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Statt einer Leerseite . . . 0

Denn die Doktrin der geschlechtergerechten Sprache macht das Lesen
solchermassen ”‘gerechter”’ Texte nicht nur fast unerträglich. Sie
basiert auch auf einem linguistischen Grundirrtum, weil es das biol-
ogische Geschlecht mit dem grammatischen Genus gleichsetzt.

C. Wirz, ”‘Neusprech für Fortgeschrittene”’, NZZ Online, 12.7.2013

Die wahren Analphabeten sind schließlich diejenigen, die zwar lesen
können, es aber nicht tun. Weil sie gerade fernsehen.

L. Volkert, SZ–Online, 11.7.2009

(a+ b)!

a!b!
≥

√
(a+ b)a+b

aabb
.

And it didn’t stop being magic just because you found out how it
was done.

T. Pratchett, Wee Free Men

Oh mein Gott! Ein englischsprachiges Skript, nicht mehr die guten alten Splines
oder Geometrische Modellierung, nein, Geometric Modeling muss es sein. Aber
im Zeitalter der Internationalisierung von Studiengängen bleibt einem nichts
anderes übrig und letztendlich gilt halt doch: The official language of science is
broken English. In diesem Sinne: Viel Spass damit.

Tomas Sauer
Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverabeitung

Universität Passau
Innstr. 43

94032 Passau
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3

What are the digits that encode
beauty, the number-fingers that
enclose, transform, transmit, decode,
and somehow, in the process, fail to
trap or choke the soul of it? Not
because of the technology but in spite
of it, beauty, that ghost, that treasure,
passes undiminished through the new
machines.

S. Rushdie, Fury

Introduction 1
Geometric Modeling is a task that gains more and more importance as the world,
especially the industrial world, is getting more an more digital. At times where
3D printers are available to practically everyone, a digital model of the objects
one wants to deal with is unavoidable. This becomes more and more important

Figure 1.1: Screenshot of the Siemens PLM program NX. This is the first
step, modeling the geometry. Needless to say that the system also supports
significantly more complex parts. (F. Lorenz, Siemens AG)

if not only functional issues, like in in the old days of CAD1, but also aesthetic

1Pieces of simple geometry that had to fit somewhere and work as requested. Bolts and nuts
. . .



4 1 INTRODUCTION

desires have to be satisfied, for example in architectural geometry or 3D ani-
mated movies or special effects. All these are questions of mathematical nature
and require a richer and richer toolbox of curves and surfaces as well as methods
to adapt these objects to the needs of an application.

This is the world of Geometric Modeling. How can we work with shapes:
curves and surfaces that describe objects, how can we manipulate them, how
can we measure their quality2 and how can we force them to what we want.

Figure 1.2: A CNC test workpiece for testing how well the geometric model
is really generated physically.

Geometric modeling is about creating objects. But that is only the beginning.
Noone buys expensive computers and even more expensive programs just to
get nice pictures. In the end, something has to be created: a movie, a real
world object produced by a CNC machine or a 3D printer, for example or
even a building. Modeling is quite pointless without manufacturing. Even if
we will only learn about the modeling issue in this lecture, i.e., the CAD3 in
the CAD/CAM system, it surely influences the CAM4 part of the system and
the design process must be aware of the type of “manufacturing” that is done
afterwards.

Of course, we mainly do mathematics here and fairly much ignore the tech-
nical aspects of the manufacturing process, so we end up in CAGD: Computer
Aided Geometric Design which is the mathematical area that is interested in the
math behind CAD. Let’s have fun.

2And, even trickier: What is quality? How can distinguish nice objects from not so nice ones,
how can we measure beauty in numbers?

3Computer Aided Design
4Computer Aided Manufacturing
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Division and multiplication were
discovered. Algebra was invented and
provided in interesting diversion for a
minute or two. And then he felt the
fog of numbers drift away, and looked
up and saw the sparkling, distant
mountains of calculus.

T. Pratchett, Men at arms

Coordinates 2
To model the geometric objects by numbers in a reasonable way, the first step is
to fix a proper reference system.

2.1 Cartesian coordinates and vector spaces
The classical and most common way to attach coordinates to our environment
is by embedding it into Rd, where d stands for ”‘dimension”’. Realistic cases
are d = 2 if we draw on a piece of paper or on a computer screen or d = 3 if we
consider the 3D space around us. Nevertheless it can be a good idea5 to keep d
variable and even consider higher dimensional spaces.

Definition 2.1 (Cartesian space) The Cartesian space Rd is the usual vector space
of all points x = (x1, . . . , xd) with componentwise addition and multiplication:

x + x ′ =


x1 + x

′

1
...

xd + x
′

d

 , λx =


λ x1
...

λ xd

 , λ ∈ R. (2.1)

A word on notation and terminology: Formally we would have to distinguish
between the tuple x and the vector x. A tuple is just a finite sequence of values
while a vector is a member of a vector space and therefore certain operations,
addition and multiplication by scalars, have to be defined for x. Since we will
also deal with matrices, we always write a vector as a column vector like in (2.1),
but will omit transposition in a ”‘tuple notation”’ like x = (x1, . . . , xd)where row
or column is simply irrelevant.

If x1, . . . , xn ∈ Rd are vectors, we can align them as column vectors into a
matrix

X = [x1 . . . xn] =


x11 . . . xn1
...

. . .
...

x1d . . . xnd

 ∈ Rd×n. (2.2)

5At least mathematically, but it is mathematics we are here for.
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We can even see X as the ordered set of x1, . . . , xn or, more precisely, as the
ordered multiset as there can be repetitions among the xj.

Example 2.2 With d = 1 and x1 = x2 = 1, x3 = 0, the multiset consists of

X = [110],

i.e., a “double” 1.

In Cartesian space, a point x ∈ Rd corresponds to the vector that connects the
origin 0 = (0, . . . , 0) to this point in space. Addition of two points is defined as
addition of these two vectors. This means that there always must be a particular
point, namely the origin, in the coordinate system.

Definition 2.3 (Unit vectors) The j–th unit vector ej in Rd is defined by

ejk = (ej)k = δjk =
{
1, j = k,
0, j , k

Definition 2.4 (Products) The inner product or scalar product of x, x ′ is the num-
ber

x · x ′ = xTx =

d∑
j=1

xjx
′

j , (2.3)

the outer product or tensor product is the matrix

x ⊗ x ′ = xx ′T :=
[
xjx

′

k :
j = 1, . . . , d
k = 1, . . . , d

]
=


x1x

′

1
. . . x1x

′

d
...

. . .
...

xdx
′

1
. . . xdx

′

d

 . (2.4)

The euclidean length ‖x‖ of x is defined as

‖x‖ :=
√

xTx =

 d∑
j=1

xj


1
2

. (2.5)

The angle between two vectors x, x ′ ∈ Rd is defined as6

∠(x, x ′) := cos−1
xTx ′

‖x‖ ‖x ′‖
∈ T := R/2πZ ' [−π, π). (2.6)

Exercise 2.1 Show that x ⊗ x ′ has rank 1 and prove the identity

x ′ ⊗ x = (x ⊗ x ′)T .

♦

Since ej ⊗ ek is the matrix with 1 at position j, k and zero everywhere else we get
the7 formula

A =

[
ajk :

j = 1, . . . , d
k = 1, . . . , d

]
=

d∑
j,k=1

ajkej ⊗ ek. (2.7)

6This is a consequence of the inner product formula xTx ′ = ‖x‖ ‖x ′‖ cos θ where then θ is
defined to be the angle between the two vectors.

7Impressive but quite trivial



2.1 Cartesian coordinates and vector spaces 7

Definition 2.5 (Affine transformation) Given y ∈ Rd and a matrix A ∈ Rd×d, the
mapping

x 7→ Ax + y (2.8)

is called an affine transformation. Special cases are

1. A = I: translation Ty : x 7→ x + y.

2. y = 0, A diagonal: scaling, where different coordinates can be scaled differently.

3. y = 0, A = I + (cosα− 1) (ej ⊗ ej + ek ⊗ ek) + sinα(ekeTj − ejeTk): rotation.
A rotation has the form

A =



1
. . .

1

cosα − sinα
1
. . .

1

sinα cosα
1
. . .

1


where the coordinates j, k are the ones with the cosα and sinα terms. Geometri-
cally, this corresponds to a rotation in the plane spanned by ej and ek of an angle
of α. For d = 3 this can also be seen as the rotataion around the “remaining”
axis.

4. y = 0, A = S(W) =

[
Ik W

Id−k

]
: shear, where W ∈ Rk×d−k, k < d.

Exercise 2.2 Show that S(W)S(W ′) = S(W + W ′) and prove that shears form
an abelian subgroup of matrices. ♦

Definition 2.6 (Orthogonal matrices) A matrix Q ∈ Rd×d is called orthogonal
if QTQ = I. An affine transformation is called euclidean map if A is orthogonal.
Normally, we will use the letter Q to denote orthogonal matrices.

Exercise 2.3 Show that a matrix is orthogonal if and only if8 its column vectors
are orthonormal9

♦

Euclidean maps are the most relevant transformations Cartesian spaces as they
provide a remarkable amount of structure.

8There is the abbreviation iff for “if and only if”, invented by Halmos, see (Halmos, 1988).
9Which is the reason why orthogonal matrices are sometimes also called orthonormal matrices,

but the obvious ambiguity persists nevertheless.
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Theorem 2.7 (Euclidean maps) Euclidean maps EQ,y : x 7→ Qx + y

1. preserve distances.

2. form a (noncommuting) group.

Proof: For 1) we choose x, x ′ and consider∥∥∥ETQ,y(x) − ETQ,y(x ′)∥∥∥ = (Qx + y − Qx ′ − y)T (Qx + y − Qx ′ − y)

= (x − x ′)T QTQ︸ ︷︷ ︸
=I

(x − x ′) = ‖x − x ′‖.

For 2) we first have to show that any concatenation of two euclidean maps is
euclidean again:

EQ2,y2

(
EQ1,y1(x)

)
= Q2 (Q1x + y1) + y2 = Q2Q1︸  ︷︷  ︸

:=Q

x + Q2y1 + y2︸        ︷︷        ︸
=:y

(2.9)

and Q is orthogonal since10

QTQ = (Q2Q1)
T(Q2Q1) = QT

1QT
2Q2Q1 = I.

Moreover, we have to show that any euclidean map has an inverse which is, for
EQ,y the map EQT ,−QTy as simple substitution into (2.9) shows:

EQT ,−QTy

(
EQ,y(x)

)
= QTQ︸ ︷︷ ︸

=I

x + QTy − QTy = x.

The group is not abelian11 since orthogonal matrices do not commute in general.
�

Remark 2.8 The group of euclidean maps is constructed from the interaction of two
other groups: the nonabelian SO(n) of orthogonal matrices and the abelian Rd of
transformations. This way of combining two groups where one acts on the elements of
the other, is called a semidirect product and is a construction that is used, for example,
also in the context of wavelets.

Exercise 2.4 Give an example of two orthogonal d × d matrices that do not
commute. ♦

Remark 2.9 Euclidean maps are a superset of what is called rigid motions, i.e., what
we can do to some object when moving it around in 3D space around us. Indeed, a rigid
motion is a euclidean map with det Q = 1, i.e, a map without reflections. Standard
examples are euclidean maps based on rotations.

10Orthogonal matrices form another important subgroup of d × dmatrices, called SO(d).
11The greatest honor for a mathematician is to have his/her name written in lowercase letters

as a property. From that point of view, “Continuous” might be a name to go for.
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Exercise 2.5 Show that the rigid motions form a subgroup of the euclidean
maps. ♦

Remark 2.10 Theorem 2.7 says that the distance between two points is an invariant
under euclidean maps. This can be used to classify objects given as finite sets12 X =
{x1, . . . , xn} of points, often called a point cloud. Such data is collected, for example,
by laser scanners. To classify objects, one can compute the density

φ(d−, d+) =
1

n2
# {1 ≤ j, k ≤ n : d− ≤ ‖xj − xk‖ ≤ d+} (2.10)

of distances in the interval [d−, d+]. For sufficiently large point clouds, i.e.13, we
can make these intervals very small and thus approximately get a density function
φ : R+ → R that describes the object in a way that is invariant under rigid motions.
In practical applications, one directly one uses (2.10) to compute a histogram based on
threshold values d0, d1, . . . . If the thresholds are chosen relative to

max
1≤j,k≤n

‖xj − xk‖

then the method is even invariant under uniform scaling. Note also, that multiple points
only contribute to φ(0) which is a rather irrelevant number anyway.

Affine transformations can also be used to do an affine change of coordinates.
To that end, let V = [v1, . . . ,vn] ∈ Rd×d be any nonsingular14 matrix and v0 ∈ Rd,
then we can define a coordinate vector

v = EV−1,−V−1v0(x) = V−1(x − v0)

as another reference system for which x = EV,v0 . With respect to tuple v, the
vectors vj take the role of the unit vectors ej in the standard coordinate system.
This shows that any change between Cartesian coordinate systems can be seen
as a euclidean map and vice versa.

There is one more operation that becomes particularly important for d = 3

but can be defined in a more general context.

Definition 2.11 (Vector product) For x1, . . . , xd−1 ∈ Rd the vector product or
cross product x × · · · × xd−1 is defined as the formal determinant15

x1 × · · · × xd−1 =

∣∣∣∣∣∣∣∣∣
e1 x11 . . . xd−1,1
...

...
. . .

...

ed x1d . . . xd−1,d

∣∣∣∣∣∣∣∣∣ , (2.11)

12In this context, sets make more sense than multisets though we will see soon that also
multisets can be handled that way.

13Explanation: i.e. stands for the latin phrase id est, meaning “that is”, but in a more educated
fashion.

14Nonsingular and invertible are synonymous though the first is a little bit more common
than the latter.

15This means that in Rd a cross product always must have d− 1 factors.
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which yields for d = 3 the formula

x × x ′ = (x2x
′

3 − x3x
′

2) e1 + (x3x
′

1 − x1x
′

3) e2 + (x1x
′

2 − x2x
′

1) e3

=

 x2x
′

3
− x3x

′

2

x3x
′

1
− x1x

′

3

x1x
′

2
− x2x

′

1

 . (2.12)

It follows from the standard rules for the determinant16 that

x1 × · · · × xj × · · · × xk × · · · × xd−1 = − x1 × · · · × xk × · · · × xj × · · · × xd−1

as well as

x1 × · · · × xj × · · · × (λxj) × · · · × xd−1 = 0, λ ∈ R,

but we also have that17

x · (x1 × · · · × xd−1) =

 d∑
j=1

xjej


T  d∑

k=1

(−1)kek det Xk

 = d∑
j,k=1

(−1)kxj eTj ek︸︷︷︸
=δjk

det X

= det [x x1 . . . xd−1]

which is also called the mixed product of x and x1, . . . , xd−1, see (Kreyszig, 1959).
This implies that

x1 × · · · × xd−1 ⊥ [x1 . . . xd−1]Rd−1 =

{
d−1∑
j=1

αj xj : αj ∈ R

}
=: span {x1, . . . , xd−1},

hence, the cross product provides a normal to the linear subspace ofRd spanned
by x1, . . . , xd−1:

n :=
x1 × · · · × xd−1
‖x1 × · · · × xd−1‖

(2.13)

satisfies nTx = 0 for x ∈ span {x1, . . . , xd−1}. In particular we have for d = 2 the
famous identity

n :=
x × x ′

‖x1x × x ′‖
. (2.14)

16Exchange to columns and the sign flips; the determinant is zero if two columns are multiples
of each other.

17With the matrices

Xk =



x11 . . . xd−1,1
...

. . .
...

x1,k−1 . . . xd−1,k−1
x1,k+1 . . . xd−1,k+1
...

. . .
...

x1d . . . xd−1,d


, k = 1, . . . , d

from the good old Leibniz expansion of the determinant.
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This defines the normal to x and x ′ since

nTx = nTx ′ = 0 and ‖n‖ = 1

only determines n up to sign while (2.14) fixes that as well and gives a preference
to a certain direction. This can be used to define left-handed and right-handed
coordinate systems.

Exercise 2.6 In (Pogorelov, 1987), the mixed product is called scalar triple
product (xyz) : Rd ×Rd ×Rd → R, defined as

(xyz) = x · (y × z).

Show that

y · (x × z) = −x · (y × z) and z · (y × x) = x · (y × z).

♦

2.2 Projective coordinates and efficient affine operations

A somewhat disappointing thing about affine maps is that the two operations,
multiplication by a matrix and addition of a vector, apparently play two different
roles. This can be cured by a slightly more general approach.

Definition 2.12 The projective space Pd is defined as all equivalence classes in R∗ ×
Rn, R∗ = R \ {0} being the set of all units in R, cf. (Gathen & Gerhard, 1999;
Sauer, 2001), with the equivalence

x0
x1
...

xd

 ≡

x ′
0

x ′
1
...

x ′
d

 ⇔

x1/x0
...

xd/x0

 =

x ′
1
/x ′

0
...

x ′
d
/x ′

0

 . (2.15)

The euclidean space Rd is embedded into Pd by

x ↪→ x̂ =

[
1

x

]
=


1

x1
...

xd

 . (2.16)

Lemma 2.13 In the projective setting, affine operations work as follows

(Ax + y)∧ =

[
1

y A

]
x̂. (2.17)
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Proof: A simple18 computation with block matrices19 yields[
1

y A

]
x̂ =

[
1

y A

] [
1

x

]
=

[
1

y + Ax

]
,

which completes the proof. �

Hence, in projective space any affine map can be expressed as a matrix multipli-
cation with a d+1×d+1matrix and these operations map the embedding ofRd

back to Rd. This way, we can easily represent and realize all our rigid motions
which is actually how it is done on graphics cards or in computer graphics in
general. In addition, this way of handling the data is also compatible with pro-
jective maps that enter the scenery as soon as perspective has to be computed,
i.e., when 3D objects have to be represented on a 2D screen. Also, this is relevant
in computer vision where pinhole cameras have to be modeled mathematically.

2.3 Affine geometry and barycentric coordinates
In this chapter we introduce a more geometric and intuitive coordinate system
which will play a fundamental role for the definition of our geometric primitives,
like free form curves and surfaces, later.

Let x, x ′ be two points in Rd, then the line segment connecting these two
points can be written as

`(x, x ′) = {(1− α)x + αx ′ : α ∈ [0, 1]}. (2.18)

This is called linear interpolation between x and x ′ or an affine combination of
the two points. Let us write this in a more fancy way20 as u0 := (1−α), u1 := α,
u = (u0, u1), then u always has the property that

∑
uj = 1 and

`(x, x ′) = {[x x ′]u : u ∈ S1} = [x x ′] S1, S1 := {(u0, u1) : u0, u1 ≥ 0, u0+u1 = 1}.
(2.19)

Moreover, the complete infinite straight line through x and x ′ can be written as

`∗(x, x ′) = [x x ′]A1, A1 = {(u0, u1) : u0 + u1 = 0} (2.20)

and a point belongs to the connecting line iff u0, u1 ≥ 0. For points “outside”
one of the values has to be negative while the other one exceeds 1.

The notation from (2.19) and (2.20) can now be easily extended to arbitrarily
many points x0, . . . , xk with

Ak :=

{
u = (u0, . . . , uk) ∈ R

k+1 :

k∑
j=1

uj = 1

}
, Sk := {u ∈ Ak : u ≥ 0}

(2.21)
18Yes, this proof is very simple. It is so simple because we make good use of notation which

is something that’s not only not forbidden but even required in mathematics. At least in serious
math. And who would be interested in anything else?

19Computations with block matrices work just like with regular matrices, the only differ-
ence is that the “coefficient products” are also matrix-matrix or matrix-vector products. If the
dimensions do not match – then something is wrong.

20Sometimes the shortest way of writing things may be the shortest but can be hard to
generalize. So even fancy notations can be extremely helpful. Only when done right, of course.
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and considering

`∗(X) = XAk, `(X) = XSk, X := [x0 . . . xk] . (2.22)

Definition 2.14 The k–dimensional plane through X is `∗(X) and the k–dimensional
simplex `(X). We also speak of the affine hull

[[X]]∗ := XAk (2.23)

and the convex hull
[[X]] := XSk.

By definition, any point x ∈ `∗(X) can be written as x = Xu for some u = u(x) ∈
Ak. We want to determine this value which is the solution of the linear system

x = Xu, 1 = u0 + · · ·+ uk = 1Tku

that can be conveniently combined into[
1

x

]
=

[
1T

X

]
u =

[
1 . . . 1

x0 . . . xk

]
u

or, in projective terms,
x̂ = [̂x0 . . . x̂k]u =: X̂ u. (2.24)

Definition 2.15 The points x0, . . . , xk are said to be in general position if the matrix
X̂ has rank k+1. Under these circumstances the simplex XSk is called nondegenerate.
The tuple u(x) ∈ Ak such that x = Xu(x) is called the barycentric coordinates of x
with respect to x.

Barycentric coordinates are a rather classical concept and have already been
studied in (Möbius, 1827) long before the time of CAD or CAGD.

Lemma 2.16 If and only if the points X are in general position, then the barycentric
coordinates u(x) ∈ Ak are unique for any x ∈ `∗(X).

Proof: If the points are in general position, then there exists a square k+1×k+1
submatrix Y of X that x ′ = Yu, where x ′ ∈ Rk+1 is the subvector of x that
corresponds to k + 1 linearly independent rows of X̂. But this uniquely defines
u = Y−1x ′.

If, on the other hand, X̂ does not have rank k+ 1, there exists u∗ , 0 such that

0 = X̂u∗ =
[

1T

X

]
u∗ =

[
1Tu∗

Xu∗

]
,

hence, in particular u∗
0
+ · · ·+ u∗

k
= 0 and therefore

u + αu∗ ∈ Ak, u ∈ Ak, α ∈ R.
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Since

X (u(x) + αu∗) = Xu + αXu∗︸︷︷︸
=0

= Xu(x) = x, x ∈ `∗(X), α ∈ R,

no point has unique barycentric coordinates. �

Next, we want to explain the name barycentric21 of these coordinates as this
actually gives some quite nice and iteresting insight. To that end, we assume
that k = d and that we have d+ 1 points x0, . . . , xd in general position.

Example 2.17 (Unit simplex) The intuition behind d + 1 points in Rd in general
position should always be the following: Imagine x0 as the corner point of the coordinate
system and xj, j = 1, . . . , d, as the points that sit at the end of the coordinate vectors vj,
i.e.

xj = x0 + vj, j = 1, . . . , d.

The standard coordinate system in this terminology gives

X = [0 e1 . . . ed] = [0 I] =


0 1 0 . . . 0

0 0
. . .

. . .
...

...
...
. . .

. . . 0

0 0 . . . 0 1

 ∈ R
d×d+1,

which is not invertible22, but of course

X̂ =


1 1 . . . 1

1
. . .

1


is invertible, hence the origin and the unit vectors are indeed in general position23. And
any point x ∈ Rd can then indeed be written as

x =

d∑
j=1

xjej =

1− d∑
j=1

xj

︸          ︷︷          ︸
u0

0 +

d∑
j=1

xj︸︷︷︸
=uj

ej = Xu(x).

We call [[X]] for this specific choice the unit simplex in Rd.

Using Cramer’s rule24, cf. (Fischer, 1984; Marcus & Minc, 1965; Schneider &
Barker, 1973), we can compute the barycentric coordinates of x ∈ Rd as

uj(x) =
det [̂x0 . . . x̂j−1 x̂ x̂j+1 . . . x̂d]

det [̂x0 . . . x̂d]
, j = 0, . . . , d, (2.25)

21Greek “βαρvσ” = “heavy” (Meyer & Steinthal, 1973), which is reflected in “barometer”, but
not in “barista”. Unfortunately, the closing “sigma”, usually given as \varsigma in LATEX, is not
correct in the font used here.

22This is not even a square matrix!
23Which should not come as too much of a surprise.
24Sometimes this is a nice theoretic tool, but one should never solve linear systems by using

determinants. This is almost like dividing by zero, maybe an even worse sin.
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which motivates us to consider det X̂ a little more closely.

Theorem 2.18 (Volume formula) For X ∈ Rd+1×d in general position we have that

vol[[X]] =

∣∣∣∣det X̂
∣∣∣∣

d!
(2.26)

Proof: We begin by showing that the unit simplex has volume 1
d!

which we
will do by induction on d and which is clear for d = 1where the unit simplex is
the unit interval [0, 1] and

vol [0, 1] =
∫ 1
0

dx = 1.

For Xd+1 := [0 Id+1] ∈ Rd+1×d+2, d ≥ 1, we then have25∫
[[Xd+1]]

dx =

∫ 1
0

∫ 1−xd+1
0

· · ·

∫ 1−x2−···−xd+1
0

dxd+1dx1 . . . dxddxd+1

=

∫ 1
0

∫
(1−xd+1)[[Xd]]

d(x1, . . . , xd)dxd+1 =

∫ 1
0

(1− xd+1)
d

∫
[[Xd]]

dxd+1

=
1

d!

∫ 1
0

(1− x)ddx =
1

d!

∫ 1
0

xddx =
1

d!

xd+1

d!

∣∣∣∣∣1
x=0

=
1

(d+ 1)!
.

For arbitrary points X ∈ Rd×d+1 one integrates similarly over

x0 +
d∑
j=1

αj(xj − x0), 0 ≤ αj,

d∑
j=1

αj ≤ 1,

and gets by a change of variables that∫
[[X]]

= |det [x1 − x0 . . . xd − x0]|
∫
[[Xd]]

dx︸     ︷︷     ︸
= 1
d!

=
|det [x1 − x0 . . . xd − x0]|

d!

and since26

det [x1 − x0 . . . xd − x0] = det
[
1 0 . . . 0

x0 x1 − x0 . . . xd − x0

]
= det

[
1 1 . . . 1

x0 x1 . . . xd

]
= det X̂,

(2.26) follows. �

25Since

(1− xd+1)[[Xd]] =

x ∈ Rd : x ≥ 0,
d∑
j=1

xj ≤ 1− xd+1


is exactly one slice of the simple for fixed xd.

26The determinant is not changed when rows or columns are subtracted from other rows or
columns.
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u0u1

u1

u0

x0 x1

x0

x1

Figure 2.1: Barycentric coordinates with respect to a straight line in 2D. The
position of the reference does not affect the relative volumes (lengths) of the
subintervals and therefore the barycentric coordinates remain invariant.

Substituting (2.26) into (2.25), we now get the volume interpretation of barycen-
tric coordinates:

uj(x) =
vol[[x0 . . . xj−1 x xj+1 . . . xd]]

vol[[X]]
, j = 0, . . . , d, x ∈ [[X]]. (2.27)

If X has less than k + 1 ≤ d + 1 columns, then (2.27) can still be extended, the
only difference is that we consider the k–dimensional volume of the simplex
[[X]] = XSk, that is,

uj(x) =
volk[[x0 . . . xj−1 x xj+1 . . . xk]]

volk[[X]]
, j = 0, . . . , k, x ∈ [[X]]. (2.28)

This is shown in Fig. 2.1: the 1–dimensional volume of [[x0 x1]] is the length of the
interval and the barycentric coordinates are the relative lengths of the intervals
opposite of the reference corner.

