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Links were electronic now, not narrative . . . Until the advent of hyperlinks, only
God had been able to see simultaneously into past, present and future alike;
human beings were imprisoned in the calendar of their days.

S. Rushdie, Fury

Nothing spoils numbers faster than a lot of arithmetic.

Peppermint Patty, The Peanuts, 4.12.1968

[. . . ] if you don’t understand the math you can’t write the code.

N. Stephenson, Cryptonomicon

The family is full of scientists. Mathematicians. The least intelligent of us be-
come engineers.

N. Stephenson, Cryptonomicon

Don’t ask me things I don’t know. I can’t tell you the answers. And don’t ask me
things I do know, because I won’t tell you the answers.

R. Chandler, The High Window

To isolate mathematics from the practical demands of the sciences is to invite
the sterility of a cow shut away from the bulls.

P. Chebyshev
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Imaging principles 1
Reality is software. What does it matter what system it’s running on?

(R. Rucker, Postsingular)

In Image Processing the main task nowadays is to eventually extract information from data,
in our case images. Ideally, this process takes into account the nature of the image, i.e., the
acquisition process, the dimensionality1 and the meaning of the picture elements, like pixels
and voxels, and so on. In addition, even the context of the image may be relevant, like infor-
mation when, how and for which purpose the image has been recorded. Moreover, images
may have to be enhanced or cleaned in order to make the information extraction possible.

To do all that, we will need quite substantial methodology from mathematics. The idea of
this lecture is to provide those mathematical tools and to relate them to task in image pro-
cessing. This is what makes it “advanced” since nowadays image processing methods by far
exceed the simple pushing around of pixels and require mathematics. To make it more chal-
lenging, it is not only about providing mathematical methods, it is also about implementing
them efficiently and in sufficient precision on digital computers.

We will begin this lecture by giving a model for an image and by identifying some basic and
fundamental concepts and ideas that will be developed in detail in the chapters to follow.

1.1 What is an image?

The simple and most classical idea of an image B is as an m ×n matrix of (gray) values, i.e.,

F =

 f11 . . . f1n
...

. . .
...

fm1 . . . fmn

 ∈Xm×n ⊂Rm×n (1.1.1)

of QUANTIZED values; here X is a usually finite and thus discrete set of admissible values.
The elements of the matrix are called PIXEL as abbreviation for "‘picture element"’ and one
usually speaks of "‘pixel ( j ,k)"’ instead of f j k .

Example 1.1.1. For an 8 bit GRAYSCALE IMAGE, we have X= {0, . . . ,255}.

This, "‘doubly discrete"’ approach has two quite obvious problems:

1Usual images are 2d, video sequences or volume measurements are 3d, time series of volumes even
4d.
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1 Imaging principles

1. Quantization is rather hard to maintain. Analytical operations on X like averaging,
multiplication with numbers, even addition, may at least to strange behavior2. To over-
come that, we always assume that pixels are real valued; not because quantization is
irrelevant but because it is too complex to be treated here in full generality.

2. To focus on the RESOLUTION (m,n) is also not a good idea since it is very restrictive with
respect to the image acquisition process. If we change the sensor3 a change of resolu-
tion could cause problems and stop algorithms from working. And what if images from
different sources have to be compared?

This makes it reasonable to consider the following mathematical model of an image.

Definition 1.1.2. An IMAGE is a function f : D→ Rd , where D is the IMAGE DOMAIN and f j ,
j = 1, . . . ,d , are the IMAGE CHANNELS. The RECORDED IMAGE is the restriction of f to a GRID

Γ⊂D.

Example 1.1.3. For a usual pixeled image F , with m ×n pixels, one uses the grid

Γ= {0, . . . ,m −1}× {0, . . . ,n −1} =:Zm ×Zn

and the matrix

F = f (Γ) =

 f (m −1,0) . . . f (m −1,n −1)
...

. . .
...

f (0,0) . . . f (0,n −1)

 ,

where one usually puts the origin to the lower left corner of the image4.

1.1.1 Vectorizing images and Linear Algebra

Since the values of f can be vectors5, and usual are for the most common images, namely
color photography, the matrix F is, strictly spoken, a TENSOR, that is, a higher dimensional
matrix or a stack of matrices. This is also the way how Matlab or Octave handle images:

>> A = imread( "PassauCol.png" );
>> size (A)
ans =
864 1536 3

The image and its three channels are shown in Fig. 1.1.1. In the usual RGB representation,
the first channel corresponds to the red content of the image, the second to green and the last
one to blue. As can be easily seen, the three images are highly correlated.

2Just imagine 8 bit unsigned integer addition which gives, for example 231+ 109 = 85 which is not
what one might expect of the brightness of a pixel.

3Which could be camera or the CT equipment or whatever.
4This is pure convention, for standard matrix operations the upper left corner would be more con-

sistent.
5To be precise: they are tuples and only become vectors once VECTOR SPACE OPERATIONS, namely

addition and multiplication by scalars, are applied
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1.1 What is an image?

Figure 1.1.1: A color picture and its three color channels, RGB, left to right. Obviously, there is
a lot of red in this image.

Definition 1.1.4. The VECTORIZATION of a matrix F ∈Rm×n is the vector

v(F ) :=



f00
...

fm−1,0
...

f0,n−1
...

fm−1,n−1


obtained by stacking its columns on top of each other. The CORRELATION of two images (as
matrices) is the normalized inner product of the vectorizations:

c(F ,F ′) = v(F )T v(F ′)
‖v(F )‖2 ‖v(F ′)‖2

= 1

‖v(F )‖2 ‖v(F ′)‖2

m−1,n−1∑
j ,k=0

f j k f ′
j k . (1.1.2)

Due to the Cauchy–Schwarz inequality we have that

−1 ≤ c(F ,F ′) ≤ 1, (1.1.3)

and F , F ′ are called DECORRELATED if c(F ,F ′) = 0. Moreover, c(F ,F ′) = c(F ′,F ) is obvious.

Example 1.1.5. The correlations between the subimages of the example in Fig. 1.1.1 are

R G B
R 1 .99028 .93169
G 1 .96124
B 1
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1 Imaging principles

where the subdiagonal values follow by symmetry.

The correlation means that the three channels contain a lot of redundant information which
can become a problem, for example in compression. To overcome this, one can decorrelate
the three images.
The central question is of course: how to decorrelate? The trick is by means of Linear Algebra.
If we take the three channels F r ,F g ,F b , then we have to find three linearly independent,
normalized and decorrelated image vectors x1, x2, x3 such that ‖x j‖ = 1

v(F r ) =αr 1x1 +αr 2x2 +αr 3x3 =:
[

x1 x2 x3
]
αr =: Xαr , (1.1.4)

and, of course, the same for F g and F b . That the vectors x j are decorrelated means that the
matrix X ∈ Rmn×3 that appears in all the versions of (1.1.4) and is independent of the color
channel is an ORTHOGONAL MATRIX6, that is,

X T X =
[

xT
j xk : j ,k = 1,2,3

]
= I . (1.1.5)

Given the matrix X , the color channels of the original image are then completly described by
the vectors αr ,αg ,αb ∈R3 which can be easily computed by observing that (1.1.4) yields

X T v (F∗) = X T Xα∗ = Iα∗ =α∗, (1.1.6)

where “∗” stands for any of r, g ,b. But (1.1.6) holds for any orthogonal matrix X , so which
one to choose? It is always a good idea to do it in an optimal way, so that the components of
X distinguish between more and less relevant information. So the task is as follows:

1. Choose the first image vector x1 in such a way that it maximizes the expression(
xT v(F r )

)2 + (
xT v(F g )

)2 + (
xT v(F b)

)2
, ‖x‖2 = 1,

that is, in such a way that x1 is MAXIMALLY CORRELATED with all the color channels
simultaneously,

2. choose x2 decorrelated from x1 such that it maximizes(
xT v(F r )

)2 + (
xT v(F g )

)2 + (
xT v(F b)

)2
, xT x1 = 0, ‖x‖2 = 1,

3. and x3 as the maximizer of(
xT v(F r )

)2 + (
xT v(F g )

)2 + (
xT v(F b)

)2
, xT x1 = xT x2 = 0, ‖x‖2 = 1.

