Geometric Modeling

Vorlesung, zuerst gehalten im Sommersemester 2015

UNIVERSITAT
//Dl(z‘ PASSAU

Tomas Sauer

_Version 0.0
Letzte Anderung: 12.7.2015



Statt einer Leerseite ...

Denn die Doktrin der geschlechtergerechten Sprache macht das Lesen
solchermassen ”“gerechter”” Texte nicht nur fast unertraglich. Sie
basiert auch auf einem linguistischen Grundirrtum, weil es das biol-
ogische Geschlecht mit dem grammatischen Genus gleichsetzt.

e

C. Wirz, ""Neusprech fiir Fortgeschrittene”’, NZZ Online, 12.7.2013

Die wahren Analphabeten sind schliefslich diejenigen, die zwar lesen
konnen, es aber nicht tun. Weil sie gerade fernsehen.

L. Volkert, SZ-Online, 11.7.2009

(a+b)! S (a+ b)atd
alb!  — asb®
And it didn’t stop being magic just because you found out how it
was done.

T. Pratchett, Wee Free Men

Oh mein Gott! Ein englischsprachiges Skript, nicht mehr die guten alten Splines
oder Geometrische Modellierung, nein, Geometric Modeling muss es sein. Aber
im Zeitalter der Internationalisierung von Studiengéngen bleibt einem nichts
anderes tiibrig und letztendlich gilt halt doch: The official language of science is
broken English. In diesem Sinne: Viel Spass damit.

Tomas Sauer

Lehrstuhl fiir Mathematik mit Schwerpunkt Digitale Bildverabeitung
Universitédt Passau

Innstr. 43

94032 Passau
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What are the digits that encode
beauty, the number-fingers that
enclose, transform, transmit, decode,
and somehow, in the process, fail to
trap or choke the soul of it? Not
because of the technology but in spite
of it, beauty, that ghost, that treasure,
passes undiminished through the new
machines.

S. Rushdie, Fury

Introduction

Geometric Modeling is a task that gains more and more importance as the world,
especially the industrial world, is getting more an more digital. At times where
3D printers are available to practically everyone, a digital model of the objects
one wants to deal with is unavoidable. This becomes more and more important
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Figure 1.1: Screenshot of the Siemens PLM program NX. This is the first
step, modeling the geometry. Needless to say that the system also supports
significantly more complex parts. (F. Lorenz, Siemens AG)

if not only functional issues, like in in the old days of CAD?, but also aesthetic

!Pieces of simple geometry that had to fit somewhere and work as requested. Bolts and nuts



4 1 INTRODUCTION

desires have to be satisfied, for example in architectural geometry or 3D ani-
mated movies or special effects. All these are questions of mathematical nature
and require a richer and richer toolbox of curves and surfaces as well as methods
to adapt these objects to the needs of an application.

This is the world of Geometric Modeling. How can we work with shapes:
curves and surfaces that describe objects, how can we manipulate them, how
can we measure their quality? and how can we force them to what we want.

Figure 1.2: A CNC test workpiece for testing how well the geometric model
is really generated physically.

Geometric modeling is about creating objects. But that is only the beginning.
Noone buys expensive computers and even more expensive programs just to
get nice pictures. In the end, something has to be created: a movie, a real
world object produced by a CNC machine or a 3D printer, for example or
even a building. Modeling is quite pointless without manufacturing. Even if
we will only learn about the modeling issue in this lecture, i.e., the CAD? in
the CAD/CAM system, it surely influences the CAM* part of the system and
the design process must be aware of the type of “manufacturing” that is done
afterwards.

Of course, we mainly do mathematics here and fairly much ignore the tech-
nical aspects of the manufacturing process, so we end up in CAGD: Computer
Aided Geometric Design which is the mathematical area that is interested in the
math behind CAD. Let’s have fun.

2And, even trickier: What is quality? How can distinguish nice objects from not so nice ones,
how can we measure beauty in numbers?

3Computer Aided Design

*Computer Aided Manufacturing



Division and multiplication were
discovered. Algebra was invented and
provided in interesting diversion for a
minute or two. And then he felt the
fog of numbers drift away, and looked
up and saw the sparkling, distant
mountains of calculus.

T. Pratchett, Men at arms

Coordinates

To model the geometric objects by numbers in a reasonable way, the first step is
to fix a proper reference system.

2.1 Cartesian coordinates and vector spaces

The classical and most common way to attach coordinates to our environment
is by embedding it into RY, where d stands for ”“dimension”’. Realistic cases
are d = 2 if we draw on a piece of paper or on a computer screen or d = 3 if we
consider the 3D space around us. Nevertheless it can be a good idea® to keep d
variable and even consider higher dimensional spaces.

Definition 2.1 (Cartesian space) The Cartesian space R? is the usual vector space

of all points x = (x1,...,xq) with componentwise addition and multiplication:
X1+ X; AXq
X+x = : , AXx=| : |, A€eR. (2.1)
Xa + X} AXq

A word on notation and terminology: Formally we would have to distinguish
between the tuple x and the vector x. A tuple is just a finite sequence of values
while a vector is a member of a vector space and therefore certain operations,
addition and multiplication by scalars, have to be defined for x. Since we will
also deal with matrices, we always write a vector as a column vector like in (2.1),

but will omit transposition in a ““tuple notation”” like x = (x;, ..., x4) where row
or column is simply irrelevant.
If x1,...,%, € R? are vectors, we can align them as column vectors into a
matrix
X11 .. Xnl
X=Kx...x,J=| ¢ ~-.. : |eR¥™™ (2.2)
X1d +-« Xnd

5 At least mathematically, but it is mathematics we are here for.
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We can even see X as the ordered set of x;,...,x, or, more precisely, as the
ordered multiset as there can be repetitions among the x;.

Example 2.2 Withd = 1and x; =x, = 1, x3 = 0, the multiset consists of
X = [110],
i.e.,a “double” 1.

In Cartesian space, a point x € R? corresponds to the vector that connects the
origin 0 = (0, ...,0) to this point in space. Addition of two points is defined as
addition of these two vectors. This means that there always must be a particular
point, namely the origin, in the coordinate system.

Definition 2.3 (Unit vectors) The j—th unit vector e; in R® is defined by

1 j=k
ejx = () = & = { 0: j ik)
Definition 2.4 (Products) The inner product or scalar product of x,x’ is the num-
ber
d
x-x' =x'x= Z xjxj’, (2.3)
j=1

the outer product or tensor product is the matrix
) X1X{ ... X1X
) S VIS I PEPRRY: i N I :
X®x" = xx .—[x]xk. k:1,...,d]_ : .. : . (2.4)
XaX

o~

The euclidean length ||x|| of x is defined as

a 3
|| := «/E:(ij] . (2.5)
j=1

The angle between two vectors x,x’ € RY is defined as®

Ty’

/(x,x") == cos”! XX _ .- R/2nZ. ~ [—m, 7). (2.6)
lIxI Il

Exercise 2.1 Show that x ® x” has rank 1 and prove the identity
X @x = (x®x')"
¢

Since e; ® ey is the matrix with 1 at position j, k and zero everywhere else we get
the’ formula

d
i=1,...,d
A=|ay,: ) L = aire; ® ey. 2.7
SRR R ECTLLY @7)
J»k:]
6This is a consequence of the inner product formula x'x’ = |Ix|l/Ix’|]| cos ® where then 0 is

defined to be the angle between the two vectors.
“Impressive but quite trivial



2.1 Cartesian coordinates and vector spaces 7

Definition 2.5 (Affine transformation) Given'y € R® and a matrix A € R4, the

mapping
X Ax+y (2.8)

is called an affine transformation. Special cases are
1. A =1 translation Ty : x = x +y.
2. y =0, A diagonal: scaling, where different coordinates can be scaled differently.

3.y=0,A=1I+(cosax—1)(e;®e;+ exQex) +sin oc(eke].T — eje] ): rotation.
A rotation has the form

[ 1

COS & —sin «

sin o CcOS &

] 4

where the coordinates j, k are the ones with the cos « and sin « terms. Geometri-
cally, this corresponds to a rotation in the plane spanned by e; and ey of an angle
of «. For d = 3 this can also be seen as the rotataion around the “remaining”
axis.

4. y=0,A=S(W) = [ L IW ]: shear, where W € R*4* k < d.
d—k

Exercise 2.2 Show that S(W)S(W’) = S(W + W’) and prove that shears form
an abelian subgroup of matrices. o

Definition 2.6 (Orthogonal matrices) A matrix Q € R is called orthogonal
if Q'Q = 1. An affine transformation is called euclidean map if A is orthogonal.
Normally, we will use the letter Q to denote orthogonal matrices.

Exercise 2.3 Show that a matrix is orthogonal if and only if® its column vectors
are orthonormal’ o

Euclidean maps are the most relevant transformations Cartesian spaces as they
provide a remarkable amount of structure.

8There is the abbreviation iff for “if and only if”, invented by Halmos, see (Halmos, 1988).
9Which is the reason why orthogonal matrices are sometimes also called orthonormal matrices,
but the obvious ambiguity persists nevertheless.
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Theorem 2.7 (Euclidean maps) Euclidean maps Egy : x — Qx +y
1. preserve distances.

2. form a (noncommuting) group.

Proof: For 1) we choose x,x’ and consider
)

= (Qx+y—0Qx —y) (Qx+y—Qx —y)
= (x—x)"Q'Q(x—x') =[x —x'|.

\/_/
=1

Han(x) - Eg,y(x,)i

For 2) we first have to show that any concatenation of two euclidean maps is
euclidean again:

Eo,y, (Egl,y] (X)) = Qy (Qix+y1) +y2 = Q:Qi x + Quy1 +y2 (2.9)
=Q =y

and Q is orthogonal since!®

Q'Q = (Q,Q:)'(Q,Q1) = 0{Q;Q,0Q; =1.

Moreover, we have to show that any euclidean map has an inverse which is, for
Eqy the map Eqr _qry as simple substitution into (2.9) shows:

Eor oty (Eoy(¥) = ngx +Q'y—Q'y =x.

=I

The group is not abelian'! since orthogonal matrices do not commute in general.
O

Remark 2.8 The group of euclidean maps is constructed from the interaction of two
other groups: the nonabelian SO(n) of orthogonal matrices and the abelian R* of
transformations. This way of combining two groups where one acts on the elements of
the other, is called a semidirect product and is a construction that is used, for example,
also in the context of wavelets.

Exercise 2.4 Give an example of two orthogonal d X d matrices that do not
commute. o

Remark 2.9 Euclidean maps are a superset of what is called rigid motions, i.e., what
we can do to some object when moving it around in 3D space around us. Indeed, a rigid
motion is a euclidean map with detQ = 1, i.e, a map without reflections. Standard
examples are euclidean maps based on rotations.

190rthogonal matrices form another important subgroup of d X d matrices, called SO(d).
HThe greatest honor for a mathematician is to have his/her name written in lowercase letters
as a property. From that point of view, “Continuous” might be a name to go for.
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Exercise 2.5 Show that the rigid motions form a subgroup of the euclidean
maps. o

Remark 2.10 Theorem 2.7 says that the distance between two points is an invariant
under euclidean maps. This can be used to classify objects given as finite sets'? 2 =
{x1,...,Xn} of points, often called a point cloud. Such data is collected, for example,
by laser scanners. To classify objects, one can compute the density

1 .
dld,d) =S #{(1<jk<n:d <l —xd <d) (2.10)

of distances in the interval [d_,d,]. For sufficiently large point clouds, i.e."®, we
can make these intervals very small and thus approximately get a density function
¢ : Ry — R that describes the object in a way that is invariant under rigid motions.
In practical applications, one directly one uses (2.10) to compute a histogram based on
threshold values do, dy, . ... If the thresholds are chosen relative to

max ||x; — x|
1<j,k<n

then the method is even invariant under uniform scaling. Note also, that multiple points
only contribute to $(0) which is a rather irrelevant number anyway.

Affine transformations can also be used to do an affine change of coordinates.
To thatend, let V = [vy, ..., v,] € R be any nonsingular'* matrix and v, € R¢,
then we can define a coordinate vector

V=Eyi1 _voiy,(x) =V (x—v)

as another reference system for which x = Ey,,. With respect to tuple v, the
vectors v;j take the role of the unit vectors e; in the standard coordinate system.
This shows that any change between Cartesian coordinate systems can be seen
as a euclidean map and vice versa.

There is one more operation that becomes particularly important for d = 3
but can be defined in a more general context.

Definition 2.11 (Vector product) For xi,...,Xs_1 € RY the vector product or

cross product x X - -+ X Xq_1 is defined as the formal determinant'®
€ X111 ... X4,
xiXoxxaq=| i 1o 1| 2.11)
€1 X1a ... Xd-1,d

12In this context, sets make more sense than multisets though we will see soon that also
multisets can be handled that way.

13Explana’cion: i.e. stands for the latin phrase id est, meaning “that is”, but in a more educated
fashion.

4Nonsingular and invertible are synonymous though the first is a little bit more common
than the latter.

5This means that in R a cross product always must have d — 1 factors.
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which yields for d = 3 the formula

’ ’ 7’ 4 7’ 7’ I4
xXx" = (xx] —x3x3) e + (x3x] —x1%3) €2 + (x1%) — x2x{) €3
7 ’
X2X5; —X3X
3 2
= | x3x;—x1x] |. (2.12)
X1X5 — X2X]

It follows from the standard rules for the determinant!® that
X7 X oo XX X X X X X Xgog = — X X oo X Xge X ooe XX X e X Xg
as well as
Xy X oo X X)X e X (AX) X -+ X Xgo1 =0, A € R,

but we also have that!”

d Tra d
X- (X] XX Xd,1) = (Z xjej] (Z(—] )kek det Xk] = Z (—] )ka e].Tek det X
j=1 k=1 i k=1 ?6/
= det[xx;...Xq_1]
which is also called the mixed product of xand x, ..., X4_1, see (Kreyszig, 1959).

This implies that

d—1
X] X X Xgo1 L [xg...xq_1] R = {Z o Xj & € ]R} =:span{xj,...,Xda_1},
=1

hence, the cross product provides a normal to the linear subspace of R?¢ spanned

by x1,...yXd_1:
X7 X -+ X Xg-1

n:.= 2.13
o X X xa 19
satisfies n'x = 0 for x € span{xy,...,x4_1}. In particular we have for d = 2 the
famous identity
x X x’
n=———. 2.14
e X 19

16Exchange to columns and the sign flips; the determinant is zero if two columns are multiples
of each other.
7With the matrices

X11 Xd—1,1

Xy = X1,k=1  ++-  Xd—1,k—1 k=1 d
X1, k41 +or Xd-1,k+1 | LR
X14 Xd—1,d

from the good old Leibniz expansion of the determinant.
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This defines the normal to x and x’ since

n'x=n'x"=0 and |n|]| =1

only determines n up to sign while (2.14) fixes that as well and gives a preference
to a certain direction. This can be used to define left-handed and right-handed
coordinate systems.

Exercise 2.6 In (Pogorelov, 1987), the mixed product is called scalar triple
product (xyz) : R x RY X R — R, defined as

(xyz) = x- (y X z).
Show that

y-(xxz)=—x-(yxz) and z-(yxx)=x-(yxz).

2.2 Projective coordinates and efficient affine operations

A somewhat disappointing thing about affine maps is that the two operations,
multiplication by a matrix and addition of a vector, apparently play two different
roles. This can be cured by a slightly more general approach.

Definition 2.12 The projective space P% is defined as all equivalence classes in R, X
R", R, = R\ {0} being the set of all units in R, cf. (Gathen & Gerhard, 1999;
Sauer, 2001), with the equivalence

X, X!
x? x9 x1/%o x7/%§
=" & : = : . (2.15)
’ Xq/X x’/x”
Xd X(’i d/ O d/ 0

The euclidean space R® is embedded into P by
1

X1

x%ﬁ:[l]: . |- (2.16)

Xa

Lemma 2.13 In the projective setting, affine operations work as follows

(Ax+y)" = [; A ]sz. (2.17)
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Proof: A simple!® computation with block matrices" yields

ol bl iad

which completes the proof. m|

Hence, in projective space any affine map can be expressed as a matrix multipli-
cation witha d+1x d+ 1 matrix and these operations map the embedding of R¢
back to R%. This way, we can easily represent and realize all our rigid motions
which is actually how it is done on graphics cards or in computer graphics in
general. In addition, this way of handling the data is also compatible with pro-
jective maps that enter the scenery as soon as perspective has to be computed,
i.e., when 3D objects have to be represented on a 2D screen. Also, this is relevant
in computer vision where pinhole cameras have to be modeled mathematically.

2.3 Affine geometry and barycentric coordinates

In this chapter we introduce a more geometric and intuitive coordinate system
which will play a fundamental role for the definition of our geometric primitives,
like free form curves and surfaces, later.

Let x,x” be two points in RY, then the line segment connecting these two
points can be written as

Lx,x") ={(1—a)x+ ax” : x € [0, 1]}. (2.18)

This is called linear interpolation between x and x’ or an affine combination of
the two points. Let us write this in a more fancy way20 asuy = (1 — o), ug := «,
u = (up, ), then u always has the property that ) u; = 1 and

L(x,x") = {[xx'Tu:u €8} = [xx'] %, S = {(uo, wy) t up,wy 2 0, up+uy =1}
(2.19)

Moreover, the complete infinite straight line through x and x’ can be written as
LO,x") = xx'JA, Ay ={(upw) 1 uo+u =0} (2.20)

and a point belongs to the connecting line iff 1y, u; > 0. For points “outside”
one of the values has to be negative while the other one exceeds 1.

The notation from (2.19) and (2.20) can now be easily extended to arbitrarily
many points Xo, . . ., X, with

k
Ay = {u:(uo,...,uk)ele” IZLLj:]}, SkZ:{HEAkZUZO}
j=1

(2.21)

18Yes, this proof is very simple. It is so simple because we make good use of notation which
is something that’s not only not forbidden but even required in mathematics. At least in serious
math. And who would be interested in anything else?

YComputations with block matrices work just like with regular matrices, the only differ-
ence is that the “coefficient products” are also matrix-matrix or matrix-vector products. If the
dimensions do not match — then something is wrong.

2Sometimes the shortest way of writing things may be the shortest but can be hard to
generalize. So even fancy notations can be extremely helpful. Only when done right, of course.
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and considering
€. (X) = XA, ((X) = XSy, X:=I[x...xd. (2.22)

Definition 2.14 The k—dimensional plane through X is {.(X) and the k—dimensional
simplex {(X). We also speak of the affine hull

[X]. := XA (2.23)

and the convex hull
[[X]] = XSk

By definition, any point x € £.(X) can be written as x = Xu for some u = u(x) €
Ay. We want to determine this value which is the solution of the linear system

x = Xu, 1:uo+---—|—uk:1{u
that can be conveniently combined into
| B S R O
x |7 x [Y7 X0 ... Xk u

or, in projective terms,

X=X...xJu= Xu. (2.24)
Definition 2.15 The points Xy, . . ., Xy are said to be in general position if the matrix

X has rank k+ 1. Under these circumstances the simplex XSy is called nondegenerate.
The tuple u(x) € Ay such that x = Xu(x) is called the barycentric coordinates of x
with respect to x.

Barycentric coordinates are a rather classical concept and have already been
studied in (Mobius, 1827) long before the time of CAD or CAGD.

Lemma 2.16 If and only if the points X are in general position, then the barycentric
coordinates u(x) € Ay are unique for any x € £.(X).

Proof: If the points are in general position, then there exists a square k+1xk+1
submatrix Y of X that x’ = Yu, where x’ € ]Rk”AiS the subvector of x that
corresponds to k + 1 linearly independent rows of X. But this uniquely defines
u=Y"'x".

If, on the other hand, X does not have rank k + 1, there exists u* # 0 such that

= . 17|, 1"
o_x“_[x]u_[xw],

hence, in particular uj + --- +u; = 0 and therefore

u+ au’ € Ay, uec Ay, xelR.
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Since
X (u(x) + au”) :Xu+oc§1ﬁ:Xu(x) =X, x € £.(X), x € R,
=0
no point has unique barycentric coordinates. m|

Next, we want to explain the name barycentric21 of these coordinates as this
actually gives some quite nice and iteresting insight. To that end, we assume
that k = d and that we have d + 1 points xo, ..., X4 in general position.

Example 2.17 (Unit simplex) The intuition behind d + 1 points in R® in general
position should always be the following: Imagine X, as the corner point of the coordinate
system and x;,j =1, ..., d, as the points that sit at the end of the coordinate vectors v;,
ie.

Xj = Xo + Vj, j=1,...,d.
The standard coordinate system in this terminology gives
01 0 ... 0
X=[0e...ed =lon=|°° | emee,
00 ... 0 1
which is not invertible®, but of course
1 e 1
X =
1

is invertible, hence the origin and the unit vectors are indeed in general position23. And
any point x € RY can then indeed be written as

d d d
X = ijej = (1 —ZXJO—FZ x; € = Xu(x).
j=1 j=1 -1~
—_—— =1
up
We call [X] for this specific choice the unit simplex in R%.

Using Cramer’s rule?*, cf. (Fischer, 1984; Marcus & Minc, 1965; Schneider &
Barker, 1973), we can compute the barycentric coordinates of x € RY as

det B?O .. .’)-(\j,]’).(v)ZjJr] .. Yd]
det BZO .o /X\d] ’

21Greek “Bapve” = “heavy” (Meyer & Steinthal, 1973), which is reflected in “barometer”, but
not in “barista”. Unfortunately, the closing “sigma”, usually given as \varsigma in KIEX, is not
correct in the font used here.

22This is not even a square matrix!

ZWhich should not come as too much of a surprise.

2'Sometimes this is a nice theoretic tool, but one should never solve linear systems by using
determinants. This is almost like dividing by zero, maybe an even worse sin.

uj(x) = j=0,...,d, (2.25)
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which motivates us to consider det X a little more closely.