For the 2D case, the geometry of barycentric coordinates can be seen in
Fig. 2.2. The point x splits the triangle into three subtriangles and the barycentric
coordinates are the fraction of the total area that is covered by the respective
triangle where one of the reference points is replaced by x, which is the triangle
opposite the reference point.

Now, the name is easily explained: the barycenter of the nondegenerate27 k–
dimensional simplex [[X]], X ∈ Rd×k+1 is the point x with barycentric coordinates
u(x) =

(
1
k+1
, . . . , 1

k+1

)
.

What makes barycentric coordinates elegant and useful is the fact that they
are independent of position and scale of the coordinate system.

Proposition 2.19 (Invariance) Barycentric coordinates28 are invariant under affine
maps with a nonsingular matrix A.

27From now on we automatically request the reference simplex to be nondegenerate when
speaking of barycentric coordinates. This statement should actually be made in the text and not
in a footnote, but this is a good way of checking if the reader also looks at footnotes.

28See footnote 27!
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x0 x1

x2

u1

u2

u0

Figure 2.2: Barycentric coordinates with respect to a triangle. x is the point
inside the triangle and the barycentric coordinates are the ratios between
the area of the triangle opposite to the reference point and the area of the
full triangle and the

Proof: Let X ∈ Rd×k+1 be a nondegenerate reference simplex and

X ′ := EA,y(X) = AX + y1T = [Ax0 + y . . .Axk + y]

its image under the affine map. Now, if x = Xu(x), then

EA,y(x) = Ax + y = AXu(x) + y = AXu(x) + y 1Tu(x)︸    ︷︷    ︸
=1

=
(
AX + y1T

)
u(x) = X ′u(x)

and since barycentric coordinates are unique, this proves the claim, see Exer-
cise 2.7. �

Exercise 2.7 Show that EA,y(X) is nondegenerate if X is nondegenerate and A is
nonsingular. ♦

Definition 2.20 (Affine space) For a given nondegenerate reference system X ∈ Rd×n+1,
n ≤ d, we denote by

En := [[X]]∗ = XAn

the affine space or euclidean space of dimension k and identify each point with its
barycentric coordinates.

It first seems artificial and somewhat strange to define En this way but it gives
a clearer and more intuitive geometric flavor than working in the vector space
Rn. First note that affine combinations

u =

k∑
j=1

αj uj,
k∑
j=1

αj = 1,



18 2 COORDINATES

+En −En ±E ′n ×R aff.comb.
En - E ′n En - En
E ′n En En E ′n E ′n E ′n

Table 1: Admissible operations between En and E ′n and their results.

satisfy

1Tu =

k∑
j=1

αj 1Tuj︸︷︷︸
=1

=

k∑
j=1

αj = 1,

hence any affine combination of barycentric coordinates is barycentric coordi-
nates again. On the other hand, λu, λ ∈ R, does not make sense as then we loose
the necessary property that barycentric coordinates sum to one. If we set

v = u − u ′, u,u ′ ∈ An,

then
1Tv = 1T(u − u ′) = 1Tu − 1Tu ′ = 1− 1 = 0,

so that v also does not satisfy the requirements for barycentric coordinates.
Nevertheless, this type of objects is interesting as the difference between two
points is the natural concept of a direction.

Definition 2.21 (Directions) v ∈ Rn+1 is called a direction if 1Tv = 0. The set of all
directions is the vector space E ′n.

This separation between points and directions is what is behind the “arrow
notion” of vectors that can be quite frequently found in the literature; in fact,
to some extent directions only make sense as displacement between points, so
the “arrow” is only relevant when fixed to a point and therefore pointing to a
new one. Table 1 shows which operations are admissible between points and
directions and what the results are. Moreover, this can be used to define linear
and affine spaces in a concise way that is much simpler as the one often found
in analysis, cf. (Sauer, 2015; Spivak, 1965).

Definition 2.22 A k dimensional affine subspace given by (x,Y), x ∈ En, Y =
[y1, . . . ,yk] ∈ (E ′n)k is

En ⊇ x + YRk =

{
x +

k∑
j=1

αj yj : α ∈ Rk
}

(2.29)

To be nondegenerate, the directions yj must be linearly invariant.

Exercise 2.8 Show that Definitions 2.20 and 2.22 are consistent, i.e., that for
any k–dimensional nondegenerate affine subspaces (x,Y) of Rd there exists a
nondegenerate reference system X ∈ Rd×k−1 such that

x + YRk = X Ak
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and vice versa. ♦

Even if the next result is very easy to prove, it shows us the “different roles” of
Rn.

Theorem 2.23 (Cartesian vs. euclidean space) The cartesian spaceRd can be iden-
tified withEd andE ′

d
inRd by means of the reference system X = [0 e1 . . . ed] ∈ Rd×d+1.

Proof: Since

[
1T

X

]
=

[
1 1 . . . 1

0 e1 . . . ed

]
=


1 1 . . . 1

1
. . .

1


is invertible, any point x ∈ Rd has unique barycentric coordinates

u(x) =
[

1T

X

]−1
x̂ =


1 1 . . . 1

1
. . .

1



1

x1
...

xd

 =
[
1− 1Tx

x

]
.

Hence, x ' u(x) =
[
1− 1Tx

x

]
. Taking a direction y = x − x ′ in Rd, then

y ' v(y) =
[
1− 1Tx

x

]
−

[
1− 1Tx ′

x ′

]
=

[
−1T(x − x ′)

x − x ′

]
=

[
−1Ty

y

]
.

In particular,

1Tu(x) = 1− 1Tx + 1Tx = 1 and 1Tv(y) = −1Ty + 1Ty = 0.

�

Exercise 2.9 Prove that [
1 1T

0 I

]−1
=

[
1 −1T

0 I

]
.

♦

Remark 2.24 Theorem 2.23 shows how to embedRd intoRd+1 to obtain the barycentric
representations for Ed and E ′

d
.

The barycentric approach can be used to do analysis with functions f : En → R,
especially to define derivatives. Indeed, let x ∈ En and y ∈ E ′n and consider the
difference

∆yf(x) := f(x + y) − f(x).
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Definition 2.25 (Directional derivative) The directional derivativeDyf(x) at x ∈
En for y ∈ E ′n is defined as

Dyf(x) := lim
h→0

∆hyf

h
= lim

h→0
f(x + hy) − f(x)

h
, (2.30)

provided the limit exists in which case we call f directionally differentiable at x in the
direction y. f is called continously differentiable if (x,y) 7→ Dyf(x) is a continuous
function on En × E ′n.

To get an idea about how to handle the geometric objects, let us reprove a
classical observation from Analysis (Sauer, 2015).

Proposition 2.26 If f is continuously differentiable thenDyf(x) is a linear map in y,
that is

Dαy+βy ′f(x) = αDyf(x) + βDy ′f(x). (2.31)

Proof: Homogeneity of the directional derivative is easily proved:

Dαyf(x) = lim
h→0

f(x + hαy) − f(x)
h

= α lim
h→0

f(x + hαy) − f(x)
hα

= α lim
h ′→0

f(x + h ′y) − f(x)
h ′

= αDyf(x).

For linearity, we consider

Dy+y ′f(x) = lim
h→0

f (x + h(y + y ′)) − f(x)
h

= lim
h→0

1

h
(f (x + h(y + y ′)) − f(x + hy) + f(x + hy) − f(x))

= lim
h→0

f ((x + hy) + hy ′) − f(x + hy)
h

+ lim
h→0

f(x + hy) − f(x)
h

= Dy ′f(x) +Dyf(x),

where for the first term we use the differentiability. �

Exercise 2.10 Show that for any differentiable f one has

f(x + y) − f(x) =
∫ 1
0

Dyf(x + ty)dt

and use that to complete the proof of Proposition 2.26. ♦

We will get back to the issue of barycentric coordinates when considering piece-
wise curves and surfaces.
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Welcher aber . . . durch die Geometria
sein Ding beweist und die gründliche
Wahrheit anzeigt, dem soll alle Welt
glauben. Denn da ist man gefangen.

A. Dürer

Differential geometry 3
If we want to work with curves and surfaces, we have to understand some of the
mathematical backgrounds for these objects. Since we will mostly deal locally
with smooth objects, differential geometry will be the proper context.

3.1 Curves
We begin our “poor man’s differential geometry” by collecting some basic facts
about curves where we will mostly follow (Farin, 1988; Kreyszig, 1959).

Definition 3.1 (Curve) A (parametric) curve inRd is a function f : [a, b]→ Rd from
a parameter invterval to Rd, hence

f(t) =


f1(t)
...

fd(t)

 , t ∈ I := [a, b]. (3.1)

A curve is called continuous or differentiable of some order if alle coefficient functions
fj are continuous or differentiable. In particular, the pth derivative f(p) of a sufficiently
smooth29 curve is defined as30

f(p) =
[
f
(p)

j
: j = 1, . . . , n

]
=


f
(p)

1
...

f
(p)

d

 . (3.2)

We will write ḟ and f̈ for the first and second derivative of f with respect to t.
A curve f is called regular if f is differentiable and ḟ , 0.

Exercise 3.1 Show that the definition of a derivative for curves is consistent:

ḟ(t) =


ḟ1(t)
...

ḟd(t)

 = lim
h→0

1

h
(f(t+ h) − f(t)) .

♦

29That means that all derivatives up to order up to p exist for all component functions.
30This is more an explanation of the notation.
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Remark 3.2 The terminology for curves is not unique: In some part of the literature
the curve is the function [a, b]→ Rd, for others the curve is the set f([a, b]) ⊂ Rd and
the function f is then called a parametrization of the curve. Moreover, differentiability
of a curve does not mean that its image is a smooth object, too, see Pic. 3.1.

Figure 3.1: Neil’s parabola

f(t) =
(
t3

t2

)
, t ∈ [−1, 1],

is a smooth curve in the sense that f has derivatives of any order, but its
image is not smooth as it has a visual cusp at t = 0. Note that the curve is
not regular there..

3.1.1 Reparametrizations

Definition 3.3 (Reparametrization) A reparametrization of a curve f : [a, b] →
Rd is a function ϕ ∈ C1(I ′), I ′ := [a ′, b ′], such that

ϕ̇ > 0 and ϕ(I ′) = I. (3.3)

A Ck reparamterization is a reparametrization with ϕ ∈ Ck(I ′).

Of course, a reparametrization does not change the curve as a set as clearly

(f ◦ϕ)(I ′) = f (ϕ(I ′)) = f(I).

Definition 3.4 For a differentiable curve f and a ≤ u ≤ v ≤ t the arc length of the
curve segement from u to v is defined as

L[u,v]f :=
∫ v
u

‖ḟ(t)‖dt. (3.4)
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It can be easily shown, see (Sauer, 2015), that the arc length of the segment is
equivalently described as

lim
tj+1−tj→0

N∑
j=1

‖f(tj) − f(tj−1)‖, u = t0 < t1 < · · · < tN = v

which is the length of the piecewise linear function that passes through the
points f(tj), hence, in the limit the length of the curve. Since

L[a,u]f =
∫u
a

‖ḟ(t)‖dt =
∫u ′
a

‖ḟ(t)‖dt+
∫u
u ′
‖ḟ(t)‖dt = L[a,u ′]f + L[u ′,u]f,

the function
`(u) =

∫u
a

‖ḟ(t)‖dt

is strictly monotonically increasing whenever f is regular and ` := `(b) is the
arc length of the full curve on [a, b].

Exercise 3.2 Show that for any regular curve the function u 7→ `(u) is differen-
tiable on I and ˙̀ , 0. ♦

If f is a regular curve then ϕ := `−1 : [0, `]→ [a, b] is differentiable with

ϕ ′(s) :=
dϕ

ds
(s) =

1

˙̀(u)
=

1

‖ḟ(u)‖
=

1∥∥∥ḟ(u)
∥∥∥ , s = `(u),

and therefore ∥∥∥(f ◦ϕ) ′ (s)∥∥∥ = ‖ḟ(ϕ(`(u)))ϕ ′(s)‖ =
‖ḟ(u)‖

‖ḟ(u)‖
= 1 (3.5)

and
L[0,s](f ◦ϕ) =

∫ s
0

‖ (f ◦ϕ) ′ (σ)‖︸             ︷︷             ︸
=1

dσ =

∫ s
0

dσ = s, s ∈ [0, `], (3.6)

because of which this special parametrization is called the arc length parametriza-
tion of f. This is the most natural parametrization of a curve.

Definition 3.5 The tangent of a regular curve f atu ∈ I is the vector ḟ(u), the tangent
curve is tf : t→ ḟ.

If f is parametrized with respect to the arc length, then tf satisfies ‖tf(t)‖ = 1,
t ∈ I. From now on, we denote by f(s) the arc length parametrization31 of f and
by f ′, f ′′, and so on, the derivatives of this function with respect to s.
From

1 = ‖f ′‖2 = (f ′)Tf ′ ⇒ 0 =
d

ds
‖f ′‖2 = (f ′′)Tf ′ + (f ′)Tf ′′ = 2(f ′′)Tf ′,

31Which is, to be precise f(ϕ(s))
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it follows immediately that
f ′′ ⊥ f ′, (3.7)

the second derivative with respect to arc length is perpendicular to the unit
tangent. To that end,

n :=
f ′′

‖f ′′‖

is called the principal normal32 of f and is a unit vector perpendicular to the
normal. The value

κ(s) := ‖f ′′(s)‖, s ∈ [0, `], (3.8)

is called the curvature of f at s and

ρ(s) =
1

κ(s)

the radius of curvature. Note that the curvature is an intrinsic value of the curve
that does not depend on the (initial) parametrisation of f since we switched to
the arc length parametrization before computing this value. Since

f ′′(s) = f̈(t)ϕ ′(s) + ḟ(t)ϕ ′′(s), t = ϕ(s) = `−1(s),

the curvature is not really easy to compute for a general parametrization. There
are interesting concepts of higher order like the torsion of a space curve which
can be found for example in (Kreyszig, 1959), but would lead to far here.

3.1.2 Distances

The next question concerns the distance between two curves f,g, where we
assume that they are defined over the same parameter interval I. We are only
interested in “worst case” distances where we have the following options:

Parametric distance: Here one considers

d (f,g) := max
u∈I

∥∥∥f(u) − g(u)
∥∥∥ , (3.9)

which of course requires the curves to be parametrized identically and
depends strongly on the respective parametrizations.

Parameter free distance: Since intrinsically the parametrization does not mat-
ter, we could build it into the definition:

d (f,g) := min
ϕ̇>0

max
u∈I

∥∥∥fϕ(u) − g(u)
∥∥∥ , (3.10)

where ϕ : I → I should be a regular paramterization. This is very ge-
ometric, but notrivial to compute as determining ϕ leads to a nonlinear
variational problem which is not so easy to solve even if there are methods,
cf. (Gelfand & Fomin, 1963; Kirk, 1970; Stengel, 1986).

32And again direction matters!
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Arc length distance: somewhere in the middle one could use reweighted arc
length parametrization, scaled linearly according to the ration between `f
and `g

d (f,g) := max
0≤s≤`f

∥∥∥∥∥∥f(s) − g
(
`g

`f
s

)∥∥∥∥∥∥ . (3.11)

Especially when the curves are intially parameterized with respect to the
arc length, this is a good method.

Hausdorff distance: for any point f(u) on the curve f(I) one chooses the closest
point on g and maximizes this value:

max
u∈I

min
u ′∈I

∥∥∥f(u) − g(u ′)
∥∥∥ .

Since min und max may not be interchanged so easily, we symmetrize the
whole thing

d (f,g) := max
{

max
u∈I

min
u ′∈I

∥∥∥f(u) − g(u ′)
∥∥∥ ,max

u ′∈I
min
u∈I

∥∥∥f(u) − g(u ′)
∥∥∥} .

(3.12)
The drawback is again that this expression is hard to compute.

Figure 3.2: Two curves for which all the distance concepts lead to different
results.

The choice of the distance concept depends very much on the application. Para-
metric distance is natural if the paramterizations are meaningful, Hausdorff
distance is the most reasonable thing in terms of geometry of point sets.

3.1.3 Local frames and the difference between plane and space

Next, we return to our differential geometry and consider the difference between
plane and space curves, i.e., d = 2 and d = 3, a little bit more carefully, see again
(Kreyszig, 1959; Struik, 1961).
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For f : I → Rd, d = 2, 3, we consider a Taylor expansion of f around u ∈ I
and get for δ ∈ R,

f (u+ δ) = f(u) + δ ḟ(u) +
δ2

2
f̈(u) +

δ3

3

...
f (u) + · · · =

∞∑
j=0

δj

j!
f(j)(u),

where the derivatives of order higher than 3 will be ingored. Next, we request
that the first d derivative f(j), j = 1, . . . , d, are linearly independent. Then the
form a local coordinate system that can be orthogonalized by means of the
Gram–Schmidt method:

t :=
ḟ(u)∥∥∥ḟ(u)

∥∥∥
2

,

ñ := f̈(u) − t tT f̈(u) = f̈(u) −
ḟT(u)f̈(u)∥∥∥ḟ(u)

∥∥∥2
2

ḟ(u)

=
f̈(u) ḟT(u)ḟ(u) − ḟ(u) f̈T(u)ḟ(u)∥∥∥ḟ(u)

∥∥∥2
2

=
(F(u) − FT(u)) ḟ(u)∥∥∥ḟ(u)

∥∥∥2
2

, F := f̈ḟT ,

n :=
ñ∥∥∥ñ
∥∥∥
2

=
ḟT(u)ḟ(u) f̈(u) − ḟT(u)f̈(u) ḟ(u)∥∥∥ḟT(u)ḟ(u) f̈(u) − ḟT(u)f̈(u) ḟ(u)

∥∥∥
2

=
(F(u) − FT(u)) ḟ(u)∥∥∥(F(u) − FT(u)) ḟ(u)

∥∥∥
2

,

b :=
ḟ(u) × f̈(u)∥∥∥ḟ(u) × f̈(u)

∥∥∥
2

.

In R3 we again use the vector product from (2.12),

x × y = det

 e1 x1 y1
e2 x2 y2
e3 x3 y3

 =
 x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1


definiert ist. Die Tangente t we already know as f ′(s), s = s(u) and because of
the also known argument

1 =
∥∥∥f ′(s)

∥∥∥2
2
= (f ′(s))T f ′(s) ⇒ 0 =

d

ds

(
(f ′(s))T f ′(s)

)
= 2 (f ′(s))T f ′′(s)

the normal n must be a multiple of f ′′ as

d2

ds2
f (u(s)) =

d

ds

(
ḟ (u(s)) u ′(s)

)
= f̈ (u(s)) (u ′(s))2 + ḟ (u(s)) u ′′(s) (3.13)

lies in the span of ḟ and f̈ and is perpendicular to t, hence also to ḟ. The binormal
b only exists for d = 3 and is defined by being perpendicular to ḟ and f̈.

Exercise 3.3 Show that in R3 the normal can be computed as

n = b × t = −
ḟ ×

(
ḟ × f̈

)∥∥∥ḟ
∥∥∥
2

∥∥∥ḟ × f̈
∥∥∥
2

.

Hint: use properties of the vector product. ♦
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Definition 3.6

1. The vectors t,n,b form the Frenet frame33 at u and give natural and intrinsic
local coordinate system at u.

2. The osculating plane34 is the affine plane through f(u) spanned by t und n. In
R2 it is meaningless.

It is time to illustrate these concepts by means of a (very) simple example.

Example 3.7 For I = [0, 1] we consider the line segment

f(u) = au+ b, 0 , a,b ∈ Rd, d = 2, 3. (3.14)

The tangents are a/‖a‖2 and of course35 the curvature is zero as we can see by taking
derivatives

ḟ(u) = a, f̈(u) = 0.

Now we use the regular36 reparametrization ϕ(u) = u2, so that fϕ(u) = au2 + b,
hence

ḟϕ = 2au, f̈ϕ = 2a , 0.

The curvature is still zero since ḟϕ and f̈ϕ are linearly dependent and the normal as
“direction of curvature” is part of f̈ϕ which is perpendicular to ḟϕ.

Exercise 3.4 What is the arc length paramterization of f from (3.14)? ♦

3.1.4 Connecting curves

Most objects used in Geometric Modeling are of a piecewise nature, i.e., consist
of various curve pieces or surface patches. Let us start simple with curves and
let us consider two curves f : [t0, t

∗] and g : [t∗, t1] which are combined into
the composite curve

c(t) =
{

f(t), t ∈ [t0, t
∗] ,

g(t), t ∈ [t∗, t1] ,
t ∈ [t0, t1] (3.15)

and its behavior at t∗. If the values differ at t∗, it is not reasonable to speak of a
composite curve, hence we always request that

f (t∗) = g (t∗) . (3.16)

Differentiability is getting more interesting. We could first require that, in
addition to (3.16), we also have

ḟ (t∗) = ġ (t∗) (3.17)
33In German Frenet–Dreibein.
34In German Schmiegeebene, the name is due to (one of the) Johann Bernoulli(s), or, as written

in (Struik, 1961), “John Bernoulli”.
35Intuitively this is clear, but nevertheless this is no replacement for a proof.
36The zero of ϕ̇ at u = 0 is irrelevant, and otherwise one could use ϕ(u) = (1 − ε)u2 + εu,

0 < ε < 1, which just complicates the computations
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which is, however, not intrinsic since

ḟϕ(t∗) =
d

dt
(f ◦ϕ) (t∗) = ḟ (ϕ(t∗)) ϕ̇(t∗)

which violates (3.17) whenever ϕ̇(t∗) , 1. Hence, differentiability is not intrinsic.
This motivates the introduction of geometric differentiabiliy, abbreviated asG1

where we request that

f ′(t∗) =
ḟ(t∗)∥∥∥ḟ(t∗)

∥∥∥
2

=
ġ(t∗)∥∥∥ġ(t∗)

∥∥∥
2

= g ′(t∗), (3.18)

i.e., ḟ(t∗) and ḟ(t∗) are collinear.

Definition 3.8 (G1) The curves f and g join G1 smooth at t∗ if either of following
three equivalent conditions is satisfied:

1. The unit tangents at t∗ coincide, i.e., the tangents pint in the same direction.

2. The curve f can be reparameterized regularly such that f◦ϕ and g joinC1 smooth
at t∗.

3. If both curves are parametrized with respect to their arc length, they join differen-
tiably.

Even more interesting is the case of second order differentiability. Parametrically,
this is easy, one just demands

f̈ (t∗) = g̈ (t∗) (3.19)

in addition to (3.16) and (3.17). Geometrically, this would be

f ′ (t∗) = g ′ (t∗) and f ′′ (t∗) = g ′′ (t∗) . (3.20)

Rewriting the first of these conditions as

g ′ (t∗) = ḟ (t∗) t ′, t ′ = t ′ (s (t∗)) =
∥∥∥ḟ (t∗)

∥∥∥−1
2
, (3.21)

and the second as
g ′′ (t∗) = f̈ (t∗) (t ′)2 + ḟ (t∗) t ′′, (3.22)

we see that g ′′ has to lie in the osculating plane of f at t∗ which is trivial for d = 2
but a real constraint for space curves. Note that (3.22) is a nonlinear equation in
t ′ and t ′′ which can not really be solved. Therefore, the following definition of
second order geometric differentiability is normally used.

Definition 3.9 (G2) Two parametric curves f and g join G2 smooth at t∗ if they join
differentiably there37 and are C2 with respect to the arc length parametrization.

37With respect to the global paramtrization on [u0, u1]
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With this definition we get

t ′f =
∥∥∥ḟ (t∗)

∥∥∥−1
2

=
∥∥∥ġ (t∗)

∥∥∥−1
2

= t ′g =: t ′,

and (3.22) yields that

0 = f ′′ (t∗) − g ′′ (t∗) = f̈ (t∗) (t ′)2 + ḟ (t∗) t ′′f − g̈ (t∗) (t ′)
2
+ ġ (t∗) t ′′g

= (t ′)
2

(
f̈ (t∗) − g̈ (t∗) + ḟ (t∗)

t ′′f − t ′′g

(t ′)
2

)
.

This observation can be formalized in the following statement.

Theorem 3.10 If t∗ is no critical point, a C1 connection is a G2 connection iff there
exist λ ∈ R such that f̈ (t∗) − g̈ (t∗) = λ ḟ (t∗).

3.2 Surfaces

The differential geometry for surfaces is more challenging or interesting38, due
to which we will not consider it in detail but just survey the main concepts
without being mathematically precise. A surface is a two dimensional object
which only becomes relevant if the ambient space Rd has at least dimension
d = 3.

Definition 3.11 A parametric surface is a mapping f : Ω→ Rd, whereΩ ⊂ R2 and
d ≥ 3.

The parameter domainΩ can be quite general in an application context. Besides
the usual convicts like triangles39 and rectangles40, trimmed surfaces play an
important role in CAD systems. Here one has a closed curve

f : [a, b]→ Ω ′ ⊂ R2, f(a) = f(b), (3.23)

and Ω ⊂ Ω ′ is the region enclosed by the curve. These curves can be quite
general and also complicated but they should not be self intersecting, of course.
For simplicity, we also assume that all components of f are at least C2, see, for
example41 (Heuser, 1983; Sauer, 2015; Spivak, 1965).

Definition 3.12 (Derivative) The (total) derivative or Jacobian of f is the matrix
valued function

∇f :=
[
∂fj

∂xk
:
j = 1, . . . , d
k = 1, 2

]
=


∂f1

∂u

∂f1

∂v
...

...
∂fd

∂u

∂fd

∂v

 , x = (x1, x2) = (u, v). (3.24)

38Add your favorite euphemism for “difficult” here.
39With barycnetric coordinates, of course.
40Which connect quite nicely to the theory of manifolds in Analysis, cf. (Sauer, 2015; Spivak,

1965).
41The permanent references to my lecture notes are not because they are claimed to be the

best reference but because they are the most accessible one.
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The surface is said to be regular at x if rank∇f = 2, that is, if the columns of ∇f are
linearly independent.

A surface reparametrization is a C1 function φ : Ω ′ → Ω and it is called regular
if

det∇φ(x) > 0, x ∈ Ω ′. (3.25)

Definition 3.13 The tangent space of f at x is the two dimensional affine subspace
generated by the reference system [f(x),∇f(x)], and the tangent plane the respective
point set in Rd:

Tf(x) := [f(x),∇f(x)]A2 = f(x) + ∇f(x)R2. (3.26)

If φ is a regular reparametrization with φ(x ′) = x, then, by the chain rule,

Tf◦φ(x
′) = f(φ(x ′)︸  ︷︷  ︸

=x

) + ∇ (f ◦ φ) (x ′)R2 = f(x) + ∇f(φ(x ′))∇φ(x ′)R2︸         ︷︷         ︸
=R2

= f(x) + ∇f(x)R2 = Tf(x),

which means that the tangent plane is independent of regular reparametriza-
tions, hence an intrinsic property. If d = 3, then the surface normal can be
computed as

n(x) =

∂f
∂u
×
∂f
∂u∥∥∥∥∥ ∂f

∂u

∥∥∥∥∥ ∥∥∥∥∥ ∂f
∂u

∥∥∥∥∥
and the tangent plane is

Tf(x) =
{

x ∈ R3 : xTn(x) = fT(x)n(x)
}
.