Note that in the second and third step, the vectors x1 and x2 computed before only enter in
the SIDE CONDITIONS or RESTRICTIONS of the optimization problem, not in the target func-
tion.

Since we only have three channels, the procedure would stop here7, in general the number
of steps coincides with the dimension of the space spanned by the image components. The
good thing is that the above problem has an explicit solution.

6Keep in mind that X is not a square matrix and therefore (1.1.5) only gives an identity matrix for
X T X but not for X X T ∈Rmn×mn .

7No, this is not obvious, but we are not going to prove it here. You can find the result, for example, in
the lecture notes [Sauer, 2015].
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1.1 What is an image?

Theorem 1.1.6 (Thin SVD). Any matrix A ∈Rm×n can be written as

A =
r∑

j=1
σ j u j v T

j , r = rank (A) ≤ min(m,n), (1.1.7)

where the matrices

U = [
u1, . . . ,ur

] ∈Rm×r and V = [
v 1, . . . , v r

] ∈Rn×r

are orthogonal8 and
σ1 ≥σ2 ≥ ·· · ≥σr > 0. (1.1.8)

Moreover, the decomposition in (1.1.7) is unique if and only if strict inequality holds in (1.1.8).

Exercise 1.1.1 Show that u1, v 1 solve the bilinear optimization problem

maxuT Av , subject to ‖u‖2 = ‖v‖2 = 1. (1.1.9)

Use this fact to derive an algorithm that computes all singular values and singular vectors,
provided you can solve (1.1.9). Will this be a stable algorithm? Why? ♦

Definition 1.1.7. The decomposition (1.1.7) is called the (thin) SINGULAR VALUE DECOMPO-
SITION or SVD9 of the matrix A and any of the vectors u j and v j is called LEFT SINGULAR

VECTOR and RIGHT SINGULAR VECTOR of A, respectively.

One more application of the SVD is that it can help us to make every matrix somewhat invert-
ible. In fact, we can define the following simple inversion.

Definition 1.1.8 (Pseudoinverse). Given a matrix A with SVD (1.1.7), its PSEUDOINVERSE A+

is defined as

A+ :=
r∑

j=1

1

σ j
v j uT

j . (1.1.10)

In the case where the inverse of a matrix exists, which implies that the matrix is a square one,
the “pseudo” can be omitted as then it computes the inverse.

Theorem 1.1.9. If A is invertible, then A+ = A−1.

The proof is extremely simple, so we can give it here.
Proof: If A is invertible, it is a square matrix of full rank, i.e., r = m = n. Then

A+A =
n∑

j=1

1

σ j
v j uT

j

n∑
k=1

σk uk v T
k =

n∑
j ,k=1

σk

σ j
v j uT

j uk︸ ︷︷ ︸
=δ j ,k

uT
k =

n∑
j=1

v j v T
j .

Now write x ∈Rn as
∑

xk v k an simply note that(
n∑

j=1
v j v T

j

)
x =

n∑
j ,k=1

xk v j v T
j v k︸ ︷︷ ︸

=δ j ,k

=
n∑

j ,k=1
x j v j = x

8The same warning as above – they are not necessarily square matrices.
9Of course, the abbreviation is what you have to use if you wish to appear professional, though it

never hurts to know its meaning or even the mathematical concept.
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1 Imaging principles

Figure 1.1.2: Decorrelation: the dominant image (left) and the absolute values of the orthog-
onal images.

to conclude that
(

A+A
)

x = x , hence A+A = I . �

Exercise 1.1.2 Repeat the proof above to show that also A A+ = I . ♦

Exercise 1.1.3 Show that if m > n and A has full rank m, then A+A = I . What happens with
A A+? ♦
It may come as no surprise that the singular value decomposition comes to our rescue for the
decorrelation problem; this is the basic idea behind the concepts of PRINCIPAL COMPONENT

ANALYSIS (PCA) and INDEPENDENT COMPONENT ANALYSIS (ICA). Here we compute the thin
SVD [

v(F r ), v(F g ), v(F b)
]= r∑

j=1
σ j u j v T

j ,

and have u1 as the dominant common part of the image, u2 as the decorrelated second most
important part and u3 as the least relevant one. In octave this is very easy: we vectorize the
channels and compute an SVD in the following way10

>> F = [ vec( A(:,:,1) ), vec( A(:,:,2) ), vec( A(:,:,3) ) ];
>> [U,S,V] = svd( F,1);
>> imwrite( reshape(ImScale8( U(:,1) ), size( A(:,:,1) ) ),

"PassauColCor1.png" );

The last command normalizes the image and writes it as a png file with maximal contrast.
The self written function ImScale8 just scales it linearly to uint8 integer space 0, . . . ,255.

The images are shown in Fig. 1.1.2, the left hand side picture shows the common content
of the color channels, the other two images tell us where the coloring is different. The math
behind the relevance of these decompositions is the following result.

Theorem 1.1.10. For A ∈Rm×n and 1 ≤ k ≤ rank (A), the solution of the optimization problems

max
k∑

j=1

∥∥Aw j
∥∥2

2 , subject to W T W = I , W := [
w 1, . . . , w k

]
(1.1.11)

and

max
k∑

j=1

∥∥∥w T
j A

∥∥∥2

2
, subject to W T W = I , W := [

w 1, . . . , w k
]

(1.1.12)

10The flag in the svd call is important as otherwise octave would a compute a FULL SVD A =UΣV T

where U ∈Rmn×mn would be slightly too large for the memory.
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1.1 What is an image?

are given by w j = v j , and w j = u j , j = 1, . . . ,k, from (1.1.7), respectively.

Exercise 1.1.4 Prove Theorem 1.1.10. This is not so extremely difficult. ♦

Exercise 1.1.5 Show that u1 and v 1 solve the optimization problems

max‖xT A‖2 and max‖Ax‖2, subject to ‖x‖2 = 1,

respectively. ♦

Exercise 1.1.6 Show that if A ≥ 0 in the sense that a j k ≥ 0, then also u1 ≥ 0 and v 1 ≥ 0. ♦

Remark 1.1.11. The result of Exercise 1.1.6 has a meaning in the context of image processing:
if the matrix A consists of nonnegative pixel values which are usually integers between 0 and
255 or 65535 or floating point numbers between 0 and 1, then at least the dominant parts
obtained by the SVD are images as well.