Theorem 2.18 (Volume formula) For X € R4 in general position we have that

‘det/)Z‘
vol[X] = 1 (2.26)
Proof: We begin by showing that the unit simplex has volume - which we

will do by induction on d and which is clear for d = 1 where the unit simplex is
the unit interval [0, 1] and

1

vol [0, 1] :J dx =1.
0

For Xg.1 = [0 14,;] € R&*™4+2 4 > 1, we then have®

T pl—xa+1 T—x2——Xq+1
J dx = J J J dxg i 1dxy...dxqdxa.q
[Xa11 0Jo 0

1 1
= J J d(x1y ...y xa) dxa :J (1 —Xd+1)dJ dxg+1
0 J(1—xg+1)[Xal 0 [Xal

1 (" 1 (" 1 x| 1
- ]_ d —_ d -~ — .
J( x) dx .LX e TR T NP e sy

For arbitrary points X € R¥4*! one integrates similarly over

d d
X0+ZCXj(Xj—X0), OSOCj, E (XjS],
j=1 j=1

and gets by a change of variables that

|det[x; —xo...xa — x|

J =|det [x; —Xp...Xq — Xol| J dx
X

[Xal d!
——
=ar
and since?
1 0 0
detba —xo...xa =%l = det[XO X — Xo Xd—xo]
_ det[ L | ]:deti
Xo Xj Xd
(2.26) follows. =

2Since
d
(] —de)[Xd]] = {XE]Rd ZXZO,ZX]' <1 —Xd+1}
i=1

is exactly one slice of the simple for fixed x4.
2The determinant is not changed when rows or columns are subtracted from other rows or
columns.
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u0
ul u0

x0 x1 ul

x0

Figure 2.1: Barycentric coordinates with respect to a straight line in 2D. The
position of the reference does not affect the relative volumes (lengths) of the
subintervals and therefore the barycentric coordinates remain invariant.

Substituting (2.26) into (2.25), we now get the volume interpretation of barycen-
tric coordinates:

wlx) = vollxo ... Xj_1 XXj41 ... X4l
e vol[X] ’

j=0,...,d, x € [X]. (2.27)

If X has less than k + 1 < d + 1 columns, then (2.27) can still be extended, the
only difference is that we consider the k-dimensional volume of the simplex
[X] = XSy, that is,

B voli[xo . .. X1 X X541+ .. X ]
- VOlk[[X]]

u;(x) , j=0,...,k, x € [X]. (2.28)
This is shown in Fig. 2.1: the 1-dimensional volume of [x, x] is the length of the
interval and the barycentric coordinates are the relative lengths of the intervals
opposite of the reference corner.

For the 2D case, the geometry of barycentric coordinates can be seen in
Fig.2.2. The point x splits the triangle into three subtriangles and the barycentric
coordinates are the fraction of the total area that is covered by the respective
triangle where one of the reference points is replaced by x, which is the triangle
opposite the reference point.

Now, the name is easily explained: the barycenter of the nondegenerate* k-
dimensional simplex [X], X € R¥**! is the point x with barycentric coordinates
ux) = (L, ).

What makes barycentric coordinates elegant and useful is the fact that they
are independent of position and scale of the coordinate system.

Proposition 2.19 (Invariance) Barycentric coordinates®® are invariant under affine
maps with a nonsingular matrix A.

ZFrom now on we automatically request the reference simplex to be nondegenerate when
speaking of barycentric coordinates. This statement should actually be made in the text and not
in a footnote, but this is a good way of checking if the reader also looks at footnotes.

2See footnote 27!
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x0 x1

Figure 2.2: Barycentric coordinates with respect to a triangle. x is the point
inside the triangle and the barycentric coordinates are the ratios between
the area of the triangle opposite to the reference point and the area of the
full triangle and the

Proof: Let X € R®**! be a nondegenerate reference simplex and
X =Eay(X) =AX+yl =[Axo+y...Axc + Y]
its image under the affine map. Now, if x = Xu(x), then

Eay(x) = Ax+y=AXu(x)+y=AXu(x)+y 1Tu(x)
e
= (AX + le) u(x) = X'u(x)

and since barycentric coordinates are unique, this proves the claim, see Exer-
cise 2.7. O

Exercise 2.7 Show that E, ,(X) is nondegenerate if X is nondegenerate and A is
nonsingular. ¢

Definition 2.20 (Affine space) Fora given nondegenerate reference system X € R,
n < d, we denote by
E, :=[X[. =XA,

the affine space or euclidean space of dimension k and identify each point with its
barycentric coordinates.

It first seems artificial and somewhat strange to define E, this way but it gives
a clearer and more intuitive geometric flavor than working in the vector space
R". First note that affine combinations

k k
u= E o uj, E oy =1,
j=1 j=1



18 2 COORDINATES

\ +E, —E, zE/ XR aff.comb.
E,. - E, E, - E,.
E/ | E. E, E,  E, E/

Table 1: Admissible operations between [E,, and [E;, and their results.

satisfy

hence any affine combination of barycentric coordinates is barycentric coordi-
nates again. On the other hand, Au, A € IR, does not make sense as then we loose
the necessary property that barycentric coordinates sum to one. If we set

v=u—u’, u,u’ €A,

then
1'v=1"u—u)=1"u—-1"u'=1-1=0,

so that v also does not satisfy the requirements for barycentric coordinates.
Nevertheless, this type of objects is interesting as the difference between two
points is the natural concept of a direction.

Definition 2.21 (Directions) v € R™"' is called a direction if 1"v = 0. The set of all
directions is the vector space E!.

This separation between points and directions is what is behind the “arrow
notion” of vectors that can be quite frequently found in the literature; in fact,
to some extent directions only make sense as displacement between points, so
the “arrow” is only relevant when fixed to a point and therefore pointing to a
new one. Table 1 shows which operations are admissible between points and
directions and what the results are. Moreover, this can be used to define linear
and affine spaces in a concise way that is much simpler as the one often found
in analysis, cf. (Sauer, 2015; Spivak, 1965).

Definition 2.22 A k dimensional affine subspace given by (x,Y), x € E,, Y =
[y, .- yid € (Ep)*is

K
lEnZ_>x+Y]Rk:{x+Zocjyj:cx€]Rk} (2.29)
=1

To be nondegenerate, the directions y; must be linearly invariant.
Exercise 2.8 Show that Definitions 2.20 and 2.22 are consistent, i.e., that for

any k—dimensional nondegenerate affine subspaces (x,Y) of R? there exists a
nondegenerate reference system X € R>*~! such that

x+ YR = XA,
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and vice versa. &

Even if the next result is very easy to prove, it shows us the “different roles” of
R™.

Theorem 2.23 (Cartesian vs. euclidean space) The cartesian space RY can be iden-
tified with Bq and IE} in R by means of the reference system X = [0 e; ... eq] € R4+,

Proof: Since

FIE e

is invertible, any point x € R? has unique barycentric coordinates

1

T 1 ... T][ 1

(17 ]~ 1 X 1—-17x
u(x) = B X = : = « .
1 Xa
[ 1 — 1TX . . . , - d
Hence, x ~ u(x) = « . Taking a direction y = x — x” in R¢, then

a1 [ [ )

In particular,

1Tu(x) =1-1'x+1"x=1 and 1Tv(y) = —1Ty + 1Ty = 0.

Exercise 2.9 Prove that

¢

Remark 2.24 Theorem 2.23 shows how to embed R® into R to obtain the barycentric
representations for IEq and IE).

The barycentric approach can be used to do analysis with functions f : E, — R,
especially to define derivatives. Indeed, let x € E, and y € [E; and consider the
difference

Ayf(x) = f(x+y) — f(x).
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Definition 2.25 (Directional derivative) Thedirectional derivative Dyf(x)atx €
E, fory € IE/ is defined as

AT . f(x+hy) —f(x)
Dyf) = bm == = fimy =

, (2.30)

provided the limit exists in which case we call f directionally differentiable at x in the
direction y. f is called continously differentiable if (x,y) + Dyf(x) is a continuous
function on E, X E!.

To get an idea about how to handle the geometric objects, let us reprove a
classical observation from Analysis (Sauer, 2015).

Proposition 2.26 If f is continuously differentiable then Dyf(x) is a linear map in'y,
that is
Doy+py f(x) = aDyf(x) + BDy f(x). (2.31)

Proof: Homogeneity of the directional derivative is easily proved:

f(x + hay) — f(x) f(x + hay) — f(x)

Pofb =M™ % "7 ha
. fix+hy)—~f(x)
= oc%}go oy = aD,f(x).

For linearity, we consider

. fix+h(y+y")) —flx)
Dy f(x) = lhlg(} n

= lim (f(x+ iy +y")) — f(x-+ hy) + fx+ hy) — f(x)

. f((x+hy)+hy')—f(x+hy) . f(x+hy)—f(x)
= lim + lim

h—0 h h—0 h
= Dy f(x) + Dyf(x),

where for the first term we use the differentiability. m|

Exercise 2.10 Show that for any differentiable f one has
1
fix+y)—f(x) = J Dyf(x + ty) dt
0
and use that to complete the proof of Proposition 2.26. o

We will get back to the issue of barycentric coordinates when considering piece-
wise curves and surfaces.
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Welcher aber . .. durch die Geometria
sein Ding beweist und die griindliche
Wahrheit anzeigt, dem soll alle Welt
glauben. Denn da ist man gefangen.

A. Durer

Differential geometry

If we want to work with curves and surfaces, we have to understand some of the
mathematical backgrounds for these objects. Since we will mostly deal locally
with smooth objects, differential geometry will be the proper context.

3.1 Curves

We begin our “poor man’s differential geometry” by collecting some basic facts
about curves where we will mostly follow (Farin, 1988; Kreyszig, 1959).

Definition 3.1 (Curve) A (parametric) curve in R%is a function f : [a, b] — R from
a parameter invterval to RY, hence
fy(t)
f)=| : |, tel=I[qbl 3.1)

A curve is called continuous or differentiable of some order if alle coefficient functions
f; are continuous or differentiable. In particular, the pth derivative ') of a sufficiently
smooth® curve is defined as>

7 = [fP =1, n| =] : | (3.2)

We will write f and £ for the first and second derivative of £ with respect to t.
A curve f is called regular if f is differentiable and £ # 0.

Exercise 3.1 Show that the definition of a derivative for curves is consistent:
f1(t) :
f(t) = B Zlhlg(}ﬁ(f(wrh)—f(t))-
fa(t)

»That means that all derivatives up to order up to p exist for all component functions.
3This is more an explanation of the notation.
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Remark 3.2 The terminology for curves is not unique: In some part of the literature
the curve is the function [a, b] — RY, for others the curve is the set f([a, b]) C R% and
the function £ is then called a parametrization of the curve. Moreover, differentiability
of a curve does not mean that its image is a smooth object, too, see Pic. 3.1.

Figure 3.1: Neil’s parabola

3
fmz(L), tel-1,1],

is a smooth curve in the sense that f has derivatives of any order, but its
image is not smooth as it has a visual cusp at t = 0. Note that the curve is
not regular there..

3.1.1 Reparametrizations

Definition 3.3 (Reparametrization) A reparametrization of a curve f : [a,b] —
RY is a function @ € C'(I'), I’ := [a’, b"], such that

¢® >0 and e(I') =1 (3.3)
A C* reparamterization is a reparametrization with ¢ € C*(1’).
Of course, a reparametrization does not change the curve as a set as clearly
(fo@)(I') =£(e(I')) = £(I).

Definition 3.4 For a differentiable curve f and a < u <v < t the arc length of the
curve segement from u to v is defined as

Lt = | IO (3.4)

u
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It can be easily shown, see (Sauer, 2015), that the arc length of the segment is
equivalently described as

lim an )—f(ta)ll, u=to<ti<--<ty=v

tj1—t;—0

which is the length of the piecewise linear function that passes through the
points f(t;), hence, in the limit the length of the curve. Since

u’ u

IECO]] dt + J IO dt = Luwf + Lurf,

u’

Lewf = J Il dt = J

a

the function .

tw) = | licw) at
is strictly monotonically increasing whenever f is regular and { := {(b) is the
arc length of the full curve on [a, b].

Exercise 3.2 Show that for any regular curve the function u — £(u) is differen-
tiable on I and { # 0. %

If f is a regular curve then ¢ := ¢ :[0,4] — [a,b] is differentiable with
d 1 1 1
“Ps) =

"(s) == . = — = — , ={(u),
= T T ) ST
and therefore
i
o @)’ ()] = (o ()))‘p'(s)”:::fﬁ::ﬁ (35)
and . .
L[o,s](fO(P):J||(f°(P),(G)||dU:JdG:S> selo,,  (36)
oN—— 0

because of which this special parametrizationis called the arc length parametriza-
tion of f. This is the most natural parametrization of a curve.

Definition 3.5 The tangent of a regular curve fat u € 1is the vector f(w), the tangent
curveist;: t — f.

If f is parametrized with respect to the arc length, then t; satisfies |[t¢(t)|| = 1,
t € I. From now on, we denote by f(s) the arc length parametrization®! of f and
by f’,£”, and so on, the derivatives of this function with respect to s.

From

1= ”f/”Z (f/)Tf' = ”f/”Z (f//)Tf/ (f/)Tf// — Z(f”)Tf/’

3Which is, to be precise f(¢(s))
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it follows immediately that
I (3.7)

the second derivative with respect to arc length is perpendicular to the unit

tangent. To that end,
fl/

n::=
[I£7]]

of f and is a unit vector perpendicular to the

is called the principal normal®?

normal. The value
K(S) = ”f”(S)”, S € [O) e]) (38)

is called the curvature of f at s and

the radius of curvature. Note that the curvature is an intrinsic value of the curve
that does not depend on the (initial) parametrisation of f since we switched to
the arc length parametrization before computing this value. Since

£7(s) = £(t) @'(s) +f(t) 9"(s),  t=e(s) ="(s),

the curvature is not really easy to compute for a general parametrization. There
are interesting concepts of higher order like the torsion of a space curve which
can be found for example in (Kreyszig, 1959), but would lead to far here.

3.1.2 Distances

The next question concerns the distance between two curves f,g, where we
assume that they are defined over the same parameter interval I. We are only
interested in “worst case” distances where we have the following options:

Parametric distance: Here one considers

d (f,g) == max [[f(w) — g(w)], (39)
which of course requires the curves to be parametrized identically and
depends strongly on the respective parametrizations.

Parameter free distance: Since intrinsically the parametrization does not mat-
ter, we could build it into the definition:

d (f, g) := min max ||f¢,(u) — g(u)” , (3.10)

©>0 uel
where @ : I — I should be a regular paramterization. This is very ge-
ometric, but notrivial to compute as determining ¢ leads to a nonlinear

variational problem which is not so easy to solve even if there are methods,
cf. (Gelfand & Fomin, 1963; Kirk, 1970; Stengel, 1986).

32 And again direction matters!
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Arc length distance: somewhere in the middle one could use reweighted arc
length parametrization, scaled linearly according to the ration between (¢

and {,
b
f(s)—g m sl .
£

Especially when the curves are intially parameterized with respect to the
arc length, this is a good method.

d (f,g) := max (3.11)

0<s<l¢

Hausdorff distance: for any point f(u) on the curve f(I) one chooses the closest
point on g and maximizes this value:

macmin [£(w) — gw)]

Since min und max may not be interchanged so easily, we symmetrize the
whole thing

)

(3.12)

d (f,g) := max {max min ||f(u) — g(u')” , max min ||f(u) —g(u’)

uel uwel uwel uel

The drawback is again that this expression is hard to compute.

Figure 3.2: Two curves for which all the distance concepts lead to different
results.

The choice of the distance concept depends very much on the application. Para-
metric distance is natural if the paramterizations are meaningful, Hausdorff
distance is the most reasonable thing in terms of geometry of point sets.

3.1.3 Local frames and the difference between plane and space

Next, we return to our differential geometry and consider the difference between
plane and space curves, i.e.,, d = 2 and d = 3, a little bit more carefully, see again
(Kreyszig, 1959; Struik, 1961).
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Forf : I — RY, d = 2,3, we consider a Taylor expansion of f around u € I
and get for 6 € R,
8% 8. Y

+ T+ S Fw = oﬂf(u)’

f(u+0) =f(u) +6f(u) +
where the derivatives of order higher than 3 will be ingored. Next, we request
that the first d derivative f/, j = 1,..., d, are linearly independent. Then the
form a local coordinate system that can be orthogonalized by means of the
Gram-Schmidt method:

f(u)
t =
e,
n = flu)—tt'f(u) = f'(u)—f(_u—)fh;)f(u)
£,
fw) £ (wi(w) — fw) fFwiu)  (Fw) — F(w) f(uw) -
= — = — ,  F:=ff
el [l |
S S (0 {CTOF (PO " )f( )f(u) (F(uw) — FT(w)) f(u)
m], | faw) - W, ~ W —Fr) fw),
f(u) x f(u)

|[w) x f(w)|,

In R® we again use the vector product from (2.12),

xXy=det| e x Y X3Y1 — X1Y3

€3 X3 U3 X1Y2 —X2Ys

e X 91} [Xzysxsyz}

definiert ist. Die Tangente t we already know as f’(s), s = s(u) and because of
the also known argument

1= =EE) s = o:%((f’(s)ff'(s)):z(f'(san"(s)

the normal n must be a multiple of £ as

d? a ) ; R B

Safuls) = o= (Fu(s) wis) = Fluls)) (w(s)* +Eu(s) u’(s)  (313)

lies in the span of f and f and is perpendicular to t, hence also to f.. The binormal
b only exists for d = 3 and is defined by being perpendicular to f and f.

Exercise 3.3 Show that in R? the normal can be computed as
fx(fxf
[, [} £l

Hint: use properties of the vector product. o
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Definition 3.6

1. The vectors t,n,b form the Frenet frame® at w and give natural and intrinsic
local coordinate system at .

2. The osculating plane> is the affine plane through £(u) spanned by t und n. In
R? it is meaningless.

It is time to illustrate these concepts by means of a (very) simple example.
Example 3.7 For I = [0, 1] we consider the line segment
f(u) =au+b, 0#a,beRY d=2,3. (3.14)

The tangents are a/||all, and of course® the curvature is zero as we can see by taking
derivatives
f(u) = a, f(u) =0.

Now we use the reqular®® reparametrization @(u) = u?, so that f,(u) = au’ + b,
hence _ )

f, = 2au, fo =2a#0.
The curvature is still zero since f(q‘and f, are linearly dependent and the normal as
“direction of curvature” is part of £, which is perpendicular to £.

Exercise 3.4 What is the arc length paramterization of f from (3.14)? ¢

3.1.4 Connecting curves

Most objects used in Geometric Modeling are of a piecewise nature, i.e., consist
of various curve pieces or surface patches. Let us start simple with curves and
let us consider two curves f : [ty,t"] and g : [t t;] which are combined into
the composite curve

f(t)> te [tO) t*] )
c(t) _{ glt),  telt,tl,

and its behavior at t*. If the values differ at t*, it is not reasonable to speak of a
composite curve, hence we always request that

t € [to, t1] (3.15)

f(t)=g(t). (3.16)

Differentiability is getting more interesting. We could first require that, in
addition to (3.16), we also have

ft)=g(t) (3.17)

3In German Frenet-Dreibein.

3In German Schmiegeebene, the name is due to (one of the) Johann Bernoulli(s), or, as written
in (Struik, 1961), “John Bernoulli”.

$ntuitively this is clear, but nevertheless this is no replacement for a proof.

%The zero of ¢ at u = 0 is irrelevant, and otherwise one could use @(u) = (1 — e)u? + eu,
0 < € < 1, which just complicates the computations
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which is, however, not intrinsic since
( * d % ( % . *
f,(t) = E(fo @) (t') =f(o(t)) ¢(t)

which violates (3.17) whenever ¢(t*) # 1. Hence, differentiability is not intrinsic.
This motivates the introduction of geometric differentiabiliy, abbreviated as G'
where we request that

£(t) g(t")

£ (t) = — =
e, s

=g'(t), (3.18)

2

i.e., f(t*) and f(t*) are collinear.

Definition 3.8 (G') The curves f and g join G' smooth at t* if either of following
three equivalent conditions is satisfied:

1. The unit tangents at t* coincide, i.e., the tangents pint in the same direction.

2. The curve f can be reparameterized regqularly such that f o @ and g join C' smooth
at t*.

3. If both curves are parametrized with respect to their arc length, they join differen-
tiably.

Even more interesting is the case of second order differentiability. Parametrically,
this is easy, one just demands

() =g (1) (3.19)

in addition to (3.16) and (3.17). Geometrically, this would be
f'(t)=g’ (t) and 7 (t")=g" (t). (3.20)

Rewriting the first of these conditions as
g (t)=f(t)t, t' =t (s(t)) =) (3.21)

—1
20

and the second as ) .
g (t)=f(t) (') +£(t) t”, (3.22)

we see that g’ has to lie in the osculating plane of f at t* which is trivial for d = 2
but a real constraint for space curves. Note that (3.22) is a nonlinear equation in
t” and t” which can not really be solved. Therefore, the following definition of
second order geometric differentiability is normally used.

Definition 3.9 (G?) Two parametric curves f and g join G* smooth at t* if they join
differentiably there® and are C* with respect to the arc length parametrization.

37With respect to the global paramtrization on [ug, uy]
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With this definition we get
t = [[E(e)
and (3.22) yields that

—1
— /_- 4
, ==t

, =g

0 = (t)—g"(t)=F(t) () +E) tf — (1) () +gt) t]
. . t//_t/l
— (t')z(f(t*)—g(t*wf(t*) f f).
(t')

This observation can be formalized in the following statement.

Theorem 3.10 If t* is no critical point, a C' connection is a G* connection iff there
exist A € R such that £ (t*) — g (t*) = A f(t7).

3.2 Surfaces

The differential geometry for surfaces is more challenging or interesting®®, due
to which we will not consider it in detail but just survey the main concepts
without being mathematically precise. A surface is a two dimensional object
which only becomes relevant if the ambient space R? has at least dimension
d=3.

Definition 3.11 A parametric surface is a mapping f : Q — RY, where Q c R? and
d>3.

The parameter domain () can be quite general in an application context. Besides
the usual convicts like triangles® and rectangles*’, trimmed surfaces play an
important role in CAD systems. Here one has a closed curve

f:la,b] = Q' cR% f(a) = f(b), (3.23)

and QO C Q' is the region enclosed by the curve. These curves can be quite
general and also complicated but they should not be self intersecting, of course.
For simplicity, we also assume that all components of f are at least C?, see, for
example!! (Heuser, 1983; Sauer, 2015; Spivak, 1965).