Note that the direction of the surface normal depends on the parametrization of
the surface.

Curvature properties are a little bit more complicated as the second deriva-
tive of f is

∇
2f :=

[
∂2fp

∂xj∂xk
:
p = 1, . . . , d
j, k = 1, 2

]
∈ Rd×2×2,

which is a d× 2× 2 tensor. These can be handled in general, see (Kreyszig, 1959;
Struik, 1961), but needs a lot of terminology and theory. To keep things simple
and get the idea of curvatures nevertheless, we restrict ourselves to d = 3, rotate

our coordinate system such that n(x) = e3 =

 00
1

 and assume that locally

f(x) =

 u

v

f(u, v)

 =
[
x

f(x)

]



3.2 Surfaces 31

is a scalar valued function. Since we assumed that the tangent plane is hor-
izontal, f has a minimum or maximum there and therefore ∇f(x) = 0. The
Hessian

∇
2f(x) =


∂2f

∂u2
∂2f

∂u∂v

∂2f

∂u∂v

∂2f

∂v2


of f is a symmetric 2×2matrix with two real eigenvalues42 λ1 ≤ λ2 and (normal-
ized) eigenvectors x1, x2 where

λ1 = xT1∇
2f(x)x1 ≤ yT∇2f(x)y ≤ xT2∇

2f(x)x2 = λ2, y ∈ R2, ‖y‖ = 1. (3.27)

Consequently, x1 and x2 are the two directions in R2 where the above bilinear
form is maximally or minimally curved. This is depicted in Fig. 3.3. Since

Figure 3.3: Two bilinear forms, one with two positive eigenvalues 0 < λ1 <
λ2 (left) and one with a negative and a positive eigenvalue λ1 < 0 < λ2
(right). The main lines of curvature are quite visible.

λ1λ2 = det∇2f and λ1 + λ2 = trace∇2f,

these two invariants43 describe the curvature behavior of the quadratic form

y 7→ yT∇2f(x)y

independently of the coordinate system we use for y.

Definition 3.14 (Curvatures) The Gaussian curvature κg and the mean curvature
κm of f at x are defined as

κg := λ1 λ2 = det∇2f(x), κm =
1

2
(λ1 + λ2) =

1

2
trace∇2f(x). (3.28)

42This is “standard” Linear Algebra, cf. (Brieskorn, 1985; Fischer, 1984).
43Eigenvalues are not changed by a similarity transform of the form A 7→ T−1AT .
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With a proper notion of determinant and trace, this can be carried over to
arbitrary parametrized surfaces and defines a local system of principal curvature
directions44 and principal curvatures.

Let us briefly check that the notion is indeed intrinsic and consider

∂

∂x ′
j

(f ◦ φ)(x ′) =
∂f

∂u
(φ(x ′))

∂φ1

∂x ′
j

(x ′) +
∂f

∂v
(φ(x ′))

∂φ2

∂x ′
j

(x ′)

as well as

∂2

∂x ′
j
∂x ′

k

(f ◦ φ)(x ′)

=

(
∂2f

∂u2
(x)

∂φ1

∂x ′
k

(x ′) +
∂2f

∂u∂v
(x)

∂φ2

∂x ′
k

(x ′)

)
∂φ1

∂x ′
j

(x ′) +
∂f

∂u
(x)

∂2φ1

∂x ′
j
∂x ′

k

(x ′)

+

(
∂2f

∂u∂v
(x)

∂φ1

∂x ′
k

(x ′) +
∂2f

∂v2
(x)

∂φ2

∂x ′
k

(x ′)

)
∂φ2

∂x ′
j

(x ′) +
∂f

∂v
(x)

∂2φ2

∂x ′
j
∂x ′

k

(x ′)

=
(
∇
Tφ(x ′)∇2f(x)∇φ(x ′)

)
jk
+
∂f

∂u
(x)︸   ︷︷   ︸

=0

(
∇
2φ1(x

′)
)
jk
+
∂f

∂v
(x)︸   ︷︷   ︸

=0

(
∇
2φ2(x

′)
)
jk

=
(
∇
Tφ(x ′)∇2f(x)∇φ(x ′)

)
jk
,

since we assumed the tangent plane at f(x ′) to be horizontal. This, however,
indicates45 that the eigenvalues are the same: If y is a normalized eigenvector to
the eigenvalue λ of ∇2f(x), then(

∇φ(x ′)−1y
)T
∇
2(f ◦ φ)(x ′)

(
∇φ(x ′)−1y

)
= yT∇−Tφ(x ′)∇Tφ(x ′)∇2f(x)∇φ(x ′)∇φ(x ′)−1y = yT ∇2f(x)y = λ,

hence the two eigenvalues λ ′
1
≤ λ ′

2
of the reparametrized surface satisfy λ ′

1
≤

λ1 ≤ λ2 ≤ λ
′

2
and since

∇
f(x) = ∇−Tφ(x ′)∇2(f ◦ φ)(x ′)∇φ(x ′),

the same argument also leads to λ1 ≤ λ ′1 ≤ λ
′

2
≤ λ2 with the final consequence that

λ1 = λ ′
1

and λ2 = λ ′
2
. Hence, the curvatures are invariant under reparametriza-

tion which makes them an intrinsic quantity.
We can also ask the question when two surfaces join smoothly along either

a point or a common curve. Continuity is obvious and once the two surfaces
join continously along a curve, their restriction to that curve is indeed the curve
itself. For simplicity, suppose that

f : [s0, s1] × [t0, t
∗]→ R3, g : [s0, s1] × [t∗, t1]→ R3.

If they join continuously along the curve

h : u 7→ f(u, t∗) = g(u, t∗)
44The associated eigenvalues.
45This is not a full proof and not intended to be one.
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then the partial derivatives are

∂f
∂u

(u, t∗) =
∂g
∂u

(u, t∗) = ḣ(u), u ∈ [s0, s1],

and the nature of the joint depends only on the cross boundary derivative. Ge-
ometric differentiability is still very simple to describe: the tangent planes have
to coincide in each connection point. Higher order differentiability, however, is
more intricate and we are not going to consider it here.
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Suppose a contradiction were to be
found in the axioms of set theory. Do
you seriously believe that a bridge
would fall down?

F. Ramsey

Geometric objects I:
Curves & triangular

surfaces 4
In this section we will introduce the basic 1D objects to be manipulated in a
CAD system, namely curves.

4.1 Basic curves
We begin with the simples types of curves, namely line segments and circular
arcs. They are so simple that this section mainly consists of definitions.

Definition 4.1 The line segment `(x0, x1) associated to x0, x1 ∈ Rd is the curve

`(x0, x1)(t) = (1− t)x0 + tx1, t ∈ [0, 1].

The polyline segment or polygon is the curve

`(x0, . . . , xn) = (1− t ′)xbtc + t ′xbtc+1, t ′ := t− btc, t ∈ [0, n].

Exercise 4.1 Determine the arc length parametrization of a polygon `(x0, . . . , xn).
♦

Definition 4.2 A circular arc c(x0, x1, x2) is the part of the circle that passes through
the three points in the given order. A planar circle c(xc, r) ⊂ R2 is the well known set

c(xc, r) = {y ∈ R2 : ‖y − xc‖ = r}. (4.1)

The above definition of a circle has the drawback that it only works in R2, in
higher dimensions it gives a sphere instead. The circular arc, on the other hand,
works in arbitrary Rd. If the three points are in general position, they define an
affine plane [[x0, x1, x2]] where the circle and circular arc is well–defined. If they
are not in general position, then one of the two following cases happens:

1. Two or all three of the points coincide and the problem is simply under-
determined and unsolvable46.

46There is a lot of circles through two points or one point.
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2. The three points are collinear, i.e., they lie on a straight line. This would
correspond to a circle with radius ∞ which would be somewhat reason-
able47 inR2, but inR3 there are infinitely many possible midpoints for this
“circle”.

Remark 4.3 (GIS) Geographical Information Systems (GIS) often use only polylines
and circular arcs as geometric primitives.

4.2 Bernstein, Bézier, de Casteljeau
We begin with a classic type of curves, namely the so–called Bézier curves which
give a representation for polynomial curves. Since barycentric coordinates
make things quite simple, we generalized things a bit and consider triangular
Bézier surfaces immediately48. But we will always have curves in mind, of
course.

Remark 4.4 Bézier curves are named after Paul Bézier, a french engineer who worked
for Renault in the CNC department(Bézier, 1972) and, being involved in the development
of the UNISURF CAD system in the 1960s, was one of the pioneers of CA(G)D,
(Bézier, 1986). The evaluation algorithm was named after the mathematician Paul
Faget de Casteljeau who developed a similar system at Citroen simultaneously.
Since, in contrast to Bézier, de Casteljau was not allowed to publish his results, there
was a lifelong conflict about priorities of invention.

To complete confusion, the basis polynomials that we will consider soon, are called
Bernstein–Bézier polynomials since Sergej Bernstein used them49 in his construc-
tive proof (Bernstein, 1912) of the Weierstrass approximation theorem. Bernstein
polynomials in several variables were already known in the 1950s from (Dinghas, 1951;
Lorentz, 1953).

4.2.1 The de Casteljau algorithm

Now we want to model a surface f : Sn → Rd, defined on the n–dimensional
unit simplex Sn. “Model” means that we want to describe the surface by means
of finite information, i.e., by finitely many values that are stored in a computer.

Example 4.5 Let a0, . . . , an be points in Rd. Then

p(t) =
n∑
j=0

ajtj, t ∈ [a, b]

is a polynomial curce defined by the control points a0, . . . , an ∈ Rd. That we work
in Rd is not really relevant here as we could consider every component of p separately.
However, the relationship between the coefficients is not really an intuitive one.

47Though it makes much more sense to use the “line” primitive instead.
48This makes sense since triangular surfaces are not common in CAD systems and the “usual”

way to generate surfaces is a different one.
49And their probabilistic interpretation.



36 4 GEOMETRIC OBJECTS I: CURVES & TRIANGULAR SURFACES

To define a representation with more geometric meaning, we first need some
more terminology.

Definition 4.6 A tuple α = (α0, . . . , αd) ∈ N
d+1
0

of nonnegative numbers is called a
multiindex. The lentgh |α| of such s a multiindex is the number

|α| =

d∑
j=0

αj.

The set of all homogeneous multiindices of length n wikk be written as

Γn =
{
α ∈Nd+1

0
: |α| = n

}
. (4.2)

By εj ∈ Γ1, j = 0, . . . , d, we denote the unit multiindices with the property that
εj,k = δjk, j, k = 0, . . . , d.

Algorithm 4.7 (de Casteljau)
Given: control points cα, α ∈ Γn, and u ∈ Ss.

1. Initialize c0α(u) = cα, α ∈ Γn.

2. For k = 1, . . . , n

ckα(u) =
d∑
j=0

ujck−1α+ej
(u), α ∈ Γn−k. (4.3)

3. Result: p(u) = cn
0
(u).

Remark 4.8 The de Casteljeau algorithm is based on barycentric coordinates. That
means that we can use any reference system in Rs but all that really counts is how a
point subdivides this reference system.

Definition 4.9 The graph p(Ss) computed by Algorithm 4.7 is called the Bézier sur-
face associated to the control polyhedron {cα : α ∈ Γn}.

Remark 4.10

1. Each step of the de Casteljau algorithm subdivides any of the s–dimensional
simplices

[
ck−1α+ej

: j = 0, . . . , d
]
, α ∈ Γn−k in exactly the same way as u sudivides

the unit simplex. Therefore, the algorithm can easily be carried over to a method to
define functions on arbitraryd–simplices∆ by simply transferring the subdivision
induced by x ∈ ∆ to the respective subsimplices of the control polyhedron.

2. Some of the simplices
[
ck−1α+ej

: j = 0, . . . , d
]

may even be degenerated, for the
determination of the “barycenter” via u this is totally irrelevant.

3. Each step of the algorithm can be seen as a linear interpolation of the vertices of
the subsimplices.

4. The algorithm is a generalization of construction methods for conic sections that
date back to Steiner50.

50Which is not too surprising as de Casteljau’s background is in classical geometry.
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Figure 4.1: The de Casteljau algorithm for a curve. For each point in the
curve it is a ruler and compass construction.

4.2.2 Bézier surfaces

Next, we will find out that the de Casteljeau algorithm produces polynomial
surfaces of (total) degree n that can be given explicitly. These surfaces are called
Bézier surface though Bézier himself only used that approach to define curves51,
see (Bézier, 1972).

Definition 4.11

1. For a multiindex α ∈Ns+1
0

the multinomial coefficient(
|α|

α

)
=

|α|!

α0! · · ·αd!
,

is extended on Zs+1 by setting it equal to zero whenever it contains a negative
component.

2. The Bernstein–Bézier basis polynomial52 with index α ∈ Γn is defined as

Bα(x) =

(
|α|

α

)
uα =

|α|!

α0! · · ·αd!
uα0
0
· · ·uαd

d
, α ∈Ns+1

0
. (4.4)

3. Convention: Bα is even defined for α ∈ Zs+1 with Bα ≡ 0 whenever α <Nd+1
0

.

51His notion of a surface was that of a curve moving along another curve, a concept that leads
to a tensor product surface, see (Farin, 1988, Kap. 1).

52Carl de Boor once proposed the abbreviation “B–polynomial”.
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Exercise 4.2 Show that Bα assumes its maximum at u = α/|α|. ♦

Lemma 4.12 (Recurrence relation) For α ∈Ns+1
0

, α , 0, we have

Bα(u) =

d∑
j=0

uj Bα−εj(u). (4.5)

Proof: Follows from(
|α|

α

)
=

s∑
j=0
αj>0

αj

|α|︸    ︷︷    ︸
=1

(
|α|

α

)
=

s∑
j=0
αj>0

(|α|− 1) !

α0! · · ·αj−1! (αj − 1) !αj+1 · · ·αd!

=

s∑
j=0

(
|α|− 1

α− εj

)
since then

Bα(u) =

(
|α|

α

)
uα =

s∑
j=0

(
|α|− 1

α− εj

)
uju

α−εj =

s∑
j=0

uj Bα−εj(u).

Note that we make use of the above convention here. �

Lemma 4.13 The Bernstein–Bézier basis polynomials form a nonnegative partition
of unity, that is

Bα ≥ 0 and
∑
α∈Γn

Bα ≡ 1. (4.6)

Proof: Nonnegativity is obvious and the partition of unity follows from the
multinomial formula

1 = 1n = (u0 + · · ·+ us)
n =
∑
α∈Γn

(
n

α

)
uα =

∑
α∈Γn

Bα(u).

�

Theorem 4.14 (Representation of Bézier surfaces) For k = 0, . . . , n and α ∈
Γn−k we have

ckα(u) =
∑
β∈Γk

cα+βBβ(u), (4.7)

and especially for k = n

p(x) = cn0 (u) =
∑
α∈Γn

cα Bα(u) (4.8)
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Definition 4.15 We write

Rd (Γn) =
{
(cα : α ∈ Γn) : cα ∈ Rd, α ∈ Γn

}
and write, for a control polyhedron c ∈ Rd (Γn),

Bnc :=
∑
α∈Γn

cαBα(x)

to describe the associated Bézier surface.

Proof of Theorem 4.14: Induction on kwhere k = 0 is clear because B0 ≡ 1. For
the step k→ k+ 1we observe that for α ∈ Γn−k−1 the identity (4.3) yields

ck+1α (u) =

d∑
j=0

ujckα+εj(u) =
d∑
j=0

uj
∑
β∈Γk

cα+εj+β Bβ(u)

=

d∑
j=0

∑
β∈Γk+1

ujcα+βBβ−εj(u) =
∑
β∈Γk+1

cα+β
d∑
j=0

uj Bβ−ej(u)

=
∑
β∈Γk+1

cα+βBβ(u).

�

Next, we collect some properties of the Bézier surface Bnc that follow more
or less directly from the de Casteljeau algorithm:

Convex hull property: the surface lies inside the convex hull of the control
polyhedron,

Bnc (∆) ⊂ [[cα : α ∈ Γn]]. (4.9)

Endpoint interpolation: the surface interpolates the control polygon at the ver-
tices of the simplex

Bnc (ej) = cnεj , j = 0, . . . , s. (4.10)

Indeed, (4.9) follows since, by (4.3), we have, foru ∈ Ss, k = 1, . . . , n andα ∈ Γn−k

ckα(x) ∈ [[c
k−1
β

(x) : β ∈ Γn−k+1]],

hence,
Bnc(u) ∈ [[cn−1α (u) : α ∈ Γ1]] ⊆ · · · ⊆ [[cα : α ∈ Γn]].

(4.10) is due to
Bnc (ej) = cn0 (ej) = cn−1εj

(ej) = · · · = cnej .

Lemma 4.16 The Bernstein–Bézier basis polynomials form a basis of the vector space
Π0n of all homogeneous polynomials of degree n in u.
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Proof: Since barycentric coordinates are homogeneous polynomials of total
degree 1, it is clear that Bα ∈ Π0n, α ∈ Γn.Since als #Γn =

(n+d
d

)
= dimΠ0n, it suffices

to prove the linear independence of the basis polynomials which we will do
by induction on n ∈ N0. The case n = 0 is obvious since B0 = 1 is not the zero
function. For the induction step we assume that there exists c ∈ R (Γn+1) such
that

0 = Bn+1c(u) = cn+1
0

(u) , u ∈ Ss,

and show that c = 0. To that end, we consider the lower dimensional faces

∆k = {u : uk+1 = · · · = ud = 0} k = 0, . . . , s,

where ∆s = Ss and prove inductively53 for k = 0, . . . , d, that

cα = 0, α ∈ {β ∈ Γn+1 : βk+1 = · · · = βd = 0} . (4.11)

k = 0 is the endpoint interpolation (4.10). To advance from k−1 to k, we choose
u ∈ ∆k and obtain

Bn+1c(u) =
∑

αk+1=···=αd=0

cαBα(u). (4.12)

Since ∆k−1 ⊂ ∆k the induction hypothesis yields that cα = 0, αk = · · · = αd = 0,
that is, (4.12) becomes

Bn+1c =
∑

α∈Γm,αk>0

αk+1=···=αd=0

cαBα

= (n+ 1)uk
∑

α∈Γm,αk>0

αk+1=···=αd=0

cα
αk
Bα−ek

=
∑
α∈Γn

αk+1=···=αd=0

cα+ek
αk + 1

Bα.

To this expression we finally apply induction on n to complete the proof. �

Exercise 4.3 Prove the degree elevation formula. To that end, define for c ∈
Rd (Γn) a new control polyhedron ĉ ∈ Rd (Γn+1) by

ĉβ =

d∑
j=0

βj

n+ 1
cβ−εj , β ∈ Γn+1,

and show that Bnc = Bn+1̂c. ♦

4.2.3 Derivatives of Bézier surfaces

Now we consider derivatives of Bézier surfaces and their geometric meaning.
We recall some concepts from the previous barycentric chapter.

53Yeah, a double induction!
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Definition 4.17 A vector y ∈ Rd+1 is called direction if y0 + · · · + yd = 0. The
directional derivative Dy along y, is defined for f ∈ C1 (Ss) as

Dyf =

d∑
j=0

yj
∂f

∂uj
. (4.13)

The side condition
∑
yj = 0 reflects the fact that y ∈ E ′s. Particular directional

derivatives are the axial deriviativesDej−ek , j, k = 0, . . . , s, which for a basis for
all directional derivatives since any y ∈ E ′s can be written as

y =

s∑
j=0

yjej =
∑
j,k

yj (ej − ek) +

yk +∑
j,k

yj

︸            ︷︷            ︸
=0

ek.

The directional derivatives of the basis polynomials can now be easily computed.

Lemma 4.18 For a barycentric direction y ∈ Rs+1 and α ∈Ns
0

we have that

DyBα = |α|

d∑
j=0

yj Bα−ej . (4.14)

In particular, for j, k = 0, . . . , s,

Dej−ekBα = |α|
(
Bα−ej − Bα−ek

)
. (4.15)

Proof: Since Bα =
(|α|
α

)
uα, we get, whenever αj > 0,

∂

∂uj
Bα =

|α|!

α0! · · ·αd!
αju

α−ej = |α|

(
|α− ej|

α− ej

)
uα−ej = |α|Bα−ej ,

and if αj = 0 it follows that ∂
∂uj
Bα = 0. �

Definition 4.19 For j = 0, . . . , s, the shift operators Ej : RN (Γn) → RN (Γn−1) are
defined as

(Ejc)α = cα+ej , α ∈ Γn−1.

With Lemma 4.18 and the notion of shift operators we can prove the following
result.

Theorem 4.20 If y1, . . . , ym are axial directions, i.e.,

yj = e`j − ekj , j = 1, . . . ,m,

then

Dy1 · · ·DymBnc =
n!

(n−m)!

∑
α∈Γn−m

(E`1 − Ek1) · · · (E`m − Ekm) cα Bα (4.16)
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Proof: It is sufficient to consider the casem = 1, the rest is a simple induction54.
By Lemma 4.18 we get

Dej−ekBnc =
∑
α∈Γn

cαDej−ekBα =
∑
α∈Γn

cα|α|
(
Bα−ej − Bα−ek

)
= n

∑
α∈Γn−1

(
cα+ej − cα+ek

)
Bα = n

∑
α∈Γn−1

(Ej − Ek) cα Bα.

�

Theorem 4.21 Let y ∈ Rs+1 be a barycentric direction. Then, for k ≥ 1,

Dk
yBnc =

n!

(n− k)!

∑
α∈Γn−k

∑
β∈Γk

cα+β Bα(·) Bβ(y) (4.17)

Remark 4.22 The notation Bβ(y) is slightly abusive and only stands for

Bβ(y) =

(
|β|

β

)
yβ.

Proof of Theorem 4.21: Induction on k, where for k = 1 (4.14) yields

DyBnc = n
∑
α∈Γn

cα
d∑
j=0

yjBα−ej = n
∑
α∈Γn−1

d∑
j=0

yjcα+ej Bα

= n
∑
α∈Γn−1

∑
β∈Γ1

cα+β Bα(·)Bβ(y).

For k > 1 the induction hypothesis and (4.5) give

Dk
yBnc = Dy D

k−1
y Bnc = Dy

∑
α∈Γn−k+1

∑
β∈Γk−1

cα+β Bα(·)Bβ(y)

=
∑

α∈Γn−k+1

∑
β∈Γk−1

cα+β Bβ(y)
n∑
j=0

yjBα−ej(·)

=
∑
α∈Γn−k

∑
β∈Γk−1

n∑
j=0

yjcα+β+ej Bβ(y)Bα(·)

=
∑
α∈Γn−k

∑
β∈Γk

cα+β Bα(·)
n∑
j=0

yjBβ−ej(y) =
∑
α∈Γn−k

∑
β∈Γk

cα+β Bα(·)Bβ(y).

�

Corollary 4.23 For any barycentric direction y ∈ E ′s and any k ≥ 1 we have

Dk
yBnc(u) =

n!

(n− k)!

∑
β∈Γk

cn−k
β

(u) Bβ(y), u ∈ Ss. (4.18)

In particular,
54And a nice exercise.
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1. the intermediate results of the de Casteljeau algorithm give the respective
derivatives for free:

DyBnc(u) = n
d∑
j=0

yjcn−1εj
(u), u ∈ Ss. (4.19)

2. The derivatives at the vertices ej of Ss, j = 0, . . . , s, are completeley determined
by the control points around the edges:

Dk
yBnc (ej) =

n!

(n− k)!

∑
β∈Γk

c(n−k)εj+β Bβ(y), j = 0, . . . , s. (4.20)

3. The tangent plane at a vertex ej, j = 0, . . . , s, is generated by

(Ek − Ej) c(n−1)εj = c(n−1)εj+εk − cnεj , k = 0, . . . , s, k , j.

Figure 4.2: How to determine a directional derivative from the intermediate
results of the de Casteljau algorithm.

Remark 4.24 (Control points and derivatives) 1. The directional derivatives in
Theorem 4.20 play the role of a partial derivative and are defined by the respective
differences of control points.

2. In his book (Bézier, 1972), Bézier introduces Bézier curves precisely in this way:
value and derivatives at the end points of an interval should be defined by the
differences of control points.

Exercise 4.4 Prove that there exists exactly one quadratic (i.e.,n = 2) polynomial
that assumes prescribed function values and tangent planes at the vertices of a
simplex. ♦
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Figure 4.3: Derivatives and control points in one and two variables. The
tangent plane in the vertex is given by the difference of the control points.

4.2.4 Blossoming and Subdivision

Any evaluation point u splits the standard simplex Ss into s+ 1 subsimplices as
we know from the computation of barycentric coordinates. The restriction of a
Bézier surface to such a subsimplex is again a Bézier surface whose coefficients
have to be computed. For this purpose, there exists a very nice and elegant the-
ory that emerges from reconsidering and slightly generalizing the de Casteljeau
algorithm from Algorithm 4.7.

Algorithm 4.25 (de Castejau modified)
Given: c ∈ Rd (Γn) und u1, . . . , un ∈ Ss.

1. Initalize c0α() = cα, α ∈ Γn.

2. For k = 1, . . . , n

ckα (u1, . . . , uk) =
s∑
j=0

ujk ck−1α+εj
(u1, . . . , uk−1) , α ∈ Γn−k. (4.21)

Result: Pc (u1, . . . , un) = cn
0
(u1, . . . , un).

The difference to Algorithm 4.7 is that in each step of the iteration we can use dif-
ferent barycentric coordinates. Though it looks like a very naive generalization,
this process yields a surprisingly meaningful result.

Proposition 4.26 The function Pc is a symmetric multiaffine form with diagonal
Bnc, that is,

1. (symmetric) for any permutation σ of {1, . . . , n}, we have

Pc

(
uσ(1), . . . , uσ(n)

)
= Pc (u1, . . . , un) (4.22)
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2. (multiaffine) if uj =
∑m

k=0 u
′

k
vk, u ′k ∈ Ss, v ∈ Sm, then

Pc (u1, . . . , un) =

m∑
k=0

vkPc (u1, . . . , uj−1, u
′

k, uj+1 . . . , un) . (4.23)

3. (diagonal)
Pc (u, . . . , u) = Bnc(u), u ∈ Ss. (4.24)

Proof: Since the permutations of {1, . . . , d} are generated by the permutations
that switch two subsequent elements, it suffices to show that

Pc (u1, . . . , un) = Pc (u1, . . . , uj−1, uj+1, uj, uj+2, . . . , un) (4.25)

By (4.21) this reduces to showing that

cj+1α (u1, . . . , uj−1, uj, uj+1) = cj+1α (u1, . . . , uj−1, uj+1, uj) , α ∈ Γn−j−1. (4.26)

To that end, we simply apply (4.21) twice

cj+1α (u1, . . . , uj−1, uj, uj+1)

=

s∑
k=0

uj+1,kc
j
α+εk

(u1, . . . , uj−1, uj) =

s∑
k=0

uk

s∑
`=0

uj,` cj−1α+εk+ε` (u1, . . . , uj−1)

=

s∑
k,`=0

uj+1,kuj,` cj−1α+εk+ε` (u1, . . . , uj−1) = cj+1α (u1, . . . , uj−1, uj+1, uj) ,

since the expression within the sum is symmetric with respect to k and ` which
yields (4.26) and (4.25).

