}
(·)βDβ,

which advances the induction hypothesis and completes the proof. �
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Corollary 5.2.22. For q ∈Π and x ∈Cs× we have that

q(D∗) f (x) = (
Lq(xD)

)
f (x), f ∈Π. (5.2.23)

Proof: For (5.2.23) we get

q(D∗) = ∑
α∈Ns

0

qαDα
∗ = ∑

α∈Ns
0

qα
∑
β≤α

{
α

β

}
(·)βDβ = ∑

β∈Ns
0

( ∑
α≥β

{
α

β

}
qα

)
(·)βDβ

= ∑
β∈Ns

0

(
Lq

)
β (·)βDβ = Lq(xD)

by straightforward computation. �

5.2.3 Exponential polynomials and multiplicities

Definition 5.2.23. An EXPONENTIAL POLYNOMIAL is a function of the form

x 7→ p(x)ey (x) = p(x)e yT x , p ∈Π, y ∈Cs . (5.2.24)

The restriction of an exponential polynomial to Zs is an exponential polynomial signal.

The next result gives a fundamental relationship between the exponential polynomial signals
in the kernel of a difference operator and the zeros of the associated polynomial.

Theorem 5.2.24. Let Θ⊂ Cs×, #Θ<∞, and Qθ ⊂Π be finite dimensional D-invariant spaces.
Then, for any f ∈Π,

f (τ)(Qθcθ) = 0, θ ∈Θ, ⇔ (
LQθ(θD) f

)
(θ) = 0, θ ∈Θ. (5.2.25)

Proof: For f , q ∈Π and θ ∈Cs we consider

f (τ)
(
p cθ

) = ∑
α∈Ns

0

fατ
α

(
qθ(·))= ∑

α∈Ns
0

fαp(·+α)θ(·+α)

= θ(·) ∑
α∈Ns

0

fα
∑
β∈Ns

0

1

β!
∆β(τ(·)q)(0)(α)βθ

α

= θ(·) ∑
α∈Ns

0

fα
∑
β∈Ns

0

1

β!
∆β(τ(·)q)(0)θβ

(
Dβ(·)α

)
(θ)

= θ(·) ∑
β∈Ns

0

1

β!
∆β(τ(·)q)(0)(θD)β

( ∑
α∈Ns

0

fα(·)α
)

(θ)

= θ(·) (
Lτ(·)q

)
(θD) f (θ),

i.e.,
f (τ)

(
q cθ

)
(α) = θα (

Lταq
)

(θD) f (θ), α ∈Zs . (5.2.26)

Since ταq ∈Qθ for q ∈Qθ and α ∈ Zs , the direction “⇐” follows directly from (5.2.26). Con-
versely, to obtain “⇒”, we simply set α= 0 in (5.2.26) and find that

0 = f (τ)(qcθ)(0) = (Lq)(θD) f (θ), θ ∈Θ,

which is the right hand side of (5.2.25). �

The θ-operator now allows us to formulate Theorem 5.2.24 in a shorter and more elegant way.
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5.2 Difference equations and their homogeneous solutions

Corollary 5.2.25. Let Θ⊂Cs×, #Θ<∞, and Qθ ⊂Π be finite dimensional D-invariant spaces.
Then, for any f ∈Π,

f (τ)(Qθcθ) = 0, θ ∈Θ, ⇔ Qθ(D∗) f (θ) = 0, θ ∈Θ. (5.2.27)

Moreover, this can be extended to systems of difference equations to identify at least some of
the homogeneous solutions.

Definition 5.2.26. For a finite dimensional D-invariant subspace Q ⊂ Π and θ ∈ Cs× define
the θ MULTIPLICITY SPACE

Q∗ := L−1Q
(
θ−1·) . (5.2.28)

so that
Q(D) f (θ) =Q∗(D∗) f (θ).

Corollary 5.2.27. Let F ⊂Π be such that 〈F 〉 is a zero dimensional ideal. Then

kerF (τ) ⊇ span
{
Q∗
θ eθ : θ ∈ Z (〈F 〉)} , (5.2.29)

where Q∗
θ

stands for the θ multiplicity space of the zero θ ∈Cs×.

Remark 5.2.28. If F has common zeros with a zero component, then these zeros do not con-
tribute to the solution space for the difference equation as the respective exponential se-
quences are not well-defined.

5.2.4 Finite dimensional shift invariant spaces

In Section 5.2.3, especially in Corollary 5.2.27, we saw that all exponential polynomial se-
quences corresponding to the zeros of the ideal and their multiplicities are homogeneous
solutions of the difference equation. We now head for the converse, considering more care-
fully finite dimensional spaces of homogeneous solutions of difference equations.

We start with some simple observations.

Lemma 5.2.29.

1. For any F ⊂Π the space kerF (τ) ⊆ `(Zs) is shift invariant.

2. If U ⊂ `(Zs) is a shift invariant subspace, then

I (U ) := {
f : f (τ)U = 0

}
(5.2.30)

is a Laurent ideal.

Proof: By (5.2.5), kerF (τ) = ker〈F 〉(τ) and any u ∈ ker〈F 〉(τ) satisfies

0 = (
(·)αF

)
(τ)u = F (τ)

(
ταu

)
,

hence ταu ∈ kerF (τ) which is 1).
For 2) we note that the shift invariance of U with respect to all7 multiinteger shifts implies

that ταU ⊂U , α ∈Zs , hence q(τ)U ⊂U for q ∈Λ, and any f such that f (τ)U = 0 satisfies

0 = f (τ)q f (τ)U = (
q f f

)
(τ)U , q f ∈Π ⇒

( ∑
f ∈F

q f f

)
(τ)U , q f ∈Λ, f ∈ F,

7And not only those with α ∈Ns
0
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so that I (U ) is indeed a Laurent ideal. �

Recall from Section 2.1.6 that in order to determine a basis for a Laurent ideal, we first com-
pute the polynomial part P (I (U )) =I (U )∩Π of the Laurent ideal and then a basis of that
polynomial ideal.

Definition 5.2.30. For a Laurent ideal I ⊂Λwe define the ZERO SET

Z (I ) = Z (P (I )) (5.2.31)

and the QUOTIENT SPACE

Π/I :=Π/P (I ). (5.2.32)

Remark 5.2.31 (Laurent ideals).