Definition 3.12 (Derivative) The (total) derivative or Jacobian of f is the matrix
valued function

ofi 2f
of, =1 ..d ou O0v
Vi |2 DS = s x= ) = (). (324)
‘ ’ ofa 0fq
ou ov

3% Add your favorite euphemism for “difficult” here.

3With barycnetric coordinates, of course.

“0Which connect quite nicely to the theory of manifolds in Analysis, cf. (Sauer, 2015; Spivak,
1965).

“The permanent references to my lecture notes are not because they are claimed to be the
best reference but because they are the most accessible one.
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The surface is said to be regular at x if rank Vf = 2, that is, if the columns of V£ are
linearly independent.

A surface reparametrization is a C' function ¢ : Q' — Q and it s called regular
if
detV(x) > 0, xeQ’. (3.25)

Definition 3.13 The tangent space of f at x is the two dimensional affine subspace
generated by the reference system [f(x), VE(x)], and the tangent plane the respective
point set in RY:

Te(x) == [f(x), VE(x)] A; = f(x) + VE(x) R%. (3.26)

If ¢ is a regular reparametrization with ¢(x’) = x, then, by the chain rule,

Tep(x') = £f(d(x) +V(fod) (x')R* = f(x) + VE(d(x')) Vb(x') R?
=X =R2

= f(x) + VE(x) R* = T¢(x),
which means that the tangent plane is independent of regular reparametriza-
tions, hence an intrinsic property. If d = 3, then the surface normal can be

computed as
af af

Te(x) = {x e R*:x'n(x) = f'(x)n(x) } .

and the tangent plane is

Note that the direction of the surface normal depends on the parametrization of
the surface.

Curvature properties are a little bit more complicated as the second deriva-
tive of f is
°f p=1

Vf = Do,
aX]' an 7y k

oy d
) ) dx2x2
~1,2 IE]R )

which is a d X2 x 2 tensor. These can be handled in general, see (Kreyszig, 1959;
Struik, 1961), but needs a lot of terminology and theory. To keep things simple
and get the idea of curvatures nevertheless, we restrict ourselves to d = 3, rotate
0

our coordinate system such that n(x) =e; = [ 0 [and assume that locally

1
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is a scalar valued function. Since we assumed that the tangent plane is hor-
izontal, f has a minimum or maximum there and therefore Vf(x) = 0. The
Hessian

LI
2 duov
V2§ _ ouw u
(x) o ok
oudv  0v?

of fis a symmetric 2 X 2 matrix with two real eigenvalues* A; < A, and (normal-
ized) eigenvectors x;,x, where

A= x VAH(x)x < y'VH(X)y < % VA (x)x, = Ay, yeRY |lyll=1. (3.27)

Consequently, x; and x; are the two directions in R* where the above bilinear
form is maximally or minimally curved. This is depicted in Fig. 3.3. Since

azy? -5 xyezyt

Figure 3.3: Two bilinear forms, one with two positive eigenvalues 0 < A <
Ay (left) and one with a negative and a positive eigenvalue Ay < 0 < Ay
(right). The main lines of curvature are quite visible.

MA; = det VA and A1 + A; = trace V2,
these two invariants®® describe the curvature behavior of the quadratic form
y =y Vi (x)y
independently of the coordinate system we use for y.

Definition 3.14 (Curvatures) The Gaussian curvature Kg and the mean curvature
km of T at x are defined as

1 1
Kg := A Ay = det V2f(x), Km = 2(7\1 +A) = Etrace V2 (x). (3.28)
2This is “standard” Linear Algebra, cf. (Brieskorn, 1985; Fischer, 1984).
#3Eigenvalues are not changed by a similarity transform of the form A +— T~ TAT.
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With a proper notion of determinant and trace, this can be carried over to
arbitrary parametrized surfaces and defines a local system of principal curvature
directions* and principal curvatures.

Let us briefly check that the notion is indeed intrinsic and consider

0 ’ o ﬁ ’ ad)] ’ ﬁ ’ ad)z ’
o (fod)(x) = (X)) o (x) + 55 (9 (X)) o (x')
as well as
Gg ,
axj'axl;(f o d)(x)
Ay, . Ay, by, . Of . b,
- (W Vo ) auee ™ o X)) ox, )+ 5e ) ax;ax];(x)
*f Oy, ,. O,  ddy, ,\ Oy , . Of . ¥ .,
(auav(") o, )T g M) gy )) ox, )+ 5 ) ox/0x] )
, , of , of ,
= (Vo) VR VO(X), + 5 () (Vii(x), + 2= (Via(x),
e o

= (Vo) V() Vo (X)), ,

since we assumed the tangent plane at f(x’) to be horizontal. This, however,
indicates® that the eigenvalues are the same: If y is a normalized eigenvector to
the eigenvalue A of V*f(x), then

(Vo) y) V3(Fo d)(x) (Vo) y)
= YV T ) Vb)) VH(x) Vo (x') Vo (x') Ty = y' VA(x)y = A,

hence the two eigenvalues A{ < A] of the reparametrized surface satisfy A] <
A1 < A2 < AJ and since

Vix) = VTo(x") VA(f o b)(x') Vb (x),

the same argument alsoleads to Ay < A; < AJ < A; with the final consequence that
A1 = Aj and A; = A]. Hence, the curvatures are invariant under reparametriza-
tion which makes them an intrinsic quantity.

We can also ask the question when two surfaces join smoothly along either
a point or a common curve. Continuity is obvious and once the two surfaces
join continously along a curve, their restriction to that curve is indeed the curve
itself. For simplicity, suppose that

f: [So, S]] X [to,t*] — ]R3, g: [So, S]] X [t*,t1] — ]RS.
If they join continuously along the curve

h:uwe f(u,t') = g(u, t")

“The associated eigenvalues.
“This is not a full proof and not intended to be one.
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then the partial derivatives are

a_f
ou

0 .
() = 2w t) =h(w),  welssi,
u
and the nature of the joint depends only on the cross boundary derivative. Ge-
ometric differentiability is still very simple to describe: the tangent planes have
to coincide in each connection point. Higher order differentiability, however, is

more intricate and we are not going to consider it here.



34 4 GEOMETRIC OBJECTS I: CURVES & TRIANGULAR SURFACES

Suppose a contradiction were to be
found in the axioms of set theory. Do
you seriously believe that a bridge
would fall down?

F. Ramsey

Geometric objects I:

Curves & triangular 4
surfaces

In this section we will introduce the basic 1D objects to be manipulated in a
CAD system, namely curves.

4.1 Basic curves

We begin with the simples types of curves, namely line segments and circular
arcs. They are so simple that this section mainly consists of definitions.

Definition 4.1 The line segment {(xy, x1) associated to xo, x; € R is the curve
€(x0, x1)(t) = (1 —t)xo + txq, t e [0,1].
The polyline segment or polygon is the curve

e(Xo, .. .,Xn) = (] — t’)XLtJ +t/x|_tj+1) t=t— I_tJ, te [O,TL]

Exercise 4.1 Determine the arclength parametrization of a polygon {(xo, . . . , X ).
¢

Definition 4.2 A circular arc c(xo, x1,X;) is the part of the circle that passes through
the three points in the given order. A planar circle c(x.,r) C R? is the well known set

C(XC,T) = {y € ]Rz . ||Y - xc” = T}. (41)

The above definition of a circle has the drawback that it only works in R?, in
higher dimensions it gives a sphere instead. The circular arc, on the other hand,
works in arbitrary R%. If the three points are in general position, they define an
affine plane [xo, x;, x,] where the circle and circular arc is well-defined. If they
are not in general position, then one of the two following cases happens:

1. Two or all three of the points coincide and the problem is simply under-
determined and unsolvable*.

46There is a lot of circles through two points or one point.
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2. The three points are collinear, i.e., they lie on a straight line. This would
correspond to a circle with radius co which would be somewhat reason-
able? in R?, but in R? there are infinitely many possible midpoints for this
“circle”.

Remark 4.3 (GIS) Geographical Information Systems (GIS) often use only polylines
and circular arcs as geometric primitives.

4.2 Bernstein, Bézier, de Casteljeau

We begin with a classic type of curves, namely the so—called Bézier curves which
give a representation for polynomial curves. Since barycentric coordinates
make things quite simple, we generalized things a bit and consider triangular
Bézier surfaces immediately*®. But we will always have curves in mind, of
course.

Remark 4.4 Bézier curves are named after PAuL BEZIER, a french engineer who worked
for Renault in the CNC department(Bézier, 1972) and, being involved in the development
of the UNISURF CAD system in the 1960s, was one of the pioneers of CA(G)D,
(Bézier, 1986). The evaluation algorithm was named after the mathematician PauL
FaGeT DE CASTELJEAU who developed a similar system at Citroen simultaneously.
Since, in contrast to Bézier, de Casteljau was not allowed to publish his results, there
was a lifelong conflict about priorities of invention.

To complete confusion, the basis polynomials that we will consider soon, are called
Bernstein—Bézier polynomials since SERGE] BERNSTEIN used them® in his construc-
tive proof (Bernstein, 1912) of the Weierstrass approximation theorem. Bernstein
polynomials in several variables were already known in the 1950s from (Dinghas, 1951,
Lorentz, 1953).

4.2.1 The de Casteljau algorithm

Now we want to model a surface f : 5, — R¢, defined on the n—dimensional
unit simplex 5,,. “Model” means that we want to describe the surface by means
of finite information, i.e., by finitely many values that are stored in a computer.

Example 4.5 Let ay, ..., a, be points in R%. Then

n

p(t) = Z ajt/, t € [a,b]

j=0

is a polynomial curce defined by the control points a, ..., a, € R That we work
in RY is not really relevant here as we could consider every component of p separately.
However, the relationship between the coefficients is not really an intuitive one.

#Though it makes much more sense to use the “line” primitive instead.

“8This makes sense since triangular surfaces are not common in CAD systems and the “usual”
way to generate surfaces is a different one.

% And their probabilistic interpretation.
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To define a representation with more geometric meaning, we first need some
more terminology.

Definition 4.6 A tuple & = (o, ..., 0tq) € lNg“ of nonnegative numbers is called a
multiindex. The lentgh |«| of such s a multiindex is the number

d
|| = Z 0.
j=0

The set of all homogeneous multiindices of length n wikk be written as
Fn:{ocelNg*] :|oc|:n}. 4.2)

By e €Ty, j =0,...,d, we denote the unit multiindices with the property that

ej,k = éjk/ ],k: O,...,d.

Algorithm 4.7 (de Casteljau)

Given: control points c,, o € I}, and u € 5.

1. Initialize ¢ (u) = cq, & € T,

2. Fork=1,...,n

c(u) = Z ujclife]_ (u), o € Moy (4.3)

3. Result: p(u) = cy(u).

Remark 4.8 The de Casteljeau algorithm is based on barycentric coordinates. That
means that we can use any reference system in R® but all that really counts is how a
point subdivides this reference system.

Definition 4.9 The graph p(Ss) computed by Algorithm 4.7 is called the Bézier sur-
face associated to the control polyhedron {c, : o € I}}.

Remark 4.10

1. Each step of the de Casteljau algorithm subdivides any of the s—dimensional

simplices [cl;jej j=0,..., d], o € [y in exactly the same way as u sudivides
the unit simplex. Therefore, the algorithm can easily be carried over to a method to
define functions on arbitrary d—simplices A by simply transferring the subdivision

induced by x € A to the respective subsimplices of the control polyhedron.

2. Some of the simplices [c];fej j=0,..., d] may even be degenerated, for the

determination of the “barycenter” via u this is totally irrelevant.

3. Each step of the algorithm can be seen as a linear interpolation of the vertices of
the subsimplices.

4. The algorithm is a generalization of construction methods for conic sections that
date back to Steiner™.

Which is not too surprising as de Casteljau’s background is in classical geometry.
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e ——e e (Or—e

Figure 4.1: The de Casteljau algorithm for a curve. For each point in the
curve it is a ruler and compass construction.

4.2.2 Bézier surfaces

Next, we will find out that the de Casteljeau algorithm produces polynomial

surfaces of (total) degree n that can be given explicitly. These surfaces are called

Bézier surface though Bézier himself only used that approach to define curves™,

see (Bézier, 1972).
Definition 4.11

1. For a multiindex o € N3 the multinomial coefficient

o) !

o ool oxg!’
is extended on Z°" by setting it equal to zero whenever it contains a negative
component.

2. The Bernstein-Bézier basis polynomial>* with index « € T’y is defined as

|
B.(x) = (|z|)u°‘ = ﬁug‘o ceudy x e N5 (4.4)

3. Convention: B, is even defined for « € Z**' with B, = 0 whenever o ¢ NS

>1His notion of a surface was that of a curve moving along another curve, a concept that leads
to a tensor product surface, see (Farin, 1988, Kap. 1).
52Carl de Boor once proposed the abbreviation “B-polynomial”.
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Exercise 4.2 Show that B, assumes its maximum at u = «/|«/. &

Lemma 4.12 (Recurrence relation) For « € INSH,  # 0, we have
d
Bal) = ) uiBoyg(w). (4.5)
=0

Proof: Follows from

) - =502

since then
!ocl) : (!oc! — 1) IR
B, (u) z( u* = U = i Bae; ().
D

Note that we make use of the above convention here. O

Lemma 4.13 The Bernstein—Bézier basis polynomials form a nonnegative partition
of unity, that is

Bo>0 and ) By=1. (4.6)

€l

Proof: Nonnegativity is obvious and the partition of unity follows from the
multinomial formula

1=1“=(U0++us)n:Z(2)u“:ZB“(u)

o€l o€l
O
Theorem 4.14 (Representation of Bézier surfaces) For k = 0,...,n and « €
[y we have
ck(u) =) carpBplu), (4.7)
Bene

and especially for k =n

p(x) =cf(u) = ) cuBylw) (4.8)

o€l
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Definition 4.15 We write
R4 (T,) = {(ch cael): e €RY e Fn}

and write, for a control polyhedron ¢ € R (T,),

Bnc:= Z CoBu(x)

xeln

to describe the associated Bézier surface.

Proof of Theorem 4.14: Induction on k where k = 0 is clear because B, = 1. For
the step k — k + 1 we observe that for « € I},__; the identity (4.3) yields

d d
CIC;H (LL) - Z u’J'C]c;Jrej (u) = Z W Z Cote;+p BB(u)
j=0

j=0  Belx
d d
= 2 2 WeaBp o= D s} By
j=0 Beliq Beli1 j=0
= Z Ca+ﬁB‘3(U).
BENc+1

O

Next, we collect some properties of the Bézier surface B,,c that follow more
or less directly from the de Casteljeau algorithm:

Convex hull property: the surface lies inside the convex hull of the control
polyhedron,
Bhc(A) Cley: x eyl 4.9)

Endpoint interpolation: the surface interpolates the control polygon at the ver-
tices of the simplex

Bnc(ej) = cnej, j=0,...,s. (4.10)

Indeed, (4.9) follows since, by (4.3), wehave, foru € 5, k =1,...,nand « € I},
cs(x) € ey (x) : B € Tl

hence,
Bac(w) € [ '(w) €] C -+ Cley: o € Tl

(4.10) is due to
Bne(e) =cf () =" (e)) =+ = Cpey-

Lemma 4.16 The Bernstein—Bézier basis polynomials form a basis of the vector space
T of all homogeneous polynomials of degree n in u.
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Proof: Since barycentric coordinates are homogeneous polynomials of total
degree 1, it is clear that B, € TI%, & € T',.Since als #I, = (”Zd) = dim TTY, it suffices
to prove the linear independence of the basis polynomials which we will do
by induction on n € INy. The case n = 0 is obvious since By = 1 is not the zero
function. For the induction step we assume that there exists ¢ € R (I},:1) such
that

n+1

0 =Bppc(u) =c5' (u), ues,

and show that ¢ = 0. To that end, we consider the lower dimensional faces
Ay={u:wy 1=--=uy =0} k=0,...,s,

where A; = 8 and prove inductively® for k = 0,..., d, that
¢ = 0, x€{B el Py =-=pa=0}. (4.11)

k = 0 is the endpoint interpolation (4.10). To advance from k—1 to k, we choose
u € Ay and obtain
Buaclu)= ) cBalw). (4.12)

Xk+1 =-=0qg=0

Since Ay_; C Ay the induction hypothesis yields that ¢, =0, ) =+ = 04 =0,
that is, (4.12) becomes

Brr+1c - :E: Calga

o€lm, o >0
Xy 1= =g =0

Co
= m+w Y & Baer

o€lm, o >0
Ay ]=r=0gq=0

Cote
= E —:B“.
xeln (Xk +

X ==xg =0

To this expression we finally apply induction on n to complete the proof. m]

Exercise 4.3 Prove the degree elevation formula. To that end, define for ¢ €
R? (T},) a new control polyhedron'c € R? (I}, 1) by

d
- B35
CB:jZonHCﬁei’ B € i,

and show that B,,c = B,..c. &

4.2.3 Derivatives of Bézier surfaces

Now we consider derivatives of Bézier surfaces and their geometric meaning.
We recall some concepts from the previous barycentric chapter.

5BYeah, a double induction!
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Definition 4.17 A vector y € R is called direction if yo + -+ +yaq = 0. The
directional derivative D, along y, is defined for f € C' (S;) as

D f—iy of (4.13)
yf =2 Yyiz—. :
= oW

The side condition ) y; = O reflects the fact that y € E]. Particular directional
derivatives are the axial deriviatives D, .,,j,k =0,...,s, which for a basis for
all directional derivatives since any y € E; can be written as

Y= Zyjej = ZU;‘ (e — ex) +(yk+ZUjJek-
j=0

j#k j#k
=0

The directional derivatives of the basis polynomials can now be easily computed.

Lemma 4.18 For a barycentric direction y € R*"" and o € IN§ we have that

d
DyBo =l > yj Bae,. (4.14)

j=0

In particular, for j,k =0,...,s,
DejfekBoc = |od (Bocfej - Bocfek) . (415)

Proof: Since B, = ('g‘(')u"‘, we get, whenever o > 0,

0 B |OC|’ . |O(—€j|

)u"‘ej = |«|B ax—ej)
6

and if o5 = 0 it follows that s>-B = 0. O
)
Definition 4.19 Forj = 0,...,s, the shift operators E; : R™ (I},) — RN (I,_y) are

defined as
(F—jc)oc = Coc+ej> x € rn—]-

With Lemma 4.18 and the notion of shift operators we can prove the following
result.

Theorem 4.20 Ify;,...,ynm are axial directions, i.e.,
Yj = ey — €, j=1,...,m,
then
n!
Dy, - - Dy, Bnc = > (B, —Ey) (B, —Ei)ea Bo  (4.16)

" xelMm_m
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Proof: Itis sufficient to consider the case m = 1, the rest is a simple induction™.
By Lemma 4.18 we get

Dej—eanC = Z CocDe]-—ekBoc = Z Coc|(x| (ch—ej - ch—ek)

o€l oeln

= n Z (Coc+ej - Cochek) By=n Z (F—] - Ek) Cx B

el 1 o€l

Theorem 4.21 Lety € R®™! be a barycentric direction. Then, for k > 1,
n!
DEBnC = m Z Z Catp Bal) Bply) (4.17)
el _x Belk
Remark 4.22 The notation B (y) is slightly abusive and only stands for
!B!)
Bp(y) = ( P,
LY B Y
Proof of Theorem 4.21: Induction on k, where for k = 1 (4.14) yields

d

d
DyB.c = nZ Cy Zij“,e). =n Z Zyjcwej By
0

o€l j= aeln—1 j=0

- n Z ZCOH_ﬁch(')BB(y)'

xel 1 Beln
For k > 1 the induction hypothesis and (4.5) give

DiBne = DyD{ 'Bue=Dy Y ) carp Bal-)Bp(y)

€M k1 BEM—1

= Z Z Cotp BB(U)ZUJ'BWGJ'(')
j=0

€l k11 BEM—1

- Z Z Zyjca+f5+€j BB(U)BOL(')

o€l BeNc1 j=0

= D ) cap Ba(-)gyjlsﬁej(y)z D D carp Bal)Bgly):

o€l _x Belk o€l _x Belk

Corollary 4.23 For any barycentric direction y € E] and any k > 1 we have

n

!
D}Bnc(u) = — T [; i (W) Bgly),  ues. (4.18)
€lx

(n

In particular,

5 And a nice exercise.



4.2

Bernstein, Bézier, de Casteljeau 43

. the intermediate results of the de Casteljeau algorithm give the respective

derivatives for free:
d
DyBncw) =n) yl (), ues,. (4.19)
j=0
The derivatives at the vertices e; of s, j = 0, ..., s, are completeley determined

by the control points around the edges:

n! .
DEBnC (ej) = m Z Cin—k)e;+p Bs(y), j=0,...,s. (4.20)
Benc
The tangent plane at a vertex e;,j =0,...,s, is generated by
(Ex — F—j) Cn—T)e; = €n—1)ej+ex — Cneyy k=0,...,8, k# j-

Figure 4.2: How to determine a directional derivative from the intermediate
results of the de Casteljau algorithm.

Remark 4.24 (Control points and derivatives) 1. Thedirectional derivatives in

Theorem 4.20 play the role of a partial derivative and are defined by the respective
differences of control points.

2. In his book (Bézier, 1972), Bézier introduces Bézier curves precisely in this way:

value and derivatives at the end points of an interval should be defined by the
differences of control points.

Exercise 4.4 Prove that there exists exactly one quadratic (i.e., n = 2) polynomial
that assumes prescribed function values and tangent planes at the vertices of a
simplex. o
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Figure 4.3: Derivatives and control points in one and two variables. The
tangent plane in the vertex is given by the difference of the control points.

4.2.4 Blossoming and Subdivision

Any evaluation point u splits the standard simplex 5 into s + 1 subsimplices as
we know from the computation of barycentric coordinates. The restriction of a
Bézier surface to such a subsimplex is again a Bézier surface whose coefficients
have to be computed. For this purpose, there exists a very nice and elegant the-
ory that emerges from reconsidering and slightly generalizing the de Casteljeau
algorithm from Algorithm 4.7.

Algorithm 4.25 (de Castejau modified)
Given: c € R4 (T) und wy, ..., u, €5,

1. Initalize () = co, x € Ty,

2. Fork=1,...,n

chlun.ywd =) wped L (W we),  a€lig. (421)
j=0

Result: P. (W, ..., uy) = ¢ (W, ..., up).

