
Introduction to Signal and Image
Processing

Tomas Sauer

Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverarbeitung
FORWISS

University of Passau
Innstr. 43

94032 Passau

Version 2.0
Last modifications: 4.7.2022

Chaos is found in greatest abundance whereever order is being sought. It
always defeats order, because it is better organized.

T. Pratchett, Interesting times

When the epoch of analogue (which was to say also the richness of language,
of analogy) was giving way to the digital era, the final victory of the numerate
over the literate.

S. Rushdie, Fury

The most incredible thing about miracles is that they happen.

G. K. Chesterton, The Innocence of Father Brown

And it didn’t stop being magic just because you found out how it was done.

T. Pratchett, Wee Free Men

Tomas Sauer
Chair for Mathematical Image Processing

University of Passau
Innstr. 43

94032 Passau

Contents

1 Image Acquisition 3
1.1 Image Models . 4
1.2 Photography . 5

1.2.1 Pinholes & Projective Geometry 6
1.2.2 Calibration . 8

1.3 Computed Tomography . 11
1.4 Indirect Measurement & Inverse Problems 14

1.4.1 Solving by Optimizing . 15
1.4.2 Tomography once more . 16

1.5 Summary . 18

2 Mathematical Foundations of Signal Processing 19
2.1 Signal Spaces . 19
2.2 Fourier . 21

2.2.1 Definition & Calculus . 21
2.2.2 Continuity & Decay . 27
2.2.3 Square Integrable & Isometry 28
2.2.4 Fourier Series & Torus . 29

2.3 The Sampling Theorem . 31
2.4 Filters . 35

2.4.1 Definition & Realization . 35
2.4.2 Filter Design . 38
2.4.3 Filters for Images . 43
2.4.4 Mean Values and Denoising 45
2.4.5 Derivatives and Edges . 49
2.4.6 Somewhere in the Middle . 52

2.5 The FFT . 53
2.5.1 The discrete Fourier transform 54
2.5.2 Discrete versus Discretized 58
2.5.3 The Fast Fourier Transform 61
2.5.4 Fourier and Images . 64

3 Transformations 73
3.1 The Hough transform . 73
3.2 Time-Frequency – Windows & Gabor 79

3.2.1 The Windowed Fourier Transform 80

1

Contents

3.2.2 The Gabor Transform . 81
3.2.3 Time-Frequency Analysis . 83

3.3 Wavelets . 86
3.3.1 Implementation of an FWT 94
3.3.2 The Inverse Transform and its Catches 96
3.3.3 Examples: Music and Edges 99

3.4 Filterbanks . 104
3.5 Subdivision, Functions & Wavelets 112
3.6 Applications . 122

4 Further Aspects of Imaging 133
4.1 Approximation of Random Signals 133

5 References 137
Literatur . 137

2

Image Acquisition 1
Well, it is easy enough to look wise; it is when a man opens his mouth that the
test begins

(P. J. Brebner, Christopher Quarles College Professor and Master Detective)

Digital Image Processing is concerned with the processing of digital images.
Well, that’s just the name of it. In fact, the english term "‘image"’ is more to the
point insofar as an image does not only have to be a picture that digitized by
pixellation. This makes image processing more interesting and challenging than
just handling pictures. Some classical tasks in image processing can be summarized
and classified as follows:

1. Image Enhancement: the original image is not of the desired quality, be
it due to defects in the acquisition device or due to circumstances or for
whatever reasons. Such defects can be noise, over- or underexposure, bad
contrast or other structured or unstructured artifacts1. The goal is then to
derive algorithms that remove or at least reduced these artifacts.

2. Image Restoration: parts of the image are corrupted or missing and should
be reconstructed from other parts of the image.

3. Image Compression: how to store huge images2 in such a way that the
quality is not deteriorated too much. And, by the way, how do we measure
quality?

4. Information Extraction: our image contains information that has to be
extracted automatically. Medical imaging is a classical example since the
physicists are not really interested in the image itself but in the diagnosis it
implies.

It is clear that answering such questions will require quite some mathematics. More-
over it is to be expected that the methods will depend to some extent on the nature
of the image under consideration and probably also to the way how the image was
created. Therefore it is a good idea to first have a look at some types of images
and their ways of acquisition.

1Depending on the context an artifact can either be a (usually man made) object to be digitized
or a (usually unwanted) e�ect in the image.

2In computed tomography industrial images can easily be of the size of up to 1TB or more – in
2022.

3

1 Image Acquisition

1.1 Image Models

When talking about images most people intuitively think of a picture, normally
from photography3. For digital methods, the images should be transferred to a
digital, numerical format, and the standard mathematical model of images is that
of a two dimensional rectangular object. These, however, can be modelled in
di�erent ways:

1. Realistic: An image is an array, whose elements are called pixel and encode
discrete color values:

� =

[
1 9 : :

9 = 1, . . . , <
: = 1, . . . , =

]
, 1 9 : ∈ {0, . . . , "} .

How precisely the colors are encoded, for example as RDG or YUV, cf. (Foley
et al., 1990), will be considered a bit later.

2. Semicontinuous: Again we consider a rectangular array, but the gray values
or color components will be encoded as real numbers:

� =

[
1 9 : :

9 = 1, . . . , <
: = 1, . . . , =

]
, 1 9 : ∈ R or 1 9 : ∈ R3.

Often, the values are restricted to the interval [0, 1]. Passing from this model
to the discrete values above is done by quatization of the values which is a
relevant topic in signal processing but will not be considered in this lecture.

3. Continuous: In many modern approaches to image processing, the image
is seen as a function from a rectangle or square4 to R or R3 for example,
� : [0, <] × [0, =] → R3. One might see this as pixels that are so dense that
they form a continuum. This allows us to use methods and techniques from
analysis which is the foundation of many modern methods for edge detection
or denoising. When applying the theory, the concrete image is a discretization
of the continuous model, which is not simple but where techniques from
Numerical Analysis can be used.

Although most real world images are only covered by the discrete model, it makes
perfect sense to consider the other two models as moving away from “reality”
allows for the use of more powerful mathematical models. Therefore we make the
following general definition which is so general that it is almost no definition any
more.

De�nition 1.1.1 (Image). An image � is a mapping from a domain � to some
set �3 for a suitable 3.

3Literally q>g>-WdUin]a means “painting with light”.
4One you do not have to count pixels, the sizes in G and H direction do not matter so much any
more.

4

1.2 Photography

Figure 1.1.1: Image (left) and color models. From left to right: the RGB format, the stan-
dard digital image representation, its complementary CMY (Cyan, Magenta,
Yellow) model used in printers and the YUC and YCbCr models used in TV
encoding systems like PAL and NTSC where now Y stands for the brightness
of the pixel and UV and CrCb encode the chroma (= color) content.

Example 1.1.2 (Color models). The most importand case of 3 = 3 in imaging is
that of a color image where the color is encoded in three di�erent channels. A
color channel can be the red, the green and the blue component of the image,
but there exist lots of di�erent color models that have their justification in various
di�erent applications. For example, one can encode the black and white image in
one channel and then additional color information in so-called chroma channels.
Such models are popular in TV transmission, for example. See Fig. 1.1.1 for some
examples of color representation and look up (Foley et al., 1990) for more details
on color models.

An important aspect in image processing is to understand what the set � in Defi-
nition 1.1.1 stands for and what the values in � mean. For example, in digital photg-
raphy, incoming light rays are transformed by the optical system, passed through
a color filter and finally the intensity is measured by a chip, so the value stands
for the intensity of a color component of the incoming light. In X-ray computed
tomography, on the other hand, the “gray values” stand for the absorption rate of
the material which is somewhat related to the density of this material. Therefore
an array of size 512 × 512 with 8 bit values from 0, . . . , 255 can mean something
totally di�erent in the two situations, hence my require di�erent methods to be
processed.

The methods to be applied to an image may depend on the methods of image
aquisition and the underlying image model.

1.2 Photography

The simplest idea of a photographic image generation would be that of a parallel
projection of objects in the threedimensional ambient space on the “photographic

5

1 Image Acquisition

B
il
d

e
b

e
n

e

Figure 1.2.1: Parallel projection on the image plane. Such image acquisition methods exist,
for example in Ceph X-ray imaging (left, source: Wikimedia Commons) where the
source is as large as the image and emits parallel rays.

x

y

z

d

Figure 1.2.2: Central projection in an ideal pinhole camera (right a schematic drawing from
the 17th century, source: Wikipedia) where the point x is projected on a point
x′ in the image plane whose distance to the aperture is 3.

plate”, see Fig. 1.2.1. Parallel projections have no projective distortions and mea-
surements can be taken directly from the image. In optics parallel rays occur whe
the object to be imaged is infinitely far away.

1.2.1 Pinholes & Projective Geometry

A somewhat more realistic model of photography is that of the camera obscura or
pinhole camera and is used in the modeling of most camera based images. The
mathematical concept behind this imaging is the central projection. If we put the
origin of our coordinate system into the aperture as in Fig. 1.2.2, then the point

x =
©«
G

H

I

ª®¬ ∈ R3
is mapped to the image point

x′ =
3

I

(
−G
−H

)
∈ R2 ' R2 × {−3}

6

1.2 Photography

in the image plane. Since this is an issue in Projective Geometry, we switch to

homogeneous coordinates and embed the point x =

G1
G2
G3

 ∈ R3 cnanonically

into the four dimensional plane R3 × {1} and then use the equivalence

x '
©«
G1
G2
G3
1

ª®®®¬ '
©«
F G1
F G2
F G3
F

ª®®®¬ ∈ R
4, F ≠ 0.

Geometrically, we identify all points in the same equivalence class that lie on a
straight line through the origin, where the origin itself takes the role of infinity like
all points whose last coordinate is zero: ∞ = R3 × {0}.
Conversely, any finite point in R4, i.e., an point whose last entry is zero, can be

identified with a point in R3 via

R4 3 x̂ =

G1
G2
G3
G4

 ↦→ x =

G1/G4
G2/G4
G3/G4

 ∈ R3
The advantage of this process is that all reasonable geometric transformations in
R3 can now be represented as matrix multiplications:

1. Translation by y ∈ R3,)yx = x + y is written as

)y x̂ :=

(
O y
0) 1

)
x̂.

2. Linear transformation by a matrix G ∈ R3×3:

!Gx̂ :=

(
G 0
0) 1

)
x̂.

3. A�ne map given as matrix multiplication and translation, !G,y = Gx + y,

!G,y x̂ :=

(
G y
0) 1

)
x̂.

4. Projection with factor 3 ≠ 0:

%3 x̂ :=

(
O 0

−3−1 e)3 0

)
x̂.

Note that in cartesian coordinates, i.e., the “standard” coordinates in R3, the
projection cannot be written as a linear map, i.e., as a matrix multiplication.

Exercise 1.2.1 Does !G)y =)y!G hold? If not, what is the correct formula? ♦

7

1 Image Acquisition

Figure 1.2.3: Digital camera with magnified chip. Each pixel has two green components
which is due to that the human eye is more sensitive to green. Source: Peter
Welleman @Wikimedia commons

Let us have a closer look at how the projection works to see why this is the math
for our pinhole camera. Indeed,

%3 x̂ =

©«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1/3 0

ª®®®¬
©«
FG1
FG2
FG3
F

ª®®®¬ = F
©«
G1
G2
G3
− G3
3

ª®®®¬ = −F
G3

3

©«
3
G3
G1

3
G3
G2

3

1

ª®®®®¬
'

©«
− 3
G3
G1

− 3
G3
G2

−3

ª®®¬
which is precisely the image point x in the plane G3 = −3, which has the coordinates

− 3
G3

(
G1
G2

)
.

In summary, all geometric operations can be realized by simple multiplication
with 4 × 4 matrices, which is also used in so called kinematic chains in robotics,
cf. (Paul, 1981). This is the reason why such matrix multiplications are integrated
in hardware in graphic cards.
This is by far not the end of the story as the pinhole camera is only a very

elementary and incomplete model of a camera, totally ignoring the optical part
of the camera lens, see Fig. 1.2.3 which induces optical distortions in the image.
These distortions are more significant for short focal length while a telfocal length
gives a much more homogeneous image, More details about image acquisition in
cameras can be found in (Jähne, 2002).

1.2.2 Calibration

The pinhole camera is obviously far from the reality of a real world camera5 and
therefore any camera image contains distortions that are a combination of model

5Or, more precisely, noone would buy a pinhole camera nowadays although meanwhile some
compensation of lack of optical quality is done by AI in smartphone cameras.

8

1.2 Photography

Figure 1.2.4: Schematic representation of a modern camera lense (left, source Jos.
Schneider Optische Werke GmbH) and the famous �sheye e�ect (right,
source: Wikimedia Commons).

errors and imprecisions in manufacturing. These distortions are usually compen-
sated in the image plane. The simplest corrections are based on a�ne transforma-
tions of the form

R2 3 x ↦→ Gx + y, G ∈ R2×2, y ∈ R2

which we can write projectively as Ĝ x̂ with

Ĝ =

[
G y
0 1

]
∈ R3×3.

The translational part y is harmless and “only” fixes the origin in the image plane.
The linear part G is decomposed6 into

G = WX = W

(
U W

0 V

)
= W

(
U 0
0 V

) (
1 W/U
0 1

)
=: WJY, W)W = O. (1.2.1)

All terms in this formula now have a geometric or optical interpretation:

1. The orthogonal matrix W describes a rotation and maybe a reflection and
can be interpreted as a rotation of the camera in the image plane7 that can
be compensated by a proper alignment of the camera.

2. The diagonal scaling matrix describes to which extent the G and the H part of
the image have to be rescaled, for example to take into account the di�erent
resolutions in these directions.

3. The shear Y results in a nonorthogonality of the image axes, mathematically
described as a shearing.

The parameters U, V, W form (1.2.1) are called intrinsic parameters and determin-
ing them is known as intrinsic calibration of the camera. Fixing the camera pose
relative to world coordinates is called extrinsic calibration. Image processing li-
braries like OpenCV o�er a variety of calibration functions without which optical
measurements are impossible.

6Here we use the &' decomposition from Numerical Linear Algebra: any matrix � ∈ R=×= can
be written as � = &' where & is an orthogonal matrix, i.e., &)& = &&) = � and ' is an upper
triangular matrix, cf. (Golub and van Loan, 1996; Sauer, 2013a).

7Do we hold the camera upside down?

9

1 Image Acquisition

Example 1.2.1 (Intrinsic calibration). We decompose

Ĝ =

(
WX y
0 1

)
=

(
W 0
0 1

) (
X W) y
0 1

)
:=

(
W 0
0 1

) (
X y′

0 1

)
and suppose that the extrinsic part of the calibration has been done, hence W is
known. Now we take homogeneous points x̂ 9 ∈ R4, 9 = 1, . . . , =, on a so called
calibration target in the ambient space which should be mapped to8

%3 x̂ 9 =
©«
− 3
G3, 9
G1, 9

− 3
G3, 9
G2, 9

1

ª®®¬ , 9 = 1, . . . , =.

where the 1 in the last coordinate is due to the fact that we consider the −3 plane
now as an independent plane. The measured points, however, are ẑ 9 , 9 = 1, . . . , =,
and we must determine Ĝ in such a way that Ĝz 9 ≈ %3 x̂ 9 . To that end, we compute

Ĝz 9 =

(
W 0
0 1

) (
X y′

0 1

) ©«
I1, 9
I2, 9
1

ª®¬ =
(
W 0
0 1

) (
Xz 9 + y′

1

)
=

(
W 0
0 1

) ©«
UI1, 9 + WI2, 9 + H′1

VI2, 9 + H′2
1

ª®¬
This means that we must match the vectors

©«
UI1, 9 + WI2, 9 + H′1

VI2, 9 + H′2
1

ª®¬ , 9 = 1, . . . , =,

as good as possible to the vectors(
W 0
0 1

)
%3 x̂ 9 =:

(
v 9
1

)
=

©«
E 9 ,1
E 9 ,2
1

ª®¬ .
Their di�erence is the vector

©«
UI1, 9 + WI2, 9 + H′1 − E 9 ,1

VI2, 9 + H′2 − E 9 ,2
0

ª®¬
and the fit is perfect if U, V, W and y′ solve the overdetermined linear system

©«

I1,1 0 I2,1 1 0
0 I2,1 0 0 1
...

...
...

...
...

I1,= 0 I2,= 1 0
0 I2,= 0 0 1

ª®®®®®®¬︸ ︷︷ ︸
=:H

©«
U

V

W

y′

ª®®®¬ =
©«
v1
...

v=

ª®®¬ ,

8The image plane is two dimensional, hence the homogeneous coordinates are three dimensional

10

1.3 Computed Tomography

Figure 1.3.1: The beam is sent through the material and the absorbtion is eventually a line
integral along this beam.

in the sense that we minimize the euclidean norm of the error which is equivalent
to solving

H)H
©«
U

V

W

y′

ª®®®¬ = H)
©«
v1
...

v=

ª®®¬ .
This is a standard task in Numerical Linear Algebra, cf. (Golub and van Loan,
1996).

1.3 Computed Tomography

The Radon transform is an integral transform of high relevance in many ap-
plications from medical imaging to nondestructive testing, since it is the basis of
Computed Tomography. The main idea is that an X-ray beam is sent through
inhomogeneous material, where part of the ray is absorbed and the rest continues
its trip through the material. On the other side of the object the remaining energy
of the beam is measured, see Fig. 1.3.1. Ignoring physical e�ects like refraction
and beam hardening, we denote the local absorption rate of the material9 by 5 (G),
G ∈ R2, and by � (G) the intensity of the beam at position G. Then we have, according
to (Olafsson and Quinto, 2006), for two points G, G + X on the ray that

� (G + X) − � (G) ≈ − 5 (G) X � (G), d.h. � (G + X) ≈ � (G) (1 − 5 (G) X) .

9For monochromatic X-rays this is proportional to the density of the material, see (Olafsson and
Quinto, 2006, p. 2).

11

1 Image Acquisition

To turn this multiplicative relationship into an additive one, we apply the logarithm
to both sides and use a Taylor expansion10 with respect to X at X = 0, yielding

log � (G + X) = log � (G) + log (1 − 5 (G) X) = log � (G) − 5 (G) X +$
(
X2

)
≈ log � (G) − 5 (G) X.

Now we decompost the ray from the source G(to the detector G� into # + 1 pieces
of length X and obtain

log
� (G()
� (G�)

= − (log � (G�) − log � (G())

= −
#∑
9=0

log � (G(+ (9 + 1)X) − log � (G(+ 9X) ≈
=∑
9=0

5 (G(+ 9X) X,

which is nothing but a quadrature formula for the line integral∫
[G(,G�]

5 (G) 3G := ‖G� − G(‖
∫ 1

0
5 (_G(+ (1 − _)G�) 3_ (1.3.1)

normalized such that
∫
[G(,G�]

1 3G = ‖G� − G(‖.

Remark 1.3.1. The line integral in (1.3.1) has to be taken with care, as it is a
ddistributional definition and an integral over a set of measure zero in R2. This
implies some theoretical subtleties that have to be taken care of when one is inter-
ested in mathematical precision and correctness, cf. (Natterer, 1986; Natterer and
Wübbeling, 2001).

This is almost the Radon transform which has been introduced by J. Radon in
1917 for purely mathematical reasons. Given a function 5 , the transform computes
all possible line integrals of the function. This makes it necessary to paramterize
lines in R2 which can be done by a directional vector H, ‖H‖ = 1, and the signed
distance B of the line11 to the origin. The line is then

! =
{
G ∈ R2 : H)G = B

}
.

The set L of all lines R2 can be identified with R × S2, where S2 = {H : ‖H‖ = 1}
is the two dimensional unit ball, i.e., the unit circle.

Exercise 1.3.1 When do two lines !, !′ ∈ L intersect? ♦
10The Taylor expansion of log(1 − 0G) at G = 0 is

log(1 − 0G) = −
∞∑
9=1

0 9

(1 − 0H)

����
H=0

G 9 = −
∞∑
9=1

(0G) 9 .

11Some people insist on calling it a straight line though I am not aware of mathematical work that
considers non-straight lines, at least not in a euclidean context.

12

1.3 Computed Tomography

Figure 1.3.2: Schematic representation of an industrial CT scan. The object is rotated to
obtain measurements from di�erent angles.

De�nition 1.3.2 (Line integral). The line integral along a line ! = (B, H) ∈ L is
defined as ∫

!

5 (G) 3G :=
∫
R
5
(
BH⊥ + CH

)
3C, H⊥ =

(
0 −1
1 0

)
. (1.3.2)

Exercise 1.3.2 Show that ! passes through the point B H⊥. ♦

De�nition 1.3.3 (Radon transform). The Radon transform ' associates to any
any function12 5 : R2 → R the line integral

' 5 (!) :=
∫
!

5 (G) 3G.

For a fixed 5 , ' 5 : L → R maps the set of all lines in R2 to R.

In Computed Tomography an X-ray source emits radition that passes throgh the
object and the remaining intensity is recorded, either by a single moving detector,
a line detector or even a flat panel, see Fig. 1.3.2 for a schematic representation
and Fig. 1.3.3 for a real world scanner. The X-ray beams are recorded on the flat
screen and give values of ' 5 (!) for the lines connecting the source and the pixel
on the screen. In contrast to medical CT where usually the soruce and the detector
rotate around the patient, the object is rotated in industrial CT.
Since tomography computes the Radon transform along several line, the math-

ematical problem of reconstruction of the object is

Compute the inverse Radon transform of a given function

This problem can be approached mathematically and numerically. The good news
due to Radon is that the function 5 can be reconstructed from ' 5 (L) under some
mild assumptions on 5 , but the bad news is that this theoretical result requires the
knowledge of ' 5 (!) for all ! ∈ L . And the explicit formula for the inverse Radon
transform is highly unstable and numerically infeasible.
On the other hand, any realistic measurement only provides us with ' 5 (! 9),

9 = 1, . . . , # , for only a �nite number of lines which necessitates the development

12It is not really “any” function, only those for which the line integrals are well-defined. Here we
encounter the mathematical subtleties, as classical function spaces like !1 (R2) do not have this
property as integrable functions are only defined up to sets of mesaure zero which lines are.

13

1 Image Acquisition

Figure 1.3.3: Inside view of a protable CT device provided by Fraunhofer IIS/EZRT, where
one can see the aperture of the X-ray source, the rotation table and the scree
(left, �ipped to be aligned with Fig. 1.3.2). A scan of a “Kinder Überraschung”
with the figure inside displayed on the screen in the background (right).

Figure 1.3.4: Scans of a musical intrument (hurdy gurdy) with clearly visible metal artifacts.
To make it more interesting, the gray value of the artifacts is close to the
density of the wood and they cannot be removed by simple inspection of the
gray values.

and application of numerical methods for reconstruction. Of course, such methods
exist, and even with a lot of variants suitable to various scan scenarios, but there
are still problems caused by the physical realities that usually result in unwanted
artifacts in the reconstructions, see

1.4 Indirect Measurement & Inverse Problems

Tomography was already an example of an idirect measurement: the original pro-
cess does not measure the object of interest, namely the function 5 , but only the
line integrals ' 5 (!) for some lines !. One has to add a reconstruction process in
order to obtain what one is interested in.
Let us formalize that. Instead of measuring a quantity G, we only know � (G) for

some function � that is usually not injective since the measurement often include a
loss of information. In other words, there exist G ≠ G′ such that � (G) = � (G). The
simplest and even most common case of such a problem is an underdetermined
system of the form

�G = H, � ∈ R<×=, < < =. (1.4.1)

Example 1.4.1 (Optical tomography). In Optical Tomography a fluorescent marker
is activated by Laser light, see Fig. 1.4.1, and the emitted light is measured by op-

14

1.4 Indirect Measurement & Inverse Problems

Figure 1.4.1: Optical tomography where a fluorescent marker is activated by a laser and
the emitted light is recorded (left). The physical model can be used for the
“forward projection” of the light distribution on the detectors (right).

tical sensor surrounding the object. To model the problem, we place a grid on the
measured region and model the light distribution between neighboring grid cells as
well as between the boundary cells and the detectors. If we denote by G ∈ R"# the
intensity with in the "# cells of the "×# grid and by H ∈ R the values measured
at the detectors, the light distribution can be modeled by a linear system

H = �G, � ∈ R ×"# .

For su�ciently high resolution, this will be underdetermined since the number
of cells increases quadratically with the resolution, the number of detectors only
linearly.

1.4.1 Solving by Optimizing

To solve such problems, we realized that the system �G = 1 from (1.4.1) usually
has a lot of solutions, more precisely, an =−< dimensional subspace, which means
that we have to choose a solution, ideally a good one, so why not the best? We
formulate this requirement as the optimization problem

min
G
W(G), �G = 1, (1.4.2)

for some quality functional W : R= → R, which should at least be bounded
from below13, where we can assume that the bound is zero, hence W : R= → R+.
Classical examples for W are the ?-norms, W(G) = ‖G‖?, 1 ≤ ? ≤ ∞, or

W(G) = 1

2
G)�G, � strictly positive definite14. (1.4.3)

The problem in (1.4.3) is so classical that we want to have a brief look at how
it is solved. To that end, we recall a necessary condition for the existence of an
extremum of 5 : R# → R subject to 6(G) = 0, 6 : R= → R<, namely the existence
of Lagrange multipliers _ ∈ R< for which

∇ 5 (G) − ∇6(G) _ = 0, ∇6 :=

(
m
mG 9
6: :

9 = 1, . . . , =
: = 1, . . . , <

)
, (1.4.4)

13Otherwise we cannot guarantee the existence of a minimum.

15

1 Image Acquisition

l

Figure 1.4.2: Tracking a ray through the ROI. Note that the ray meets relatively few grid
elements and the length of the intersection is the clipped part of the line (right)

holds. You can learn this either in lectures on Anlysis, cf. (Heuser, 1983), or in
Optimization, cf. (Sauer, 2013b; Spellucci, 1993). For 5 (G) = 1

2G
)�G and 6(G) =

�G − 1 we get ∇ 5 (G) = �G and ∇6(G) = �) , hence our solution of (1.4.2) wiht W as
in (1.4.3) is any solution of

�G − �)_ = 0
�G = 1

⇔
(
� �)

� 0

) (
G

−_

)
=

(
0
1

)
.

The convexity of G ↦→ G)�G ensures that such a solution exists and therefore we
can solve our original problem by solving the square and symmetric15 < +=×< +=
system

�G = 3, � =

(
� �)

� 0

)
, 3 =

(
0
1

)
(1.4.5)

and forget about the first = entries of the solution since the values of _ are of no
interest.

1.4.2 Tomography once more

In pixellated form, Computed Tomography is also an inverse problem, often know
as Algebraic Reconstruction Technique (ART). To that end, we again discretize
our region of interest in R2 which, for simplicity, we assume to be the unit square
� = [0, 1]2 and decompose it into the <= subrectangles

� 9 : :=

[
9 − 1
<

,
9

<

]
×

[
: − 1
=

,
:

=

]
, 9 = 1, . . . , <, : = 1, . . . , =,

and for each ray passing � we determine which of the subrectangels � 9 : intersect
with this ray and how long this intersection is, see Fig. 1.4.2. This is a simple
clipping problem known from computer graphics. Let ℓ 9 : be the length of the
intersections with ℓ 9 : = 0 if ℓ ∩ � 9 : = ∅, and denote by ? 9 : the pixel value, i.e.,
the local absorbtion. The the complete absorption along the ray or the discrete

15This allow for special and more e�cient methods.

16

1.4 Indirect Measurement & Inverse Problems

approximation for the line integral is given as

H =

<,=∑
9 ,:=1

ℓ 9 : ? 9 : . (1.4.6)

To obtain a more familiar way of notation, we vectorize the objects in (1.4.6) as

R<= 3 l :=
(
ℓ=(9−1)+: : 9 , :

)
and R<= 3 p :=

(
?=(9−1)+: : 9 , :

)
,

so that (1.4.6) takes the form H = l) p. For # rays we then get the equations

H 9 = l)9 p, 9 = 1, . . . , #, hence y = R p, R =
©«
l)1
...

l)#

ª®®¬ ∈ R#×=<, (1.4.7)

which gives a usually underdetermined system of equations.

Example 1.4.2. Let us consider the simplest possible example, namely the four
pixel system

0 1

2 3

and let us shoot two horizontal and two vertical rays through it, giving

1

2
(0 + 1) = H1

1

2
(2 + 3) = H2

1

2
(0 + 2) = H3

1

2
(1 + 3) = H4

yielding the linear system

1

2

©«
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

ª®®®¬︸ ︷︷ ︸
=:�

©«
0

1

2

3

ª®®®¬ = H,

which is not solvable except when H1 + H2 = H3 + H4. A precise measurement of the
rays should have this property, and then we can write H4 = H3 − H1 − H2, hence H4 is
redundant and we can reconstruct a one-parameter family of solutions from the first
three equations above. But after a small perturbation of the measurements, there
is no choice any more for 0, 1, 2, 3 that is really consistent with the measurements.

17

1 Image Acquisition

Again this can be solved by minimizing the quadratic error, i.e., by solving

1

4
�) �G = �) H, G =

©«
0

1

2

3

ª®®®¬ ,
or, explicitly

1

4

©«
2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

ª®®®¬
©«
0

1

2

3

ª®®®¬ =
©«
H1 + H3
H1 + H4
H2 + H3
H2 + H4

ª®®®¬
that can be shown to have a one dimensional space of solutions from which we can
pick, for example, the minimal norm one.

Exercise 1.4.1 Show that the matrices � and �) � have rank 3 and form the linear
system that computes the minimal norm solution. ♦

Exercise 1.4.2 Implement this method in Matlab/Octave and test its reconstruc-
tion quality. ♦

1.5 Summary

This short and fully incomplete overview over imaging problems shows that there
are lost of image acquisition methods that result in completely di�erent image
models and also completely di�erent mathematical challenges: in photography
one may have to compensate distortions in other imaging modalities we may have
to reconstruct inverse problems. Measurements could be corrupted by noise and
artifacts and di�erent types of things may have to be detected automatically in
images. Therefore, image processing methods will have to be developed depending
on the nature and modality of the images and there definitely is no general method
or theory that covers everything. This may appear threatening, but it is quite
the contrary, it leaves room for creativity, even if it requires a somewhat wider
knowledge of methods.

18

Mathematical
Foundations of Signal

Processing 2
Reality is software. What does it matter what system it’s running on?

(R. Rucker, Postsingular)

In the end, there is no choice: the methods use in Image Processing are of a
mathematical nature and the more powerful they are, the more substantial is the
math. Therefore it does not hurt to meet with some mathematical basics in Signal
and Image Processing.

2.1 Signal Spaces

For us a signal is a mapping 5 : � → R sein, where � ⊆ R3 for some 3 with
maybe an emphasis on 3 = 1. Particular cases for � are in the case 3 = 1

1. � = R: an unbounded signal defined on a continuum, no beginning, no end,
no gaps.

2. � = [0, 1]: a time-limited continuum signal. By an a�ne rescaling, we can
always ensure that 0 = 0 and 1 = 2c. If, in addition 5 (0) = 5 (2c), we can
extend the signal periodically on R by setting

5 (G + 2:c) := 5 (G), G ∈ [0, 2c], : ∈ Z.

In the same way, we can consider any 2c periodic functions as functions on
the torus T = R/2cZ ' [0, 2c). Periodic functions are “half infite” as they
have no boundary again, though they live on a compact domain.

3. � = Z: a disrecte signal, in other words, a biinfinite sequence. We will
nevertheless write sequences as functions as this gives some nice analogies.

The above definition of a signal as a function is so general that it is almost totally
arbitrary and meaningless. We have to get a bit more restrictive and to that end,
will define particular signal spaces of functions that are bounded in some sense.

De�nition 2.1.1 (Signal spaces). We denote ! (R) all functions 5 : R→ R that are
at least locally integrable1 and by ℓ(Z) all real sequences, i.e., functions 5 : Z→ R,
and define the following spaces:

1We will not get specific here on what this means. Whenever we formulate integrals and sums we
implicitly assume that the underlying objects are such that the integral or sum is well defined,
at least if not stated otherwise. This is slightly imprecise but avoids getting lost in details that
are, of course, relevant in principle, but not here.

19

2 Mathematical Foundations of Signal Processing

1. square summable functions

!2(R) :=
{
5 ∈ ! (R) : ∞ > ‖ 5 ‖2 :=

(∫
R
| 5 (C) |2 3C

)1/2}
and sequences

ℓ2(Z) :=
2 ∈ ℓ(Z) : ∞ > ‖2‖2 :=

(∑
:∈Z
|2(:) |2

)1/2 ;

these are often called functions and sequences of finite energy is ‖ 5 ‖2 in many
cases.

2. absolutely summable functions and sequences, defined by finiteness of the
norms

‖ 5 ‖1 :=
∫
R
| 5 (C) | 3C and ‖2‖1 :=

∑
:∈Z
|2(:) | .

3. bounded functions and sequences for which the norms

‖ 5 ‖∞ := sup
C∈R
| 5 (C) | and ‖2‖∞ := sup

:∈R
|2(:) | .

are finite. But be careful: in case of the continuum, the supremum is an
essential supremum with possible exceptions on sets of measure zero.

4. �nitely supported functions and sequences for which there exists # ∈ N
such that

{C ∈ R : 5 (C) ≠ 0}
{: ∈ Z : 2(:) ≠ 0}

}
⊆ [−#, #] ,

again up to sets of measure zero in the continuum case. Such function spaces
we write as !0(R) or ℓ0(Z), since in the latter case ℓ0(Z) is the space of all
sequences such that

‖2‖0 := #{: ∈ Z : 2(:) ≠ 0}

is finite.

Remark 2.1.2. The spaces !1(R), !2(R), !∞(R) as well as ℓ1(Z), ℓ2(Z) und ℓ∞(Z)
all form a Banach space, i.e., they are complete2, and !0(R) and ℓ0(Z) are dense
in !1(R) and !2(R) and ℓ1(Z) and ℓ2(Z) respectively, but not !∞(R) bzw. ℓ∞(Z).

De�nition 2.1.3 (X distribution, Dirac pulse). A particular discrete signal is the
pulse X ∈ ℓ0(Z), defined as

X(:) = X0: =
{
1, : = 0,
0, : ≠ 0.

2Recall that this means that any Cauchy sequence has a limit in the space. R is a Banach space,
Q isn’t.

20

2.2 Fourier

This is often considered as a discrete version of the “Dirac function”, a “function”
that vanishes everywhere except at the origin where it is so large that∫

R
5 (G) X(G) 3G = 5 (0)

for any “reasonable” 5 . This however, defines only a distribution that should not
at all be handled like a function.

To switch between continuous and discrete signal spaces, we define the sampling
operator (ℎ : ! (R) → ℓ(Z) with stepsize ℎ as

((ℎ 5) (:) := 5 (ℎ:) , : ∈ Z. (2.1.1)

Remark 2.1.4. Formally, the operator (ℎ makes no sense for arbitrary integrable
functions since it is determined by the behavior of 5 on the set ℎZ of measure zero.
This can be cured by requiring a certain (piecewise) continuity of 5 or by setting

5 (ℎ:) = lim
Y→0

1

2Y

∫ Y

−Y
5 (ℎ: + C) 3C

and making ℎ: a Lebesgue point3 see (Akhieser, 1988).