1. Recall that Remark 2.1.36 describes a constructive way to compute P (I ) for a given
Laurent ideal by saturating quotient ideals, see also [Möller and Sauer, 2004].

2. This way, we can even compute a Γ-basis for a Laurent ideal: first we saturate the ideal
basis into a basis of P (I ) and then we compute the Γ-basis from this saturated basis.

3. Statement 1) of Proposition 2.1.38 also tells us that Z (I ) ⊂ Cs×, that is, all common
zeros of the Laurent ideal according to (5.2.31) have only nonzero components. There
are no spurious zeros.

Lemma 5.2.32. If U is finite dimensional, then dimΠ/I (U ) = dimU and U = kerF (τ) for
any basis F of I (U ).

Proof: Let U ⊂ `(Zs) be a basis of U and P a basis ofΠ/I (U ) and consider the matrix

P (τ)U =
(

p(τ)u :
p ∈ P
u ∈U

)
. (5.2.33)

The rank of this matrix is at most dimU and if #P = dimΠ/I (U ) were > dimU , then there
would exist 0 6= y ∈CP such that

0 = yT P (τ)U =
( ∑

p∈P
yp p

)
(τ)u ⇒ y ·P ∈I (U ) ⇒ y = 0,

which would be a contradiction. Hence #P ≤ #U . If, on the other hand, #P < #U , then there
exists 0 6= y ∈CU such that

0 = P (τ)(y ·U ) = (I (U )) (τ)(y ·U ) ⇒ f (τ)(y ·U ) = 0, f ∈Π,

and choosing f = (·)α yields (y ·U )(α) = 0, α ∈ Zs yields y ·U = 0 which is a contradiction.
Hence, dimΠ/I (U ) = dimU . Moreover, the definition in (5.2.30) yields that U ⊆ kerF (τ)
for any F ⊂I (U ), in particular for a basis of I (U ). But since

dimΠ/〈F 〉 = dimΠ/I (U ) = dimU ,

the two spaces have to coincide, yielding U = kerF (τ). �

This Lemma enables us to characterize the homogeneous solutions of partial difference equa-
tions.
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5.3 Filterbanks

Theorem 5.2.33. If the system of difference equations F (τ)u = 0 has a finite dimensional space
kerF (τ) =: U ⊂ `(Zs) of homogeneous solution, then

U = ∑
θ∈Z (〈F 〉)

Q∗
θ eθ, 〈F 〉 = ⋂

θ∈Z (〈F 〉)
kerδθ ◦Q∗

θ (D∗). (5.2.34)

Proof: Corollary 5.2.27 already states that U ⊆∑
θQ∗

θ
eθ. But Lemma 5.2.32 says that

dimU = dimΠ/〈F 〉 = ∑
θ∈Z (〈F 〉)

dimQθ,

hence both spaces have the same dimension and therefore must agree. �

Remark 5.2.34. The operators Q∗
θ

are well-defined since the polynomial part of the Laurent
ideal ensures that θ ∈Cs×.

Theorem 5.2.35. Let U ⊂ `(Zs) be a finite dimensional shift invariant space. Then U is
spanned by exponential polynomials.

Proof: By Lemma 5.2.29 there exists a zero dimensional ideal I := I (U ) = 〈F 〉 such that
U = kerF (τ). The common zeros Z (I ) and their associated multiplicities Qθ define θ-
multiplicities Q∗

θ
, θ ∈ Z (I ), hence

U ⊆ ∑
θ∈Z (I )

Q∗
θ eθ,

and the same dimension argument as above yields equality of the two spaces. �

5.3 Filterbanks

We will define filterbanks in a very general setting now, using not only scalar decimations but
arbitrary matrices. This will require some definitions and concepts.

5.3.1 Dilation matrices and the Smith factorization

Definition 5.3.1. A matrixΞ ∈Zs×s is called a SCALING MATRIX if it is nonsingular and EXPAN-
SIVE, that is

lim
n→∞

∥∥Ξ−n
∥∥= 0 (5.3.1)

for some matrix norm ‖ ·‖.

Remark 5.3.2. Strictly speaking, (5.3.1) means that the inverse Ξ−1 is CONTRACTIVE; both
means that all eigenvalues of Ξ are > 1 in modulus with emphasis on the strict inequality.

Definition 5.3.3. A matrix A ∈Zs×s is called UNIMODULAR if |det A| = 1.

Remark 5.3.4. In general, a matrix A ∈ R s×s over a ring R is called unimodular if detR ∈ R× is
a unit. By Cramer’s rule it can be easily shown that a matrix has an inverse in R s×s if and only
if it is unimodular.

The following result is well-known in the theory of matrices over rings, but also under differ-
ent names like “fundamental theorem for finite groups”, cf. [Latour et al., 1998]. A proof can
be found, for example, in [Marcus and Minc, 1969].
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Theorem 5.3.5 (SMITH FACTORIZATION). For any matrix A ∈Zs×s there exist unimodular ma-
trices U1,U2 ∈Zs×s and a diagonal matrix Σ ∈Zs×s such that

A =U1ΣU2. (5.3.2)

Remark 5.3.6.

1. In general neither the factors U1,U2 nor the diagonal matrix Σ are unique.

2. There exists a SMITH NORMAL FORM that orders the diagonal elements of Σ by divisi-
bility and relates them to the minors of A, cf. [Marcus and Minc, 1969].

3. The Smith factorization can be computed efficiently and symbolically by a combina-
tion of Gaussian elimination and euclidean division with remainder of integers.

4. Since

det A = detU1 detΣ detU2 = detΣ=
s∏

j=1
σ j j =

s∏
j=1

λ j

where λ j are the eigenvalues of A, there is no further relationship between the SMITH

VALUES σ j := σ j j of the factorization (5.3.2) and the eigenvalues of A, regardless of
whether one considers the normal form or not.

Lemma 5.3.7. If Ξ ∈Zs×s is an expansive matrix, then

Zs = ⋃
ξ∈EΞ

(
ξ+ΞZs) , EΞ :=Ξ[0,1)s ∩Zs 'Zs/ΞZs , (5.3.3)

is a decomposition of Zs into #EΞ = |detΞ| equivalence classes modulo Ξ.