Example 1.1.12. The optimal decorrelation of the images into three images has been shown
in Fig. 1.1.2. Clearly, two nonzero images are optimally decorrelated if11

0 = c(F ,F ′) ⇒ 0 = v(F )T v(F ′) =
m−1,n−1∑

j ,k=0
f j k f ′

j k .

The first image contributes around 84% of the original three images, the second one about
13% and the third one is almost irrelevant. That means that with a loss of only 16% of color
image quality, a compression by a factor of 3 can be achieved without even loosing pixel
information. If we simple project all three channels on the dominant decorrelated value and
then recombine them into a color image, we get the picture shown in Fig 1.1.3.

Remark 1.1.13. This process is not really a clever way to compress color images. Indeed, in
the JPEG standard the image is first transformed into a different color space, YCBCR, consist-
ing of brightness and two types of CHROMINANCE, that automatically decorrelates the color
information, and then even quantizes the three channels differently according to human per-
ception. For color spaces and the respective transformations see [Foley, 1993, Foley et al., 1990].

Example 1.1.14. It is tempting to think that decorrelation may serve as a measure how sim-
ilar or different images are. That this is not the case shows Fig. 1.1.4 which shows two totally
decorrelated images: one is white where the other is black. Nevertheless it is hard to distin-
guish them visually.

11This defines an inner product between matrices of the same size, (A,B ) := v(A)T v(B ) that turns the
matrix space into a Hilbert space whose norm is the FROBENIUS NORM

‖A‖F =
(

m,n∑
j ,k=1

a2
j k

)1/2

, A ∈Rm×n .

One can have a lot of fun with this concept.
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1 Imaging principles

Figure 1.1.3: Reconstruction from projection on the dominant color information.

Figure 1.1.4: Two perfectly decorrelated images that are hard to distinguish
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1.1 What is an image?

Figure 1.1.5: Frames from a surveillance video of a cat crossing a garden activating the auto-
matic light switch on the way. The cat is small relative to the image size.

Figure 1.1.6: The singular vectors from the cat video. The first one ist nonnegative and shows
the background (left), the second one is “light on/light off” (center) and has posi-
ive and negative entries (right).

1.1.2 Vectors for videos

We can also make use of the concept of decorrelation for videos. A video is defined as a set
of frames, F j ∈ Rm×n , j = 1, . . . , N , where each FRAME F j is a single image of constant size12

m×n, which, for simplicity, we assume to be monochromatic or grayscale. Color could either
be decorrelated as before or just treated channel by channel.

We can use the SVD concept for videos that have a large amount of static content like
surveillance videos from a fixed camera where most of the image consists of BACKGROUND

that only changes slowly.

Example 1.1.15. We consider a video13 of a cat moving through a garden and build the sin-
gular vectors of matrix [

v(F 1), . . . , v(F n)
] ∈R307200×527

The first singular vector is, as expected, the background of the scenery, cf. Fig. 1.1.6. All other
singular vectors correspond to the moving cat, some shown in Fig 1.1.7.

One advantage of the singular vectors is that they allows to BACKGROUND SUBRTRACTION.
Indeed, the cat is easily removed from the video by projecting any single frame on the first
two singular vectors:

v(F̃ j ) = (
u1uT

1 +u2uT
2

)
v(F j ) =: P 1:2v(F j ). (1.1.13)

The projection in (1.1.13) makes sense because the singular vectors are orthonormal. And, of
course, one does not compute the projection matrix P 1:2 ∈R307200×307200 explicitly but evalu-
ates the projection by inner products

P 1:k v(F ) =
k∑

j=1
u j

(
uT

j v(F )
)

12The video does not change size over time.
13https://www.forwiss.uni-passau.de/~sauer/leovid.avi
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1 Imaging principles

Figure 1.1.7: The singular vectors u4 (left) and u195 (center) with its quite erratic sign distribu-
tion (right).

which needs something like 3kN operations for an image with N pixels. Choosing k relatively
large can also be used for denoising the video.

The rest of the content, i.e., the video without background formed by the first k compo-
nents is then obtained by computing

v(F̃ j ) = (I −P 1:k ) v(F j ) = v(F j )−
k∑

j=1
u j

(
uT

j v(F )
)

for any frame.

Example 1.1.16. Applying this operation directly to the cat video of Example 1.1.15 even just
in a naive way already gives surprisingly satisfactory results for background14 and the cat15

itself.

But still there is the issue of how to compute the singular value decomposition of the im-
age matrix and how to do this in an online way. Especially background subtraction should
be a job that is done online. The first issue, efficiency, is a mathematical one and involves
AUGMENTED MATRICES: given A ∈RN×m , N À m, for which we know an SVD

A =
m′∑
j=1

σ j u j v T
j , m′ = rank A,

and B ∈ RN×n , n ¿ N , find the SVD of C = [A B ]. In our video analogy this corresponds to
adding frames to an already analyzed video. An efficient algorithm for that purpose16 can
be found in [Peña and Sauer, 2019] and the cat videos are simply a by-product of testing this
method.

The method also works with more complex videos, for example a day in Passau17 with the
original webcam “video” on top and background and moving objects on the bottom. For the
slowly varying lighting effects on the background, 15 singular vectors are necessary. This also
means that the video on the lower left can be compressed very efficiently: one only needs 15
images and 15 numbers per frame.

Remark 1.1.17. In general, background subtraction is not so easy, starting with the nontrivial
question of how many singular vectors make up the background. Analyzing the SVD process

14https://www.forwiss.uni-passau.de/~sauer/leovid+2.avi
15https://www.forwiss.uni-passau.de/~sauer/leovid-2.avi
16Developed, however, for a completely different application of a theoretical nature.
17https://www.forwiss.uni-passau.de/~sauer/passau_15.avi
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1.1 What is an image?

Figure 1.1.8: A grayscale image and somewhat coarser sampling.

Figure 1.1.9: The image from Fig. 1.1.8 as height fields.

more carefully, one can however devise algorithms that can essentially be run in real time
thanks to the efficient update and also work as excellent unsupervised methods for learning
the background in videos, see [?].

Remark 1.1.18. There is much more that could and maybe should be said about the SVD or
PCA. As long as one is interested in linear projections only, it is still one of the most efficient
ways to extract relevant information from data. This changes, of course, if the data lives on
more complex manifolds.

1.1.3 Continuous images

Returning to Definition 1.1.2, we now consider a single channel of the image, thus assuming
that f : D→ R. This turns the image into a function whose graph is a height field over the
image domain D, see Fig 1.1.9.

This observation may appear unnecessarily fancy and just as a motiviation to plot cute
3D pictures. Nevertheless, it has the great advantage of allowing us to use techniques from
Analysis in image processing. The concrete recorded image f (Γ) is then a DISCRETIZATION, a
concept very well known in and from Numerical Analysis.

Example 1.1.19. For x ∈D the GRADIENT18

∇ f := ∂ f

∂x
:=

 ∂ f
∂x1

∂ f
∂x2

 (1.1.14)

18This is a good occasion to introduce the notation.
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1 Imaging principles

gives valuable information about the edges of the image. Since a directional derivative

D y f = yT ∇ f , y ∈R2, ‖y‖ = 1,

becomes maximal if y =∇ f /‖∇ f ‖ and minimal19 if y =−∇ f /‖∇ f ‖ the gradient and negative
gradient are the directions of STEEPEST ASCENT and STEEPEST DESCENT, respectively. Thus,
locally an edge would run orthogonal to the gradient and a LEVEL SET where the image is
constant is of the form {x : ∇ f (x) = 0}.