This already leads to a very interesting and fundamental mathematical problem:
for which functions 5 can we invert the sampling process, i.e., for which functions
can 5 be reconstructed from (ℎ 5 ? Obviously, these are the functions for which the
discretization is equivalent to the original function or, in other words, the functions
that can be losslessly discretized.

2.2 Fourier

The most fundamental mathematical tool for Signal and Image Processing is with-
out doubt the Fourier transform of a function 5 , especially for 5 ∈ !2. We will
mainly focus on the formal calculus here and not on all the theoretic details for
which we refer to (Katznelson, 1976), for example.

2.2.1 De�nition & Calculus

De�nition 2.2.1. For 5 ∈ !1(R) we define its Fourier transform 5̂ : R→ C as

5̂ (b) := 5 ∧(b) :=
∫
R
5 (C) 4−8bC 3C, b ∈ R, (2.2.1)

and the Fourier transform of 2 ∈ ℓ1(Z) is the discrete counterpart

2̂(b) := 2∧(b) :=
∑
:∈Z

2(:) 4−8:b , b ∈ R. (2.2.2)

3This is just to show that there are subtle problems but also a theory to overcome them.

21

2 Mathematical Foundations of Signal Processing

Remark 2.2.2. 1. In the physical or technical interpretation of signals, the Fourier
transform describes the contribution of the respective frequency to the signal.

2. The condition 5 ∈ !1(R) guarantees that 5̂ (b) exists for b ∈ R in the sense
that the value is finite:��� 5̂ (b)��� ≤ ∫

R
| 5 (C) |

��4−8bC ��︸︷︷︸
=1

3C = ‖ 5 ‖1 . (2.2.3)

Note however that 5 ∈ !1(R) is only su�cient, but not necessary for the
pointwise existence of the Fourier transform.

3. Sometimes the Fourier transform is equipped with a normalizing factor (2c)1/2,
and we will soon see why. When using di�erent literature, or even worse,
libraries, one should check very carefully which normalization is applied,
otherwise the constant factor can cause nasty trouble.

4. The Fourier transform can also be defined for more general objects, for exam-
ple for tempered distributions, cf. (Katznelson, 1976; Yosida, 1965). More-
over, it not only exists on R or R= but on general locally compact abelian
groups using the associated Haar measure.

5. The two most important group operations4 on R are translation and dila-
tion, that is, the two operators gH and fℎ, defined as

gH 5 = 5 (· + H) and fℎ 5 = 5 (ℎ·) ,

respectively.

De�nition 2.2.3 (Convolution). For 5 , 6 ∈ ! (R) and 2, 3 ∈ ℓ(Z) we define the
convolution

5 ∗ 6 :=

∫
R
5 (· − C) 6(C) 3C, ∗ : ! (R) × ! (R) → ! (R), (2.2.4)

and
2 ∗ 3 :=

∑
:∈Z

2(· − :) 3 (:), ∗ : ℓ(R) × ℓ(R) → ℓ(R), (2.2.5)

as well as

2 ∗ 5 := 5 ∗ 2 :=
∑
:∈Z

5 (· − :) 2(:), ∗ : ! (R) × ℓ(R) → ! (R), (2.2.6)

whenever the sums or integrals exist. The convolution (2.2.4) is called continuous
the one in (2.2.5) discrete and the one in (2.2.6) semidiscrete.

Next, we give and prove the fundamental computational rules in Fourier calculus.

4This means groups of operations acting on functions defined on R, and these operations have an
inverse of the same type.

22

2.2 Fourier

Theorem 2.2.4 (Properties of the Fourier transform). The following statements hold
true:

1. For 5 ∈ !1(R) and H ∈ R,(
gH 5

)∧ (b) = 48Hb 5̂ (b), b ∈ R. (2.2.7)

2. For 5 ∈ !1(R) and ℎ > 0

(fℎ 5)∧ (b) =
5̂
(
ℎ−1b

)
ℎ

, b ∈ R. (2.2.8)

3. For 5 , 6 ∈ !1(R) and 2, 3 ∈ ℓ1(Z) one has that 5 ∗ 6 ∈ !1(R) and 2 ∗ 3 ∈ ℓ1(Z),
respectively. Moreover, for b ∈ R,

(5 ∗ 6)∧ (b) = 5̂ (b) 6̂(b), bzw. (2 ∗ 3)∧ (b) = 2̂(b) 3̂ (b). (2.2.9)

4. For 5 ∈ !1(R) and 2 ∈ ℓ1(Z) one has that 5 ∗ 2 ∈ !1(R) and

(5 ∗ 2)∧ (b) = 5̂ (b) 2̂(b), b ∈ R. (2.2.10)

5. If 5 , 5 ′ ∈ !1(R) then (
3

3G
5

)∧
(b) = 8b 5̂ (b), b ∈ R. (2.2.11)

6. If 5 , G 5 ∈ !1(R), then 5̂ is di�erentiable and

3

3b
5̂ (b) = (−8G 5)∧ (b), b ∈ R. (2.2.12)

7. If 5 , 5̂ ∈ !1(R), then

5 (G) =
(
5̂

)∨
(G) := 1

2c

∫
R
5̂ (o) 48Go 3o. (2.2.13)

De�nition 2.2.5. The operation 5 ↦→ 5 ∨ := 1
2c 5

∧(−·) is called inverse Fourier
transform5.

Proof: For 1) we compute(
gH 5

)∧ (b) =

∫
R
5 (C + H) 4−8bC 3C =

∫
R
5 (C) 4−8b (C−H) 3C = 48Hb

∫
R
5 (C) 4−8bC 3C

= 48Hb 5̂ (b),
5For obvious reasons.

23

2 Mathematical Foundations of Signal Processing

while 2) is done similarly:

(fℎ 5)∧ (b) =
∫
R
5 (ℎC) 4−8bC 3C = 1

ℎ

∫
R
5 (C) 4−8(b/ℎ)C 3C =

5̂

(
b

ℎ

)
ℎ

.

The first statement, 3) follows from

‖ 5 ∗ 6‖1 =
∫
R

����∫
R
5 (C)6(B − C) 3C

���� 3B ≤ ∫
R

∫
R
| 5 (C)6(B) | 3C 3B = ‖ 5 ‖1 ‖6‖1

and

‖2 ∗ 3‖1 =
∑
9∈Z

�����∑
:∈Z

2(:) 3 (9 − :)
����� ≤ ∑

9 ,:∈Z
|2(:) 3 (9) | = ‖2‖1 ‖3‖1 ,

respectively, the second, more interesting part is proved as

(5 ∗ 6)∧ (b) =

∫
R

(∫
R
5 (B)6(C − B) 3B

)
4−8bC3C

=

∫
R

∫
R
5 (B) 4−8bB 6(C − B) 4−8b (C−B) 3B3C = 5̂ (b) 6̂(b),

and

(2 ∗ 3)∧ (b) =
∑
9∈Z

(∑
:∈Z

2(:) 3 (9 − :)
)
4−8 9b =

∑
9 ,:∈Z

2(:) 4−8:b 3 (9 − :) 4−8(9−:)b

= 5̂ (b) 6̂(b).

4) follows from Exercise 2.2.1 and

(5 ∗ 2)∧ (b) =

∫
R

∑
:∈Z

5 (C − :) 2(:)4−8bC 3C =
∫
R

∑
:∈Z

5 (C − :) 4−8b (C−:) 2(:) 4−8:b

= 5̂ (b) 2̂(b),

oder directly by use of (2.2.7). For 5 we use partial integration6, to obtain

(5 ′)∧ (b) =
∫
R

35

3C
(C)4−8bC 3C = −

∫
R
5 (C) 3

3C
4−8bC 3C = 8b

∫
R
5 (C)4−8bC 3C = 8b 5̂ (b).

6) is obtained by computing, for ℎ > 0, the di�erence quotient,

5̂ (b + ℎ) − 5̂ (b)
ℎ

=

∫
R
5 (C) 4

−8(b+ℎ)C − 4−8bC
ℎ

3C =

∫
R
5 (C) 4−8bC 4

−8ℎC − 1
ℎ

3C;

the integral exists since G 5 ∈ !1(R) and

lim
ℎ→0

4−8ℎC − 1
ℎ

= lim
ℎ→0
(−8C) 4−8ℎC = −8C

6This is justified by the fact that for 5 ∈ !1 (R) one always has limG→±∞ | 5 (G) | = 0 and that
compactly supported functions are dense in !1 (R) with respect to the norm ‖·‖1.

24

2.2 Fourier

implies (2.2.12). The proof of 7) is a bit more complex and uses the Fejer kernel

�_ := _� (_·) , _ > 0, � (G) := 1

2c

∫ 1

−1
(1 − |C |) 48GC 3C, G ∈ R,

which has the property that for any 5 ∈ !1(R)

lim
_→∞
‖ 5 − 5 ∗ �_‖ = 0, (2.2.14)

see (Katznelson, 1976, S. 124–126), hence 5 ∗ �_ → 5 pointwise almost every-
where7. Since we consider a limit _→∞, we can assume without loss of generality
that _ > 1 and get for G ∈ R that

5 ∗ �_ (G) =
1

2c

∫
R
5 (C)

(
_

∫ 1

−1
(1 − |o |) 48(G−C)_o 3o

)
3C

=
1

2c

∫
R
5 (C)

∫ _

−_

(
1 − |o |

_

)
48(G−C)o 3o 3C

=
1

2c

∫ _

−_

(
1 − |o |

_

) ∫
R
5 (C) 4−8Co 3C︸ ︷︷ ︸
= 5̂ (o)

48Go 3o

=
1

2c

∫ _

−_

(
1 − |o |

_

)
5̂ (o) 48Go 3o

=
1

2c

∫
0≤|o |≤

√
_

1−1/
√
_≤ · ≤1︷ ︸︸ ︷(

1 − |o |
_

)
5̂ (o) 48Go 3o

︸ ︷︷ ︸
→ 1

2c

∫
R
5̂ (o) 48Go 3o

+ 1

2c

∫
√
≤|o |≤

(
1 − |o |

_

)
5̂ (o) 48Go 3o

︸ ︷︷ ︸
→0

,

at least in the limit _→∞. The second integral tends to 0, since it can be estimated
by�������

∫
√
≤|o |≤

(
1 − |o |

_

)
5̂ (o) 48Go 3o

�������
≤

∫
√
≤|o |≤

����1 − |o |_ ����︸ ︷︷ ︸
≤1

��� 5̂ (o)��� ��48Go��︸︷︷︸
=1

3o ≤
∫

√
≤|o |≤

��� 5̂ (o)��� 3o ≤ ∫
√
_≤|o |

��� 5̂ (o)��� 3o,
which converges to zero for 5̂ ∈ !1(R) as _→∞. �

Remark 2.2.6. One could prove the inverse Fourier transform in naive way by
inserting the terms, exchanging the integrals

5̂ ∨(G) = 1

2c

∫
R

∫
R
5 (C)4−8\C48G\ 3C3\ = 1

2c

∫
R
5 (C)

(∫
R
48\ (C−G)3\

)
3C

7At least for a subsequence, see (Forster, 1984, S. 96).

25

2 Mathematical Foundations of Signal Processing

and find out that
∫
R
48\ (C−G)3\ is the “Dirac delta” X(· − G) which is infinite at G and

zero otherwise, since, for G ≠ 0,∫
R
48\G3\ =

∑
:∈Z

∫ 2(:+1)c/G

2:c/G
cos \G + 8 sin \G 3\︸ ︷︷ ︸
=0

= 0. (2.2.15)

As convincing as (2.2.15) might appear, the argument is wrong. With the same
“idea” we would get for ℎ > 0 that∫
R
48\G3\ =

∫ ℎ/G

−ℎ/G
48\G3\ +

∞∑
:=0

∫ (ℎ+2(:+1)c)/G

(ℎ+2:c)/G
48\G3\ +

∞∑
:=0

∫ −(ℎ+2(:+1)c)/G

−(ℎ2:c)/G
48\G3\

= 2 sin ℎ,

which would assume any value between −2 and 2. The problem is that the function
48\G is simply not integrable and therefore the integral is meaningless. This shows
that mathematical details matter and this lecture usually cares, even if the details
are not mentioned.

Exercise 2.2.1 Show that for 5 ∈ !1(R) and 2 ∈ ℓ1(Z) the inequality

‖ 5 ∗ 2‖1 ≤ ‖ 5 ‖1 ‖2‖1

holds. ♦

Exercise 2.2.2 Prove without using (2.2.11) that for 5 , 5 ′ ∈ !1(R), one has
(5 ′)∧ (0) = 0.
Hint: partial integration. ♦

Exercise 2.2.3 Show for 5 ∈ !1(R) and ℎ ≠ 0 that

(fℎ 5)∧ =
5̂
(
ℎ−1·

)
|ℎ | (2.2.8′).

♦

Example 2.2.7. Let us compute a Fourier transform, namely that of the cardinal
B-spline, defined as #0 = j := j[0,1] and # 9 = j ∗# 9−1, 9 ∈ N. Hence, the cardinal
B-spline # 9 of order 9 is the (9 + 1)-fold autoconvolution of the characteristic
function. In particular,

#̂0(b) = ĵ(b) =
∫
R
j(C) 4−8bC 3C =

∫ 1

0
4−8bC 3C =

4−8bC

−8b

����1
C=0

=
1 − 4−8b
8b

,

and therefore, by (2.2.9),

#̂ 9 (b) = (ĵ(b)) 9+1 =
(
1 − 4−8b
8b

) 9+1
.

Life can be simple.

26

2.2 Fourier

Exercise 2.2.4 The centered B-spline " 9 , 9 ∈ N0, is defined as

" 9 = j[−1/2,1/2] ∗ · · · ∗ j[−1/2,1/2]︸ ︷︷ ︸
9+1

.

Show that

1. these functions are even: " 9 (−G) = " 9 (G), G ∈ R,

2. for 9 ∈ N0 one has

"̂ 9 (b) =
(
sin b/2
b/2

) 9+1
, b ∈ R.

♦

2.2.2 Continuity & Decay

Next, we note that for 5 ∈ !1(R) and b, [∈ R we have��� 5̂ (b + [) − 5̂ (b)��� ≤ ∫
R
| 5 (C) |

��4−8bC ��︸︷︷︸
=1

��4−8[C − 1�� 3C = ∫
R
| 5 (C) |

��4−8[C − 1�� 3C,
whose right hand side is independent of b. Its limit [→ 0 is zero since for any
Y > 0 there exists # > 0, such that∫

|C |>#
| 5 (C) | 3C < Y,

while a su�ciently small value8 [, the function
��4−8[C − 1�� can be made as small as

we want on [−#, #]. We can summarize this finding as follows.

Proposition 2.2.8. If 5 ∈ !1(R), then 5̂ ∈ �D (R), which is the vector space of uniformly
continuous and bounded9 functions.

The behaviour of 5̂ (b) for |b | → ∞ is described in the next result.

Proposition 2.2.9 (Riemann–Lebesgue Lemma). For 5 ∈ !1(R),

lim
b→±∞

5̂ (b) = 0. (2.2.16)

Proof: If, in addition 5 ′ ∈ !1(R), (2.2.16) is an immediate consequence of (2.2.11)
and (2.2.3):

‖ 5 ′‖1 ≥
��(5 ′)∧ (b)�� = |b | ��� 5̂ (b)��� , b ∈ R,

8It is a good exercise to determine that value explicitly.
9See (2.2.3).

27

2 Mathematical Foundations of Signal Processing

hence
��� 5̂ (b)��� ≤ ‖ 5 ′‖1 /|b | → 0 for |b | → ∞. For arbitrary 5 ∈ !1(R) and di�eren-

tiable 6 ∈ !1(R) mit10 such that ‖ 5 − 6‖1 ≤ Y, we have

‖ 5 − 6‖1 ≥
��� 5̂ (b) − 6̂(b)��� ≥ ��� 5̂ (b)��� − |6̂(b) | ,

that is
lim
|b |→∞

��� 5̂ (b)��� ≤ lim
|b |→∞

|6̂(b) | + ‖ 5 − 6‖1 ≤ Y

and since Y can be chosen arbitrarily small, the claim follows. �

2.2.3 Square Integrable & Isometry

So far we have defined the Fourier transform for !1 functions, so what about other
spaces, in particular !2(R) which plays a fundamental role in Signal Processing.
Here we make use of the fact that !1(R) ∩ !? (R) is a dense subset of !? (R) for
1 < ? < ∞ and that in the !2 case we have a particularly nice isometry between
functions and their Fourier transform.

Theorem 2.2.10 (Parseval-Plancherel). For 5 , 6 ∈ !1(R) ∩ !2(R),∫
R
5 (C) 6(C) 3C = 1

2c

∫
R
5̂ (o) 6̂(o) 3o, (2.2.17)

in particular, for 5 = 6,

‖ 5 ‖2 =
1
√
2c

 5̂
2
. (2.2.18)

In other words: up to normalization11 the Fourier transform is an isometry on !2(R).

Theorem 2.2.10 allows us to transfer the Fourier transform to !2(R): given 5 ∈
!2(R), we consider the sequence

5= := j[−=,=] · 5 ∈ !1(R) ∩ !2(R), = ∈ N,

which converges to 5 for =→∞ in the norm ‖·‖2. Since 5̂=+: − 5̂=
2
=

(5=+: − 5)∧2 = √2c ‖ 5=+: − 5=‖2 , :, = ∈ N,

5̂= is a Cauchy sequence and converges in the (complete) Banach space !2(R) to
a function, that will be defined as 5̂ .
Proof of Theorem 2.2.10: Defining

ℎ(G) =
∫
R
5 (C) 6 (C − G) 3C = (5 ∗ 6(−·)) (G), G ∈ R,

10�∞00 (R), the space of infinitely di�erentiable functions with compact support is already a dens
subspace of !1 (R). This is one of the fundamental results in !? theory.

11And the normalization that has this property is

5̂ (b) := 1
√
2c

∫
R
5 (G) 4−8G b 3G.

28

2.2 Fourier

we get that ℎ(0) =
∫
5 6. Moreover,

ℎ̂(b) = 5̂ (b) (6(−·))∧ (b)︸ ︷︷ ︸
=6̂(b)

= 5̂ (b) 6̂(b), b ∈ R.

If now 5 and 6 are so “nice” that12 5̂ , 6̂ ∈ !2(R), then (2.2.13) yields that

1

2c

∫
R
5̂ (o) 6̂(o) 3o = 1

2c

∫
R
ℎ̂(o) 480\ 3o = ℎ(0) =

∫
R
5 (C) 6(C) 3C,

which is the Perseval formula(2.2.17) from which the Plancherel identity (2.2.18)
follows immediately. �

2.2.4 Fourier Series & Torus

Next, we have a look at Fourier Analysis on the torus T = R/2cZ where we will
encounter the concept of a Fourier series which we will connect to the Fourier
transform encountered so far. This will become a fundamental building block for
the proof of the Shannon sampling theorem. But let us start with the definition.

De�nition 2.2.11. For 5 ∈ !1(T), the Fourier coe�cients are defined as

5̂ (:) := 5: :=
1

2c

∫
T
5 (C) 4−8:C 3C, : ∈ Z,

and the Fourier series of 5 is

F 5 :=
∑
:∈Z

5: 4
8: ·. (2.2.19)

Remark 2.2.12. In general, convergence of the Fourier series is a tricky issue as
soon as 5 is not chosen from !1(R) or !2(R).
The trigonometric series in (2.2.19) should be familiar to us: if we define for

5 ∈ !1(T) with Fourier coe�cients 5: , : ∈ Z, the sequence
2 5 (:) = 5: , : ∈ Z,

then 2 5 ∈ ℓ1(Z) and, according to Definition 2.2.1, in particular (2.2.2)), we have
that

F 5 (b) = 2̂ 5 (−b), b ∈ R. (2.2.20)

Since, in addition, for 9 , : ∈ Z,∫
T
4−8 9 C48:C 3C =

∫ c

−c
48(:− 9)C 3C =

{
2c, 9 = :,

1
8(:− 9) 4

8(:− 9)C
���c
C=−c

= 0, 9 ≠ :,
(2.2.21)

we get for : ∈ Z that

2(:) = 1

2c

∫
T

∑
9∈Z

2(9)48 9 C 4−8:C 3C = 1

2c

∫
T
2̂(\) 48:\ 3\ =: (2̂)∨ (:). (2.2.22)

In other words: we already found an inverse Fourier transform here.

Exercise 2.2.5 Show that
12This is the case whenever 5̂ , 6̂ ∈ !2(R) which is the case for di�erentiable 5 , 6.

29

2 Mathematical Foundations of Signal Processing

1. 5 ∈ !1(T) implies 5̂ ∈ ℓ1(Z),

2. 2 ∈ ℓ1(Z) auch 2̂ ∈ !1(T).

♦
The following theorem connects Fourier series to the Fourier transform.

Theorem 2.2.13 (Poisson summation formula). For 5 ∈ !1(R), we have∑
:∈Z

5 (2:c) = 1

2c

∑
:∈Z

5̂ (:) and
∑
:∈Z

5 (:) =
∑
:∈Z

5̂ (2:c) . (2.2.23)

Proof: We “wrap” 5 into

6(G) =
∑
:∈Z

5 (G + 2:c) , G ∈ R, (2.2.24)

and remark that 6 (G + 2c) = 6(G), hence 6 is 2c periodic. Moreover,

‖6‖T,1 =

∫
T
|6(C) | 3C =

∫
T

�����∑
:∈Z

5 (C + 2:c)
����� 3C ≤∑

:∈Z

∫ 2c

0
| 5 (C + 2:c) | 3C

=

∫
R
| 5 (C) | 3C = ‖ 5 ‖R,1

verifies that 6 ∈ !1(T) and well defined. The Fourier coe�cients 6: of 6 have the
form

6: =
1

2c

∫
T
6(C) 4−8:C 3C = 1

2c

∫
T

∑
ℓ∈Z

5 (C + 2ℓc) 4−8:C 3C

=
1

2c

∫
T

∑
ℓ∈Z

5 (C + 2ℓc) 4−8:C 4−28c:ℓ︸ ︷︷ ︸
=1

3C =
1

2c

∫
T

∑
ℓ∈Z

5 (C + 2ℓc) 4−8: (C+2ℓc) 3C

=
1

2c

∑
ℓ∈Z

∫ 2(ℓ+1)c

2ℓc
5 (C) 4−8:C 3C = 1

2c

∫
R
5 (C) 4−8:C 3C = 1

2c
5̂ (:)

and, assuming that the partial sums of the Fourier series would converge13, we find
that

1

2c

∑
:∈Z

5̂ (:) =
∑
:∈Z

6: 48:0︸︷︷︸
=1

= 6(0) =
∑
:∈Z

5 (0 + 2:c) =
∑
:∈Z

5 (2:c) ,

which gives the first identity (2.2.23). This identity and (2.2.8) yield that∑
:∈Z

5 (:) =
∑
:∈Z

(
f(2c)−1 5

)
(2:c) = 1

2c

∑
:∈Z

(
f(2c)−1 5

)∧
(:) =

∑
:∈Z

5̂ (2:c) .

�

13Otherwise the proof gets a bit more tricky and involves a summation method like the Féjer kernel.

30

2.3 The Sampling Theorem

2.3 The Sampling Theorem

Now we have all the tools necessary to answer the question posed earlier, namely
which functions can be uniquely reconstructed from their samples. We begin with
two important concepts.

De�nition 2.3.1.

1. A function 5 ∈ !1(R) is called bandlimited with bandwidth) , or) -
bandlimited for short, if

5̂ (b) = 0, b ∉ [−),)] .

2. The sinus cardinalis oder sinc function14 is defined as

sinc (G) := sin cG

cG
, G ∈ R.

Remark 2.3.2. Since

sinc 0 = lim
G→0

sin cG

cG
= lim
G→0

c cos cG

c
= cos 0 = 1

we have that
((1sinc) (:) = sinc (:) = X(:), : ∈ Z. (2.3.1)

This is why the function is called “cardinal”: restricted to the integers Z it takes
the values 0 and 0, more precisely, sinc |Z = X.

The next result, due to the “father” of digital Signal Processing, Claude Shannon
tells us that bandlimited function can be reconstructed exactly from their discrete
samples. This is one of the fundamental theorems in Signal Processing.

Theorem 2.3.3 (Shannon Sampling Theorem). If 5 ∈ !1(R) is a) -bandlimited
function and ℎ < ℎ∗ = c

)
, then

5 = ((ℎ 5 ∗ sinc)
(
ℎ−1·

)
=

∑
:∈Z

5 (ℎ:) sin c (G/ℎ − :)
c (G/ℎ − :) . (2.3.2)

Remark 2.3.4. The relationship between the bandwidth) of the function and the
sampling resolution ℎ is a central and fundamental concept, which justifies a few
remarks:

1. In the literature one often finds the statement that the sampling frequency
1/ℎ, often called the Nyquist frequency, should be leass than half of the
maximal frequency) , not) as in Theorem 2.3.3. This is due to the fact
that) denotes the width of the support interval there, i.e., 5̂ is supported on[
−)2 ,

)
2

]
in this case, cf. (Kammeyer and Kroschel, 1998). Such normalization

issue are fairly common and show that definitions should be checked carefully
when using di�erent sources.

14In the engineering literatur the name si function is also common.

31

2 Mathematical Foundations of Signal Processing

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20 40 60

line 1

Figure 2.3.1: Plot of the sinc function

2. The sinc function is not really a good way for the numerical reconstruction
of the signal. It has no finite support and only decays like 1

G
, so that it is not

even clear immediately whether it is an !1 function15. This implies that the
explicit formula (2.3.2) cannot be recommended in practical applications.

3. In practical applications the sampling rate is often chosen as ℎ∗/: for some
integer : which results in a sampling frequency that is the : -fold of what
would be necessary. This is called (: -fold) oversampling.

4. Many books on Signal Processing from an electrical engineering, for example
(Grüningen, 1993) oder (Schüßler, 1992), background provide “proofs” of
the sampling theorem that are not reproducible from a strictly mathematical
perspective. Often the “Dirac comb”, an infinite sum of distributions, is
treated as if it were a function. A formally correct proof is the one in (Mallat,
1999), the one here is a modification of the one in (Kammeyer and Kroschel,
1998).

5. The origin of the theorem and the proof is also a story if its own. The first
formulation and proof, then in the purely mathematical context of (infinite)
interpolation, is due toWhittaker in 1935 (Whittaker, 1935) and was rediscov-
ered16 by Shannon in 1949 (Shannon, 1949). But Shannon must be credited
for realizing its meaning for Signal Processing. And of course, for any The-
orem there must be a Russian who discovered it, in this case it is Kotelnikov
(Kotelnikov, 1933) even in 1933.

15Answer: it is. Exercise: prove that.
16Probably independently.

32

2.3 The Sampling Theorem

Proof of Theorem 2.3.3: Since 5 is bandlimited, we have that 5̂ ∈ �D (R)∩!00(R),
hence also 5̂ ∈ !1(R). For ℎ > 0 and : ∈ Z the discrete relation (2.2.22) implies
that

(ℎ 5 (:) =
(
((ℎ 5)∧

)∨ (:) = 1

2c

∫
T
((ℎ 5)∧ (\) 48:\ 3\, (2.3.3)

as well as

(ℎ 5 (:) = 5 (ℎ:)

= 5̂ ∨(ℎ:) = 1

2c

∫
R
5̂ (\) 48ℎ:\ 3\ = 1

2c

∑
9∈Z

∫
ℎ−1 ([−c,c]+2c 9)

5̂ (\) 48ℎ:\ 3\

=
1

2c

∑
9∈Z

ℎ−1
c+2c 9∫

−c+2 9c

5̂

(
ℎ−1\

)
48:\ 3\ =

1

2cℎ

∑
9∈Z

∫ c

−c
5̂

(
ℎ−1(\ + 2c 9)

)
48:\ 3\

=
1

2cℎ

∫ c

−c

(∑
9∈Z

5̂

(
ℎ−1(\ + 2c 9)

))
48:\3\ =:

1

2c

∫ c

−c
� (\) 48:\ ,

that is,

(ℎ 5 (:) =
1

2c

∫ c

−c
� (\) 48:\ , � =

1

ℎ

∑
9∈Z

5̂

(
ℎ−1(· + 2c 9)

)
. (2.3.4)

The function � satisfies � ∈ � (T) ⊂ !1(T) since it is obviously 2c periodic and
due to 5 being bandlimited the sum defining � (\) has only finitely many nonzero
terms for any \ ∈ [0, 2c]. From (2.3.3) and (2.3.4) it therefore follows that

0 =
1

2c

∫
T

(
((ℎ 5)∧ (\) − � (\)

)
48:\ 3\, : ∈ Z,

and since the exponential functions 48: ·, : ∈ Z, form a complete system of or-
thonormal functions17, cf. (Sauer, 2014), we obtain the identity

ℎ−1
∑
9∈Z

5̂

(
ℎ−1(\ + 2c 9)

)
= � (\) = ((ℎ 5)∧ (\) =

∑
9∈Z

5 (ℎ 9) 4−8 9\ , \ ∈ T.

(2.3.5)
If ℎ is so small that

ℎ−1 [−c, c] ⊇ [−),)] ⇐⇒ [−c, c] ⊇ [−)ℎ,)ℎ] ⇐⇒)ℎ < c

⇐⇒ ℎ <
c

)
,

we get for 9 > 0 and \ ∈ [−c, c] that

ℎ−1 (\ + 2c 9) >)

c
(−c + 2c 9) ≥) (−1 + 2 9) ≥),

17The only function which has all Fourier coe�cients equal to zero is the zero function.

33

2 Mathematical Foundations of Signal Processing

and analogously for 9 < 0 that ℎ−1 (\ + 2c 9) < −) . This implies that the sum on
the left hand side of (2.3.5) consists only of the term with 9 = 0 and replacing \ by
ℎb allows us to conclude that

5̂ (b) = ℎ
∑
9∈Z

5 (ℎ 9) 4−8 9 ℎb .

Therefore, the assumptions that) < c/ℎ and that 5 is) -bandlimited, yield that

5 (G) =
1

2c

∫
R
5̂ (\) 48G\ 3\ = 1

2c

∫ c/ℎ

−c/ℎ
5̂ (\) 48G\ 3\

=
ℎ

2c

∫ c/ℎ

−c/ℎ

∑
9∈Z

5 (ℎ 9) 48(G− 9 ℎ)\ 3\

=
ℎ

2c

∑
9∈Z

5 (ℎ 9)
∫ c/ℎ

−c/ℎ
48(G− 9 ℎ)\ 3\ =

ℎ

2c

∑
9∈Z

5 (ℎ 9)
[
48(G− 9 ℎ)\

8(G − 9 ℎ)

����c/ℎ
\=−c/ℎ

]
=

∑
9∈Z

5 (ℎ 9) 4
8(G− 9 ℎ)c/ℎ − 4−8(G− 9 ℎ)c/ℎ

28︸ ︷︷ ︸
=sin c(G/ℎ− 9)

ℎ

c

1

(G − 9 ℎ)︸ ︷︷ ︸
=(c(G/ℎ− 9))−1

=
∑
9∈Z

5 (ℎ 9) sin c (G/ℎ − 9)
c (G/ℎ − 9) = ((ℎ 5 ∗ sinc) (·/ℎ),

which gives (2.3.2) and complestes the proof. �

The clou in the proof of Theorem 2.3.3 is to consider the∑
:∈Z

5̂

(
ℎ−1(\ + 2c:)

)
= ℎ

∑
:∈Z

5 (ℎ:) 4−8:\ , b ∈ T, (2.3.6)

which connects the periodization of the Fourier transform of a function with the
Fourier transform of the sampled sequence. This identity is independent of whether
5 is bandlimited or not or whether the sampling is fine enough. If ℎ is so large18

that the spport of the function 5̂
(
ℎ−1·

)
is larger than the interval [−c, c], then

the overlapping parts a�ect the interior of the support, see Fig. 2.3.2. From this
function 5̂ cannobt be reconstructed any more. But the situation is even worse: the
overlay of frequencies that have nothing to do with each other and that are con-
sidered modulo 2c, the reconstruction of undersampled signals leads to unwanted
e�ects that are known under the name aliasing.
The situation is di�eren when ℎ is chosen in such a way that the support of 5̂ is

contained entirely in (−c, c) as then there is no overlay and more and 2c periodic
Fourier series ((ℎ 5)∧ equals the periodization of 5̂ . And what remains in the proof
is pure computation.

18That is, we missed the Nyquist rate.

34

2.4 Filters

−π π −π π

Figure 2.3.2: Periodization of a function whose support is too large. It is impossible to
reconstruct the original function uniquely from this periodization as there is
no unique decomposition of a sum into summands.

2.4 Filters

Next, we consider the fundamental operation in digital Signal Processing, namely
the concept of a filter which is used to transform and analyze signals. In full
generality, a �lter is just a mapping from one signal space into another19; here, we
want to restrict ourselves to the practically most relevant digital filters that map
discrete signals to discrete signals.

2.4.1 De�nition & Realization

De�nition 2.4.1 (Filters and filter types). A �lter � is an operator that maps
2 ∈ ℓ(Z) to �2 ∈ ℓ(Z). A filter is called Man nennt so einen Filter

1. energy preserving if � : ℓ2(Z) → ℓ2(Z) and
1 = ‖�‖2 := sup

‖2‖2=1
‖�2‖2 .

2. linear �lter if

� [U2 + V2′] = U �2 + V �2′, U, V ∈ R, 2, 2′ ∈ ℓ(Z).

3. time invariant if the operator is stationary, i.e., if what happens is inde-
pendent of when it happens:

� [2 (· + :)] = [�2] (· + :) , 2 ∈ ℓ(Z), : ∈ Z.
Using the discrete translation operator g, defined as g2 = g12 = 2(· + 1),
time invariance can be conveniently expressed at the commutative relation

g� = �g bzw. g:� = �g: , g: = g
: .

4. A filter is called LTI �lter or just digital �lter, cf. (Hamming, 1989; Kam-
meyer and Kroschel, 1998), if it is linear and time invariant.

5. A filter is called causal of the result (�2) (:) ta time : depends only on the
values, 2(9), 9 ≤ : , from the past – the filter does not take into account
information from the future20. A filter that does not consider the past, i.e.,

19The two signal spaces may also be the same.
20In some way this almost sounds realistic.

35

2 Mathematical Foundations of Signal Processing

where (�2) (:) depends on 2(9), 9 ≥ : , is called anticausal.

LTI filters are the really nice ones21 and the only depend on the impulse re-
sponse

5 := �X, also 5 (:) = [�X] (:), : ∈ Z,

and even in a very structural way. Since any signal 2 ∈ ℓ(Z) can be written formally
as

2 =
∑
:∈Z

2(:) X(· − :) =
∑
:∈Z

2(:) g−:X,

linearity and time invariance yield

�2 = �

[∑
:∈Z

2(:) g−:X
]
=

∑
:∈Z

2(:) � [g−:X] =
∑
:∈Z

2(:) g−:�X =
∑
:∈Z

2(:) g−: 5

=
∑
:∈Z

2(:) 5 (· − :) = 2 ∗ 5 ,

which tells us that an LTI filters always is a convolution between the signal and the
impulse response. And this immediately tells us due to Theorem 2.2.4 how a filter
works in the frequency domain:

(�2)∧ (b) = (5 ∗ 2)∧ (b) = 5̂ (b) 2̂(b). (2.4.1)

Here, an LTI filter acts as a simple mulitplication between the Fourier transform
of the signal and the Fourier transform of the filter, the so-called transfer func-
tion. Due to this observation, filters are often designe in the Fourier domain by
prescribing their frequency behavior.
Which are the filters that can truely be realized in practice? First of all, they

should clearly be causal which mean that for : < 0 the pulse X should give no
contribution which means

0 = [�X] (:) = 5 (:), : < 0.