Proof: We use the Smith factorization (5.3.2) and remark that for α,β ∈Zs we have

α−β ∈ΞZs =U1ΣU2Z
s︸ ︷︷ ︸

=Zs

⇔ U−1
1 α−U−1

2 β ∈ΣZs ,

hence

Zs/ΞZs 'Zs/ΣZs =
s⊗

j=1
Z/σ jZ,

and the group on the right hand side as
∏

j

∣∣σ j
∣∣= |detΞ| elements. For α ∈Zs we choose as a

representer the element

α+ΞZs 3 ξ :=α−Ξ⌊
Ξ−1α

⌋=Ξ(
Ξ−1α−⌊

Ξ−1α
⌋)︸ ︷︷ ︸

∈[0,1)s

∈Ξ[0,1)s ,

and the equivalence classes are disjoint since for ξ,ξ′ ∈ Ξ[0,1)s the relationship ξ− ξ′ = Ξβ

leads to

β=Ξ−1 (
ξ−ξ′) ∈Ξ−1Ξ(−1,1)s = (−1,1)s

and thus to β= 0. �

Definition 5.3.8. The DUAL QUOTIENT GROUP of the QUOTIENT GROUPZs/ΞZs isZ/ΞTZs with
the representers E ′

Ξ :=ΞT [0,1)s .

130



5.3 Filterbanks

5.3.2 Fourier matrices and sampling

The use of the word “dual” in Definition 5.3.8 is purposefully chosen as the next result shows.

Proposition 5.3.9 (Fourier matrices). We have

1

|detΞ|
∑
ξ∈EΞ

e2πiξTΞ−T ξ′ = δξ′,0 ξ′ ∈ E ′
Ξ, (5.3.4)

and
1

|detΞ|
∑
ξ′∈E ′

Ξ

e2πiξTΞ−T ξ′ = δξ,0 ξ ∈ EΞ, (5.3.5)

that is, the FOURIER MATRIX

FΞ =
(
e2πiξTΞ−T ξ′ :

ξ ∈ EΞ
ξ′ ∈ E ′

Ξ

)
∈CEΞ×E ′

Ξ (5.3.6)

is unitary up to the factor |detΞ|.

Proof: For ξ′ = 0, (5.3.4) is obvious, otherwise we note that

0 6= ξ′ ∈ΞT [0,1)s ∩Zs =U T
2 ΣU T

1 Z
s︸ ︷︷ ︸

=Zs

∩U T
2 Z

s =U T
2

(
Σ[0,1)s ∩Zs)=: U T

2 η
′, η′ ∈ EΣ ⊂Zs ,

and, by the same argument, also

ξ ∈U1
(
Σ[0,1)s ∩Zs) :=U1η, η ∈ EΣ ⊂Zs .

Hence, ∑
ξ∈EΞ

e2πiξTΞ−T ξ′ = ∑
η∈Σ[0,1)s∩Zs

e2πiηT U T
1 Ξ

−T U T
2 η

′

= ∑
η∈EΣ

e2πiηT U T
1 U−T

1 Σ−1U−T
2 U T

2 η
′ = ∑

η∈EΣ

e2πiηTΣ−1η′ , η′ ∈ EΣ,

so that the sum (5.3.4) depends only on Σ. Since

EΣ = E ′
Σ =

s⊗
j=1
Zσ j ,

we also conclude for ξ′ 6= 0, hence η′ 6= 0, that

∑
ξ∈EΞ

e2πiξTΞ−T ξ′ =
σ1−1∑
j1=0

· · ·
σs−1∑
js=0

(
e2πiη′1/σ1

) j1 · · ·
(
e2πiη′s /σs

) js

=
σ1−1∑
j1=0

(
e2πiη′1/σ1

) j1 · · ·
σs−1∑
js=0

(
e2πiη′s /σs

) js

︸ ︷︷ ︸
=

(
1−

(
e2πiη′s /σs

)σs )
/
(
1−e2πiη′s /σs

)
=

s∏
j=1

1−e2πiη′s

1−e2πiη′s /σs

= 0,
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which yields (5.3.4) and the same argument also leads to (5.3.5). The unimodularity of the
Fourier matrix is due to

F H
Ξ FΞ =

(
e−2πiξTΞ−T ξ′ :

ξ′ ∈ E ′
Ξ

ξ ∈ EΞ

)(
e2πiξTΞ−T η′ :

ξ ∈ EΞ
η′ ∈ E ′

Ξ

)
=

(∑
ξ∈EΞ e−2πiξTΞ−T ξ′ e2πiξTΞ−T η′ :

ξ′ ∈ EΞ
η′ ∈ E ′

Ξ

)
=

(∑
ξ∈EΞ e−2πiξTΞ−T (ξ′−η′) :

ξ′ ∈ EΞ
η′ ∈ E ′

Ξ

)
= |detΞ|

(
δξ′,η′ :

ξ′ ∈ EΞ
η′ ∈ E ′

Ξ

)
= |detΞ| I ,

which completes the proof. �

Definition 5.3.10 (Up- and Downsampling). The DOWNSAMPLING operator is defined as

↓Ξ c := c (Ξ·) (5.3.7)

the UPSAMPLING operator as

↑Ξ c(α) =
{

c
(
Ξ−1α

)
, α ∈ΞZs ,

0, otherwise,
α ∈Zs . (5.3.8)

Remark 5.3.11. The way how downsampling works, namely by extracting the signal compo-
nents corresponding to the equivalence class ξ = 0, is clear, while upsampling takes a signal
and “stretches” into this classΞZs ; the other parts of the signal is filled with zero values. These
operators are partial inverses:

↓Ξ ↑Ξ= I 6=↑Ξ ↓Ξ, (5.3.9)

but we still have that ∑
ξ∈EΞ

τξ ↑Ξ ↓Ξ τ−ξ = I , (5.3.10)

which is all the mathematics behind the so-called LAZY FILTERBANK.

Exercise 5.3.1 Verify (5.3.10). ♦

5.3.3 Filterbanks in symbol calculus

Setting M := |detΞ|−1, we can depict our filterbank as

c →

↗ F0 → ↓Ξ → c0 → ↑Ξ → G0 ↘

¯ ...
...

...
...

... ⊕
↘ FM → ↓Ξ → cM → ↑Ξ → GM ↗

→ c ′.