The difference to Algorithm 4.7 is that in each step of the iteration we can use dif-
ferent barycentric coordinates. Though it looks like a very naive generalization,
this process yields a surprisingly meaningful result.

Proposition 4.26 The function P, is a symmetric multiaffine form with diagonal
B¢, that is,

1. (symmetric) for any permutation o of {1,...,n}, we have

PC (ugm,...,uo(n)) = Pc (u1,...,un) (4.22)
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2. (multiaffine) if w; = 3 > gu/ vy, u/ €8, v € 8y, then

P, (uyy...,uy) = kaPC (Wry ey Wy Wy Wy ey Uy ) (4.23)
-0

3. (diagonal)
P.(u,...,u) = Bc(u), ues;. (4.24)

Proof: Since the permutations of {1,..., d} are generated by the permutations
that switch two subsequent elements, it suffices to show that

Pe(wiy.ooyun) = Pe(Wry ooy Wimry Wit Wi, Uiy oo vy Un) (4.25)
By (4.21) this reduces to showing that

T Wy ey Wy Wy Wipr) = € (W, ey Wty Wty 1) o€y, (4.26)

Co
To that end, we simply apply (4.21) twice

j+1 (

Cx 'LL], )W*])u’j)u’jJﬂ)

_ . j .
= z Wit 1 kCop ey (w1, ey W1y z ukz ul»“coc+ek+ee (Wi ey u0)

k=0

_ j—1 — ]
= ) U Chre e (W ) = e (W W W, ),

k(=0

since the expression within the sum is symmetric with respect to k and ¢ which
yields (4.26) and (4.25).
(4.23) is verified in the same way by computing

¢ (W, yy) = [u1, E ukvk)
S m m S
— / j— _ r o j—1
— (g ukvk) CHW (Wi, uyg) = E Vi E Wy Chre (Wry ooy uy-1)
¢ k=0 (=0

.
7ca(u1,...,u;,1,u]’<)

Finally, (4.24) follows from the fact that in this case Algorithm 4.25 reduces to
the de Casteljeau algorithm 4.7. O

Remark 4.27 Multiaffine forms are not such a totally new and unknown concept, as we
know quite promiment examples of a multilinear form: the derivative of a function
in several variable is a symmetric one, the determinant an alternating one.
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Theorem 4.28 (Blossoming Principle) For any d—vector valued polynomial p with
components in TIS there is a unique symmetric multiaffine form P : (E,)" — RY and
vice versa such that

p(w) =P(u,...,u), X € 5. (4.27)

Definition 4.29 The multiaffine form P from Theorem 4.28 is called the polar form or
blossom of p. This concept was rediscovered by Ramshaw (Ramshaw, 1987) in 1987
and brought to attention in the CAGD community

Proof of Theorem 4.28: We write p in its Bézier representation as
p=B.c(p) =) c(p) By, cu(p)€RY aeT,
o€l

and recall from Proposition 4.26 that the associated P(,) is a symmetric multi-
affine form that satisfies (4.27).

Conversely, let e; € Rt 5 =0,...,s, denote the barycentric coordinates of
the vertices of the simplex, then we have, for any n-affine form P that

P(u,...,u) = Z P(eo, ey €0y ey €dyenny ed) By(u) = P(e*) By(u)  (4.28)

o€l ®o o

which shows that P (u,...,u) is of the desired form. But of course, we have to
prove (4.28) which we will do by induction on n. In the trivial case n = 0 the
form without arguments P() is constant, just like polynomials of degree 0. For
n — n+ 1 let P be a symmetric (n + 1)-affine form. Since, trivially,

S
u = E LLj ej,
j=0
we have that

Z w P e], Z w P (4.29)

and the functions P; = (vj, -) are symmetric n-affine forms to which we can
apply the induction hypothesis yielding

u):ZPj(e(X)) j=0,...,d,

n-H

o€l
to obtain
d
P(u,...,u) = ZLL]ZP :ZujZP(ej,e“)Ba(u)
n+1 x€ln ):O x€ln
= ZLLJZP OH—EJ Zuq Z P(e oce] )
ol €l 41
= ) P ZujBH,. (W= ) P(e”)Ba(w)
x€lM 41 j=0 x€lM 11
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which proves (4.28). Uniqueness of this relationship follows from (4.28) and the
uniqueness of the Bézier representation. m|

The result we are aiming for is an almost direct consequence of the following
result.

Proposition 4.30 For ¢ € RY(T},) let P be the polar form of p = B,c. Then the
intermediate points of the de Casteljeau algorithm are of the form

e (u) = P(uk, eﬁ) =Pu,...,u,eb), B el y. (4.30)

k

Proof: Induction on k once more®®. For k = 0 we have
cp (1) :cB:P(eﬁ), Berl,,

which is (4.30). For k — T — k the de Casteljeau algorithm implies

d s
Gl = D e ZwP( et = 3w (e ut )
j=0 j=0
= P[ S ujej,u eﬁ] = P(u,uk’1, eﬁ) = P(uk, eﬁ)
j=0
and advances the induction hypothesis. O

Definition 4.31 (Subsimplex)
1. ForueS,andj =0,...,s, we denote by
Ay = Aj(u) == [u, e, ..., €-1,€41y...,€dl (4.31)
the jth subsimplex of Ss.

2. The restriction of Bnec on Aj, written as Bucly, 1 $; — RY is the Bézier surface
based on the barycentric coordinates with respect to A;.

Exercise 4.5 Prove that .
s.=|Ja,
=0

¢

We can now easily find the control polygon for the restriction among the inter-
mediate results of the de Casteljeau algorithm.

Theorem 4.32 Forue Aandj =0,...,d we have

B“C|Aj (W — Z Coc)—oc,»eej (1) Ba. (4.32)

oeln

It seems as if induction is the only this people in CAGD can handle. The truth, however, is
much simpler: when things are given recursively, induction is usually the technique of choice.
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@ O o @ O o

Figure 4.4: The intermediate points of the de Casteljeau algorithm for a
curve, interpreted as control points of the subdivision of this curve.

Proof: > Let P denote the polar form of B,c. According to (4.28) and (4.30), the
control points of Byc|,, have the form

_ 5% Xj—1 o L %+1 xq\ __ o LX—0GET) A%
c]-,(x—P(eo yeer €U e L ey )—P(u 1 e* %) —ca_ajej(u).

Figure 4.5: The analogy of Fig. 4.4 for surfaces.

The subdivision of control pollygons and control polyhedra, respectively, can
be seen in Fig. 4.4 and Fig. 4.5.

**This proof is now extremely short and simple. But this is due to the fact that we used the
proper concepts and did the main work before.
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4.3 Spline curves

Although Bézier curves and surfaces are geometrically intuitive, the suffer from
a classical problem of poynomials: They are locally determined which influences
the curve globally.

Example 4.33 Consider an arbitrary polynomial>’

o
=
I

s

3
=
|
x
x
m
—_

=0

If we take any open subintervall | = (x* — e,x" 4+ €) C 1, around x*, then we can
determine all derivatives™ as

P (x") = k! py, k=0,...,n,

which uniquely defines p everywhere. In particular, if we modify p on ], we will see
the effects of this modification everywhere.

The same principle applies to Bézier curves and surfaces. Even if they are
“quasilocal”®, which means that due to

o
max B, (u) =B, | — |, o e N3, (4.33)
ueSg |O£|

the coefficient ¢, has its strongest influence at (5, they are still global® in the
sense that any modification of ¢, affects the curve everywhere.

Exercise 4.6 Prove (4.33). o

To overcome the globality problem, we switch to localized curves. But in order
to do so, we first have to make clear what we mean by “local”.

Definition 4.34 Let n, m > 0 be given with the intuition that n > m.

1. A knot sequence® for m,nis avector® T, = (toy ..., thime1) € RM™ 2 with
the properties
to <t S Sty S oor < tama (4.34)

and
Y < tjrmer, ) = 0, ceey ML (435)

This is only scalar valued, i.e., d = 1, which is totally sufficient to see the phenomenon.

58Recall from Analysis I that, in order to define a derivative at some point, we need to know
the function in an open neighborhood of that point, cf. (Forster, 1976)(Sauer, 2014).

Y1f something does not have a certain property which one would like to have, it hase become a
common bad habit in mathematics to call it “quasi-something” which means nothing, however.

0 And not “quasiglobal”, so this is a serious property.

®In principle, knot sequences could even be infinite, and indeed the “original” definition of
Schoenbergs cardinal spline used Z as a knot sequence, and that for good reasons (Schoenberg,
1973). But here we will stay in the finite world.

®2In the sloppy meaning of “tuple” as we will not add knot sequences. Let’s call it a finite
sequence if we really want to be precise. But do we?
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2. The number u > 0 for which

o <t =- =Y <ty
holds is called the multiplicity of the knot t; = -+ = tj 1.
3. The knots to, ..., tn are called left boundary knot, the knots tn 1, ..., thims

right boundary knot, respectively.

4. In many cases we will consider knot sequences whose boundary knots have mul-
tiplicity m + 1, that is,

to=-=tm, thyr = = thymy.

Remark 4.35 The requirement (4.35) can be rephrased as follows: the multiplicity of
any knot must not exceed m + 1.

4.3.1 The de Boor algorithm

We stick to the algorithmic approach an construct a new type of curves by a
localized variant of the de Casteljeau algorithm 4.7. To localize thigs, we make
use of the knot sequence from Definition 4.34. It will be useful now to define
the half open intervals

I = [t), tac1), j=0,...,mk=0,...,m, (4.36)

formed by knot sequence where j defines the location and k the spacing of the
interval. Any point x € R has barycentric coordinates

X—Y G — X

o (XI) = ) = (4.37)

Yt — 4 bk — 4

with respect to this interval.

Exercise 4.7 Verify the explicit expressions for the barycentric coordinates in
(4.37). %

Now we can define the classical algorithm for spline evaluation.

Algorithm 4.36 (de Boor)
Given: Knot sequence T, ,, control points dy, ..., d, € R4and® x € [ty ..., ta1].

1. (Localization) Determine v € {m,...,n}such that x € [t,,t,1).
2. Initialize d(x) = d;, j =1 —m,...,T.
3. Fork =1,..., m compute the convex combination*

di) = wo (X d (%) +w (X A (x),  (4.38)
j=r—m+Kk,...,T.
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Va\

oOo—e—o—e——O—0 OO0O—e—©o—e—0—0

Figure 4.6: The de Boor algorithm for m = 3, a so called cubic spline. The
last picture shows the curve segment on the interval [t, t,11].

Result: point d}*(x).

Fig 4.6 shows what happens geometrically in the de Boor algorithm: in the
k—th step we proceed all intervals that contain x and m — k 4 2 knots and use
them to partition the respective edges of the control polygon. It is visible that
this process drags the points much more to the center than the de Casteljeau
algorithm does. By construction we already see that the resulting curve is local:
on [t,, t;+1) the curve only depends on the control points d,_,, ..., d,.

The index r to be determined in the first step of the algorithm is unique as
long as x is not a knot.

Remark 4.37 The index v, determined by x € [ti, tir1) does not really influence the
way how the value is computed but mainly which control points contribute to this
computation. Indeed, one might use the following modified version of the algorithm:

1. Initialize d?(x) =d;,j=0,...,m.

2. Fork =1,...,m compute

di) = wo (X d (%) +w (X A (x),  (4.39)
j=k,...,mn.

3. Pick the rth component from the vector (d]T“(x) j=m,... ,n).

®3This is no misprint, x has to lie between the boundary knots which play a special role.
641t is a convex combination with nonnegative barycentric coordinates due to the choice of 1!
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o——o—e—7"0—-"7C5 = O—eeo—e—0—20~0

Figure 4.7: The de Boor algorithm for a cubic spline with a double knot.

From a computational point of view, this does not make sense as a point evaluation
algorithm when n > m, since the modification computes the function everywhere.

Definition 4.38 The spline curve Ny 1d is defined as the function x — d"(x),
X € [tmy ..., tar1]. The control polygon of this spline curveisd = (d; : j =0,...,n).

Next, we collect some properties of the spline curve that follow directly from
Algorithm 4.36.

Proposition 4.39 For a knot sequence T, , and a control polygon d we have

1. (convex hull property):

N rd ([tr, tr1)) € [dr : k =0,...,m], T=Tm,..., . (4.40)

2. (interpolation at m—fold knots): if x = tj_my = -+ = tj, then Ny rd(x) =
dj_m.

3. (de Casteljau): form = mand to = --- = ty, tmy = -+ = tomq1, we have
Ny, 7d = Bnd.

4. (pieceweise polynomial):

Nm,Td|(t].’t].H) € r[m, ] =m,...,Nn.

Proof: The property 1) follows from the already mentioned fact that all barycen-
tric coordinates appearing in the process are nonnegative.
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For 2) we remark that whenever t;_,,,1 = --- = t; each of the intervals
[ in (4.39) has t; = x as left endpoint which yields uo (xlI?‘k“) =1,
U (xII]T“_k”) = 0 and therefore d* | (x) = d; .

Moreover, 3) is obvious and 4) a direct consequence of the explicit expression
(4.37) for the barycentric coordinates which shows that in each step d}H (x) is
multiplied by a polynomial of degree 1 in x. |

Corollary 4.40 If T, ,, has m + 1—fold boundary knots, the spline curve admits end
point interpolation, that is

Nprd (tn) =do,  Nprd (tes) = dn. (4.41)

Figure 4.8: Two cubic (m = 3) spline curves with boundary knots of multi-
plicity 4.

. e &

Figure 4.9: Variation of the knots of the examples in Fig. 4.8.
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4.3.2 B-splines

Like we did before with Bernstein—Bézier basis polynomials, we will derive an
explicit representation of the Splines curve with respect to appropriate basis
functions. Again this will be done by “dualizing” the evaluation algorithm, this
time the de Boor algorithm. The definition follows is a straightforward way
from noting that the de Boor algorithm is linear in d, that is Ny, 1(d +d’) =
Ny rd + Ny rd’. Writing d formally as

d = (do,...,d) =) (0,...,0,d},0,...,0) =Y dj (0,...,0,1,0,...,0)
j=0

) jZO :25]'

with the scalar® sequences &y, ..., 8,, we see that
Nird =Y dyNp1d = ) dyN((T). (4.42)
=0 =0

Definition 4.41 (B-spline) The jth B—spline of degree m with respect to T is defined
by means of the de Boor algorithm as

NI ([T) == N7 8. (4.43)

The definition of the B-spline was cheap and simple, and though this is already
sufficient to plot them like in Fig 4.10, the task will be to give meaning to
definition by deriving properties of the functions N;™.

e oo 6

Figure 4.10: A small collection of cubic (m = 3) B-splines with different
knot distributions..

%We might also say “d = 1.
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Lemma 4.42 The B—splines are nonnegative functions with compact support. More
precisely,

N)m (X|T) > O) X € (tj) 1:j+m—&-1) ) and N;n (X|T) = 0) X ¢ [tjytj—&-m—H]
(4.44)
In particular, we have the local relation

)
Nprd(x) = Y dNFT),  xeltytng), j=m...,n. (445

k=j—m

Proof: Let us recall first that to determine the value of N, rd(x) at the position
X € [t;, t,41) we used the control points d,_,, ..., d,. Since the other coefficients
do not matter there, we must have N]?“ (x|T) =0,j ¢ {r—m,...,r}or, equivalently,
N (x|T) # 0 implies j € {r —m,...,r}orr € {j,...,j + m}. Therefore, the B-
splines N].m (x|T) vanishes outside [tj,...,tjsms1]. If, on the other hand, x €
(trytrer) and T € {j,...,j + m} then®

(trvtrﬂ) - (tj)t]ﬁrmfkﬂ) C I]Tnikﬂ) J =r—m+k,...,1, k= 1,...,111,

all all barycentric coordinates in (4.39) are strictly positive and therefore the
computed coefficients for d = §; in the first step of the algorithm satisfy

d! (x) =1 (1) d2, (x) +wy (X0 d0(x) = w (xII") > 0
) ) ) ~ ) R]:?-/ )

and
4], () = uo (X} 1) + i (XII) () = wo (X2, ) > 0

as well as dll(x) =0,k ¢ {j,j + 1}. The same computations then give that
E(), & (0, E,00 >0, A =0, kefi,j+1,j+2,
and, by induction, that fork =1,...,m
df(x), ..., d7,, (x) >0, df(x) =0, €¢{,...,j+k} (4.46)
and since r € {j, ...,j + m} it follows by setting k = m in (4.46) that
N (x|T) = Ny, 785(x) = d"(x) > 0.
O

Lemma 4.43 The B-splines form a nonnegative partition of unity on the interval
enclosed by the extremal boundary knots, that is,

S NPT =1, X € [tm tanl: (4.47)
j=0

®Sincer >jandr+1<j+m+1.
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Proof: Whenever dy = --- = d,, = 1, thus d;’(x) =1,j=0,...,n, we get from
(4.39) and by induction® on k, that®

di(x) = o (X)) () 4w (xIT) 4 (%)
=1 -1

= o (WIM ) oy (M) = 1,

holds forj =k, ..., m. O

0.8 |-
0.8 [

06 06 L

0.4

0.4

0.2 |
0.2 |

Figure 4.11: Plot of the function

n

D N

j=0

for the knot sequence (0, 1,2, 3,4,5,6,7) and m = 3 (left) which only equals
1 in the interval [3,4].

With triple boundary knots there is a nondifferentiable corner at 3 and 4
while the knot sequence 3 and 4, while the knot sequence (3, 3, 3, 3,4,4,4,4)
gives a sharp jump there (right).

The following recurrence relation is due to Carl de Boor (Boor, 1972) and was the
basis for the de Boor algorithm. That we introduce things in the opposite way
here is due to the fact that we want to follow a totally algorithmic approach as
introduced in (Sauer, 1996). In principle, this shows that the two approaches are
fully equivalent: the algorithm follows from the recurrence and the recurrence
from the algorithm.

Theorem 4.44 (Recurrence relation for B-splines)

%7 After so many inductions we should now be used to it and therefore we can get a little bit
more informal with them. Warning: Don’t do that at home, dear children.

To some extend working with splines always needs a bit of the skill of taming the beastly
indices.
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1. The B—splines of degree zero have the form

.

1 X € [tj, t;
0 _ _ iy 1) .
N;' (x[T) —X[tjytm)(x) = { 0 x ¢ [t 6, j=0,...,n+m.

(4.48)

2. For k > 1 one has

NE(x|T) = (xuk)Nk IT) o (XIS )N (T, (449)
j=0,...,mn+m—k.

Remark 4.45

1. Intheexpressions N}‘ (-|T) in (4.49) we have to interpret T = Ty = (toy - -+ tmnt1)
as T = Ty myn_x Which means that we will have n + m — k B—splines of degree k
in this process.

2. Written explicitly, (4.49) reads as

X — 1 Y
NE (x|T) = ——L-NET (x]T) + —

te—t G — b

j=0,...,n+m—k.

MENLS (x|T), (4.50)

j+1

3. The formula (4.50) is undefined for k + 1—fold knots but in this case also the
B-spline N}H or N}t]] makes no sense since its support would be at most one
point. This motivates the convention that such functions are set to zero as well as
the respective quotient 0/0 in (4.49).

4. Note that (4.49) uses barycentric coordinates with respect to different reference
intervals which do not sum to 1.

Proof of Theorem 4.44: The identity (4.48) follows directly from the de Boor
algorithm. To express N" (-[T) by means of B-splines of degree m — 1 we use

the intermediate points d7 (x),j =1,...,n, from (4.39) and write®

N rd(x Z AN (xIT) = Z df (x) N (x|T) . (4.51)

For the particular scalar control polygon d = &y, the identity (4.39) yields

w (/L) j =k,
40 =uo (M) i +w () & = § wo(xr,)  j=k+1,  (452)
0 otherwise.
Substituting (4.52) in (4.51) then results in
N (X|T) =wy (xIIm) Nm T (x|T) + up (X|I)H) N]"S (x|T), (4.53)
which completes the proof. |

%To these intermediate points we apply a de Boor algorithm of degree m — 1. That is all
behind (4.51).
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4.3.3 The spline space

The “B” in “B—spline” has its reasons, of course. As might be expected, the letter
stands for “basis”, so let us identify the space for which they are a basis.

Definition 4.46 For m € N and a knot sequence T the spline space 5., (T) is defined
as the set of all

1. piecewise polynomials of degree m

fl [tj’th) € I, j=m,...,n, (454)

2. that are differentiable of order m — w at a knot t; of multiplicity , i.e. for
tj,] < tj == thru*] < tj+u we have

feC™m* (tj_] y tj-‘ru) . (455)

Exercise 4.8 Show that the spline space 5,,(T) is a vector space. o

The next result, the famous Curry-Schoenberg” theorem, is the basis of spline
theory and shows that B—splines are indeed a basis”" of the spline space.

Theorem 4.47 (Curry-Schoenberg) The B-splines N ([T), j = 0,...,n, are a
basis of 5, (T).

For this theorem we have to prove quite a bit. Although (4.54) follows directly
from the de Boor algorithm, as we already know from Proposition 4.39, we still
have to show

1. the differentiability of the B—splines around knots,
2. the linear independence of the B-splines
3. that the dimension of the spline space equals n + 1.

This could be done via blossoming, see (Seidel, 1989; Sauer, 1996), but we will
follow a more direct approach which, as a side effect, also gives us a formula for
the derivative of a spline curve that we’ll need anyway. To make our life easier,
we make one more assumption, namely that

tm < tm_H und tT‘L < tﬂ.—i—]) (456)

which means that no boundary knot is an inner knot’

the case for (m + 1)-fold boundary knots.

which is in particular

7Qriginally, H. B. Curry was a pure number theorist but during World War I he and I. Schoen-
berg, the “father of splines” worked together in military research where they developed a first
theory of splines that remained unpublished, however, until 1966 (Curry & Schoenberg, 1966),
“for no good reason” as Schoenberg once called it. So splines are a child of the war: mtoAepoo
moetnp mavtwy as Heraklit says.

7INo, THE basis!