Noncausal filters can make sense but will have to be realized by bu�ering some
part of the “future” which leads to unavoidable as the result is only available once
the future has passed.

De�nition 2.4.2. From now on digital �lter always stands for an LTI filter.

Before we pass to the technical realization, we introduce two more types of filters

De�nition 2.4.3 (FIR/IIR). A digital filter is called

1. FIR �lter22 if �X ∈ ℓ0(Z), i.e., its impulse response has finite support.

2. IIR �lter23 if �X ∉ ℓ0(Z)
21And this is the reason why they are used synonymously with “digital filters”.
22Finite Impulse Response filter.
23Infinite Impulse Response filter.

36

2.4 Filters

(b) (c)(a)

c

Figure 2.4.1: Symbolic representation of the three building blocks for a digital filter, the
multiplier (a), the adder (b) and the delay element (c).

f(1) f(2)

c

f(0) f(N)

Fc = f*c

Figure 2.4.2: An FIR filter built as a cascade of the blocks from Fig. 2.4.1. The delay
elements take care of the translations, the multipliers of the filter coe�cients
and adders put everything together.

To realize a digital FIR filter, we need only three components, namely

• a multiplier which multiplies a number with a fixed constant 2 that is en-
coded into the encoder block,

• an adder that adds the two numbers passed to it,

• a delay element that saves a number for one time step and then passes it
forward into the system.

The symbols for the three elements are depicted in Fig. 2.4.1. Since a delay element,
applied to 2 ∈ ℓ(Z) yields g−12 and a chain of : delay elements the signal g−:2, a
causal FIR filter � of the form

�2 = 5 ∗ 2 =
∑
:∈Z

5 (:) 2 (· − :) =
#∑
:=0

5 (:) g−:2, supp 5 ⊆ [0, #],

can be represented by # of the blocks: the values g−:2, : = 0, . . . , # , are taken
from a chain of # + 1 delay elements, weighted by multipliers with the values 5 (:)
and then summed up by # adders. The procedure is depicted in Fig. 2.4.2. With
the help of " further delay elements, it is possible to realize a a filter whose filter
coe�cients or taps are supported on [−", #], but the result is delayed by " time
units.

37

2 Mathematical Foundations of Signal Processing

Remark 2.4.4 (Warning). Any practical FIR filter has a built-in delay related to
the size of the support of the filter. This is known as latency and can be observed
for example in live TV transmissions where the latency in the internal signal pro-
cessing of the TV sets can cause a di�erence of a few seconds. Since latency is an
issue in real time applications, the length of digital filters is often bounded.

2.4.2 Filter Design

Next we look at a simple example from (Hamming, 1989, Sec. 3.8) that shows how
filters are designed in “practice”. We calim to be interested in a symmetric �lter24

that of course, cannot be causal25, but it does not matter here. In fact, we will even
see that in Image Processing symmetric filters are even quite natural. This FIR
filter shall have the property that

5 (0) = 0, 5 (±1) = 1, 5 (±2) = 2.

Because of the symmetry property 5 (:) = 5 (−:), the transfer function is real
(valued).

Exercise 2.4.1 Show that if 5 ∈ ℓ0(Z) is the real coe�cient vector of an FIR filter
�, then the transfer function 5̂ is real if and only if 5 is symmetric and purely
imaginary if 5 is antisymmetric, i.e., 5 (:) = − 5 (−:). ♦
As mentioned before, filter design takes place in the frequency domain by re-

questing properties of the transfer function 5̂ , either seen as a 2c-periodic function
on R or as a function on T. In our example we want to require that the filter fully
reproduces low frequencies but blocks high ones. In terms of formulas, this reads
as

5̂ (0) = 1, 5̂ (c) = 0. (2.4.2)

Because of

5̂ (b) = 0 + 1
(
4−8b + 48b

)
+ 2

(
4−28b + 428b

)
= 0 + 21 cos b + 22 cos 2b,

(2.4.2) requires that

0 + 21 + 22 = 1, und 0 − 21 + 22 = 0,

hence 1 = 1
4 and 0 = 1

2 − 22, yielding

5̂ (b) =
1

2
− 22 + 1

2
cos b + 22 cos 2b =

1

2
− 22 + 1

2
cos b + 22

(
2 cos2 b − 1

)
=

1

2
− 42 + 1

2
cos b + 42 cos2 b = 42

[
cos2 b + 1

82
cos b + 1

82
− 1

]
= 4 (cos b + 1)

(
2 cos b + 1

8
− 2

)
.

The first factor of 5̂ , cos b + 1 guarantees the zero at b = c, the second factor
degenerates to a constant for 2 = 0, which indicates that the case 2 = 0 will be
a special one as then the trigonometric polynomial 5̂ will have degree 1 and not

38

2.4 Filters

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5

Figure 2.4.3: Examples of transfer functions for 2 = −.4,−.2, 0, .2, .4 (from to down). For
2 = 0, the filter only ranges between 0 and 1 and forms a so-called sigmoidal
function.

degree 2 as otherwise. Some examples of transfer functions for varying values of
2 are shown in Fig. 2.4.3.
On the other hand, the desing paramter 2 can also be chosen in such a way that

the resulting filter has further additional properties, for example:

• preservation of an additional frequency l, i.e.,

1 = 5̂ (l) = 4 (cosl + 1)
(
2 cosl + 1

8
− 2

)
,

hence

2 =

(
1

4 (cosl + 1) −
1

8

)
/(cosl − 1) = − 1

8 (cosl + 1) ,

which is always solvable for l ≠ c. Of course, the value 5̂ (l) = 1 is impossi-
ble for l = c due to the original requirements (2.4.2).

• maximal �atness at b = 0, which means that as many derivatives of 5̂ as possible
vanish at b = 0, making the filter as similar as possible to a “characteristic
function” there. Since

3

3b
5̂ (b) = −21 sin b − 42 sin 2b

always vanishes at b = 0, we can require the additional condition

0 =
32

3b2
5̂ (0) = −21 cos 0 − 82 cos 0 ⇒ 2 = −1

4
1 = − 1

16
.

• the filter is balanced, i.e., it is antisymmetric at c2 :

5̂

(c
2
− b

)
− 5̂

(c
2

)
= 5̂

(c
2

)
− 5̂

(c
2
+ b

)
,

24That means that 5 (:) = 5 (−:) – we will soon see why this is a nice property.
25Exercise: describe all symmetric causal filters.

39

2 Mathematical Foundations of Signal Processing

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5

Figure 2.4.4: The three filters for the additional conditions: preservation of the frequency
c
2 (left, maximal flatness at 0 (center) and balancedness (right).

hence
1

2

[
5̂

(c
2
− b

)
+ 5̂

(c
2
+ b

)]
= 5̂

(c
2

)
,

and in particular for b = c
2 ,

1

2
= 5̂

(c
2

)
= 0 + 21 cos

c

2︸︷︷︸
=0

+22 cos c︸︷︷︸
=−1

⇒ 0 =
1

2
+ 22,

which yields together with 0 = 1
2 − 22 the conditions 0 =

1
2 and 2 = 0.

The three filters are shown in Fig. 2.4.4.
Of course, this example is very easy, but nevertheless it already shows the general

procedure in filter design: the behavior of the filter is described in the frequency
domain and the coe�cients or taps of the filter are chosen in such a way that these
properties are met – at least approximately.

Remark 2.4.5 (Filter design & transfer function).

1. The transfer function of a filter, in particual of a nontrivial causal filter, is of
the form

5̂ (b) =
1∑

:=−0
5:4

8:b

and therefore it normally is a complex valued function. Its real part defines the
weight factor for the respective frequency while the imaginary part give the
phase shift applied to the function by the filter. Since the latter is not really
audible26, one often only prescribes the real part, for example in band pass
filters.

2. It may have appeared a little strange already that the frequency range of
a filter always ranges between −c and c and has no relationship to “real”
frequencies measured in Hertz (Hz). For example, the range of audible fre-
quencies is usually 10−20000 Hz and at least audio filters should handle and
respect this. The simple solution to this dilemma is the sampling theorem,
Theorem 2.3.3: although its Fourier transform is a continuous function, the

26At least if it is not varying too much over the frequencies.

40

2.4 Filters

filter operates on a discrete signal that we can alway assume to be obtained
by sampling. And this sampling process has to be so fine, that the Fourier
transform of our signal is restricted to the relevant band [−c, c]. And the
sampling rate then gives the “real” frequency values for elements of the in-
terval [−c, c].

The more serious problem, however, is that the transfer functions of FIR filters
only form a very small family of functions in !2(T) or whatever one would like a
possible filters. As a reasult, by far not any desired filter can really be represented
as an FIR filter.

De�nition 2.4.6. A function 5 ∈ �∞(T) of the form

5 (G) =
∑
|: |≤=

5: 4
8:G , 5: ∈ C, G ∈ T,

is called a trigonometric polynomial of degree =.

Exercise 2.4.2 Show that any function of the form

5 (G) = 00 +
=∑
:=1

(
0: cos: G + 1: sin: G

)
, 00, . . . , 0=, 11, . . . , 1= ∈ C,

i.e., any polynomial in sin G and cos G, is a trigonometric polynomial. ♦
An LTI filter �, represented by its impulse response 5 ∈ ℓ(Z), is an FIR filter if

and only if 5 ∈ ℓ0(Z) which in turn is equivalent to its Fourier transform being a
trigonomentric polynomial. This is not so bad in principle, sind the trigonometric
polynomials are dense in most “reasonable” function spaces. This means that for
any 5 and any Y > 0 there exists a trigonometric polynomial 5Y such that

‖ 5 − 5Y‖ < Y.

In !2(T) we even know how to compute the best approximation of a transfer
function 6 = 5̂ : take the Fourier series

F6 =
∑
:∈Z

6: 4
8: ·, 6: =

1

2c

∫
T
6(C) 4−8:C

and form its =th partial sum

F=6 :=
∑
|: |≤#

6: 4
8: · =: ℎ̂,

to obtain the coe�cients of the impulse response ℎ of our filter �. An we even
know that ℎ̂ is the unique trigonometric polynomial of degree = that approximates
the treansfer function 6 best possible with respect to the norm !2(T). This is
what is called a best approximation, see (Lorentz, 1966; Sauer, 2017). More
about Fourier series can be found for example in (Hardy and Rogosinsky, 1956;
Katznelson, 1976; Tolstov, 1962). Unfortunetely, things still are not this easy even
if the approximant can be described by elementary means.

41

2 Mathematical Foundations of Signal Processing

Example 2.4.7 (Low pass filter). Now we want to design an almost realistic filter,
namely a low pass filter that only lets the low frequencies pass and blocks the high
one. Let us suppose that the filter lets the lower half of frequencies27 pass which
means that it transfer fuction is

5̂ = j[−c/2,c/2] ;

this is not a trigononmetric polynomial, hence not an FIR filter and therefore cannot
be realized practically. To obtain an approximate low pass, we determine the Fourier
coe�cients of 6 = 5̂ which can be computed as

60 =
1

2c

∫ c/2

−c/2
3C =

1

2

and, for : ≠ 0,

6: =
1

2c

∫ c/2

−c/2
4−8:C3C =

1

2c

4−8:C

−8:

����c/2
C=−c/2

=
1

2c

4−8:c/2 − 48:c/2
−8: =

1

:c
sin

:

2
c

=

{
0, : ∈ 2Z,

(−1) (:−1)/2
:c

, : ∈ 2Z + 1,

i.e.,

62:+1 =
(−1):
:c

, 62:+2 = 0, : ∈ N0.

The partial sum of degree = = 2< + 1 is then the trigonometric polynomial

ℎ= (b) =
1

2
+

<∑
:=0

(−1):
(2: + 1)c

[
48(2:+1)b + 4−8(2:+1)b

]
︸ ︷︷ ︸

2 cos(2:+1)b

=
1

2
+

<∑
:=0

(−1): 2

(2: + 1)c cos(2: + 1)b,

which is the explicit form of the best approximating trigonometric polynomial of
degree =. However, its quality as an approximation is fairly disappointing, see
Fig. 2.4.5.

Fig. 2.4.5 shows the so-called Gibbs phenomenon: the partial sums of discon-
tinuous transfer functions always come with overshooting e�ects that do not vanish
even with increasing quality of approximation. This makes this type of FIR filters
not very well suited for the construction of band pass filters whose transfer function
is the characteristic function of a subinterval of [−c, c]. In addition, the quality
of approximation of discontinuous functions by trogonometric polynomials, the
so-called approximation order, is very limited, cf. (DeVore and Lorentz, 1993;
Lorentz, 1966; Mhaskar and Pai, 2000; Sauer, 2002). As the right hand side image

27Which concrete frequencies, in Hz, this concerns, depend once more on the sampling.

42

2.4 Filters

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

Figure 2.4.5: Approximation of the approximants (left) for the low pass filter for the more or
less arbitrary values = = 5, 15, 100. Note that the “overshooting” peaks at the
left and right boundary get only narrower, but not smaller in amplitude. Ap-
proximation by Fejér means (right) which have a larger error of approximation,
but less oscillations and a mor similar shape.

in Fig. 2.4.5 shows, the Gibbs phenomenon can be avoided by chosing an appro-
priate approximation method like the Fejér means28 which provide shape preserving
approximation. But this better geometric behavior comes with the price of reduced
accuracy or slower convergence for =→∞.

2.4.3 Filters for Images

Now we consider images in the sense of pictures, namely as two dimensional signals
that map R2 → R or Z2 → R, respectively. We start with a formal definition of
what we consider here.

De�nition 2.4.8 (Signal classe). By ℓ
(
Z2

)
we denote the set of all signals of the

form29

2 =

(
2(U) : U ∈ Z2

)
= (2(9 , :) : 9 , : ∈ Z)

and use the norms

‖2‖? :=
(∑
U∈Z2
|2(U) |?

)1/?
, ‖2‖∞ = sup

U∈Z2
|2(U) | ,

which are a copy/paste version of what we already know, simply replacing indices
by mutltiindices. For functions 5 : R2 → R we define the analogous norms as

‖ 5 ‖? =
(∫
R2
| 5 (C) |? 3C

)1/?
, ‖ 5 ‖∞ = sup

G∈R2
| 5 (G) | .

28Instead of the =th partial sum one used the the arithmetic mean of the first = + 1 partial sums of
degree 0, . . . , =.

29The index U = (U1, U2) ∈ Z2 used in this formula is called a multiindex.

43

2 Mathematical Foundations of Signal Processing

The Fourier transform is also transferred in a very straightforward way to R2 by
setting for b ∈ R2,

5̂ (b) =

∫
R2
5 (C)4−8b) C 3C =

∫
R2
5 (C)4−8(b1C1+b2C2) 3C =

∫
R2
5 (C) 4−8b1C1 4−8b2C2 3C

=

∫
R

(∫
R
5 (C1, C2) 4−8b1C1 3C1

)
4−8b2C2 3C2 =

∫
R
(5 (·, C2))∧ (b1) 4−8b2C2 3C2.

In other words, we can determine the Fourier transform in a successive way, “vari-
able by variable”, as a nested or iterated univariate Fourier transform. And once
we have a Fourier transform, the convolution is not far, and again it looks precisely
as in the unvivariate case:

5 ∗ 6 =
∫
R2
5 (· − C) 6(C) 3C.

Exercise 2.4.3 Show the validity of the identity

(5 ∗ 6)∧ (b) = 5̂ (b) 6̂(b)

in two variables. ♦

Exercise 2.4.4 Determine for the bivariate Fourier transform

• the inverse Fourier transform,

• the Perseval/Plancherel formula,

• the Poissonsche summation formula.

♦
LTI filters are no problem as well as any LTI filter is again defined by its impulse

response 5 ∈ ℓ
(
Z2

)
and the filter itself is computed as

�2 = 5 ∗ 2 =
∑
U∈Z2

5 (· − U) 2(U), (2.4.3)

where for any FIR filter 5 ∈ ℓ00
(
Z2

)
we can be assured that (2.4.3) is well defined

since the sum is a finite one for any argument. The filter becomes particularly
simple if 5 is a tensor product, that is

5 = 51 ⊗ 52, d.h. 5 (U) = 51 (U1) 52 (U2) . (2.4.4)

Then,

5 ∗ 2 =
∑
U∈Z2

5 (· − U) 2(U) =
∑

U1,U2∈Z
51 ((·)1 − U1) 52 ((·)2 − U2) 2 (U1, U2)

=
∑
U1∈Z

51 ((·)1 − U1)
∑
U2∈Z

52 ((·)2 − U2) 2 (U1, U2)

=
∑
U1∈Z

51 ((·)1 − U1) (52 ∗ 2 (U1, (·)2)) . (2.4.5)

44

2.4 Filters

This already yields a scheme how to apply such a bivariate image filter: for each
fixed value U1 we filter the row 2 (U1, ·) of the signal with the filter 52, which results
in yet another image 2′ of the form

2′(U) = 2′(U1, U2) = (2(U1, ·) ∗ 52) (U2),

whose columns are the filter by means of 51. Schematically,

. . .
...

... . .
. . . .

...
... . .

.

. . . 2(0, 0) 2(0, 1) . . . → 52 → . . . 2′(0, 0) 2′(0, 1) . . .

. . . 2(1, 0) 2(1, 1) . . . → 52 → . . . 2′(1, 0) 2′(1, 1) . . .

. .
. ...

...
.

. ...
...

. . .

↓ ↓
51 51
↓ ↓

. . .
...

... . .
.

. . . (5 ∗ 2) (0, 0) (5 ∗ 2) (0, 1) . .
.

. . . (5 ∗ 2) (1, 0) (5 ∗ 2) (1, 1) . .
.

. .
. ...

...
. . .

If the filter � or his impulse response 5 have tensor product structure, respectively,
then

5̂ (b) =
∑
U∈Z2

5 (U)4−8U) b =
∑
U∈Z2

5 (U)4−8(U1b1+U2b2) =
∑
U∈Z2

5 (U)︸︷︷︸
= 5 (U1) 5 (U2)

4−8U1b1 4−8U2b2

=

(∑
U1∈Z

5 (U1) 4−8U1b1
) (∑

U2∈Z
5 (U2) 4−8U2b2

)
,

that is,
5̂ (b) = 5̂1 (b1) 5̂2 (b2) ,

or
(�2)∧(b) = (5 ∗ 2)∧ (b) = 5̂1(b1) 5̂2(b2) 2̂(b1, b2). (2.4.6)

Or as a brief summary: filtering of images with tensor product filters is particularly
easy.

2.4.4 Mean Values and Denoising

In particular in medical imaging a whole multitude of standard filters are common
and an accepted standard, cf. (Handels, 2000). We will have a look the most
popular and important ones among them. In many cases, the filter is introduced
conceptionally in a continuous way, i.e. for functions q : R2 → R, and then the
filter is discretized.

45

2 Mathematical Foundations of Signal Processing

The first such continuous filter is the mean value �lter, defined as

5 =
1

|Ω| jΩ, Ω ⊂ R2,

where Ω should be a compact set as then its volume |Ω| is well defined. The filtering

q ↦→ 5 ∗ q(G) =
1

|Ω|

∫
R2
jΩ(C)q (G − C) 3C =

1

|Ω|

∫
Ω

q (G − C) 3C

=
1

|Ω|

∫
G−Ω

q(C) 3C

associates to each G ∈ R2 the mean value of the function over the set G − Ω. The
discretization of this filter is as simple as possible, one uses 5 = (ℎjΩ with a
suitable sampling distance ℎ and normalizes the filter by dividing by the number
of sampling points in Ω.

Example 2.4.9. For Ω = [−1, 1]2 and ℎ = 1, we obtain

5 =
1

9

©«
1 1 1

1 1 1
1 1 1

ª®¬
where we only depict nonzero entries of the two dimensional impulse response and
where the coe�cient corresponding to 5 (0) is maked by a frame. We can easily
increase the resolution to obtain averaging filters of the form

5 =
1

<=

©«
1 . . . 1
...

. . .
...

1 . . . 1

ª®®¬ ∈ R<×=. (2.4.7)

Remark 2.4.10. The matrix form of the impulse response in (2.4.7) can be written
as

5 = 1<1
)
= , 1= =

©«
1
...

1

ª®®¬ ∈ R=,
hence, up to a shift � = j[0,=−1] ⊗ j[0,<−1] and the filter is a tensor product of two
univariate filters. We are in the particularly simple situation as described above
here.

The main application of averaging filter is denoising. Noise is an upleasant part
of “real world” images, usually caused by measurement or computation30 which is
often expressed in probabilistic terms only. The additive standard model for noisy
data is

q(G) = k(G) + n (G),
30In Computed Tomography, for example, the image is the result of fairly complex computations

that are always a�ected by roundo� errors that can be seen as computational noise.

46

2.4 Filters

where k stands for the “true” data and n for the noise. A common, but not always
justified31 is that is has zero mean or that its expectation vanishes:

� (n) =
∫
R2
n (G) 3G = 0.

Filtering with a mean value filter then results in

�q(G) = 1

|Ω|

∫
G+Ω

q(C) 3C + 1

|Ω|

∫
G+Ω

n (C) 3C,

and if the noise has mean value zero, the second term, 1
|Ω|

∫
G+Ω n (C) 3C, should

become smaller, provided that the noise is local and that Ω is large enough to
cover the support of the noise. On the other hand, the support should be small
enough to ensure that �k ∼ k, which is possible since

q(G) = lim
ℎ→0+

1

ℎ |Ω|

∫
G+ℎΩ

q(C) 3C, q ∈ !1
(
R2

)
,

see (Akhieser, 1988), otherwise the image will be blurred.

Remark 2.4.11. This observation described the main dilemma of filter based de-
noising: the support of the filter needs to be small to avoid blurring and large to
average out the noise. Since these goals cannot be reached simultaneously, a com-
promise is necessary that will depend on the nature of the data and the nature of
the noise. In practice, this usually means a lot of trial and error.

For a slightly more sophisticated and smoother filter32 one can use the Gauß
kernel

5 (G) = 1

2cf2
4
−
‖G ‖2

2
2f2 , f > 0, (2.4.8)

with standard deviation f, yet another parameter that can be chose reasonably
or stupidly. To discretize the filter, we can sample 5 , more precisely 5 j[−#,#]2 to
obtain an FIR filter, where the truncation is necessary since the kernel in (2.4.8)
has infinite support. Its (purely) discrete counterpart is the binomial �lter

5 (9 , :) = 2−<−=
(
<

9

) (
=

:

)
,

9 = 0, . . . , <,
: = 0, . . . , =,

which can be centered for even values of <, =.

Example 2.4.12. The impulse response of the centered binomial filter of dimen-
sion 2, 2 has the form

1

16

©«
1 2 1

2 4 2
1 2 1

ª®¬ , (2.4.9)

again with the element with coordinate 0 being marked. The e�ect of binomial
filter is illustrated in Fig.

47

2 Mathematical Foundations of Signal Processing

Figure 2.4.6: Test image with edges and fine textural parts that will illustrate the e�ects of
the filters. And it is a rabbit, not a bear.

Figure 2.4.7: Application of the 2, 2 and 4, 4 binomial filter on the test image of Fig. 2.4.6.
The e�ect of blurring is clearly visible from the disappearance of the fine hair
structures.

48

2.4 Filters

A general rule of thumb concerning mean value filters, i.e., filters characterized
by preservation of constant data, 5 ∗ 1 = 1, is that the blurring is increased by
increasing the support of the filter. The e�ect is a bit mildened by binomial filters
since those have a builtin decay of their own. But still the e�ect is unavoidable.

2.4.5 Derivatives and Edges

The opposite task of denoising is emphasizing and detecting conturs in images
which mainly means edges. To that end, a gradient �lter is applied since edges
are points where the di�erence between neighboring points is large, hence the slope
is large which means a large absolute value of the derivative. In two variables, this
is the gradient of a function q, defined as

∇q =
©«
m

mG
q(G, H)

m

mH
q(G, H)

ª®®®®¬
,

and usuall discretized as the vector of first order partial di�erences

∇2 =
(
∇12
∇22

)
=

(
2(· + 1, ·) − 2(·, ·)
2(·, · + 1) − 2(·, ·)

)
. (2.4.10)

Remark 2.4.13. The discretization by means of simple forward di�erences is not the
best possible way, neither numerically nor geometrically. This is also the case in
one variable. He we could consider, for a sampling width of ℎ, the two neighboring
points G ± ℎ and use the first order Taylor approximation

5 (G ± ℎ) = 5 (G) ± ℎ 5 ′(G) + 4(G, ℎ), lim
ℎ→0

4(G, ℎ)
ℎ

= 0.

This leads the the sytem of equations

H

(
1
1

)
=

1

ℎ

(
5 (G + ℎ) − 5 (G)
5 (G) − 5 (G − ℎ)

)
for the approximation H ≈ 5 ′(G) whose minimal solution33 is

H =
5 (G + ℎ) − 5 (G − ℎ)

2ℎ
. (2.4.12)

31In serious denoising, it is important to get a clear idea on the underlying noise model, i.e., about
properties and distribution of the noise.

32This is important on the frequency side! Smooth functions have a rapidly decaying Fourier
transform which means that they are well-localized low-pass filters, see Theorem 2.2.4, 5).

33In the sense of

min
H

(
H − 5 (G + ℎ) − 5 (G)

ℎ

)2
+

(
H − 5 (G) − 5 (G − ℎ)

ℎ

)2
. (2.4.11)

49

2 Mathematical Foundations of Signal Processing

Hence, a better gradient approximation based on the four axial neighbors is

∇2 = 1

2

(
2(· + 1, ·) − 2(· − 1, ·)
2(·, · + 1) − 2(·, · − 1)

)
.

So much for numerics, for simplicity, however, we will continue with the formula
from (2.4.10).

Exercise 2.4.5 Verify that (2.4.12) is the solution of (2.4.11). When is the solution
unique? ♦

Exercise 2.4.6 Derive the best possible estimate for the discrete gradient at U ∈ ZB
based on nine neighbors 2(V), ‖V − U‖∞ ≤ 1. ♦
The components of the discrete di�erence (2.4.10) are again obtained by filters

whose impulse responses are

51 =
©«
0 0 0

0 −1 1
0 0 0

ª®¬ and ©«
0 1 0

0 −1 0
0 0 0

ª®¬ .
Regardless of their numerical implementation, gradient methods or in general all
operations based on di�erentiation, are very sensitive to noise since the di�erence
quotient has a stepwidth ℎ which amplifies inaccuracies in the data by a factor of
ℎ−1. And in the end we want data that is sampled in a very fine way, at least that is
what modern sensors (should) provide. To overcome this problem, one first applies
denoising to the image before the gradient is used and for this purpose mean value
filters are popular. To keep it simple, we consider the averaging operator

5 :=
1

9

©«
1 1 1

1 1 1
1 1 1

ª®¬ .
The resulting convolution34 ∇ 9 ∗ 5 = 5 ∗ ∇ 9 , i.e., the impulse response of the
components of the resulting operator, is most easily computed by passing to the
Fourier transform

(5 ∗ ∇1)∧ (b) = 5̂ (b) ∇̂1(b) =
©«19

∑
‖U‖∞≤1

48Ub
ª®¬
(
48b − 1

)
=

1

9

∑
‖U‖∞≤1

48(U+n1)b −
∑
‖U‖∞≤1

48Ub =
1

9

(
428b1 − 4−8b1

) (
48b2 + 1 + 4−8b2

)
,

and the averaged prefilters thus have the impulse responses

51 =
1

9

©«
−1 0 0 1

−1 0 0 1
−1 0 0 1

ª®¬ and 52 =

©«
1 1 1
0 0 0

0 0 0
−1 −1 −1

ª®®®¬ .
For the application of these filters see Fig. 2.4.8.

34I you have not realized yet that the convolution is commutative, then prove it.

50

2.4 Filters

Figure 2.4.8: Application of the two components of the gradient filter, in G-direction (left)
as well as in H-direction (right). They mainly capture the orthogonal edges as
is clearly visible.

Figure 2.4.9: 1-norm of the gradient for edge detection.

Remark 2.4.14. 1. The above computation shows one of the advantages of us-
ing the Fourier transform as it gives us a symbolic calculus for filters, here
for their concatenation. It all boils down to adding, multiplying and perhaps
factorizing trigonometric polyomials. Later, in Definition 3.4.1, we will meet
the I transform that allows us to do the same even more conveniently with
(Laurent) polynomials.

2. In particular, (5 ∗ ∇1)∧ (b) = 61(b1)62(b2), so that the filter again has a tensor
product structure that allows for simple implementation.

Extracting the edges themselves is now easy, we just have to look at the pointwise
1-norm of the smoothed gradient:

6 = ‖ 5 ∗ ∇2‖1 = | 5 ∗ ∇12 | + | 5 ∗ ∇22 | ,

see Fig. 2.4.9.
As we are talking about derivatives, we can also make us of higher order deriva-

51

2 Mathematical Foundations of Signal Processing

Figure 2.4.10: Direct application of the two Laplace filters from (2.4.13) (left) and (2.4.14)
(right). There is not much to be recognized due to the amplification of
noise which becomes fairly random here. This becomes even more visible
in Fig. 2.4.11.

tives and involve the Laplace operator

Δ =
m2

mG2
+ m2

mH2
,

a second order di�erential operator, where the second order derivatives are usually
approximated by the second order symmectric di�erences 2(· + 1) − 22 + 2(· − 1);
this leads to the filter with impulse response

5 =
©«
0 1 0

1 −4 1
0 1 0

ª®¬ (2.4.13)

as the most simple discretization of the Laplace operator. A variant of this operator
which also takes into account diagonal directions yield the impulse response

5 =
©«
1 1 1

1 −8 1
1 1 1

ª®¬ . (2.4.14)

As pointed out in (Handels, 2000), the Laplace operator is very sensitive to noise
which is the reason why it is usally combined with smoothing filters like mean value
filters or Gauß filters. Some of these e�ect are illustrated in Fig.

Exercise 2.4.7 Implement a smoothened version of the Laplace filter and optimize
it for good edge detection. ♦

2.4.6 Somewhere in the Middle

The last classic among the image processing filters is the median �lter, define in
the univariate case as

"2(9) = Median {2(:) : : ∈ 9 +Ω} , Ω ⊂ Z2;

52

2.5 The FFT

Figure 2.4.11: The noise in the right hand image of Fig. 2.4.10. The values were ranging
from −1166 to 605, here only the positive values of the Laplace operator are
plotted as black white dots.

to obtain the value of this filter, all elements of 2 (9 +Ω) are sorted with respect to
size and then the value in the middle is taken — this is the sloppy definition of the
median. This filter has some peculiarities, however:

1. it is a nonlinear filter,

2. it has a fairly high computational e�ort due to the sorting process,

3. it is very robust to outliers.

In addition, the median filter is known to be an edge preserving filter as well. This
has to do with the relationship between median and 1-norm as well as the good
properties of the total variation which is defined as the 1-norm of the gradient.
This, however, is beyond the scope of this lecture, but is a major topic in (Sauer,
2018).

Exercise 2.4.8 Implement a median filter MedFilt (M,X) for images where the
first Argument M is a matrix with binary values 0, 1 that encodes a discrete charac-
teristic function for Ω. ♦

2.5 The FFT

In this section we consider the fundamental algorithm in Signal and Image Process-
ing, namely the fast Fourier transform, better known as FFT. In the millenium
fever of the year 2000 some people created a list of the ten most important and influ-
ential mathematical algorithms and the FFT was the unquestioned and undoubted
winner. And this despite of the fact that the idea behind is almost incredibly simple.
Or maybe because of that.
Since in principle the FFT is only a fast way fo computing the discrete Fourier

transform, also known as DFT, we will first consider the DFT and some of its
mathematical properties.

53

2 Mathematical Foundations of Signal Processing

2.5.1 The discrete Fourier transform

When considering the Fourier transform of a sequence it may appear strange that,
in contrast to the Fourier transform for functions, it maps the seqeunce 2 ∈ ℓ(Z) to
the 2c periodic function 2̂ ∈ � (T) that is of a completely di�erent structure. These
connection makes perfect sense in the context of dual groups but from a naive point
of view it is confusing.
But besides that, a continuum of frequency information is hard to process in

practice, so that sampling in frequency domain appears almost natural. Due to the
2c periodicity of the Fourier transform 2̂, this sampling should be chosen with a
stepwidth of the form ℎ = 2c

=
for some = ∈ N. This maps 2̂ back to the sequence

2̂= = DFT= 2 := (2c/=2̂ =
∑
:∈Z

2(:) 4−2c8: ·/=, (2.5.1)

where
2, 2̂= ∈ ℓ(Z).

De�nition 2.5.1 (DFT). The sequence 2̂= ∈ ℓ(Z) defined in (2.5.1) is called the
discrete Fourier transform or DFT of order = of the sequence 2 ∈ ℓ(Z).

Since
2̂= (· + =) =

∑
:∈Z

2(:) 4−2c8 : (·/=+1) = 2̂=,

the DFT is a periodic sequence and it su�ces to store only a block consisting of =
consecutive values, that is, the DFT is alread determined by the values

2̂= (:), : ∈ Z= = Z/=Z ' {0, . . . , = − 1} .

Remark 2.5.2. Recall that Z= is more than only the set {0, . . . , = − 1}, namely
the set together with all operations modulo =, which means that addition and
multiplication are all well defined. Since we will make explicit use of this fact, it is
important to keep this subtlety in mind.

For a periodic or periodized sequence 2 ∈ ℓ(Z<) with period of length <, the DFT
can conveniently be written in the matrix form

2̂= = +=,< 2, +=,< :=

[
4−28c 9 :/= :

9 ∈ Z=
: ∈ Z<

]
∈ C=×<, (2.5.2)

where in the most common case < = = we simply write +=. This is a standard
form that maps signals of some length to signals of the same length or of the same
amount of information content. And a short remark on periodization: if 2 ∈ ℓ00(Z),
the sequence can be written in such a way that its support is contained in Z= for
some = from which we can directly transform 2 by using +=.

Example 2.5.3. The complex valued DFT of (2c/512 cos on Z512 is depicted in
Fig. 2.5.1, where we plot real and imaginary part separately. Since the cosine
function is even, its FFT is real, but due to numerical e�ects the imaginary part is
not exactly zero.

54

2.5 The FFT

-50

0

50

100

150

200

250

300

0 100 200 300 400 500 600
-1.2e-12

-1e-12

-8e-13

-6e-13

-4e-13

-2e-13

0

2e-13

0 100 200 300 400 500 600

line 1

Figure 2.5.1: The discrete Fourier transform DFT512 (2c/512 cos of a sampled cosine func-
tion. The real part of the transform (left) has two strong peaks at 1 and 511

which makes perfect sense since cos G = 48G+4−8G
2 and therefore both frequen-

cies ±1 (modulo 512) have to appear in the DFT. And the imaginary part
(right) only consists of numerical garbage with an amplitude of 10−13.

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 100 200 300 400 500 600

line 1

-300

-200

-100

0

100

200

300

0 100 200 300 400 500 600

line 1

Figure 2.5.2: The function from Example 2.5.4 (left) and its DFT (right) with real and imag-
inary part plotted into one coordinate system. The integer frequencies give
sharp peaks either in the real or in the imaginary part, while the non-integer
ones lead to blurry spikes in both parts of the spectrum.