In many cases, the gradient of a pixeled image is simply discretized as

∇ f ( j ,k) :=
(

f ( j +1,k)− f ( j ,k)
f ( j ,k +1)− f ( j ,k)

)
=:

(
f j+1,k − f j k

f j ,k+1 − f j k

)
, 1 ≤ j < m, 1 ≤ k < m, (1.1.15)

by means of a FIRST ORDER DIFFERENCE. We will see later in Fig. 1.2.14 that this natural or
naive discretization does not always capture all the properties of the derivative and thus has
to be applied with care.

Exercise 1.1.7 Write a Matlab program that reads an image and plots the gradient directions.
♦
Images can be of even higher dimension20. The most important instances of a three dimen-
sional image is

1. a VIDEO f (t ) where the third dimension is time,

2. a VOLUME ELEMENT, where f :R3 →R and f (x) mostly describes the density or another
material property of the object. Such images are generated routinely in COMPUTER

TOMOGRAPHY.

There are even four dimensional objects, for example volume flow, some sort of three dimen-
sional video. In medical imaging those can, for example, be generated by scanning a heart
"‘in vivo"’.

1.2 Imaging concepts

Next, we recall some fundamental concepts that will be useful in the treatment of images.
The first is measure of similarity of images.

Definition 1.2.1. For two discrete images F ,F ′ ∈ Rm×n , the PEAK SIGNAL TO NOISE RATIO or
PSNR for short, is defined as

20log10

(
Ip
mn

∥∥v(F )− v(F ′)
∥∥

2

)−1

, (1.2.1)

where I denotes the maximal pixel intensity of the images21. It is measured in dB (DECIBEL).

19And negative.
20Not counting channels, we talk about dimensionality of D.
21It is the maximal value a pixel can assume which depends strongly on the data type of the image,

in particular on whether these values are integers or floating point numbers; in the latter case one
usually has I = 1. The reason for including I into the definition is to make it independent of the
underlying data type.
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1.2 Imaging concepts

The PSNR acts on a logarithmic scale, is normalized by the image size and the larger it is, the
more similar are the pictures. For two completely identical images, the PSNR is ∞. While
the PSNR ist the best established and most common similarity measure for images, it is not
flawless: the two images in Fig 1.1.4 have a PSNR of zero.

The next concept, due to [Horn and Schunck, 1981] is mathematically a little bit more in-
teresting, but also considers the difference between two images, motivated by successive
frames in a video. We will derive it and then use it as an example how discretization con-
cepts can affect the outcome of the method.

Definition 1.2.2 (Optical flow). Given two images f , g :D→Rwhere f (x) denotes the INTEN-
SITY22 at the point x, the DISPLACEMENT φ : D→ D associates to any point x a DIRECTION23

y =φ(x) such that

g (x +φ(x)) = f (x), x ∈D. (1.2.2)

Given a family ft , t ∈ [0,T ], of images24, the displacement can be written as a function of t ,

ft (x +φ(t , x)) = f0(x), x ∈D, t ∈ [0,T ]. (1.2.3)

The OPTICAL FLOW is the velocity, i.e. time derivative of the displacement φ:

φ′(t , x) = ∂φ

∂t
(t , x) =

(
φ′

1(·, x)
φ′

2(·, x)

)
(t ) (1.2.4)

Remark 1.2.3. A displacement φ(x) does not have to exist for any point x ∈ D in practice,
only if the “pixel” appears in both or all images. In that case, one considers D as the set of all
“trackable” elements of the image. We will not dwell on these – practically quite relevant –
issues here and just assume that the displacement is defined for any x ∈D and any t that we
are interested in.

The concept of optical flow from Definition 1.2.2, considers the optical flow for a moving pixel
x(t ) = x +φ(t , x) in a time varying image f (t , ·) := ft , with intensity

bx (t ) := b(t , x) := f
(
t , x +φ(t , x)

)
.

By the definition of the displacement, the intensity stays constant over time and the chain

22This is the same as the gray levels before.
23A direction is the difference between two points or, something that can be added to a point in the

domain giving yet another point in the domain. Note that directions usually come from a different
domain.

24For example a continuous video.
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1 Imaging principles

rule of differentiation for the function f (t , x) yields that25

d

d t
bx = d

d t
f
(
t , x +φ(t , x)

)= [
∂ f

∂t
,
∂ f

∂x

]
︸ ︷︷ ︸

= f ′

d

d t

[
t

x +φ(t , x)

]

=
[
∂ f

∂t
,
∂ f

∂x

][
1
∂φ
∂t

]
= ∂ f

∂t
+ ∂ f

∂x

∂φ

∂t

and the fact that bx (t ) is the constant gray value of the pixel x from the original image f0 yields
for any starting point x ∈D and any t ∈ [0,T ] that

0 = d

d t
bx (t ) = ∂ f

∂t
(t , x)+ ∂ f

∂x
(t , x)

∂φ

∂t
(t , x)

has to hold. This leads to the DIFFERENTIAL EQUATION(∇x f
)T
φ′ =−∂ f

∂t
, φ(0, ·) = 0, (1.2.5)

for the optical flow of a continuous series of images, a so-called CONSERVATION LAW as it
describes an invariance property of the process. Keep in mind that here the intensity function
f (x, t ) is given and the equation has to be solved for the flow φ′.

Remark 1.2.4. The optical flow is at least consistent in the sense that a constant sequence of
images, i.e., one with ft (x) = f0(x) for all t , has φ′ = 0 as a possible solution. If the image does
not change, no flow could be an explanation.

Assuming that the image is infinite26, the simplest discretization for this problem in space
and time would be to replace derivatives by differences and get, for two successive discrete
2D images f and g ,

(
f ( j +1,k)− f ( j ,k), f ( j ,k +1)− f ( j ,k)

)(φ′
1

φ′
2

)
= f ( j ,k)− g ( j ,k), (1.2.6)

which can be easily extended to arbitrary dimensional objects into

d∑
j=1

(
f (t ,α+ε j )− f (t ,α)

)
ψ j (α) = f (t ,α)− f (t +1,α), ψ j =φ′

j , (1.2.7)

in standard MULTIINDEX notation. Note here that for the flow between two images the solu-
tion of (1.2.6) or (1.2.7), respectively, is proportional to the flow due to the initial condition in
(1.2.5). Let us make this slightly more formal.

25Here f ′ denotes the TOTAL DERIVATIVE or JACOBIAN of f which is the transpose of the gradient. If
you do not understand why this is so (and really want to know), check a good book or lecture on
Analysis. The reason is that the derivative of the bivariate scalar function f is a linear map from
R3 = R1 ×R2 to R which is represented by a 3×1 matrix, i.e., a “column vector” that consists of the

scalar derivative ∂ f
∂t ∈R1×1 and the row ∂ f

∂x = (∇x f
)T ∈R1×2. Since, on the other hand, the function

t 7→ φ(t , x) is from R to R2, its derivative φ′ = ∂
∂t φ belongs to R2×1, hence is a column vector and

the product ∂ f
∂x

∂φ
∂t is well-defined as a scalar product. This is one reason why mathematicians are

so picky about notation, terminology and definition: if done right, they allow for identities that
are simple to write down without being obscured by detail intricacies. Those can be explained in
overlong footnotes.