2Somehow the condition make sense when written this way.
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Lemma 4.48 For x € R\ T we have

d m m

—N"(x[T) = N (x[T) —

N (x| T i=0,...,n.
dX j+m—tJ (Xl )) ) b )n

j+1
(4.57)

j+m+1 — G

Equation (4.57) does not make sense if t; or t;,; is a knot of multiplicity m + 1.
However, in that case the support interval of the respective B-spline would be
the empty set and therefore the function is zero and we apply the convention
that then the whole term in the sum (4.57) is zero.

Proof: Induction on m, where the case m = 1 can be easily checked by hand.
Since restricted to any open and convex subset U of R\ T the B-spline N" is a

polynomial, we can differentiate as much as we want and get”

(NP (M) (0

_ ( d (t'—_tiN;” (IT) 4 e HT))) (x)

dx j+m — 1 Yimer =t
1 1
= ———NM(T) - N ()
tym —t " tamer — tjpr
x—4 d _ Hima—x d _
I (NMTT Gima 7X 4 met 1)) (), (&
+ti+m o tj dx ( : ( | )> (X) " tj+m+1 - th dx ( JH+ ( | )) (X) ( 58)

The induction hypothesis and yet another application of the B—spline recurrence
then yield

X — tj d
—2 — (N™' () (x
e = (NM1 ) ()
- X°Y ( ALV YN S N (xm)
Ham = H \Gema — 4 jem — Y1)
_ mo] ( XTh N2 () 4 (xm)
Ham =4 \Goma =t jrm — i 7 )
:N]T“:,l («IT)
—1 tiym — X x — i
. m ( j+m j )N:JZ (x|T)
Him —H \Gom — Y1 Hom — Y
=(t4m=t)/(1m—t11)
m—1 m—1
= ——— N (XT) — N™2 (x[T) (4.59)
Hom — 1t jm — ti 07

7*Now comes the point where we have to work a little bit. In each approach to splines there
is one technical and computational proof. So let’s get over it!
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as well as
Himpr —x d -1
———— (N7 (T)) (x
Yrmer — 4 dX( i+ ))( )
o Yima —x ( m—1

Himer —

m—1

m—2
Nj+1 (xIT) — j+2

N2 (xIT))

imer — G2
- m—1 ( X — Ypm1 —X)
t

Yrmer — Y

tj+m - tj—H

N2 (x[T)

j+1

jrm — Y Ham — Y

:(tj+m+1 —tj11 )/(’fj+m*’tj+1 )

m—] X_t]'_H
t

't. m _
N™-2 (x[T) 4 L X me2 (x|T))

tirme — G \Gym — tig 1! et — G 02
NP (KT
m—1 m—1
= —— N2 (x|]T) = —N™ ' (x|T). 4.60
tiom — g P! () jrmat — g T (xIT) (4.60)
Substitutin (4.59) and (4.59) into (4.58) we get
d m
(N () 00
1 1 m—1
= —— N (XT) - N () + ———N™M T (x[T
Hom — 4 ) T jrmin =t 0T T jem — 4 ) T)
m—1 m—1 m—1
—————— N2 (X|T) + —————— N2 (x|T) — —————— N (x[T)
tiom =t jom — i T jrmi =t 0
m m
= —— N (xT) — N (x| T
tigm—t & | ipmar — Gy 0T ),
which verifies (4.57). m|

Exercise 4.9 Verify (4.57) for m = 1. What does that mean geoemetrically? ¢

This also gives us the derivative of a spline curve in a straightforward way.

Corollary 4.49 Forx € R\ T

—Nm = LN (X T 4.61
—Nnrd(x) m%tjm_tj P, (461)
where dpy =d_; = 074
Proof: From Lemma 4.48 we get
m—1 m—1
d L (NSTXT) NI (xIT)
—Np7dx) = m) d |- -
a4t ]ZO W tim =Y Gogm =t
n+1
dj —dj 1
= m) ——N" (x[T).
j_Zoth—tj ]
m]

0.

74 And once again N]T“_1 (xXIT) / (tj4m — t5)
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Proposition 4.50 N}“ (IT) € Sn(T),j =0,...,m.

Proof: Once more inductionn on m”. For m = 0 all knots have to be simple
as the maximal multiplicity is bounded by m + 1 = 1 and the B-splines are
piecewise constant functions that trivially belong to C'(R).

To prove m —1 — m, m > 1, we only need to check differentiability. At
an m + 1-fold knot the de Boor algorithm already gives us a discontinuity:
the B-spline must have the values 0 and 1 there simultaneously. For a knot
t € (tj, tjrmy1) of multiplicity p < m, we can differentiate in an open interval
U with UN T = {t} and the derivative is well-defined according to (4.57) and
m — 1 — p times continously differentiable by the induction hypothesis. Hence,
N/ is m — p times continously differentiable in U. m|

Lemma 4.51 The B-splines N" (-[T), j =0, ..., n, are linearly independent.

Proof: Yet another induction on m where m = 0 is clear since the B-splines
have disjoint support. For m — m + 1 we assume that no knot has multiplicity
m + 1 and there were coefficients d = (d; : j = 0,...,n), such that

0=Nprd=> d&N"(T). (4.62)

j=0

Taking derivative of both sides yields for x € R\ T that
d n+1 d —do
0=-—Nprd=m) T—IN""(T).
dx =0 tj+m — tj

According to Proposition 4.50 the right hand side of this identity is continuous
and the induction hypothesis gives d; = d;_;, hence

O=dy=di=dy =+ = dp = dnss = 0.

Lemma 4.52 dim $,(T) =n+1.

Proof: On the interval I, = (t.,, tyn 1) which is # @ due to (4.56) we define an
arbitrary polynomial p, € TT,. Let ty1 =ty =+ = tmyy < tmyus1 be a knot
of multiplicity p. Expanding a polynomial pp1 on (tms1, tmips1) as

m

a; :
Pm+1 = Z ]_; (X - tm—H)] )

=0

the differentiability conditions of the spline space take the form

Pg(tmﬂ)ngﬂ (tm+1):aj> J:O)»m_u

"“How else should one make use of recurrence relations anyway?
76No m + 1-fold knots left.
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Hence the space of all piecewiese polynomials of proper differentiability on the
first two intervals has the dimension m + 1 + p — the m + 1 degrees of freedom
of p, and the p free parameters of py,,;1. If the next knot t,, 4,1 has multiplicity
v, we get v more free parameters and so on. Inductively we can conclude that
for the knot sequence

TIZ - (tm) oo >tm+ll+1) ) tn < tm+1> tm+€ < tm+€+1)

plus appropriate boundary knot we have dim S, (T;) = m + £ + 1 and the case
{ =n — m proves the lemma. m]

Proof of Theorem 4.47: We only have to connect the pieces we collected so far.
According to Proposition 4.50

span {N;ﬂ (T) - j=o0,. n} C S (T),

but since due to the linear independence of the B-Splines and because of
Lemma 4.52 the dimensions of the two vector spaces coincide, the spaces must
be identical. m]

4.3.4 Interpolation

The name “spline” is due to a physical device, a flexible ruler used for the
interpolation of curves, initially in ship constructions”. Let us first clarify what
interpolation means.

Definition 4.53 (Interpolation) Given sites’”® x; € I and data y; € RY, j =
0,...,n, theinterpolation problem consists of finding a function f : 1 — R such that

f(x) =yj, j=0,...,mn. (4.63)
Remark 4.54

1. The name interpolation has been invented by Wallis in 1655, according to
(Bauschinger, 1900), see (Gasca & Sauer, 2000). Originally, it was used to esti-
mate non existing values in tables, for example logarithms. Mostly, polynomials
were used for that purpose and we will see in a moment why.

2. Of course, all the points have to be different, otherwise the respective data values
would also have to coincide which makes the problem redundant.

3. Clearly, the interpolation problem (4.63) has many solutions and a major question
is how to restrict the functions” such that the solution becomes unique.

4. By working on the components in RY separately, it suffices to consider the case
d=1.

’This can be seen from the German word “Straklatte” for this device.
78This terminology is due to Carl de Boor, other people use “points”, “locations”, even “knots”.
79 And perhaps the points.
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5. If the function f is chosen from a linear space® spanned by fo, ..., fn, it can be
represented as

f:Zakfk(xj), a=[ac:k=0,...,m e R (4.64)
k=0
and the interpolation problem can be written as
f(xj):Zakfk(Xj)> ]':O,...,T‘L,
k=0

which takes the matrix form

f(xo) fo(xo) ... fm(xo)
o=l . 1 |a (4.65)
f(xn) fO(Xn) v fm(xn)
S—— ~
=f =F(X)

The matrix F(X) is called the collocation matrix for the basis {fy, ..., fn} and
the sites X = {Xqy ..., Xn}-

6. The linear system (4.65) has a unique solution only if the collocation matrix F(X)
is a square one, but clearly this is only a necessary condition and in no way
sufficient. Anyway, it means that the dimension of the space and the number of
interpolation conditions has to coincide.

7. The order of the sites is not relevant for the solvability of the interpolation problem
or its solution, but it may affectnumerical properties of algorithms to solve it.

The simplest universal interpolation space in one variable are the polynomials.

Theorem 4.55 The interpolation problem f(x;) = y;, j = 0,...,n, for distinct x;
always has a unique solution in TT,,.

Proof: We can write down the solution explicitly as®

n ._X .
=Y y[[—= = i) =y, j=0...,n.
=0

Xj — X
k#j ) k

For uniqueness suppose that f and g are solutions, then p = f—gis a polynomial
of degree n with

p(x)) =f(x) —g(x) =y;—y; =0, j=0,...,n,

80To be very precise: a real vector space.
81Please do not use this to really compute the interpolating polynomial numerically as this
formula is very ill-conditioned.
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hence
p(x) = (x —x%0) -~ (x —xu) q(x)

€Mnp1

which is only in TT,, if g = 0. O

Exercise 4.10 Is unique interpolation at arbitrary n distinct sites xs, ..., X, pos-
sible with the space {x, - -- ,x"}? Prove it or give a counterexample. o

Animmediate consequence of Theorem 4.55 is that interpolation with polynomi-
als of degree at most n is only possible at < n 41 sites: for more sites, interpolate
at xg, ..., xn by a unique f and then require y,1 # f(xn+1), this problem cannot
be solved.

This, on the other hand, means that spline interpolation cannot be so simple
any more. Since restricted to any notrivial knot interval (t;,t;,1), splines are
in TT,,, no such interval may contain more than m + 1 interpolation sites. But
this does not take into account the interaction between the intervals due to
differentiability, so the full requirement is stronger and as follows.

Theorem 4.56 (Schoenberg-Whitney) The splines space $,,(T) with basis NJ?“(-IT),
j =0,...,n, allows for unique interpolation at sites®® X = {xg < x1 < +++ < xn} if and
only if

Y <X < trmery j = 0,...,m. (466)

We will not give the full proof of this theorem® even if it quite interesting, but
we can easily show that the condition (4.66) is necessary.

Proof of Theorem 4.56, “=": Suppose there exists some j violating (4.66) which
means that either® x; < tj or xj > tj;m.1. Let us start with the first case. Since
N ([T) is supported® on [ty, tism41], it follows that

N (x]T) =0, k=7jy...,m, (4.67)
and therefore the first j + 1 rows of the collocation matrix are of the form

No(Xo|T) Nj_1 (X0|T) 0 ... 0

No(Xj|T) Nj,1 (XJ|T) 0 ... 0

which means that they are linearly dependent. But this means that the col-
location matrix cannot be invertible, hence the interpolation is unsolvable in
general.

In the other case, xj > tj 1, we have

NP (xT) =0, k=0,...,j, (4.68)

82There is no restriction in ordering them in incrasing size.

8Which has even more nice consequences, the collocation matrices for splines are in fact
banded and totally nonnegative which makes the numerically exceptionally well to handle.

84Both at the same time is clearly impossible.

8Recall once more: the support is the closure of the set of all points where a function is
nonzero.
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and since x; < x, j < {, we also get
N (x| T) =0, k=0,...,j, L=7,...,m. (4.69)

Consquently, the first j 4+ 1 columns of the collocation matrix look as follows:

NG (1IT) oo NI (x54(T)
0 . 0 ’
0 . 0
and are linearly dependent. O

The classical interpolation problem that “initiated” splines was not interpolation
at arbitrary sites but interpolation at simple knots. Indeed, if we set x; = t;4j,
j=0,...,n—m+ 1, then

t]'<tm+j:Xj<tj+m+], j:O,...,n—m—i—L

and the sites satisfy the necessary condition of Schoenberg-Whitney. However,
these are only n — m + 2 conditions so far and the spline space has dimension
n+1, hence, we have to request n +1— (n —m+2) = m — 1 further conditions.
The most popular ones are the so—called natural boundary conditions and to
distribute them symmetrically on both ends of the spline, it is conveniet that
m — 1is even or m odd®*

Theorem 4.57 (Natural spline) Let m = 2r+1 € INlet T = T, be a knot sequence
with simple knots. Then, forn > m+1and any given valuesy;,j =0,...,n—m+1,
there exists a unique spline curve Ny, vd, such that

Nt d(tny) =y,  j=0,...,n—m+1, (4.70)
N&{}Td(te) = 0, k=r+1,....2r, {=m,n+1. (4.71)

Definition 4.58 The spline satisfying (4.70) and (4.71) is called the natural inter-
polating spline or simple natural spline of degree m for the data y; and the knots
T.

Proof: Due to the Schoenberg—Whitney theorem 4.56, the spline interpolation
with®
Xj =t € (t]’) tj—i—m—H) ) j=0,...,m,

8There, is a still popular misunderstanding that splines would only exist of odd order and
that even order splines are useless. This is not true, of course, it is only the notion of the natural
spline that would fail and, as we will see soon, the natural spline is only natural for m = 3 and
not even then.

8Now we include some of the boundary knots as well. This is possible as we requested all
knots to be simple.
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is uniquely solvable. By s_,,...,s. we now denote the solutions of the interpo-
lation problem based on (4.70) and the additional conditions
1 j<Ound k =1 —j,
i (xk) = ¢ 1 j>0undk=n+j—r, k=0,...,7—1,n+1,...,n+.
0 sonst,
All these splines interpolate at ty,...,t,+1 and only differ at the “additional
points” tyi1,...,tm1 und tny,...,thiry1r So vanishes on all of them while
S_1,...,5_, take the value 1 at one of the additional points to the left, s;,...,s,

at one to the right, see Fig. 4.12.
These m = 2r + 1 splines are nonzero and linearly independent. If we
consider the linear system for a_,, ..., a,, given by

.
Zajs§k)(tg):0, k=r+1,....,2r,{=m,n+1,
j=—1
then these are 2r homogeneous equations in the 2r+ 1 unknowns a_,, ..., a,, hence
there always exists a nontrivial solution a* , ..., a; with either a*, +---+a; =0
or, after normalization, a*, +--- + a; = 1. Setting

T
S = E GjS]‘,

j=—

and taking into account that for j = 0,...,n —m+ 1 we have
Vi a . +---4a=
(tmes) kZ a; sk )+m =Y kZ @ = { : (li: 4ot ag
=7 =7
_yJ

if follows that s is either a valid solution of (4.70) or a nonzero solution of the
respective homogeneous problem®, depending on whether ) a! has the value
1 or 0. It still remains to prove that the second case is usually impossible which
will also verify the uniqueness claim. m|

4.3.5 Minimality and origin of the name

Now, we can finally describe the “valuable” minimal property of spline inter-
polants.

Definition 4.59 (Energy norm) For k € N and I C R we define® the energy norm
|- | as the seminorm®

1/2
[l = Ifli; = (J |f(k)(x)|2 dx) ,  fech(. 4.72)
I

8The case y; = 0.

8Strictly speaking, we must choose I such that we can do integration there. With the (fairly
cheap) Riemann integral one usually encounters in Analysis courses, I would be a reasonable
union of finite intervals, for integration over all of R it would be better to introduce a Lebesgue
integral. This is all very interesting, but for our purposes here the subtle differences are not
relevant.

P A seminorm has almost the same definition as a norm with the difference that |[x|| = 0 does
not imply x = 0 any more.
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™

t/r+1] tfm—-1 tHn+2] tin+r+1]

s/-11 ... sl-rl sf11 ... slrl

Figure 4.12: The extended interpolation problem from the proof of Theo-
rem 4.57. On the marked region all splines take the prescibed values, at the
additional points they behave in a 0/1 way except sp which vanishes in all
of them.

Exercise 4.11 Which functions satisfy [f|, = 0? &

Exercise 4.12 Show that for a compact interval I, ||f]| := maxye [f(x)] and k > 1
the following expressions are norms

L AIfl + [fh,

2. max{|[fll, [fil}

k
3. (1l + ) 27 .

j=1
%
Remark 4.60 (Energy norms) In thespecial case k = 2 the energy normis the integral

over the second derivative which can be considered an approximation for the curvature
and therefore the integral is an approximation for the bending energy of the curve.

Theorem 4.61 (Minimality) Let m = 2r + 1 € IN and suppose that T consists of
simple knots. For f € C™"'(1) let S = N, 1 d be a spline that satisfies (4.70) and (4.71)
fory; = f(t;). Then

|Sf|r+1,1 < |f|r+],1 (473)

Proof: We start with

T 2
[ =S¢l = J (F (%) — (50" (%)) dx
I
2

= L (Fr 1 00) = 200000 (50 () + (50" () dx

= |f|$+1,1—2J(f““)(x)—(sf)“*”(x))(sf)“”(x) dx —[Silfp;.  (4.74)
1
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Figure 4.13: A real world spline, consisting of a bendable ruler and weights,
called ducks that tie it to certain places where the curve has to interpolate.
The spline was given to the Numeric Mathematics group of Giessen by
H. Hollenhorst.

For j = m,...,n we next use partial integration to show that

t1
J (f““)(x) _ s“*”(x)) SV (x) dx

Y

10 ' Y
Y41
H=1 | (90 = ST ) ST () dx, k=1,
———
Y —of "urk=r
! 1

and summation of these expression over j = m,...,n yields

f f

J'(f(ﬂ_”(x) - S(TH)(X))S(‘rHJ(X) dx

~

=0

tm

Note that the term for { = r vanishes since Sy interpolates f at t,,, t,41 while the
other terms for 1 = 0,...,r—1 are zero due to (4.71). Substituting this into (4.74)
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we eventually obtain.
2 2 2 2
ISelya =l — I = Selipn s < Iy

Here equality holds if and only if f — S¢ € TT,..

This also verfies the uniqueness of the natural spline interpolant forn > m+-r:
if f is any other solution of the minimization problem, then we must have
f — S¢ € TI, and this polynomial has to vanish at at least v + 1 points, namely
the knots where S; interpolates. This is only possible for the zero polynomial,
hence f = Ss. O

Proof of Theorem 4.57, continued: Now suppose that n > m + r and that the
second case in the preceding step of the proof has occured, which means that
there exists a nonzero spline
.
S = Z a; s

=

which solves the homogeneous system. Therefore, we can apply Theorem 4.61
with f = 0 as well as”* S¢ = s and obtain that

0= Iflina 2 IS = | 187 (0 éx
I

which yields that s = 0, hence s € TI,. But n > m + r means that this
polynomial must vanish at the at least r 4 2 points ty,1j,j = 0,...,n —m+1,
hence is zero which gives a contradiction. This has two consequences:

1. The value a*, + --- a; must be # 0 and therefore can be normalized to 1.
Hence, the natural spline exists.

2. The natural spline interpolant must be unique because the difference of
two natural interpolants is another nonzero solution of the homogeneous
problem.

O

Remark 4.62 This proof almost looks like a cyclical argument: First we claim that there
exists a natural spline, then we show its minimality and then we use the minimality to
prove its existence. Showing properties without existence is a dangerous thing to do as
for elements of the empty set any property holds true.

Nevertheless the argument is correct which we can see by summarizing the steps:

1. There either exists a natural spline interpolant or, if not, there exists a nonzero
solution of the homogeneous problem.

2. Any spline interpolant is minimizing the energy norm.

3. If there would exist a nonzero homogeneous solution, then it has to be zero, an
obvious contradiction.

INow with a scalar s.
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4. Consequently, there must be a natural spline interpolant and it has to be unique.

Remark 4.63 In (Boor, 1990), Carl de Boor makes the following statement

Die Extremaleigenschaft des interpolierenden Splines wird hdufig
fiir die grofse praktische Niitzlichkeit der Splines verantwortlich
gemacht. Dies ist jedoch glatter “Volksbetrug” . ...

There is nothing to add to this.

4.3.6 The Marsden identity and knot insertion

Any polynomial is a piecewise polynomial and therefore any polynomial is
a spline, even regardless of the underlying knot sequence. Thus, for every

polynomial curve p there must be coefficients py, ..., pn such that
p(x) =) pN"(X[T), X € [tm tari), p € M. (4.75)
j=0

Our goal is to give a formula for these coefficients. To that end, let us recall the
intervals Iy = [ty, tki1), k =0,...,n 4+ m, and let us now write the polynomial
pieces of the B-splines explicitly as

pl, = N;ﬂ(.yT)|Ik €My, j=0,...,n,k=0,...,n+m. (4.76)

Here, we restrict ourselves on scalar valued splines for the proof which is no
restriction since we can always act on the components of the curves separately.
The polynomials from (4.76) are polynomials and therefore have a polar form
or blossom which we denote by P, resprectively. In the case of (4.75), we just
have one polynomial p and therefore one polar form P.

Theorem 4.64 (Spline Duality / Marsden identity) Let N, rd be a spline curve
for a knot sequence T and let py = Ny, rdl € TS, be its polynomial pieces with polar
forms Py, k =m,...,n. Then we have the duality relation

dk:Pj(tk+1,...,tk+m), k:j—m,...,j, j:m,...,n. (477)
In particular, if the spline curve is a polynomial curve,
dk = P(tk+],...,tk+m), k = O,...,T\.. (478)

The following technical lemma is just based on straightforward computations
but nevertheless is the main ingredient for the proof.