In general, sine and cosine functions whose frequencies divide the sampling rate,
yield well-localized peaks in the real and imaginary part, while the same functions
get massively blurred when they are sampled inappropriately.

Example 2.5.4. We now consider the “speech like” function

5 (G) = cos G − cos 80G + cos 130.7G + sin 16G − sin 277.8G

with several “disharmonic” frequency parts and determine ��)512(2c/512 5 . The
result is depicted in Fig. 2.5.2

In what follows, we assume that 2, 2̂ ∈ ℓ(Z=), i.e., that we deal with a length
preserving DFT that is described by the matrix +=. To have a closer look at +=, it
is very useful to recall the notion of the (primitive) =th root of unity l = 4−2c8/=

which has the property that
l= = 4−2c8 = 1 (2.5.3)

55

2 Mathematical Foundations of Signal Processing

while l: ≠ 1 for : < =; the latter makes the root primitive. Then,

+= =
[
l 9 : : 9 , : ∈ Z=

]
=

1 1 . . . 1 1
1 l1 . . . l=−2 l=−1

1 l2 . . . l2(=−2) l2(=−1)

...
...

. . .
...

...

1 l=−2 . . . l4 l2

1 l=−1 . . . l2 l1

This matrix has a very simple and explicit inverse35 that allows us to e�ciently
compute the inverse DFT.

Lemma 2.5.5 (Inverse DFT). For = ∈ N the inverse DFT is given by

+−1= =
1

=

[
42c8 9 :/= : 9 , : ∈ Z=

]
=
1

=

[
l− 9 : : 9 , : ∈ Z=

]
. (2.5.4)

Proof: Denoting the matrix on the right hand side of (2.5.4) by ,=, we observe
that

(+=,=) 9 : =
1

=

∑
ℓ∈Z=

l 9ℓ l−ℓ: =
1

=

∑
ℓ∈Z=

(
l 9−:

)ℓ
.

Hence, the diagonal elements are

(+=,=) 9 9 =
1

=

∑
ℓ∈Z=

(
l0

)ℓ
=
=

=
= 1

while for the o�-diagonal elements with 9 ≠ : we obtain

(+=,=) 9 : =
1

=

=−1∑
ℓ=0

(
l 9−:

)ℓ
=
1

=

l0 −
(
l 9−:)=

1 − l 9−: =
1

=

1 − (l=) 9−:

1 − l 9−: ;

since l= = 1 and −= < 9 − : < =, hence36 l 9−: ≠ 1, we obtain that

(+=,=) 9 : =
1

=

1 − 1 9−:
1 − l 9−: = 0

hence +=,= = � and therefore ,= = +
−1
= since += is a square matrix37. �

Noting that l−1 = 42c8/= = l is the complex conjugate of l, the symmetry of +=
yields that

+−1= =
1

=
+= =

1

=
+)= =

1

=
+�= ,

which we can formulate as follows.
35This is not at all common among matrices, so let us celebrate this unusual piece of luck for a

moment.
36This is the “primitive” part.
37Keep in mind that for non-square matrices there is a di�erence between a left inverse and a right
inverse.

56

2.5 The FFT

Corollary 2.5.6. The matrix =−1/2+= is unitary.

Remark 2.5.7. The distribution of the factor 1
=
between += and +−1= is unsymmetric

and deliberate, and indeed that DFT can also be defined with a factor 1/
√
=. This

happens in the literature and in toolboxes and makes the constants nicer and yields,
as shown in Corollary 2.5.6, to a unitary matrix. However, it somewhat destroy the
interpretation as sampling of a trigonometric polynomial and introduces another
irrational quantity. It is not hard to guess that the constant 1/

√
= plays a role

analogous to that of the constant 1/2c in Fourier transform and inverse Fourier
transform. The more analogies the better, but in the DFT context, the factor
depends on the signal length, and whether the matrix is unitary or “only” satisfies
+=+

�
= = +�= += = =� is as relevant as the distinction between “orthogonal” and

“orthonormal”.

Remark 2.5.8. The normalization is relevant when software libraries are used, as
once again constants can lead to a lot of confusion there.

For 2 ∈ ℓ (Z=) the DFT 2 ↦→ 2̂= ∈ ℓ (Z=) is a natural operation, if not the natural
operation. We collect a few properties of DFT= : ℓ (Z=) → ℓ (Z=), which form yet
another analogy to Theorem 2.2.4. To that end, we need an appropriate notion of
convolution which makes use of the periodic structure of Z=.

De�nition 2.5.9 (Cyclic convolution). For 2, 3 ∈ ℓ (Z=) the cyclic convolution
2 ∗ 3 = 2 ∗= 3 ∈ ℓ (Z=) is defined as

(2 ∗ 3) (9) =
∑
:∈Z=

2(:) 3 (9 − :), 9 ∈ Z=,

where 9 − : is computed in Z=, hence has to be understood modulo =.

Theorem 2.5.10 (Properties of the DFT). For = ∈ N one has

1. ��)= is an invertible linear map for ℓ (Z=) to itself with

‖2̂=‖2 =
√
=‖2‖2, 2 ∈ ℓ (Z=) . (2.5.5)

2. for any 2, 3 ∈ ℓ (Z=),

(2 ∗= 3)∧= = 2̂= 3̂= =
[
2̂= (9) 3̂= (9) : 9 ∈ Z=

]
. (2.5.6)

Proof: 1) Linearity is obvious and invertability follows from Lemma 2.5.5 where
the inverse was given explictly. For (2.5.5) we use the unitary invariance of the
2-norm38 and obtain

‖2̂=‖2 = ‖+=2‖2 =
√
=

(=−1/2+=) 2
2
=
√
=‖2‖2.

38Recall that for unitary *, i.e. *�* = �, and any G we have that ‖G‖22 = G� G = G�*�*G = ‖*G‖22.

57

2 Mathematical Foundations of Signal Processing

2) Since l is an =th root of unity, i.e., l= = 1 and therefore also l:+= = l: , the
sequence : ↦→ l: belongs to ℓ (Z=). For 9 ∈ Z=, this allows us to conclude that

(2 ∗= 3)∧= (9) =
∑
ℓ∈Z=

(∑
:∈Z=

2(:) 3 (ℓ − :)
)
l 9ℓ =

∑
:,ℓ∈Z=

2(:) 3 (ℓ − :) l 9 :l 9 (ℓ−:)

= 2̂= (9) 3̂= (9).

The other half of (2.5.6) is proved analogously. �

Since we also want to deal with images, i.e., two dimensional objects, we should
also have a look at the two dimesional DFT of 2 ∈ ℓ

(
Z2=

)
which can be written as

2̂(V) =
∑
U∈Z2=

2(U) 4−2c8U) V/= =
∑
U1∈Z=

∑
U2∈Z=

2 (U1, U2) 4−2c8U1V1/=4−2c8U2V2/=

=
∑
U1∈Z=

4−2c8U1V1/=
∑
U2∈Z=

2 (U1, U2) 4−2c8U2V2/=

=
∑
U1∈Z=

(2 (U1, ·))∧ (V2) 4−2c8U1V1/=,

which gives us a practical rule for the two dimensional DFT in the spirit of tensor
products:

For each row39 c(j,:) of the matrix c one computes the DFT (2(9 , ·))∧
to obtain another matrix (a column of rows) that is then processed
columnwise.

Schematically, this looks as follows

2(0, 0) · · · 2(0, = − 1) → 2′(0, 0) . . . 2′(0, = − 1)
...

. . .
...

...
...

. . .
...

2(= − 1, 0) · · · 2(= − 1, = − 1) → 2′(= − 1, 0) . . . 2′(= − 1, = − 1)
↓ . . . ↓

2̂(0, 0) . . . 2̂(0, = − 1)
...

. . .
. . .

2̂(= − 1, 0) . . . 2̂(= − 1, = − 1)

(2.5.7)

Therefore, the performance of a two or higher dimensional DFT clearly depends
directly on the performance of a one dimensional DFT and costs as much an 2=
of them in 2D. However, the horizontal and vertical operations can be performed
independently of each and therefore have a lot of potential for parellelization, es-
pecially on graphics cards.

2.5.2 Discrete versus Discretized

In many practical cases, for example when working on sound or brain activities,
the discrete data to be processed results from a �nite sampling of a continuous
signal, i.e.,

2(:) = ((ℎ 5) (:), : ∈ Z# ,
39We use the notation from Matlab/octave here

58

2.5 The FFT

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 100 200 300 400 500

Figure 2.5.3: The DFT of the sinc function from Example 2.5.11, more precisely the mod-
ulus, i.e., the complex absolute value of this function. At the boundary we
see nasty artifacts that cannot be explained by discretization alone.

where the letter “#” is used to indicate that the number of samples is large. If we
compute the DFT 2̂# of this signal 2, we compute, from the mathematical point of
view, a discretization of the associated trigonometric polynomial

2̂(b) =
∑
:∈Z

2(:) 4−8:b =
∑
:∈Z#

5 (ℎ:) 4−8:b ,

on the grid 2cZ#/# , that is,

2̂= (9) =
∑
:∈Z#

5 (ℎ:) 4−28c 9 :/# , 9 ∈ Z# .

There is no direct connection between this vector and what we intended to com-
pute, namely the discretization of 5̂ , the Fourier transform of 5 . It should come as
no surprise that this leads to artifacts again.

Example 2.5.11. Let us consider the DFT of a sampled sinc -function whose
Fourier transform is40 a characteristic function. We sample this function, in octave
notation via

>> N = 512; c = sinc(100*pi*(0:N-1)/N);

It is deliberate here tht we do not sample at the integers as this would result in a X
sequence. The result of a DFT combined with fftshift41 is depicted in Fig. 2.5.3
and shows that the high frequencies in this band pass filter are amplified.

To get closer to the function itself, we incorporate a so-called quasi interpolant
as an approximation to 5 based on the the samples. For a function q ∈ !00(R) the
quasi interpolant is defined as the scaled convolution

&ℎ,q2 := q ∗ 2
(
ℎ−1·

)
=

∑
:∈Z#

2(:)q
(
ℎ−1 · −:

)
=

∑
:∈Z#

5 (ℎ:) q
(
ℎ−1 · −:

)
40Or at least should be.
41This is an octave function that shifts the zero frequency into the middle of the vector.

59

2 Mathematical Foundations of Signal Processing

definiert. If q is even a cardinal function, defined by q |Z = X, then &ℎ,q (ℎ:) =
(ℎ 5 (:) = 5 (ℎ:), : ∈ Z# , and the data is even interpolated, completely quasi-free.
If not, one at least hopes to obtain a reasonable approximation.

Example 2.5.12. The most common functions for quasi interpolants are the car-
dinal splines which we know as autoconvolutions of characteristic functions from
Example 2.2.7. The interpolatory one among them are those of degree 0 and 1,
i.e., j and j ∗ j, all the other ones a noninterpolatory. The resulting approxima-
tion operators are called Schoenberg operator and can be found for example in
(Sauer, 2002; Sauer, 2007; Schoenberg, 1973).

If we assume42 that &ℎ,q2 approximates the function 5 , meaning that
 5 −&ℎ,q2

1

is small, then the Fourier transform of &ℎ,q2 is also a good approximation of the
Fourier transform 5̂ of 5 and we can compute the latter from the sampled infor-
mation as(

&ℎ,q2
)∧ (b) = (fℎ−1 (q ∗ 2))∧ (b) = ℎ (q ∗ 2)∧ (ℎb) = ℎ q̂(ℎb) 2̂(ℎb).

If we replace b by ℎ−1b, in this identity, and then discretize b on the discrete torus
T# := 2cZ#/# , we obtain

5̂

(
2:c

#ℎ

)
'

(
&ℎ,q2

)∧ (
2:c

#ℎ

)
= ℎ q̂

(
2:c

#

)
2̂# (:), : ∈ Z# . (2.5.8)

This simple formula eventually connects the discrete Fourier transform 2̂# (:) =
((ℎ 5)∧# of the samples with an approximate discretization of the Fourier transform
5̂ of 5 and nicely explains the relationship:

1. The sampling rate ℎ determines which frequencies of 5 are really encoded in
the DFT 2̂# , and the smaller ℎ is, the smaller this frequency range becomes.
This, of course, should come as no surprise.

2. The frequency resolution as the number of entries of the spectrum that are
computer depends on the number # of the discretizations. The larger # is,
the more precisely the spectrum is represented and the smaller is the distance
between these frequencies. If # is small, on the other hand, more entries will
be combined into one. Of course, the computational e�ort increases with #
as well.

3. One cannot decouple these two parameters so easily. Normally the discrete
data results from sampling over a substantial range or period of size #ℎ, so
that a high sampling rate will usually be related to a high frequency resolution
as well.

4. The normalizing factor ℎ in (2.5.8) is only of interest if we are care for the
concrete energy of the frequencies, if we only are for the distribution of these
values we might as well ignore it.

42Otherwise we definitely made a mistake with the quasi interpolant.

60

2.5 The FFT

 0.5

 1

 1.5

 2

 0 100 200 300 400 500

Figure 2.5.4: Filtering of the function from Fig. 2.5.3 with cardinal splines of order 0, 1, 2, 3.
The outliers become smaller with increasing order, however for the price of
a bump at the boundary.

5. The distance between 5̂ and the approximation
(
& 9 ,q 5

)∧ clearly a�ects how
well these values describe the discretized Fourier transform. Since ‖6̂‖∞ ≤
‖ 5 ‖1 and since we only sample of [0, #ℎ], the !1 quality of approximation 5 −&ℎ,q 5

1
:=

∫ #ℎ

0

�� 5 (C) −&ℎ,q 5 (C)
�� 3C ≤ #ℎ max

0≤C≤#ℎ

�� 5 (C) −&ℎ,q 5 (C)
��

is crucual for the quality of this approximation. For cardinal splines there
are estimates of the order �ℎ2, i.e., the error decreases quadratically with
the sampling rate. sind.

6. If cardinal spline functions are chose as q = j ∗ · · · ∗ j, the correction filter
q̂ is simply a power of the sinc function, but we sample only the first “hill”
of this function that decreases faster with increasing order of the spline. In
this respect, it results in a stronger damping of unwanted high frequency
contributions.

7. If we simply drop or ignore q in (2.5.8), then we replace q̂ by j[0,1] , which
means that q = sinc and instead of 5̂ one discretizes the interpolatory recon-
struction from the sampling theorem, Theorem 2.3.3. But this is no really
good approximation, unless the function is bandlimited, the sampling rate is
appropriate and the sampling ranges over all of Z. But this is not the real
life.

2.5.3 The Fast Fourier Transform

The most appealing aspect of the DFT, however, is not the fact that it is a consistent
extension of the Fourier transform for periodic or periodized functions, but that
it can be computed really fast. This is due to the fast Fourier transform or FFT, for
short. In this respect, it would be more accurate to call the FFT an FDFT, i.e., a
fast discret Fourier transform.
The algorithm itself was (re)discovered by Cooley and Tukey in 1965 in (Cooley

and Tukey, 1965), see also (Cooley, 1987; Cooley, 1990), and it works not only

61

2 Mathematical Foundations of Signal Processing

for the DFT, but can actually be applied in quite arbitrary rings and is also used,
for example, for the fast multiplication of large integers (Schönhage and Strassen,
1971; Gathen and Gerhard, 1999). All that is needed for the algorithm is a primitive
=th root of unity like the l = 4−28c/= in the definition of the DFT.
And the idea behind the FFT is strikingly simple: let us suppose that = = 2< is

an even number and remark that

l2 = 4−2c82/= = 4−2c8/< =: l<, l= := l,

then we get for any 2 ∈ ℓ (Z=) and 9 ∈ Z= that

2̂= (9) =
∑
:∈Z=

2(:) l 9 : =
∑
:∈Z<

2(2:) l2 9 : +
∑
:∈Z<

2(2: + 1) l 9 (2:+1)

=
∑
:∈Z<

2(2:) l 9 :
< + l 9

∑
:∈Z<

2(2: + 1) l 9 :
<

= (2(2·))∧< (9) + l 9 (2(2 · +1))∧< (9),

which is
2̂= = 2

∧
= = (2(2·))∧< + l· (2(2 · +1))∧< . (2.5.9)

The FFT now consists of applying this computational rule recursively, which of
course requires that = = 2: for some : , at least in our naive form.
What is now the value of this representation? If we assume that the values

l, . . . , l=−1 are precomputed and available in a table43, the naive version of the
DFT as a matrix-vector mulitplication of an = × = matrix with an =-vector would
require $

(
=2

)
operations. So let us check what a computation via (2.5.9) would

need and call that number � (=). Then (2.5.9) tells us that for the computation of
2̂= we first have to compute the two DFTs of length < = =/2 on the right hand side
(cost of 2� (=/2)), then multiply the second result componentwise with the vector(
l 9 : 9 ∈ Z=

)
(cost of =) and the add them componentwise44 (cost of =). Hence,

the total e�ort in (2.5.9) is 2 (� (=/2) + =), which leads to the recurrence relation

� (=) = 2 (� (=/2) + =) . (2.5.10)

For a dyadic = = 2ℓ with ℓ ∈ N, we thus get

� (=) = 2:�
(
2ℓ−:

)
+ : 2ℓ+1, : = 1, . . . , ℓ, (2.5.11)

which follows by induction from the fact that for : = 1 (2.5.11) is just (2.5.10) while
the inductive step is

� (=) = 2:�
(
2ℓ−:

)
+ : 2ℓ+1 = 2: 2

(
�

(
2ℓ−:−1

)
+ 2ℓ−:

)
+ : 2ℓ+1

= 2:+1�
(
2ℓ−:−1

)
+ 2ℓ+1 + : 2ℓ+1 = 2:+1�

(
2ℓ−:−1

)
+ (: + 1) 2ℓ+1.

43They are the same for all 2 ∈ ℓ (Z=) and could be held in some cache; and even if they were not
precomputed, the e�ort for that is $ (=).

44The vectors are <-periodic and will simply be extended by periodicity.

62

2.5 The FFT

-50

0

50

100

150

200

0 100 200 300 400 500 600

line 1

-150

-100

-50

0

50

100

150

0 100 200 300 400 500 600

line 1

Figure 2.5.5: Real (left) and imaginary (right) part of the FFT of (2c/500 cos (50·), zero-
padded to 512 entries. The two main frequencies 50 and 450 are still clearly
visible, but the large imaginary parts are quite misleading.

Considering (2.5.11) for the special case : = ℓ = log2 =, this becomes

� (=) = 2ℓ︸︷︷︸
==

� (1) + ℓ 2ℓ+1︸︷︷︸
=2= log2 =

= = (2 log2 = + � (1)) = $ (= log2 =) ,

which is significantly better than the $
(
=2

)
of the naive matrix-vector multiplica-

tion. Indeed, $ (= log2 =) is a typical asymptotic complexity for methods based on
the principle of divide and conquer, and is often derived as a consequence of the
so-called master theorem, (Steger, 2001).
This complexity results holds not only for numbers = that are powers of 2. If ℓ

is chosen such that 2ℓ−1 < = ≤ 2ℓ, then we can simply replace = by 2ℓ and embed
the original signal into a larger one, for example by padding it, i.e., adding zeros.
Then the computational cost

2ℓ� (1) + 2ℓ 2ℓ ≤ 2= � (1) + 2 log2(2=) 2= = 2= � (1) + 4= (log2 = + 1)
= 2= (2 log2 = + � (1) + 2) ,

is increased by a factor of two which leaves the asymptotic complexity still at$ (= log2 =).

Example 2.5.13. Of course, padding is just a complexity argument and not some-
thing that can be recommended in practice. If, for example, we form (2c/500 cos (50·)
as a signal in ℓ (Z500) and pad this sequence by appending 12 zeros to it in order
to yield an element of ℓ (Z512), then the frequencies are blurred significantly, in
the real as well as in the imaginary part, see Fig. 2.5.5. And just to make it clear:
imaginary frequencies should not even appear in that DFT!

One might assume that the problem with the function in Fig. 2.5.5 would be
due to the fact that periodicity is destroyed and that the signal should be extended
periodically. But then the period lengths 500 and 512 do not fit, except in the lucky
case that the signal is of such high frequency that the periodization meets a full
period of the signal.
The FFT that we defined here is known as the radix-2 FFT since the decompo-

sitions are performed on the basis 2 and are based on halving the data. This can

63

2 Mathematical Foundations of Signal Processing

Figure 2.5.6: FFT of our test image from Fig. 2.4.6, showing the absolute value (left) and
the phase (center). The absolute values vary so strongly that nothing can really
be recognized. This is improved by using a logarithmic representation of
the absolute values (right). And just to make it clear: the phase image has to
be considered cyclically which means that black is the same as white.

be done with any other basis Die Form der FFT, die wir hier betrachtet haben, ist
die sogenannte ? ∈ N as well, where for < = =/? the analogous decomposition
modulo ? yields

2̂= (9) =
∑
:∈Z<

∑
ℓ∈Z?

2 (?: + ℓ) l 9 (?:+ℓ) =
∑
ℓ∈Z?

l 9ℓ

(∑
:∈Z<

2 (?: + ℓ) l 9 :
?

)
=

∑
ℓ∈Z?

l 9ℓ (2 (? · +ℓ))∧< (9),

which results in the computation of more DTFs for shorter segments and has a

computational complexity of $
(
= log? =

)
that just di�ers by a constant once more.

Exercise 2.5.1 Show that the computational cost of the radix-? FFT is$
(
= log? =

)
.

♦

Exercise 2.5.2 Derive, on the basis of (2.5.7) an algorithm for a bivariate FFT
fft2 and determine its computational complexity. ♦

2.5.4 Fourier and Images

A major reason to apply the FFT in signal processing is the fact that it allows us
to compute the cyclic filtering (2.5.6) in $ (= log2 =) instead of $

(
=2

)
by simply

transforming both signals with an FFT, then multiplying them componentwise and
finally transforming the signal back. Indeed, the transformations cost $ (= log2 =)
and the multiplication $ (=), so that we again end up with $ (= log2 =).
The DFT can be applied directly and naively on images, but a little bit of care

might be in order as Fig. 2.5.6 shows. But even the logarithmic scale45 does not

64

2.5 The FFT

Figure 2.5.7: Stripes without stars (left) and their (inverted) DFT (right) that is only di�erent
from zero at three small, well-localized points that can only be seen in proper
resolution.

Figure 2.5.8: Image of size 512 × 512 and the logarithmic DFT of its 16 × 16 blocks. At
locations with contours one can can see crosses if the block FFTs that are
even pointing in the same direction as the edges, where there is nothing to be
seen, for example on the floow, the DFT is quite di�use.

really give us valid information about the image. Part of that is due to the fact
that the DFT is tailored for periodic signals which our image is not. Generating an
image that consists of vertical strips by

>> X = kron(ones(64), ones(8,1)*[1 1 1 1 0 0 0 0]);

and then transforming it to obtain Fig. Abb:stripes. Here the DFT just shows the
constant part, i.e., the sum over all pixel values, in the middle, an the frequency
of the stripes in the other two dots. A similar test can be applied to checkerboard
patterns.

Exercise 2.5.3 Create di�erent checkerboard images and compute and plot their
DFT. ♦

45The bright spot in the center of the logarithmic modulus of the FFT shows that the absolute
value of the FFT should have a white spot in the center that dominates everything.

65

2 Mathematical Foundations of Signal Processing

Figure 2.5.9: Block DFT with blocks of size 8 (left) and of size 16 (right).

Making the46 assumption that locally images are either constant or or have a
somewhat periodic texture, we can try to make use of this assumption. To that
end, we decompose an image � =

(
2(9 , :) : 9 , : ∈ Z=

)
into blocks of size =/<,

yielding

� =
©«
�00 . . . �0,<−1
...

. . .
...

�<−1,0 . . . �<−1,<−1

ª®®¬ , � 9 : ∈ R
=
<
× =
< ;

then, we transform each of these blocks separately:

�̂ ≠ �̃ :=
©«
�̂00 . . . �̂0,<−1
...

. . .
...

�̂<−1,0 . . . �̂<−1,<−1

ª®®¬ .
For di�erent sizes of <, the results are depicted in Fig. 2.5.8 and Fig. 2.5.9. The
computation of each block has a cost of � (=/<)2 log2 =/< and since we have <2

blocks in total, the complete cost of the decomposition is $
(
=2 log =

)
, i.e., the same

as a full FFT of the image.
To these local DFTs we can now apply a low pass �lter in a very simple and

e�cient way by multiplying each of the individual DFTs componentwise with a
mask " ∈ R =

<
× =
< that is concentrated around the center. This can be done with

a “hard window” consisting of ones are with a properly normalized binomial filter
and leads to

�∗ :=
©«
�̂00 � " . . . �̂0,<−1 � "

...
. . .

...

�̂00 � " . . . �̂0,<−1 � "

ª®®¬ = �̃ � (1<×< ⊗ ") .
This is a good occasion to learn two new matrix products, namely the Hadamard

46More or less realistic, often more less than more.

66

2.5 The FFT

produkt

� � � :=

[
0 9 :1 9 : :

9 = 1, . . . , ?
: = 1, . . . , @

]
∈ R?×@, �, � ∈ R?×@,

and the Kronecker produkt47

� ⊗ � =

011 � . . . 01@ �
...

. . .
...

0?1 � . . . 0?@ �

 ∈ R
?A×@B, � ∈ R?×@, � ∈ RA×B .

Both are implented in Matlab/Octave in a very e�cient way.
Once we have computed �∗, which can be done by performing =2/<2 compo-

nentwise multiplications which cost $ (<2) operations each, hence with a total of
$

(
=2

)
, we only need to transform this matrix back and obtain a filtered and pos-

sibly compressed version of �.

Example 2.5.14. We use the 4 × 4 binomial filter

�4 =
1

4

1
2
2
1

 [1 2 2 1] =
1

4

1 2 2 1
2 4 4 2
2 4 4 2
1 2 2 1

and embed it into an =

<
× =

<
matrix whose remaining entries we set to zero. In

octave this can be done with the following piece of code, where we assume that
the image of size 512 × 512 is stored in A:

>> bin4 = [1 2 2 1]’*[1 2 2 1] / 4;
>> M = zeros(16); M(7:10,7:10) = bin4;
>> B16 = blockDFTshift(A) .* kron(ones(32), M);
>> A16 = blockIDFTshift(A);

The resulting image can be seen in Fig. 2.5.11. Smaller block artifacts can (of course)
be obtained by using smaller blocks, see Fig. ??.

Remark 2.5.15. An important practical observation is as follows: the thing with
the forward and backward DFT and shifting the zero frequency to the midpoint
only works if the block size is a power of two, i.e., = = 2: for some appropriate : .
The image size itself only has to be a multiple of = which makes things at least a
bit easier.

What did we gain with all this e�ort except that we have an operation that can be
performed e�ciently due to the FFT. Let us have a look at Fig 2.5.11 and the block
DFT there. There we set all values in each of 16 × 16 blocks to zero except those
that were met by the 4 × 4 filter. Hence we only kept 4×4

16×16 =
1
16 of the information,

the image has been compressed by means of local low pass filtering.

47Which we already encountered as the kron–Funktion of Matlab/Octave.

67

2 Mathematical Foundations of Signal Processing

Figure 2.5.10: Truncated block DFT of our standard image (left) and its reconstruction by
an inverse DFT (right). The image can still be recognized very well despite
of the clearly visible block artifacts.

Figure 2.5.11: Reconstruction from 8 × 8 blocks, using a 4 × 4 binomial filter (left) and the
characteristic function 14×4 (right). Can you see a di�erence?

68

2.5 The FFT

Figure 2.5.12: Original image (left) from Fig. 1.1.1 and its modification with subsampled
CbCr component (right). The di�erence is hardly visible and the edges are
still fairly well preserved.

This idea of compressing the low pass content of a transformed image is the
fundamental idea behing the image compression standard JPEG48. However, there
is more behind it:

1. JPEG already uses several tricks at image preprocessing. The first step con-
sists of a transformation to the YCbCr color model and subsamples the
chroma contents. This is almost invisible to the human eye but already re-
duces the amount of data to 50% in color images: 1

3 +
1
12 +

1
12 =

1
2 . The e�ect

is illustrated in Fig. 2.5.12.

2. The filtering is not done in the brute force way described above, but by
quantization and rounding. That means, the coe�cients in the DFT are
rounded to finite values and all values below a certain threshold are set to zero.
This usually includes high frequency content49. The value of this threshold
determines the compression rate of the JPEG compression - the higher it is,
the more coe�cients are set to zero which improves the compression rate but
reduces the image quality, of course.

3. Since computations with complex numbers mean extra e�ort, JPEG is not
using the DFT but the so called discrete cosine transform (DCT) that matches
real valued data to real valued data, see Definition 2.5.17.

4. After transformation and quantization, JPEG adds a so called entropy encoder
that reduces the amount of data even further in a lossless way.

48The full documentation of the standard can be found for example at the web address
www.w3.org/Graphics/JPEG/itu-t81.pdf.

49The Fourier transform decays with increasing frequency as we learned in Proposition 2.2.9.

69

2 Mathematical Foundations of Signal Processing

Remark 2.5.16. The transform between the RGB and the YCbCr color model is
defined for 0 ≤ ', �, � ≤ 1 as

©«
.

�1

�A

ª®¬ = ©«
0.299 0.587 0.114
−0.169 −0.331 0.500
0.500 −0.419 −0.081

ª®¬ ©«
'

�

�

ª®¬ , −1
2
≤ ., �1, �A ≤ 1

2
,

and each row sums up to one, which means that it is a weighted combination of
the color channels. The inversce of the transformation matrix is easily50 as

©«
'

�

�

ª®¬ = ©«
1 −0.00092674 1.40168676
1 −0.34369538 −0.71416904
1 1.77216042 0.00099022

ª®¬ ©«
.

�1

�A

ª®¬
and shows that the . part, in some sense the “black and white contours”, con-
tributes the same to each color channel.

De�nition 2.5.17 (DCT). The discrete Cosine transform orDCTmaps a vector
5 ∈ ℓ (Z=) to a linear combination of cosine terms, for example as

DCT� � 5 (9) =
∑
:∈Z=

5 (:) cos
c

(
: + 1

2

)
9

=
. (2.5.12)

This is known as the DCT–II, overall there are four types of DCTs.

Of course, the DFT could be realized naively and directly via the matrix

� � �
= :=

[
cos

c
(
: + 1

2

)
9

=
: 9 , : ∈ Z=

]
, d.h. DCT� � 5 = � � �

= 5 ,

but this would be very ine�cient. Since

cos
c

(
: + 1

2

)
9

=
= cos

2c (2: + 1) 9
4=

= 2
(
4
2c8 (2:+1) 9

4= + 4
−2c8 (2:+1) 9

4=

)
,

we again only have to pad our signal, that is, we define 3 ∈ ℓ (Z4=), taking into
account that − 9 = 4= − 9 in Z4=, as

3 (2: + 1) = 3 (−2: − 1) = 2(:), : ∈ Z=, 3 (2:) = 0, : ∈ Z2=,

and obtain for 9 ∈ Z4= that

3̂ (9) =
∑
:∈Z4=

3 (:) 4−2c8 9 :/(4=) =
∑
:∈Z2=

3 (:) 42c8 9 :/(4=) + 3 (−:) 4−2c8 9 :/(4=)

=
∑
:∈Z=

2(:) 2
(
4
2c8 (2:+1) 9

4= + 4
−2c8 (2:+1) 9

4=

)
=

∑
:∈Z=

2(:) cos
c

(
: + 1

2

)
9

=

= DCT� �2(9),

so that also the DCT can be computed with an e�ort of $ (= log2 =). By our stan-
dard methods, the DCT can be also extended to the bivariate case and can be
implemented via a version of fft2.

Exercise 2.5.4 Formulate a 2D-DCT and implement it on the basis of an FFT. ♦
50For example using octave.

70

2.5 The FFT

Remark 2.5.18 (DCT). Even if the DCT can be realized through the FFT in prin-
ciple, the factor 4 or 16 in the two dimensional case is not really nice. Because of
that, there are specific methods to compute the DCT directly, and these ideas rely
on a matrix matrix formulation like with the DFT: splitting the DFT to obtain the
FFT can be written as a matrix factorization.

71

72

Transformations 3
There is never enough time to do all the nothing you want.

(Calvin and Hobbes, Online 26.8.2018)

Next, we want to consider further transformations or transforms of signals. As
the name indicates, a transformation transforms a signal (which includes images, of
course) into a di�erent form or even structure. This is mostly due to two reasons:

1. We cannot measure the signal itself but only a transformation of it. The
Radon transform from (1.3.2) was a nice example, but also any Photography
we take is only a transformation of a three dimensional environment. In
this situation, the task is to invert the transformation and to reconstruct the
original information from it.

2. The transormation allows us to detect or access information that has not
been available in the original signal. An example is the frequency content
that becomes visible when applying the Fourier transform.

The goal of this chapter is to have a look at some particularly important transfor-
mations that are frquently used in signal and image processing.

3.1 The Hough transform

The Hough transform was published1 in 1962 in the patent application (Hough,
1962) and is still very popular in image processing. Mostly, it is used to detect lines
in images based on a duality between points and lines. We already know this from
the Radon transform where a line in the plane is written as

! =
{
G ∈ R2 : E)G = 2

}
, ‖E‖2 = 1, 2 ∈ R, (3.1.1)

and is thus encoded by the values E and 2 which we can write as ! = ! (E, 2). There
are some degrees of freedom in this encoding since

E)G = 2 ⇔ (−E))G = (−2), d.h. ! (E, 2) = ! (−E,−2),

which means that the encoding is an even function. The vectors E on the unit
circle can be written as

E = E\ =

[
cos \
sin \

]
, \ ∈ [−c, c]

1The correct wording would be “disclosed”.

73

3 Transformations

and eliminating the degree of freedom, we eventually write lines as

! = ! (\, 2) := ! (E\ , 2) , \ ∈
[
−c
2
,
c

2

)
, 2 ∈ R.

The important part is the reduced interval for \ which makes the representaion for
lines a unique one. Now, we flip the roles and consider via

� (G) =
{
(\, 2) : E)\ G = 2

}
⊂

[
−c
2
,
c

2

)
× R =: H, (3.1.2)

a parametrization of all lines through a given a point G ∈ R2 as a curve in H. If we
now consider � (G), G ∈ -, for a (finite) set - ⊂ R2 for which many of its elements
lie on a line ! (\, 2), then the pair (\, 2) will occur often in � (-). The more points
we have on this line, the more often the pair will occur. More precisely, for any
choice (\, 2) ∈ H the value

=- (\, 2) := # {G ∈ - : (\, 2) ∈ � (G)} ,

counts how many points of - lie on the line ! (\, 2), where of course only values
=- (\, 2) � 2 are of interest as two points can always be connected by a line. Since
(3.1.2) determines � (G) for each image pixel as indicator curve of a lines through
G, the value of the transformation does not depend on color of intensity of this
pixel, it just depends on whether it “is there” or not.

De�nition 3.1.1.

1. A binarized image is an image whose pixels take only the values 0 and 1.

2. The Hough transform of a finite2 binarized image with pixels

- =
{(
G 9 , H 9

)
∈ R2 : 9 = 1, . . . , #

}
is defined as

(� (-)) (\, 2) = =- (\, 2) , (\, 2) ∈ H.