26Otherwise we get an extra headache due to boundary effects of the image where the "‘k+1"’ in (1.2.6)
may not be defined any more.
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1.2 Imaging concepts

Definition 1.2.5. For an function f : Rd → R the kth PARTIAL DIFFERENCE of STEPSIZE h is
defined as

f (x1, . . . , xk −1, xk +h, xk+1, . . . , xd )︸ ︷︷ ︸
:= f (x+hεk )

− f (x1, . . . , xk −1, xk , xk+1, . . . , xd )︸ ︷︷ ︸
:= f (x)

.

Here (1.2.7) is the straightforward discretization of the optical flow equation for a sequence
f (t , x) of images where t and x are discrete, i.e., integers and multiintegers.

Remark 1.2.6. This derivation of the concept of optical flow nicely fits into the model of
mathematical image processing: we started with a continuously changing continuous image
and derived in (1.2.5) a description of this process. Only afterwards, the discretization of the
differential equation gave us a simple rule for the discrete recorded object. Now, of course,
we can vary the discretization for images of different resolution or involve more sophisticated
numerical techniques to obtain the solution faster or with better accuracy.

Remark 1.2.7. Unfortunately, the equation (1.2.5) is what is known as an ILL POSED PROBLEM:
the solution is not unique and can thus depend in a very tricky way on the input data that is
usually extremely sensitive to noise.

Moreover, the optical flow is in no way unique.

Example 1.2.8. Consider the two images in Fig 1.1.4 and an optical flow between them. Sup-
pose that f (t , ·) : [0,1]2 → R and that time also runs from t = 0 to t = 1 where with t = 0 we
have the first, with t = 1 the second image and suppose that the image f (1, ·) is a shift of τ.
This means that

f (t , ·) = f (0, ·+ tτ(1,0)) , t ∈ [0,1].

Then

φ(t , x) = (x1 + t τ, x2),

φ̃(t , x) = (x1 + t τ, (1− t )x2 + t (1−x2)) ,

are both valid optical flows. Which one is correct?

This is a general principle. Equation (1.2.5) says that the flow can only be determined up to

a component perpendicular to ∂ f
∂x . This is known as the APERTURE PROBLEM and says that

optical flow can only be determined across edges, but not along edges. Even worse: in a

region where the image intensity is constant, i.e. ∂ f
∂x = 0, the optical flow is either arbitrary if

∂ f
∂t = 0 or undefined, if ∂ f

∂t 6= 0.

Example 1.2.9. The "‘fade out"’ f (t , x) = 1− t , t ∈ [0,1], x ∈ [0,1]2, leads to the flow equation

0Tφ′ = 1

which is unsolvable.

In optical flow we thus deal with a problem that sometimes has many solutions and some-
times no solution at all. How can we treat such problems numerically? The answer is: by
optimization. Instead of trying to find a solution, we just try to do our best27; to that end,

27This used to be a very American approach to problems.
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1 Imaging principles

we replace the exact solution of (1.2.5) by something that minimizes, for any TIME STEP t an
ERROR FUNCTIONAL like

E(φ′) =
∫

[0,1]2

((
∂ f

∂x

)T

φ′+ ∂ f

∂t

)2

(x)d x. (1.2.8)

This “variational” functional measures the SQUARED ENERGY of the deviation of the flow from
being ideal; the interpretation of the euclidean norm as energy has a physical background
and is widely used in signal processing, cf. [Hamming, 1989, Schüßler, 1992]. There are lots
of possible choices for the error functional and the particular choice of the error functional
indeed can strongly influence the result. They only have to satisfy two fundamental require-
ments.

Definition 1.2.10. A functional E : F → R on a function space F is called an ERROR FUNC-
TIONAL for a functional equation if

1. E( f ) ≥ 0, f ∈F .

2. E( f ) = 0 if and only if f satisfies the functional equation.

The QUADRATIC FUNCTIONAL (1.2.8) has a simple discretization, namely

Ê(ψ) =∑
j ,k

((
f ( j +1,k)− f ( j ,k)
f ( j ,k +1)− f ( j ,k)

)T (
ψ1( j ,k)
ψ2( j ,k)

)
+ (

g ( j ,k)− f ( j ,k)
))2

. (1.2.9)

which is minimized by any solution of the decoupled linear systems(
f ( j +1,k)− f ( j ,k)
f ( j ,k +1)− f ( j ,k)

)(
f ( j +1,k)− f ( j ,k)
f ( j ,k +1)− f ( j ,k)

)T (
ψ1( j ,k)
ψ2( j ,k)

)
=−(

g ( j ,k)− f ( j ,k)
)( f ( j +1,k)− f ( j ,k)

f ( j ,k +1)− f ( j ,k),

)
,

j = 1, . . . ,m,
k = 1, . . . ,n.

(1.2.10)

Onceψ is computed from (1.2.10), the displacement function φ can be obtained by integra-
tion over t , discretized for frame ` as

φ(`, j ,k) = ∑̀
t=0

ψ(t , j ,k),

which can be seen as the EULER METHOD for the INTEGRATION of the ordinary differential
equation φ′ =ψ.

Since (1.2.10) consists of n×m equations in 2(m×n) unknowns, it is clear that there cannot
be a unique solution, so we may still need more restrictions.

Example 1.2.11 (Example 1.2.8 continued). The difference between the two choices of the
displacement function is that

φ′(t , x) = (τ,0),

φ̃′(t , x) = (τ,1−2x2),

repectively, hence

‖φ′‖2 = τ≤
√
τ2 + (1−2x2)2 = ‖φ̃′‖2

and in particular ∑
j ,k

|φ′( j ,k)|2 <∑
j ,k

|φ̃′( j ,k)|2.
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1.2 Imaging concepts

Figure 1.2.10: Two images for flow computation, shift along the edge. Black pixels stand for 0,
whites one for 1.

Figure 1.2.11: The flow goes downhill as the 3d image (right) shows.

Hence, one suggestion is to choose among the many possible solutions28 of (1.2.10) the one
that is of minimal norm. Indeed, this is what Matlab does automatically when "‘solving"’ the
equation (

f ( j +1,k)− f ( j ,k)
)

x1 +
(

f ( j +1,k)− f ( j ,k)
)

x2 =−(
g ( j ,k)− f ( j ,k)

)
.

Let us test this by means of a very simple example. We define two images as shown in Fig 1.2.10,
and compute their optical flow by means of a very simple implentation of (1.2.10).