(4.23) is verified in the same way by computing

cjα (u1, . . . , uj) = cjα

u1, . . . , m∑
k=0

u ′k vk


=

s∑
`=0

 m∑
k=0

u ′k vk


`

cj−1α+ε` (u1, . . . , uj−1) =
m∑
k=0

vk

s∑
`=0

u ′k,` cj−1α+ε` (u1, . . . , uj−1)︸                               ︷︷                               ︸
=cjα(u1,...,uj−1,u ′k)

=

m∑
k=0

vk cjα (u1, . . . , uj−1, u ′k) .

Finally, (4.24) follows from the fact that in this case Algorithm 4.25 reduces to
the de Casteljeau algorithm 4.7. �

Remark 4.27 Multiaffine forms are not such a totally new and unknown concept, as we
know quite promiment examples of a multilinear form: the derivative of a function
in several variable is a symmetric one, the determinant an alternating one.
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Theorem 4.28 (Blossoming Principle) For any d–vector valued polynomial p with
components in Π0n there is a unique symmetric multiaffine form P : (Es)

n → Rd and
vice versa such that

p(u) = P (u, . . . , u) , x ∈ Ss. (4.27)

Definition 4.29 The multiaffine form P from Theorem 4.28 is called the polar form or
blossom of p. This concept was rediscovered by Ramshaw (Ramshaw, 1987) in 1987
and brought to attention in the CAGD community

Proof of Theorem 4.28: We write p in its Bézier representation as

p = Bnc(p) =
∑
α∈Γn

cα (p) Bα, cα (p) ∈ Rd, α ∈ Γn,

and recall from Proposition 4.26 that the associated Pc(p) is a symmetric multi-
affine form that satisfies (4.27).

Conversely, let ej ∈ Rs+1, j = 0, . . . , s, denote the barycentric coordinates of
the vertices of the simplex, then we have, for any n–affine form P that

P (u, . . . , u) =
∑
α∈Γn

P
(
e0, . . . , e0︸       ︷︷       ︸

α0

, . . . , ed, . . . , ed︸        ︷︷        ︸
αd

)
Bα(u) =: P(eα)Bα(u) (4.28)

which shows that P (u, . . . , u) is of the desired form. But of course, we have to
prove (4.28) which we will do by induction on n. In the trivial case n = 0 the
form without arguments P() is constant, just like polynomials of degree 0. For
n→ n+ 1 let P be a symmetric (n+ 1)–affine form. Since, trivially,

u =

s∑
j=0

uj ej,

we have that

P(u, . . . , u︸      ︷︷      ︸
n+1

) =

s∑
j=0

uj P(ej, u, . . . , u︸      ︷︷      ︸
n

) =:

s∑
j=0

uj Pj(u, . . . , u︸      ︷︷      ︸
n

) (4.29)

and the functions Pj = (vj, ·) are symmetric n–affine forms to which we can
apply the induction hypothesis yielding

Pj (u, . . . , u) =
∑
α∈Γn

Pj(eα), j = 0, . . . , d,

to obtain

P(u, . . . , u︸      ︷︷      ︸
n+1

)
=

s∑
j=0

uj
∑
α∈Γn

Pj(eα)Bα(u) =
d∑
j=0

uj
∑
α∈Γn

P(ej, eα)Bα(u)

=

d∑
j=0

uj
∑
α∈Γn

P(eα+εj)Bα(u) =
d∑
j=0

uj
∑
α∈Γn+1

P(eα)Bα−εj(u)

=
∑
α∈Γn+1

P(eα)
d∑
j=0

ujBα−εj(u)︸              ︷︷              ︸
=Bα(u)

=
∑
α∈Γn+1

P(eα)Bα(u),
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which proves (4.28). Uniqueness of this relationship follows from (4.28) and the
uniqueness of the Bézier representation. �

The result we are aiming for is an almost direct consequence of the following
result.

Proposition 4.30 For c ∈ Rd (Γn) let P be the polar form of p = Bnc. Then the
intermediate points of the de Casteljeau algorithm are of the form

ckβ (u) = P
(
uk, eβ

)
:= P(u, . . . , u︸      ︷︷      ︸

k

, eβ), β ∈ Γn−k. (4.30)

Proof: Induction on k once more55. For k = 0we have

c0β (u) = cβ = P
(
eβ

)
, β ∈ Γn,

which is (4.30). For k− 1→ k the de Casteljeau algorithm implies

ckβ(u) =

d∑
j=0

uj ck−1β+εj
(u) =

s∑
j=0

uj P
(
uk−1, eβ+εj

)
=

s∑
j=0

uj P
(
ej, u

k−1, eβ
)

= P

 s∑
j=0

uj ej, u
k−1, eβ

 = P
(
u, uk−1, eβ

)
= P

(
uk, eβ

)
and advances the induction hypothesis. �

Definition 4.31 (Subsimplex)

1. For u ∈ Ss and j = 0, . . . , s, we denote by

∆j = ∆j(u) := [[u, e0, . . . , ej−1, ej+1, . . . , ed]] (4.31)

the jth subsimplex of Ss.

2. The restriction of Bnc on ∆j, written as Bnc|∆j : Ss → Rd is the Bézier surface
based on the barycentric coordinates with respect to ∆j.

Exercise 4.5 Prove that

Ss =
s⋃
j=0

∆j.

♦

We can now easily find the control polygon for the restriction among the inter-
mediate results of the de Casteljeau algorithm.

Theorem 4.32 For u ∈ ∆ and j = 0, . . . , d we have

Bnc|∆j(u) =
∑
α∈Γn

cαjα−αjεej(u)Bα. (4.32)

55It seems as if induction is the only this people in CAGD can handle. The truth, however, is
much simpler: when things are given recursively, induction is usually the technique of choice.



48 4 GEOMETRIC OBJECTS I: CURVES & TRIANGULAR SURFACES

Figure 4.4: The intermediate points of the de Casteljeau algorithm for a
curve, interpreted as control points of the subdivision of this curve.

Proof: 56 Let P denote the polar form of Bnc. According to (4.28) and (4.30), the
control points of Bnc|∆j have the form

cj,α = P
(
eα0
0
, . . . , e

αj−1
j−1
, uαj , e

αj+1
j+1
, . . . , eαd

d

)
= P (uαj , eα−αjεj) = cαjα−αjej(u).

�

Figure 4.5: The analogy of Fig. 4.4 for surfaces.

The subdivision of control pollygons and control polyhedra, respectively, can
be seen in Fig. 4.4 and Fig. 4.5.

56This proof is now extremely short and simple. But this is due to the fact that we used the
proper concepts and did the main work before.
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4.3 Spline curves
Although Bézier curves and surfaces are geometrically intuitive, the suffer from
a classical problem of poynomials: They are locally determined which influences
the curve globally.

Example 4.33 Consider an arbitrary polynomial57

p(x) =

n∑
j=0

pj(x− x
∗)j, x ∈ I.

If we take any open subintervall J := (x∗ − ε, x∗ + ε) ⊂ I, around x∗, then we can
determine all derivatives58 as

p(k)(x∗) = k!pk, k = 0, . . . , n,

which uniquely defines p everywhere. In particular, if we modify p on J, we will see
the effects of this modification everywhere.

The same principle applies to Bézier curves and surfaces. Even if they are
“quasilocal”59, which means that due to

max
u∈Ss

Bα(u) = Bα

(
α

|α|

)
, α ∈Ns+1

0
, (4.33)

the coefficient cα has its strongest influence at α
|α|

, they are still global60 in the
sense that any modification of cα affects the curve everywhere.

Exercise 4.6 Prove (4.33). ♦

To overcome the globality problem, we switch to localized curves. But in order
to do so, we first have to make clear what we mean by “local”.

Definition 4.34 Let n,m > 0 be given with the intuition that n� m.

1. A knot sequence61 form,n is a vector62 Tm,n = (t0, . . . , tn+m+1) ∈ Rn+m+2 with
the properties

t0 ≤ t1 ≤ · · · ≤ tn ≤ · · · ≤ tn+m+1 (4.34)

and
tj < tj+m+1, j = 0, . . . , n. (4.35)

57This is only scalar valued, i.e., d = 1, which is totally sufficient to see the phenomenon.
58Recall from Analysis I that, in order to define a derivative at some point, we need to know

the function in an open neighborhood of that point, cf. (Forster, 1976)(Sauer, 2014).
59If something does not have a certain property which one would like to have, it hase become a

common bad habit in mathematics to call it “quasi–something” which means nothing, however.
60And not “quasiglobal”, so this is a serious property.
61In principle, knot sequences could even be infinite, and indeed the “original” definition of

Schoenbergs cardinal spline usedZ as a knot sequence, and that for good reasons (Schoenberg,
1973). But here we will stay in the finite world.

62In the sloppy meaning of “tuple” as we will not add knot sequences. Let’s call it a finite
sequence if we really want to be precise. But do we?
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2. The number µ > 0 for which

tj−1 < tj = · · · = tj+µ−1 < tj+µ

holds is called the multiplicity of the knot tj = · · · = tj+k−1.

3. The knots t0, . . . , tm are called left boundary knot, the knots tn+1, . . . , tn+m+1

right boundary knot, respectively.

4. In many cases we will consider knot sequences whose boundary knots have mul-
tiplicitym+ 1, that is,

t0 = · · · = tm, tn+1 = · · · = tn+m+1.

Remark 4.35 The requirement (4.35) can be rephrased as follows: the multiplicity of
any knot must not exceedm+ 1.

4.3.1 The de Boor algorithm

We stick to the algorithmic approach an construct a new type of curves by a
localized variant of the de Casteljeau algorithm 4.7. To localize thigs, we make
use of the knot sequence from Definition 4.34. It will be useful now to define
the half open intervals

Ikj := [tj, tj+k+1), j = 0, . . . , n, k = 0, . . . ,m, (4.36)

formed by knot sequence where j defines the location and k the spacing of the
interval. Any point x ∈ R has barycentric coordinates

u0(x|I
k
j ) =

x− tj

tj+k+1 − tj
, u1(x|I

k
j ) =

tj+k+1 − x

tj+k+1 − tj
(4.37)

with respect to this interval.

Exercise 4.7 Verify the explicit expressions for the barycentric coordinates in
(4.37). ♦

Now we can define the classical algorithm for spline evaluation.

Algorithm 4.36 (de Boor)
Given: Knot sequence Tm,n, control points d0, . . . ,dn ∈ Rd and63 x ∈ [tm, . . . , tn+1].

1. (Localization) Determine r ∈ {m, . . . , n} such that x ∈ [tr, tr+1).

2. Initialize d0
j
(x) = dj, j = r−m, . . . , r.

3. For k = 1, . . . ,m compute the convex combination64

dkj (x) = u0
(
x|Im−k+1

j

)
dk−1
j−1

(x) + u1
(
x|Im−k+1

j

)
dk−1
j

(x), (4.38)
j = r−m+ k, . . . , r.
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Figure 4.6: The de Boor algorithm for m = 3, a so called cubic spline. The
last picture shows the curve segment on the interval [tr, tr+1].

Result: point dmr (x).

Fig 4.6 shows what happens geometrically in the de Boor algorithm: in the
k–th step we proceed all intervals that contain x and m − k + 2 knots and use
them to partition the respective edges of the control polygon. It is visible that
this process drags the points much more to the center than the de Casteljeau
algorithm does. By construction we already see that the resulting curve is local:
on [tr, tr+1) the curve only depends on the control points dr−m, . . . ,dr.

The index r to be determined in the first step of the algorithm is unique as
long as x is not a knot.

Remark 4.37 The index r, determined by x ∈ [ti, ti+1) does not really influence the
way how the value is computed but mainly which control points contribute to this
computation. Indeed, one might use the following modified version of the algorithm:

1. Initialize d0
j
(x) = dj, j = 0, . . . , n.

2. For k = 1, . . . ,m compute

dkj (x) = u0
(
x|Im−k+1

j

)
dk−1
j−1

(x) + u1
(
x|Im−k+1

j

)
dk−1
j

(x), (4.39)
j = k, . . . , n.

3. Pick the rth component from the vector
(
dm
j
(x) : j = m, . . . , n

)
.

63This is no misprint, x has to lie between the boundary knots which play a special role.
64It is a convex combination with nonnegative barycentric coordinates due to the choice of r!
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Figure 4.7: The de Boor algorithm for a cubic spline with a double knot.

From a computational point of view, this does not make sense as a point evaluation
algorithm when n� m, since the modification computes the function everywhere.

Definition 4.38 The spline curve Nm,Td is defined as the function x 7→ dm
j
(x),

x ∈ [tm, . . . , tn+1]. The control polygon of this spline curve is d = (dj : j = 0, . . . , n).

Next, we collect some properties of the spline curve that follow directly from
Algorithm 4.36.

Proposition 4.39 For a knot sequence Tm,n and a control polygon d we have

1. (convex hull property):

Nm,Td ([tr, tr+1)) ⊆ [[dr−k : k = 0, . . . ,m]], r = m, . . . , n. (4.40)

2. (interpolation at m–fold knots): if x = tj−m+1 = · · · = tj, then Nm,Td(x) =
dj−m.

3. (de Casteljau): for n = m and t0 = · · · = tm, tm+1 = · · · = t2m+1, we have
Nm,Td = Bmd.

4. (pieceweise polynomial):

Nm,Td|(tj,tj+1) ∈ Πm, j = m, . . . , n.

Proof: The property 1) follows from the already mentioned fact that all barycen-
tric coordinates appearing in the process are nonnegative.
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For 2) we remark that whenever ti−m+1 = · · · = ti each of the intervals
Im−k+1
j

in (4.39) has ti = x as left endpoint which yields u0
(
x|Im−k+1

j

)
= 1,

u1
(
x|Im−k+1

j

)
= 0 and therefore dk

r−k
(x) = dr−m.

Moreover, 3) is obvious and 4) a direct consequence of the explicit expression
(4.37) for the barycentric coordinates which shows that in each step dk−1

j
(x) is

multiplied by a polynomial of degree 1 in x. �

Corollary 4.40 If Tm,n has m + 1–fold boundary knots, the spline curve admits end
point interpolation, that is

Nm,Td (tm) = d0, Nm,Td (tn+1) = dn. (4.41)

Figure 4.8: Two cubic (m = 3) spline curves with boundary knots of multi-
plicity 4.

Figure 4.9: Variation of the knots of the examples in Fig. 4.8.



54 4 GEOMETRIC OBJECTS I: CURVES & TRIANGULAR SURFACES

4.3.2 B–splines

Like we did before with Bernstein–Bézier basis polynomials, we will derive an
explicit representation of the Splines curve with respect to appropriate basis
functions. Again this will be done by “dualizing” the evaluation algorithm, this
time the de Boor algorithm. The definition follows is a straightforward way
from noting that the de Boor algorithm is linear in d, that is Nm,T(d + d ′) =
Nm,Td +Nm,Td ′. Writing d formally as

d = (d0, . . . ,dn) =
n∑
j=0

(0, . . . , 0,dj, 0, . . . , 0) =
n∑
j=0

dj (0, . . . , 0, 1, 0, . . . , 0)︸                      ︷︷                      ︸
=:δj

=

n∑
j=0

dj δj

with the scalar65 sequences δ0, . . . , δn, we see that

Nm,Td =

n∑
j=0

djNm,Tδj =:

n∑
j=0

djNm
j (·|T). (4.42)

Definition 4.41 (B–spline) The jth B–spline of degreem with respect to T is defined
by means of the de Boor algorithm as

Nm
j (·|T) := Nm,T δj. (4.43)

The definition of the B–spline was cheap and simple, and though this is already
sufficient to plot them like in Fig 4.10, the task will be to give meaning to
definition by deriving properties of the functions Nm

j
.

Figure 4.10: A small collection of cubic (m = 3) B–splines with different
knot distributions..

65We might also say “d = 1”.
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Lemma 4.42 The B–splines are nonnegative functions with compact support. More
precisely,

Nm
j (x|T) > 0, x ∈ (tj, tj+m+1) , and Nm

j (x|T) = 0, x < [tj, tj+m+1]
(4.44)

In particular, we have the local relation

Nm,Td(x) =
j∑

k=j−m

dkNm
k (x|T) , x ∈ [tj, tj+1) , j = m, . . . , n. (4.45)

Proof: Let us recall first that to determine the value ofNm,Td(x) at the position
x ∈ [tr, tr+1) we used the control points dr−m, . . . , dr. Since the other coefficients
do not matter there, we must haveNm

j
(x|T) = 0, j < {r−m, . . . , r} or, equivalently,

Nm
j
(x|T) , 0 implies j ∈ {r −m, . . . , r} or r ∈ {j, . . . , j +m}. Therefore, the B–

splines Nm
j
(x|T) vanishes outside [tj, . . . , tj+m+1]. If, on the other hand, x ∈

(tr, tr+1) and r ∈ {j, . . . , j+m} then66

(tr, tr+1) ⊆ (tj, tj+m−k+1) ⊂ I
m−k+1
j

, j = r−m+ k, . . . , r, k = 1, . . . ,m,

all all barycentric coordinates in (4.39) are strictly positive and therefore the
computed coefficients for d = δj in the first step of the algorithm satisfy

d1j (x) = u0
(
x|Imj

)
d0j−1(x)︸    ︷︷    ︸

=0

+u1
(
x|Imj

)
d0j (x)︸  ︷︷  ︸

=1

= u1
(
x|Imj

)
> 0

and
d1j+1(x) = u0

(
x|Imj+1

)
d0j (x) + u1

(
x|Imj+1

)
d0j (x) = u0

(
x|Imj+1

)
> 0

as well as d1
k
(x) = 0, k < {j, j+ 1}. The same computations then give that

d2j (x), d
2
j+1(x), d

2
j+2(x) > 0, d2k(x) = 0, k < {j, j+ 1, j+ 2},

and, by induction, that for k = 1, . . . ,m

dkj (x), . . . , d
2
j+k(x) > 0, dk` (x) = 0, ` < {j, . . . , j+ k}, (4.46)

and since r ∈ {j, . . . , j+m} it follows by setting k = m in (4.46) that

Nm
j (x|T) = Nm,Tδj(x) = d

m
r (x) > 0.

. �

Lemma 4.43 The B–splines form a nonnegative partition of unity on the interval
enclosed by the extremal boundary knots, that is,

n∑
j=0

Nm
j (x|T) ≡ 1, x ∈ [tm, tn+1]. (4.47)

66Since r ≥ j and r+ 1 ≤ j+m+ 1.
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Proof: Whenever d0 = · · · = dn = 1, thus d0
j
(x) = 1, j = 0, . . . , n, we get from

(4.39) and by induction67 on k, that68

dkj (x) = u0
(
x|Im−k+1

j

)
dk−1
j−1

(x)︸     ︷︷     ︸
=1

+u1
(
x|Im−k+1

j

)
dk−1
j

(x)︸     ︷︷     ︸
=1

= u0
(
x|Im−k+1

j

)
+ u1

(
x|Im−k+1

j

)
= 1,

holds for j = k, . . . ,m. �
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Figure 4.11: Plot of the function

n∑
j=0

Nmj (·|T)

for the knot sequence (0, 1, 2, 3, 4, 5, 6, 7) andm = 3 (left) which only equals
1 in the interval [3, 4].

With triple boundary knots there is a nondifferentiable corner at 3 and 4
while the knot sequence 3 and 4, while the knot sequence (3, 3, 3, 3, 4, 4, 4, 4)
gives a sharp jump there (right).

The following recurrence relation is due to Carl de Boor (Boor, 1972) and was the
basis for the de Boor algorithm. That we introduce things in the opposite way
here is due to the fact that we want to follow a totally algorithmic approach as
introduced in (Sauer, 1996). In principle, this shows that the two approaches are
fully equivalent: the algorithm follows from the recurrence and the recurrence
from the algorithm.

Theorem 4.44 (Recurrence relation for B–splines)

67After so many inductions we should now be used to it and therefore we can get a little bit
more informal with them. Warning: Don’t do that at home, dear children.

68To some extend working with splines always needs a bit of the skill of taming the beastly
indices.
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1. The B–splines of degree zero have the form

N0
j (x|T) = χ[tj,tj+1)(x) =

{
1 x ∈ [tj, tj+1) ,
0 x < [tj, tj+1) ,

j = 0, . . . , n+m.

(4.48)

2. For k ≥ 1 one has

Nk
j (x|T) = u1

(
x|Ikj

)
Nk−1
j

(x|T) + u0
(
x|Ikj+1

)
Nk−1
j+1

(x|T) , (4.49)
j = 0, . . . , n+m− k.

Remark 4.45

1. In the expressionsNk
j
(·|T) in (4.49) we have to interpret T = Tm,n = (t0, . . . , tm+n+1)

as T = Tk,m+n−k which means that we will have n+m− k B–splines of degree k
in this process.

2. Written explicitly, (4.49) reads as

Nk
j (x|T) =

x− tj

tj+k − tj
Nk−1
j

(x|T) +
tj+k+1 − x

tj+k+1 − tj+1
Nk−1
j+1

(x|T) , (4.50)

j = 0, . . . , n+m− k.

3. The formula (4.50) is undefined for k + 1–fold knots but in this case also the
B–spline Nk−1

j
or Nk−1

j+1
makes no sense since its support would be at most one

point. This motivates the convention that such functions are set to zero as well as
the respective quotient 0/0 in (4.49).

4. Note that (4.49) uses barycentric coordinates with respect to different reference
intervals which do not sum to 1.

Proof of Theorem 4.44: The identity (4.48) follows directly from the de Boor
algorithm. To express Nm

j
(·|T) by means of B–splines of degree m − 1 we use

the intermediate points d1
j
(x), j = 1, . . . , n, from (4.39) and write69

Nm,Td(x) =

n∑
j=0

djN
m
j (x|T) =

n∑
j=1

d1j (x) N
m−1
j

(x|T) . (4.51)

For the particular scalar control polygon d = δk, the identity (4.39) yields

d1j (x) = u0
(
x|Imj

)
dj−1 + u1

(
x|Imj

)
dj =


u1

(
x|Im

k

)
j = k,

u0
(
x|Im

k+1

)
j = k+ 1,

0 otherwise.
(4.52)

Substituting (4.52) in (4.51) then results in

Nm
j (x|T) = u1

(
x|Imj

)
Nm−1
j

(x|T) + u0
(
x|Imj+1

)
Nm−1
j+1

(x|T) , (4.53)

which completes the proof. �

69To these intermediate points we apply a de Boor algorithm of degree m − 1. That is all
behind (4.51).
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4.3.3 The spline space

The “B” in “B–spline” has its reasons, of course. As might be expected, the letter
stands for “basis”, so let us identify the space for which they are a basis.

Definition 4.46 Form ∈N and a knot sequence T the spline space Sm(T) is defined
as the set of all

1. piecewise polynomials of degreem

f|[tj,tj+1) ∈ Πm, j = m, . . . , n, (4.54)

2. that are differentiable of order m − µ at a knot tj of multiplicity µ, i.e. for
tj−1 < tj = · · · = tj+µ−1 < tj+µ we have

f ∈ Cm−µ (tj−1, tj+µ) . (4.55)

Exercise 4.8 Show that the spline space Sm(T) is a vector space. ♦

The next result, the famous Curry–Schoenberg70 theorem, is the basis of spline
theory and shows that B–splines are indeed a basis71 of the spline space.

Theorem 4.47 (Curry–Schoenberg) The B–splines Nm
j
(·|T), j = 0, . . . , n, are a

basis of Sm(T).

For this theorem we have to prove quite a bit. Although (4.54) follows directly
from the de Boor algorithm, as we already know from Proposition 4.39, we still
have to show

1. the differentiability of the B–splines around knots,

2. the linear independence of the B–splines

3. that the dimension of the spline space equals n+ 1.

This could be done via blossoming, see (Seidel, 1989; Sauer, 1996), but we will
follow a more direct approach which, as a side effect, also gives us a formula for
the derivative of a spline curve that we’ll need anyway. To make our life easier,
we make one more assumption, namely that

tm < tm+1 und tn < tn+1, (4.56)

which means that no boundary knot is an inner knot72 which is in particular
the case for (m+ 1)–fold boundary knots.

70Originally, H. B. Curry was a pure number theorist but during World War II he and I. Schoen-
berg, the “father of splines” worked together in military research where they developed a first
theory of splines that remained unpublished, however, until 1966 (Curry & Schoenberg, 1966),
“for no good reason” as Schoenberg once called it. So splines are a child of the war: πτoλεµoσ
πατηρ παντων as Heraklit says.

71No, the basis!
72Somehow the condition make sense when written this way.
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Lemma 4.48 For x ∈ R \ T we have

d

dx
Nm
j (x|T) =

m

tj+m − tj
Nm−1
j

(x|T) −
m

tj+m+1 − tj+1
Nm−1
j+1

(x|T) , j = 0, . . . , n.