Since in general most lines will never be incident with any point of a finite set,
� (-) is zero almost everywhere and this yields a rather unstable definition of the
transform that would not be robust enoug for practical applications. To overcome
that, one decomposes H into regions H 9 : = Θ 9 ×�: , 9 , : = 1, . . . , ", "′, such that
the Θ 9 form a partition3 of [−c/2, c/2] and the �: partition a su�ciently large
subset of R. Based on the partition, we simply count how many of the values � (Gℓ)
lie in a certain partitionH 9 : . This can be done in a very simple way by the following
procedure:

Algorithm 3.1.2 (Discrete Hough transform).

2In principle it is not di�cult to extend the Hough transform to continuously defined images.
3A partition - 9 of - is a decomposition of - with the properties - 9 ⊂ -,

⋃
9 - 9 = - and

-◦
9
∩ -◦

:
= ∅, hence a decomposition into subsets whose interiors are disjoint. Sometimes the

“interior” is also dropped or trivial, the latter for example whenever - is finite.

74

3.1 The Hough transform

Figure 3.1.1: Binarized edges with the threshold set to 1
3 (left),

1
7 (center) and

1
10 (right) of

the maximal value, shown in inverse representation, i.e., detected pixels are
shown in black. The dilemma between missing edges and overrepresentation
of noise and textures is clearly visible.

1. Given: Punkt G = (G, H)

2. Set N = 0"×" ′

3. For 9 = 1, . . . , " :

a) \ 9 = midpoint of Θ 9 .

b) Determine an index 1 ≤ : ≤ "′ such that

G cos \ 9 + H sin \ 9 ∈ �: .

c) � 9 : ← � 9 : + 1.

4. Result: " = discrete/discretized Hough transform

Exercise 3.1.1 Implement the Hough transform from Algorithm 3.1.2. ♦
Fortunately, the Hough transform is already available in Matlab4 and octave

as a function houghtf, so that we can play a little bit with it. Usually, the Hough
transform is applied to classify edges in images which should first be processed by
an edge filter and then binarized accordingly. This has another important reason:
the complexity of the Hough transform depends linearly on the number of pixels
to be considered and since edges are usually one dimensional objects, the hope is

that an image with # pixels might have about $
(√
#

)
.

We once more consider our running example from Fig. 2.4.6. We use gradient
filters and their 1-norm to determine the images in Fig. 2.4.9:

>> Gx = [-ones(3,1) zeros(3) ones(3,1)]/9; Gy = -Gx’;
>> K = abs(filter2(Gx,H)) + abs(filter2(Gy,H));
>> Kb = K > max(max(K)) / 7;
4However, in an Image Processing toolbox that has to be bought separately.

75

3 Transformations

Figure 3.1.2: Hough transform of the edges in Fig. 3.1.1 with the ration 1
7 threshold. A few

of the maxima can be recognized as “bright spots”.

The last step in this process that determines Kb as some factor of the maximal
entry is purely arbitrary. Indeed, the threshold 1

7 times the maximal value has
been chosen experimentally with the goal to have as many lines and a few isolated
pixels as possible, see Fig. 3.1.1. Next we use the builtin function houghtf to
compute the transform from the image:

>> [Ht,R] = houghtf(Kb);

This function samples the angles with a distance of 1◦ = c
180 , i.e within the range

1:180, and the 2 values are choses in the range [−!, !] where ! is the length of
the diagonal of the image. The sampled values for 2 are returned in the variable R,
which makes it a lot easier. The result of this transform can be seen in Fig. 3.1.2.
Now, we get the parameters of the most dominant lines from the Hough transform
and plot them together with the image:

>> [Hr,Hc] = find(Ht > .6*max(max(Ht)));
>> imagesc(1.-Kb); colormap(bone); axis equal
>> houghLines([Hr,Hc],R,H);

The result can be seen in Fig. 3.1.3. The method has some fairly obvious advan-
tages and disadvantages:

1. If applied carelessly, the method detects phantom edges, in this case the im-
age boundary. This, however, is not a feature of the Hough transform but
of the edge detection used to binarize the image: when padding the image
with zeros, most of the image boundary has a large gradient and therefore a
boundary frame consisting of long lines is generated - the Hough transform
just does what it is supposed to do.

2. The line edges are not localized. This can be seen by the diagonal edge which
is just defined by the bagpipe chanter and some other edges it accidentially

76

3.1 The Hough transform

Figure 3.1.3: Line edge detection by means of the Hough transform, in the contour image
(left) as well as in the image itself (right). Looking carefully the images reveals
that the image boundary was detected by the transform which is explained
by the fact that it was marked by our edge detection.

meets. Though dominant, the true edge is very short. To find the line edge
one first would have to discretize the edge line5 and then look for all binary
pixels that are su�ciently close to it. This is no rocket science, but it also is
not for free.

3. On the other hand, this is also an advantage of the method as it can find
lines that are partially hidden like the edge of the table behind the hat.

4. Still we face the problem of finding a proper threshold. The 60% of the
maximal value were just some choice we made and the level is so hight that
for example the lower edge of the table or the legs of the chair are not found.
If, on the other hand, we lower the threshold, we may end up with a lot of
lines that at some point are too many to still give relevant information. And
if we set it to 2, then we get all lines through any pair of pixels.

The Hough transform is particularly useful if there are lines running through
the whole image which are hidden by some local objects of if the image is
dominated by a rather small number of lines.

Example 3.1.3 (Orientation of rectangular objects). When dealing with rectangu-
lar objects of (ideally) known size, their orientation can be detected rather com-
fortably by means of the Hough transform, for example in the process of tracking
objects on a belt. Once the threshold is calibrated, the orientation can be detected
quite easily and e�ciently.

5A well-known and solved problem in Computer Graphics, cf. (Foley et al., 1990).

77

3 Transformations

Figure 3.1.4: Envelope with two di�erent orientations. Indeed, the Hough transform rec-
ognizes the edges, but also the shadow artifacts. The more complex pattern
in the background, however, is ignored.

Figure 3.1.5: The envelope once more, this time none of the short sides is detected.

78

3.2 Time-Frequency – Windows & Gabor

Exercise 3.1.2 Develop an algorithm that detects a rectangular object of your
choice in images. You can use any edge detection method and the Hough transform
from Matlab/octave. ♦
With a little bit of mathematical thinking the Hough transform can be viewed

more abstractly and can be generalized to arbitrary implict parametric curves.

De�nition 3.1.4. An implicit paramtetric curve with respect to the function � :
H := RB × P for a given parameter ? ∈ P is the set{

G ∈ RB : 0 = 5? (G) = � (G, ?)
}
⊂ RB . (3.1.3)

The (generalized) Hough transform with respect to � associates to G ∈ RB the set
of all fitting parameter values

� (G) := {? ∈ P : � (G, ?) = 0} ⊂ P (3.1.4)

Example 3.1.5. The case of the classical Hough transform is given as6

H = S2 × R+ and � (G, ?) = E)G + 2, ? = (E, 2),
H =

[
−c
2
,
c

2

]
× R and � (G, ?) = [cos \, sin \] G + 2, ? = (\, 2).

There ist yet another example for a Hough transform in the literature, namely

� (G, ?) = (G1 − ?1)2 + (G2 − ?2)2 − ?23,

which codes themidpoint and radius of a circle. The transform collects all circles
that contain a certain point G, which is fairly simple since for a given radius A =
?3 ∈ R+ the midpoints of all circles of radius A that contain G lie on circle of
radius A with center G. Now, however, one has to figure out where the paramters
for circles accumulate in a three dimensional space which is significantly more
expensive than the Hough transform for lines. To understand this fact, note that
the decomposition of a cube into subcubes with edge length ℎ has $

(
ℎ−3

)
parts,

while the same decomposition of a square has only $
(
ℎ−2

)
parts. This means that

we need many more pixels until on the circles becomes significantly represented
in the histogram. Nevertheless, the approach allows, in general, the detection
of circles in images and a circle based Hough transform is actually available in
Matlab/octave and there is no reason to not experiment with them.
Further applications of generalized Hough transforms in the sense of Defini-

tion 3.1.4 would be possible, but since the complexity grows exponentially in the
number of parameters, there is a natural limit to this approach.

3.2 Time-Frequency – Windows & Gabor

It is impossible to practically compute the Fourier transform of a signal of in�nite
length and it is not easy and to determine it for a very long sequence 2 ∈ ℓ (Z=), =
very large. Even if = log2 = is considered a relatively small growth rate, transforming

6S3 =
{
G ∈ R3 : ‖G‖2 = 1

}
stands for the 3-dimensional unit sphere.

79

3 Transformations

Figure 3.2.1: Absolute values of the FFTs of lentgh 128 with blurred freuquencies despite
the fact that that only one frequency (and its mirrored version, we deal with
a cosine) should appear. And even worse this e�ect varies with the invterval;
though the variations are not dramatic, they are visible,

a long piece of music7 used to be quite challenging for computers, and still is for
small signal processing chips used in CD players or mp3 players. And even if we
can compute it nowadays - what is the information obtained by this transform? It
just tells us the distribution of frequencies in the piece but gives no information
about melody or distribution of instruments.

3.2.1 The Windowed Fourier Transform

For these and other reasons it is common in signal processing to work not on the
full signal but only on snippets of it that are obtained by using a filter8. To compute
an FFT of length = = 2ℓ we thus consider the window

ℓ (Z=) 3 2: = (�2) (· + :=) = (5 ∗ 2) (· + :=) , : ∈ Z,

where the simplest filter would be 5 = X which just cuts the signal into pieces of
length =. This approach, however, can lead to problems.

Example 3.2.1. Consider cos(64G) sampled at the = = 768 = 3 ∗ 256 points in
2c/768 ∗ Z= and then transformed by FFT on the 6 intervals of length 128. In
Fig. 3.2.1 we can clearly see that the frequency resolution is degraded, the peaks
are blurred.

The phenomenon shown in Fig. 3.2.1 is typical for thewindowed Fourier trans-
form that we consider here: the frequencies leak and spread over a region instead

7A way file of an average piece of music is about 40MB, small in 2022, but still substantial in the
good old days.

8This should not surprise us since almost all signal processing is based on filters.

80

3.2 Time-Frequency – Windows & Gabor

of being sharply localized. This is known as the leakage phenenomenon In try-
ing to understand the reason for this, we look at our naive X-windows and compute
the blocks

[2 (· + 2:=)]∧= =

[
g2:=

(
2 ×

∑
9∈Z=

g9X

)]∧
=

= l2:=·︸︷︷︸
=1

(
2 ×

∑
9∈Z=

g9X

)∧
=

= (2c/=

(
2 ×

∑
9∈Z=

g9X

)∧
= (2c/=

[
2̂ ∗

(∑
9∈Z=

48 9 ·
)]

=
[
(2c/=2̂

]
∗

[∑
9∈Z=

42c8 9 ·/=
]
,

which shows that even if 2̂ were perfectly localized, the convolution with the exponen-
tial sequences always would yield the leakage of the frequencies. In other words:
this is a principal problem.
Nevertheless, the idea of windowing has a certain appeal: one will also detect

the frequencies that appear locally in the signal during the time that is covered by
the window. And even if this detection is not perfect due to the leakage e�ect, it
may allow us, for example, to recognize the melody in a music recording. And if
we look back to the localized DFT that we applied in Fig. 2.5.9, then we actually
already did the same already to images. The only modification that we are going
to make will be not to use successive, but overlapping windos.

3.2.2 The Gabor Transform

The Gabor transform was introduced by Denni Gábor (Gabor, 1946) in 1946 as
an explicit technique for the analysis of sound data.

De�nition 3.2.2 (Gabor transform). A window function is any normalized even
function 6 ∈ !2(R), i.e., 6(C) = 6(−C) sowie ‖6‖2 = 1. Based on the so called time
frequency atoms

qD,b (C) = 48bC 6(C − D), C ∈ R, (D, b) ∈ R2, (3.2.1)

for 6, the Gabor transform is defined as

� 5 (D, b) =)Φ 5 (D, b) =
∫
R
5 (C)qD,b (C) 3C =

∫
R
5 (C) 4−8bC 6(C − D) 3C, (D, b) ∈ R2.

(3.2.2)
It is also called the short time Fourier transform, or STFT for short.

The “short” in STFT is an indiction that the underlying idea here is that 6 has a
small compact support or decays very rapidly and practically has a small support.
The Gabor transform yields the so called spectrogram

|� 5 | = |� 5 (D, b) | : R2 → R

that tells us which amount of frequency b was present at time D – at least approxi-
mately. The first observation is that the Gabor transform is a reasonable transform

81

3 Transformations

since any function can be reconstructed from its Gabor transform and therefore
no information is lost.

Theorem 3.2.3. For 5 ∈ !2(R) one has

5 (C) = 1

2c

∫
R

∫
R
� 5 (D, b) 48bC6(C − D) 3b3D (3.2.3)

and ∫
R
| 5 (C) |2 3C = 1

2c

∫
R

∫
R
|� 5 (D, b) |2 3b3D. (3.2.4)

Remark 3.2.4. The Gabor transform works in nice analogy to the Fourier trans-
form:

1. Equation (3.2.3) defines an inverse Gabor transform and that even in a
very simple way and almost perfect analogy to the Fourier transform.

2. In the same way, (3.2.4) is the counterpiece of the Plancherel indenity (2.2.18)
of the Fourier transform. In other words: up to the ubiquitous constant 1

2c ,
the Gabor transform is an isometry.

3. A statement of warning might also be appropriate here: the formulas above
hold in the !2-sense, pointwise identities cannot be derived this way.

Proof: We fix b ∈ R an consider the functions 6b = 48b ·6 and 5b = � 5 (·, b). By
Definition 3.2.2 and due to the symmetry of 6,

5b (D) = � 5 (D, b) =
∫
R
5 (C)4−8bC 6 (C − D)︸ ︷︷ ︸

=6(D−C)

3C

=

∫
R
5 (C)4−8bD 48b (D−C)6 (D − C) 3C = 4−8bD

∫
R
5 (C)6b (D − C) 3C,

hence
5b (D) = 4−8bD

(
5 ∗ 6b

)
(D), D ∈ R, (3.2.5)

and also

(� 5 (·, b))∧ (l) = 5̂b (l)

=

∫
R
4−8lD4−8bD

(
5 ∗ 6b

)
(D) 3D =

(
5 ∗ 6b

)∧ (b + l) = 5̂ (b + l) 6̂b (b + l)

= 5̂ (b + l)
(
4−8b ·6b

)∧
(l) = 5̂ (b + l)

(
4−8b ·48b ·6

)∧
(l),

which can be summarized as

(� 5 (·, b))∧ (l) = 5̂ (l + b)6̂(l), l ∈ R. (3.2.6)

82

3.2 Time-Frequency – Windows & Gabor

Now we apply the Plancherel identity (2.2.17) to (3.2.3) and obtain by substitution
of (3.2.6), da"s9

1

2c

∫
R

∫
R
� 5 (D, b) 48bC6(C − D) 3b3D

=
1

4c2

∫
R
48bC

∫
R
(� 5 (·, b))∧ (l)

(
6(C − ·)︸ ︷︷ ︸
=6(·−C)

)∧(l) 3l 3b
=

1

4c2

∫
R
48bC

∫
R
5̂ (l + b)6̂(l) 4−8Cl6̂(l) 3l 3b

=
1

4c2

∫
R

∫
R
5̂ (l + b) |6̂(l) |2 48C (b+l) 3l 3b

=
1

2c

∫
R
|6̂(l) |2 1

2c

∫
R
5̂ (l + b)48C (l+b) 3b︸ ︷︷ ︸(
5̂

)∨
(C)= 5 (C)

3l

= 5 (C) 1

2c

∫
R
|6̂(l) |2 3l = 5 (C)

∫
R
|6(C) |2 3C = 5 (C) ‖6‖22 = 5 (C),

which proves (3.2.3). For (3.2.4) we also use (3.2.6) to conclude that

1

2c

∫
R

∫
R
|� 5 (D, b) |2 3b3D

=
1

4c2

∫
R

∫
R

��(� 5 (·, b))∧ (l)��2 3b3l
=

1

4c2

∫
R
|6̂(l) |2

∫
R

��� 5̂ (l + b)���2 3b 3l = 1

4c2

∫
R
|6̂(l) |2 3l

∫
R

��� 5̂ (b)���2 3b
=

∫
R
|6(C) |2 3C

∫
R
| 5 (C) |2 3C = ‖ 5 ‖22 ‖6‖

2
2 = ‖ 5 ‖

2
2

which is (3.2.4). �

Remark 3.2.5. The formula (3.2.6) for the Fourier transform (� 5)∧ of � 5 is not
only a useful tool in the proof of Theorem 3.2.3, but also the key to an e�cient
implementation. Indeed, taking the inverse Fourier transform of (3.2.6), we find
erhalten wir, da"s

� 5 (D, b) =
(
5̂ (· + b) 6̂

)∨
(D) (3.2.7)

and after sampling 5 und 6 we can compute the Fourier transforms by means of
the FFT, do a componentwise product and transform it back by yet another FFT,
see (FFTW, 2003).

3.2.3 Time-Frequency Analysis

The Gabor transform is a first example of time-frequency analysis which tries to
take into account both aspects of a signal by providing time localized frequency

9Originally this would require 5 ∈ !1 (R), but since !1 ∩ !2 is dense in !2, the problem can be
neglected or, better, overcome.

83

3 Transformations

Figure 3.2.2: Time-frequency representation of a musical signal. The position of the dots
denotes the pitch of the tone, i.e., its frequency, and the form or type of the
note stands for its duration which also fixes the time during which the tone
has to sound. Score typesetting by lilypond

content. These are indeed the two arguments D, b in the Gabor transform. A classi-
cal example of time-frequency analysis can be seen in Fig. 3.2.2. The musical score
notation there tells us which frequency has to sound a which time and completely
describes the signal. To understand better what goes on here, we need a bit more
terminology-

De�nition 3.2.6 (Time-/frequency localization). The time localization of a func-
tion 5 ∈ !2(R) is defined as10

` = `(5) = 1

‖ 5 ‖22

∫
R
C | 5 (C) |2 3C, (3.2.8)

its frequency localization as

ˆ̀ = ˆ̀(5) = 1

‖ 5̂ ‖22

∫
R
b

��� 5̂ (b)���2 3b = 1

2c ‖ 5 ‖22

∫
R
b

��� 5̂ (b)���2 3b. (3.2.9)

The time variation and the frequency variation are defined as

f2 =
1

‖ 5 ‖22

∫
R
(C − `)2 | 5 (C) |2 3C, f̂2 =

1

2c ‖ 5 ‖22

∫
R
(b − ˆ̀)2

��� 5̂ (b)���2 3b,
(3.2.10)

respectively.

Remark 3.2.7. It is not obviousl why (3.2.8) is called a “localization”, but never-
theless the explanation is not di�cult: if 5 ∼ XG for some G ∈ R, which means that
all mass of 5 is concentrated around the point G, say like supp 5 ⊂ [G − Y, G + Y],
Y > 0, then

|` − G | =
1

‖ 5 ‖22

����∫
R
(C − G) | 5 (C) |2 3C

���� ≤ 1

‖ 5 ‖22

G+Y∫
G−Y

|C − G | | 5 (C) |2 3C

≤ Y

‖ 5 ‖22

∫
R
| 5 (C) |2 3C = Y,

hence ` ∼ G. In general ` and ˆ̀ could by called barycenter of 5 with respect to
time and frequency, respectively.

10What you see here is also called the �rst moment of the function | 5 |2.

84

3.2 Time-Frequency – Windows & Gabor

A function has its (bary)center in time-frequency at the point (`, ˆ̀) and the
variations f, f̂ tell us how good this localization is. This motivates the following
definition.

De�nition 3.2.8. The region

� (5) := [`(5) − f(5), `(5) + f(5)] × [ˆ̀(5) − f̂(5), ˆ̀(5) + f̂(5)] ⊂ R2 (3.2.11)

is called Heisenberg box or Heisenberg rectangle of 5 .

The following classical result shows that the Heisenberg boxes cannot be arbi-
trarily small, more precisely, their area is bounded.

Theorem 3.2.9 (Heisenberg uncertainty relation). For 5 ∈ !2(R),

f(5) f̂(5) ≥ 1

2
. (3.2.12)

In particular f(5) = 0 as well as f̂(5) = 0 are impossible.

Proof: The proof from (Mallat, 1999), originally due to H. Weyl, makes the slightly
stronger assumption that

lim
C→∞

√
C 5 (C) = 0.

Since these functions are once more dense in !2(R), this is no restriction and
the result coould be completed to !2(R) by a limit argument. Replacing 5 ny
6 := 4−8 ˆ̀· 5 (· + `), then ‖6‖ = ‖ 5 ‖ and `(6) = ˆ̀(6) = 0, so that we can also
assume that `(5) = ˆ̀(6) = 0.
With some Fourier computations and the the Schwarz inequality we then get

f2(5) f̂2(5) = 1

2c ‖ 5 ‖42

∫
R
|C 5 (C) |2 3C

∫
R

���b 5̂ (b)���2︸ ︷︷ ︸
=

���8b 5̂ (b)���2
3b

=
1

2c ‖ 5 ‖42

∫
R
|C 5 (C) |2 3C

∫
R

��(5 ′)∧ (b)��2 3b = 1

‖ 5 ‖42

∫
R
|C 5 (C) |2 3C

∫
R
| 5 ′(C) |2 3C

≥ 1

‖ 5 ‖42

(∫
R
|C 5 (C) 5 ′(C) | 3C

)2
≥ 1

‖ 5 ‖42

(∫
R

C

2

(
5 2(C)

)′
3C

)2
=

1

4 ‖ 5 ‖42

(∫
R
C

(
5 2(C)

)′
3C

)2
=

1

4 ‖ 5 ‖42

([
C 5 2(C)

]∞
C=0
−

∫
R
| 5 (C) |2 3C

)2
=

1

4 ‖ 5 ‖42

(∫
R
| 5 (C) |2 3C

)2
=
1

4
,

as claimed in (3.2.12). �

Remark 3.2.10 (Heisenberg uncertainty).

85

3 Transformations

1. Die musician version of Theorem 3.2.9 is:

One cannot play a jig on the bass pedals of an organ.

A fast piece of music, and a jig is a fast dance in a 6/8 meter, requires a
good time localization of the tone, hence a very small value for f(5), due to
which f̂ ≥ (2f(5))−1 has to be large. For high frequencies this is much less
troublesome that for low ones, since a variation in pitch is always a relative
modification and not an absolute one11 and hence a�ects low frequencies
much more.

2. This also shows that our tone reception and our potential to produce tones
are limited due to principal reasons.

3. Keep in mind that a permanent tone with constant frequency and no begin-
ning and end satisfies f(5) = ∞ which indeed yields that f̂(5) = 0. This
is the perfect frequency localization of the Fourier transform, but it requires
knowledge of the signal over infinite time and is not applicable in practice.

4. For inequalities like (3.2.12) it is good to know in which situations equal-
ity occurs as the functions for which this happens are the ones of optimal
time-frequency localization. For Heisenberg uncertainty they can be given
explicitly, namely, all functions of the form

5 (C) = 0 48lC−1 (C−D)
2
= 0 48lC 4−1(C−D)

2
, D, l ∈ R, 0, 1 ∈ C. (3.2.13)

Functions of that type are called modulated Gaussian as the leading term
48lC stands for a phase shift, also called modulation.

3.3 Wavelets

A modern and powerful method to perform time-/frequency analysis is the contin-
uous wavelet transform which we will consider now. A little bit of care is worthwhile
since they are introduced and treated in slightly di�erent ways in the standard lit-
erature, for example (Daubechies, 1992; Holschneider, 1995; Louis et al., 1998;
Mallat, 1999). By the way: a somewhat journalistic but very accesible introduction
to the topic can be be found in (Hubbard, 1996).

De�nition 3.3.1 (Wavelets & admissibility). A complex valued12 function k ∈
!2(R) is called wavelet13, if it has mean value zero, i.e, if∫

R
k(C) 3C = 0. (3.3.1)

11For example, a deviation of 10 cent which is usually accepted in tuning means that two frequencies
l, l′ satisfy 2−1/120l ≤ l′ ≤ 21/120l, or l′ ∈

[
2−1/120, 21/120

]
l, respectively, and the width of

this tolerance interval obviously depends l.
12It makes sense to admit complex valued functions. On the one hand, they can be easily handled

by treating the real and imaginary part separately and, on the other hand, the most famous and
most frequently used wavelet is a complex valued one.

13Originally ondelette (French) which also means “small wave”

86

3.3 Wavelets

A wavelet is called normalized if ‖k‖2 = 1 and admissible if

�k :=

∫
R

��k̂(b)��2
|b | 3b < ∞. (3.3.2)

The name “wavelet” for a function with zero mean value is due to the inuition
that some part of the function must be below the G-axis, some part above, hence
the function has a certain wavelike shape.
The admissibility condition (3.3.2) in particular requires that da"s

0 = k̂(0) =
∫
R
k(C) 3C,

hence any admissible function is a wavelet. This is why admissibility is sometimes
part of the wavelet definition, otherwise one distinguishes between a wavelet and
an admissible wavelet. If k is a real wavelet, i.e., k : R→ R, then

k̂(−b) =
∫
R
k(C) 48bC 3C =

∫
R
k(C) 4−8bC 3C = k̂(b)

and (3.3.2) slightly simplifies into

∞ >

∫
R

��k̂(b)��2
|b | 3b =

∫ ∞

0

��k̂(b)��2
|b | 3b +

∫ ∞

0

��k̂(−b)��2
| − b | 3b

= 2

∫ ∞

0

��k̂(b)��2
b

3b,

hence

�k =

∫ ∞

0

��k̂(b)��2
b

3b < ∞. (3.3.3)

De�nition 3.3.2 (Wavelet transform). For a normalized wavelet k and 5 ∈ !2(R)
the wavelet transform is defined as

,k 5 (D, B) :=
∫
R
5 (C) 1√

|B |
k

(C − D
B

)
3C, (D, B) ∈ Γ = R × R. (3.3.4)

The term 1/
√
|B | is there to ensure that also the scaled wavelet

kB :=
1√
|B |
k

(
B−1·

)
, B ∈ R, (3.3.5)

is normalized:

‖kB‖2 =
1

|B |

∫
R
|k(C/B) |2 3C =

∫
R
|k(C) |2 3C = ‖k‖2 = 1.

But let us first have a look at classical examples for wavelets.

Example 3.3.3 (Classical wavelets).

87

3 Transformations

Figure 3.3.1: Scalogram of a fragment of the melody from Fig. 3.2.2, with a sampling fre-
quency of 8000Hz. The scalogram plots the color coded modulus

��,k 5 (D, B)
��

relative to D and B. The wavelet used here is the Morlet wavelet from Exam-
ple 3.3.3

1. The Haar wavelet is the discontinuous function

k := j(· + 1) − j =

1, G ∈ [−1, 0),
−1, G ∈ (0, 1],
0, sonst,

(3.3.6)

where j = j[0,1] . Since ‖k‖2 =
√
2, it is not normalized14, but it is the only

“classical” wavelet with compact support.

2. The mexican hat wavelet is defined as

k(C) :=
(
1 − C2

)
4−C

2/2 = − 3
2

3C2
4−C

2/2, C ∈ R, (3.3.7)

and has no compact support, but decays exponentially for G → ∞ which is
responsible for its good time localization. Its Fourier transform has the form

k̂(b) =
√
2c b2 4−b

2/2

and thus practically coincides with the wavelet itself.

3. TheMorlet wavelet, also known asMorlet’s Gaussian wavelet, see (Holschnei-
der, 1995), is the complex sibling of the Morlet wavelet and combibes its
decay rate with a phase modulation:

k(C) = 48lC 4−C2/2, C ∈ R, l ∈ R+. (3.3.8)
14But of course it is not di�cult to normalize it.

88

3.3 Wavelets

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

Figure 3.3.2: The mexican hat wavelet (left) adn the Morlet wavelet (right) with real and
imaginary part plotted separately.

The frequency l is a shape parameter for the wavelet to control how “wiggly”
it is. Strictly speaking, the Morlet wavelet as given in (3.3.8) is not a wavelet
since

∫
k ≠ 0, but this can be easily cured by an appropriate correction term,

cf. (Mallat, 2009).

Remark 3.3.4. That the mexican hat wavelet is formed from the function 4−(·)
2/2 is

no accident, of course. If we recall Remark 3.2.10, then we realize that the function
is of the form (3.2.13) and thus provides optimal time-/frequency resolution. The
second derivative in (3.3.7) has a di�erent reason.

Exercise 3.3.1 Compute the Fourier transform of the Morlet wavelet and of the
mexican hat wavelet. ♦
The reason why admissibility has been introduced is in the following theorem:

provided that we use an admissible wavelet, the wavelet transform is invertible.

Theorem 3.3.5 (Inverse wavelet transform). For a normalized admissible wavelet k
and 5 ∈ !2(R) we have the inverse wavelet transform

5 (C) = 1

�k

∫
R

∫
R
,k 5 (D, B)

1√
|B |
k

(C − D
B

)
3D
3B

B2
(3.3.9)

Proof: First, we realize that the Fourier transform of the complex conjugate of a
function takes the form(

5

)∧
(b) =

∫
R
5 (C)4−8bC 3C =

∫
R
5 (C) 48bC 3C = 5̂ (−b).

In the first step of our proof we determine, like in the proof of Theorem 3.2.3, the
Fourier transform of the wavelet transform as(

,k 5 (·, B)
)∧ (b) =

(∫
R
5 (C) kB (C − ·) 3C

)∧
(b)

=

(
5 ∗ kB (−·)

)∧
(b) = 5̂ (b) k̂B (b),

89

3 Transformations

hence, (
,k 5 (·, B)

)∧ (b) = √B 5̂ (b) k̂(Bb), b ∈ R, B ∈ R, (3.3.10)

and consequently, for B ∈ R,∫
R
,k 5 (D, B)

1
√
B
k

(C − D
B

)
3D

=
1

2c

∫
R

(
,k 5 (·, B)

)∧ (b) (kB (C − ·))∧ (b) 3b
=

1

2c

∫
R
|B | 5̂ (b) k̂(Bb)48bC k̂(Bb)3b = |B |

2c

∫
R
48bC 5̂ (b)

��k̂(Bb)��2 3b.
Changing the order of integration and performing a change of variables l = Bb,
we thus get for the full integral that

1

�k

∫
R

∫
R
,k 5 (D, B)

1
√
B
k

(C − D
B

)
3D
3B

B2

=
1

2c �k

∫
R
5̂ (b)48bC

∫
R

��k̂(Bb)��2
|B | 3B 3b =

1

2c �k

∫
R
5̂ (b)48bC 3b︸ ︷︷ ︸

=

(
5̂

)∨
(C)= 5 (C)

∫
R

��k̂(l)��2
|l | 3l︸ ︷︷ ︸
=�k

= 5 (C),

as claimed. �

Taking into account that for a real valued k one has
��k̂(−b)��2 = ��k̂(b)��2, the

same method yields a somewhat simpler inversion formula for a real wavelet k, cf.
(Mallat, 1999).

Corollary 3.3.6. For a real wavelet k and 5 ∈ !2(R),

5 (C) = 1

�k

∫ ∞

0

∫
R
,k 5 (D, B)

1
√
B
k

(C − D
B

)
3D
3B

B2
, �k =

∫ ∞

0

��k̂(b)��2
b

3b.

(3.3.11)

Remark 3.3.7 (Wavelet transform & inversion formula).

1. Due to the way we formulated and proved it, the inversion formula (3.3.9)
only holds in the !2 sense and not pointwise; for that purpose we would need
more refined arguments. And if we look carefully at the proof, then we see
that we quite carelessly changed the order of integration and almost divided
by zero. More careful (and correct) versions of the inversion formula with
appropriate proofs can be found for example in (Daubechies, 1992) or (Louis
et al., 1998).

2. From (3.3.10) one can see that the wavelet transform is redundant as for B, B′ ∈
R+ and b ∈ R we obtain

5̂ (b) =
(
,k 5 (·, B)

)∧ (b)
√
Bk̂(Bb)

=

(
,k 5 (·, B′)

)∧ (b)
√
B′k̂(B′b)

,

90

3.3 Wavelets

that is, (
,k 5 (·, B)

)∧ (b) = √
B

B′
k̂ (Bb)
k̂ (B′b)

(
,k 5 (·, B′)

)∧ (b), (3.3.12)

which is valid as long as k̂(B′b) ≠ 0. In other words:

Knowing the wavelet transform for a single scale B means to know it for
practically and B.

3. From an intuitive point of view this redundancy makes sense: why should a
one dimensional signal 5 yield a fully two dimensional transformation? This
would make it some space filling curve like the Peano curve (Gelbaum and
Olmstedt, 1964) and not very exciting from a practical point of view.

4. The appearance of the 1/B2 term in the inverse wavelet transform is a little
surprising in the beginning but one could take the point of view that it just
makes the proof work. But of course, this is only half of the truth and there
are fundamental reasons why is has to be exactly this term, see (Grossmann
et al., 1985). All this has to do with abstract Harmonic Analysis, integration
on locally compact abelian groups, dual groups and the realization of the
a�ne group. And though this is fairly abstract stu�15, it is extremely useful
and the necessary basis to really understand what is going on here.

To better understand the time-frequency behavior of wavelet, we next have a
look at the Heisenberg boxes of the wavelet transform. To that end, we have to
consider the time-frequency atoms

kD,B = kB (· − D) = k
(· − D
B

)
, (D, B) ∈ R × R+.

Since for arbitrary 5 ∈ !2(R) and D ∈ R,

` (5 (· − D)) =
∫
R
C | 5 (C − D) |2 3C =

∫
R
(C + D) | 5 (C) |2 3C = `(5) + D

we can always assume that after a proper shift k is a centered wavelet, i.e., that
`(k) = 0. Centered wavelets are also important from a practical point of view
since only then ,k 5 (D, B) connects to 5 (D), otherwise there could be a shift in
time between the signal and the wavelet transform. The frequency localization
ˆ̀(k), on the other hand, is a constant that describes the inherent oscillation of the
wavelet.

Proposition 3.3.8. The Heisenberg box �
(
kD,B

)
, D ∈ R, B ∈ R+, of a centered wavelet

k has the midpoints
(
D, B−1 ˆ̀(k)

)
and the edge lengths Bf(k) as well as f̂(k)/B.

15And it takes half a semester to learn it.

91

3 Transformations

Proof: Purely computational:

`
(
kD,B

)
=

∫
R
C

���� 1√Bk (C − D
B

)����2 3C = 1

B

∫
R
(C + D)

���k (C
B

)���2 3C
=

∫
R
BC |k(C) |2 3C + D

∫
R
|k(C) |2 3C = B`(k) + D = D,

as well as

ˆ̀
(
kD,B

)
=

∫
R
b
��k̂D,B��2 3b = ∫

R
b
��48bD k̂B��2 3b = ∫

R
b
��√Bk̂ (Bb)��2 3b

=

∫
R
Bb

��k̂ (Bb)��2 3b = 1

B

∫
R
b
��k̂ (b)��2 3b = ˆ̀(k)

B
.