>> F = triu( ones(200,200) );
>> G = triu( ones(200,200),10 );
>> X = SimpleFlow( F,G );

The computed flow is depicted in Fig. 1.2.11 and at least qualitatively it makes sense, point-
ing across the edge and "‘downhill"’, i.e., from value 1 to value 0. But what is the minimal
norm solution of (1.2.10)? Writing the inner product there as(

f ( j +1,k)− f ( j ,k)
f ( j ,k +1)− f ( j ,k)

)T

︸ ︷︷ ︸
=:∇ f T

j k

x = ‖∇ f j k‖‖x‖ cosθ, θ ∈ (−π,π],

28The minimization problem minψ Ê(ψ) always has at least one solution and all solutions are charac-
terized by (1.2.10).
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1 Imaging principles

%% *** Advanced Imaging ***
%% SimpleFlow.m
%%
functionfunctionfunction B = SimpleFlow( F,G )

[m,n] = sizesizesize( F );
G = F - G; %% Simplify for right hand side
B = zeroszeroszeros( m,n,2 );
forforfor j=1:m-1

forforfor k=1:n-1
B(j,k,:) = [ F(j+1,k) - F(j,k), F(j,k+1)-F(j,k) ] \ G(j,k);

endendend
endendend

Figure 1.2.12: SimpleFlow.m: Matlab code for simple flow computation.

we get that

‖x‖ = f j k − g j k

‖∇ f j k‖ cosθ

which is minimized with respect to θ if cosθ ∈ {±1} or θ ∈ {0,π} which means that x = λ∇ f j k ,
λ ∈R, and therefore

λ‖∇ f j k‖2 =∇ f T
j k x = f j k − g j k ⇒ λ= f j k − g j k

‖∇ f j k‖2 ,

hence

x = f j k − g j k

‖∇ f j k‖2 ∇ f j k . (1.2.11)

This is almost correct, except that we will have a problem in places where the intensity is
constant since we would divide by zero. But then the shortest choice is indeed to choose the
gradient as zero. We can formulate this in the following way.

Theorem 1.2.12. The pointwise smallest minimizerψ of E from (1.2.8) is the function

ψ(x) =
{

∂ f
∂t

∇ f
‖∇ f ‖2 , ∇ f (x) 6= 0,

0, ∇ f (x) = 0,
x ∈ [0,1]. (1.2.12)

This looks quite good, simple and even intuitive29, but unfortunately it presents us with more
problems.

If we look carefully at Fig 1.2.11, we may realize that the flow is located quite well, but
does actually not point in the right direction which would be, according to Theorem 1.2.12
orthogonal to the edge. The first idea could be that the solution of the ambiguous linear
system may not be the shortest one, as it actually can happen with Matlab. But this is not the
case since the program shown in Fig. 1.2.13 produces the same result, see Fig. 1.2.15.

To understand what really happens here, we have a look at Fig 1.2.14. Indeed the gradient
computation by means of simple forward differences along the edge either compares identi-
cal or complementary pixels. In this case the complementary one is found in the y–direction

29The flow goes downhill in the stepest direction.
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1.2 Imaging concepts

%% *** Advanced Imaging ***
%% SimpleFlowMin.m
%%
functionfunctionfunction B = SimpleFlowMin( F,G )

[m,n] = sizesizesize( F );
G = F - G; %% Simplify for right hand side
B = zeroszeroszeros( m,n,2 );
forforfor j=1:m-1

forforfor k=1:n-1
gF = [ F(j+1,k) - F(j,k); F(j,k+1) - F(j,k) ];
ififif normnormnorm( gF ,2 ) < epsepseps %% Never check for 0

B(j,k,:) = 0;
elseelseelse

B(j,k,:) = gF / ( gF ’*gF) * G(j,k);
endendend

endendend
endendend

Figure 1.2.13: SimpleFlowMin.m: Matlab code for simple flow computation with explicit
minimization of length of the vector, still avoiding pinv.

while the identical one is located in the x–direction. To overcome this, we can really try to es-
timate a gradient based on all surrounding pixels by means of the first order Taylor identities



1 0
1 1
0 1
−1 1
−1 0
−1 −1
0 −1
1 −1


∇ f j k =



f j+1,k − f j kp
2( f j+1,k+1 − f j k )

f j ,k+1 − f j kp
2( f j−1,k+1 − f j k )

f j−1,k − f j kp
2( f j−1,k−1 − f j k )

f j ,k−1 − f j kp
2( f j+1,k−1 − f j k )


(1.2.13)

and an approximate, for example least squares, solution of this overdetermined problem.
This means to solve

A∇ f j k = b,

where

A =



1 0
1 1
0 1
−1 1
−1 0
−1 −1
0 −1
1 −1



T 

1 0
1 1
0 1
−1 1
−1 0
−1 −1
0 −1
1 −1


=

(
6 0
0 6

)

21



1 Imaging principles

Figure 1.2.14: Discrete gradient computation leads to a coordinate direction in naive
implementation.

Figure 1.2.15: Minimization results without (left) and with (right) gradient estimate.
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and

b =



1 0
1 1
0 1
−1 1
−1 0
−1 −1
0 −1
1 −1



T 

f j+1,k − f j kp
2( f j+1,k+1 − f j k )

f j ,k+1 − f j kp
2( f j−1,k+1 − f j k )

f j−1,k − f j kp
2( f j−1,k−1 − f j k )

f j ,k−1 − f j kp
2( f j+1,k−1 − f j k )


=

(
f j+1,k − f j−1,k +

p
2
(

f j+1,k+1 − f j−1,k+1 + f j+1,k−1 − f j−1,k−1
)

f j ,k+1 − f j ,k−1 +
p

2
(

f j+1,k+1 − f j+1,k−1 + f j−1,k+1 − f j−1,k−1
)) .

yielding

∇ f j k = 1

6

(
f j+1,k − f j−1,k +

p
2
(

f j+1,k+1 − f j−1,k+1 + f j+1,k−1 − f j−1,k−1
)

f j ,k+1 − f j ,k−1 +
p

2
(

f j+1,k+1 − f j+1,k−1 + f j−1,k+1 − f j−1,k−1
)) (1.2.14)

as an estimator for the gradient that does not even involve the value of the pixel f j k .
The adapted improved estimate of the gradient which, for example, has the property of

being invariant to admissible rotations30 is finally capable of recovering the flow direction
properly. This is another reason why there should be a continuous model first and then an
appropriate discretization of this model.

What we have shown this way by example, can and should be recorded as follows.

Observation 1.2.13. Discretization can have significant effects on the result.

Next, consider Fig. 1.2.10 which is a piecewise constant function whose gradient vanishes
almost everywhere and therefore its gradient is not even a function31 but only a DISTRI-
BUTION, see [Yosida, 1965]. Moreover, besides the conceptional problem32, there is serious
numerical33 problem as well. Let us apply a small random perturbation to the two images,
changing every pixel by just 1% of its value:

>> G1 = G.*(1+(1-2*rand(size(G))/100));
>> F1 = F.*(1+(1-2*rand(size(F))/100));
>> X1 = SimpleFlow( F1,G1 );
>> quiver( X1(1:5:end,1:5:end,1),X1(1:5:end,1:5:end,2));

The result as shown in Fig 1.2.17 is not too nice: the flow is distorted along the boundary
and there is "‘phantom flow"’ in the image where it had value one34. Even if the differences
between the images are small, the division by the also small nonzero quantity ‖∇ f ‖2 enlarges
these values. And moreover the effect is not going to disappear if we reduce the amplitude of
the perturbation.