(4.57)

Equation (4.57) does not make sense if tj or tj+1 is a knot of multiplicity m + 1.
However, in that case the support interval of the respective B–spline would be
the empty set and therefore the function is zero and we apply the convention
that then the whole term in the sum (4.57) is zero.
Proof: Induction on m, where the case m = 1 can be easily checked by hand.
Since restricted to any open and convex subset U of R \ T the B–spline Nm

j
is a

polynomial, we can differentiate as much as we want and get73

(
d

dx
Nm
j (·|T)

)
(x)

=

(
d

dx

(
·− tj

tj+m − tj
Nm−1
j

(·|T) +
tj+m+1 − ·

tj+m+1 − tj+1
Nm−1
j+1

(·|T)

))
(x)

=
1

tj+m − tj
Nm−1
k

(·|T) −
1

tj+m+1 − tj+1
Nm−1
j+1

(·|T)

+
x− tj

tj+m − tj

d

dx

(
Nm−1
j

(·|T)
)
(x) +

tj+m+1 − x

tj+m+1 − tj+1

d

dx

(
Nm−1
j+1

(·|T)
)
(x). (4.58)

The induction hypothesis and yet another application of the B–spline recurrence
then yield

x− tj

tj+m − tj

d

dx

(
Nm−1
j

(·|T)
)
(x)

=
x− tj

tj+m − tj

(
m− 1

tj+m−1 − tj
Nm−2
j

(x|T) −
m− 1

tj+m − tj+1
Nm−2
j+1

(x|T)

)
=

m− 1

tj+m − tj

(
x− tj

tj+m−1 − tj
Nm−2
j

(x|T) +
tj+m − x

tj+m − tj+1
Nm−2
j+1

(x|T)

)
︸                                                             ︷︷                                                             ︸

=Nm−1
j

(x|T)

−
m− 1

tj+m − tj

(
tj+m − x

tj+m − tj+1
+

x− tj

tj+m − tj+1

)
︸                               ︷︷                               ︸

=(tj+m−tj)/(tj+m−tj+1)

Nm−2
j+1

(x|T)

=
m− 1

tj+m − tj
Nm−1
j

(x|T) −
m− 1

tj+m − tj+1
Nm−2
j+1

(x|T) (4.59)

73Now comes the point where we have to work a little bit. In each approach to splines there
is one technical and computational proof. So let’s get over it!
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as well as
tj+m+1 − x

tj+m+1 − tj+1

d

dx

(
Nm−1
j+1

(·|T)
)
(x)

=
tj+m+1 − x

tj+m+1 − tj+1

(
m− 1

tj+m − tj+1
Nm−2
j+1

(x|T) −
m− 1

tj+m+1 − tj+2
Nm−2
j+2

(x|T)

)
=

m− 1

tj+m+1 − tj+1

(
x− tj+1

tj+m − tj+1
+
tj+m+1 − x

tj+m − tj+1

)
︸                               ︷︷                               ︸

=(tj+m+1−tj+1)/(tj+m−tj+1)

Nm−2
j+1

(x|T)

−
m− 1

tj+m+1 − tj+1

(
x− tj+1

tj+m − tj+1
Nm−2
j+1

(x|T) +
tj+m+1 − x

tj+m+1 − tj+2
Nm−2
j+2

(x|T)

)
︸                                                                ︷︷                                                                ︸

=Nm−1
j+1

(x|T)

=
m− 1

tj+m − tj+1
Nm−2
j+1

(x|T) −
m− 1

tj+m+1 − tj+1
Nm−1
j+1

(x|T) . (4.60)

Substitutin (4.59) and (4.59) into (4.58) we get(
d

dx
Nm
j (·|T)

)
(x)

=
1

tj+m − tj
Nm−1
j

(x|T) −
1

tj+m+1 − tj+1
Nm−1
j+1

(x|T) +
m− 1

tj+m − tj
Nm−1
j

(x|T)

−
m− 1

tj+m − tj+1
Nm−2
j+1

(x|T) +
m− 1

tj+m − tj+1
Nm−2
j+1

(x|T) −
m− 1

tj+m+1 − tj+1
Nm−1
j+1

(x|T)

=
m

tj+m − tj
Nm−1
k

(x|T) −
m

tj+m+1 − tj+1
Nm−1
j+1

(x|T) ,

which verifies (4.57). �

Exercise 4.9 Verify (4.57) form = 1. What does that mean geoemetrically? ♦

This also gives us the derivative of a spline curve in a straightforward way.

Corollary 4.49 For x ∈ R \ T

d

dx
Nm,T d(x) = m

n+1∑
j=0

dj − dj−1
tj+m − tj

Nm−1
j

(x|T) , (4.61)

where dn+1 = d−1 = 0
74.

Proof: From Lemma 4.48 we get

d

dx
Nm,T d(x) = m

n∑
j=0

dj

Nm−1
j

(x|T)

tj+m − tj
−
Nm−1
j+1

(x|T)

tj+1+m − tj+1


= m

n+1∑
j=0

dj − dj−1
tj+m − tj

Nm−1
j

(x|T) .

�
74And once again Nm−1

j
(x|T) / (tj+m − tj) ≡ 0.
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Proposition 4.50 Nm
j
(·|T) ∈ Sm(T), j = 0, . . . , n.

Proof: Once more inductionn on m75. For m = 0 all knots have to be simple
as the maximal multiplicity is bounded by m + 1 = 1 and the B–splines are
piecewise constant functions that trivially belong to C−1(R).

To prove m − 1 → m, m ≥ 1, we only need to check differentiability. At
an m + 1–fold knot the de Boor algorithm already gives us a discontinuity:
the B–spline must have the values 0 and 1 there simultaneously. For a knot
t ∈ (tj, tj+m+1) of multiplicity µ ≤ m, we can differentiate in an open interval
U with U ∩ T = {t} and the derivative is well–defined according to (4.57) and
m− 1− µ times continously differentiable by the induction hypothesis. Hence,
Nm
j

ism− µ times continously differentiable in U. �

Lemma 4.51 The B–splines Nm
j
(·|T), j = 0, . . . , n, are linearly independent.

Proof: Yet another induction on m where m = 0 is clear since the B–splines
have disjoint support. For m→ m+ 1 we assume that no knot has multiplicity
m+ 1 and there were coefficients d = (dj : j = 0, . . . , n), such that

0 = Nm,T d =

n∑
j=0

dj N
m
j (·|T) . (4.62)

Taking derivative of both sides yields for x ∈ R \ T that

0 =
d

dx
Nm,T d = m

n+1∑
j=0

dj − dj−1

tj+m − tj
Nm−1
j

(·|T) .

According to Proposition 4.50 the right hand side of this identity is continuous76

and the induction hypothesis gives dj = dj−1, hence

0 = d0 = d1 = d2 = · · · = dn = dn+1 = 0.

�

Lemma 4.52 dim Sm(T) = n+ 1.

Proof: On the interval Im = (tm, tm+1) which is , ∅ due to (4.56) we define an
arbitrary polynomial pm ∈ Πm. Let tm+1 = tm+2 = · · · = tm+µ < tm+µ+1 be a knot
of multiplicity µ. Expanding a polynomial pm+1 on (tm+1, tm+µ+1) as

pm+1 =

m∑
j=0

aj

j!
(x− tm+1)

j
,

the differentiability conditions of the spline space take the form

p
(j)
m (tm+1) = p

(j)

m+1
(tm+1) = aj, j = 0, . . . ,m− µ.

75How else should one make use of recurrence relations anyway?
76Nom+ 1–fold knots left.
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Hence the space of all piecewiese polynomials of proper differentiability on the
first two intervals has the dimension m+ 1+ µ – the m+ 1 degrees of freedom
of pm and the µ free parameters of pm+1. If the next knot tm+µ+1 has multiplicity
ν, we get ν more free parameters and so on. Inductively we can conclude that
for the knot sequence

T` = (tm, . . . , tm+`+1) , tm < tm+1, tm+` < tm+`+1,

plus appropriate boundary knot we have dim Sm (T`) = m + ` + 1 and the case
` = n−m proves the lemma. �

Proof of Theorem 4.47: We only have to connect the pieces we collected so far.
According to Proposition 4.50

span
{
Nm
j (·|T) : j = 0, . . . , n

}
⊆ Sm(T),

but since due to the linear independence of the B–Splines and because of
Lemma 4.52 the dimensions of the two vector spaces coincide, the spaces must
be identical. �

4.3.4 Interpolation

The name “spline” is due to a physical device, a flexible ruler used for the
interpolation of curves, initially in ship constructions77. Let us first clarify what
interpolation means.

Definition 4.53 (Interpolation) Given sites78 xj ∈ I and data yj ∈ Rd, j =
0, . . . , n, the interpolation problem consists of finding a function f : I→ R such that

f(xj) = yj, j = 0, . . . , n. (4.63)

Remark 4.54

1. The name interpolation has been invented by Wallis in 1655, according to
(Bauschinger, 1900), see (Gasca & Sauer, 2000). Originally, it was used to esti-
mate non existing values in tables, for example logarithms. Mostly, polynomials
were used for that purpose and we will see in a moment why.

2. Of course, all the points have to be different, otherwise the respective data values
would also have to coincide which makes the problem redundant.

3. Clearly, the interpolation problem (4.63) has many solutions and a major question
is how to restrict the functions79 such that the solution becomes unique.

4. By working on the components in Rd separately, it suffices to consider the case
d = 1.

77This can be seen from the German word “Straklatte” for this device.
78This terminology is due to Carl de Boor, other people use “points”, “locations”, even “knots”.
79And perhaps the points.
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5. If the function f is chosen from a linear space80 spanned by f0, . . . , fm, it can be
represented as

f =

m∑
k=0

ak fk(xj), a = [ak : k = 0, . . . ,m] ∈ Rm+1 (4.64)

and the interpolation problem can be written as

f(xj) =

m∑
k=0

ak fk(xj), j = 0, . . . , n,

which takes the matrix form
f(x0)
...

f(xn)

︸       ︷︷       ︸
=:f

=


f0(x0) . . . fm(x0)
...

. . .
...

f0(xn) . . . fm(xn)

︸                           ︷︷                           ︸
=:F(X)

a. (4.65)

The matrix F(X) is called the collocation matrix for the basis {f0, . . . , fm} and
the sites X = {x0, . . . , xn}.

6. The linear system (4.65) has a unique solution only if the collocation matrix F(X)
is a square one, but clearly this is only a necessary condition and in no way
sufficient. Anyway, it means that the dimension of the space and the number of
interpolation conditions has to coincide.

7. The order of the sites is not relevant for the solvability of the interpolation problem
or its solution, but it may affectnumerical properties of algorithms to solve it.

The simplest universal interpolation space in one variable are the polynomials.

Theorem 4.55 The interpolation problem f(xj) = yj, j = 0, . . . , n, for distinct xj
always has a unique solution in Πn.

Proof: We can write down the solution explicitly as81

f =

n∑
j=0

yj
∏
k,j

·− xk
xj − xk

⇒ f(xj) = yj, j = 0, . . . , n.

For uniqueness suppose that f and g are solutions, then p = f−g is a polynomial
of degree nwith

p(xj) = f(xj) − g(xj) = yj − yj = 0, j = 0, . . . , n,

80To be very precise: a real vector space.
81Please do not use this to really compute the interpolating polynomial numerically as this

formula is very ill–conditioned.
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hence
p(x) = (x− x0) · · · (x− xn)︸                     ︷︷                     ︸

∈Πn+1

q(x)

which is only in Πn if q = 0. �

Exercise 4.10 Is unique interpolation at arbitrary n distinct sites x1, . . . , xn pos-
sible with the space {x, · · · , xn}? Prove it or give a counterexample. ♦

An immediate consequence of Theorem 4.55 is that interpolation with polynomi-
als of degree at most n is only possible at≤ n+1 sites: for more sites, interpolate
at x0, . . . , xn by a unique f and then require yn+1 , f(xn+1), this problem cannot
be solved.

This, on the other hand, means that spline interpolation cannot be so simple
any more. Since restricted to any notrivial knot interval (tj, tj+1), splines are
in Πm, no such interval may contain more than m + 1 interpolation sites. But
this does not take into account the interaction between the intervals due to
differentiability, so the full requirement is stronger and as follows.

Theorem 4.56 (Schoenberg–Whitney) The splines space Sm(T) with basisNm
j
(·|T),

j = 0, . . . , n, allows for unique interpolation at sites82 X = {x0 < x1 < · · · < xn} if and
only if

tj < xj < tj+m+1, j = 0, . . . , n. (4.66)

We will not give the full proof of this theorem83 even if it quite interesting, but
we can easily show that the condition (4.66) is necessary.
Proof of Theorem 4.56, “⇒”: Suppose there exists some j violating (4.66) which
means that either84 xj ≤ tj or xj ≥ tj+m+1. Let us start with the first case. Since
Nm
k
(·|T) is supported85 on [tk, tk+m+1], it follows that

Nm
k (xj|T) = 0, k = j, . . . , n, (4.67)

and therefore the first j+ 1 rows of the collocation matrix are of the form
N0 (x0|T) . . . Nj−1 (x0|T) 0 . . . 0

...
. . .

...
...
. . .

...

N0 (xj|T) . . . Nj−1 (xj|T) 0 . . . 0


which means that they are linearly dependent. But this means that the col-
location matrix cannot be invertible, hence the interpolation is unsolvable in
general.

In the other case, xj ≥ tj+m+1, we have

Nm
k (xj|T) = 0, k = 0, . . . , j, (4.68)

82There is no restriction in ordering them in incrasing size.
83Which has even more nice consequences, the collocation matrices for splines are in fact

banded and totally nonnegative which makes the numerically exceptionally well to handle.
84Both at the same time is clearly impossible.
85Recall once more: the support is the closure of the set of all points where a function is

nonzero.
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and since xj ≤ x`, j ≤ `, we also get

Nm
k (xl|T) = 0, k = 0, . . . , j, l = j, . . . , n. (4.69)

Consquently, the first j+ 1 columns of the collocation matrix look as follows:

Nm
0
(x0|T) . . . Nm

j
(x0|T)

...
. . .

...

Nm
0
(xj−1|T) . . . Nm

j
(xj−1|T)

0 . . . 0
...

. . .
...

0 . . . 0


,

and are linearly dependent. �

The classical interpolation problem that “initiated” splines was not interpolation
at arbitrary sites but interpolation at simple knots. Indeed, if we set xj = tm+j,
j = 0, . . . , n−m+ 1, then

tj < tm+j = xj < tj+m+1, j = 0, . . . , n−m+ 1,

and the sites satisfy the necessary condition of Schoenberg–Whitney. However,
these are only n −m + 2 conditions so far and the spline space has dimension
n+ 1, hence, we have to request n+ 1−(n−m+ 2) = m− 1 further conditions.
The most popular ones are the so–called natural boundary conditions and to
distribute them symmetrically on both ends of the spline, it is conveniet that
m− 1 is even orm odd86

Theorem 4.57 (Natural spline) Letm = 2r+1 ∈N let T = Tm,n be a knot sequence
with simple knots. Then, forn ≥ m+r and any given values yj, j = 0, . . . , n−m+1,
there exists a unique spline curve Nm,Td, such that

Nm,T d (tm+j) = yj, j = 0, . . . , n−m+ 1, (4.70)

N
(k)

m,T
d (t`) = 0, k = r+ 1, . . . , 2r, ` = m,n+ 1. (4.71)

Definition 4.58 The spline satisfying (4.70) and (4.71) is called the natural inter-
polating spline or simple natural spline of degree m for the data yj and the knots
T .

Proof: Due to the Schoenberg–Whitney theorem 4.56, the spline interpolation
with87

xj = tj+r+1 ∈ (tj, tj+m+1) , j = 0, . . . , n,

86There, is a still popular misunderstanding that splines would only exist of odd order and
that even order splines are useless. This is not true, of course, it is only the notion of the natural
spline that would fail and, as we will see soon, the natural spline is only natural for m = 3 and
not even then.

87Now we include some of the boundary knots as well. This is possible as we requested all
knots to be simple.
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is uniquely solvable. By s−r, . . . , sr we now denote the solutions of the interpo-
lation problem based on (4.70) and the additional conditions

sj (xk) =


1 j < 0 und k = r− j,
1 j > 0 und k = n+ j− r,
0 sonst,

k = 0, . . . , r−1, n+1, . . . , n+r.

All these splines interpolate at tm, . . . , tn+1 and only differ at the “additional
points” tr+1, . . . , tm−1 und tn+2, . . . , tn+r+1: s0 vanishes on all of them while
s−1, . . . , s−r take the value 1 at one of the additional points to the left, s1, . . . , sr
at one to the right, see Fig. 4.12.

These m = 2r + 1 splines are nonzero and linearly independent. If we
consider the linear system for a−r, . . . , ar, given by

r∑
j=−r

aj s(k)
j

(t`) = 0, k = r+ 1, . . . , 2r, ` = m,n+ 1,

then these are 2r homogeneous equations in the 2r+1 unknowns a−r, . . . , ar, hence
there always exists a nontrivial solution a∗−r, . . . , a

∗

r with either a∗−r+ · · ·+a
∗

r = 0
or, after normalization, a∗−r + · · ·+ a

∗

r = 1. Setting

s =

r∑
j=−r

a∗j sj,

and taking into account that for j = 0, . . . , n−m+ 1we have

s (tm+j) =

r∑
k=−r

a∗k sk (tj+m)︸      ︷︷      ︸
=yj

= yj
r∑

k=−r

a∗k =

{
yj, a∗−r + · · ·+ a

∗

r = 1,
0, a∗−r + · · ·+ a

∗

r = 1,

if follows that s is either a valid solution of (4.70) or a nonzero solution of the
respective homogeneous problem88, depending on whether

∑
a∗
j

has the value
1 or 0. It still remains to prove that the second case is usually impossible which
will also verify the uniqueness claim. �

4.3.5 Minimality and origin of the name

Now, we can finally describe the “valuable” minimal property of spline inter-
polants.

Definition 4.59 (Energy norm) For k ∈ N and I ⊂ R we define89 the energy norm
| · |k as the seminorm90

|f|k = |f|k,I =

(∫
I

∣∣∣f(k)(x)∣∣∣2 dx)1/2 , f ∈ C(k)(I). (4.72)

88The case yj = 0.
89Strictly speaking, we must choose I such that we can do integration there. With the (fairly

cheap) Riemann integral one usually encounters in Analysis courses, I would be a reasonable
union of finite intervals, for integration over all of R it would be better to introduce a Lebesgue
integral. This is all very interesting, but for our purposes here the subtle differences are not
relevant.

90A seminorm has almost the same definition as a norm with the difference that ‖x‖ = 0 does
not imply x = 0 any more.
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t[m] t[n+1]

t[m−1] t[n+2] t[n+r+1]t[r+1]

= f

s[−1] s[−r] s[1] s[r]... ...

Figure 4.12: The extended interpolation problem from the proof of Theo-
rem 4.57. On the marked region all splines take the prescibed values, at the
additional points they behave in a 0/1 way except s0 which vanishes in all
of them.

Exercise 4.11 Which functions satisfy |f|k = 0? ♦

Exercise 4.12 Show that for a compact interval I, ‖f‖ := maxx∈I |f(x)| and k ≥ 1
the following expressions are norms

1. ‖f‖+ |f|k,

2. max {‖f‖, |fk|}

3. ‖f‖+
k∑
j=1

2−k|f|k.

♦

Remark 4.60 (Energy norms) In the special casek = 2 the energy norm is the integral
over the second derivative which can be considered an approximation for the curvature
and therefore the integral is an approximation for the bending energy of the curve.

Theorem 4.61 (Minimality) Let m = 2r + 1 ∈ N and suppose that T consists of
simple knots. For f ∈ Cr+1(I) let Sf = Nm,T d be a spline that satisfies (4.70) and (4.71)
for yj = f(tj). Then

|Sf|r+1,I ≤ |f|r+1,I (4.73)

Proof: We start with

|f− Sf|
2
r+1,I =

∫
I

(
f(r+1)(x) − (Sf)

(r+1)
(x)

)2
dx

=

∫
I

(
f(r+1)(x)

)2
− 2f(r+1)(x)(Sf)

(r+1)
(x) +

(
(Sf)

(r+1)
(x)

)2
dx

= |f|
2
r+1,I − 2

∫
I

(
f(r+1)(x) − (Sf)

(r+1)
(x)

)
(Sf)

(r+1)
(x) dx− |Sf|

2
r+1,I . (4.74)
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Figure 4.13: A real world spline, consisting of a bendable ruler and weights,
called ducks that tie it to certain places where the curve has to interpolate.
The spline was given to the Numeric Mathematics group of Giessen by
H. Hollenhorst.

For j = m, . . . , nwe next use partial integration to show that

tj+1∫
tj

(
f(r+1)(x) − S

(r+1)

f
(x)

)
S
(r+1)

f
(x) dx

=
(
f(r)(x) − S

(r)

f
(x)

)
S
(r+1)

f
(x)

∣∣∣∣tj+1
tj

−

tj+1∫
tj

(
f(r)(x) − S

(r)

f
(x)

)
S
(r+2)

f
(x) dx

=

k∑
l=0

(−1)r−l
(
f(r−l)(x) − S

(r−l)

f
(x)

)
S
(r+l+1)

f
(x)

∣∣∣∣tj+1
tj

+(−1)k+1

tj+1∫
tj

(
f(r−k)(x) − S

(r−k)

f
(x)

)
S
(r+k+2)

f
(x)︸         ︷︷         ︸

=0f”urk=r

dx, k = 1, . . . , r

=

r∑
l=0

(−1)r−l
(
f(r−l)(x) − S

(r−l)

f
(x)

)
S
(r+l+1)

f
(x)

∣∣∣∣tj+1
tj
,

and summation of these expression over j = m, . . . , n yields∫
I

(
f(r+1)(x) − S

(r+1)

f
(x)

)
S
(r+1)

f
(x) dx

=

r∑
`=0

(−1)r−l
(
f(r−l)(x) − S

(r−l)

f
(x)

)
S
(r+`+1)

f
(x)

∣∣∣∣∣∣∣
tn+1

tm

= 0.

Note that the term for ` = r vanishes since Sf interpolates f at tm, tn+1 while the
other terms for l = 0, . . . , r−1 are zero due to (4.71). Substituting this into (4.74)
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we eventually obtain.

|Sf|
2
r+1,I = |f|

2
r+1,I − |f− Sf|

2
r+1,I ≤ |f|

2
r+1,I .

Here equality holds if and only if f− Sf ∈ Πr.
This also verfies the uniqueness of the natural spline interpolant forn ≥ m+r:

if f is any other solution of the minimization problem, then we must have
f − Sf ∈ Πr and this polynomial has to vanish at at least r + 1 points, namely
the knots where Sf interpolates. This is only possible for the zero polynomial,
hence f = Sf. �

Proof of Theorem 4.57, continued: Now suppose that n ≥ m + r and that the
second case in the preceding step of the proof has occured, which means that
there exists a nonzero spline

s =

r∑
j=−r

a∗j sj

which solves the homogeneous system. Therefore, we can apply Theorem 4.61
with f = 0 as well as91 Sf = s and obtain that

0 = |f|r+1,I ≥ |Sf|
2
r+1,I =

∫
I

|s(r+1)(x)|2 dx

which yields that s(r+1) = 0, hence s ∈ Πr. But n ≥ m + r means that this
polynomial must vanish at the at least r + 2 points tm+j, j = 0, . . . , n −m + 1,
hence is zero which gives a contradiction. This has two consequences:

1. The value a∗−r + · · ·a
∗

r must be , 0 and therefore can be normalized to 1.
Hence, the natural spline exists.

2. The natural spline interpolant must be unique because the difference of
two natural interpolants is another nonzero solution of the homogeneous
problem.

�

Remark 4.62 This proof almost looks like a cyclical argument: First we claim that there
exists a natural spline, then we show its minimality and then we use the minimality to
prove its existence. Showing properties without existence is a dangerous thing to do as
for elements of the empty set any property holds true.

Nevertheless the argument is correct which we can see by summarizing the steps:

1. There either exists a natural spline interpolant or, if not, there exists a nonzero
solution of the homogeneous problem.

2. Any spline interpolant is minimizing the energy norm.

3. If there would exist a nonzero homogeneous solution, then it has to be zero, an
obvious contradiction.

91Now with a scalar s.
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4. Consequently, there must be a natural spline interpolant and it has to be unique.

Remark 4.63 In (Boor, 1990), Carl de Boor makes the following statement

Die Extremaleigenschaft des interpolierenden Splines wird häufig
für die große praktische Nützlichkeit der Splines verantwortlich
gemacht. Dies ist jedoch glatter “Volksbetrug” . . . .

There is nothing to add to this.

4.3.6 The Marsden identity and knot insertion

Any polynomial is a piecewise polynomial and therefore any polynomial is
a spline, even regardless of the underlying knot sequence. Thus, for every
polynomial curve p there must be coefficients p0, . . . ,pn such that

p(x) =
n∑
j=0

pjNm
j (x|T), x ∈ [tm, tn+1], p ∈ Πm. (4.75)

Our goal is to give a formula for these coefficients. To that end, let us recall the
intervals Ik = [tk, tk+1), k = 0, . . . , n +m, and let us now write the polynomial
pieces of the B–splines explicitly as

pmj,k = Nm
j (·|T)

∣∣∣
Ik
∈ Πm, j = 0, . . . , n, k = 0, . . . , n+m. (4.76)

Here, we restrict ourselves on scalar valued splines for the proof which is no
restriction since we can always act on the components of the curves separately.
The polynomials from (4.76) are polynomials and therefore have a polar form
or blossom which we denote by Pm

j,k
, resprectively. In the case of (4.75), we just

have one polynomial p and therefore one polar form P.

Theorem 4.64 (Spline Duality / Marsden identity) Let Nm,Td be a spline curve
for a knot sequence T and let pk = Nm,Td|Ik ∈ Π

d
m be its polynomial pieces with polar

forms Pk, k = m, . . . , n. Then we have the duality relation

dk = Pj (tk+1, . . . , tk+m) , k = j−m, . . . , j, j = m, . . . , n. (4.77)

In particular, if the spline curve is a polynomial curve,

dk = P(tk+1, . . . , tk+m), k = 0, . . . , n. (4.78)

The following technical lemma is just based on straightforward computations
but nevertheless is the main ingredient for the proof.

Lemma 4.65 The polar forms Pm
j,k

for pm
j,k

, j = 0, . . . , n, k = 0, . . . , n + m, are
determined recursively as

P0j,k() = δjk, (4.79)

P`j,k (x1, . . . , x`) = u1
(
x`|I

`
j

)
P`−1
j,k

(x1, . . . , x`−1)

+u0
(
x`|I

`
j+1

)
P`−1
j+1,k

(x1, . . . , x`−1) , ` = 1, . . . ,m. (4.80)
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Proof: We first remark that for x1 = · · · = xm = x the recurrence (4.79) und
(4.80) is precisely the B–spline recursion (4.49), hence Pm

j,k
(xm) = pm

j,k
(x). That

Pm
j,k

is a multiaffine form follows from the fact that the barycentric coordinates
are affine functions. What remains is symmetry. To prove that, we apply (4.80)
twice and get

P`j,k(x1, . . . , x`) = u1(x`|I
`
j)P

`−1
j,k

(x1, . . . , x`−1) + u0(x`|I
`
j+1)P

`−1
j+1,k

(x1, . . . , xl−1)

= u1(x`|I
`
j)u1(x`−1|I

`−1
j

)P`−2
j,k

(x1, . . . , x`−2)

+u1(x`|I
`
j)u0(x`−1|∆

`−1
j+1

)P`−2
j+1,k

(x1, . . . , x`−2)

+u0(x`|I
`
j+1)u1(x`−1|I

`−1
j+1

)Pl−2
j+1,k

(x1, . . . , x`−2)

+u0(x`|I
`
j+1)u0(x`−1|I

`−1
j+2

)P`−2
j+2,k

(x1, . . . , x`−2).