For the variances we get in essentially the same way that

f2 (
kD,B

)
=

∫
R
(C − `C)2

���� 1√Bk (C − D
B

)����2 3C
=

∫
R
(C − D)2

���� 1√Bk (C − D
B

)����2 3C = 1

B

∫
R
C2

���k (C
B

)���2 3C
=

∫
R
(BC)2 |k (C) |2 3C = B2 f2 (k)

and

f̂2 (
kD,E

)
=

∫
R

(
b − B−1`b

)2 ��k̂D,B (b)��2 3b = B ∫
R

(
b − B−1`b

)2 ��k̂(Bb)��2 3b
=

∫
R

(
b − `b
B

)2 ��k̂(b)��2 3b = 1

B2

∫
R

(
b − `b

)2 ��k̂(b)��2 3b = f̂2(k)
B2

.

�

Corollary 3.3.9. All Heisenberg boxes of the wavelet transform cover the same area.

Proof:

B f(k) × f̂(k)
B

= f(k) f̂(k),

which is precisely the term appearing in the uncertainty relation (3.2.12). �

Exercise 3.3.2 Show that the Heisenberg boxes for the atoms qD,b of the Gabor
transform (3.2.2) are of the form

�D,b = [D − f(q), D + f(q)] × [b − f̂(q), b + f̂(q)] . (3.3.13)

♦

Remark 3.3.10. Proposition 3.3.8 and (3.3.13) show the fundamental di�erence
between the Gabor transform and the wavelet transform: while the Gabor trans-
form works with a constant time and frequency resolution, the wavelet transform
uses a relative resolution in time and frequency. In regions of high frequency, i.e.,

92

3.3 Wavelets

f

t

Figure 3.3.3: Schematic representation of the Heisenberg boxes for a wavelet transform.
Higher values of the H axis correspond to higher frequencies which are approx-
imated by 1/B. High frequency boxes become narrow and high, low frequency
boxes wide and flat.

for a small scale parameter B, the time resolution is higher while the absolute pre-
cision of the frequency decays. In regions of low frequency, it is the opposite, here
the frequency is met more precisely while the signal cannot be located that well in
time. This way of analysis is in accordance with our perception of sound, in fact,
a tone show sound for a few periods to be recognized as such.

The nature of the Heisenberg boxes is depicted in Fig. 3.3.3. To obtain a uni-
form covering of the plane with such rectangley, it is natural to choose the scales
geometrically, i.e., as

B 9 = B0 f
9 , 9 ∈ Z" , f > 1, (3.3.14)

with an initial scale B0 and progression f. This actually has a lot of advantages
that can even be justified and explaine numerically, cf. (Klein, 2011). Another nice
remark is that the choice (3.3.14) of frequencies also corresponds with the tempered
scale in setting musical intervals.
There remains the question of how to choose B0, f and ", for which we can at

least give some rules of thumb:

1. The lowest scale B0 corresponds via b ∼ 1/B0 to the highest frequency con-
tained in the signal. Here the Shannon Sampling Theorem gives a lower
bound for the frequency in terms of the sampling frequency or the Nyquist
frequency b∗, respectively. This leads to an upper bound B0 ≤ 1/b∗ for B0.

2. The highest scale B"−1 = B0f"−1 should still remain so small that the essen-
tial part16 of the wavelet lies within the sampled region since otherwise the

16Keep in mind that most wavelets do not have compact support, but decay fast, so that some
essential support Ω can be defined by requiring∫

Ω

|k(C) | 3C ≥ d‖k‖1

for some d ∈ (1 − Y, 1), n > 0.

93

3 Transformations

f

t

s[M−1]

s[0]

Figure 3.3.4: Schematic representation of the scale restrictions. The widest Heisenberg box
on the bottom should still lie within the sampling region, the narrow boxes
on top, on the other hand, still lie within the frequency range determined by
the sampling frequency.

value of the wavelet transform (3.3.4) would depend significanlty on unknown
values of 5 .

3. The rest is an interaction between f and " and mainly a�ects the computa-
tional e�ort. Once the minimal and maximal scale are fixed, one can either
choose the number " of scales and obtain f or vice versa.

The meaning of the rules of thumb is depicted in Fig. 3.3.4. The way how the
signal is sampled yields a time-frequency window for reasonable scales. The time
window is determined by the sampling region [C0, C#−1], the frequency window by
the sampling theorem from the sampling step width ℎ. And whenever a Heisenberg
box is not contained in this frame, it is a�ected by phantom components that are
not contained in the sampled signal.

3.3.1 Implementation of an FWT

Having settled the theory, we now head into another, more practical direction and
look how the wavelet transform can be computed numerically in an e�cient way. To
this end, we first remark that the function to be transformed usually is not available
explicitly, but in sampled form

5
(
C 9
)
, C0 < · · · < C# , # ∈ N,

and that there are only �nitely many samples. In many situations

1. the sampling positions C 9 are equidistant, that is, C 9 = C0 + 9 ℎ, ℎ > 0,

2. the number # of samples is not fixed a priori,

3. the sampling points can neither be modified nor influenced.

94

3.3 Wavelets

A naive way to compute the wavelet transform could be to use these points C 9 and
to approximate the integral by a quadrature formula

,k (B, D) ∼
#∑
9=0

F 9 5
(
C 9
) 1
√
B
k

(
C 9 − D
B

)
, F 9 > 0, (3.3.15)

see (Isaacson and Keller, 1966; Gautschi, 1997; Sauer, 2000a). In the simplest case
is the rectangle rule where F 9 = C 9+1 − C 9 , 9 = 0, . . . , # − 1, and appropriate F# ,
for equidistant knots we may even take F 9 = ℎ, 9 = 0, . . . , # . What happens in this
case is just an integration of the piecewise constant function whose values at the
knots are defined by the values of the function to be integrated. For fixed scale B
we then have, for any D, a computational e�ort of order $ (#) and if we use this to
determine the wavelet transform at D 9 = C 9 , 9 = 0, . . . , # , we have a total e�ort of
$

(
#2

)
per scale.

Moreover, we have to evaluate the wavelet k at the positions C 9−C:
B

, 9 , : = 0, . . . , # .
This is not so bad on the one hand since the wavelets are known explicitly in many
cases, see Example 3.3.3, but it is at least reasonable to center the wavelet around
the origin. A more tricky side e�ect is that this type of evaluation restricts the
range of scales: good wavelets are usually well localized in time and frequency
which means that

lim
G→±∞

k(G) = 0, lim
b→±∞

k(b) = 0,

and this rate of decay can be an exponential one, see again Example 3.3.3. If now,
for such a wavelet, the scale B is small enough, then the quadrature formula (3.3.15)
takes the undesired form

,k

(
B, C 9

)
∼ F 9 5

(
C 9
) 1
√
B
k (0). (3.3.16)

Nevertheless, the implementation is simple if we use the convolution structure and
turn it into a product of Fourier transforms. To do so, we simply use our previous
computations, substitute (2.5.8) into (3.3.10) and obtain(

,k 5 (B, ·)
)∧ (

2c:

#

)
∼

(
,k 5i (B, ·)

)∧ (
2c:

#

)
=
√
B ℎ 5̂ℎ (:) î

(
2c:

ℎ #

)
k̂

(
2c:B

#

)
,

or

DFT
(
fℎ,k 5 (B, ·)

)
∼
√
B ℎ 5̂ℎ (:) î

(
2c:

ℎ #

)
k̂

(
2c:B

#

)
, (3.3.17)

respectively. Then an inverse DFT or inverse FFT transforms (3.3.17) into the
computational rule[

,k

(
B, C 9

)
: 9 ∈ Z#

]
←
√
Bℎ IDFT

[
5̂ℎ (:) î

(
2c:

ℎ #

)
k̂

(
2c:B

#

)
: : ∈ Z#

]
,

(3.3.18)
that could be called a fast wavelet transform or FWT if this name would not be
already reserved for some di�erent concept in the context of filter banks.

95

3 Transformations

Remark 3.3.11 (Fast computation of the continuous wavelet transform). The fast
continuous wavelet transform, FCWT, has some interesting properties:

1. The computation of the wavelet transform only costs $ (# log #) per scale
and the values q̂ of the quasi interpolation filter are independent of 5 and B
and can thus be precomputed and stored in a table.

2. The computations for individual scales are independent of each other and
thus can be parallelized very easily and e�ciently. In particular, it is pos-
sible to perform the computation on a GPU or an FPGA which allows for
realization in real time.

3. The Fourier transform k̂ of the wavelet has to be sampled for each B, but for
most relevant wavelets the Fourier transform is even known explicitly. Often
wavelets are even designed in the frequency domain just like we did in the
filter design in Section 2.4.2.

3.3.2 The Inverse Transform and its Catches

Once we can realized the wavelet transform in an e�cient way, we may also try
to implement the inverse transform. To that end, we have one more look at the
formula (3.3.9),

5 =
1

�k

∫
R

∫
R
,k 5 (B, D)

1√
|B |
k

(· − D
B

)
3D︸ ︷︷ ︸

=,k 5 (B,·)∗kB=(,̂k (B,·) k̂B)∨

3B

B2

and compute it once more by means of an FFT. All that is left, is the integral
∫

3B

B2
,

for which we have no choice but to incorporate a quadrature formula. The knots of
this formula are the scales B 9 for which we computed the wavelet transform, since
these are the values for which we assume that we know it at these discrete locations

,k 5
(
B 9 , C:

)
, 9 ∈ Z" , : ∈ Z# . (3.3.19)

This inversion, first considered in (Domes, 2007), see (Sauer, 2011), determines a
matrix 17 in the sense of (3.3.17) as

� :=
√
Bℎ

[
IDFT

((
,k 5

(
B 9 , ·

))∧
ℎ
î

(
2c·
ℎ #

)
k̂

(
2c · B 9
ℎ #

))
(:) :

9 ∈ Z"
: ∈ Z#

]
.

These are the values to be integrated with respect to B, i.e., summed up with respect
to the B 9 , which finally yields the values of the function:

5 (C:) =
∑
9∈Z"

F 9 �9 : = F
)�.

17Or a vector of vectors.

96

3.3 Wavelets

The weights F 9 of the quadrature formula can be determined for example by a
composite rectangle rule as

F 9 =

∫ B 9+1

B 9

3B

B2
, 9 ∈ Z" ,

for an appropriate B" that is chosen such that the constant function is reproduced
by the formual. Now our natural choice konstante Funktionen exakt reproduziert.
Jetzt (3.3.14) turns out to be useful as it yields

F 9 =

∫ B0f
9+1

B0f
9

3B

B2
= −1

B

����B 9f
B 9

=
1

B 9

(
1 − f−1

)
,

that is,

F =
f − 1
f

[
B−19 : 9 ∈ Z"

]
. (3.3.20)

Quadrature formulas of higher order can be adapted analogously.

Exercise 3.3.3 Compute F for the composite trapezoidal rule. ♦
If we look carefully at (3.3.10) we see that our inversion fomula appears to be

overly complicated since (3.3.10) can be refomulated as

5̂ (b) =
(
,k 5 (B, ·)

)∧ (b)
√
Bk̂ (Bb)

, b ∈ R \ {0}, B ∈ R+,

due to which we can reconstruct 5̂ and thus 5 (almost) from a single scale B > 0
of the wavelet transform as long as k̂(b) ≠ 0 holds for any b ≠ 0. Starting with
(3.3.17) this leads to the simple inversion formula

5̂ℎ =

(
,k 5 (B, ·)

)∧ (
2c:
#

)
√
B ℎ î

(
2c:
ℎ #

)
k̂

(
2c:B
ℎ #

) : : ∈ Z#

 ,
which, however, is in no way practical. It is possible, however, to show that lo-
cal e�ect on the wavelet side are also local on the signal side, cf. (Sauer, 2011).
Nevertheless, there is one important observation:

The wavelet transform is highly redundant since almost all information on 5

is already obtained in a single scale of ,k 5 .

In principle, the inverse wavelet transform (3.3.9) can be applied to any function
in the two variables B and D angewendet and yields, as a result, a function in a
single variable. If we then apply the wavelet transform to this univariate functions,
we obtain another bivariate function that needs not be one we started with. In
other words,

,−1k ,k = �, ,k,
−1
k ≠ � . (3.3.21)

97

3 Transformations

Figure 3.3.5: A two dimensional signal (left) and its related wavelet transform (right). Ob-
viously, the signals are di�erent.

Let us have a closer look at this e�ect by remarking that the wavelet transform
,k 5 as a bivariate function in B, D must satisfy the compatibility conditions(

,k 5 (B, ·)
)∧ (b)(

,k 5 (B′, ·)
)∧ (b) =

√
B

B′
k̂ (Bb)
k̂ (B′b)

, B, B′ ∈ R+, b ∈ R. (3.3.22)

De�nition 3.3.12.

1. A bivariate function 6 : R+ × R → C is called k-compatible, if it satisfies
(3.3.22).

2. Two functions 6, 6′ : R × R→ C are called related if ,−1
k
6 = ,−1

k
6′.

The wavelet transform of a function 5 is trivially k-compatible as that is how
we built this property. On the other hand hte wavelet transforms are the only
c-compatible functions and related to any function.

Lemma 3.3.13. For any 6 : R×R→ C there exists a k-compatible function 6′, related
to 6, which is a wavelet transform.

Proof: Setting 6′ = ,k,
−1
k
6, we get

,−1k (6 − 6′) = ,−1k 6 −,−1k 6,k︸ ︷︷ ︸
=�

,−1k 6 = ,−1k 6 −,−1k 6 = 0.

Therefore, 6 and 6′ are related and 6′ ist obviously a wavelet transform. �

This explains the ambiguity of the inverse wavelet transform: if we form equiv-
alence classes modulo ,−1

k
in !2 (R × R) by identifying related functions, then

by Lemma 3.3.13 each such equivalence class contains a unique wavelet transform:
,k 5 and,k 5

′ being in the same equivalence class means 0 = ,−1
k

(
,k 5 −,k 5

′) =
5 − 5 ′. The operator,k,

−1
k

is then the projector on this equivalence class and the
representing wavelet transform is the only element in this equivalence class that is
reproduced by ,k,

−1
k
.

98

3.3 Wavelets

3.3.3 Examples: Music and Edges

Music analysis and audio analysis in general deals with tones ore sequences of
tone which is defined locally as follows.

De�nition 3.3.14. A tone18 is a periodic function, i.e., a function such that
5
(
· + l−1

)
= 5 for some l > 0, called the frequency of the tone which is usu-

ally given in Hertz, where 1Hz = 1s−1.

From analysis, we know a representation method for periodic functions, namely
the Fourier series. If we set the period length from 1/l to 2c, we get the following
result.

Proposition 3.3.15. Each 2c periodic function 5 can be uniquely described by its Fourier
series

00

2
+
∞∑
:=1

0: cos (: ·) +
∞∑
:=1

1: sin (: ·) (3.3.23)

where

0: =
1

c

∫ 2c

0
5 (C) cos :C 3C, 1: =

1

c

∫ 2c

0
5 (C) sin :C 3C. (3.3.24)

Remark 3.3.16. Proposition 3.3.15 has to be taken with a bit of care.

1. All Fourier coe�cients of 5 are well defined by (3.3.24) for reasonable
functions 5 , and they are unique in the sense that two di�erent functions
have di�erent Fourier series, but there is no general statement concerning
convergence of these series and even if it converges, it is not clear that the
limit of the series coincides with 5 .

2. The answer on convergence is actually negative: as shownby DuBois–Reymond
in 1873, there are even continuous functions whose Fourier series diverges at
least at one point, cf. (Sauer, 2017).

3. On the other hand, things are not so bad since the Fourier series of nice func-
tions converge almost everywhere, but this requires a bit more of mathematical
e�ort, see (Hardy and Rogosinsky, 1956).

Our Definition 3.3.14 for a tone is not very realistic as it means that a tone would
have to sound constantly over infinite time, even without any change in loudness.
Let us make some more realistig assumptions:

1. The duration of a tone is signi�cantly larger than the inverse frequency 1/l
needed for a single period of the tone which means that at least we face a
periodic signal over a certain period of time.

2. The amplitude or loudness of the tone remains constant during this period.

18Be aware that precussion instruments usually do not generate a tone, but noise.

99

3 Transformations

Figure 3.3.6: Spectra of two woodwind instruments for the same tone (a, 440Hz). The
higher share of high partial tones on the left shows that this instument has a
“sharper” sound

If we assume that these two conditions are valid, which still excludes string instru-
ments where the amplitude decays exponentially, but at least includes woodwind
instruments, then we can give the acoustic or musical interpretation of the Fourier
series:

Each tone can be decomposed into partial tones whose frequencies are integer
multiples of the base frequency. The Fourier coe�cients for these tones describe
the spectrum of the tone and therefore its timbre.

The e�ect of the spectral fingerprint can be seen in Fig. 3.3.7. In fact, the spec-
trum is used for a lot of applications, for example also to recognize speech and
voices.
All this only works for tones of infinite duration, in the moment where for ex-

ample an instrument chances the frquency, even the length of the periodization
changes. There is a concept of instantaneous frequency, cf. (Mallat, 1999), but a
good and pragmatic approach is to use time-frequency analysis, for example by
means of the Gabor transform or a wavelet transform. With the latter, one should
use a more “musical” wavelet that is similar to a modulated tone. Here, in fact the
Morlet wavelet is a good choice.
The di�erence between pure frequency analysis and time-frequency analysis can

be illustrated nicely by yet anothter acoustic phenomenon, known as beats, which
are the acoustic realization of the addition theorem

cosl + cosl′ = 2 cos
l + l′

2
cos

l − l′
2

, (3.3.25)

of the cosine. Interpreting both side of (3.3.25) acoustically or musically, the left
hand side stands for two simultaneous tones with the frequencies l and l′, while
the right hand side is a tone of average frequency Frequenz (l + l′)/2 to which an
amplitude modulation with the di�erence frequency (l−l′)/2 is applied. Depend-
ing on the transform the one uses, one may obtain either side of equation (3.3.25),
see Fig. ??. With a Gabor transform the influence of the window size can be seen
even as a transition between the two interpretations. If the window is very large,
the Gabor transform is like a Fourier transform and the left hand side of (3.3.25) is

100

3.3 Wavelets

Figure 3.3.7: Spectrum and wavelet transform of the expression from (3.3.25). The spec-
trum (left) reproduces the left hand side, i.e., two localized frequencies while
the wavelet transform shows an amplitude modulated and blurred tone (right).

Figure 3.3.8: Three Gabor transform with varying window size from large (left) to small
(right).

101

3 Transformations

Figure 3.3.9: A simple melody, name a chord, played first successively and then simultane-
ously (left) plus a zoom into the simultaneous chord (right).

Figure 3.3.10: Wavelet transform of a bit of real music played on a drone instrument.

active, if the window gets smaller, the frequency blurs and the beat behaves like the
right hand side. Also note that the phases of the beat changes in the two rightmost
pictures while its frequency remains constant.
Another bit of of time-frequency can be seen when looking a simple chord as in

Fig. 3.3.9. The three individual tones are clearly separated and the width of the
strips is due to the Heisenberg uncertainty principle, but the simultaneous chord
blurs the highest and the lowest tone. This is yet another unavoidable aspect of
the wavelet transform:

The higher the frequency, the higher the time resolution, but for the
prices of a lower frequency resolution.

As a summary, let us recall that wavelets always provide a relative time and fre-
quency precision while the Gabor transform works is absolute precision.
Finally, a little snippet of a piece of real music on a real drone instrument.

102

3.3 Wavelets

Figure 3.3.11: Snippet of Fig 3.3.10, showing how one partial tone of the major sixth meets
with a partial of the drone and thus gets amplified.

The drone produces a constant tone which, together with its partial tones, can
be recognized from the horizontal blue stripes in the wavelt transform. Also the
melody and its partials can be recognized as well as the fact that some partials of
the melody instrument meet with partials of the drone which gives them a peculiar
sound or timbre, see Fig. 3.3.12. This happens only if the instrument has a pure
tuning, which would get us into music theory and distract us too far from the main
content of this lecture. But there is nice literature cf. (Barbour, 1951; Benson,
2007) on very di�erent levels.
After this little excursion to the world of music, we want to look at another

application, where wavelets o�er a real advantage, namely the detection of local
regularity. To that end, recall that, due to the (8b): in the Fourier transform of a
:th derivative, the Fourier transform

6̂(b) = (8b)−: 5̂ (b), 5 = 6(:) ,

of a di�erentiable function 6 decays the faster for b → ±∞, the larger the smooth-
ness : of the function 6 is. In other words, the (global) smoothness of the function
relates to the decay rate of its Fourier transform. But since the Fourier transform
is global, this would just depend on the least smooth position of the function.
Wavelets allow provide a much more detailed analysis as the following result

due to Ja�ard shows, cf. (Mallat, 1999). The formulation is copied from another
lecture, (Sauer, 2008).

Theorem 3.3.17. Let k a wavelet with = vanishing moment and rapidly decaying deriva-
tives of order ≤ =.
1. If 5 ∈ !2(R) is Lipschitz continuous19 of order U < = at G ∈ R, then there exists a

19A function 5 is called Lipschitz continuous of order U at G if | 5 (G ′) − 5 (G) | ≤ � |G ′ − G |U for
some constant � and all G ′ from a neighborhood of G. It is some type of controled continuity.

103

3 Transformations

constant �, such that��,k 5 (D, B)
�� ≤ � BU+ 12 (

1 +
���D − G
B

���U) , (D, B) ∈ Γ = R × R+. (3.3.26)

2. If, conversely, U ∉ N and there exist � as well as U′ < U such that��,k 5 (D, B)
�� ≤ � BU+ 12 (

1 +
���D − G
B

���U′) , (D, B) ∈ Γ, (3.3.27)

then 5 is Lipschitz continuous of order U at G.

The intuition of Theorem 3.3.17 is that local regularity of a function can be char-
acterized by the decay of the local wavelet coe�cients, and this can be used to find
singularities as these are positions of low local regularity, as depicted in Fig. ??.
The restriction to the wavelet is that it has = vanishing moments which means

that ∫
R
C: k(C) 3C = 0, : = 0, . . . , = − 1.

This restriction is very mild, one vanishing moment is even the definition of a
wavelet. There exist wavelets with any given number of vanishing moment since
a simple partial integration shows that whenever k is a di�erentiable wavelet with
fast decay20 and = vanishing moments, then its derivative k′ is a wavelet with = + 1
vanishing moments:∫

R
C=+1 k′(C) 3C = lim

C→∞
(·)=+1k

��C
−C︸ ︷︷ ︸

→0

−
∫
R
C= k(C) 3C︸ ︷︷ ︸
=0

= 0.

In fact, this is the construction principle for the mexican hat wavelet (3.3.7): ap-
plying the second derivative to optimal time frequency resolution function gives it
two vanishing moments and makes it a good wavelet.

Exercise 3.3.4 How many vanishing moments does the Haar wavelet have? ♦

3.4 Filterbanks

We now introduce another, fully discrete concept of wavelets that will be based
completely on the filters that we encountered in Section 2.4. To handle them math-
ematically, the following concept turns out to be useful.

De�nition 3.4.1 (I-transform). The I-transform of a discrete signal 2 ∈ ℓ (Z) is
the formal formal Laurent series21

2∗(I) :=
∑
:∈Z

2(:) I−: , I ∈ C× = C \ {0}. (3.4.1)

20k should decay faster than any polynomial can grow, i.e. C:k(C) → 0 for C → ±∞ and any : .
21If you feel uncertain with the infinite series assume the signal to be finitely supported, that is

su�cient here.

104

3.4 Filterbanks

Figure 3.3.12: A simple test function (left) and its wavelet transform (right). The decay of the
wavelets ceo�cients and the cusps in the functions, i.e., the discontinuities
in the derivative, match nicely.

The I-transform is closely related to our Fourier transform of a discrete signal
signal since for \ ∈ T,

2∗
(
48\

)
=

∑
:∈Z

2(:) 4−8:\ = 2̂(\), (3.4.2)

and we can simply jump between the two. In particular,

(2 ∗ 3)∗ (I) = 2∗(I) 3∗(I). (3.4.3)

Exercise 3.4.1 Prove (3.4.3). ♦
The idea of subband coding which is used especially in data compression,

consists of decomposition a signal into so-called subbands and to encode each of
these subsignals independently, but of course in such a way that the signal can be
reconstructed from them.

Example 3.4.2. The most intuitive idea for a subband decomposition would be to
mimic an equalizer and to use

j∨[C 9 ,C 9+1] , 0 = C0 < C1 < · · · < C=−1 < C= = 2c.

This sounds very much in the spirit of High-Fi, but the realization would be tricky
as the filters would be relatively long and therefore a�ected by severy latency.

De�nition 3.4.3 (Up- and downsampling). For = ≥ 2, we call the operator ↓= that
associates to 2 ∈ ℓ(Z) the signal

↓= 2 = 2(=·)

downsampling operator, while the upsampling operator ↑= is defined as

↑= 2(9) =
{
2(9/=), 9 ∈ =Z,

0, 9 ∈ Z \ =Z.

105

3 Transformations

Obviously, ↓=↑== � ≠↑=↓=. With the help of downsampling we can indeed de-
compose a signal 2 into the subbands

2 9 =↓= g92, 9 ∈ Z=,

and recombine them via
2 =

∑
9∈Z=

g− 9 ↑= 2 9 ,

which works due to the cure formula

� =
∑
9∈Z=

g− 9 ↑=↓= g9 . (3.4.4)

The decomposition process gives

. . . 2(−1) 2(0) 2(1) . . . 2(= − 1) 2(=) 2(= + 1) . . . → 20

. . . 2(0) 2(1) 2(2) . . . 2(=) 2(= + 1) 2(= + 2) . . . → 21
...

...
...

...
...

...

. . . 2(= − 2) 2(= − 1) 2(=) . . . 2(2= − 2) 2(2= − 1) 2(2=) . . . → 2=−1

so that
2 9 = 2 (= · + 9) , 9 ∈ Z=,

which can be combined via upsampling and translation into

20 → 0 2(0) 0 . . . 0 2(=) 0 . . .

21 → 0 0 2(1) . . . 0 0 2(= + 1) . . .
...

...
...

. . .
...

...
...

2=−1 → 2(−1) 0 0 . . . 2(= − 1) 0 0 . . .

2(−1) 2(0) 2(1) . . . 2(= − 1) 2(=) 2(= + 1) . . . → 2

which proves (3.4.4). In subband coding we replace the shifts in the process above
by general filters �9 , 9 ∈ Z=, and the downsample the filtered signal, i.e.,

2 9 =↓= �9 2, 9 ∈ Z=. (3.4.5)

Schematically, this process can be depicted as

2 →
↗ �0 → ↓= → 20

�
...

...
...

↘ �=−1 → ↓= → 2=−1

(3.4.6)

and the decomposition is called the analysis �lterbank based on the filters � =(
�9 : 9 ∈ Z=

)
. Formally, the filterbank maps ℓ(Z) to ℓ= (Z). Because of the down-

sampling, each subband 2 9 of 2 contains only the =th part of the information of
�92, hence also one =th of the information in 2, provided the filters are reasonable.
This is the motivation to choose the number of filters equal to the downsampling
factor. Such a filterbank is called critically sampled, otherwise one speaks of
oversampled or undersampled filterbanks.

106

3.4 Filterbanks

Example 3.4.4. The simplest filterbank is the one with �9 = g9 , 9 ∈ Z=, and just
decomposes a signal modulo =.

Next, we want to give a mathematical description of the filterbank under the
usual assumption that each �9 is an FIR filter with impulse response 5 9 , hence
�92 = 5 9 ∗ 2. This suggests the following notion.

De�nition 3.4.5 (Modulation matrix). The modulation matrix " (I) for the fil-
terbank

� =
(
�9 : 9 ∈ Z=

)
is defined as

" (I) :=
1

=

(
5 ∗
9

(
42c8:/= I

)
: 9 , : ∈ Z=

)
(3.4.7)

=
1

=

©«
5 ∗0 (I) 5 ∗0

(
42c8/=I

)
. . . 5 ∗0

(
42c8(=−1)/=I

)
...

...
. . .

...

5 ∗
=−1(I) 5 ∗

=−1

(
42c8/=I

)
. . . 5 ∗

=−1

(
42c8(=−1)/=I

)ª®®®®¬
.

It once more takes a particularly simple form for = = 2 where

" (I) =
(
5 ∗0 (I) 5 ∗0 (−I)
5 ∗1 (I) 5 ∗1 (−I)

)
.

In general, the factors 42c8 9/= in front of the variable I are =th roots of unity and
thus play the role of generalized signs. The modulation matrix, on the other hand,
is the mathematical tool to describe the action of a filterbank.

Theorem 3.4.6. For the �lterbank from (3.4.6) we have(
2∗
9
(I=) : 9 ∈ Z=

)
= " (I)

(
2∗

(
42c8 9/=I

)
: 9 ∈ Z=

)
, (3.4.8)

that is,

©«
2∗0 (I

=)
...

2∗
=−1 (I

=)

ª®®¬ = " (I)
©«

2∗(I)
2∗

(
42c8/=I

)
...

2∗
(
42c8(=−1)/=I

)
ª®®®®®®¬
. (3.4.9)

Exercise 3.4.2 Determine the modulation matrix for the translation filters �9 = g9 ,
9 ∈ Z=. ♦

De�nition 3.4.7 (Polyphase vector). The vector(
2∗

(
42c8 9/=I

)
: 9 ∈ Z=

)
(3.4.10)

is called the polyphase vector of the signal 2 ∈ ℓ(Z).

107

3 Transformations

For = = 2, (3.4.9) becomes(
2∗0

(
I2

)
2∗1

(
I2

)) = (
5 ∗0 (I) 5 ∗0 (−I)
5 ∗1 (I) 5 ∗1 (−I)

) (
2∗(I)
2∗(−I)

)
.

Let us begin to tackle the proof of Theorem 3.4.6 by first determining what up- and
downsampling does to the I-transform.

Lemma 3.4.8. For = ∈ N,

(↓= 2)∗ (I=) =
1

=

∑
:∈Z=

2∗
(
42c8:/=I

)
, (↑= 2)∗ (I) = 2∗ (I=) . (3.4.11)

Proof: Since
1

=

∑
:∈Z=

4−2c8 9 :/= =

{
1, 9 ∈ =Z,
0, 9 ∉ =Z,

see Lemma 2.5.5, the left hand identity in (3.4.11) follows via

(↓= 2)∗ (I=) =
∑
9∈Z
(↓= 2) (9) I−= 9 =

∑
9∈Z

2(= 9) I−= 9 =
∑
9∈Z

2(9) I− 9
(
1

=

∑
:∈Z=

4−2c8 9 :/=
)

=
1

=

∑
9∈Z

2(9)
∑
:∈Z=

(
42c8:/=I

)− 9
=
1

=

∑
:∈Z=

2∗
(
42c8:/=I

)
,

The right hand side (3.4.11) is a consequence of the simple computation

(↑= 2)∗ (I) =
∑
9∈Z

2(9) I−= 9 = 2∗ (I=) .

�

Also (3.4.11) is simpler for = = 2: since 48c = −1,

(↓2 2)∗
(
I2

)
=
1

2
(2∗(I) + 2∗(−I)) , (↑2 2)∗ (I) = 2∗

(
I2

)
. (3.4.12)

There is another interpretation of (3.4.11) for which we write 2∗(I) as

2∗(I) =
∑
9∈Z

2(9)I− 9 =
∑
:∈Z=

∑
9∈Z

2(= 9 + :) I−= 9−: =
∑
:∈Z=

I−:
∑
9∈Z
(↑= g:2) (9) I−= 9

=
∑
:∈Z=

I−: (↑= g:2)∗ (I=) =:
∑
:∈Z=

I−: 2̃∗: (I
=) ,

where 2̃: is the signal obtained from the simple translation filterbank, sometimes
also called the lazy �lterbank. If we now substitute I = 42c8 9/=I, then

2∗
(
42c8 9/=I

)
=

∑
:∈Z=

4−2c8 9 :/=I−: 2̃∗: (I
=)

108

3.4 Filterbanks

and consequently

1

=

∑
9∈Z=

2∗
(
42c8 9/=I

)
=

1

=

∑
9∈Z=

∑
:∈Z=

4−2c8 9 :/=I−: 2̃∗: (I
=)

=
∑
:∈Z=

(
1

=

∑
9∈Z=

4−2c8 9 :/=
)

︸ ︷︷ ︸
=X0:

I−: 2̃∗: (I
=) = 2̃∗0 (I

=) .

Multiplying by 42c8:/= then finally gives

I−: 2̃∗: (I
=) = 42c8:/= 1

=

∑
9∈Z=

2∗
(
42c8 9/=I

)
, : ∈ Z=. (3.4.13)

Exercise 3.4.3 What is (3.4.13) for = = 2? ♦
Proof of Theorem 3.4.6: Since 2 9 = �92 = 5 9 ∗ 2, we get for 9 ∈ Z=,

2∗9 (I=) =
(
↓=

(
5 9 ∗ 2

))∗ (I=) = 1

=

∑
:∈Z=

(
5 9 ∗ 2

)∗ (
42c8:/=I

)
=

1

=

∑
:∈Z=

5 ∗9

(
42c8:/=I

)
2∗

(
42c8:/=I

)
.

from which (3.4.9) follows by passing to matrix-vector notation. �

Since it does not really make if di�erence whether we consider the I-transform on
C or the Fourier transform on the unit circle, we can also formulate the modulation
matrix for theFourier transform of the signal. Substituting I = 48b/= into (3.4.9), it
then follows that

©«
2̂0(b)
...

2̂=−1(b)

ª®®¬ =
©«
2∗0 (I

=)
...

2∗
=−1 (I

=)

ª®®¬ = " (I)
(
2∗

(
42c8 9/= I

)
: 9 ∈ Z=

)
= "

(
48b/=

) (
2∗

(
42c8 9/= 48b/=

)
: 9 ∈ Z=

)
= "

(
48b/=

) (
2∗

(
48(b+2 9c)/=

)
: 9 ∈ Z=

)

=

©«
5 ∗0

(
48b/=

)
5 ∗0

(
48(b+2c)/=

)
. . . 5 ∗0

(
48(b+2(=−1)c)/=

)
...

...
. . .

...

5 ∗
=−1

(
48b/=

)
5 ∗
=−1

(
48(b+2c)/=

)
. . . 5 ∗

=−1

(
48(b+2(=−1)c)/=

)ª®®®®¬
©«

2∗
(
48b/=

)
2∗

(
48(b+2c)/=

)
...

2∗
(
48(b+2(=−1)c)/=

)
ª®®®®®®®¬

=

©«
5̂0

(
b

=

)
5̂0

(
b

=
+ 2c 1

=

)
. . . 5̂0

(
b

=
+ 2c =−1

=

)
...

...
. . .

...

5̂=−1
(
b

=

)
5̂=−1

(
b

=
+ 2c 1

=

)
. . . 5̂=−1

(
b

=
+ 2c =−1

=

)ª®®®®¬
©«

2̂

(
b

=

)
2̂

(
b

=
+ 2c 1

=

)
...

2̂

(
b

=
+ 2c =−1

=

)
ª®®®®®®®¬
,

109

3 Transformations

hence(
2̂ 9 (b) : 9 ∈ Z=

)
=

(
5̂ 9

(
b+2:c
=

)
: 9 , : ∈ Z=

) (
2̂

(
b+2 9c
=

)
: 9 ∈ Z=

)
, (3.4.14)

where the matrix (
5̂ 9

(
b+2c:
=

)
: 9 , : ∈ Z=

)
is also called polyphase matrix for the filterbank.
Finally, we also want to recombine the subbands 2 9 , 9 ∈ Z=, into a signal 2 by

going the opposite way of first upsampling, the filtering and finally summing up
the results:

2′ =
∑
9∈Z=

� 9 ↑= 2 9 . (3.4.15)

This leads to the synthesis �lterbank

20 → ↑= → �0 ↘
...