Exercise 1.2.1 Experiment with different types of perturbation and analyze the result. ♦
30A discrete, pixeled image can only be rotated by multiples of 90 degrees.
31More precisely: as a function in the Lp sense it is zero.
32For that only mathematicians care, but they usually know why.
33This is why mathematicians care.
34No surprise again: any relative perturbation of zero still gives zero.
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%% *** Advanced Imaging ***
%% SimpleFlowMin.m
%%
functionfunctionfunction B = SimpleFlowMinGrad( F,G )

[m,n] = sizesizesize( F );
G = F - G; %% Simplify for right hand side
B = zeroszeroszeros( m,n,2 );
forforfor j=2:m-1

forforfor k=2:n-1
f = F(j,k);
grF = [ 1 0; -1 0; 0 1; 0 -1 ;

1 1; 1 -1; -1 1;
-1 -1 ] \ [

[ F(j+1,k) - f; F(j-1,k) - f;
F(j,k+1) - f; F(j-1,k) - f; ];

[ F(j+1,k+1) - f; F(j+1,k-1) - f;
F(j-1,k+1) - f; F(j-1,k-1) - f;

] * sqrtsqrtsqrt (2)
];

ififif normnormnorm( grF ) > 3*epsepseps %% Solve only if gradient != 0
B(j,k,:) = ([ eyeeyeeye (2) , grF;

grF ’, 0
] \ [ zeroszeroszeros (2,1);G(j,k)]) (1:2);

endendend
endendend

endendend

Figure 1.2.16: SimpleFlowMinGrad.m: Estimate the gradient in a more elaborate way and
minimize the length of the vector. Of course, one could simply use the gradient
then.

The problem is due to the pointwise selection of the flow that does not take into account
information of neighboring pixels and thus becomes very sensitive to small changes in the
gradient. The way to avoid this is to require certain "‘smoothness"’ of the gradient, but we
have to define smoothness appropriately and not only in the sense of Analysis, that is, as
differentiability.

Example 1.2.14. The functions fk (x) = sinkπx are all infinitely often differentiable and sat-
isfy fk (Z) = 0, but the higher we choose the value of k, the more often the function is going to
oscillate and therefore becomes less and less smooth in a geometric sense.

To introduce smoothness as another optimization problem, we use the next concept which
is not standard, but will turn out to be useful for the context of this lecture.

Definition 1.2.15. A REGULARIZATION FUNCTIONAL R : F → R is a nonnegative, symmetric
functional, i.e.,

0 ≤ R( f ) = R(− f ), f ∈F . (1.2.15)

Example 1.2.16. A typical choice of a regularity functional in many application is to use a
SEMINORM based on derivatives like

R( f ) =
∫ ∣∣∣ f ( j )(x)

∣∣∣2
d x, j ∈N. (1.2.16)
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1.2 Imaging concepts

Figure 1.2.17: Flow after 1% perturbation, totally disoriented along the boundary and random
in regions where the unperturbed gradient was zero.

The most popular choice of second order derivatives can be related to bending energy and
leads to solutions of minimal oscillation. This plays a particular role in spline theory, cf.
[Boor, 1978].

Example 1.2.17. In the context of Exampler 1.2.14, we could use

R( f ) =
∫ 2π

0

∣∣∣ f ( j )
k (x)

∣∣∣2
d x = k j

∫ 2π

0

∣∣∣ f ( j )
k (x)

∣∣∣2
d x,

and the obvious minimizer is the constant function sin0x = 0.

The simplest way to regularize the optical flow of our example is by considering the derivative
of the flow function. Since ψ :=φ′ is a function in x, its derivative is the JACOBIAN

ψ′ :=
(
∂ψ j

∂x
: j = 1, . . . ,d

)T

=
(
∂ψ j

∂xk
: j ,k = 1, . . . ,d

)
which discretizes in our running example to

Ψ j k =
(
ψ1( j +1,k)−ψ1( j ,k) ψ1( j ,k +1)−ψ1( j ,k)
ψ2( j +1,k)−ψ2( j ,k) ψ2( j ,k +1)−ψ2( j ,k)

)
. (1.2.17)

Using the convenient FROBENIUS NORM

‖A‖2
F =

p∑
j=1

q∑
k=1

a2
j k , A ∈Rp×q , (1.2.18)
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1 Imaging principles

we minimize the regularity functional

R(ψ) =
m∑

j=1

n∑
k=1

‖Ψ j k‖2
F

=
m∑

j=1

n∑
k=1

s∑
`=1

((
ψ`, j+1,k −ψ`, j ,k

)2 + (
ψ`, j ,k+1 −ψ`, j ,k

)2
)

=
m∑

j=1

n∑
k=1

s∑
`=1

∥∥∇ψ`, j ,k
∥∥2

2 (1.2.19)

subject to the side condition Ê ′(ψ) = 0 that corresponds to solving the flow in the best pos-
sible way. This function in the discrete variables ψ`, j ,k has now to be derived with respect to
each of these variables.

To that end, we first note that R(ψ) = ‖∇ψ‖2
2 and that there exists a matrix A∇ ∈ R2mn×2mn

such that (∇ψ)
`, j ,k = (

A∇ψ
)
`, j ,k , `= 1,2,

j = 1, . . . ,m
k = 1, . . . ,n.

The matrix A∇ only contains the values ±1 and just covers the geometry of the discrete gra-
dient. Therefore has −1 on the diagonal in the naive discretization of the gradient. It could
also be replaced by the more complex formula obtained when solving (1.2.13), i.e., (1.2.14),
but then A∇ actually is zero on the diagonal.

In either case, we have that

R(ψ) = ‖∇ψ‖2
2 =

(∇ψ)T (∇ψ)=ψT AT
∇ A∇ψ ⇒ ∂R(ψ)

∂ψ
= 2 AT

∇ A∇ψ. (1.2.20)

From the definition (1.2.9) we also get that

∂Ê(ψ)

∂ψ`, j ,k
= 2

(
∇ f T

j k

(
ψ1, j ,k

ψ2, j ,k

)
− ( f j k − g j k )

) {
( f j+1,k − f j k ), `= 1,
( f j ,k+1 − f j k ), `= 2,

(1.2.21)

These two computations are needed to apply the following fundamental concept from non-
linear optimization.

Theorem 1.2.18. Let f : Rn → R and g : Rn → Rp be a differentiable TARGET FUNCTION and
CONSTRAINT, respectively. Under certain technical constraints35 on g there exists, for any solu-
tion x∗ of the minimization problem

min
x

f (x), subject to g (x) = 0, (1.2.22)

a LAGRANGE MULTIPLIER λ ∈Rp such that

∇ f (x∗)+ (
g ′(x∗)

)T
λ= 0. (1.2.23)

Remark 1.2.19. Whenever Lagrange multipliers are introduced36 and used, some things should
be made clear.

1. (1.2.23) is a (often nonlinear) system of equation whose solution is a candidate for an
extremum. In many applications, solving this equation is all what people care for.

35See, for example [Nocedal and Wright, 1999, Sauer, 2013b, Spellucci, 1993].
36They also appear in Analysis II when considering extrema with side conditions.
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1.2 Imaging concepts

2. Since g ′ : Rn → Rp×n is a matrix valued function whose columns are the gradients of
the components of g , the multiplication with λT turns this into an n–vector valued
function again. Hence, (1.2.23) is a "‘square"’ nonlinear system and can be approached
by Newton’s method which works very fast if f , g are well-behaved and if one has a
good initial guess for the solution.

3. The most important thing is that (1.2.23) is only a necessary condition for the existence
of a minimum, being a generalization of the usual f ′(x) = 0 one knows from univariate
functions. In other words: a solution of (1.2.23) is only a candidate for a minimum.