The simplest way to build a perfect reconstruction filterbank is to index the filters as Fξ, Gξ,
ξ ∈ EΞ, and to use the lazy filterbank

Gξ = F−1
ξ = τξ, ξ ∈ EΞ, (5.3.11)

perfect reconstruction then follows readily from (5.3.10). Of course, this concept is not par-
ticularly exciting as it only decomposes a signal according to its parities8 modulo Ξ and then
to recombine them. To get an algebraization of filterbanks, we need yet another concept.

8In the simplest case s = 1 and Ξ = 2 this would result in decomposing into odd and even compo-
nents.
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Definition 5.3.12 (Matrix monomials). Given Γ ∈Zs×s , written in terms of its column vectors,

Γ := (
γ1, . . . ,γs

)
, γ j ∈Zs , j = 1, . . . , s,

we define the MATRIX MONOMIAL zΓ := (
zγ j : j = 1, . . . , s

)
. Moreover, the HADAMARD PRODUCT

of z, z ′ ∈Cs is defined as
z z ′ := (

z1z ′
1, · · · , zs z ′

s

) ∈Cs . (5.3.12)

This terminology allows us to describe the operation of upsampling and downsampling in
symbol calculus.

Lemma 5.3.13 (Up- & downsampling). For c ∈ `0 (Zs) we have

(↑Ξ c)] (z) = c]
(
zΞ

)
, (5.3.13)

(↓Ξ c)]
(
zΞ

) = 1

|detΞ|
∑
ξ′∈E ′

Ξ

c]
(
e2πΞ−T ξ′z

)
. (5.3.14)

Proof: (5.3.13) follows immediately from

(↑Ξ c)] (z) = ∑
α∈Zs

↑Ξ c(α) zα = ∑
ξ∈EΞ

∑
α∈Zs

↑Ξ c (ξ+Ξα)︸ ︷︷ ︸
=δ(ξ)c(α)

zξ+Ξα

= ∑
α∈Zs

c(α) zΞα︸︷︷︸
=(zΞ)α

= c]
(
zΞ

)
,

while downsampling requires the Fourier duality (5.3.5):

(↓Ξ c)]
(
zΞ

)= ∑
α∈Zs

c (Ξα) zΞα = ∑
ξ∈EΞ

δ(ξ)
∑
α∈Zs

c (ξ+Ξα) zξ+Ξα

= ∑
ξ∈EΞ

1

|detΞ|
∑
ξ′∈E ′

Ξ

e2πiξTΞ−T ξ′

︸ ︷︷ ︸
=δ(ξ)

∑
α∈Zs

c (ξ+Ξα) zξ+Ξα

= 1

|detΞ|
∑
ξ∈EΞ

∑
ξ′∈E ′

Ξ

∑
α∈Zs

e2πi (Ξα)TΞ−T ξ′︸ ︷︷ ︸
=e2πiαT ξ′=1

e2πiξTΞ−T ξ′c (ξ+Ξα) zξ+Ξα

= 1

|detΞ|
∑
ξ∈EΞ

∑
ξ′∈E ′

Ξ

∑
α∈Zs

e2πi (ξ+Ξα)TΞ−T ξ′c (ξ+Ξα) zξ+Ξα

= 1

|detΞ|
∑
ξ∈E ′

Ξ

∑
α∈Zs

e2πiαTΞ−T ξ′c(α)zα = 1

|detΞ|
∑
ξ′∈E ′

Ξ

∑
α∈Zs

c(α)
(
e2πiΞ−T ξ′ z

)α
= 1

|detΞ|
∑
ξ′∈E ′

Ξ

c]
(
e2πΞ−T ξ′z

)
,

which is (5.3.14). �

The vectors zξ′ := e2πΞ−T ξ′ , ξ′ ∈ E ′
Ξ, from (5.3.14) deserve a closer inspection.

Example 5.3.14. We consider the simplest case s = 1.

1. For Ξ= 2 we obtain E ′
Ξ =Z/2Z=Z2 = {0,1} and numbers are eπξ

′ =±1.

2. Getting slightly more general withΞ= n, then E ′
Ξ =Zn and the respective values

{
e2πi k/n : k ∈Zn

}
are just the nth ROOTS OF UNITY.
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Roots of unity are, in principle, nothing else than signs and exactly this is the role even of zξ.
If ξ j is a column of Ξ, j = 1, . . . , s, we get(

e2πiΞ−T ξ′
)ξ j = e2πiξT

j Ξ
−T ξ′

and therefore
zΞξ′ = e2πiΞTΞ−T ξ′ = e2πiξ′ = [1 . . .1] =: 1,

since ξ′ ∈Zs . This can be rephrased as follows.

Proposition 5.3.15. The vectors zξ′ ∈Cs are Ξth roots of unity.

With these tools we can formalize the filterbank. We first index the filters as Fξ, ξ ∈ EΞ which
fits the philosophy of the most interesting type of filterbanks.

Definition 5.3.16. A filterbank is called CRITICALLY SAMPLED if M = |detΞ| −1. In that case
we index the filters conveniently as

Fξ,Gξ, ξ ∈Ξ. (5.3.15)

The processing by the analysis filters is then of the form ↓Ξ Fξ and has the symbol

(↓Ξ Fξc
)] (zΞ

)= 1

|detΞ|
∑
ξ′∈E ′

Ξ

(
Fξc

)] (e2πiΞ−T ξ′z
)

= 1

|detΞ|
∑
ξ′∈E ′

Ξ

f ]
ξ

(
e−2πiΞ−T ξ′z

)
c]

(
e−2πiΞ−T ξ′z

)
= 1

|detΞ|
[

f ]
ξ

(
e2πiΞ−T ξ′z

)
: ξ′ ∈ E ′

Ξ

]T [
c]

(
e2πiΞ−T ξ′z

)
: ξ′ ∈ E ′

Ξ

]
.

Vectorizing the resulting cξ =↓Ξ Fξ, the filterbank can be written as a matrix-vector product(
c]
ξ

(
zΞ

)
: ξ ∈ EΞ

)
= 1

|detΞ|
(

f ]
ξ

(
e2πiΞ−T ξ′z

)
:
ξ ∈ EΞ
ξ′ ∈ E ′

Ξ

)(
c]

(
e2πiΞ−T ξ′z

)
: ξ′ ∈ E ′

Ξ

)
(5.3.16)

Let us recall the names of the objects appearing in (5.3.16).