Lemma 4.65 The polar forms P for P ) = 0y...,m, k = 0,...,mn+m, are
determined recursively as

P = 8, (4.79)
Pje,k (Xh oo )Xf) = W (X€|If) P]e)]:] (X], .o ,Xg_])

+p (X€|If+1)P].€;11’k (X], .o ,Xe_]) y (= ], ooy ML (480)
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Proof: We first remark that for x; = -+ = x,, = x the recurrence (4.79) und
(4.80) is precisely the B—spline recursion (4.49), hence P (x™) = p"}é( x). That
PR is a multiaffine form follows from the fact that the barycentnc coordmates
are affine functions. What remains is symmetry. To prove that, we apply (4.80)
twice and get

Pilxay-yxe) = wilxel ) Py Oy ey xeen) + wo(xel I ) Py (e )

= U](Xe|1-e)u1(xe 1|IH)P-2_2(X1> ey Xe-2)
+uy (Xdl ) o (% HN 1)Pf+]2k(x1,...,xz,z)

+uo(Xe|I]H)u1(Xe 1|Ie P (X1y .y Xe2)

j+1 j+1,k

+uo(Xe|IJH)Uo(Xe 1|If+;) Pf+22k(x1> ceey Xe2)e

Since
_ (¢ — t5) (xe1 — )
w (el ) wi (xe A1) = : —,
(tjre — ) (faemr — t5)
and
(01 — x0) (tjge1 — Xe1)
Uo(xelT, 1) wo(xe1|1)) =
] 20 (g1 — ti1) (G — t42)
as well as
W (xe/15) wo (X - 1|I,+1) + o (xel T,y ) (% 1|I]+1)
(¢ — t5) (40 — Xe1) (001 — xe) (Xe—1 — tj41)

(e — ) (e — 1) (G — t30) (e — t40)
(tee1 — 1) (xe = t5) (Y10 — xe1) + (G0 — 1) (G0 — x0) (g1 — 1)
(t]+z Y ) (t1+€ t]+1) (tj+1+1 - tj+1)
Yo (taer — 1) + 401 (G — )
(tire — ) (G40 — tj1) (e — tj1)
Y (G — Y1) + e (G — 1)
(t]+2 Y ) (t]+€ t)+1) (tj+£+1 - tj+1)
B Yoo —H F e —
(tire — ) (e — t41) (Gae01 — tj1)
(e = ) Gt + (G — ) Greatin
(t1+e Y ) (t]+2 t)+1) (tj+€+1 - tj+1)
(ter1tjre — t;+1t;) (xe +x¢1) = (g =t + b — t5) xexe
(tire — ) (e — 1) (G — tj11)
B (ter — 1) Gtje + (0 — ) tentin
(t;+e Y ) (t]+€ t)+1) (tj+€+1 - tj+1)

Xy¢

Xg—1

XeXg—1

are symmetrlc express1on with respect to x; and x,_1, so is P (x1, x¢). The
rest of the interchanging argument is like in the proof of Propos1t10n 4 26. O

Equipped with Lemma 4.65, we can derive the following crucial formula.
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Lemma 4.66 For{=0,...,m,j=0,...,nand k =4{,...,n we have
Pl bty ooy tegd) = 8, r=k—1{...,k (4.81)
Remark 4.67 Equation (4.81) is what one calls a duality in mathematics.

Proof of Lemma 4.66: Inductionon { =0,..., m, where { = 0 is just (4.79). For
¢ > 0 we first choose some r > k — £ which then also satisfiest > k—{+ 1 =
k — (£ —T1). By (4.80) and the induction hypothesis we then get

Pje’k (tr+1> tr+€)
= W ( T+€|I ) i, k] (trH» RS tr+tlf1) + uO(tr+€|If+] )Pf+]1 k( TH+1y e ey tr+€f1)

= w(t r+e|1j) djr + uo(tr+e|1je+1) i1 = Wi (tepelIt) 85r + Wo(trpelld) 8541,
e -0
= 5.

For r = k — £ we make use of the symmetry of the polar form®* to get

Pje,k(twrh ytend) = P (s eyt tesr)
= w( r+1|1f)P;k1( r42) - r+e) Fuo(teytl L) P b2y oy tosd)
= W (tr+1|1je)5j,r+1 +U-o( r+1|1j+1)5j+1,r+1
= wi(terrlls ) 85t + Woltir |, ;) 850 = 8js

=0 =1

O
Proof of Theorem 4.64: If I, is a nontrivial interval then (4.45) yields
pPr(x) = Ny pd(x Z d; Nm (x|T) = Z d)pl’ x € L.
j=k—m j=k—m
Taking the polar forms of both sides yileds
Py (x1y..., Z 4P (X150 xXm) X1y.reyXm € R, (4.82)

j=k—m

and substituting x; = tj, £ = 1,..., m, in (4.82) for some j € {k —m, ..., k}, the
identity (4.81) yields

Pk (tj—H» ]+m Z d] P)ni j+Ty - H—m) = dk° (483)
j=k-—m o
(4.78) is then a direct consequence of (4.77). |

With the help of Theorem 4.64 we can also prove very easily a fundamental
procedure in the manipulation of splines.

%2Somewhere we have to apply Lemma 4.65 into which we invested so much effort.
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Definition 4.68 A knot sequence T’ = T = (t3s« -y trinsiq) s called a refine-
ment of a knot sequence T if there exists a strictly monotonic mapping T :{1,..., m+
n} —{1,...,m+n’}such that

j=0,...,mn+m. (4.84)
We write thisas T C T'.

Remark 4.69 Since (4.84) says that every knot in T can be found within T" with at
least the same multiplicity, the notation T C T’ is justified.

Since (4.84) implies that forany k € {1,...,m+n’} thereexistsaj € {1,...,m+n}
such that
[t],o t1/<+1] c [tj) tj+1]>

any piecewise polynomial on T is also a piecewise polynomial on T with infinite
differentiability at the additional knots. Therefore we have proved the following
simple but fundamental observation.

Theorem 4.70 (Nested spline spaces) If T C T’ then also $,,(T) € $,(T").

Consequently, any spline curve s = N, rd € 5,,(T) also belongs to 5,,(T’) and
therefore can also be written as N, td € 5,,(T’), hence there exist coefficients
d’ € R™" such that

D NIT) = Nprd = Nyprd’ = 3 d/ NP'(4T7),
j=0 j=0

and the obvious question is: How can we compute d’ from d? This procedure
is called knot insertion. We will consider the insertion of a single knot here,
i.e., either we add a new point or we raise the multiplicity of an already existing
knot® by one.

To that end, suppose that for some j <n + m we have

toS"'Stht,Sti+1 < - S thgme

and set
ty k=0,...,j,
T ={t:k=0,...,n+m+2}, t, = t’ k=j+1,
t k=j+2,....,.n+m+ 2.

(4.85)
Then we have the following algorithm to compute the new control points. The
algorithm is usually attributed to Boehm®*, but there is also the so—called Oslo
algorithm due to a group at Oslo University, see (Lyche, 1987). It obviously
does the same in the case of simple knot insertion but is also capable of inserting
several knots at the same time.

%Whose multiplicity should be < m, of course, as multiplicity > m + 1 is still forbidden.

4His original name was Bohm but since “6” is not so common in English, he changed it to be
more readable.
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Theorem 4.71 (Knot insertion) If T’ is given as in (4.85), then the new control points
d’ can be computed as

dk k:O,...,j—m,
A= WM de +wEINd,  k=j—m+1,...,j (4.86)
dy 4 k=j+1,...,n+1.
D
oo (O oo0ee oo o0 000

Figure 4.14: Two examples for knot insertion.

Proof: We again use (4.77), more precisely, the identity

& =P (t - rtim),  k=0,..,m+1. (4.87)
Since for k = 0,...,j — m we have™ I = Iy, and therefore P, = Py as well as
(ti1- s tiim) = (bt -+ o tigm), it follows that
dﬁ:P]:(t]:+]>~--)t]’<+m):Pk(tk+1>---)tk+m) :dk, k:O,,]—m

Wheneverk > j+1,hencel] = I;_;, P, = P,_jand (t1/<+1> .. ,t]i+m) = (tiy e ey trmet),
an analogous reasoning yields

A =P (th sy ti) =Pt (b ey temet) = dicr,  k=j+T1,...,m+1.

The interestign cases are of course the ones in which t” appears. There, we write
t” as a barycentric combination of the knots ty and ty, that is

t = wo(tII) e+ W (VL) . (4.88)

SWith the obvious extension of notation.
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Then
A = Py(ti o tim) =Pt oo 6yt tany ooy temo)
= wo(t'|I7) Pi (tisry -+ oy Gy bty - o oy mat)
+uwg (H[AN) P (tiery + oo by tgmy Gty - oy Bmet)
= uo(t'|I}") Py (tiy « ooy tipmet) Fw (V1) Py (taesy - o tk-s—ml
—dy —d

= u(t'|I}") diy + wy (Y1) dx,

which is (4.86). To make sure that we made no hidden mistakes in (4.88), we
note that

LY = [omeny Gl 0N [, ] = [, 401 2 8,
k=j—m+1

so that (4.88) is always well-defined, even when t; = t;,; is knot of higher
multiplicity. |

0.8
06 % I
0.4

0.2+ ""',_,- ‘ .

0

! ! ! !
0 0.2 0.4 0.6 0.8 1

Figure 4.15: Insertion of knots and resulting spline curves, plotted twice.
Surprisingly enough, the curves are the same.

Remark 4.72 (Knot insertion and multiple knots)

1. The rule (4.86) can also be used to raise the multiplicity of knot, neither the
formula nor the proof changes.

2. Ifaknot t’ is inserted m times or raised to multiplicity m, then one of the control
points has the value Ny, 1.d (t’) since spline curves interpolate a control point
at knots of multiplicity m. Tracing the recurrence for this control point, we the
obtain de Boor algorithm again.
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3. Hence, the de Boor algorithm can be interpreted as knot insertion or could be
factorized into knot insertion steps.

Knot insertion can also be conveniently written in a different way by considering
the matrices

d=I[d...d,] and d =I[d]...d;].

Then d’ = dV with the values
og = uo(t'|IY), k=j—m+1,...,j (4.89)

and the resulting matrix

1 G—m+1
A=A (t) = 1= &ma e RV,

]—Oéj 1

1

(4.90)
This matrix can be used to describe the relationship between the spline spaces
5n(T) and 5., (T’) and plays an important role for singularity detection in spline
curves, see (Hamm ef al., 2014).

Knot insertion can be applied to make splines comparable. Suppose that T and
T’ are two arbitrary knot sequences of degree® m and d € R*™ and d € R*™"
are control points for these knot sequences. If want to do operations on the
two splines N, vd and N, 1-d’, for example addition or subtraction or general
distance computations, it is more practical to use splines with identical knot
sequences. To that end, let

To=TUT =min{T": TC T, T' CT}
the smallest knot sequence which contains both T and T’. Then

Nip1d = N i, dAT(Tu \ T) and Nprd =Ny, d’Ar (Tu\ T')

%Essentially this means only the restriction on the multiplicity of knots.
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are spline curves based on the same knot sequence and therefore can be added
subtracted or compared. In particular,

[(Nord = Nord”) (x|
= [|(NmpdAT(To\ T) = Ny r,d’ A (T \ T) (x|

D (dA(TO\T) — d’Aq(Tu\ T)); NM(x[Ty)
j=0

y

> |dAT(TUNT) = d" A (T \ T)) | NM(xITL)

j=0

IA

IA

max [(dAT(TUNT) = d’Ar(TO\ T)) || D NM(x[T)
j=0
=1

= mjax ”(dAT(Tu \T)—d"Ar(Tu \ T,))J‘H

gives a first and simplest version of a distance estimate between spline curves.
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Die hitzigsten Verteidiger eine
Wissenschaft, die nicht den
geringsten scheelen Seitenblick auf
dieselbe vertragen konnen, sind
gemeiniglich solche Personen, die es
nicht sehr weit in derselben gebracht
haben und sich dieses Mangels
heimlich bewufSt sind.

Lichtenberg

Geometric objects Il:
Surfaces in CAD

Curves are a nice thing, but normally the world around us is three dimensional
which makes surfaces the things to go. Here we will mostly consider two
dimensional, “classical” surfaces. Of particular interest will be methods which
construct surfaces from curves since we now understand curves quite well
already.

As curves only make sense in R?, d > 2, as geometric objects we need at least
d > 3 when dealing with parametric surfaces.

5.1 Planes and derived objects

The simplest geometric object of the surface type is a plane. Since a two dimen-
sional affine plane is a hyperplane at the same time there are different ways to
define it.

Definition 5.1 (Planes and hyperplanes)
1. A plane in R is a two dimensional affine subspace of the form
x + XR?, x € R4, X € R™2, (5.1)
The plane is called nondegenerate if the rank of X ist 2.

2. A hyperplane in R® is an affine subspace of codimension 1, i.e., the solution set
of a linear equation:

[x:n'x =}, ne R\ {0}, ceR. (5.2)

A few comments on (5.2). Since for any two solutions x,x’ of n'x = cand x € R
we have

T N T . Ty, - _
n(ocx+(1—oc)x)—ocg_/x+(1 a)n'x’=cla+1—«)=c,

=C
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the set defined in (5.2) is indeed an affine subspace of R%. The normal n for the
plane is not unique since for any « # 0

(an)'x = e & n'x =c,

so that we request n to be normalized”, i.e., |n|; = 1. This defines n up to its
sign which we can fix such that ¢ > 0 which only leaves ambiguities in the case
of a linear subspace where ¢ = 0.

Since dimension and codimension always add up to the dimension of the am-
bient space RY, the valuable identity®® 142 = 3 shows that in R® nondegenerate
planes and hyperplanes are the same.

However, hyperplanes are infinite objects and therefore not realistic in CAD
systems. Due to that, most planar objects are restricted by means of curves.

Definition 5.2 (Jordan curve) A continuous function f : [a,b] — R? is called a
Jordan curve® if it is

1. closed, i.e., f(a) = f(b), and

2. injective on [a,b), i.e., f(t) # £(t’) whenever t # t’ € [a, ).

For Jordan curves we have the following result which is as intuitive as nontrivial
and has fist been proved by Camille Jordan in 1887/1893, see (Jordan, 1887),
though the proof is considered incomplete.

Theorem 5.3 (Jordan curve theorem) Any Jordan curve f : 1 — R?, [ = [a,b],
decomposes IR? into two open regions Gy, G, with

0G; = (1), R? = G; UG, U f(I). (5.3)
One of these regions is bounded and called the inner region, the other one is unbounded.

We are not going to prove this theorem here as the effort is too much for our
purposes here, but nevertheless this is the mathematical background and jus-
tification of a method intuitively used in CAD: every continuous closed curve
encloses a bounded domain which is called the trimmed domain. To trim a
piece from a plane, one simply maps the trimmed region in R? to the plane by
means of (5.1).

5.2 Extrusion and ruled surfaces

There are some extremely simple methods to generate surfaces in R¢, d > 3,
from curves and they are the most widely used ones in CAD systems. The
simplest way is to use extrusion which means to shift the curve along a vector.

7Tt shouldn’t appear so uncommon to require normals to be normalized.

%Exercise: prove this identity. Seriously, try to prove it! What do you realize? You cannot, it's
a definition!

% Alternatively, its image is called the curve.
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Definition 5.4 (Extrusion) Fora curve f: 1 — RYand a translation vectort € RY,
the extruded surface ist defined as

F:1x[0,1] — R4, F(x,y) = f(x) +yt. (5.4)

If f is a planar curve, i.e., (1) C P for some hyperplane P C R? with normal n, then
the extrusion vector is normally chosen as +n.

Note that that the derivative of an extrusion takes a particular simple form,
JE(x,y) = VE(x,y) = ['(x), 8]

and does not depend on y.
If we prescribe two curves, we can also connect them by the same method.

Definition 5.5 (Ruled surface) For two curves fy, £, : 1 — R® with identical param-
eter region 1 we define the ruled surface as

F:1Ix[0,1] —>1Rd, F(x,y) = (1 —y) f1(x) +y £2(x). (5.5)
Remark 5.6 (Ruled surfaces)

1. A ruled surface connects equiparametric points on the two curves to each other
by a straight line.

2. If we reparametrize one of the curves, the ruled surface changes. This can be
used in algorithms, but sometimes it is also advisable to use an arc length
parametrization for both curves. This, however, requires that both curves have
the same length.

3. Extrusion is a ruled surface with £, = f, = f£.
The derivative of a ruled surface can be computed as
JE(x,y) = [(1—y) f;(x) + y £5(x), f2(x) — £1(x)] .
Example 5.7 (Extrusion & Ruled surface)

1. The extrusion of a circle in a plane by means of the plane normal is a cylinder,
the extrusion of a line segment gives a rectangle.

2. The ruled surface for two line segments is a bilinear function, i.e., a surfce of the
form
F(x,y) = a+ bx + cy + dxy.

It is a plane if the four endpoints of the line segments are coplanar, otherwise it
is a curved surface.

3. The ruled surface formed by a circle and a constant curve'® is a cone, the ruled
surface for two polygons with the same number of vertices is a prism.

190Tn other words, f(I) = y consists of a single point.
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5.3 Tensor products

The geometric intuition of a parametric curve is the idea of transforming or
“bending” an interval; in the same way, a parametric surface can be considered to
be a deformation of a two dimensional parameter region Q, hence as a mapping
F:Q — RY Q c R% The main question in that context is: What is Q? All of
a sudden we have a huge choice of different domains, just to mention circles,
triangles, squares, rectangles, polygons and so on.

A very simple, nice and intuitive approach to surfaces can be found in
P. Bézier’s introductionary chapter in the book (Farin, 1988):

This idea takes us back to a very old, and sometimes forgotten, definition
of a surface: it is the locus of a curve which is at the same time moved and
distorted.

Mathematically, this concept of a surface uses a one paramatric family of curves
f, : I = RY, y € J, where we use for all values of y the same parameterization
interval I for the curves in x.

5.3.1 Bivariate splines

Recalling the preceding chapter'”! and can write the curve f,(x) as a spline

curve'” of order m with respect to a knot sequence T where neither m nor T
depends on y. Formally, this means that

ZdJNm (x|T) Zd )N (x| T), (5.6)

where the difference between the two ways of writing the function is a purely
formal one, we just write the letter y somewhere else.

The right hand side of (5.6) contains d; as a function in y and we can again
write each such function as a spline curve, this time of degree m’ and with
respect to a knot sequence T’. Since these are only finitely many functions, we
can always assume that it is the same T’, otherwise we would just use

which is generated by knot insertion applied to the curves d; which can be
written as

n’

):Zdjkam/(U’T/)a j=0,...,m. (5.7)

k=1

01This sometimes happens in mathematics.
102 After all, we do not know so many types of free form curves.
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If we now substitute (5.7) into (5.6) and replace n, m, T by ny, my, T; as well as
n’,m’, T’ by ny, my, T, to make the expression more symmetric, we end up with

xY) = szjk N (x [ Th) N2 (y [ To). (5.8)

=1 k=1

Since this contains too many double indices, let us simplify the notation.

Definition 5.8 (Tensor product)

1. By p = (my,my) € INJ we denote the multidegree of the spline, by v =
(ny,ny) € IN? the number of control points in x- and y-direction, respectively.
Instead of (x,y) we now write x = (x4, x,) for consistency.

2. For two multiindices o, p € INJ we write x < B if oy < B4,j = 1,...,s. This
yields only a partial ordering'®

3. The set product of the knots is defined as
T=Tieh={ta=(ta, ta,) : a<v+p+1}, 1=(1,...,1), (5.9
and the tensor product of the spline functions as

NE(xIT) =N (%1 [Th) Nig (%2 T2). (5.10)

4. Finally, we write the control points as d, k € ]Né.

These notational conventions allow us to write the tensor product spline surface
as
d(x|T) =) d.Ni(x|T), (5.11)
K<V

which looks almost like the univariate case!®*

arbitrary number of variables very easily.

Before we generalize tensor products a bit more, we have a quick look at the
de Boor algorithm for tensor product spline surfaces: Essentially it is just an
application of the idea in (5.6) and (5.7), so that we first compute forj = 0,...,v;
the coefficients

and can be generalized to an

Z dje N2 (Y[ To)

and then evaluate the spline curve with these coefficients and the knot sequence
Ty at x, see Fig. 5.1.

Exercise 5.1 Formulate and program the de Boor algorithm for bivariate tensor
product spline surfaces. o

193Which means that there exist incomparable objects like « = (1,0), B = (0,1), for which
neither @ < 3 nor < « holds.
1041yst with Greek letters.
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Figure 5.1: The de Boor algorithm for bivariate tensor product functions:
To each “column” of control points we apply the univariate algorithm of
4.36 and thus get a “row” of controlpoints for f,. To these coefficients we
apply once more the de Boor algorithm, this time with respect to x, and
then get the result at the position (x,y).

5.3.2 Tensor product in arbitrarily many variables

83

The two dimensional concept of “curves along curves” is only the role model

for a method that works in any number of variables.

Definition 5.9 (Tensor products) For given s € IN and univariate splines we
the following objects:

1. to knot sequences
-l—j:{tj»])"')tj,VjJrujJr]}) j:1,...)5,

of respective order ; the set product is given as
S
T= ®TJ ::{t(x = (thm,...,t]’fxs) X <v-+H }/L+1}
j=1

2. the tensor product B—spline is defined as

NEGT) =[N (1T), k<.

=1
3. for control points d = [d. : « < V] the spline curve is obtained as

Nud(-|T) =) dNE(IT).

KL<V

define

(5.12)
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The theory developed so far carries over to the tensor product splines as well.
Lemma 5.10 The B-splines N}, k < v form a nonnegative partition of unity.

Proof: Nonnegativity follows directly from (5.12), for the partition of unity
property we use induction on s where the case s = 1 should be known to us.
With ' = (i, ..., us—1) and respective objects v/, x” und T’ we get

> Nex|T) = ZZN (x"1T") NE (x| To)

K<V K<V’ kg=1

K/<v’ Ks=1

™
which has value 1 by the induction hypothesis. O

Exercise 5.2 Show that N} is supported on the hypercube

S

IE = ® [tj,Kj)tj,Kj+uj+1] .

=1

¢
In analogy to what we did before, the multiplicity p(t,) of a knot
te = (tiry ooy ts,)
is defined as the s—tuple!®
Hte) = (1t )y e vy sk, )) 0<k<v+u+e, (5.13)

and the space TT,, of all polynomials of multidegree!® 1 is defined as

asp

Next, we show that, as expected, the B-splines are also a basis of the tensor
product spline space.