Since

u1(x`|I
`
j)u1(x`−1|I

`−1
j

) =
(x` − tj) (x`−1 − tj)

(tj+` − tj) (tj+`−1 − tj)
,

and

u0(x`|I
`
j+1)u0(x`−1|I

`−1
j+2

) =
(tj+`+1 − x`) (tj+`+1 − x`−1)

(tj+`+1 − tj+1) (tj+`+1 − tj+2)
,

as well as

u1(x`|I
`
j)u0(x`−1|I

`−1
j+1

) + u0(x`|I
`
j+1)u1(x`−1|I

`−1
j+1

)

=
(x` − tj) (tj+` − x`−1)

(tj+` − tj) (tj+` − tj+1)
+

(tj+`+1 − x`) (x`−1 − tj+1)

(tj+`+1 − tj+1) (tj+` − tj+1)

=
(tj+`+1 − tj+1) (x` − tj) (tj+` − x`−1) + (tj+` − tj) (tj+`+1 − x`) (x`−1 − tj+1)

(tj+` − tj) (tj+` − tj+1) (tj+l+1 − tj+1)

=
tj+` (tj+`+1 − tj+1) + tj+1 (tj+` − tj)

(tj+` − tj) (tj+` − tj+1) (tj+`+1 − tj+1)
x`

+
tj (tj+`+1 − tj+1) + tj+`+1 (tj+` − tj)

(tj+` − tj) (tj+` − tj+1) (tj+`+1 − tj+1)
x`−1

−
tj+`+1 − tj+1 + tj+` − tj

(tj+` − tj) (tj+` − tj+1) (tj+`+1 − tj+1)
x`x`−1

−
(tj+`+1 − tj+1) tjtj+` + (tj+` − tj) tj+`+1tj+1

(tj+` − tj) (tj+` − tj+1) (tj+`+1 − tj+1)

=
(tj+`+1tj+` − tj+1tj) (x` + x`−1) − (tj+`+1 − tj+1 + tj+` − tj) x`x`−1

(tj+` − tj) (tj+` − tj+1) (tj+`+1 − tj+1)

−
(tj+`+1 − tj+1) tjtj+` + (tj+` − tj) tj+`+1tj+1

(tj+` − tj) (tj+` − tj+1) (tj+`+1 − tj+1)

are symmetric expression with respect to x` and x`−1, so is Pl
j,k
(x1, . . . , x`). The

rest of the interchanging argument is like in the proof of Proposition 4.26. �

Equipped with Lemma 4.65, we can derive the following crucial formula.
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Lemma 4.66 For ` = 0, . . . ,m, j = 0, . . . , n and k = `, . . . , n we have

P`j,k (tr+1, . . . , tr+`) = δjr, r = k− `, . . . , k. (4.81)

Remark 4.67 Equation (4.81) is what one calls a duality in mathematics.

Proof of Lemma 4.66: Induction on ` = 0, . . . ,m, where ` = 0 is just (4.79). For
` > 0 we first choose some r > k − ` which then also satisfies r ≥ k − ` + 1 =
k− (`− 1). By (4.80) and the induction hypothesis we then get

P`j,k (tr+1, . . . , tr+`)

= u1(tr+`|I
`
j)P

`−1
j,k

(tr+1, . . . , tr+`−1) + u0(tr+`|I
`
j+1)P

`−1
j+1,k

(tr+1, . . . , tr+`−1)

= u1(tr+`|I
`
j) δjr + u0(tr+`|I

`
j+1) δj+1,r = u1(tr+`|I

`
r)︸        ︷︷        ︸

=1

δjr + u0(tr+`|I
`
r)︸        ︷︷        ︸

=0

δj+1,r

= δjr.

For r = k− `we make use of the symmetry of the polar form92 to get

P`j,k(tr+1, . . . , tr+`) = P
`
j,k(tr+2, . . . , tr+`, tr+1)

= u1(tr+1|I
`
j)P

`−1
j,k

(tr+2, . . . , tr+`) + u0(tr+1|I
`
j+1)P

`−1
j+1,k

(tr+2, . . . , tr+`)

= u1(tr+1|I
`
j) δj,r+1 + u0(tr+1|I

`
j+1) δj+1,r+1

= u1(tr+1|I
`
r+1)︸           ︷︷           ︸

=0

δj,r+1 + u0(tr+1|I
`
r+1)︸           ︷︷           ︸

=1

δjr = δjr.

�

Proof of Theorem 4.64: If Ik is a nontrivial interval then (4.45) yields

pk(x) = Nm,Td(x) =
k∑

j=k−m

djNm
j (x|T) =

k∑
j=k−m

djpmj,k(x), x ∈ Ik.

Taking the polar forms of both sides yileds

Pk (x1, . . . , xm) =
k∑

j=k−m

djPmj,k (x1, . . . , xm) , x1, . . . , xm ∈ R, (4.82)

and substituting x` = tj+`, ` = 1, . . . ,m, in (4.82) for some j ∈ {k−m, . . . , k}, the
identity (4.81) yields

Pk (tj+1, . . . , tj+m) =
k∑

j=k−m

dj Pmj,k (tj+1, . . . , tj+m)︸                    ︷︷                    ︸
=δjk

= dk. (4.83)

(4.78) is then a direct consequence of (4.77). �

With the help of Theorem 4.64 we can also prove very easily a fundamental
procedure in the manipulation of splines.

92Somewhere we have to apply Lemma 4.65 into which we invested so much effort.
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Definition 4.68 A knot sequence T ′ = T ′m,n ′ = (t ′
0
, . . . , t ′

m+n ′+1
) is called a refine-

ment of a knot sequence T if there exists a strictly monotonic mapping τ : {1, . . . ,m+
n}→ {1, . . . ,m+ n ′} such that

tj = t
′

τ(j), j = 0, . . . , n+m. (4.84)

We write this as T ⊆ T ′.

Remark 4.69 Since (4.84) says that every knot in T can be found within T ′ with at
least the same multiplicity, the notation T ⊆ T ′ is justified.

Since (4.84) implies that for any k ∈ {1, . . . ,m+n ′} there exists a j ∈ {1, . . . ,m+n}
such that

[t ′k, t
′

k+1] ⊆ [tj, tj+1],

any piecewise polynomial on T is also a piecewise polynomial on T with infinite
differentiability at the additional knots. Therefore we have proved the following
simple but fundamental observation.

Theorem 4.70 (Nested spline spaces) If T ⊆ T ′ then also Sm(T) ⊆ Sn(T ′).

Consequently, any spline curve s = Nm,Td ∈ Sm(T) also belongs to Sm(T ′) and
therefore can also be written as Nm,T ′d ∈ Sm(T ′), hence there exist coefficients
d ′ ∈ Rd×n ′ such that

n∑
j=0

djNm
j (·|T) = Nm,Td = Nm,Td ′ =

n ′∑
j=0

d ′j N
m
j (·|T

′),

and the obvious question is: How can we compute d ′ from d? This procedure
is called knot insertion. We will consider the insertion of a single knot here,
i.e., either we add a new point or we raise the multiplicity of an already existing
knot93 by one.

To that end, suppose that for some j ≤ n+mwe have

t0 ≤ · · · ≤ tj ≤ t
′
≤ tj+1 ≤ · · · ≤ tn+m+1

and set

T ′ = {t ′k : k = 0, . . . , n+m+ 2} , t ′k =


tk k = 0, . . . , j,
t ′ k = j+ 1,
tk−1 k = j+ 2, . . . , n+m+ 2.

(4.85)
Then we have the following algorithm to compute the new control points. The
algorithm is usually attributed to Boehm94, but there is also the so–called Oslo
algorithm due to a group at Oslo University, see (Lyche, 1987). It obviously
does the same in the case of simple knot insertion but is also capable of inserting
several knots at the same time.

93Whose multiplicity should be ≤ m, of course, as multiplicity > m+ 1 is still forbidden.
94His original name was Böhm but since “ö” is not so common in English, he changed it to be

more readable.
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Theorem 4.71 (Knot insertion) If T ′ is given as in (4.85), then the new control points
d ′ can be computed as

d ′k =


dk k = 0, . . . , j−m,

u0(t
′|Im
k
)dk−1 + u1(t ′|Imk )dk k = j−m+ 1, . . . , j,

dk−1 k = j+ 1, . . . , n+ 1.
(4.86)

Figure 4.14: Two examples for knot insertion.

Proof: We again use (4.77), more precisely, the identity

d∗k = P ′k
(
t∗k+1, . . . , t

∗

k+m

)
, k = 0, . . . , n+ 1. (4.87)

Since for k = 0, . . . , j −m we have95 I ′
k
= Ik, and therefore P ′

k
= Pk as well as(

t ′
k+1
, . . . , t ′

k+m

)
= (tk+1, . . . , tk+m), it follows that

d ′k = P ′k
(
t ′k+1, . . . , t

′

k+m

)
= Pk (tk+1, . . . , tk+m) = dk, k = 0, . . . , j−m.

Wheneverk ≥ j+1, hence I ′
k
= Ik−1, P ′

k
= Pk−1 and

(
t ′
k+1
, . . . , t ′

k+m

)
= (tk, . . . , tk+m−1),

an analogous reasoning yields

d ′k = P ′k
(
t ′k+1, . . . , t

′

k+m

)
= Pk−1 (tk, . . . , tk+m−1) = dk−1, k = j+ 1, . . . , n+ 1.

The interestign cases are of course the ones in which t ′ appears. There, we write
t ′ as a barycentric combination of the knots tk and tk+m, that is

t ′ = u0(t
′|Imk ) tk + u1(t

′|Imk ) tk+m. (4.88)

95With the obvious extension of notation.
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Then

d ′k = Pk
(
t ′k+1, . . . , t

′

k+m

)
= Pk (tk+1, . . . , tj, t ′, tj+1, . . . , tk+m−1)

= u0(t
′|Imk )Pk (tk+1, . . . , tj, tk, tj+1, . . . , tk+m−1)

+u1(t
′|∆mk )Pk (tk+1, . . . , tj, tk+m, tj+1, . . . , tk+m−1)

= u0(t
′|Imk )Pk (tk, . . . , tk+m−1)︸                    ︷︷                    ︸

=dk−1

+u1(t
′|Imk )Pk (tk+1, . . . , tk+m)︸                    ︷︷                    ︸

=dk

= u0(t
′|Imk )dk−1 + u1(t∗|Imk )dk,

which is (4.86). To make sure that we made no hidden mistakes in (4.88), we
note that

j⋂
k=j−m+1

Imk = [tj−m+1, tj+1] ∩ · · · ∩ [tj, tj+m] = [tj, tj+1] 3 t
′,

so that (4.88) is always well–defined, even when tj = tj+1 is knot of higher
multiplicity. �

 0
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Figure 4.15: Insertion of knots and resulting spline curves, plotted twice.
Surprisingly enough, the curves are the same.

Remark 4.72 (Knot insertion and multiple knots)

1. The rule (4.86) can also be used to raise the multiplicity of knot, neither the
formula nor the proof changes.

2. If a knot t ′ is insertedm times or raised to multiplicitym, then one of the control
points has the value Nm,T ′d (t ′) since spline curves interpolate a control point
at knots of multiplicity m. Tracing the recurrence for this control point, we the
obtain de Boor algorithm again.
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3. Hence, the de Boor algorithm can be interpreted as knot insertion or could be
factorized into knot insertion steps.

Knot insertion can also be conveniently written in a different way by considering
the matrices

d = [d0 . . .dn] and d ′ = [d ′0 . . .d
′

n] .

Then d ′ = dV with the values

αk = u0(t
′|Imk ), k = j−m+ 1, . . . , j (4.89)

and the resulting matrix

A = AT (t
′) =



1
. . .

1 αj−m+1

1− αj−m+1
. . .
. . . αj

1− αj 1
. . .

1


∈ Rn×n+1.

(4.90)
This matrix can be used to describe the relationship between the spline spaces
Sm(T) and Sm (T ′) and plays an important role for singularity detection in spline
curves, see (Hamm et al., 2014).
Knot insertion can be applied to make splines comparable. Suppose that T and
T ′ are two arbitrary knot sequences of degree96 m and d ∈ Rd×n and d ∈ Rd×n ′

are control points for these knot sequences. If want to do operations on the
two splines Nm,Td and Nm,T ′d ′, for example addition or subtraction or general
distance computations, it is more practical to use splines with identical knot
sequences. To that end, let

T∪ := T ∪ T
′ = min{T ∗ : T ⊆ T ∗, T ′ ⊂ T ∗}

the smallest knot sequence which contains both T and T ′. Then

Nm,Td = Nm,T∪dAT(T∪ \ T) and Nm,T ′d ′ = Nm,T∪d
′AT ′(T∪ \ T

′)

96Essentially this means only the restriction on the multiplicity of knots.



4.3 Spline curves 77

are spline curves based on the same knot sequence and therefore can be added
subtracted or compared. In particular,∥∥∥(Nm,Td −Nm,T ′d ′)(x)

∥∥∥
=

∥∥∥(Nm,T∪dAT(T∪ \ T) −Nm,T∪d
′AT ′(T∪ \ T

′))(x)
∥∥∥

=

∥∥∥∥∥∥∥
n∪∑
j=0

(dAT(T∪ \ T) − d ′AT(T∪ \ T
′))j N

m
j (x|T∪)

∥∥∥∥∥∥∥
≤

n∪∑
j=0

∥∥∥(dAT(T∪ \ T) − d ′AT(T∪ \ T
′))j

∥∥∥Nm
j (x|T∪)

≤ max
j

∥∥∥(dAT(T∪ \ T) − d ′AT(T∪ \ T
′))j

∥∥∥ n∪∑
j=0

Nm
j (x|T∪)︸            ︷︷            ︸
=1

= max
j

∥∥∥(dAT(T∪ \ T) − d ′AT(T∪ \ T
′))j

∥∥∥
gives a first and simplest version of a distance estimate between spline curves.
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Die hitzigsten Verteidiger eine
Wissenschaft, die nicht den
geringsten scheelen Seitenblick auf
dieselbe vertragen können, sind
gemeiniglich solche Personen, die es
nicht sehr weit in derselben gebracht
haben und sich dieses Mangels
heimlich bewußt sind.

Lichtenberg

Geometric objects II:
Surfaces in CAD 5

Curves are a nice thing, but normally the world around us is three dimensional
which makes surfaces the things to go. Here we will mostly consider two
dimensional, “classical” surfaces. Of particular interest will be methods which
construct surfaces from curves since we now understand curves quite well
already.

As curves only make sense inRd, d ≥ 2, as geometric objects we need at least
d ≥ 3when dealing with parametric surfaces.

5.1 Planes and derived objects
The simplest geometric object of the surface type is a plane. Since a two dimen-
sional affine plane is a hyperplane at the same time there are different ways to
define it.

Definition 5.1 (Planes and hyperplanes)

1. A plane in R is a two dimensional affine subspace of the form

x + XR2, x ∈ Rd, X ∈ Rd×2. (5.1)

The plane is called nondegenerate if the rank of X ist 2.

2. A hyperplane inRd is an affine subspace of codimension 1, i.e., the solution set
of a linear equation:

{x : nTx = c}, n ∈ Rd \ {0}, c ∈ R. (5.2)

A few comments on (5.2). Since for any two solutions x, x ′ of nTx = c and α ∈ R
we have

nT(αx + (1− α)x ′) = α nTx︸︷︷︸
=c

+(1− α)nTx ′︸ ︷︷ ︸
=c

= c(α+ 1− α) = c,
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the set defined in (5.2) is indeed an affine subspace of Rd. The normal n for the
plane is not unique since for any α , 0

(αn)Tx = αc ⇔ nTx = c,

so that we request n to be normalized97, i.e., ‖n‖2 = 1. This defines n up to its
sign which we can fix such that c ≥ 0 which only leaves ambiguities in the case
of a linear subspace where c = 0.

Since dimension and codimension always add up to the dimension of the am-
bient spaceRd, the valuable identity98 1+2 = 3 shows that inR3 nondegenerate
planes and hyperplanes are the same.

However, hyperplanes are infinite objects and therefore not realistic in CAD
systems. Due to that, most planar objects are restricted by means of curves.

Definition 5.2 (Jordan curve) A continuous function f : [a, b] → R2 is called a
Jordan curve99 if it is

1. closed, i.e., f(a) = f(b), and

2. injective on [a, b), i.e., f(t) , f(t ′) whenever t , t ′ ∈ [a, b).

For Jordan curves we have the following result which is as intuitive as nontrivial
and has fist been proved by Camille Jordan in 1887/1893, see (Jordan, 1887),
though the proof is considered incomplete.

Theorem 5.3 (Jordan curve theorem) Any Jordan curve f : I → R2, I = [a, b],
decomposes R2 into two open regions G1, G2 with

∂Gj = f(I), R2 = G1 ∪G2 ∪ f(I). (5.3)

One of these regions is bounded and called the inner region, the other one is unbounded.

We are not going to prove this theorem here as the effort is too much for our
purposes here, but nevertheless this is the mathematical background and jus-
tification of a method intuitively used in CAD: every continuous closed curve
encloses a bounded domain which is called the trimmed domain. To trim a
piece from a plane, one simply maps the trimmed region in R2 to the plane by
means of (5.1).

5.2 Extrusion and ruled surfaces

There are some extremely simple methods to generate surfaces in Rd, d ≥ 3,
from curves and they are the most widely used ones in CAD systems. The
simplest way is to use extrusion which means to shift the curve along a vector.

97It shouldn’t appear so uncommon to require normals to be normalized.
98Exercise: prove this identity. Seriously, try to prove it! What do you realize? You cannot, it’s

a definition!
99Alternatively, its image is called the curve.
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Definition 5.4 (Extrusion) For a curve f : I→ Rd and a translation vector t ∈ Rd,
the extruded surface ist defined as

F : I × [0, 1]→ Rd, F(x, y) = f(x) + y t. (5.4)

If f is a planar curve, i.e., f(I) ⊂ P for some hyperplane P ⊂ Rd with normal n, then
the extrusion vector is normally chosen as ±n.

Note that that the derivative of an extrusion takes a particular simple form,

JF(x, y) = ∇F(x, y) = [f ′(x), t]

and does not depend on y.
If we prescribe two curves, we can also connect them by the same method.

Definition 5.5 (Ruled surface) For two curves f1, f2 : I→ Rd with identical param-
eter region I we define the ruled surface as

F : I × [0, 1]→ Rd, F(x, y) = (1− y) f1(x) + y f2(x). (5.5)

Remark 5.6 (Ruled surfaces)

1. A ruled surface connects equiparametric points on the two curves to each other
by a straight line.

2. If we reparametrize one of the curves, the ruled surface changes. This can be
used in algorithms, but sometimes it is also advisable to use an arc length
parametrization for both curves. This, however, requires that both curves have
the same length.

3. Extrusion is a ruled surface with f1 = f2 = f.

The derivative of a ruled surface can be computed as

JF(x, y) = [(1− y) f ′1(x) + y f ′2(x), f2(x) − f1(x)] .

Example 5.7 (Extrusion & Ruled surface)

1. The extrusion of a circle in a plane by means of the plane normal is a cylinder,
the extrusion of a line segment gives a rectangle.

2. The ruled surface for two line segments is a bilinear function, i.e., a surfce of the
form

F(x, y) = a+ bx+ cy+ dxy.

It is a plane if the four endpoints of the line segments are coplanar, otherwise it
is a curved surface.

3. The ruled surface formed by a circle and a constant curve100 is a cone, the ruled
surface for two polygons with the same number of vertices is a prism.

100In other words, f(I) = y consists of a single point.
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5.3 Tensor products

The geometric intuition of a parametric curve is the idea of transforming or
“bending” an interval; in the same way, a parametric surface can be considered to
be a deformation of a two dimensional parameter regionΩ, hence as a mapping
F : Ω → Rd, Ω ⊂ R2. The main question in that context is: What is Ω? All of
a sudden we have a huge choice of different domains, just to mention circles,
triangles, squares, rectangles, polygons and so on.

A very simple, nice and intuitive approach to surfaces can be found in
P. Bézier’s introductionary chapter in the book (Farin, 1988):

This idea takes us back to a very old, and sometimes forgotten, definition
of a surface: it is the locus of a curve which is at the same time moved and
distorted.

Mathematically, this concept of a surface uses a one paramatric family of curves
fy : I → Rd, y ∈ J, where we use for all values of y the same parameterization
interval I for the curves in x.

5.3.1 Bivariate splines

Recalling the preceding chapter101 and can write the curve fy(x) as a spline
curve102 of order m with respect to a knot sequence T where neither m nor T
depends on y. Formally, this means that

fy(x) =
n∑
j=0

dy,jNm
j (x | T) =

n∑
j=0

dj(y)Nm
j (x | T) , (5.6)

where the difference between the two ways of writing the function is a purely
formal one, we just write the letter y somewhere else.

The right hand side of (5.6) contains dj as a function in y and we can again
write each such function as a spline curve, this time of degree m ′ and with
respect to a knot sequence T ′. Since these are only finitely many functions, we
can always assume that it is the same T ′, otherwise we would just use

T ′ =

n⋃
j=0

T ′j

which is generated by knot insertion applied to the curves dj which can be
written as

dj(y) =
n ′∑
k=1

djkNm ′

k (y | T ′) , j = 0, . . . , n. (5.7)

101This sometimes happens in mathematics.
102After all, we do not know so many types of free form curves.
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If we now substitute (5.7) into (5.6) and replace n,m, T by n1,m1, T1 as well as
n ′,m ′, T ′ by n2,m2, T2 to make the expression more symmetric, we end up with

F(x, y) =
n1∑
j=1

n2∑
k=1

djkNm1
j

(x | T1) N
m2
k

(y | T2) . (5.8)

Since this contains too many double indices, let us simplify the notation.

Definition 5.8 (Tensor product)

1. By µ = (m1,m2) ∈ N2
0

we denote the multidegree of the spline, by ν =
(n1, n2) ∈ N2 the number of control points in x- and y-direction, respectively.
Instead of (x, y) we now write x = (x1, x2) for consistency.

2. For two multiindices α,β ∈ Ns
0

we write α ≤ β if αj ≤ βj, j = 1, . . . , s. This
yields only a partial ordering103

3. The set product of the knots is defined as

T := T1 ⊗ T2 = {tα = (tα1 , tα2) : α ≤ ν+ µ+ 1} , 1 = (1, . . . , 1), (5.9)

and the tensor product of the spline functions as

Nµ
κ (x | T) = N

µ1
κ1
(x1 | T1) N

µ2
κ2
(x2 | T2) . (5.10)

4. Finally, we write the control points as dκ, κ ∈N2
0
.

These notational conventions allow us to write the tensor product spline surface
as

Nµd (x | T) =
∑
κ≤ν

dκN
µ
κ (x | T) , (5.11)

which looks almost like the univariate case104 and can be generalized to an
arbitrary number of variables very easily.

Before we generalize tensor products a bit more, we have a quick look at the
de Boor algorithm for tensor product spline surfaces: Essentially it is just an
application of the idea in (5.6) and (5.7), so that we first compute for j = 0, . . . , ν1
the coefficients

dj(y) =

n∑
k=1

djkN
µ2
k
(y | T2)

and then evaluate the spline curve with these coefficients and the knot sequence
T1 at x, see Fig. 5.1.

Exercise 5.1 Formulate and program the de Boor algorithm for bivariate tensor
product spline surfaces. ♦

103Which means that there exist incomparable objects like α = (1, 0), β = (0, 1), for which
neither α ≤ β nor β ≤ α holds.

104Just with Greek letters.
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Figure 5.1: The de Boor algorithm for bivariate tensor product functions:
To each “column” of control points we apply the univariate algorithm of
4.36 and thus get a “row” of controlpoints for fy. To these coefficients we
apply once more the de Boor algorithm, this time with respect to x, and
then get the result at the position (x, y).

5.3.2 Tensor product in arbitrarily many variables

The two dimensional concept of “curves along curves” is only the role model
for a method that works in any number of variables.

Definition 5.9 (Tensor products) For given s ∈ N and univariate splines we define
the following objects:

1. to knot sequences

Tj =
{
tj,1, . . . , tj,νj+µj+1

}
, j = 1, . . . , s,

of respective order µj the set product is given as

T =

s⊗
j=1

Tj := {tα = (t1,α1 , . . . , t1,αs) : α ≤ ν+ µ+ 1} .

2. the tensor product B–spline is defined as

Nµ
κ (x |T) =

s∏
j=1

N
µj
κj
(xj | Tj) , κ ≤ ν. (5.12)

3. for control points d = [dκ : κ ≤ ν] the spline curve is obtained as

Nµd(· | T) =
∑
κ≤ν

dκN
µ
κ (· | T) .
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The theory developed so far carries over to the tensor product splines as well.

Lemma 5.10 The B–splines Nµ
κ , κ ≤ ν form a nonnegative partition of unity.

Proof: Nonnegativity follows directly from (5.12), for the partition of unity
property we use induction on s where the case s = 1 should be known to us.
With µ ′ = (µ1, . . . , µs−1) and respective objects ν ′, x ′ und T ′ we get

∑
κ≤ν

Nκ (x | T) =
∑
κ ′≤ν ′

νs∑
κs=1

Nµ ′

κ ′
(x ′ | T ′) Nµs

κs (xs | Ts)

=
∑
κ ′≤ν ′

Nµ ′

κ ′
(x ′ | T ′)

 νs∑
κs=1

Nµs
κs (xs | Ts)

︸                  ︷︷                  ︸
=1

which has value 1 by the induction hypothesis. �

Exercise 5.2 Show that Nµ
κ is supported on the hypercube

Iµκ =

s⊗
j=1

[
tj,κj , tj,κj+µj+1

]
.

♦

In analogy to what we did before, the multiplicity µ(tκ) of a knot

tκ = (t1,κ1 , . . . , ts,κs)

is defined as the s–tuple105

µ(tκ) = (µ(t1,κ1), . . . , µ(ts,κs)) , 0 ≤ κ ≤ ν+ µ+ ε, (5.13)

and the space Πµ of all polynomials of multidegree106 µ is defined as

Πµ :=

{
p =
∑
α≤µ

pα(·)
α : pα ∈ R

}
⊂ Π|µ|. (5.14)

Next, we show that, as expected, the B–splines are also a basis of the tensor
product spline space.

Definition 5.11 (Tensor product space) Let Fj ⊂ C(Ij), j = 1, . . . , s, be linear func-
tion spaces. The tensor product space is defined as

F =

s⊗
j=1

Fj :=

{
n∑
k=1

s∏
j=1

fjk(xj) : fj,k ∈ Fj, n ∈N

}
. (5.15)

105Recall that ε ∈Ns
0

stands for the multiindex (1, . . . , 1).
106Note that this is a concept different from the total degree that has been used in the context

of triangular Bézier surfaces!
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Remark 5.12 It is important to define the tensor product space as all possible sums of
functions from Fj and not just as as products of functions. If φj,1, . . . , φj,nj are a basis
of Fj, then a single product of functions fj ∈ Fj takes the form

f(x) =

s∏
j=1

fj(xj) =

s∏
j=1

nj∑
k=1

ajkφj,k(xj) =
∑
κ≤ν

 s∏
j=1

aj,κj

︸        ︷︷        ︸
=:aκ

 s∏
j=1

φj,κj(xj)

︸             ︷︷             ︸
=:φκ

=
∑
κ≤ν

aκφκ. (5.16)

The φκ are obtainable as
φκ = φ1,κ1 ⊗ · · · ⊗ φs,κs

but, for example in the case nj = n, the function

f(x) =

n∑
k=0

φkε(x)

cannot be written in the form (5.16) since

1 = akε =

s∏
j=1

ajk

implies that all coefficients ajk are nonzero which implies that all aκ would have to be
nonzero as well. Hence, we cannot write any function in the space generated by the
tensor products of the basis elements as tensor product.