Definition 5.3.17 (Polyphase & modulation).

1. The POLYPHASE REPRESENTATION or the POLYPHASE VECTOR of a signal c ∈ ` (Zs) is de-
fined as

c ]p (z) :=
(
c]

(
e2πiΞ−T ξ′z

)
: ξ′ ∈ E ′

Ξ

)
(5.3.17)

2. The MODULATION MATRIX of an analysis filterbank F = (
Fξ : ξ ∈ EΞ

)
is

F (z) := 1

|detΞ|
(

f ]
ξ

(
e2πiΞ−T ξ′z

)
:
ξ ∈ EΞ
ξ′ ∈ E ′

Ξ

)
∈ΛEΞ×E ′

Ξ . (5.3.18)

3. The matrix-vector representation of the analysis filterbank is then

c ]
(
zΞ

)
:=

(
c]
ξ

(
zΞ

)
: ξ ∈ EΞ

)
= F (z)c ]p (z). (5.3.19)
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Remark 5.3.18. In the univariate case, see (1.2.21), we built the polyphase vectors with re-
spect to the z-transform, here we use symbol calculus. This is really a matter of taste and
does not really make a difference.

The synthesis filterbank is more easily computed since a direct application of (5.3.13) yields

d ](z) = ∑
ξ∈EΞ

(
Gξ ↑Ξ cξ

)] (z) = ∑
ξ∈EΞ

g ]
ξ
(z)c]

ξ

(
zΞ

)
(5.3.20)

and fortunately the analysis filterbank precisely yields the vector c ]
(
zΞ

)
needed there. Since

(5.3.19), on the other hand, is based on a polyphase vector, we can write the return value c ′ in
polyphase form as well and thus get for ξ′ ∈ E ′

Ξ that(
c ′

p (z)
)
ξ′

= d ]
(
e2πiΞ−T ξ′ z

)
= ∑
ξ∈EΞ

g ]
ξ

(
e2πiΞ−T ξ′ z

)
c]
ξ

(
e2πiΞTΞ−T ξ′︸ ︷︷ ︸

=1

zΞ
)

=
((

g ]
ξ

(
e2πiΞ−T ξ′ z

)
:
ξ′ ∈ E ′

Ξ

ξ ∈ EΞ

)
c
(
zΞ

))
ξ′

,

that is

c ′
p (z) = |detΞ|G(z)T c

(
zΞ

)= |detΞ|G(z)T F (z)c p (z), (5.3.21)

now with the modulation matrix for
(
gξ : ξ ∈ EΞ

)
. The identity (5.3.21) immediately allows us

to describe perfect reconstruction in terms of modulation matrices.

Theorem 5.3.19 (Perfect reconstruction). A filterbank provides perfect reconstruction if and
only if

GT (z)F (z) = 1

|detΞ| I . (5.3.22)

Thus a given analysis filterbank or synthesis filterbank can be completed to a perfect recon-
struction filterbank if the given filterbank has an inverse9 in ΛE ′

Ξ×EΞ or ΛEΞ×E ′
Ξ , respectively.

Taking into account that matrices over rings are invertible in the ring if and only if they are
unimodular, we can draw the following conclusion.

Corollary 5.3.20. An analysis filterbank F or a synthesis filterbank G can be completed to a
perfect reconstruction filterbank if and only if F (z) or G(z) are UNIMODULAR, respectively.

In other words: if F (z) ∈ΛE ′
Ξ×EΞ is a unimodular matrix, then the filterbank can be completed

by G(z) = F−T (z), which requires symbolic inversion10 and transposition11. But this process
does not directly guarantee that F−T (z) really has the structure of a modulation matrix. This
requires some extra effort.

Proposition 5.3.21 (Inverses of modulation matrices). If F ∈Λs×s is unimodular, then there
exist Laurent polynomials gξ ∈Λ, ξ ∈ EΞ, such that

F−1(z) =
(

g ]
ξ

(
e2πiΞ−T ξ′z

)
:
ξ′ ∈ E ′

Ξ

ξ ∈ EΞ

)
∈ΛE ′

Ξ×EΞ . (5.3.23)

9Keep in mind that the inverse of a matrix in R X×Y is a matrix in RY ×X .
10Cramer’s rule is a possibility though not very efficient.
11Which is really easy.
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Proof: We define g ]
ξ
(z) := (

F−1(z)
)

0,ξ and remark that 12

δ0,ξ′ =
(
F−1(z)F (z)

)
0,ξ′ =

1

|detΞ|
∑
ξ∈EΞ

g ]
ξ
(z) f ]

ξ

(
e2πiΞ−T ξ′z

)
, ξ′ ∈ E ′

Ξ. (5.3.24)

Setting ξ′ = 0 in (5.3.24) and replacing z by e2πiΞ−T η′z for some η′ ∈ E ′
Ξ, we get

1 = 1

|detΞ|
∑
ξ∈EΞ

g ]
ξ

(
e2πiΞ−T η′ z

)
f ]
ξ

(
e2πiΞ−T η′ z

)
= (

GT (z)F (z)
)
η′,η′ . (5.3.25)

The same trick with ξ′ 6= 0 yields

0 = 1

|detΞ|
∑
ξ∈EΞ

g ]
ξ

(
e2πiΞ−T η′ z

)
f ]
ξ

(
e2πiΞ−T (ξ′+η′) z

)
= (

GT (z)F (z)
)
η′,ξ′+η′ , (5.3.26)

and since
{
η′+ξ′ : ξ′ 6= 0

}= E ′
Ξ \

{
η′

}
, at least moduloΞ, we can combine (5.3.25) and (5.3.26)

into
δξ′,η′ =

(
GT (z)F (z)

)
ξ′,η′ , i.e., G(z) = F−T (z),

and since the inverse of a matrix is unique once it exist, we can conclude that F−T has the
structure of a modulation matrix. �

5.3.4 Matrix completion and interpolatory sequences

Now we get to the interesting question of how much we have to know about a filterbank in
order to be able to complete it to a perfect reconstruction one. We take the point of view that
we start with the synthesis filterbank and want to construct an appropriate analysis filterbank
for it. To that end, we denote by

g ]p :=
(
g ]0

(
e2πiΞ−T ξ′ ·

)
: ξ′ ∈ E ′

Ξ

)
(5.3.27)

the polyphase vector for the filter G0, which is also the 0th row of the matrix G(z).