Definition 5.11 (Tensor product space) LetF; C C(L;),j =1,...,s, be linear func-
tion spaces. The tensor product space is defined as

F—®F _{ZHkaXJ kGFj>n€N}. (5.15)

k=1 j=1

1®Recall that € € IN§ stands for the multiindex (1,...,1).
196Note that this is a concept different from the total degree that has been used in the context
of triangular Bézier surfaces!
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Remark 5.12 [t is important to define the tensor product space as all possible sums of
functions from F; and not just as as products of functions. If &;q, ..., djn, are a basis
of F;, then a single product of functions f; € F; takes the form

fx) = []f0q) = Hza]kcpb K (%) Z(H aJ,K)J(H bj i, (x5 )
j=1

j=1 k=1 K<V

=ax =:bx

= ) acde (5.16)

K<V

The ¢, are obtainable as
d)K = ¢],K1 X -® Cbs,Ks

but, for example in the case n; = n, the function

=) drel®)
k=0

cannot be written in the form (5.16) since

s
1 = Qe = | | Qjk
j=1

implies that all coefficients aj. are nonzero which implies that all a, would have to be
nonzero as well. Hence, we cannot write any function in the space generated by the
tensor products of the basis elements as tensor product.

Lemma 5.13 If{¢j:k=1,...,ny}isabasisof F;,j =1,...,s, then
S
X) - H(bj,Kj(Xj)a K<v= (TL],...,TLS),
j=1

are a basis of F; ® --- ® Fs.
Proof: Using (5.16) for the function fi(x) = fi(x;) - - - fo(xs), we obtain that

n
PRSI IR pat N
k=1 kv k<v \ k=1
hence any element of F can be written in the form (5.16), therefore the functions
¢« are a generating system for the tensor product space and they are a basis
for the space provided they are linearly independent. To show this, set kK =

(K1y...,Ks_1) and v and X respectively and assume that

0= adv=3 Y apute® buslx) = Y a® duxle).  (617)

K<V Ks=1 K<V Kg=1
=:ay (X)
Since the functions ¢y are linearly independent, the “coefficients” ay(x) have

to be zero for all X and since this is a tensor product function in s — 1 variables,
the proof can be completed by a simple induction. O




86 5 GEOMETRIC OBJECTS 1I: SURFACES IN CAD

Corollary 5.14 dim(Fy ® ---®F;) =dimFy ---dim F,.

As simple as Corollary 5.14 is, it has a fundamental consequence that is known
as the curse of dimension: the dimension of a tensor product space grows
exponentially in the number of variables. For example, even if we have only 10
basis function in either variable, the dimension of the full space and therefore the
number of coefficients to store, is 10° which quite fast exceed available storage
capacities.

As an immediate conseugence of Lemma 5.13, we can give the basis of the spline
space.

Theorem 5.15 The tensor product spline space

ST =X)sw, (),  T=X)T, (5.18)
j=1

1. consists of piecewise polynomials of multidegree p.

2. is spanned by the B—splines N (-[T), k < v.

Figure 5.2: Continuity conditions of bivariate tensor product splines. They
are different across knot lines and around knots.

Remark 5.16 (Differentiability) One would expect in 1) a description of global
smoothness as well, but this is more complicated, even in two variables as it is shown
in Fig 5.2. The black dots are the knots in x, {...,t;, 411, tivr, 1, tieoy G2, .0 )
and y, {..., Y, tjz1, tj41,. . . }, respectively, the white dots are the tensor product knots
of multiplicities (1,1), (3,1), (2,1), (1,2), (3,2) and (2,2). We now have different
situations:

1. in each of the rectangles formed by the horizontal and vertical lines, the spline is
a polynomial, hence C*.
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2. In the direction of the lines the spline is a piecewise polynomial in one variable and
as long as we stay away from the knots (blue arrow) this curve is a C* function
as well.

3. Across a “knot line” (red arrow), things are different as now the order of differ-
entiability depends on the multiplicity of the knot, in the example we would lose 3
orders. Hence, on a vertical knot line, but away from the knot itself, the function
belongs to CH1 #1112 guhere

|
Cyz{f:a—fe C,OCSY}. (5.19)
ox%

On a horizontal line, away from the knots, the smoothness is Cooma—hltz, ),

4. Around the knot t, (red circle) the spline finally belongs to C*~*(), so the knots
are the least differentiable points.

It is easy to imagine that this becomes even more complicated in three and more variables,
but it is always the set of “active knot projetcions” that determines the differentiability.

Just for completeness . ..

Definition 5.17 The space CY from (5.19) is called anisotropic smoothness space
as the order of differentiability can be different in different variables.

In general, derivatives of tensor products are easy to compute: Whenever a
function f(x) can be decomposed into f(x) = f;(x;) - - - fs(x,), we have

of of
g(x) = fi1(x1) - -1 (x5-1) afj (x5) fi1 (xj1) - - - Fs(xs), (5.20)
j j

=f/(x))

partial derivatives become univariate derivatives for components. Hence we
get the following formula for a partial derivative of a tensor product spline:

2Nl Zd NECT) =) des —N“ (-T)

ox; X; = £
= D NI T NG () (NG C |T)) N () N (4T,
K<V
m;—1
N (T;)
KSV+E€j )yKjtm; )5K;j
N ()
—my Z d NI (T - . ! S NI ([T)
j T —
K<V+E;j Jrkj+my+1 ],Kj+1
dK - dK € — €
= my ) —————NII(T),

K<Vtej Ggrmy — B
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which we record as

N LA(T) = my Z — derey — 75 NETE(T. (5.21)

0% K<V+ej Ggrm; — b

In other words: Any partial derivative turns into a partial difference applied
to the coefficients weighted with the difference of the knots. If the knots are
equidistant, i.e., tj; 1 — tjx = hj, k =0,...,n; +my + 1, then it is also easy to
compute higher order derivatives:

ol«l N
ﬁN d(T) = h‘x | Z Z ( ) de N (T, (5.22)

KSV+o B<a

where .
(1P = H(—] )P and ((X) = H ((xj)
B B;
Exercise 5.3 Prove (5.22). &

5.3.3 Twists

Asmentioned in (Farin, 1988), there are peculiar partial derivatives with a special
geometric meaning.

Definition 5.18 (Twist) A twist of a function f at x is any mixed second order partial
2 2

f,j # k. In the case s = 2 there is only the twist
Xj0Xx X y

derivative

To find out about the geometric meaning, we apply (5.21) twice and get

az - |<+e e
Ox: 0 m) z tJ ]\]}Kl JHT)
X) Xk K<Vtej ),K]+m] Yk
. dK - dK+€j - dK+€k + dK+ej+ek p—ej—ex
K<v-+ejtex JyKi+my J5Kj K,k +my k, Ky
A€j+€kd e
= mmy . NE 97 ()
! (t; — 5, )(t —ti)
K<v-+ejtex J,yKj+my J5Kj kK +my kKK

The three points d,, dKJrej , dite, define a two dimensional plane [d, dK+€j ydire, ]
and in this plane there is the parallelogram point p, defined by

PK - dK+€k - dK+€j - dK) (5.23)

which is nothing but the definition of a parallelogram: two opposite faces are
parallel and of equal length. Hence,

A€j+€de =0 =N dK+€jJrek = P«

which means that the twist of the surface is related to the planarity of the two
dimensional faces.
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Corollary 5.19 (Twist) A bivariate spline surface has twist zero if and only if all the
quadrilateral faces of the control polyhedron are planar.

Proof: The spline surface

aZ
axay N(ml ,mz)d
ni+1mny+1 A(],l)d
K.k e
= mme Y — Nl
Kk1,k2=0 (t1,k1+m1 - t],k] )(tz,k2+m2 - tz,kz)
is identically zero if and only if AMVdy, 1,) = 0. m

5.3.4 Interpolation by tensor product splines

If we want to interpolate with tensor product splines, the most natural thing to

do is to take, for each coordinate x;,j = 1,...,s,aset Xj = {x;x : k=0,...,n}of

interpolation points that satisfy the Schoenberg—Whitney condition
tj,k<xj,k<tj,k+m]-+h k:O,...,le, ) = ],...,S, (524:)

from Theorem 4.56 and to form their tensor product or the grid
X:®Xj:{x(x:(th,...,xs,“s):ocSv}. (5.25)
=1

Such a grid always allows for unique interpolation.
Theorem 5.20 (Schoenberg—Whitney for tensor product) The spline space 5,,(T)
allows for unique interpolation from the set X in (5.25) if the coordinate projections

satisfy the respective Schoenberg—Whitney condition (5.24).

Proof: Because of the univariate Schoenberg-Whitney theorem there exist'"”
splines s € Sy, (T;) such that

S]"k(Xj’kr) = 6k,k’) k,k, = O, c ey Ny, ] = 1,. .oy Sy (526)

and therefore the spline functions
Su(T) 3 sa(x) == [ 5100 (x5), <,
j=1

satisfy

s s
S(X(Xﬁ) = H Sj,(xj (Xj,ﬁj) = H 6(x5,[5j = 6“)(3, X, B < v, (527)
j=1 j=1

197The splines defined in (5.26) are solutions of special interpolation problems.
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from which we can conclude that

Sfi= Z f(Xo)Su

a<v

interpolates f on X. Indeed, by (5.27),

se(xp) = ) flxa)salxp) =flxg), B <V

a<v :60(,|3
For uniqueness we have to show that s; = sy implies that f(X) = g(X), that is
f(xa) = g(xa), ¢ < v. So suppose that s¢ = sg4 or, equivalently,

O=sr—s5= [(f(xe) = g(xa)) Sa.

oa<v

Substituting x into this identity, again (5.27) yields that 0 = f(xg) — g(xp) which
completes the proof. m]

Remark 5.21 That the points lie on a tensor grid of points that satisfy the Schoenberg—
Whitney condition is sufficient for unique interpolation but in no way necessary. 1o
see that, note that unqgiue solvability of the interpolation problem is equivalent to the
nonsigularity of the collocation matrix

<v
NL(XIT) i= [NEGegT) = B =Y

In other words, det N (X|T) # 0. Since the determinant is a continuous function
in all the x;y, the matrix remains nonsigular if to each of them a sufficiently small
perturbation is applied. However, the grid structure can be destroyed by arbitrarily
small perturbations, hence there are many more configurations that are not tensor grids
of “good” points.

There is, however more interesting structure behind tensor product interpolation
which uses a very nice concept from linear algebra.

Definition 5.22 (Kronecker product) The Kronecker product or Zehfuss prod-
uct'% of two matrices A € R™" and B € RP*9 is defined as the block matrix

a B ... (11nB
A®B = : : € R™PM, (5.28)
ayB ... aq.B

The multiple Kronecker product of A4, ..., A, is then give as

A1® A, =(A1®-- QA 1)®A,. (5.29)

198For this interesting story see the very nice set of slides (Van Loan, 2009).
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The definition (5.29) makes sense because the Kronecker product is associative:

(A®B)®C
[ Cl]]B (11nB

= : : ®C
| B ... amnB
[ (l]]b]]C (l]1b1qC aman amb]qC |
(111bp1C CL]]bqu ambp]C CL]nbqu
(lm1b11C am1b1qC amnan amnb1qC
_am1bp1C am1bqu Clmnbp1C amnbqu_
[ aB®C ... a.B®C

fr E '.- S :A®(B®C).
_Clm]B®C ee. aQmunB®C

However, the Kronecker product is not comuutative, that is, in general A ® B #
B®A.

Exercise 5.4 Prove that A®B)" = AT®B'. o
Lemma 5.23 For A € R™", A’ € A € R™™, B € R"*4, B’ € R¥Y" we have
(A®B)(A’®B’) = (AA’)® (BB’) (5.30)
and for nonsingular matrices
(A®B) '=A"T®B. (5.31)

Proof: We can write (5.28) explicitly as

(A ® B) Dp+r,(k=1)q+s = Qjk b‘rsy ]J( (532)

for which the multiplication formula for matrices yields

(A®B)(A’®B’ ))

—

Dp+n,(/=1)p’+r/

3
Q0

= (A®B)( p+r(’,(A ®B’ ) i’—1)p’+r/
(=1

I
hE
M-

(A®B) 1)p+r,(k—1 q+s(A ® B’ ) 1)q+s,G’—1)p’+r’
k=1 s=1
n q
k=1 s=1 P
:(AA/)jj, :(BB')”,

= ((AA)®(BB'));_

Dper, (7 =1)p 417
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which proves (5.30) from which!%
(A'®B)(A®B)=(ATA)®(B'B) =I®I=1

allows us to conclude (5.31) as well. |
These strange identities are relevant since, when ordered appropriately, the col-
location matrices for tensor product functions on a grid are Kronecker products.

Definition 5.24 (Lexicographic ordering) The lexicographic ordering < is defined
as
x<f3 = O(jzf?)j, j=1,...,k—], o < P- (533)

Exercise 5.5 Prove that the lexicographical ordering is a total ordering on the
set INJ of multiindices. o

Proposition 5.25 If the multiindices are arranged in lexicographical order, the collo-
cation matrix of the tensor product B—splines with respect to the grid X; ® --- ® X
takes the form

Nu(X|T) = le (X1|T1) ®"'®NmS (Xs|Ts) (534)

Proof: % The lexicographical ordering arranges the multiindices as
(Oa “O,])) RS (O> “O,N)) “) qu)» RS (Tl], (Xm,N)» N = ny - Mg,

where o < «; 1. Hence, the collocation matrix is of the form

NI (x| T Ng(XIT) ..o NI (x| Ty) Ng(XIT)
NI (5, [T NG(XIT) oo NI (x, [Ty) Ng(XIT)
= Nm1 (X1|T1) ® N’}I(X|T) == Nm1 (X1 |T1) - ® NmS (Xs|Ts))

which is formally proved by induction on s. Here it = (1, ..., 1t;) corresponds
to cancellation of the first index. O

By (5.34) and (5.31) we can now “easily solve” the interpolation problem on
gridded data. Giveny = (y : k < v) € R®", n := [] n, the linear system'!! to
solve is

YT = Nu(X|T)dT = (Nm1 (X1 ’T1) ®--® NmS (Xs’Ts)) dTa

hence
d =N, (XiT) T @ ® N, (X,[T) )y (5.35)

Some remarks:

1. Although we solve the huge n X n system, where again n = n; ---n,, we
only have to invert small matrices of size n; X n;. This is the good news.

1The identity matrices in the following equation are of different size, keep that in mind.
10This is not really a proof, it is more bookkeeping.
1 The transposition is only used to make dimensions fit.
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2. Nevertheless, the whole thing would become pointless if we still would
have to expand the Kronecker product into the full matrix.

3. And the main warning: Noone who has the slightest idea of Numerical
Linear Algebra would compute the inverse of a matrix explicitly, see
(Golub & van Loan, 1996; Higham, 2002; Sauer, 2013).

4. In summary: we have to find a smarter way to evaluate (5.35).
Definition 5.26 The vectorization of a matrix A € R™ " is the vector

_ an .
Am1

Ain

[ Omn |
of stacked column vectors.

There exists a cute formula for Kronecker products that can be found, for exam-
ple, in (Horn & Johnson, 1991; Marcus & Minc, 1969).

Proposition 5.27 For A € R™™", B € RP*9 and X € R™? we have
v(AXB) = (BT ® A)v(X). (5.36)

Before proving the proposition, let us first check that the dimensions coincide
on both sides of (5.36). Since AXB € R™ the expression on the left hand side
is a vector of size mq, the Kronecker product on the right hand side belongs
to RY™®™ and v(X) is an np-vector, so the right hand side indeed also gives a
vector of size mq.

Proof: We write X = [x;...%x,], B = lb : P

. ey

and get for the {th

column of the product that
(AXB); = AXBe;=AXI[bj:j=1,...,p]

P
= A (Z ijjg
j=1

P
=Y by Ax; = [brA...buAlv(X)
j=1

= ((Be)"®A)v(X)
and therefore
[ (AXB); | ((Ber)T® A)v(X) ((Be))"®A)
V(AXB) = : = : = : v(X)

| (AXB)q | ((Bep)T(X)A)v(X) ((Bep)T(X)A)

(Bey)' ]
= : ®A[v(X) = (B"® A)v(X)

(Bep)" |
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as claimed. O

The “Kronecker trick” (5.36) allows us to compute the product of a Kronecker
product A; ® --- ® A;, A; € R™*™ and a vector x. To that end, we interprete
x € R™ as v(X) for a matrix X € R"2""*™ and obtain

(A1® @A = (A1® - ®AVX) = (A0 - ®A XA,
= (A;®---®A )X

where X; € R™"™*™ and the expression can be evaluated recursively for the
columns [x17 ...%x1m,] of X; which are vectors in IR"2"™s.

Let us apply this to (5.35) and assume that d = 1, i.e.,, y € R™. Here, we are
dealing with the square matrices Ny, (X|T;). The first step cuts y into a matrix

Yo € R™ ™M with y = v(Yy) and computes the product
Yy = Yo N (X|Ty) ™ & N OGT)TY] =Y. (5.37)

The linear system on the right hand side can be solved by any standard method
from Numerical Linear Algebra and just requires the solution of a system of size
n; X n; for each column of Yg of which we have n,---n,. For each of the n;
columns y; ; of Y; we form matrices Y;; € R™""*"2 and solve systems

N2 (XIT) Y], = Y[, i=1,...,mn, (5.38)
which can be packed into
NP2 OITo) (Y35 i =Ty = [V i =1, m) (5.39)

This leads to a combination of solving univariate linear systems and rearrange-
ments of a vector of size n that can be used to solve the interpolation without
even having to compute the collocation matrix explicitly.

We can even estimate the complexity of this algorithm. Storage is quite cheap
as the memory requirement for the coordinate collocation matrices is

S
2<< 2 — o e
n; < n, n=mny: - ng,
j=1

and the cost for solving (5.39) in terms of flops''? is Cn’ for the decomposition
of the matrices'® and''* Cn? for solving for each column of the reshaped Y;.

Since this matrix has n/n; columns, the total effort in a single step is Cnn; and
the total computational effort is bounded by

d nitn) m ~sp’ +sp, my=p. (5.40)
=1 =

12This is an abbreviation for “floating point operatrions”.

113Usually by means of Gauf$ elimination, see (Sauer, 2013), which can even be done in a very
stable way since the matrix is totally nonnegative. And, by the way;, it’s even cheaper, the effort
is only Cmjn? < Cn? aslongas m < n.

14The two optimal constants are different but both reasonable, just take the larger one.
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This is really cheap!'® for solving a system of size n X n which would usually
cost ~ 1 or ~ p provided that the univariate dimensions are all the same.

This algorithm is due to de Boor (Boor, 1979a; Boor, 1979b), however, with
a slightly different proof, the application of the Kronecker trick for matrix-
vector multiplication can be found in different forms in (Lamping et al., 2015;
Van Loan & Pitsianis, 1993).

Remark 5.28 (Tensor product interpolation) It seems as if tensor product interpo-
lation almost overcomes the “curse of dimension”, but there are still two huge objects
with n ~ p® components:

1. the coefficients of the resulting spline.

2. the vector of data values.

In particular, this means that in order to interpolate a function with a spline surface
in higher dimensions, one has to know that functions at many locations which is not
always easy in practical applications, cf. (Votsmeier et al., 2010).

Theorem 5.29 (Tensor product splines on grids) Tensor product spline interpola-
tion on grids has a unique solution if and only if the coordinate projections satisfy the
respective Schoenberg—Whitney condition. The coefficients of the interpolant can be
computed efficiently.

Proof: The only thing still left to prove is that nonsingularity of N, (X|T) implies
the nonsingularity of the “Kronecker factors” Ny, (X|T),j=1,...,s. Thisisa
general Kronecker thing, however: Suppose for some j there exists x; such that
Ajx; = 0, then, by (5.30), we have, for any xi,...,%j_1,Xj11,...,X; that
(A1® @A )1 ®--®%s) = (A1) ® - ® (Aij)@"'@ (Agxs) =0 (5.41)
=0
since
0A ... 0A (1110 amO
OXA = T X and A®Q0= : =0,
0A ... OA a0 ... amn©
so that any Kronecker product that contains a zero factor must be entirely zero.
Taking that into account, (5.41) shows that the Kronecker product cannot be
nonsingular if a s single factor is nonsingular and the converse of this statement
is given by the formula (5.31). |

5.4 Surfaces from boundary curves: Coons patches

Another simple method to create surfaces from curves is to do it by blending
the boundary curves of a four-sided surface in R?. To do so, we start with four
curves which together form a closed curve

£:00,11 =R j=1,...,4, £(1) =£,1(0), f5:=f, (5.42)

This curve encloses a four-sided patch and forms its boundary curve.

115Besides the fact that even the full matrix even cannot be stored at all.
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5.4.1 Coons patches

Now we connect the boundary curves on opposition sides by means of another

curve, see Fig. 5.3:
S

4

2

4

Figure 5.3: Boundary curves of the four sided patch and two blending
curves.

Fi(oy) = (1-@@)f0)+ o b0-x,
F(xy) = (1—gi(x) (1 —y) + g1(x) f2(y), Y

where the two scalar blending curves g; and g, satisfy g;(0) = 0 and g;(1) =
1. The idea is that f; and f; are connected in y—direction and thus form the
boundary curves F(-,0) and F(-, 1) of some surface F and that f, and f, are likewise
connected in x—direction. Note that for that purpose the opposite curves have to
be parametrized in opposite directions since the “boundary curve” was defined
in a closed form.

If we restrict the sum F, = F; + F, two the boundary [0, 1] X 0, we get

F.(x,0) = (1—92(0))f1(X)+&@f3(1—X)+(1—91(X))f4(1)+91(><)fz(0)
=1 =0

= £i(x) + (1 —g1(x)) £2(1) + g1 (x) £2(0).
In the same fashion,
) = £ —x)+ (1 —gi(x)) £4(0) + g1 (x) £2(1),

1 ) £4(0)
F (0y) = &0 —-y)+ (0 —9(y)) £(0) + g2(y) £5(1),
Ly) = £(y)+ (1 —g(y) £i(1) + g2(y) £3(0).

If we know define the tensor function

G(x,y) = H0)(1T=ag1(x))(T=9g2(y)) +£(0) g1 (x)(1 — g2(y))  (5.44)
+£4(0) (1 — g1(x))92(y) + £3(0) g1(x) 92 (y).