Lemma 5.13 If {φjk : k = 1, . . . , nj} is a basis of Fj, j = 1, . . . , s, then

φκ(x) :=

s∏
j=1

φj,κj(xj), κ ≤ ν = (n1, . . . , ns),

are a basis of F1 ⊗ · · · ⊗ Fs.

Proof: Using (5.16) for the function fk(x) = f1k(x1) · · · fsk(xs), we obtain that
n∑
j=1

fk =

n∑
k=1

∑
κ≤ν

ak,κφκ =
∑
κ≤ν

 n∑
k=1

ak,κ

 φκ,
hence any element of F can be written in the form (5.16), therefore the functions
φκ are a generating system for the tensor product space and they are a basis
for the space provided they are linearly independent. To show this, set κ̂ =
(κ1, . . . , κs−1) and ν̂ and x̂ respectively and assume that

0 =
∑
κ≤ν

aκφκ =

ns∑
κs=1

∑
κ̂≤ν̂

a(̂κ,k)φκ̂(̂x)︸              ︷︷              ︸
=:ak (̂x)

φs,k(xs) =

ns∑
κs=1

ak(̂x)φs,k(xs). (5.17)

Since the functions φs,k are linearly independent, the “coefficients” ak(̂x) have
to be zero for all x̂ and since this is a tensor product function in s − 1 variables,
the proof can be completed by a simple induction. �
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Corollary 5.14 dim(F1 ⊗ · · · ⊗ Fs) = dim F1 · · ·dim Fs.

As simple as Corollary 5.14 is, it has a fundamental consequence that is known
as the curse of dimension: the dimension of a tensor product space grows
exponentially in the number of variables. For example, even if we have only 10
basis function in either variable, the dimension of the full space and therefore the
number of coefficients to store, is 10s which quite fast exceed available storage
capacities.
As an immediate conseuqence of Lemma 5.13, we can give the basis of the spline
space.

Theorem 5.15 The tensor product spline space

Sµ(T) =
s⊗
j=1

Smj(Tj), T =

s⊗
j=1

Tj, (5.18)

1. consists of piecewise polynomials of multidegree µ.

2. is spanned by the B–splines Nµ
κ(·|T), κ ≤ ν.

Figure 5.2: Continuity conditions of bivariate tensor product splines. They
are different across knot lines and around knots.

Remark 5.16 (Differentiability) One would expect in 1) a description of global
smoothness as well, but this is more complicated, even in two variables as it is shown
in Fig 5.2. The black dots are the knots in x, {. . . , tj, tj+1, tj+1, tj+1, tj+2, tj+2, . . . }

and y, {. . . , tj, tj+1, tj+1, . . . }, respectively, the white dots are the tensor product knots
of multiplicities (1, 1), (3, 1), (2, 1), (1, 2), (3, 2) and (2, 2). We now have different
situations:

1. in each of the rectangles formed by the horizontal and vertical lines, the spline is
a polynomial, hence C∞.
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2. In the direction of the lines the spline is a piecewise polynomial in one variable and
as long as we stay away from the knots (blue arrow) this curve is a C∞ function
as well.

3. Across a “knot line” (red arrow), things are different as now the order of differ-
entiability depends on the multiplicity of the knot, in the example we would lose 3
orders. Hence, on a vertical knot line, but away from the knot itself, the function
belongs to Cµ1−µ(t1,κ1 ),∞ where

Cγ =

{
f :
∂|α|

∂xα
f ∈ C,α ≤ γ

}
. (5.19)

On a horizontal line, away from the knots, the smoothness is C∞,µ2−µ(t2,κ2 ).
4. Around the knot tκ (red circle) the spline finally belongs to Cµ−µ(tκ), so the knots

are the least differentiable points.

It is easy to imagine that this becomes even more complicated in three and more variables,
but it is always the set of “active knot projetcions” that determines the differentiability.

Just for completeness . . .

Definition 5.17 The space Cγ from (5.19) is called anisotropic smoothness space
as the order of differentiability can be different in different variables.

In general, derivatives of tensor products are easy to compute: Whenever a
function f(x) can be decomposed into f(x) = f1(x1) · · · fs(xs), we have

∂f

∂xj
(x) = f1(x1) · · · fj−1(xj−1)

∂f

∂xj
fj(xj)︸       ︷︷       ︸

=f ′
j
(xj)

fj+1(xj+1) · · · fs(xs), (5.20)

partial derivatives become univariate derivatives for components. Hence we
get the following formula for a partial derivative of a tensor product spline:

∂

∂xj
Nµd(·|T) =

∂

∂xj

∑
κ≤ν

dκN
µ
κ(·|T) =

∑
κ≤ν

dκ
∂

∂xj
Nµ
κ(·|T)

=
∑
κ≤ν

dκNm1
κ1

(·|T1) · · ·N
mj−1
κj−1 (·|Tj−1)

(
N
mj
κj (·|Tj)

) ′
N
mj+1
κj+1 (·|Tj+1) · · ·N

ms
κs
(·|Ts)

= mj

∑
κ≤ν+εj

dκNm1
κ1

(·|T1) · · ·
N
mj−1
κj (·|Tj)

tj,κj+mj − tj,κj
· · ·Nms

κs
(·|Ts)

−mj

∑
κ≤ν+εj

dκNm1
κ1

(·|T1) · · ·
N
mj−1
κj (·|Tj)

tj,κj+mj+1 − tj,κj+1
· · ·Nms

κs
(·|Ts)

= mj

∑
κ≤ν+εj

dκ − dκ+εj
tj,κj+mj − tj,κj

N
µ−εj
κ (·|T),
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which we record as

∂

∂xj
Nµd(·|T) = mj

∑
κ≤ν+εj

dκ − dκ+εj
tj,κj+mj − tj,κj

N
µ−εj
κ (·|T). (5.21)

In other words: Any partial derivative turns into a partial difference applied
to the coefficients weighted with the difference of the knots. If the knots are
equidistant, i.e., tj,k+1 − tj,k = hj, k = 0, . . . , nj +mj + 1, then it is also easy to
compute higher order derivatives:

∂|α|

∂xα
Nµd(·|T) =

(µ− α)!

hαµ!

∑
κ≤ν+α

∑
β≤α

(−1)β
(
α

β

)
dκ+βN

µ−α
κ (·|T), (5.22)

where

(−1)β :=

s∏
j=1

(−1)βj , and
(
α

β

)
:=

s∏
j=1

(
αj

βj

)
.

Exercise 5.3 Prove (5.22). ♦

5.3.3 Twists

As mentioned in (Farin, 1988), there are peculiar partial derivatives with a special
geometric meaning.

Definition 5.18 (Twist) A twist of a function f at x is any mixed second order partial

derivative
∂2

∂xj∂xk
f, j , k. In the case s = 2 there is only the twist

∂2

∂x∂y
.

To find out about the geometric meaning, we apply (5.21) twice and get

∂2

∂xj∂xk
Nµd =

∂

∂xk
mj

∑
κ≤ν+εj

dκ − dκ+εj
tj,κj+mj − tj,κj

N
µ−εj
κ (·|T)

= mjmk

∑
κ≤ν+εj+εk

dκ − dκ+εj − dκ+εk + dκ+εj+εk
(tj,κj+mj − tj,κj)(tk,κk+mk − tk,κk)

N
µ−εj−εk
κ (·|T)

=: mjmk

∑
κ≤ν+εj+εk

∆εj+εkdκ
(tj,κj+mj − tj,κj)(tk,κk+mk − tk,κk)

N
µ−εj−εk
κ (·|T)

The three points dκ, dκ+εj , dκ+εk define a two dimensional plane [[dκ,dκ+εj ,dκ+εk ]]∗
and in this plane there is the parallelogram point pκ defined by

pκ − dκ+εk = dκ+εj − dκ, (5.23)

which is nothing but the definition of a parallelogram: two opposite faces are
parallel and of equal length. Hence,

∆εj+εkdκ = 0 ⇔ dκ+εj+εk = pκ

which means that the twist of the surface is related to the planarity of the two
dimensional faces.
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Corollary 5.19 (Twist) A bivariate spline surface has twist zero if and only if all the
quadrilateral faces of the control polyhedron are planar.

Proof: The spline surface

∂2

∂x∂y
N(m1,m2)d

= mjmk

n1+1,n2+1∑
k1,k2=0

∆(1,1)d(k1,k2)

(t1,k1+m1 − t1,k1)(t2,k2+m2 − t2,k2)
N

(m1−1,m2−1)
κ (·|T)

is identically zero if and only if ∆(1,1)d(k1,k2) = 0. �

5.3.4 Interpolation by tensor product splines

If we want to interpolate with tensor product splines, the most natural thing to
do is to take, for each coordinate xj, j = 1, . . . , s, a set Xj = {xj,k : k = 0, . . . , n} of
interpolation points that satisfy the Schoenberg–Whitney condition

tj,k < xj,k < tj,k+mj+1, k = 0, . . . , nj, j = 1, . . . , s, (5.24)

from Theorem 4.56 and to form their tensor product or the grid

X =

s⊗
j=1

Xj = {xα = (x1,α1 , . . . , xs,αs) : α ≤ ν} . (5.25)

Such a grid always allows for unique interpolation.

Theorem 5.20 (Schoenberg–Whitney for tensor product) The spline space Sµ(T)
allows for unique interpolation from the set X in (5.25) if the coordinate projections
satisfy the respective Schoenberg–Whitney condition (5.24).

Proof: Because of the univariate Schoenberg–Whitney theorem there exist107

splines sj,k ∈ Smj(Tj) such that

sj,k(xj,k ′) = δk,k ′ , k, k ′ = 0, . . . , nj, j = 1, . . . , s, (5.26)

and therefore the spline functions

Sµ(T) 3 sα(x) :=
s∏
j=1

sj,αj(xj), α ≤ ν,

satisfy

sα(xβ) =

s∏
j=1

sj,αj(xj,βj) =

s∏
j=1

δαj,βj = δα,β, α, β ≤ ν, (5.27)

107The splines defined in (5.26) are solutions of special interpolation problems.
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from which we can conclude that

sf :=
∑
α≤ν

f(xα)sα

interpolates f on X. Indeed, by (5.27),

sf(xβ) =
∑
α≤ν

f(xα)sα(xβ)︸          ︷︷          ︸
=δα,β

= f(xβ), β ≤ ν.

For uniqueness we have to show that sf = sg implies that f(X) = g(X), that is
f(xα) = g(xα), α ≤ ν. So suppose that sf = sg or, equivalently,

0 = sf − sg =
∑
α≤ν

(f(xα) − g(xα)) sα.

Substituting xβ into this identity, again (5.27) yields that 0 = f(xβ)−g(xβ) which
completes the proof. �

Remark 5.21 That the points lie on a tensor grid of points that satisfy the Schoenberg–
Whitney condition is sufficient for unique interpolation but in no way necessary. To
see that, note that unqiue solvability of the interpolation problem is equivalent to the
nonsigularity of the collocation matrix

Nµ(X|T) :=

[
Nµ
κ(xβ|T) :

β ≤ ν

κ ≤ ν

]
.

In other words, detNµ(X|T) , 0. Since the determinant is a continuous function
in all the xj,k, the matrix remains nonsigular if to each of them a sufficiently small
perturbation is applied. However, the grid structure can be destroyed by arbitrarily
small perturbations, hence there are many more configurations that are not tensor grids
of “good” points.

There is, however more interesting structure behind tensor product interpolation
which uses a very nice concept from linear algebra.

Definition 5.22 (Kronecker product) The Kronecker product or Zehfuss prod-
uct108 of two matrices A ∈ Rm×n and B ∈ Rp×q is defined as the block matrix

A ⊗ B =


a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ∈ Rmp×nq. (5.28)

The multiple Kronecker product of A1, . . . , An is then give as

A1 ⊗ · · · ⊗An = (A1 ⊗ · · · ⊗An−1) ⊗An. (5.29)

108For this interesting story see the very nice set of slides (Van Loan, 2009).
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The definition (5.29) makes sense because the Kronecker product is associative:

(A ⊗ B) ⊗ C

=


a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ⊗ C

=



a11b11C . . . a11b1qC . . . a1nb11C . . . a1nb1qC
...

. . .
...

. . .
...

. . .
...

a11bp1C . . . a11bpqC . . . a1nbp1C . . . a1nbpqC
...

. . .
...

. . .
...

. . .
...

am1b11C . . . am1b1qC . . . amnb11C . . . amnb1qC
...

. . .
...

. . .
...

. . .
...

am1bp1C . . . am1bpqC . . . amnbp1C . . . amnbpqC


=


a11B ⊗ C . . . a1nB ⊗ C

...
. . .

...

am1B ⊗ C . . . amnB ⊗ C

 = A ⊗ (B ⊗ C).

However, the Kronecker product is not comuutative, that is, in general A ⊗ B ,
B ⊗A.

Exercise 5.4 Prove that (A ⊗ B)T = AT ⊗ BT . ♦

Lemma 5.23 For A ∈ Rm×n, A ′ ∈ A ∈ Rn×n ′ , B ∈ Rp×q, B ′ ∈ Rq×q ′ we have

(A ⊗ B)(A ′ ⊗ B ′) = (AA ′) ⊗ (BB ′) (5.30)

and for nonsingular matrices

(A ⊗ B)−1 = A−1
⊗ B−1. (5.31)

Proof: We can write (5.28) explicitly as

(A ⊗ B)(j−1)p+r,(k−1)q+s = ajk brs,
j = 1, . . . ,m
k = 1, . . . , n,

r = 1, . . . , p
s = 1, . . . , q,

(5.32)

for which the multiplication formula for matrices yields

((A ⊗ B)(A ′ ⊗ B ′))(j−1)p+r,(j ′−1)p ′+r ′

=

nq∑
`=1

(A ⊗ B)(j−1)p+r,`(A
′
⊗ B ′)`,(j ′−1)p ′+r ′

=

n∑
k=1

q∑
s=1

(A ⊗ B)(j−1)p+r,(k−1)q+s(A
′
⊗ B ′)(k−1)q+s,(j ′−1)p ′+r ′

=

n∑
k=1

q∑
s=1

ajkbrsa
′

kj ′b
′

sr ′ =

n∑
k=1

ajka
′

kj ′︸         ︷︷         ︸
=(AA ′)jj ′

q∑
s=1

brsb
′

sr ′︸        ︷︷        ︸
=(BB ′)rr ′

= ((AA ′) ⊗ (BB ′))(j−1)p+r,(j ′−1)p ′+r ′ ,
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which proves (5.30) from which109

(A1 ⊗ B−1)(A ⊗ B) = (A−1A) ⊗ (B−1B) = I ⊗ I = I

allows us to conclude (5.31) as well. �

These strange identities are relevant since, when ordered appropriately, the col-
location matrices for tensor product functions on a grid are Kronecker products.

Definition 5.24 (Lexicographic ordering) The lexicographic ordering≺ is defined
as

α ≺ β ⇔ αj = βj, j = 1, . . . , k− 1, αk < βk. (5.33)

Exercise 5.5 Prove that the lexicographical ordering is a total ordering on the
setNs

0
of multiindices. ♦

Proposition 5.25 If the multiindices are arranged in lexicographical order, the collo-
cation matrix of the tensor product B–splines with respect to the grid X1 ⊗ · · · ⊗ Xs
takes the form

Nµ(X|T) = Nm1(X1|T1) ⊗ · · · ⊗Nms(Xs|Ts). (5.34)

Proof: 110 The lexicographical ordering arranges the multiindices as

(0, α0,1), . . . , (0, α0,N), (1, α1,1), . . . , (n1, αn1,N), N = n2 · · ·ns,

where αj,k ≺ αj,k+1. Hence, the collocation matrix is of the form
Nm1
0

(x0|T1)Nµ̂(X̂|̂T) . . . Nm1
n1 (x0|T1)Nµ̂(X̂|̂T)

...
. . .

...

Nm1
0

(xn1 |T1)Nµ̂(X̂|̂T) . . . Nm1
n1 (xn1 |T1)Nµ̂(X̂|̂T)


= Nm1(X1|T1) ⊗Nµ̂(X̂|̂T) = · · · = Nm1(X1|T1) ⊗ · · · ⊗Nms(Xs|Ts),

which is formally proved by induction on s. Here µ̂ = (µ2, . . . , µs) corresponds
to cancellation of the first index. �

By (5.34) and (5.31) we can now “easily solve” the interpolation problem on
gridded data. Given y = (yκ : κ ≤ ν) ∈ Rd×n, n :=

∏
nj, the linear system111 to

solve is
yT = Nµ(X|T)dT = (Nm1(X1|T1) ⊗ · · · ⊗Nms(Xs|Ts))dT ,

hence
d =

(
Nm1(X1|T1)

−T
⊗ · · · ⊗Nms(Xs|Ts)

−T
)

y. (5.35)

Some remarks:

1. Although we solve the huge n × n system, where again n = n1 · · ·ns, we
only have to invert small matrices of size nj × nj. This is the good news.

109The identity matrices in the following equation are of different size, keep that in mind.
110This is not really a proof, it is more bookkeeping.
111The transposition is only used to make dimensions fit.
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2. Nevertheless, the whole thing would become pointless if we still would
have to expand the Kronecker product into the full matrix.

3. And the main warning: Noone who has the slightest idea of Numerical
Linear Algebra would compute the inverse of a matrix explicitly, see
(Golub & van Loan, 1996; Higham, 2002; Sauer, 2013).

4. In summary: we have to find a smarter way to evaluate (5.35).

Definition 5.26 The vectorization of a matrix A ∈ Rm×n is the vector

v(A) =



a11
...

am1
...

a1n
...

amn


∈ Rmn

of stacked column vectors.

There exists a cute formula for Kronecker products that can be found, for exam-
ple, in (Horn & Johnson, 1991; Marcus & Minc, 1969).

Proposition 5.27 For A ∈ Rm×n, B ∈ Rp×q and X ∈ Rn×p we have

v(AXB) = (BT ⊗A)v(X). (5.36)

Before proving the proposition, let us first check that the dimensions coincide
on both sides of (5.36). Since AXB ∈ Rm×q the expression on the left hand side
is a vector of size mq, the Kronecker product on the right hand side belongs
to Rqm×pn and v(X) is an np–vector, so the right hand side indeed also gives a
vector of sizemq.

Proof: We write X = [x1 . . . xp], B =

[
bjk :

j = 1, . . . , p
k = 1, . . . , q

]
and get for the `th

column of the product that

(AXB)` = AXBe` = AX [bj` : j = 1, . . . , p]

= A

 p∑
j=1

xjbj`

 = p∑
j=1

bj`Axj = [b1`A . . . bp`A] v(X)

=
(
(Be`)

T
⊗A

)
v(X)

and therefore

v(AXB) =


(AXB)1
...

(AXB)q

 =

((Be1)

T
⊗A) v(X)
...

((Bep)
T
⊗A) v(X)

 =

((Be1)

T
⊗A)

...
((Bep)

T
⊗A)

 v(X)
=



(Be1)

T

...

(Bep)
T

 ⊗A
 v(X) = (BT ⊗A)v(X)
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as claimed. �

The “Kronecker trick” (5.36) allows us to compute the product of a Kronecker
product A1 ⊗ · · · ⊗ As, Aj ∈ Rmj×nj and a vector x. To that end, we interprete
x ∈ Rn as v(X) for a matrix X ∈ Rn2···ns×n1 and obtain

(A1 ⊗ · · · ⊗As)x = (A1 ⊗ · · · ⊗As)v(X) = (A2 ⊗ · · · ⊗As)XA
T
1

=: (A2 ⊗ · · · ⊗As)X1

where X1 ∈ Rn2···ns×m1 and the expression can be evaluated recursively for the
columns [x11 . . . x1,m1 ] of X1 which are vectors in Rn2···ns .

Let us apply this to (5.35) and assume that d = 1, i.e., y ∈ Rn. Here, we are
dealing with the square matrices Nmj(Xj|Tj). The first step cuts y into a matrix
Y0 ∈ Rn2···ns×n1 with y = v(Y0) and computes the product

Y1 = Y0N
m1
1

(X1|T1)
−1 ⇔ Nm1

1
(X1|T1)

T YT1 = YT0 . (5.37)

The linear system on the right hand side can be solved by any standard method
from Numerical Linear Algebra and just requires the solution of a system of size
n1 × n1 for each column of YT

0
of which we have n2 · · ·ns. For each of the n1

columns y1,j of Y1 we form matrices Y1,j ∈ Rn3···ns×n2 and solve systems

Nm2
2

(X2|T2) Y
T
2,j = Y

T
1,j, j = 1, . . . , n1, (5.38)

which can be packed into

Nm2
2

(X2|T2)
[
YT2,j : j = 1, . . . , n1

]
=

[
YT1,j : j = 1, . . . , n1

]
. (5.39)

This leads to a combination of solving univariate linear systems and rearrange-
ments of a vector of size n that can be used to solve the interpolation without
even having to compute the collocation matrix explicitly.

We can even estimate the complexity of this algorithm. Storage is quite cheap
as the memory requirement for the coordinate collocation matrices is

s∑
j=1

n2j � n2, n = n1 · · ·ns,

and the cost for solving (5.39) in terms of flops112 is Cn3
j

for the decomposition
of the matrices113 and114 Cn2

j
for solving for each column of the reshaped Yj.

Since this matrix has n/nj columns, the total effort in a single step is Cnnj and
the total computational effort is bounded by

s∑
j=1

n3j + n

s∑
j=1

nj ∼ sp3 + sps+1, nj = p. (5.40)

112This is an abbreviation for “floating point operatrions”.
113Usually by means of Gauß elimination, see (Sauer, 2013), which can even be done in a very

stable way since the matrix is totally nonnegative. And, by the way, it’s even cheaper, the effort
is only Cmjn2j � Cn2

j
as long asm� n.

114The two optimal constants are different but both reasonable, just take the larger one.
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This is really cheap115 for solving a system of size n × n which would usually
cost ∼ n3 or ∼ p3s provided that the univariate dimensions are all the same.

This algorithm is due to de Boor (Boor, 1979a; Boor, 1979b), however, with
a slightly different proof, the application of the Kronecker trick for matrix-
vector multiplication can be found in different forms in (Lamping et al., 2015;
Van Loan & Pitsianis, 1993).

Remark 5.28 (Tensor product interpolation) It seems as if tensor product interpo-
lation almost overcomes the “curse of dimension”, but there are still two huge objects
with n ∼ ps components:

1. the coefficients of the resulting spline.

2. the vector of data values.

In particular, this means that in order to interpolate a function with a spline surface
in higher dimensions, one has to know that functions at many locations which is not
always easy in practical applications, cf. (Votsmeier et al., 2010).

Theorem 5.29 (Tensor product splines on grids) Tensor product spline interpola-
tion on grids has a unique solution if and only if the coordinate projections satisfy the
respective Schoenberg–Whitney condition. The coefficients of the interpolant can be
computed efficiently.

Proof: The only thing still left to prove is that nonsingularity ofNµ(X|T) implies
the nonsingularity of the “Kronecker factors” Nmj(Xj|Tj), j = 1, . . . , s. This is a
general Kronecker thing, however: Suppose for some j there exists xj such that
Ajxj = 0, then, by (5.30), we have, for any x1, . . . , xj−1, xj+1, . . . , xs that

(A1 ⊗ · · · ⊗As)(x1 ⊗ · · · ⊗ xs) = (A1x1) ⊗ · · · ⊗ (Ajxj)︸   ︷︷   ︸
=0

⊗ · · · ⊗ (Asxs) = 0 (5.41)

since

0 ×A =


0A . . . 0A
...

. . .
. . .

0A . . . 0A

 = 0 and A ⊗ 0 =


a11 0 . . . a1n 0
...

. . .
. . .

am1 0 . . . amn 0

 = 0,
so that any Kronecker product that contains a zero factor must be entirely zero.
Taking that into account, (5.41) shows that the Kronecker product cannot be
nonsingular if a s single factor is nonsingular and the converse of this statement
is given by the formula (5.31). �

5.4 Surfaces from boundary curves: Coons patches
Another simple method to create surfaces from curves is to do it by blending
the boundary curves of a four–sided surface in R3. To do so, we start with four
curves which together form a closed curve

fj : [0, 1]→ R3, j = 1, . . . , 4, fj(1) = fj+1(0), f5 := f1, (5.42)

This curve encloses a four–sided patch and forms its boundary curve.
115Besides the fact that even the full matrix even cannot be stored at all.
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5.4.1 Coons patches

Now we connect the boundary curves on opposition sides by means of another
curve, see Fig. 5.3:

f4

f3

f2

f1

Figure 5.3: Boundary curves of the four sided patch and two blending
curves.

F1(x, y) = (1− g2(y)) f1(x) + g2(y) f3(1− x),
F2(x, y) = (1− g1(x)) f4(1− y) + g1(x) f2(y),

(x, y) ∈ [0, 1]2, (5.43)

where the two scalar blending curves g1 and g2 satisfy gj(0) = 0 and gj(1) =
1. The idea is that f1 and f3 are connected in y–direction and thus form the
boundary curves F(·, 0) and F(·, 1)of some surface F and that f2 and f4 are likewise
connected in x–direction. Note that for that purpose the opposite curves have to
be parametrized in opposite directions since the “boundary curve” was defined
in a closed form.

If we restrict the sum F+ = F1 + F2 two the boundary [0, 1] × 0, we get

F+(x, 0) = (1− g2(0))︸          ︷︷          ︸
=1

f1(x) + g2(0)︸  ︷︷  ︸
=0

f3(1− x) + (1− g1(x)) f4(1) + g1(x) f2(0)

= f1(x) + (1− g1(x)) f4(1) + g1(x) f2(0).

In the same fashion,

F+(x, 1) = f3(1− x) + (1− g1(x)) f4(0) + g1(x) f2(1),
F+(0, y) = f4(1− y) + (1− g2(y)) f1(0) + g2(y) f3(1),
F+(1, y) = f2(y) + (1− g2(y)) f1(1) + g2(y) f3(0).