...
... ⊕

2=−1 → ↑= → �=−1 ↗
→ 2 (3.4.16)

that can be expressed in the calculus of I-transforms as

2∗(I) =
∑
9∈Z=

(
� 9 ↑= 2 9

)∗ (I) = ∑
9∈Z=

6∗9 (I)
(
↑= 2 9

)∗ (I) = ∑
9∈Z=

6∗9 (I) 2∗9 (I=) . (3.4.17)

To return to the modulation matrix, we recall that its input data was the vector(
2∗

(
42c8 9/=I

)
: 9 ∈ Z=

)
which is obtained by replacing I in (3.4.17) by 42c8 9/=I,

9 ∈ Z=. Taking into account that
(
42c8 9/=I

)=
= I=, we can use the matrix-vector

form

©«
2∗ (I)
...

2∗
(
42c8(=−1)/=I

)ª®®®¬ =
©«

6∗0(I) . . . 6∗
=−1(I)

...
. . .

...

6∗0

(
42c8(=−1)/=I

)
. . . 6∗

=−1

(
42c8(=−1)/=I

)ª®®®¬︸ ︷︷ ︸
=:"̃ (I)

©«
2∗0 (I

=)
...

2∗
=−1 (I

=)

ª®®¬ ,
(3.4.18)

or (
2∗

(
42c8 9/=I

)
: 9 ∈ Z=

)
= "̃ (I)

(
2∗
9
(I=) : 9 ∈ Z=

)
, (3.4.19)

respectively. In the end, we consider the full system concerning of the analysis and
the synthesis part, and this is the �lterbank

2 →
↗ �0 → ↓= → 20

�
...

...
...

↘ �=−1 → ↓= → 2=−1

→ ↑= → �0 ↘
...

... ⊕
→ ↑= → �=−1 ↗

→ 2′

(3.4.20)
A natural requirement for such a filterbank is that what is put in should be obtained
as a result.

110

3.4 Filterbanks

De�nition 3.4.9 (Perfect reconstruction). The filterbank (�, �) provides perfect
reconstruction if 2′ = 2 holds in (3.4.20) for all input signals 2.

Remark 3.4.10.

1. By means of the modulation matrix, perfect reconstruction can be described
very elegantly by substituting (3.4.8) into (3.4.19) which shows that perfect
reconstruction is equivalent to(

2∗
(
42c8 9/=I

)
: 9 ∈ Z=

)
= "̃ (I) " (I)

(
2∗

(
42c8 9/=I

)
: 9 ∈ Z=

)
. (3.4.21)

Hence, a filterbank provides perfect reconstruction whenever

"̃ (I) " (I) = � .

2. A more generous approach allows a time delay in the perfect reconstruction
and only requests that 2′ = g92 for some 9 ∈ Z. Due to

(g:2)∗ (I) = I−: 2∗(I),

we obtain in this case that(
4−2c8 9 :/=I−:2∗

(
42c8 9/=I

)
: 9 ∈ Z=

)
= "̃ (I) " (I)

(
2∗

(
42c8 9/=I

)
: 9 ∈ Z=

)
,

which holds whenever

"̃ (I) " (I) = diag
(
4−2c8 9 :/=I−: : 9 ∈ Z=

)
.

3. A straightforward computation yields

"̃ (I) " (I) =
(∑

ℓ∈Z 6
∗
ℓ

(
42c8 9/= I

)
5 ∗
ℓ

(
42c8:/= I

)
: 9 , : ∈ Z=

)
.

As we have seen in the above remark, perfect reconstruction follows from "̃ " =

�, just subtitute into (3.4.21). The converse also holds true, but it is not so obvious.

Theorem 3.4.11 (Perfect reconstruction). A �lterbank (�, �) provides perfect recon-
struction if and only if "̃ (I) " (I) = � , I ∈ C.
Proof: The direction “⇐” has been verified in Remark 3.4.10. For the converse,
we consider the equivalent form

0 =
(
� − "̃ (I) " (I)

) (
2∗

(
42c8 9/=I

)
: 9 ∈ Z=

)
of (3.4.21) and set 2 = g:X, : ∈ Z=. Since this implies that 2∗(I) = I: , hence(

2∗
(
42c8 9/=I

)
: 9 ∈ Z=

)
= I:

(
42c8 9 :/= : 9 ∈ Z=

)
,

and since I: ≠ 0 on T, we obtain that

0 =
(
� − "̃ (I) " (I)

) (
42c8 9 :/= : 9 ∈ Z=

)
.

The vectors
(
42c8 9 :/= : 9 ∈ Z=

)
, : ∈ Z=, are linearly independent as columns of the

nonsingular inverse DFT from Lemma 2.5.5. But this requests that � − "̃ (I) " (I)
equals zero for all I ∈ T, hence also for all I ∈ C. �

111

3 Transformations

3.5 Subdivision, Functions & Wavelets

Having characterized the “good” filterbanks, i.e., those with perfect reconcstruc-
tion, we will now work with cascades of filterbanks which we will relate to decom-
positions of functions. Since all our computational operations will be of a purely
discrete nature, we obtain a relationship between the discrete and the continuous
world this way.
For the sake of simplicity, we consider the most common case = = 2, where our

analysis filterbank is of the form

2 → �
↗ �0 → ↓2 → 20

↘ �1 → ↓2 → 21

The new idea now is to plug the components 20 and/or 21 into the same analysis
filterbank and thus get a further decomposition of the original signal 2 as

2 → �

↗ �0 → ↓2 → 20 → �
↗ �0 → ↓2 → 200

↘ �1 → ↓2 → 201

↘ �1 → ↓2 → 21 → �
↗ �0 → ↓2 → 210

↘ �1 → ↓2 → 211

(3.5.1)

and so on. This way we obtain a tree structure of signals, known as wavelet
packages. In wavelet analysis, however, one only further decomposes the signals
components that result from the low pass �lter, hence, we iterate as

2 → �
↗ �0 → ↓2 → 20 → �

↗ �0 → ↓2 → 200

↘ �1 → ↓2 → 201

↘ �1 → ↓2 → 21

(3.5.2)

and so on. In principle, this can be done with arbitrary perfect reconstruction filter
banks, but the wavelet analysis only works reasonably if �0 is a low pass �lter,
i.e., �01 = 1, and �1 is a high pass �lter, i.e., �11 = 0. Of course, we will have to
specify and justify this later.
After A steps of the cascade we obtain the output signals

2A9 ∈ ℓ(Z), 9 = 0, . . . , 2A − 1,

where we can see the cascade that had been applied directly from the binary rep-
resentation of the index 9 . More precisely, if

9 =

A−1∑
:=0

n: 2
: =: nA−1 · · · n0, n: ∈ {0, 1},

then
2A9 =↓2 �n0 · · · ↓2 �nA−1 2.

112

3.5 Subdivision, Functions & Wavelets

Conversely, the synthesis from such a decomposition is realized by cascading the
synthesis filterbank in the following way:

200 → ↑2 → �0 ↘

201 → ↑2 → �1 ↗
⊕ → 20 → ↑2 → �0 ↘

210 → ↑2 → �0 ↘

211 → ↑2 → �1 ↗
⊕ → 21 → ↑2 → �1 ↗

⊕ → 2 (3.5.3)

The synthesis cascade now allows for a shift of perspective by forgetting the un-
derlying analysis cascaed for a moment and to see it as a method to generate
functions of function approximations from simple discrete data, which is the idea
of subdivision.
Imagine that we take a signal G ∈ ℓ(Z), feed it into 2A0 (with a vector index 0

here) and then consider the signal 2A = 2(G, A) ∈ ℓ(Z) that we obtain this way. By
definition,

2A = (�0 ↑2)A G,
hence, by Lemma 3.4.8,

2∗A (I) = [(�0 ↑2)A G]∗ (I) = 6∗0(I)
[
↑2 (�0 ↑2)A−1 G

]∗ (I)
= 6∗0(I)

[
(�0 ↑2)A−1 G

]∗ (
I2

)
= 6∗0(I) 2

∗
A−1

(
I2

)
,

and thus by iteration,

2∗A (I) = 6∗0(I) · · · 6
∗
0

(
I2
A−1

)
G∗

(
I2
A
)
=

[
A−1∏
9=0

6∗0

(
I2

9
)]
G∗

(
I2
A
)
. (3.5.4)

The upsampling process can be seen as inserting zeros between the components of
the original signal, and from this perspective, our signal 2 = (�0 ↑2)A G will contain
the 2A -fold amount of data relative to G. This can be seen by choosing G finitely
supported, say with # nonzero entries. Then the support size of 2 will be $ (2A#),
where some overlap due to the support size of 60 will have to be considered for the
constant. Moreover,

(�G := �0 ↑2 G = 60 ∗ (↑2 G) =
∑
:∈Z

60 (· − 2:) G(:)

and therefore
g2(� = (�g bzw. g2A (

A
� = (�g,

because of which the signal (A
�
G should be seen as a discrete function with abscissae

2−A : , : ∈ Z: if, for example, G is a : -periodic signal, i.e, G ∈ ℓ(Z:)m then (A
�
G is

2A : periodic, provided all convolutions in the filterbank have been done in Z: ;
otherwise it holds locally. And finally we note that since (� is a linearer Operator
and any signal G can be formally written as

G =
∑
:∈Z

G(:) g: X, X(9) = X 90, 9 ∈ Z,

113

3 Transformations

we have

2∗A (I) =
∑
:∈Z

I: G(:)
[
A−1∏
9=0

6∗0

(
I2

9
)]
X∗

(
I2
A
)

︸ ︷︷ ︸
=1

,

and, in the spirit of impulse response, it is su�cient to restrict oneself to G = X.
This dicret function 2, more prescisely, the discret function 2 (2−A ·) ∈ ℓ (2−AZ),

defined at dyadic points 2−AZ of order A, shall now be investigated in terms of the
Fourier transform, i.e., we consider

iA (b) = [2A (2−A ·)]∧ (b), A ∈ N0.

To define this function in a formally correct way, we recall the relation (3.4.2)
between the I-transform and the Fourier transform to obtain a sequence iA , A ∈ N0

of trigonometric polynomials which can be written as

iA (b) = 2−A 2̂ (b/2A) = 2−A2∗
(
48b/2

A
)
=

A−1∏
9=0

1

2
6∗0

(
48b/2

A− 9
)
=

A∏
9=1

1

2
6∗0

(
48b/2

9
)
,

and which allows us to define a limit function

i(b) := i∞(b) := lim
A→∞

iA (b) =
∞∏
9=1

1

2
6∗0

(
482
− 9b

)
, (3.5.5)

provided, of course, that the infinite product converges. Then the limit i has a
remarkable property, namely,

i(b) =
1

2
6∗0

(
48b/2

) ∞∏
9=2

1

2
6∗0

(
482
− 9b

)
=
1

2
6∗0

(
48b/2

) ∞∏
9=1

1

2
6∗0

(
482
− 9 (b/2)

)
︸ ︷︷ ︸

=i(b/2)

=
1

2
6∗0

(
48b/2

)
i

(
b

2

)
. (3.5.6)

If we assume that i ∈ !1(R), we can apply an inverse Fourier transform and obtain
a uniformly conntinuous function q = i∨.

Remark 3.5.1. All the qA are composed from trigonometric polynomials, hence rea-
sonably defined on 2AT due to the dilation involved in the definition, the limit
function must be an !1 function on all of R as the limit. This is one of the sub-
tleties that make the complete proofs a little bit more complex even if the main
ideas are fairly natural and straightforward.

With i = q̂, (3.5.6) becomes

q̂(b) = 1

2
6∗0

(
48b/2

)
q̂

(
b

2

)
=
1

2
6̂0

(
b

2

)
q̂

(
b

2

)
= [(60 ∗ q) (2·)]∧ (b),

114

3.5 Subdivision, Functions & Wavelets

Figure 3.5.1: The piecewise linear hat function and its representation via the refinement
equation (3.5.7). Just sump up the “narrow” triangles to obtain the “wide”
one.

hence,
q = (60 ∗ q) (2·) =

∑
:∈Z

60(:) q (2 · −:) . (3.5.7)

This fundamental identity is called re�nement equation or two scale relation
and means that the function can be represented as combination of its squeezed
copies, see Fig. 3.5.1. This is not at all a common property of functions, quite the
contrary, the functions that satisfy (3.5.7) are precisely those that result from a
convergent subdivision process.
But “convergent” is the word. Since we want the limit to exist, we need criteria

for the convergence of the infinite product in (3.5.5). As the sequence in an infinte
series has to converge to zero, the factors in an infinite product have to converge
to 1 which leads to the necessary condition

1 =
1

2
lim
A→∞

6∗0

(
482
−A b

)
=
1

2
6∗0(1) =

1

2
6̂0(0). (3.5.8)

This however means that, properly normalized, �0 is a lowpass filter and repro-
duces constant signal, and this is also the reason why in wavelet analysis we only
cascade on lowpass parts of the signal.
A su�cient condition for the existence of a continuous function q that satisfies

the refinement equation (3.5.7) is given in the following result due to Daubechies
(Daubechies, 1988), which is taken together with its proof from (Vetterli and Ko-
vačević, 1995).

Proposition 3.5.2 (Existence of continuous refinable functions). If 6∗0 can be written
as22

6∗0(I) =
(
1 + I
2

) :
@(I) where max

I∈T
|@(I) | < 2: and @(1) = 2, (3.5.9)

then there exists a continuous solution of (3.5.7).

22Recall the general assumption that �0 is an FIR filter, hence 60 ∈ ℓ0 (Z) and thus 6∗0 is a Laurent
polynomial.

115

3 Transformations

Proof: We will show that under the assumption (3.5.9) the infinite product (3.5.5)
converges (pointwise) and yields !1-function whose inverse Fourier transform has
to exist and is the uniformly continuous function q.
We first decompost the product into

∞∏
9=1

1

2
6̂0 (2−Ab) =

∞∏
9=1

(
1 + 482−A b

2

) : ∞∏
9=1

1

2
@̂ (2−Ab) (3.5.10)

and treat the factors on the right hand side separately. Since

1 − 48b
b

=
1 + 48b/2

2

1 − 48b/2
b/2 =

1 + 48b/2
2

1 + 48b/4
2

1 − 48b/4
b/4

= · · · = 1 − 482−A b
2−Ab︸ ︷︷ ︸
→8

#∏
A=1

1 + 482−A b
2

,

hence
∞∏
A=1

1 + 482−A b
2

=
1 − 48b
8 b

,

the first product has the value(
1 − 48b
8 b

) :
=

(
48b/2

4−8b/2 − 48b/2
b

) :
= (−8):48:b/2

(
sin b/2
b/2

) :
,

which is bounded in modulus by ≤ �1 (1 + |b |)−: for an appropriate constant �1 >

0.
For the second factor in (3.5.10), we use the abbreviation ℎ = 1

2@. Since Da
ℎ(1) = 1, there exists a constant �2 > 0 such that for |b | ≤ 1 the estimate23��ℎ (
48b

) �� ≤ 1 + �2 |b | ≤ 4�2 |b | holds, hence we have, for |b | ≤ 1,

∞∏
9=1

���ℎ (
482
−A b

)��� ≤ ∞∏
9=1

4�22
−A |b | = exp

(∞∑
9=1

�2 |b |
2A

)
= 4�2 |b | ≤ 4�2 . (3.5.11)

For arbitrary b ∈ R we now choose = ∈ N such that 2=−1 ≤ |b | < 2=, and use the
following decomposition together with (3.5.11):

∞∏
9=1

���ℎ (
482
−A b

)��� = =∏
9=1

���ℎ (
482
−A b

)��� ∞∏
9==+1

���ℎ (
482
−A b

)���
=

=∏
9=1

���ℎ (
482
−A b

)��� ∞∏
9=1

���ℎ (
482
−A (b/2=)

)��� ≤ =∏
9=1

���ℎ (
482
−A b

)��� 4�2 ≤ �= 4�2 ,

23This may appear slightly magic at first, but this fairly standard trick is only based on the quite
simple observation that the functions 1 + 2G und 42G have the same value for G = 0, but the
derivatives 2 und 2 42G ≤ 2 are di�erent.

116

3.5 Subdivision, Functions & Wavelets

where
� := max

I∈T
|ℎ(I) | ≤ 2:−1−Y for Y > 0.

Consequently,

�= ≤ 2=(:−1−Y) ≤
(
2 2=−1

)
︸ ︷︷ ︸
≤2 |b |≤1+|b |

:−1−Y
≤ 2: (1 + |b |):−1−Y

and therefore

∞∏
9=1

���6∗0 (
482
−A b

)��� ≤ �1 (1 + |b |)−: 4�2: 2: (1 + |b |):−1−Y ≤ �3 (1 + |b |)−1−Y .

Hence the product is convergent everywhere24, the resulting function belongs to
!1(R) and admits an inverse Fourier transform. �

Exercise 3.5.1 Show: Whenever q is a nontrivial solution of the refinement equa-
tion (3.5.7), one has q̂(0) ≠ 0 and 6̂(0) = 2. ♦

Remark 3.5.3. The requirement (3.5.2) concerns 50 and not really the sequence
60 that is relevant for the refinement equation (3.5.7). Since we can replace I by
I−1 in (3.5.2), however, it is completely irrelevant whether the su�cient condition
is formulated in terms of 50 or 60.

So, let q denote the25 solution of the refinement equation (3.5.7), then we already
know three possibilities to to construct this function, even numerically: konstru-
ierten k"onnen:

1. via the Fourier transform

q =

(∞∏
9=1

1

2
6̂0

(
− ·
2

))∨
; (3.5.12)

this values could be computed at integer points and then an FFT could be
applied.

2. via the cascade scheme

q = lim
9→∞

)
9

�
k,)�k := (60 ∗ k) (2·) , (3.5.13)

with a reasonably chosen start function k. This methdod constructs a se-
quence of functions that convergs to a �xpoint of the transfer operator)� .
And yes, all this has a lot do with the famous Banach Fixpoint Theorem and
contractions.

24If you want to do it fully correct, you have to invoke dominated convergence here.
25The “the” is not so trivial! Not every refinement equation that permits a solution also has unique

solution. The reasonable ones do, but this is a di�erent story to be told somewhere else.

117

3 Transformations

3. via the subdivision scheme

q = lim
9→∞

(
9

�
X, lim

9→∞
sup
:∈Z
|q (2−A :) − (�X(:) | = 0, (3.5.14)

where now the limit function is determined discretely at a denser and desner
set of points.

Making use of the linearity of all the operators involved in the process, we can
identify limit functions of subdivision as convolutions.

Corollary 3.5.4. If the subdivision scheme converges in the sense (3.5.14), then we have
for any initial data 2 that

(A�2 = q ∗ 2 =
∑
:∈Z

2(:) q (· − :) .

Based on what we did so far, the wavelets will only be a matter of interpretation
of the filterbank operations. Having q at hand, a signal 2 ∈ ℓ(Z) will not be seen
as a discrete function on Z but as coe�cients of the function

52 := 2 ∗ q =
∑
:∈Z

2(:) q(· − :), (3.5.15)

hence, we associate to the sequence the limit function of the subdivision scheme.
The simplest examples for such approximations are the piecewise constant or piece-
wise linear function q = j[0,1] or q = j[0,1] ∗ j[0,1] , respectively. The latter are the
hat functions of Fig. 3.5.1. Since q =)�q,

52 =
∑
9∈Z

2(9) q(· − 9) =
∑
9∈Z

2(9) ()�q) (· − 9) =
∑
9∈Z

2(9)
∑
:∈Z

60(:) q (2 · −2 9 − :)

=
∑
9∈Z

∑
:∈Z

2(9) 60(:) q (2 · −2 9 − :) =
∑
:∈Z

∑
9∈Z

60 (: − 2 9) 2(9)︸ ︷︷ ︸
=(�2(:)

q (2 · −:)

= ((�2 ∗ q) (2·),

(�2 corresponds to the coe�cients of the same function 52 with respect to the
squeezed function q(2·). And this brings us to wavelets: the input and output
signal 2 of the perfect reconstruction filterbank

2 → �
↗ �0 → ↓2 → 20

↘ �1 → ↓2 → 21

→ ↑2 → �0 ↘

→ ↑2 → �1 ↗
⊕ → 2 (3.5.16)

will be interpreted as the coe�cients of a function 5 = 2 ∗ q(2·) belonging to the
space

+1 = span {q (2 · −:) : : ∈ Z} .

118

3.5 Subdivision, Functions & Wavelets

The space is generated by dilated copies fo the refinable scaling function q, shifted
by :/2, : ∈ Z. The refinement equation (3.5.7) can also be as an explicit represen-
tation of q as a function in +1 since +1 is shift invariant, that is 5 ∈ +1 implies
5 (· − :) ∈ +1, : ∈ Z, we get that

+1 ⊇ +0 := span {q (· − :) : : ∈ Z} . (3.5.17)

Settinh
+ 9 = span

{
q

(
2 9 · −:

)
: : ∈ Z

}
,

the refinement equation (3.5.7) yields

+0 ⊆ +1 ⊆ +2 ⊆ · · ·

This means that the spaces + 9 , 9 ∈ N, or even 9 ∈ Z, form a Multiresolution
Analysis or MRA, a concept introduced by Mallat, see, for exmple (Daubechies,
1992; Louis et al., 1998; Mallat, 1989; Mallat, 1999; Vetterli and Kovačević, 1995).
The (minimal) properties of an MRA are:

1. a nested scale of function spaces +0 ⊆ +1 ⊆ · · ·

2. shift invariance of the spaces + 9 ,

3. a two scale relation 5 ∈ + 9 ⇒ 5 (2·) ∈ + 9+1.

Usually there are further conditions on an MRA, like being subspaces of !2(R)
and being generated by a so-called Riez basis, but we stick to the core points here
as we are going to derive it diretly from the filterbank.
Indeed, in our filterbank (3.5.16) we decomposed the signal 2 or, equivalently26,

the associated function 2 ∗ q(2·) into the subbands 20 and 21 that have to be inter-
preted accordingly. Due to our construction, the operation 20 =↓2 �0 2, i.e., the
determination of 20 ∗ q, is a projection from +1 to +0 if and only if it satisfies

2 ∗ q(2·) ∈ +0 ⇔ 21 = 0. (3.5.18)

But (3.5.18) simply follows from the fact that the modulation matrix " can be
inverted: if there were two representations 20, 21 and 2̃0, 2̃1 such that

�0 ↑2 20 + �1 ↑2 21 = �0 ↑2 2̃0 + �1 ↑2 2̃1,

their I-transforms satisfy

0 = "̃ (I)
((
2∗0

(
I2

)
2∗1

(
I2

)) − (
2̃∗0

(
I2

)
2̃∗1

(
I2

))) ⇒
(
2∗0

(
I2

)
2∗1

(
I2

)) = (
2̃∗0

(
I2

)
2̃∗1

(
I2

)) .
Since

+0 3 5 = 2 ∗ q = ((�2 ∗ q) (2·)
the combination 20 = (�2 and 21 = 0 is exactly this unique way to represent 5 ∈ +0,
which proves (3.5.18).

26At least if the relation between 2 and 2 ∗ q is bijective or in some way controlable. This is the
Riez basis issue, by the way.

119

3 Transformations

De�nition 3.5.5. The wavelet for the scaling function q is the function with re-
spect to the synthesis part of a perfect reconstruction filterbank is

k =
∑
:∈Z

61(:) q (2 · −:) . (3.5.19)

Remark 3.5.6. If = ≥ 2 one has to use the = − 1 wavelets,

k 9 =
∑
:∈Z

6 9 (:) q (2 · −:) , 9 = 1, . . . , = − 1. (3.5.20)

The rest of the extension is straightforward.

Lemma 3.5.7. If the �lterbank has perfect reconstruction, then for any 2 ∈ ℓ(Z),

2 ∗ q(2·) = 20 ∗ q + 21 ∗ k. (3.5.21)

Proof: Perfect reconstruction means

2 = �0 ↑2 20 + �1 ↑2 21 =
1∑
9=0

∑
:∈Z

6 9 (· − 2:) 2 9 (:)

and therefore

2 ∗ q (2·) =
∑
ℓ∈Z

2(ℓ) q (2 · −ℓ)

=
∑
ℓ∈Z

1∑
9=0

∑
:∈Z

6 9 (ℓ − 2:) 2 9 (:) q (2 · −ℓ)

=
∑
:∈Z

∑
ℓ∈Z

1∑
9=0

6 9 (ℓ) 2 9 (:) q (2 · −(ℓ + 2:))

=
∑
:∈Z

20(:)
∑
ℓ∈Z

60(ℓ) q (2(· − :) − ℓ)︸ ︷︷ ︸
=q(·−:)

+
∑
:∈Z

21(:)
∑
ℓ∈Z

60(ℓ) q (2(· − :) − ℓ)︸ ︷︷ ︸
=k(·−:)

= 20 ∗ q + 21 ∗ k.

�

It is almost too simple to be true, but this is already the fundamental point in
practically any type of wavelet decomposition of functions, just up to some itera-
tion. To better understand what we really are doing, we write the decomposition
of the filterbank in a slightly di�erent way. To that end, we set

20 := 2, 2 9+1 :=↓ �02 9 , 3 9+1 :=↓ �02 9 , (3.5.22)

or, schematically,

2 9 → �

2 9+1

↗
↘

3 9+1

120

3.5 Subdivision, Functions & Wavelets

H
TH

TTH
TTTH

TTTTH
TTTTTH
TTTTTT

Figure 3.5.2: The decomposition pyramid, shifted to the left and put upside down. � and
) indicate the application of high- and low-pass filters (German: “Hochpass”
and “Tiefpass”.

and then iterate this procedure on the low-pass part of the signal:

2 = 20 → 21

↘
31

→ 22

↘
32

→ · · · → 2=

↘
3=

2 '
(
2=, 31, . . . , 3=

)
.

If the filterbank provides perfect reconstruction, we can reconstruct 2 from the
decomposition by simply inverting the process:

2= →
↗

3=

2=−1 →
↗

3=−1

· · · → 21 →
↗

31

20 = 2.

This way any perfect reconstruction filterbank defines an invertable transformation

2 ↔
(
2=, 31, . . . , 3=

)
(3.5.23)

which is known as discrete wavelet transform, DFT or pyramid scheme. The
latter name is due to the fact that 3 9 contains essentially half of the information of
2 9−1 and then the data can be arranged in a pyramid-like fashion, see Fig. 3.5.2.

Theorem 3.5.8 (Wavelet decomposition of functions). If the �lterbank provides
perfect reconstruction, then

2 ∗ q (2=·) = 2= ∗ q +
=∑
9=1

3 9 ∗ k
(
2=− 9 ·

)
. (3.5.24)

Proof: With all our previous work, the proof is surprisingly simple. We just use
(3.5.21) and get for any G ∈ R that

2 ∗ q (2=G) = 2 ∗ q
(
2
(
2=−1G

))
= 21 ∗ q

(
2=−1G

)
+ 31 ∗ k

(
2=−1G

)
= 22 ∗ q

(
2=−2G

)
+ 32 ∗ k

(
2=−1G

)
+ 31 ∗ k

(
2=−1G

)
= · · · = 2= ∗ q(G) +

=∑
9=1

3 9 ∗ k
(
2=− 9G

)
.

which is just (3.5.24). �

121

3 Transformations

Remark 3.5.9 (Interpretation of the DWT). The interesting point is the interpre-
tation of Theorem 3.5.8:

1. Although the decomposition in (3.5.24) is a decomposition in terms of func-
tions, all computations are performed exclusively on the coe�cients and thus
are fully discrete. Even better, we only have to apply filterbanks that can
be implemented e�ciently, in a parallel way and, if needed, on specialized
hardware.

2. Once more, the function 2 ∗ q (2=·) on the left hand side of (3.5.24) is a quasi
interpolant like in the Shannon Sampling Theorem. In our case we use copies
of the scaling function q that are dilated by a factor 2=, hence are massively
localized, and shifted by :/2=. This corresponds to a fine sampling of a given
function.

3. This highly detailed function is then decomposed in the resolution levels
2=−1, 2=−2, . . . , 1, which consist of less squeezed copies of q with a lower reso-
lution. Hence, we consciously pass from a high level of detail to coarser and
coarser representations of the signal.

4. The detail information of the signal is then recorded in the wavelet coe�-
cients 3 9 and the details are finer if the associated index 9 is smaller.

3.6 Applications

This was quite a bit of theory and the valid question in any applied science27 is:
what can it be used for? Indeed it can be used for a lot of things if we recall the
fundamental principle of the DWT:

The wavelet coe�cients are generated by local high-pass filters

Here, “local” means that the filters have only finite support and that therefore
only the entries 20(:), | 9 − : | ≤ # , contribute to 31(9). Continuing the pyramid,
we obtain that 3A (9) only depends on 20(:), | 9 − :/2A | ≤ # . On the other hand,
“high-pass” means that the wavelet coe�cients are small if 2 is almost constant in
some regions, hence is described almost completely by the coarser signal or, in
other words, contains fewer additional information. This gives us the hope that
such (almost) piecewise signals can be be compressed with small loss by applying
the decomposition (3.5.24). This can be formulated quantitatively like for example
in the following that we neither can28 nor want to29 to prove.

27And image processing is an applied science.
28This would require a substantial amount of additional theory which would be nice, but only for

a specialized lecture.
29It would lead to far away from image processing.

122

3.6 Applications

Theorem 3.6.1. Under certain conditions on q30 and k31 there exists a constant � > 0
such that for any = + 1 times di�erentiable 5 one has��3: (9)�� ≤ �2−: (=+1) 5 (=+1)

2
, 9 ∈ Z. (3.6.1)

There also exists a local version of this result.

Theorem 3.6.1 tells us that whenever 5 has the maximal smoothness = + 1 ev-
erywhere, then the wavelet coe�cients 3: all decay of the order 2−: (=+1) . If, on the
other hand, 5 is less smooth, for example only di�erentiabl of order =′, =′ < =,
then the requirements on q and k are still satisfied and we can apply the theorem
once more to obtain a decay rate 2−: (=

′+1), hence the smoothness is related in a
well-defined way with the rate of decay. To summarize:

The smoother the function, the higher the decay rate.

Even if a simple converse of (3.6.1) does not exist since dyadic singularities, i.e.,
singularities at the dyadic points 2−:Z, cannot be detected, we can approximate
the smoothness of 5 in some neighborhood of G ∈ R by

lim
:→∞
−:−1 log2

���3: (
b2:Gc

)��� ;
the decay rate of the coe�cients can be used for smoothness detection!
And this brings us back to our applications in Image and Signal Processing

since the interesting parts of images, the features, usually are defined by lesser
smoothness than in the “nice” or “boring” components of the image. This makes
the wavelet decomposition some sort of Swiss Army Knife in Image and Signal
Processing since it o�ers several advances simultaneously:

1. in compression one forms a wavelet decomposition and only keeps a certain
fraction of the components, namely those of largest modulus,

2. in feature detection, one looks for locations where all corresponding wavelet
coe�cients 3:

(
2−: 9

)
are significant,

3. in denoising one sets all small wavelet coe�cients to zero.

Example 3.6.2 (Features). Let us have a look a the edges of a simple hat function,
see Fig. 3.6.1. We can see very clearly that the normalized wavelet coe�cients
“point” to singularity and that their absolute value increases the more “point” that
corner is. This should actually come as no surprise since the angles are related to
the curvature, hence the second derivative.

Example 3.6.2 is actually quite impressive but academic and artificial, to be
honest. Real world signals are not that simple and easy but contain a little bit of
everything.
30The conditions are compact support and the so-called Strang-Fix conditions that ensure that

all polynomials of degree = can be written in the form 2 ∗q for some appropriate signal 2 ∈ ℓ(Z)
31Compact support and — just as a warning — the support size is a factor of the constant �

in 3.6.1, hence FIR is a fundamental requirement again. Moreoever, we need = + 1 vanishing
moments which is actually closely tied to the Strang–Fix conditions on q.

123

3 Transformations

0 50 100 150 200 250 300 -50 0 50 100 150 200 250 300 350

Figure 3.6.1: A simple piecewise linear functions (left) and its wavelet coe�cients (right)
with respect to Strang-Fix conditions of su�ciently high order.

-10

-5

0

5

10

15

20

0 50 100 150 200 250 300

line 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250 300

line 1
line 2
line 3
line 4

Figure 3.6.2: EEG measurement of brain activity (left) and the associated wavelet coe�-
cients (right).

124

3.6 Applications

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

line 1

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300

line 1
line 2
line 3
line 4

Figure 3.6.3: A simple test signal (left) and its wavelet coe�cients (right). It can be clearly
seen that the localization of the wavelet coe�cients is far from perfect.

Example 3.6.3. Fig. 3.6.2 shows a part of an EEG (electroencephalography) signal
einem EEG–Signal und die zugeh"origen Waveletkoe�zienten. Man sieht doch,
da"s in diesem Fall die “Spitzen” wesentlich unsch"arfer sind und die “Ecken” und
“Kanten” nicht so scharf charakterisieren.

So far we have not considered the e�ect of the filter length on the decomposition.
We could bypass that by using the philosophy of the DWT and embed finitely
supported signals 2 with32 supp 2 ⊂ [0, # − 1] into ℓ(Z#) and then use periodicity
all the way. This, however, is not without problems since 2 may or may not have a
periodic structure and we may well end up with periodization artifacts, especially
when doing feature detection. Avoiding peridicity, we can simply compute the
support of 6 ∗ 2, assuming that the filter 6 is supported on the interval [0, =] and
the signal 2 on the interval [0, #]. The result of the convolution,

6 ∗ 2(9) =
∑
:∈Z

6(9 − :) 2(:) =
#∑
:=0

6(9 − :) 2(:)

is nonzero if 9 − : ∈ [0, =], hence 9 ∈ : + [0, =] or 9 ∈ [0, # + =]. The filter “blurs”
the signal across its boundary and this e�ect becomes the more prominent and
intensive the longer the filter is.

Example 3.6.4 (Artifacts). Here we briefly discuss two examples of artifacts that
can occur in the real world application of wavelets.

1. In Fig. 3.6.3 we see a “test signal” with breakpoints of di�erent orders of
regularity. The wavelet coe�cients still point to these singularities, but they
are much less focused. Morevoer, we see significant wavelet coe�cients on
the boundary that are pure articfacts, see Fig. 3.6.4.

2. In general, the artifacts cannot be prevented by any type of signal exten-
sion, whichever clever way one intends to choose them. Here we used zero
padding, but also periodization is no general solution, as for example Fig. 3.6.5
showed quite drastically.

125

3 Transformations

Verschmieren

Singularitäten

0

Figure 3.6.4: Explanation of the wavelet coe�cients in Fig. 3.6.3. The interior wavelet
coe�cients are blurred or “leak” like in the windowed Fourier transform, on
the boundary we have extension artifacts due to the support of the filter.

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

0

1e-05

2e-05

3e-05

4e-05

5e-05

0 50 100 150 200 250 300

line 1
line 2
line 3
line 4

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250 300

line 1
line 2
line 3
line 4

Figure 3.6.5: Wavelet coe�cients of periodic extensions of the sine function, where once
the period is chosen accordingly to that of the sine (left), and once in the
“wrong way” (right). Note the scaling of the axes! Hence, without a priori
knowledge of the signal, periodic extensions can fail utterly.