Proposition 5.3.22. If the modulation matrix G(z) is unimodular then g ]p is UNIMODULAR in
the sense that

1 ∈
〈

g ]p
〉
=

〈
g ]0

(
e2πiΞ−T ξ′ ·

)
: ξ′ ∈ E ′

Ξ

〉
. (5.3.28)

Proof: Since G is unimodular, there exists for any vector y ∈ ΛEΞ a vector a = (
aξ′ : ξ ∈ E ′

Ξ

) ∈
ΛE ′

Ξ such that
y(z) =G(z)a(z), namely, a(z) =G−1(z)y(z).

Choosing y0 = 1 leads to

1 = ∑
ξ′∈E ′

Ξ

g ]0

(
e2πiΞ−T ξ′ ·

)
aξ′ ,

which is the representation requested by (5.3.28). �

Remark 5.3.23. Note that (5.3.28), i.e., unimodularity of the polyphase vector, can also be
expressed as the fact that the components of the polyphase vector have no common zeros.
This directly connects to Theorem 1.2.17.

12Concerning the notation: F−1F ∈CE ′
Ξ×E ′

Ξ is an identity matrix indexed with ξ′.
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The converse of Proposition 5.3.22 could be concluded from the QUILLEN-SUSLIN THEOREM,
cf. [Cox et al., 1998] and [Park, 1995, Park and Woodburn, 1995] for an explicit algorithm.

We will give a different, more elementary proof here which, however, does not yield an
immediate completion algorithm, only after prefiltering. To that end, we first observe that
the representation of (5.3.28) can also be done in a special form.

Lemma 5.3.24. If (5.3.28) holds true then there exists h ∈Λ such that

1 = ∑
ξ′∈E ′

Ξ

h]
(
e2πiΞ−T ξ′ ·

)
g ]0

(
e2πiΞ−T ξ′ ·

)
= ∑
ξ′∈E ′

Ξ

(
h ∗ g0

)] (e2πiΞ−T ξ′ ·
)

. (5.3.29)

Proof: In the identity

1 = ∑
ξ′∈E ′

Ξ

g ]0

(
e2πiΞ−T ξ′z

)
aξ′(z)

we replace z by e2πiΞ−T ηz for some η ∈ E ′
Ξ and note that

1 = ∑
ξ′∈E ′

Ξ

g ]0

(
e2πiΞ−T (ξ′+η)z

)
aξ′(e2πiΞ−T ηz) = ∑

ξ′∈E ′
Ξ

g ]0

(
e2πiΞ−T ξ′z

)
aξ′−η(e2πiΞ−T ηz) (5.3.30)

due to the group structure of E ′
Ξ. Averaging (5.3.30) over η then yields that

1 = 1

|detΞ|
∑
η∈E ′

Ξ

∑
ξ′∈E ′

Ξ

g ]0

(
e2πiΞ−T ξ′z

)
aξ′−η(e2πiΞ−T ηz)

= 1

|detΞ|
∑
ξ′∈E ′

Ξ

g ]0

(
e2πiΞ−T ξ′z

) ∑
η∈E ′

Ξ

aξ′−η(e2πiΞ−T ηz)

= 1

|detΞ|
∑
ξ′∈E ′

Ξ

g ]0

(
e2πiΞ−T ξ′z

) ∑
η∈E ′

Ξ

aη(e2πiΞ−T (ξ′−η)z)

= ∑
ξ′∈E ′

Ξ

g ]0

(
e2πiΞ−T ξ′z

)  1

|detΞ|
∑
η∈E ′

Ξ

aη(e−2πiΞ−T η·)
(

e2πiΞ−T ξ′z
)

and therefore

h] := 1

|detΞ|
∑
η∈E ′

Ξ

aη(e−2πiΞ−T η·).

satisfies (5.3.29). �

Remark 5.3.25. Note that h from (5.3.29) also has a unimodular polyphase vector.

The next concept is traditional and useful in subdivision theory when the meaning of the
notion will become clear.

Definition 5.3.26. The SUBSYMBOL of a sequence a ∈ `0(Zs) is the LAURENT POLYNOMIAL

a]
ξ
(z) := ∑

α∈Zs

a (Ξα+ξ) zα, (5.3.31)

and a is called INTERPOLATORY with respect to Ξ if a(Ξ·) = δ.

The SUBSYMBOL REPRESENTATION of a symbol follows readily from the decomposition (5.3.3)
and takes the form

a](z) = ∑
α∈Zs

a(α) zα = ∑
ξ∈EΞ

∑
α∈Zs

a(Ξα+ξ) zΞα+ξ = ∑
ξ∈EΞ

zξa]
ξ

(
zΞ

)
. (5.3.32)

The next result is well-known from subdivision theory and describes interpolatory filters.
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Lemma 5.3.27. A sequence a ∈ `0(Zs) is interpolatory if and only if

1

|detΞ|
∑
ξ′∈E ′

Ξ

a]
(
e2πiΞ−T ξ′ ·

)
= 1. (5.3.33)

Proof: Substituting the subsymbol decomposition (5.3.32) into the left hand side of (5.3.33),
we get that

1

|detΞ|
∑
ξ′∈E ′

Ξ

a]
(
e2πiΞ−T ξ′z

)
= 1

|detΞ|
∑
ξ′∈E ′

Ξ

∑
ξ∈EΞ

(
e2πiΞ−T ξ′z

)ξ
a]
ξ

(
e2πiΞTΞ−T ξ′ zΞ

)
= 1

|detΞ|
∑
ξ∈EΞ

zξa]
ξ

(
zΞ

) ∑
ξ′∈E ′

Ξ

e2πiξTΞ−T ξ′

︸ ︷︷ ︸
=δξ,0|detΞ|

= a]0
(
zΞ

)= ∑
α∈Zs

a(Ξα)︸ ︷︷ ︸
=δα,0

zΞα = 1,

as claimed. �

Theorem 5.3.28. The polyphase vector g ]p from (5.3.27) is unimodular if and only if there exist
h ∈ `0(Zs) such that h ∗ g0 is interpolatory.