€[0,1%, (5.43)
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which satisfies
G(0,0) =£(0), G(1,0)=£(0), G(1,1)=1£(0), G(0,1)=1£(0),
and set F := F, — G, then we obtain
F(x,0) = f1(x) + (1 —gi(x))f4(1) + gi1(x) £2(0)
—£(0)(1T —g1(x)) (1 — g2(y)) —£2(0) g1 (x) (1T — g2(y))
—_— —_—

=1 =1
—£4(0) (1 — g1(x)) 92(y) —£3(0) g1 (x) 92(y)
S~—~— N~—~—

=0 =0
= £i(x) + (1= gi(x)) (£2(1) — £:(0)) +g1(x) (£2(0) — £(0)) = £i(x)
=0 =0

and, with precisely the same computations,
F(x, 1) =£5(1 —x), F(())U) = f,4(1 _y)a F“»Q) :fl(y)
We summarize these observations in the following theorem.

Theorem 5.30 (Coons patch) Given four curves f; : [0,1] — R that satisfy (5.42)
and two blending functions g1,9; : [0,1] — R with gj(0) = 0, g;(1) = 1, the
Boolean sum

F(X) =F, (X»U) @FZ(X)U) =F (X)y) =+ FZ(X)y) - G(X)y)) (545)

with Fi,F, and G defined in (5.43) and (5.44) is called the Coons patch and has f; as
boundary curves:

F(x,0) = f1(x), F(x,1)=1£3(1—x), F(O,y)=£(1—y), F(l,y)=~f(y).

The strength of the Coons patches lies in the flexibility provided by the blending
functions g1, g,. It even allows to model different types of blending in x- and y—
direction, but normally the first choice is a symmetric one, namely g; = g, = g.

Example 5.31 (Coons patches) The two most prominent examples of Coons patches
are

1. bilinear Coons patches where g;(x) = x. Here Fy and F, are ruled surfaces
formed from the boundary curves and G is the bilinear interpolant of the corners.
The function g obviously satisfies

g(0)=0, g(M)=1, g'(0)=g'(1)=1
2. bicubic Coons patches where
g(x) = x*(3 — 2x);
this function satisfies
g(0)=0, g(M)=1, ¢'(0)=g'(1) =0,

hence it is a sigmoidal function.
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Figure 5.4: Example for a bilinearly blended Coons patch. On top the
two ruled surfaces F; (left) and F, (right) and on the bottom the surfaces
F+ = F1 +F2 (left) and the bilinear interpolant G (right). The resulting Coons
patch is then shown in Fig. 5.5 (left). All figures were created by Matlab.

The reason why the bicubic Coons patch is so popular is due to the fact that
there is a certain control of the cross boundary derivatives of the patch at the
boundary. To that end, let us consider

5000 = 3 (Filxy) + Falx,y) = Glx, ) (,0)
= —9(0)fi1(x) + g;(0) £5(1 — x) —(1 — g1 (X)) 5 (1) + g1 (x)£;(0)
F F2
+9:(0) (1 — g1 (x))£(0) + g1 (x) £2(0) — (T — g1(x))f3(0) — g1 (x)£4(0))
G
which vanishes whenever g;(0) = 0, for example, in the case of bicubically

blended patches. Similar computations hold for the other three parts of the
boudary curve, hence, the surface is flat across the boundary. In general, the
blending functions g; and g, can be chosen arbitrarily and this can be used to
obtain different blends.

One application of Coons patches is approximation of quadrilateral surface
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sin(2 p ) (1-y) + x cos(@ p ) yé y (o) (120 +y (2w) xx y

Figure 5.5: The final Coons patch with the ingredients from Fig. 5.4 (left)
and its bicubically blended cousin (right).

networks: given a set y, € R}, « < v, one can interpolate along the x- and
y-lines, for example with a cubic natural spline as in Section 4.3.5 to obtain a
set of quadrilaterals bounded by curves. These can be blended by the above
method into an overall surface whose smoothness can be controlled by a proper
choice of the function g. The advantage of such a method is that it needs far less
points than a tensor product bicubic natural spline.

5.4.2 Gordon patches

The concept of Gordon patches generalizes that of a Coons patch by interpolat-
ing isoparametric curves or isocurves''®. An isocuve f for a surface Fis a curve
such that there exists x" or y* such that

Fix,y) =fly) or  Flxy)=f(x). (5.46)
The Gordon patch starts with given sites x;, j = 0,...,m, as well as y, k =
0,...,m, and respective isocurves f, ; and £, . The goal is to construct a surface

F with
F(xj,")=£f;, j=0,...,m and F(ouy) =fyx, k=0,...,n. (547)

At the intercetion points the isocurves have to satisfy the compatibility condi-
tion

fx,j(yk) = y,k(xj)) ] :O,...,m, k:O,...,TL. (548)
To build F from the isocurves we make use of univariate interpolation and pick
any set of scalar functions {, ;, {, \ such that

ex,j(x)”) = 6)’]”» jyj"=0y...,m, gy,k(yk') =0y, Kk '=0,...,m.

116The two names are usually used synonymously where “isocurve” sounds cooler, of course.
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Canonical choices for such functions would be splines or polyomials but in
fact any set of such functions would do, but nevertheless it should satisfy the
following condition.

Definition 5.32 A set of functions{y, . .., {, is called a Lagrange basis'” forx, ..., xn
if
Kj (Xk) = 6jk) j, k= O, ey T (549)

A Lagrange basis is said to be of order zero if the interpolation preserves constants or,
equivalently, if the functions form a partition of unity, that is,

D 4x)=1. (5.50)

j=0

Example 5.33 A simple example for a Lagrange basis that is not of order zero can be
constructed as follows: take n + 2 distinct points and the unique Lagrange basis within
the polynomials of degree n + 1. They are of order zero and each of them is of the form

ax™! + ..., hence
n
Z e] n+1 # 0.
j=0

Now we form

Fi(x,y) = i J (5.51)
j=0
F(x,y) = i €y x( (5.52)
T
and obtain our final surface as
F(x,y) =Fi(x,y) + F2(x,y) Z £y 5(Ui) (%) y i (y). (5.53)

j,k=0

Theorem 5.34 The Gordon surface from (5.53) satisfies (5.47).
Proof: Essentially by substitution and the compatibility condition (5.48):

F(xp,y) = Zemxp +Zeyk £, (%) — Zfdyk ,pr)e (y)

5m Ph=0 5)19
= ijp(y)‘kzey»k(y ik (%p) me
k=0 — P
Y, k(xp)
= fX,p (y) + Z Ey,k(y) (fy,k(xp) - fy,k(xp)) = fx,p°
k=0
The proof for F(x,y,) works exactly the same way. m|

17The name is derived from the name Lagrange interpolation used for interpolation of func-
tion values, interpolation of consecutive derivatives is called Hermite interpolation and the
more general case of “gaps” among the derivatives bears the name ‘Birkhoff interpolation.
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Corollary 5.35 If the blending functions {,; and £,y are of order zero, then the Gordon
surface is a translational surface if all the isocurves £, ; or £\ coincide, respectively.

Remark 5.36 A Coons patch is a Gordon surface with xo =yo =0, % =y = 1

and
fx,O :fh fx,] :fS(] _')) fy,O :f4“ _')) fy,] :fZ-
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Ratio fatum vincere nulla valet.

Ovid

Rational curves and
surfaces

The standard freeform object in CAD nowaydays, also integrated in every ge-
ometric file standard like IGES or Step, are NURBs. This acronym is the
abbreviation for “Non Uniform Rrational B-spline” and means either curves or
tensor product surfaces generated from these curves.

6.1 Rational functions

Definition 6.1 A rational function f = % is the quotient of two polynomials p € Tl,,,
q € TT,. We denote all rational functions of that type by''® %y, .

Remark 6.2 Since of p/q,p/q € Hmn we have

_Pd+Pq

+ o
aq

o g
o |

which usually does not belong to % any more, this space is neither linear'® and
not even convex. This makes rational approximation, for example, a totally different
field, see (Braess, 1986).

Life becomes significantly easier if the rational functions to be considered are
from the space

T,
%m,nD%m,q:—:{%:peﬂm}, q € Iy,

which almost trivially is a linear space. We can represent the numerator and the
denominator by means of the Bernstein-Bézier basis, assume that the have the
same degree'® and obtain the following definition of a rational curve.

8Notationally, a greek letter would be almost more appropriate but since the proper one
would be “Rho”, written as P, this would lead to even more confusion. Therefore &% is appro-
priate, in particular since this set has a totally different structure.

9Which means that %  is no vector space.

1200therwise we “artificially” write the polynomial of smaller degree in terms of the higher
degree.
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Definition 6.3 A rational curve on [0, 1] is given as

> B
B..c j=0
Rule,w) = 22 = — ) (6.1)

> wyBlMw)

=0

where

BM(w) i= By (w) = (;‘)(1 —w)mI, 6.2)

The coefficients c;j are called control points again, the wj are called the weights of the
rational curve.

Remark 6.4 The notion of a rational curve can be extended to a rational triangular
surface in a very straightforward manner. Just keep in mind that the numerator function
can be vector valued while the denominator is always scalar. The representation (6.1) is
unique up to a common nonzero factor of the coefficients.

To efficiently compute with rational curves, we can define

— w;

— j d+1 C

cj._lc_]elR , j=0,...,1n,
j

and then evaluate the polynomial curve
—~ i Wj neen | Baw(u) |~
Brc(u) —ZO[ . ]Bj (W) —[ Boclu) ]—.p(u)
)=

from which the rational curve is obtained as

1
pi(u)
f(w) = p(u) _ Po{u)
po(uw) :
Pa(uw)
| po(u) |

This concept, however, is very well known in Mathematics, it is the projective
space from Definition 2.12.

Remark 6.5 This is the main concept for rational curves and surfaces in RY: Embed
them into R4, use the standard affine algorithms there and divide by the additional
component. Note, however, that the coefficients c; do not form a linear space,

- "‘. . Wj Vj - V]' + Wj

C]+b]_[ (Y] ]+lb] ]_| b]"f‘C]'

does not make sense, at least not if it is to be interpreted as the sum of the two rational
curves in RY.
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Lemma 6.6 Two rational curves can be added if'*! they have the same weights and the
resulting curve is
Rn(c,w) + Ry (¢, w) =R, (c+ ¢’y w).

Exercise 6.1 Formulate and prove the rational de Casteljeau algorithm. o

Rational functions can have “bad points”.

Definition 6.7 A pole'® of a rational function f = £ is a zero of the denominator. A
removable pole is a zero of the denominator that is also a zero of the numerator of at

least the same multiplicity'®.

In the projective terminology a pole of the curve has a nice interpretation as it is
a point where

Bnclu) = [ Bn((Z)(U.) ]»

which is one of the many representations of the point co in IP.

In contrast to complex analysis'** , poles in curves are not desirable in prac-
tical applications and should be avoided by proper choice of the weights. The
standard choice is to set

wj > 0, wowy, > 0, ij =1. (6.3)
j=0

Thelast condition in (6.3) is only a normalization, the other two are the significant
ones.

Lemma 6.8 If the weights satisfy (6.3), the rational curve R, (c,w) has no poles in
[0, 1].

Proof: Due to the endpoint interpolation (4.10), the weight function in the
denominator satisfies

B.w(0) =wy > 0, B.w(1) =w, >0,
while for arbitrary u € (0, 1) we get
Bow(u) = Z w; B u) 2w (1—u)" +wy, &L >0,

j:O\/\W_/ ——

>0 >0 >0 >0

hence Byw(u) > 0, u € [0, 1], and the curve has no pole. m]

121We are not talking about “only if” here, but if the condition is not satisfied, the addition is
more complicated, of course:
Bnc Bn¢’  BnwBnc' +Byw' Bnc
B,w B.,w’ B,w B, w’

€ %Zn,Z‘m

and even though all the quantities can be computed, this is not a desirable behavior.

122In CAD terminology, the word pole is also used for the control points which helps to increase
the amount of confusion.

12Removable poles are always artificial as they could be divided off.

124 Aka “Funktionentheorie”
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6.2 Ratios, cross ratios and projections

In this section we follow (Farin, 1988) and introduce some geometric invariants
of projective maps that we will need to define and manage our rational curves.

Definition 6.9 The ratio of three collinear points a, b, c € RY is defined as

u(blla,c])  voli([a, b])

M L bla,d) Vo, b))’ o4
and the cross ratio of four collinear points a,b,c,d € R® as
r(a,b,d)
c(a,b,c,d) = m (65)

Remark 6.10 Since barycetric coordinates are invariant under any affine trans-
formation, so is the ratio of three collinear points.

Figure 6.1: Example of a projective map on the line through a, b, cb, d with
the center 0. The image pointa of a’, for example, is obtained by connecting
a’ with o and then form the intersection between this connection and the
“target” line.

Like (Farin, 1988), we will not give a formal definition of the projection on a
straight line, but use the “picture definition” of Fig 6.1. It can, however, be
shown, that projective maps can be written as rational linear transformations. One
can see in this figure that obviously ratios are not preserved but the following
theorem shows that cross ratios are.

Theorem 6.11 (Cross ration theorem) For the points in Fig 6.1 we have

c(a,b,c,d) =c(a’,b’,c’,d’). (6.6)
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Proof: Interpreting the 1-d barycentric coordinates as 2-d coordinates, we get
that
VOIZ([a) b) O])

uo(blla, cf) = uo(blla, ¢, 0l) = =

and L(lb
1w (blla, dl) = w(blfa, ¢, o)) = %
hence
VOIZ([b> d) 0])
o VOIZ([a) d) 0]) o VOIZ([b) d) 0])
ra,b,d) = vol([a,b,0])  vol,([a,b,0])
VOIZ( [a) d) 0])
Likewise, we find that
voly([c,d, o])
(a,c,d) ;

hence
vol,([b, d, o]) vol,([a, c, 0])

c@b e d) = b, o)) vob(lc,d, o))

By the elementary area formula for triangles'®, we get, with
x = /(a,o0,b), B = £(b,0,¢),y = £(c,0,d),
that'?

(plgsin(P +7v)) (Ll sin(oc+ B)) _ sin(B +7v) sin(x + B)

b,c,d
c(a,b,c,d) (Lalp sin o) (Llg siny) sin & siny

b

and since this expression depends only of the angles between the projection
lines at o, it is the same for c(a’,b’,c¢’,d’). |

Cross ratios are interesting objects by themselves and have even been used in
the construction of musical instruments. There exists a construction by Strahle
(Strahle, 1743) for how to place the positions for an approximately tempered
scale by means of a geometric construction based on projections, see Fig. 6.2.
The story about this construction, its incorrect “correction” by the Swedish
mathematician Faggot and what all this has to do with continued fractions, is
nicely told in I. Steward’s article Faggot’s fretful fiasco in (Fauvel et al., 2003).
The trick is to get the angle right, but also that the cross ratio between the
fret distances (or also tone hole distances for woodwind instruments) is always
constant due to Theorem 6.11. This has nothing to do with splines directly
except that there is also a paper by Schoenberg on how to place the frets on
guitars.

125The area is 3{1{, sin &, where « is one angle in the triangle and ¢;, {, are the lengths of the
adjacent edges.
126We immediately cancel all the J terms.
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Figure 6.2: The scheme of Straehles construction and the explanation in the
article from (Fauvel et al., 2003). Left image from Wikipedia, right image
from (Fauvel et al., 2003).

6.3 Conics

Conics are fundamental objects in CAD as they include classical geometric
objects like circles, ellipses'®, parabolas and hyperbolas. Clasically, the are
defined as intersections of a cone'”® with a plane and they are categorized
depending on how this intersection takes place. For our purposes, the following
equivalent definition will be more handy, however.

Definition 6.12 A conic section'® is the projection of a parabola from R? to R?.

In particular, conics include circles, more precisely, parts of circles. Just keep
in mind that circles as well as parabolas are obtained by intersections of the
cone with a plane, then the projection of one of them with the tip of the cone as
projection center yields the other one.

To see that this definition of conics with rational quadratics, hence a special class
of rational Bézier curves, we recall that a point in IP? is the equivalence class of

the point x = [ l l € R®, given as

{?:H"x]:wem\m}}.

Any such element on that line through the origin and [ l ] in IR? is a representer

of the same projective point.

270K, a circle is just a special case of an ellipse.
128More precisely, the “double cone”.
129Which may be only a part of a conic.
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Theorem 6.13 For any conic section t + £, t € [0, 1], there exist coefficients ¢y, ¢1, 2
and weights wo, Wi, W, not all of them equal to zero, such that

2
> ¢ Bi(t)
j=0

f(t) = —.
> wyB(t)
=0

(6.7)

Proof: Each image point of the conic function f(t) € R? can be lifted to l £ (1t) ]

which is the projection of a point l Wzgig t) ] which lies on a parabola in R?,
parametrized as'®’

p(t)zl q(t) ] te (0,1,

where w and q are quadratic polynomials. In particular, there exist wy, wi, w;
such that

2
w(t)=> wiB(t), telo,1].
j=0

Since q is a parabola, this implies that

2
W(t)[ f(]t) l = P(t) = Z[ Vc\)jj l sz(t))

j=0

hence
2
> ¢BI(t)
which is (6.7). O

Corollary 6.14 If all weights are nonzero, the conic can be written as
2
Zij]‘ B]z (t)

== ,
D wiBI(t)
j=0

139That the parametrization runs over [0, 1] can always be ensured by an affine reparametriza-
tion which transforms polynomials to polynomials of the same degree.

£(t) (6.8)
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Remark 6.15 The advantage of the the representation (6.8) lies in the fact that the 3
dimensional representations

Wj .
I:W)b]], ]_07172)

are all projectively equivalent to the point l 11 ] ~b;.
j

Every conic can also be written in implicit form as
{x e R?: f(x) = 0}, f eTly,

where f is a quadratic polynomial. Implicit forms are useful for intersections
and for checking whether a point lies on a conic, but the implicit form cannot
distinguish between the “full” conic and some conic section that forms a part of
it.

Example 6.16 The explicit form for a circle with center ¢ and radius v is
f(x) = Ix —cll; =" = (x1 —c1)* + (x2 — c2)* — 1%

The implicit form of a conic is now easily determined for a nondegenerate conic,
i.e., a conic that is not a straight line. This in turn is equivalent to by, by, b, being
in general position and forming a nondegenerate triangle. In other words,

T 1 1

detlbO b, b,

o

Now we write the point in terms of barycentric coordinates with respect this
triangle as

2 B2 (1)
ft) =) wt)b;, e, uq(t):w)ml(t),
j=0
that is,
wthug(t) = wo(1—1t)?
wt)u(t) = 2wit(1 —1t)
wtu(t) = wit?

If we square the middle equation and substitute the other two, this gives
Wz(t)w%u%(t) =4 w(t)wouo(t) w(t)wous(t) & wfu% — dwow; uguy; =0
and the explicit formula for barycentric coordinates,

1T 1 1 1 1 1 1 1 1
de‘c[x b, bz] detlbo « bzl det|b0 b, xl

Uy = u; = U =

11 17 11 17 11 17
de’c[bO b, bz] det[bO b, bzl det[b0 b, bz]
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yields the implicit formula

2
1T 1 1 1T 1 1 1T 1 1
2
f(x) =wy detlbO N bz] dwow, det[x b, bz]det[bo b, xl, (6.9)

which is a quadratic polynomial in x.

Example 6.17 We want to determine the circular segment with by = (1,0), by =
(1,1), b, = (0,1), hence ¢ = 0 and r = 1. Since

1T 11
x 1 0|=1—y, det

y 1 1

det =x+y—1, det

1 1 1
1 x 0
0y 1

11
1T x [=(1—x),
Ty

we get that

f(x,y) :wf(x-i—y —1)? — 4wow; (T —x)(1 —vy)

= wix? +wiy? + (2wi — dwows )xy — (2w5 — dwows ) (x +y) + Wi — dwewy,
which becomes the implicit equation x* +y* — 1 ifand only if wi = 1, say wy = 1, and
2 —4wow; =0 and 1 —4dwow; = —1.

The second reugirement follows directly from the first and we only have to choose
Wow; = ‘5 which is symmetrically chosen as wy = w; = L. Hence, the rational

V2
control points for the exact quarter circle are

k]

6.4 Rational Bézier und spline curves
Let us give a formal definition of rational Bézier curves.

ANE
V2o

Definition 6.18 (Rational Bézier curve) A rational Bézier curve of degree n with
weights w; # 0 and control points b; € RY is the curve

D wib BI(t)
B,b(t) = —

Ho—| Wi
- B s | .10
D wiBMt)
=0

Such a curve is called polynomial™ ifw; = 1,5 =0,...,n.

1310ften it falsely called “nonrational” or even “irrational”, but such curves only belong to a
particular subclass of rational functions
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Remark 6.19

1. In (6.10), we defined the control points to be the affine representer of the projective
equivalence class.

2. The only restriction on the weight is that they are nonzero. Positive or negative
weights are still possible, but weights with different signs bear the danger of poles.

3. The weights can be normalized such that they sum to 1 or 0. This is not necessary,
just a matter of convention.
6.4.1 Properties of rational Bézier curves

Some properties carry over almost directly from the Bézier case. Since BJ'(0) =
dj0, we find, for example, that

so that also rational curves provide endpoint interpolation. Since, for w; > 0
we have that'*?
w; B (1) n w; B (1)
n]—]n >0 and Z nJ—’n =1,

j=0

every point on the curve is again a convex combination of the points bj, yielding
the convex hull property again: the curve runs within the convex hull of the
control points.

Derivatives are a bit more complicated. In fact,

dpt) pHwlt)—plt)w'(t)
dtw(t) W2(t)

yields that

ronm g g

n 2 ’
2 wBM (Y
j=0
which is not so nice any more, but at the end points we get

(wiby; —wobg)wy — wobg (Wi —wy)

2
0

2 2
wowiby — Wobo — wowr by + Wobo Wy

2
0

B,b’(0) =

w

w

so that the geometric interpretation of the end segments of the control polygon
as tangents persists as well.

132n fact, this holds true as long as all w; have the same sign.
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Remark 6.20 All these results and formulas show that the “projective” definition from
(6.10) is indeed the right one.
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