If we know define the tensor function

G(x, y) = f1(0)(1− g1(x))(1− g2(y)) + f2(0)g1(x)(1− g2(y)) (5.44)
+f4(0) (1− g1(x))g2(y) + f3(0)g1(x)g2(y).
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which satisfies

G(0, 0) = f1(0), G(1, 0) = f2(0), G(1, 1) = f3(0), G(0, 1) = f4(0),

and set F := F+ − G, then we obtain

F(x, 0) = f1(x) + (1− g1(x)) f4(1) + g1(x) f2(0)
−f1(0)(1− g1(x)) (1− g2(y))︸          ︷︷          ︸

=1

−f2(0)g1(x) (1− g2(y))︸          ︷︷          ︸
=1

−f4(0) (1− g1(x))g2(y)︸  ︷︷  ︸
=0

−f3(0)g1(x)g2(y)︸  ︷︷  ︸
=0

= f1(x) + (1− g1(x)) (f4(1) − f1(0))︸              ︷︷              ︸
=0

+g1(x) (f2(0) − f2(0))︸              ︷︷              ︸
=0

= f1(x)

and, with precisely the same computations,

F(x, 1) = f3(1− x), F(0, y) = f4(1− y), F(1, y) = f2(y).

We summarize these observations in the following theorem.

Theorem 5.30 (Coons patch) Given four curves fj : [0, 1] → R3 that satisfy (5.42)
and two blending functions g1, g2 : [0, 1] → R with gj(0) = 0, gj(1) = 1, the
Boolean sum

F(x) = F1(x, y) ⊕ F2(x, y) := F1(x, y) + F2(x, y) − G(x, y), (5.45)

with F1,F2 and G defined in (5.43) and (5.44) is called the Coons patch and has fj as
boundary curves:

F(x, 0) = f1(x), F(x, 1) = f3(1− x), F(0, y) = f4(1− y), F(1, y) = f2(y).

The strength of the Coons patches lies in the flexibility provided by the blending
functions g1, g2. It even allows to model different types of blending in x- and y–
direction, but normally the first choice is a symmetric one, namely g1 = g2 = g.

Example 5.31 (Coons patches) The two most prominent examples of Coons patches
are

1. bilinear Coons patches where g1(x) = x. Here F1 and F2 are ruled surfaces
formed from the boundary curves and G is the bilinear interpolant of the corners.
The function g obviously satisfies

g(0) = 0, g(1) = 1, g ′(0) = g ′(1) = 1.

2. bicubic Coons patches where

g(x) = x2(3− 2x);

this function satisfies

g(0) = 0, g(1) = 1, g ′(0) = g ′(1) = 0,

hence it is a sigmoidal function.
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Figure 5.4: Example for a bilinearly blended Coons patch. On top the
two ruled surfaces F1 (left) and F2 (right) and on the bottom the surfaces
F+ = F1+F2 (left) and the bilinear interpolantG (right). The resulting Coons
patch is then shown in Fig. 5.5 (left). All figures were created by Matlab.

The reason why the bicubic Coons patch is so popular is due to the fact that
there is a certain control of the cross boundary derivatives of the patch at the
boundary. To that end, let us consider

∂F

∂y
(x, 0) =

∂

∂x
(F1(x, y) + F2(x, y) −G(x, y)) (x, 0)

= −g ′2(0) f1(x) + g ′2(0) f3(1− x)︸                                   ︷︷                                   ︸
F1

−(1− g1(x))f ′4(1) + g1(x)f
′

2(0)︸                                    ︷︷                                    ︸
F2

+g ′2(0) ((1− g1(x))f1(0) + g1(x) f2(0) − (1− g1(x))f3(0) − g1(x)f4(0))︸                                                                                        ︷︷                                                                                        ︸
G

which vanishes whenever g ′
2
(0) = 0, for example, in the case of bicubically

blended patches. Similar computations hold for the other three parts of the
boudary curve, hence, the surface is flat across the boundary. In general, the
blending functions g1 and g2 can be chosen arbitrarily and this can be used to
obtain different blends.

One application of Coons patches is approximation of quadrilateral surface
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Figure 5.5: The final Coons patch with the ingredients from Fig. 5.4 (left)
and its bicubically blended cousin (right).

networks: given a set yα ∈ R3, α ≤ ν, one can interpolate along the x- and
y–lines, for example with a cubic natural spline as in Section 4.3.5 to obtain a
set of quadrilaterals bounded by curves. These can be blended by the above
method into an overall surface whose smoothness can be controlled by a proper
choice of the function g. The advantage of such a method is that it needs far less
points than a tensor product bicubic natural spline.

5.4.2 Gordon patches

The concept of Gordon patches generalizes that of a Coons patch by interpolat-
ing isoparametric curves or isocurves116. An isocuve f for a surface F is a curve
such that there exists x∗ or y∗ such that

F(x∗, y) = f(y) or F(x, y∗) = f(x). (5.46)

The Gordon patch starts with given sites xj, j = 0, . . . ,m, as well as yk, k =
0, . . . ,m, and respective isocurves fx,j and fy,k. The goal is to construct a surface
F with

F(xj, ·) = fx,j, j = 0, . . . ,m and F(·, yk) = fy,k, k = 0, . . . , n. (5.47)

At the intercetion points the isocurves have to satisfy the compatibility condi-
tion

fx,j(yk) = fy,k(xj), j = 0, . . . ,m, k = 0, . . . , n. (5.48)

To build F from the isocurves we make use of univariate interpolation and pick
any set of scalar functions `x,j, `y,k such that

`x,j(xj ′) = δjj ′ , j, j ′ = 0, . . . ,m, `y,k(yk ′) = δkk ′ , k, k ′ = 0, . . . , n.

116The two names are usually used synonymously where “isocurve” sounds cooler, of course.
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Canonical choices for such functions would be splines or polyomials but in
fact any set of such functions would do, but nevertheless it should satisfy the
following condition.

Definition 5.32 A set of functions `0, . . . , `n is called a Lagrange basis117 forx0, . . . , xn
if

`j(xk) = δjk, j, k = 0, . . . , n. (5.49)

A Lagrange basis is said to be of order zero if the interpolation preserves constants or,
equivalently, if the functions form a partition of unity, that is,

n∑
j=0

`j(x) = 1. (5.50)

Example 5.33 A simple example for a Lagrange basis that is not of order zero can be
constructed as follows: take n+ 2 distinct points and the unique Lagrange basis within
the polynomials of degree n + 1. They are of order zero and each of them is of the form
axn+1 + · · · , hence

n∑
j=0

`j = 1− `n+1 , 0.

Now we form

F1(x, y) =

m∑
j=0

`x,j(x) fx,j(y), (5.51)

F2(x, y) =

n∑
k=0

`y,k(y) fy,k(x), (5.52)

and obtain our final surface as

F(x, y) = F1(x, y) + F2(x, y) −
m,n∑
j,k=0

fx,j(yk) `x,j(x)`y,k(y). (5.53)

Theorem 5.34 The Gordon surface from (5.53) satisfies (5.47).

Proof: Essentially by substitution and the compatibility condition (5.48):

F(xp, y) =

m∑
j=0

`x,j(xp)︸    ︷︷    ︸
=δjp

fx,j(y) +
n∑
k=0

`y,k(y) fy,k(xp) −
m,n∑
j,k=0

fx,j(yk) `x,j(xp)︸    ︷︷    ︸
=δjp

`y,k(y)

= fx,p(y) +
n∑
k=0

`y,k(y) fy,k(xp) −
n∑
k=0

fx,p(yk)︸     ︷︷     ︸
=fy,k(xp)

`y,k(y)

= fx,p(y) +
n∑
k=0

`y,k(y) (fy,k(xp) − fy,k(xp)) = fx,p.

The proof for F(x, yp) works exactly the same way. �

117The name is derived from the name Lagrange interpolation used for interpolation of func-
tion values, interpolation of consecutive derivatives is called Hermite interpolation and the
more general case of “gaps” among the derivatives bears the name ‘Birkhoff interpolation.
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Corollary 5.35 If the blending functions `x,j and `y,k are of order zero, then the Gordon
surface is a translational surface if all the isocurves fx,j or fy,k coincide, respectively.

Remark 5.36 A Coons patch is a Gordon surface with x0 = y0 = 0, x1 = y1 = 1

and
fx,0 = f1, fx,1 = f3(1− ·), fy,0 = f4(1− ·), fy,1 = f2.
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Ratio fatum vincere nulla valet.

Ovid

Rational curves and
surfaces 6

The standard freeform object in CAD nowaydays, also integrated in every ge-
ometric file standard like IGES or Step, are NURBs. This acronym is the
abbreviation for “Non Uniform Rrational B–spline” and means either curves or
tensor product surfaces generated from these curves.

6.1 Rational functions

Definition 6.1 A rational function f = p

q
is the quotient of two polynomials p ∈ Πm,

q ∈ Πn. We denote all rational functions of that type by118 Rm,n.

Remark 6.2 Since of p/q, p̃/q̃ ∈ Rm,n we have

p

q
+
p̃

q̃
=
pq̃+ p̃q

qq̃

which usually does not belong to Rm,n any more, this space is neither linear119 and
not even convex. This makes rational approximation, for example, a totally different
field, see (Braess, 1986).

Life becomes significantly easier if the rational functions to be considered are
from the space

Rm,n ⊃ Rm,q =
Πn

q
=

{
p

q
: p ∈ Πm

}
, q ∈ Πn,

which almost trivially is a linear space. We can represent the numerator and the
denominator by means of the Bernstein–Bézier basis, assume that the have the
same degree120 and obtain the following definition of a rational curve.

118Notationally, a greek letter would be almost more appropriate but since the proper one
would be “Rho”, written as P, this would lead to even more confusion. Therefore R is appro-
priate, in particular since this set has a totally different structure.

119Which means that Rm,n is no vector space.
120Otherwise we “artificially” write the polynomial of smaller degree in terms of the higher

degree.
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Definition 6.3 A rational curve on [0, 1] is given as

Rn (c, w) =
Bnc
Bnw

=

n∑
j=0

cj Bnj (u)

n∑
j=0

wj B
n
j (u)

, (6.1)

where

Bnj (u) := B(n−j),j(u) =

(
n

j

)
(1− u)n−juj. (6.2)

The coefficients cj are called control points again, the wj are called the weights of the
rational curve.

Remark 6.4 The notion of a rational curve can be extended to a rational triangular
surface in a very straightforward manner. Just keep in mind that the numerator function
can be vector valued while the denominator is always scalar. The representation (6.1) is
unique up to a common nonzero factor of the coefficients.

To efficiently compute with rational curves, we can define

ĉj :=
[
wj
cj

]
∈ Rd+1, j = 0, . . . , n,

and then evaluate the polynomial curve

Bn̂c(u) =
n∑
j=0

[
wj
cj

]
Bnj (u) =

[
Bnw(u)
Bnc(u)

]
=: p̂(u)

from which the rational curve is obtained as

r(u) =
p(u)
p0(u)

≡



1
p1(u)

p0(u)
...

pd(u)

p0(u)


This concept, however, is very well known in Mathematics, it is the projective
space from Definition 2.12.

Remark 6.5 This is the main concept for rational curves and surfaces in Rd: Embed
them into Rd+1, use the standard affine algorithms there and divide by the additional
component. Note, however, that the coefficients ĉj do not form a linear space,

ĉj + b̂j =
[
wj
cj

]
+

[
vj
bj

]
=

[
vj +wj
bj + cj

]
does not make sense, at least not if it is to be interpreted as the sum of the two rational
curves in Rd.
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Lemma 6.6 Two rational curves can be added if121 they have the same weights and the
resulting curve is

Rn(c, w) + Rn(c ′, w) = Rn(c + c ′, w).

Exercise 6.1 Formulate and prove the rational de Casteljeau algorithm. ♦

Rational functions can have “bad points”.

Definition 6.7 A pole122 of a rational function f = p

q
is a zero of the denominator. A

removable pole is a zero of the denominator that is also a zero of the numerator of at
least the same multiplicity123.

In the projective terminology a pole of the curve has a nice interpretation as it is
a point where

Bn̂c(u) =
[

0

Bnc(u)

]
,

which is one of the many representations of the point∞ in Pd.
In contrast to complex analysis124 , poles in curves are not desirable in prac-

tical applications and should be avoided by proper choice of the weights. The
standard choice is to set

wj ≥ 0, w0wn > 0,

n∑
j=0

wj = 1. (6.3)

The last condition in (6.3) is only a normalization, the other two are the significant
ones.

Lemma 6.8 If the weights satisfy (6.3), the rational curve Rn(c, w) has no poles in
[0, 1].

Proof: Due to the endpoint interpolation (4.10), the weight function in the
denominator satisfies

Bnw(0) = w0 > 0, Bnw(1) = wn > 0,

while for arbitrary u ∈ (0, 1) we get

Bnw(u) =

n∑
j=0

wj︸︷︷︸
≥0

Bnj (u)︸   ︷︷   ︸
≥0

≥ w0 (1− u)
n︸      ︷︷      ︸

>0

+wn u
n︸︷︷︸
>0

> 0,

hence Bnw(u) > 0, u ∈ [0, 1], and the curve has no pole. �

121We are not talking about “only if” here, but if the condition is not satisfied, the addition is
more complicated, of course:

Bnc
Bnw

+
Bnc ′

Bnw ′
=
BnwBnc ′ + Bnw ′ Bnc

BnwBnw ′
∈ R2n,2n,

and even though all the quantities can be computed, this is not a desirable behavior.
122In CAD terminology, the word pole is also used for the control points which helps to increase

the amount of confusion.
123Removable poles are always artificial as they could be divided off.
124Aka “Funktionentheorie”
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6.2 Ratios, cross ratios and projections
In this section we follow (Farin, 1988) and introduce some geometric invariants
of projective maps that we will need to define and manage our rational curves.

Definition 6.9 The ratio of three collinear points a,b, c ∈ Rd is defined as

r(a,b, c) :=
u1(b|[a, c])
u0(b|[a, c])

=
vol1([a,b])
vol1([b,b])

, (6.4)

and the cross ratio of four collinear points a,b, c,d ∈ Rd as

c(a,b, c,d) :=
r(a,b,d)
r(a,b, c)

. (6.5)

Remark 6.10 Since barycetric coordinates are invariant under any affine trans-
formation, so is the ratio of three collinear points.

o

a’ b’ c’ d’

c

d

a

b

Figure 6.1: Example of a projective map on the line through a,b, cb,d with
the center o. The image point a of a ′, for example, is obtained by connecting
a ′ with o and then form the intersection between this connection and the
“target” line.

Like (Farin, 1988), we will not give a formal definition of the projection on a
straight line, but use the “picture definition” of Fig 6.1. It can, however, be
shown, that projective maps can be written as rational linear transformations. One
can see in this figure that obviously ratios are not preserved but the following
theorem shows that cross ratios are.

Theorem 6.11 (Cross ration theorem) For the points in Fig 6.1 we have

c(a,b, c,d) = c(a ′,b ′, c ′,d ′). (6.6)
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Proof: Interpreting the 1-d barycentric coordinates as 2-d coordinates, we get
that

u0(b|[a, c]) = u0(b|[a, c,o]) =
vol2([a,b,o])
vol2([a, c,o])

and

u1(b|[a, c]) = u1(b|[a, c,o]) =
vol2([b, c,o])
vol2([a, c,o])

,

hence

r(a,b,d) =

vol2([b,d,o])
vol2([a,d,o])
vol2([a,b,o])
vol2([a,d,o])

=
vol2([b,d,o])
vol2([a,b,o])

.

Likewise, we find that

r(a, c,d) =
vol2([c,d,o])
vol2([a, c,o])

,

hence

c(a,b, c,d) =
vol2([b,d,o])vol2([a, c,o])
vol2([a,b,o])vol2([c,d,o])

.

By the elementary area formula for triangles125, we get, with

α = ∠(a,o,b), β = ∠(b,o, c), γ = ∠(c,o,d),

that126

c(a,b, c,d) =
(`b`d sin(β+ γ)) (`a`c sin(α+ β))

(`a`b sinα) (`c`d sinγ)
=

sin(β+ γ) sin(α+ β)

sinα sinγ
,

and since this expression depends only of the angles between the projection
lines at o, it is the same for c(a ′,b ′, c ′,d ′). �

Cross ratios are interesting objects by themselves and have even been used in
the construction of musical instruments. There exists a construction by Stråhle
(Stråhle, 1743) for how to place the positions for an approximately tempered
scale by means of a geometric construction based on projections, see Fig. 6.2.
The story about this construction, its incorrect “correction” by the Swedish
mathematician Faggot and what all this has to do with continued fractions, is
nicely told in I. Steward’s article Faggot’s fretful fiasco in (Fauvel et al., 2003).
The trick is to get the angle right, but also that the cross ratio between the
fret distances (or also tone hole distances for woodwind instruments) is always
constant due to Theorem 6.11. This has nothing to do with splines directly
except that there is also a paper by Schoenberg on how to place the frets on
guitars.

125The area is 1
2
`1`2 sinα, where α is one angle in the triangle and `1, `2 are the lengths of the

adjacent edges.
126We immediately cancel all the 1

2
terms.
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Figure 6.2: The scheme of Straehles construction and the explanation in the
article from (Fauvel et al., 2003). Left image from Wikipedia, right image
from (Fauvel et al., 2003).

6.3 Conics
Conics are fundamental objects in CAD as they include classical geometric
objects like circles, ellipses127, parabolas and hyperbolas. Clasically, the are
defined as intersections of a cone128 with a plane and they are categorized
depending on how this intersection takes place. For our purposes, the following
equivalent definition will be more handy, however.

Definition 6.12 A conic section129 is the projection of a parabola from R3 to R2.

In particular, conics include circles, more precisely, parts of circles. Just keep
in mind that circles as well as parabolas are obtained by intersections of the
cone with a plane, then the projection of one of them with the tip of the cone as
projection center yields the other one.
To see that this definition of conics with rational quadratics, hence a special class
of rational Bézier curves, we recall that a point in P2 is the equivalence class of

the point x =

[
1

x

]
∈ R3, given as{̂

x =

[
w

w x

]
: w ∈ R \ {0}

}
.

Any such element on that line through the origin and
[
1

x

]
inR3 is a representer

of the same projective point.
127OK, a circle is just a special case of an ellipse.
128More precisely, the “double cone”.
129Which may be only a part of a conic.



108 6 RATIONAL CURVES AND SURFACES

Theorem 6.13 For any conic section t 7→ f, t ∈ [0, 1], there exist coefficients c0, c1, c2
and weights w0, w1, w2, not all of them equal to zero, such that

f(t) =

2∑
j=0

cj B2j (t)

2∑
j=0

wj B
2
j (t)

. (6.7)

Proof: Each image point of the conic function f(t) ∈ R2 can be lifted to
[
1

f(t)

]
which is the projection of a point

[
w(t)

w(t)f(t)

]
which lies on a parabola in R3,

parametrized as130

p(t) =
[
w(t)
q(t)

]
, t ∈ [0, 1],

where w and q are quadratic polynomials. In particular, there exist w0, w1, w2
such that

w(t) =

2∑
j=0

wj B
2
j (t), t ∈ [0, 1].

Since q is a parabola, this implies that

w(t)

[
1

f(t)

]
= p(t) =

2∑
j=0

[
wj
cj

]
B2j (t),

hence

f(t) =

2∑
j=0

cjB2j (t)

w(t)
,

which is (6.7). �

Corollary 6.14 If all weights are nonzero, the conic can be written as

f(t) =

2∑
j=0

wjbj B2j (t)

2∑
j=0

wj B
2
j (t)

. (6.8)

130That the parametrization runs over [0, 1] can always be ensured by an affine reparametriza-
tion which transforms polynomials to polynomials of the same degree.
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Remark 6.15 The advantage of the the representation (6.8) lies in the fact that the 3
dimensional representations [

wj
wj bj

]
, j = 0, 1, 2,

are all projectively equivalent to the point
[
1

bj

]
∼ bj.

Every conic can also be written in implicit form as

{x ∈ R2 : f(x) = 0}, f ∈ Π2,

where f is a quadratic polynomial. Implicit forms are useful for intersections
and for checking whether a point lies on a conic, but the implicit form cannot
distinguish between the “full” conic and some conic section that forms a part of
it.

Example 6.16 The explicit form for a circle with center c and radius r is

f(x) = ‖x − c‖22 − r
2 = (x1 − c1)

2 + (x2 − c2)
2 − r2.

The implicit form of a conic is now easily determined for a nondegenerate conic,
i.e., a conic that is not a straight line. This in turn is equivalent to b0,b1,b2 being
in general position and forming a nondegenerate triangle. In other words,

det
[
1 1 1

b0 b1 b2

]
, 0.

Now we write the point in terms of barycentric coordinates with respect this
triangle as

f(t) =
2∑
j=0

uj(t)bj, i.e., uj(t) = wj
B2
j
(t)

w(t)
,

that is,

w(t)u0(t) = w0(1− t)
2

w(t)u1(t) = 2w1t(1− t)

w(t)u1(t) = w1t
2

If we square the middle equation and substitute the other two, this gives

w2(t)w21u
2
1(t) = 4w(t)w0u0(t)w(t)w2u2(t) ⇔ w21u

2
1 − 4w0w2 u0u2 = 0

and the explicit formula for barycentric coordinates,

u0 =

det
[
1 1 1

x b1 b2

]
det

[
1 1 1

b0 b1 b2

] , u1 =

det
[
1 1 1

b0 x b2

]
det

[
1 1 1

b0 b1 b2

] , u2 =

det
[
1 1 1

b0 b1 x

]
det

[
1 1 1

b0 b1 b2

] ,
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yields the implicit formula

f(x) = w21 det
[
1 1 1

b0 x b2

]2
− 4w0w2 det

[
1 1 1

x b1 b2

]
det

[
1 1 1

b0 b1 x

]
, (6.9)

which is a quadratic polynomial in x.

Example 6.17 We want to determine the circular segment with b0 = (1, 0), b1 =
(1, 1), b2 = (0, 1), hence c = 0 and r = 1. Since

det

 1 1 1

1 x 0

0 y 1

 = x+y−1, det

 1 1 1

x 1 0

y 1 1

 = 1−y, det

 1 1 1

1 1 x

0 1 y

 = (1−x),

we get that

f(x, y) = w21(x+ y− 1)2 − 4w0w1(1− x)(1− y)

= w21x
2 +w21y

2 + (2w21 − 4w0w1)xy− (2w21 − 4w0w1)(x+ y) +w
2
1 − 4w0w1,

which becomes the implicit equation x2+ y2− 1 if and only ifw2
1
= 1, sayw1 = 1, and

2− 4w0w1 = 0 and 1− 4w0w1 = −1.

The second reuqirement follows directly from the first and we only have to choose
w0w1 = 1

2
which is symmetrically chosen as w0 = w1 = 1

√
2
. Hence, the rational

control points for the exact quarter circle are

1
√
2

 11
0

 ,
 11
1

 , 1
√
2

 10
1

 .
6.4 Rational Bézier und spline curves
Let us give a formal definition of rational Bézier curves.

Definition 6.18 (Rational Bézier curve) A rational Bézier curve of degree n with
weights wj , 0 and control points bj ∈ Rd is the curve

Bnb̂(t) :=

n∑
j=0

wjbj Bnj (t)

n∑
j=0

wjB
n
j (t)

, b̂j :=
[
wj
wjbj

]
. (6.10)

Such a curve is called polynomial131 if wj = 1, j = 0, . . . , n.

131Often it falsely called “nonrational” or even “irrational”, but such curves only belong to a
particular subclass of rational functions
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Remark 6.19

1. In (6.10), we defined the control points to be the affine representer of the projective
equivalence class.

2. The only restriction on the weight is that they are nonzero. Positive or negative
weights are still possible, but weights with different signs bear the danger of poles.

3. The weights can be normalized such that they sum to 1 or 0. This is not necessary,
just a matter of convention.

6.4.1 Properties of rational Bézier curves

Some properties carry over almost directly from the Bézier case. Since Bn
j
(0) =

δj0, we find, for example, that

Bnb̂(0) =
w0b0
w0

= b0,

so that also rational curves provide endpoint interpolation. Since, for wj > 0
we have that132

wjB
n
j
(t)∑n

j=0wjB
n
j
(t)
≥ 0 and

n∑
j=0

wjB
n
j
(t)∑n

j=0wjB
n
j
(t)

= 1,

every point on the curve is again a convex combination of the points bj, yielding
the convex hull property again: the curve runs within the convex hull of the
control points.

Derivatives are a bit more complicated. In fact,

d

dt

p(t)
w(t)

=
p ′(t)w(t) − p(t)w ′(t)

w2(t)

yields that

Bnb̂ ′(t) = n

n−1∑
j=0

∆(wjbj)Bn−1j
(t)


 n∑
j=0

wjB
n−1
j

(t)

−
 n∑
j=0

wjbj Bnj (t)


n−1∑
j=0

∆wjB
n−1
j

(t)

 n∑
j=0

wjB
n−1
j

(t)


2

,

which is not so nice any more, but at the end points we get

Bnb̂ ′(0) =
(w1b1 −w0b0)w0 −w0b0(w1 −w0)

w2
0

=
w0w1b1 −w20b0 −w0w1b0 +w

2
0
b0

w2
0

=
w1

w0
∆b0,

so that the geometric interpretation of the end segments of the control polygon
as tangents persists as well.

132In fact, this holds true as long as all wj have the same sign.
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Remark 6.20 All these results and formulas show that the “projective” definition from
(6.10) is indeed the right one.
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6.4 Rational Bézier und spline curves 115

Sauer, T. (2014). Analysis 1. Vorlesungsskript, Universit”at Passau.

Sauer, T. (2015). Analysis 2. Vorlesungsskript, Universit”at Passau.

Schneider, H., Barker, G. P. (1973). Matrices and Linear Algebra. Holt, Reinehart
and Winston. Paperback reprint, Dover Publications, 1989.

Schoenberg, I. J. (1973). Cardinal Spline Interpolation, volume 12 of CBMS-NSF
Regional Conference Series in Applied Mathematics. SIAM.

Seidel, H. P. (1989). A new multiaffine approach to B–splines. Comp. Aided Geom.
Design, 6:23–32.

Spivak, M. (1965). Calculus on manifolds. Perseus Books.

Stengel, R. F. (1986). Optimal Control and Estimation. John Wiley & Sons. Dover
reprint 1994.

Stråhle, D. P. (1743). Nytt Påfund, til at finna Temperaturen, i stamningen för
thonerne på claveret ock dylika Instrumenter. Proceedings of the Royal Swedish
Academy of Sciences, pages 281–285.

Struik, D. J. (1961). Lectures on Classical Differential Geometry. Addison–Wesley,
2nd edition. Dover reprint, 1988.

Van Loan, C. F. (2009). The Kronecker product. A product of times.
http://www.siam.org/meetings/la09/talks/vanloan.pdf.

Van Loan, C. F., Pitsianis, N. (1993). Approximation with Kronecker products.
In Moonen, M. S., Golub, G., editors, Linear Algebra for Large Scale and Real
Time Applications, pages 293–314. Kluwer.

Votsmeier, M., Scheuer, A., Drochner, A., Vogel, H., Gieshoff, J. (2010). Simu-
lation of automotive NH3 oxidation catalysts based on pre–computed rate
data from mechanistic surface kinetics. Catalysis Today, 151:271–277.