Proof: The direction “⇒” is the above construction, while the fact that h ∗ g0 is interpolatory

yields (5.3.29) and therefore that 1 ∈
〈

g ]p
〉

, hence “⇐”. �

The advantage of interpolatory sequences is that they define filters that admit a simple uni-
modular completion, due to the fact that the coefficients for the representation of 1 in (5.3.31)
are particularly simple, namely |detΞ|−1.

Theorem 5.3.29. If a ∈ `0(Zs) is interpolatory, then the matrix

G(z) =


(
e−2πΞ−T ξ′z

)ξ
:

ξ ∈ EΞ \ {0}
ξ′ ∈ E ′

Ξ

a]
(
e−2πiΞ−T ξ′ z

)
: ξ′ ∈ E ′

Ξ

 (5.3.34)

is unimodular inΛ.

Proof: Writing a] in its subsymbol decomposition modulo Ξ

a](z) = a]0(z)+ ∑
ξ∈EΞ\{0}

zξ a]
ξ

(
zΞ

)= 1+ ∑
ξ∈EΞ\{0}

zξ a]
ξ

(
zΞ

)
,

we obtain for ξ′ ∈ E ′
Ξ that

a]
(
e2πiΞ−T ξ′ z

)
= 1+ ∑

ξ∈EΞ\{0}

(
e2πiΞ−T ξ′ z

)ξ
a]
ξ

(
e2πiΞTΞ−T ξ′ zΞ

)
= 1+ ∑

ξ∈EΞ\{0}

(
e2πiΞ−T ξ′ z

)ξ
a]
ξ

(
zΞ

)
,

hence

1 = a]
(
e2πiΞ−T ξ′ z

)
− ∑
ξ∈EΞ\{0}

(
e2πiΞ−T ξ′ z

)ξ
a]
ξ

(
zΞ

)
, ξ′ ∈ E ′

Ξ
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and thus (
1, . . . ,1

)= ((
−a]

ξ

(
zΞ

)
: ξ ∈ EΞ \ {0}

)
1
)

G(z). (5.3.35)

This leads to

A(z) :=
(

e2πΞ−T ξ′z
)ξ

:
ξ ∈ EΞ \ {0}
ξ′ ∈ E ′

Ξ

1 : ξ′ ∈ E ′
Ξ

=
(

I 0

−a]
ξ

(
zΞ

)
: ξ ∈ EΞ \ {0} 1

)
G(z). (5.3.36)

The matrix A(z) can further be decomposed as

A(z) = diag
(
zξ : ξ ∈ EΞ

)(
e2πiξTΞ−T ξ′ :

ξ ∈ EΞ
ξ′ ∈ E ′

Ξ

)
=: DΞ(z)FΞ,

where FΞ is the Fourier matrix from (5.3.6). Therefore,

G(z) =
(

I 0

−a]
ξ

(
zΞ

)
: ξ ∈ EΞ \ {0} 1

)−1

DΞ(z)FΞ =
(

I 0

a]
ξ

(
zΞ

)
: ξ ∈ EΞ \ {0} 1

)
DΞ(z)FΞ (5.3.37)

and
detG(z) = detFΞdetDΞ(z) =±

√
|detΞ| ∏

ξ∈EΞ

zξ ∈Λ∗

which proves unimodularity. �

Exercise 5.3.2 Show that (
I 0

vT 1

)−1

=
(

I 0
−vT 1

)
♦

Corollary 5.3.30. The matrices

D−1
Ξ (z)G(z) = 1

detFΞ

 e−2πξTΞ−T ξ′ :
ξ ∈ EΞ \ {0}
ξ′ ∈ E ′

Ξ

a]
(
e−2πiΞ−T ξ′ z

)
: ξ′ ∈ E ′

Ξ


and

G(z)D−1
Ξ (z) = 1

detFΞ

e−2πξTΞ−T ξ′zξ−ξ
′

:
ξ ∈ EΞ \ {0}
ξ′ ∈ E ′

Ξ

a]
(
e−2πiΞ−T ξ′ z

)
: ξ′ ∈ E ′

Ξ


have determinant 1.

Proposition 5.3.31. The polyphase vector and the subsymbol vector are related by(
a]

(
e2πiΞ−T ξ′ z

)
: ξ′ ∈ E ′

Ξ

)
= F T

ΞDΞ(z)
(
a]
ξ

(
zΞ

)
: ξ ∈ EΞ

)
(5.3.38)

and one of them is unimodular if and only if the other one is unimodular.

Proof: Substituting z = e2πiΞ−T ξ′z, ξ′ ∈ E ′
Ξ in the subsymbol decomposition (5.3.32) we get

that

a]
(
e2πiΞ−T ξ′ z

)
= ∑
ξ∈EΞ

e2πiξTΞ−T ξ′zξa]
ξ

(
e2πiΞTΞ−T ξ′zΞ

)
= eξ′F

T
ΞDΞ(z)

(
a]
ξ

(
zΞ

)
: ξ ∈ EΞ

)
,
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which is (5.3.38). Moreover, if h ∈ΛE ′
Ξ is such that

1 = (
hξ′ : ξ′ ∈ E ′

Ξ

)T
(
a]

(
e2πiΞ−T ξ′ z

)
: ξ′ ∈ E ′

Ξ

)
= (

hξ′ : ξ′ ∈ E ′
Ξ

)T
F T
ΞDΞ(z)

(
a]
ξ

(
zΞ

)
: ξ ∈ EΞ

)
,

then
h̃ = DΞ(z)FΞh

obviously is a coefficient vector for the combination of 1. The converse works the same way.
�
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QR factorization, 8
Γ basis, 102
Γ-Basis, 60
Γ-basis, 56, 60–62, 64, 65, 67, 75, 82, 104,

108, 109, 128
Γ-basis F for I ., 65
Γ-forms, 67
Γ-representation, 59–62
θ multiplicity space, 126
θ-operator, 125, 126
p-norm, 117
z–transform, 19
z-transform, 118, 121, 134

algebra, 119
algebraic closure, 92
algebraically closed, 11, 37
algebraically closed field, 81
analysis filterbank, 134–136
analysis filters, 20, 134
analysis modulation matrix, 21
annihilating filter, 28
arity, 24
ascending chain condition, 44