126

3.6 Applications

The main tool in our application of wavelets for signal processing purposes,
especially in denoising and compression, is the concept of thresholding.

De�nition 3.6.5. Given a constant \ ∈ R+, a thresholding operator)\ : ℓ(Z) →
ℓ(Z) maps small values to zero via

1. (hard thresholding)

) ℎ\ 2(:) =
{
2(:), |2(:) | ≥ \,
0, |2(:) | < \, : ∈ Z. (3.6.2)

2. (soft thresholding)

) B\ 2(:) = sgn 2(:) (|2(:) | − \)+ =

2(:) − \, 2(:) ≥ \,

0, |2(:) | ≤ \,
2(:) + \, 2(:) < −\,

: ∈ Z.

(3.6.3)

One advantage of soft thresholding or shrinkage compared to hard thresholding
is that the mapping

2 ↦→ sgn 2 (|2 | − \)+
is continuous, but for the price that the whole signal is reduced by the constant
\ which results in a loss of contrast. The real advantage, however, is that soft
thresholding solves a minimization problem.

Proposition 3.6.6. For 2 ∈ ℓ00(Z) one has

) B\ 2 = argmin
G

‖2 − G‖22 + 2\ ‖G‖1 (3.6.4)

Proof: Assuming that 2 vanishes outside [0, #], we can immediately conclude that
so also does the solution 2∗ of (3.6.4) as otherwise we would just have unnecessary
terms that increase both terms in (3.6.4). Hence, we can rewrtie the functional to
be minimized as

_2 (G) =
#∑
9=0

(2(9) − G(9))2 + 2\
#∑
9=0

|G(9) | =
#∑
9=0

(
(2(9) − G(9))2 + 2\ |G(9) |

)
,

and this is a decoupled optimization problem that can be solved separately for any
pair 2(9) and G(9), 9 = 0, . . . , # . So we only have to find out how to find the
solution

2∗ = min
G
(2 − G)2 + 2 \ |G | (3.6.5)

of the scalar problem. The first observation is that G has to have the same sign as
2 as otherwise −G would give a smaller value in (3.6.5). In particular, 2 = 0 implies
G = 0. Hence, for 2 ≥ 0 we have to minimize the function

(2 − G)2 + 2 \ |G | = (2 − G)2 + 2 \ G
32This can always be ensured by a proper shift.

127

3 Transformations

with respect to G ∈ [0,∞), and the minimum is either assumed for G = 0 or for the
value G that solves

0 =
3

3G

(
(2 − G)2 + 2 \ G

)
= 2(G − 2 + \) ⇔ G = 2 − \.

Here, G > 0 can happen only for 2 > \ > 0, but then the solution is the global
minimum. For 2 ≤ \, on the the other hand, the minimal solution is G = 0. An
analogous argument for 2 < 0 yields that G = 0 or G = 2 + \ and all together we
obtain (3.6.3). �

Remark 3.6.7. There is much more behind the concept of shrinkage than we
can explain here. Convex optimization problems like the one in (3.6.5) play a
fundamental role in modern image processing and convex optimization based on
subgradients is part of nowaday’s image processing toolbox, cf. (Chambolle et al.,
2010).

Another important degree of freedom is how to choose the parameter \ that can
either be a fixed number independent of 2, but which should better be determined
depending on 2 ∈ ℓ0(Z)

• as _ ‖2‖∞, 0 < _ < 1, hence as a fraction of the maximal value occuring in 2,

• as a fraction of the average of moduli,

\ = _
‖2‖1
#2

=
_

#2

∑
:∈Z
|2(:) | , #2 := # {: : 2(:) ≠ 0} .

• as a relative median for 0 < _ < 1:

\ = |2(:) | such that # { 9 : |2(9) | ≤ |2(:) |} ∼ _#2.

All the approaches erase coe�cients whose size is small relative to the data 2, where
the median is the most robust approach but needs most computational e�ort.
Having the thresholding operator at hand, we can finally sketch the applications

where we first compute the decomposition

2 ↦→
(
31, . . . , 3=, 2=

)
,

to which we appy thresholding in the following way:

Edge detection: depending on the order = of the feature, we determine 3̂: =
)\2

:=3: for some relatively large \ and look at the distribution of the surviving
coe�cients. If they accumulate somewhere, then this is an indicator for a
singularity according to Theorem 3.6.1.

Compression: here we for 3̂: =)\3: as well as 2̂: =)\2=, where \ controls the
compression rate and therefore the quality of the result. Aftwards, we only

store the nonzero coe�cients of
(
3̂1, . . . , 3̂=, 2=

)
or use an entropy encoder that

e�ciently encodes the zeros.

128

3.6 Applications

Denoising: we again compute decomposition and (soft) threshold followed by a re-
construction step. It can be shown that this wavelet shrinkage with respect to
Haar wavelets is an approximation for the so-called TV regularization, mean-
while the standard in denoising.

The extension to images requires a fairly modest e�ort when using the tensor
product as we already did with the Fourier transform.

De�nition 3.6.8. Let q1, q2 be scaling functions with wavelets k1, k2, the the bi-
variate scaling function is defined as

q(G, H) = q(G) q(H), (G, H) ∈ R2.

The associated wavelets33 are

k1(G, H) = q(G) k(H), k2(G, H) = k(G) q(H), k3(G, H) = k(G) k(H).

The bivariat function q generates an MRA we need refinability and a decompo-
sition. Assuming that we have the refinement equation

q 9 = 0 9 ∗ q (2·) =
∑
:∈Z

0 9 (:) q (2 · −:) , 9 = 1, 2,

it follows in a purely forma way that

q = q(G) q(H) =
(∑
9∈Z

01(9)q1(2G − 9)
) (∑

9∈Z
01(:)q2(2H − :)

)
=

∑
(9 ,:)∈Z2

01(9)02(:) q1(2G − 9)q2(2H − :) =
∑
U∈Z2
(01 ⊗ 02) (U)q(2 · −U),

and the same trick can be applied to the decomposition formula

q 9 (2·) = 2′9 ∗ q 9 + 3′9 ∗ k 9 , 9 = 1, 2,

to yield the following result.

Theorem 3.6.9. The function q is re�nable,

q =
∑
U∈Z2
(01 ⊗ 02) (U)q (2 · −U) , (3.6.6)

and we have

q (2·) = 2 ∗ q +
3∑
9=1

3 9 ∗ k 9 , (3.6.7)

where

2 = 2′1 ⊗ 2
′
2, 31 = 2

′
1 ⊗ 3

′
2, 32 = 3

′
1 ⊗ 2

′
2, 33 = 3

′
1 ⊗ 3

′
2. (3.6.8)

33Yes, there are several of them.

129

3 Transformations

+1

−1

+1 −1
+1

−1 +1

−1

Figure 3.6.6: The three tensor product Haar wavelets: scaling in G and wavelet in H (left),
wavelet in G and scaling in H (center) and wavelet in both variables (right)

WW WS

SW

WW WS

SW

Figure 3.6.7: The wavelet decomposition for images: one obtains three parts for the wavelet
components and one coarser low-pass part. Like in one-dimensional signals,
the latter one is the decomposed further.

Exercise 3.6.1 Prove Theorem 3.6.9. ♦
Note that now we have to deal with three wavelets, where two of them are tensor

products of scaling function and wavelet and one is a tensor product of the two
wavelets.

Example 3.6.10. The simplest case is that of tensor product Haar wavelets based
on q1 = q2 = j[0,1] and k1 = k2 = j[0, 12] − j[12 ,1] . The sign distribution of the
resulting functions can be seen in Fig. 3.6.6 zu sehen.

The three wavelets in the bivariate case fulfill di�erent tasks: Ψ1 detects edges
parallel to the G-axis, Ψ2 those parallel to the H-axis, while Ψ3 seems to care for
diagonal ones. The latter is not really true, but su�cient for the intuition. The
decomposition of an image is shown schematically in Fig. 3.6.7. The implemen-
tation is again done with tensor product filters that can be implemented easily by
“cascading” univariate filters as shown before.
For application purposes we decompose our standard image via wavelets, but

now we store the scaling part in the top left quarter of the image. The decomposi-
tions are shown in Fig. 3.6.8. For the wavelet decomposition we used the so-called
Daubechies wavelets, where the “4” stands for the number of taps, i.e., nonzero

130

3.6 Applications

Figure 3.6.8: One (left) and three (right) levels of wavelet decomposition where the detection
of di�erently directed edges can be seen quite clearly. Moreover, we note that
the wavelet parts of the signal are sparse, i.e., the contain only very few nonzero
entries which are all points with the dominating grey.

filter entries. These wavelets and the decomposition are part of the JPEG2000
standard where instead of a DCT one uses wavelet decompositions of periodized
blocks of size 2= × 2=. And a look at the image shows us why: even without thresh-
olding the wavelet coe�cients are already quite sparse.
The Daubechies wavelets belong to a particular class of filter banks, namely

the so called quadrature mirror �lters that are defined by � (I) = �
(
I−1

)
, that

is, the reconstruction filters are only flipped copies of the analysis filters. Obvi-
ously, one has to store fewer coe�cients for these filters; for more information see
(Daubechies, 1992; Vetterli and Kovačević, 1995).

131

132

Further Aspects of
Imaging 4

[. . .] an old Russian proverb which means, roughly, that when the polar bear
excrement interferes with the fan belts, the machinery overheats.

(R. Shea, The Illuminatus! Trilogy)

Real world data is, unfortunately, not so easy as we would like it to be. In fact,
in many applications, for example in Computed Tomography, see Section 1.2.2, or
more general Section 1.4, we are interested in a signal 5 , but all we can measure is

6 =) 5 + n (4.0.1)

where) is a known and hopefully linear operator and n some (random) noise.
In this chapter we give a very short and superficial introduction to this issue, in
general this is almost a science by itself.

4.1 Approximation of Random Signals

Here we change the perspective a bit and look at stochastic signals which are mod-
eled as a random process which is some sort of a rule to generate random vari-
ables, given by density functions. A very good introduction to this subject can be
found in Als erstes besch"aftigen wir uns mit (Peebles, 1980).

De�nition 4.1.1. A random process is a function1 5 : R × R → R, written as
5 (B, C) that associates to each B ∈ R a density function 5 (B, ·) which is called the
realization of the random process. The expectation of the realization is

EB (5) =
∫
R
5 (B, C) 3C,

the variance

VB (5) =
∫
R
(5 (B, C) − EB (5))2 3C

and the standard deviation is fB (5) = VB (5)1/2.

The discrete random signal 5 is then a sequence

5 (9) = 5 (B 9 , ·), 9 ∈ Z, (4.1.1)

1Warning: we are not considering all details here and will stay vague. It is about the idea, not the
(doubtlessly interesting) math behind it.

133

4 Further Aspects of Imaging

i.e., each measurement or sample is a realization of the random process and we can
only speak about the expectation and the variance of these measurements. Except,
of course, then fB 9 (5) = 0, then the signal is deterministic. Assuming that the signal
has zero mean, E

(
5 9
)
= 0, the covariance of the measurements is the matrix

Q (5) =
(
E (5 (9) 5 (:)) : 9 , : ∈ Z

)
.

Our first goal is to approximate the random signal by finite information in such
a way that the expected error becomes as small as possible; since expectation and
variance are related to integrals, this will become some !2 theory.
To that end, let the sequences 6 9 , 9 ∈ N0, be an orthonormal basis of ℓ2(Z) with

respect to the inner product

〈 5 , 6〉 =
∑
9∈Z

5 (9) 6(9).

Then the projection to the subspace spanned by 60, . . . , 6< is

5< :=
<∑
9=0

〈
5 , 6 9

〉
6 9 =

<∑
9=0

∑
:∈Z

5 (:) 6 9 (:) 6 9 .

And one fundamental question in random signal processing is

How to choose 60, . . . , 6< in such a way that the expected error becomes min-
imal?

In other words, we have to minimize

Y< := E
(
‖ 5 − 5< ‖2

)
= E

©«
 ∞∑
9=<+1

〈
5 , 6 9

〉
6 9

2ª®®¬ =

∞∑
9=<+1

E
(〈
5 , 6 9

〉2)
by finding a proper orthonormal system 6 9 of signals. Then we can approximate
5 in a deterministic way as

5 =

∞∑
9=0

〈
5 , 6 9

〉
6 9 .

Since for an arbitrary G ∈ ℓ2(Z) we have

E
(
〈 5 , G〉2

)
= E

©«
(∑
9∈Z

5 (9) G(9)
)2ª®¬ = E ©«

∑
9 ,:∈Z

5 (9) 5 (:) G(9) G(:)ª®¬
= E

(
G)

(
5 (9) 5 (:) : 9 , : ∈ Z

)
G

)
= G)

(
E (5 (9) 5 (:)) : 9 , : ∈ Z

)
G

= G)Q (5) G = 〈Q (5) G, G〉,

we can express the expected error as

Y< =

∞∑
9=<+1

〈
Q (5) 6 9 , 6 9

〉
(4.1.2)

134

4.1 Approximation of Random Signals

Exercise 4.1.1 Show that the covariance matrix Q (5) is positive semidefinite. ♦
If the signal 5 is finitely supported, say on [0, #], then there exists an or-

thonormal basis of eigenvectors of the symmetric and positive semidefinite matrix
Q (5) ∈ R#+1×#+1. Any such basis2 is called aKarhunen-Loève basis and for each
element of this basis we have that〈

Q (5) 6 9 , 6 9
〉
=

〈
_ 9 6 9 , 6 9

〉
= _ 9

6 92︸︷︷︸
=1

= _ 9 ,

hence the error depends only of the associated eigenvalue.

Theorem 4.1.2. If 5 is supported on [0, #], then a basis � =
{
6 9 : 9 = 0, . . . , #

}
⊂

ℓ2(Z), minimizes the error Y< if and only if � is a Karhunen-Loève basis with〈
Q (5)6 9 , 6 9

〉
≥

〈
Q (5)6 9+1, 6 9+1

〉
. (4.1.3)

De�nition 4.1.3. The eigenvalues for the largest eigenvalues of Q (5) are called
the principal components of 5 .

Proof: For any orthononormal set ℎ 9 ∈ ℓ(Z#+1), 9 = 0, . . . , # , we define the
orthogonal matrix N =

(
5 9 (:); 9 , : = 0, . . . , =

)
and note that

#∑
9=0

_ 9 = trace Q (5) = trace
(
N)Q (5)N

)
=

#∑
9=0

©«
©«
ℎ)0
...

ℎ)
#

ª®®¬ Q (5)
(
ℎ1, . . . , ℎ#

)ª®®¬ 9 9 =
#∑
9=0

〈
Q (5) ℎ 9 , ℎ 9

〉
,

so that a basis minimizes Y< if and only if it maximizes

#∑
9=0

_ 9 − Y< =
#∑
9=0

〈
Q (5) ℎ 9 , ℎ 9

〉
−

#∑
9=<+1

〈
Q (5) ℎ 9 , ℎ 9

〉
︸ ︷︷ ︸

=Y<

=

<∑
9=0

〈
Q (5) ℎ 9 , ℎ 9

〉
.

If � is a Karhunen-Loève basis and � another orthonormal basis that we can write
in terms of � as

ℎ 9 =

#∑
:=1

〈
ℎ 9 , 6:

〉
6: ,

then〈
Q (5) ℎ 9 , ℎ 9

〉
=

#∑
:,ℓ=1

〈
ℎ 9 , 6:

〉〈
ℎ 9 , 6ℓ

〉
〈Q (5) 6: , 6ℓ〉 =

#∑
:,ℓ=0

〈
ℎ 9 , 6:

〉〈
ℎ 9 , 6ℓ

〉
_: 〈6: , 6ℓ〉

=

#∑
:=0

〈
ℎ 9 , 6:

〉2
_: ,

2For uniqueness, the eigenvalues would all have to be di�erent.

135

4 Further Aspects of Imaging

and also

<∑
9=0

〈
Q (5) ℎ 9 , ℎ 9

〉
=

<∑
9=0

#∑
:=0

〈
ℎ 9 , 6:

〉2
_: =

#∑
:=0

(
<∑
9=0

〈
ℎ 9 , 6:

〉2)
︸ ︷︷ ︸

=:@:≤1

_: ,

hence,

#∑
:=0

@: =

#∑
:=0

<∑
9=0

〈
ℎ 9 , 6:

〉2
=

<∑
9=0

#∑
:=0

〈
ℎ 9 , 6:

〉2
︸ ︷︷ ︸
=‖ℎ 9 ‖2=1

= < + 1.

Consequently,

<∑
9=0

〈
Q (5) ℎ 9 , ℎ 9

〉
−

<∑
9=0

〈
Q (5) 6 9 , 6 9

〉
=

<∑
9=0

〈
Q (5) ℎ 9 , ℎ 9

〉
−

<∑
9=0

_ 9

=

#∑
:=0

@: _: −
<∑
9=0

_ 9 =

#∑
:=0

@: _: −
<∑
9=0

_ 9 + _<

(
< + 1 −

#∑
:=0

@:

)
︸ ︷︷ ︸

=0

=

<∑
9=0

(
@ 9 − 1

)
_ 9 +

#∑
9=<+1

_ 9 @ 9 + _<
<∑
9=0

(
1 − @ 9

)
− _<

#∑
9=<+1

@ 9

=

<∑
9=0

(
_ 9 − _<

)︸ ︷︷ ︸
≥0

(
@ 9 − 1

)︸ ︷︷ ︸
≤0

+
#∑

9=<+1
@ 9

(
_ 9 − _<

)︸ ︷︷ ︸
≤0

≤ 0

with equality if and only if3 # = < und @ 9 = 1, 9 = 1, . . . , # . In other words: the
Karhunen-Loève basis is always better than other orthogonal bases and the best
result is obtained if the basis is ordered such that _1 ≥ _2 ≥ · · · ≥ _# . �

We cannot consider statistical image processing in depth here. However, a good
Karhunen-Loève basis can build a bridge and even the DCT can be interpreted in
this sense and allows for an interpretation of JPEG compression in terms of optimal
decompositions. However, this is beyond the scope of this lecture.

3At least in the case that Q (5) is strictly positive definite, but eigenvectors for the zero eigenvalue
play no role in information retrieval, so this is no restriction.

136

References 5
A Literatur

Akhieser, N. I. (1988). Lectures on Integral Transforms, volume 70 of Translations of
Mathematical Monographs. AMS.

Barbour, J. M. (1951). Tuning and Temperament. A Historical Survey. Michigan State
Press. Dover reprint 2004.

Benson, D. J. (2007). Music. A Mathematical O�ering. Cambridge University Press.

Björck, A. (1996). Numerical Methods for Least Squares Problems. SIAM.

Chambolle, A., Caselles, V., Cremers, D., Novaga, M., and Pock, T. (2010). An
introduction to total variationfor Image Analysis. In Fournasier, M., editor,
Theoretical Foundations and Numerical Methods for Sparse Recovery, volume 9 of
Radon Series Comp. Appl. Math, pages 263–340. De Gruyter.

Cooley, J. W. (1987). The re–discovery of the Fast Fourier Transform. Mikrochimica
Acta, 3:33–45.

Cooley, J. W. (1990). How the FFT gained acceptance. In Nash, S. G., editor, A
History of Scienti�c Computing, pages 133–140. ACM–Press and Addison–Wesley.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for machine calculation of
complex Fourier series. Math. Comp., 19:297–301.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions:
estimating the correct degree of smoothing by the method of generalized cross-
validation. Numer. Math., 31:377–403.

Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Com-
mun. on Pure and Appl. Math., 41:909–996.

Daubechies, I. (1992). Ten Lectures on Wavelets, volume 61 of CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM.

DeVore, R. A. and Lorentz, G. G. (1993). Constructive Approximation, volume 303
of Grundlehren der mathematischen Wissenschaften. Springer.

Domes, J. (2007). Schnelle inverse Wavelettransformation. Zulassungsarbeit zum
ersten Staatsexamen, Justus–Liebig–Universität Gießen.

FFTW (2003). FFTW – the Fastest Fourier Transform in the West.
http://www.fftw.org.

Foley, J., van Dam, A., Feiner, S., and Hughes, J. (1990). Computer Graphics. Addison
Wesley, 2nd edition.

137

5 References

Forster, O. (1984). Analysis 3. Integralrechung im R= mit Anwendungen. Vieweg, 3.
edition.

Gabor, D. (1946). Theory of communication. J. IEEE, 93:429–457.

Gathen, J. v. z. and Gerhard, J. (1999). Modern Computer Algebra. Cambridge
University Press.

Gautschi, W. (1997). Numerical Analysis. An Introduction. Birkhäuser.

Gelbaum, B. R. and Olmstedt, J. M. H. (1964). Counterexamples in Analysis. Holden–
Day. Dover reprint 2003.

Golub, G., Heath, M., and Wahba, G. (1979). Generalized cross-validation as a
method for choosing a good ridge parameter. Technometrics, 21:215–223.

Golub, G. and van Loan, C. F. (1996). Matrix Computations. The Johns Hopkins
University Press, 3rd edition.

Grossmann, A., Morlet, J., and Paul, T. (1985). Transforms associated to square
integrable group representations. i.general results. J. Math. Phys., 26:2473–2479.

Grüningen, D. C. v. (1993). Digitale Signalverarbeitung. VDE Verlag, AT Verlag.

Hamming, R. W. (1989). Digital Filters. Prentice–Hall. Republished by Dover
Publications, 1998.

Handels, H. (2000). Medizinische Bildverarbeitung. B. G. Teubner.

Hardy, G. H. and Rogosinsky, W. W. (1956). Fourier Series. Cambridge University
Press, 3. edition. Republished by Dover Publications, 1999.

Heuser, H. (1983). Lehrbuch der Analysis. Teil 2. B. G. Teubner, 2. edition.

Holschneider, M. (1995). Wavelets: an analysis tool. Clarendon Press, Oxford.

Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge University
Press.

Hough, P. V. C. (1962). Method and means for recognizing complex patterns. US
Patent 3069654.

Hubbard, B. B. (1996). The world according to wavelets. A.K. Peters.

Isaacson, E. and Keller, H. B. (1966). Analysis of Numerical Methods. John Wiley &
Sons.

Jähne, B. (2002). Digitale Bildverarbeitung. Springer.

Kammeyer, K. D. and Kroschel, K. (1998). Digitale Signalverarbeitung. Teubner
Studienbücher Elektrotechnik. B. G. Teubner, Stuttgart.

Katznelson, Y. (1976). An Introduction to Harmonic Analysis. Dover Books on ad-
vanced Mathematics. Dover Publications, 2. edition.

Klein, A. (2011). Zur Numerik kontinuierlicher Wavelet- und Matrixwavelet–
Transformationen. PhD thesis, Justus–Liebig–Universität Gießen.

Kotelnikov (1933). On the carrying capacity of the “ether” and wire in telecommu-
nications. In First All Union Conference of Communications I, zd. Red. Upr. Svyazi
RKKA, Moscov. In Russian.

138

Lorentz, G. G. (1966). Approximation of Functions. Chelsea Publishing Company.

Louis, A. K., Maaß, P., and Rieder, A. (1998). Wavelets. B. G. Teubner, 2. edition.

Mallat, S. (1989). Multiresolution approximations and wavelet orthonormal bases
of !2 (R). Trans. Amer. Math. Soc., 315:69–87.

Mallat, S. (1999). A Wavelet Tour of Signal Processing. Academic Press, 2. edition.

Mallat, S. (2009). A Wavelet Tour of Signal Processing: The Sparse Way. Academic
Press, 3rd edition.

Mhaskar, H. M. and Pai, D. V. (2000). Fundamentals of Approximation Theory. Narosa
Publishing House.

Natterer, F. (1986). The Mathematics of Computerized Tomography. John Wiley & Sons.

Natterer, F. and Wübbeling, F. (2001). Mathematical Methods in Image Reconstruction.
SIAM.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer Series in
Operations Research. Springer.

Olafsson, G. and Quinto, E. T., editors (2006). The Radon Transform, Inverse Prob-
lems, and Tomography, volume 65 of Proceedings of Symposia in Applied Mathematics.
AMS.

Osher, S., Burger, M., Goldfarb, D., Xu, J., and Yin, W. (2004). An iterative
regularization method for total variation based image restoration. Technical
report, UCLA.

Paul, R. P. (1981). Robot Manipulators. MIT Press.

Peebles, P. Z. (1980). Probability, Random Variables and Random Signal Principles.
McGraw–Hill.

Sauer, T. (2000a). Numerische Mathematik I. Vorlesungsskript, Friedrich–
Alexander–Universität Erlangen–Nürnberg, Justus–Liebig–Universität Gießen.
http://www.math.uni-giessen.de/tomas.sauer.

Sauer, T. (2000b). Numerische Mathematik II. Vorlesungsskript, Friedrich–
Alexander–Universität Erlangen–Nürnberg, Justus–Liebig–Universität Gießen.
http://www.math.uni-giessen.de/tomas.sauer.

Sauer, T. (2002). Approximationstheorie. Vorlesungsskript, Justus–Liebig–
Universität Gießen. Online verfügbar, Lehrstuhlseite.

Sauer, T. (2007). Splinekurven und –flächen in Theorie
und Anwendung. Vorlesungsskript, Friedrich–Alexander–
Universität Erlangen–Nürnberg, Justus–Liebig–Universität Gießen.
http://www.math.uni-giessen.de/tomas.sauer.

Sauer, T. (2008). Integraltransformationen. Vorlesungsskript, Justus–Liebig–
Universität Gießen. http://www.math.uni-giessen.de/tomas.sauer.

Sauer, T. (2011). Time–frequency analysis, wavelets and why things (can) go
wrong. Human Cognitive Neurophysiology, 4:38–64.

139

5 References

Sauer, T. (2013a). Einführung in die Numerische Mathematik. Vorlesungsskript,
Universität Passau.

Sauer, T. (2013b). Optimierung. Vorlesungsskript, Universität Passau.

Sauer, T. (2014). Analysis 1. Vorlesungsskript, Universität Passau.

Sauer, T. (2017). Constructive Approximation. Lecture notes, University of Passau.

Sauer, T. (2018). Advanced Imaging. Lecture notes, University of Passau.

Schoenberg, I. J. (1973). Cardinal Spline Interpolation, volume 12 of CBMS-NSF
Regional Conference Series in Applied Mathematics. SIAM.

Schönhage, A. and Strassen, V. (1971). Schnelle Multiplikation großer Zahlen.
Computing, 7:281–292.

Schüßler, H. W. (1992). Digitale Signalverarbeitung. Springer, 3. edition.

Shannon, C. E. (1949). Communications in the presence of noise. Proc. of the IRE,
37:10–21.

Spellucci, P. (1993). Numerische Verfahren der nichtlinearen Optimierung. Interna-
tionale Schriftenreihe zu Numerischen Mathematik. Birkhäuser.

Steger, A. (2001). Diskrete Strukturen 1. Kombinatorik – Graphentheorie – Algebra.
Springer.

Tolstov, G. P. (1962). Fourier Series. Prentice–Hall. Republished by Dover Publica-
tions, 1972.

Vetterli, M. and Kovačević, J. (1995). Wavelets and Subband Coding. Prentice Hall.

Whittaker, J. (1935). Interpolatory function theory, volume 33 of Cambridge Tracts in
Math. and Math. Physics.

Yosida, K. (1965). Functional Analysis. Grundlehren der mathematischen Wis-
senschaften. Springer–Verlag.

140

Index 5
&' decomposition, 9
k-compatible, 98
I-transform, 104

wavelet transform, 97

absolutely summable, 20
adder, 37
addition theorem, 100
admissibility condition, 87
admissible, 87
admissible wavelet, 87, 89
aliasing, 34
amplitude, 99
amplitude modulation, 100
analysis, 4
analysis filterbank, 106, 112
anticausal, 36
antisymmetric, 39
approximation order, 42
array, 4
artifact, 3
audio analysis, 99
autoconvolution, 26

balanced, 39
Banach space, 20
band pass, 42
bandlimited, 31
bandwidth, 31
barycenter, 84
base frequency, 100
beats, 100
best approximation, 41
binarized, 74
binomial filter, 47, 48, 66
block artifacts, 67
blurring, 48
bounded, 20

calibration target, 10
camera obscura, 6
cardinal B-spline, 26
cardinal function, 60
cartesian coordinates, 7
cascade scheme, 117
Cauchy sequence, 28
causal, 35–37
centered B-spline, 27
centered wavelet, 91
central projection, 6
chroma channels, 5
circle, 79
CMY, 5
color channel, 5
color image, 5
compact support, 88, 123
compatibility conditions, 98
complete, 20
complex conjugate, 56
compression, 123
compression rate, 69
Computed Tomography, 11, 46, 133
continuous, 22
convolution, 22, 36, 44, 125
covariance, 134
critically sampled, 106
cyclic convolution, 57

Daubechies wavelets, 130
DCT, 70
DCT–II, 70
delay, 37
denoising, 46, 50, 123
dense, 41
density function, 133
DFT, 54, 57, 59, 121
digital filter, 35, 36
Digital Image Processing, 3

141

Index

dilation, 22
discrete, 22
discrete Cosine transform, 70
discrete Fourier transform, 54
discrete wavelet transform, 121
distribution, 21
divide and conquer, 63
domain, 4
downsampling, 105, 106
drone, 103
DWT, 122
dyadic points, 114

energy preserving, 35
equidistant, 94
essential supremum, 20
even function, 73
expectation, 133
extrinsic calibration, 9

fast Fourier transform, 53
fast wavelet transform, 95
FCWT, 96
feature detection, 123
features, 123
Fejér means, 43
Fejer kernel, 25
FFT, 53, 62, 63, 80
filter, 35, 80
filter design, 38, 40
filter length, 125
filterbank, 110
finitely supported, 20
FIR, 123
FIR filter, 36, 37, 41, 44, 47, 107, 115
first moment, 84
fisheye e�ect, 9
Fourier coe�cients, 29, 99
Fourier series, 29, 41, 99
Fourier transform, 21, 23, 28, 36, 44,

50, 54, 60, 73, 82, 88, 96, 105,
117

frequency, 99
frequency domain, 36, 38, 40
frequency localization, 84
frequency resolution, 60
frequency variation, 84

FWT, 95

Gabor transform, 81, 92
Gauß kernel, 47
Gibbs phenomenon, 42
gradient, 49
gradient filter, 49

Haar wavelet, 88
Haar wavelets, 130
Hadamard produkt, 67
hard thresholding, 127
hat function, 115, 123
Heisenberg box, 85, 91
Heisenberg rectangle, 85
Heisenberg uncertainty relation, 85
Hertz, 40, 99
high pass filter, 112
high-pass, 122
homogeneous coordinates, 7
Hough transform, 73, 74, 79

image, 4
image plane, 7
impulse response, 36, 41, 44, 45, 107,

114
initial scale, 93
instantaneous frequency, 100
integral transform, 11
intrinsic calibration, 9
intrinsic parameters, 9
inverse DFT, 56, 95
inverse FFT, 95
inverse Fourier transform, 23, 29, 117
inverse Gabor transform, 82
inverse wavelet transform, 89, 97
isometry, 28, 82

JPEG, 69
JPEG2000, 131

Karhunen-Loève basis, 135
kinematic chains, 8
Kronecker produkt, 67

Lagrange multipliers, 15
Laplace operator, 52
latency, 38

142

Index

Laurent series, 104
lazy filterbank, 108
leakage phenenomenon, 81
Lebesgue point, 21
line integral, 12, 13
linear filter, 35
Lipschitz continuous, 103
logarithmic representation, 64
loudness, 99
low pass, 42
low pass filter, 66, 112
low-pass, 121
LTI filter, 35, 36, 41, 44

mask, 66
master theorem, 63
matrix factorization, 71
mean value filter, 46
median, 128
median filter, 52
medical imaging, 45
mexican hat wavelet, 88, 89
midpoint, 79
modulated Gaussian, 86
modulation, 86
modulation matrix, 107, 110, 111, 119
Morlet wavelet, 88, 89, 100
Morlet’s Gaussian wavelet, 88
MRA, 119, 129
multiindex, 43
multiplier, 37
Multiresolution Analysis, 119

noise, 133
normalized, 87
Nyquist frequency, 31

ondelette, 86
operator, 35
optimization problem, 15
orthogonal matrix, 9
oversampled, 106
oversampling, 32

padding, 63
parallel projection, 5
parameter, 79
Parseval-Plancherel, 28

partial sum, 41
partial tones, 100
partition, 74
Peano curve, 91
perfect reconcstruction, 112
perfect reconstruction, 111, 118, 120,

121
periodic, 54
periodic function, 99
periodization, 34
Perseval formula, 29
phase modulation, 88
phase shift, 40, 86
pinhole camera, 6
pixel, 4
Plancherel identity, 29, 83
Plancherel indenity, 82
Poisson summation formula, 30
polyphase matrix, 110
polyphase vector, 107
principal components, 135
progression, 93
projection, 119, 134
Projective Geometry, 7
pulse, 20
pyramid scheme, 121

quadrature formula, 12, 95, 96
quadrature mirror filters, 131
quality functional, 15
quasi interpolant, 59, 122
quatization, 4

radius, 79
radix-2 FFT, 63
radix-? FFT, 64
Radon transform, 11–13, 73
random process, 133
random signal, 133
real wavelet, 90
realization, 133
rectangle rule, 95
recurrence relation, 62
refinement equation, 115, 129
related, 98
RGB, 5, 70
Riemann–Lebesgue Lemma, 27

143

Index

root of unity, 55, 62

sampling, 41
sampling frequency, 31, 93
sampling operator, 21
sampling rate, 60
sampling theorem, 40, 94
scaling function, 119
scaling matrix, 9
Scalogram, 88
Schoenberg operator, 60
semidiscrete, 22
Shannon Sampling Theorem, 31, 93,

122
shear, 9
shift invariant, 119
short time Fourier transform, 81
shrinkage, 127
si function, 31
sigmoidal function, 39
Signal

EEG, 125
signal, 19
signal space, 35
sinc, 31
sinus cardinalis, 31
soft thresholding, 127
spectrogram, 81
spectrum, 100
square summable, 20
standard deviation, 133
stationary, 35
STFT, 81
Strang-Fix conditions, 123
subband coding, 105, 106
subbands, 105
subdivision, 113, 115
subdivision scheme, 118
symmetric filter, 38
synthesis filterbank, 110, 113

taps, 37, 40
tempered scale, 93
tensor product, 44
thresholding, 127
timbre, 100
time frequency atoms, 81

time invariant, 35
time localization, 84
time variation, 84
time-frequency analysis, 83, 100
time-frequency atoms, 91
tone, 99
torus, 19, 29
transfer function, 36, 38, 40
transfer operator, 117
translation, 22
translation operator, 35
trigonometric polynomial, 38, 41
two scale relation, 115

underdetermined system, 14
undersampled, 106
unit sphere, 79
unitary, 57
unitary invariance, 57
upsampling, 105

vanishing moments, 104, 123
variance, 133
volume, 46

wavelet, 86, 120
wavelet analysis, 112
wavelet coe�cients, 122
Wavelet decomposition, 121
wavelet decomposition, 123
wavelet packages, 112
wavelet transform, 87, 94
window, 80
window function, 81
windowed Fourier transform, 80, 126

YCbCr, 5, 69, 70
YUC, 5

zero mean, 47, 134

144