Bézout coefficients, 6
Bézout identity, 7
back substitution, 106
backwards difference, 25
Banach algebras, 36
basic limit function, 24
basis, 12, 64, 75, 77, 80
Basissatz, 38, 51, 56
basissatz, 10
Bombieri inner product, 33
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box spline, 109
Buchberger’s algorithm, 65, 66
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Cauchy product, 33
causal filter, 22
change of basis, 75
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closure, 10
coalescing points, 99
coefficient block, 68
coefficient vector, 84
collocation matrix, 17
column vector, 132
common divisor, 5
common zero, 12
Common zeros, 86
companion matrix, 13, 86
compatible, 44, 110
complement, 50
complete intersection, 111
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compound matrix, 87
computerized tomography, 99
conjugate gradients, 79
constant, 120
contractive, 24, 129
convergent, 33
convergent subdivision scheme, 24
convolution, 19, 118
convolution algebra, 19, 25, 119
convolution operator, 25
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Cramer’s rule, 22, 129, 135
critically sampled, 21, 134

definite, 57
degree, 4, 43, 46, 47, 102
degree constraint, 52
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diagonal matrix, 129
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differentiation invariant, 90
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filter, 19, 118
filterbank, 20, 134, 135
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FIR filter, 118, 120, 121
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form, 46, 56
formal power series, 33, 110
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Fourier matrix, 130, 131, 138
Fourier transform, 30
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Function Theory, 11
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fundamental polynomials, 103

G-representation, 52, 73
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generating matrix, 69
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ideal projector, 15
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Interpolation, 95
interpolation operator, 15, 102
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Macaulay, 56
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monoid, 43, 44
monomial, 31
monomial blocks, 69
monomial grading, 47, 103, 112
monomial ideal, 49, 51, 52, 67
multiindex, 31
multiplication, 119
multiplication operator, 76
multiplication table, 77, 85, 86
multiplicity, 16, 35, 38, 83, 93
multiplier, 25

natural lattice, 101
Newton approach, 104
Newton basis, 104–108, 110
Newton formula, 18, 123
Newton’s method, 25, 81
Noetherian ring, 44, 68
Noetherian rings, 10
nonredundant, 27
norm, 18
normal form, 55, 60, 61, 75, 77
normal form space, 75
normal vector, 100
normalized, 100
Nullstellenindeal, 34
Nullstellensatz, 35, 81
numerical rank, 88

one-sided signal space, 117
order closed ideal, 49
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orthogonal, 58
orthogonal complement, 57
Orthogonal reduction, 72
orthogonality, 57

Padua points, 101
partial difference operator, 117
partial differential equations, 120
partial differential operator, 32
partial shift operator, 117
peak sequence, 19
perfect reconstruction, 21, 22, 132, 135
pivoting, 9
pivoting strategy, 106
Pochhammer symbols, 122
point evaluation functional, 92
polynomial, 3, 31
polynomial division, 4
polynomial ideal, 37, 41, 42
polynomial part, 41, 127
polyphase representation, 134
polyphase vector, 21, 22, 134, 136
positive octant, 114
power method, 25
prediagonalization, 89
primary decomposition, 37, 42
primary ideal, 36, 92
prime ideal, 36
principal ideal, 10, 74, 122
principal ideal ring, 10, 55
principal lattices, 111
principal shift invariant space, 122
projection operator, 15
Prony’s problem, 27
proper, 34
pulse, 117
pulse signal, 117

quasi norm, 18, 118
Quillen-Suslin Theorem, 136
quotient group, 130
quotient ideal, 26, 35, 39
quotient space, 12, 61, 75, 76, 80, 82, 85, 86,

127

radical, 36, 81
Radical computation, 85
radical ideal, 36, 80, 81, 86
rank revealing factorization, 70

real algebraic geometry, 11
recovery problem, 95
rectangular grid, 111
recurrence relation, 123
refinable, 24
remainder, 4, 15, 48, 52, 57
replacement rule, 23
representer, 130
ring, 3, 129
roots of unity, 133

S-polynomials, 65, 113
scalar multiplicity, 93
scaling matrix, 129
semidiscrete convolution, 25
sesquilinear form, 32
set difference, 50
shift invariant, 90, 122, 127
shift operator, 90
signal, 117
Signal processing, 18
singular value, 70
singular value decomposition, 70
singular vectors, 70
sites, 14, 95, 99, 108, 110
Smith factorization, 129
Smith normal form, 129
Smith values, 130
sparse reconstruction, 27
sparsity, 27
spurious zero, 41
spurious zeros, 128
Stirling numbers, 122
Stirling operator, 123, 124
strict grading, 45, 112
strictly descending, 44
Strong Nullstellensatz, 36
subband decomposition, 20, 21
subband reconstruction, 20
subdivision operator, 23
subdivision scheme, 24
Subspace intersection, 88
subsymbol, 137
subsymbol decomposition, 138, 139
subsymbol representation, 137
support, 32
SVD, 70, 72, 87
Sylvester matrix, 8
symbol, 19, 118, 134
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synthesis filterbank, 134–136
synthesis filters, 20
system of difference equations, 121
system of equations, 34
syzygy, 63, 64
syzygy module, 63–65
syzygy of degree n, 72

Taylor formula, 91, 123
term, 31, 32, 44, 46, 48, 52
term order, 45–47, 53, 56, 58–60, 65–67, 74,

112
theology, 38
thin SVD, 70, 71
threshold, 88
Toeplitz matrix, 29
torus, 98
total degree, 18, 44, 46, 59, 99
total order, 44, 47
trace matrix, 83, 85
trace method, 81
transfinite interpolation, 95
triangular grid, 111
triple zero, 83
trivial grading, 45
trivial ideal, 34

unimodular, 129, 135, 136
unique interpolation space, 96, 97, 102, 103,

116
unit, 3, 22, 40
unit roots, 20
unitary, 130
units, 31
universal Γ-basis, 112
universal basis, 112
universal Gröbner basis, 113
universal interpolation space, 113, 115
upper set, 49, 50, 66, 103, 112
upper triangular, 9
upsampling, 131
upsampling operator, 20

Vandermonde matrix, 17, 28, 97, 99, 102,
106

vanishing, 34
variety, 35, 81
vector space, 34, 76

weak Nullstellensatz, 35

well ordering, 44, 45, 54, 57, 63

zero, 11, 120
zero dimensional, 76
zero dimensional ideal, 37, 127
zero ideal, 34
zero set, 75, 127
zerodivisor, 82
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