4. More precisely it is only a candidate for an EXTREMUM. Since f has a (local or global)
minimum at x∗ if and only if − f has a maximum at x∗ and since ∇ f (x∗)+λT g ′(x∗) = 0
if and only if

0 =−(∇ f (x∗)+λT g ′(x∗)
)=∇(− f )(x∗)+ (−λ)T g ′(x∗),

(1.2.23) holds for maxima as well.

5. There is also a version of Theorem 1.2.18 with INEQUALITY CONSTRAINTS h : Rn → Rq

which request h(x) ≥ 0 meaning that all components of h have to be nonnegative.

In order to be a solution of

min
ψ

R(ψ), subject to Ê ′(ψ) = 0, (1.2.24)

for any optimal ψ∗ there must exist a LAGRANGE MULTIPLIER λ ∈R such that37

0 =
(∇R(ψ∗)+λ∇Ê ′(ψ)

Ê ′(ψ)

)
. (1.2.25)

This is nice in the sense that it gives us the general approach for arbitrary regularization and
energy function functionals, as long as they can be differentiated with respect to the function
parameters. And we have seen this and the explicit result in (1.2.20). But in our situation here
it is not a really good idea for two reasons. First, even if the gradient of both functionals is a
rather simple linear function38, the addition of Ê to the function in (1.2.25) makes everything
a nonlinear problem and requires more effort. Second, and this is more serious, we already
know that in some situations it is impossible to find a function ψ such that Ê(ψ) = 0, for
example when the images change in constant regions. In the language of optimization this
means that the FEASIBLE SET of the optimization problem (1.2.24) can be the empty set which
makes the problem meaningless and lets algorithms fail or return strange results39.

Once more we almost had a solution and once more it is still not satisfactory. But we can
relax the problem a bit and try the best possible solution that at least minimizes the error
function, looking for the “best among the best”40. Rewriting our good old (1.2.10) as

0 =∇ f j k

(
∇ f T

j k

(
ψ1, j ,k

ψ2, j ,k

)
+ (g j k − f j k )

)
=: G j k ,

j = 1, . . . ,m,
k = 1, . . . ,n,

37We must not forget to also encode the side condition!
38It can easily become more complicated.
39In many cases this is not the fault of the optimization algorithm but of the user who applies it incor-

rectly.
40Which does not have to be good.
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we easily see that the only nonzero derivatives are

∂G j k

∂ψ1, j ,k
=∇ f j k

(
f j+1,k − f j k

)
,

∂G j k

∂ψ2, j ,k
=∇ f j k

(
f j ,k+1 − f j k

)
,

or
∂G j k

∂ψ j k
=∇ f j k∇ f T

j k (1.2.26)

If we denote again byψ ∈R2mn the vector of theψ j k , we have to solve the system41

AT
∇ A∇ψ+∇ f ∇ f T λ = 0,

∇ f j k∇ f T
j kψ j k = ( f j k − g j k )∇ f j k , j ,k.

The matrix form

A
(
ψ

λ

)
:=

(
AT
∇ A∇ ∇ f ∇ f T

∇ f ∇ f T 0

)(
ψ

λ

)
=

(
0

( f − g )∇ f

)
(1.2.27)

shows us that we now face a system of 3mn equations in 3mn variables, hence a matrix with
about 10N 2 entries if N denotes the number of pixels. For example, a 10 Megapixel image
would result in a matrix with about 1015 entries when done in the naive way. It seems that we
have to look for something non–naive again.

Definition 1.2.20. A matrix A ∈ RN×N is called SPARSE if it has only few nonzero entries, i.e.,
if

#supp(A) ¿ N 2, supp(A) := {( j ,k) : a j k 6= 0}. (1.2.28)

For sparse matrices A ∈ RN×N one uses ITERATIVE METHODS for the linear system that com-
pute a sequence of vectors

RN 3 x (k+1) = Ax (k) +b, k ∈N0,

initialized with any starting vector x (0), see, for example, [Golub and van Loan, 1996, Sauer, 2013a].
Any such iteration step has a computational effort of N +#supp(A). Unfortunately, classical
methods like Gauss–Seidel iteration or Jacobi iteration cannot be applied here directly since
they require matrices which are nonzero on the diagonal, a property that our A does not have,
as can be easily seen in (1.2.27).

However, recalling the idea of iterative schemes, it is still relatively easy to build an adapted
scheme: wanting to solve Ax = b, we choose an arbitary NONSINGULAR MATRIX B and note
that the trivial equivalence

b = Ax = (A −B +B )x = (A −B )x +B x ⇔ x = B−1 (b − (A −B )x) =: F (x)

turns our linear system into a FIX POINT PROBLEM of the form

F (x) = x

and solve it via x (n+1) = F (x (n)). An appropriate B for (1.2.27) is to use, like in the JACOBI

METHOD, an extended diagonal of A, namely

B =
(
diag (AT

∇ A∇)
µI

)
, µ> 0. (1.2.29)

41Try to clarify by yourself where the factor 2 from (1.2.20) went and why we are permitted to drop it.
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The addition of µ has the purpose to ensure that B is invertible. In fact, for any matrix X =
[x1 . . . xn] the diagonal elements(

X T X
)

j j = xT
j x j = ‖x j‖2

2, j = 1, . . . ,n,

are strictly positive iff the matrix has no zero columns. This is the case for A∇ since each point
contributes to some difference computation and thus B from (1.2.29) is nonsingular as soon
as µ 6= 0.

Now the iteration takes, with x (k) =
(
ψ(k)

λ(k)

)
, the form

x (k+1) = B−1
((

0
( f − g )∇ f

)
−

(
AT
∇ A∇−diag (AT

∇ A∇) ∇ f ∇ f T

∇ f ∇ f T −µ I

) (
ψ(k)

λ(k)

))

=
(

0
f −g
µ ∇ f

)
−

((
diag (AT

∇ A∇)−1 AT
∇ A∇− I

)
ψ(k) +diag (AT

∇ A∇)−1∇ f
(∇ f Tλ(k)

)
1
µ∇ f

(∇ f Tψ(k)
)−λ(k)

)
.

This is doable! diag (AT
∇ A∇)−1 AT

∇ A∇− I is a sparse matrix and the products cost us 4mn op-
erations. The SCALAR PRODUCT ∇ f Tψ(k) can be done with mn operations as well as ∇ f Tλ(k).
Thus each iteration is a modest O(mn).

Exercise 1.2.2 Implement the iterative solver and test it on images. ♦
There is yet another, even more popular, way to attack regularization problems which is based
on penalization. In contrast to optimization with side conditions, it has the advantage of not
being troubled by feasibility question, i.e., by the issue whether there exists something at all
that satisfies the side condition.

Returning to our general idea with the error functional from Definition 1.2.10 and the reg-
ularization functional from Definition 1.2.15, we combine them, for an arbitrary value λ> 0,
into an optimization problem

min
f

(
E( f )+λR( f )

)
. (1.2.30)

The first term measures the DATA FIDELITY, i.e., to which the minimizer really is a solution of
our problem, while the second term takes into account how “nice” the function is.

Example 1.2.21. One classical example for a penalized regularization is the SMOOTHING SPLINE,
cf. [Boor, 1978, Craven and Wahba, 1979], which finds, for given points x1, . . . , xn ∈ [a,b] and
values y1, . . . , yn a SPLINE FUNCTION42 f : [a,b] →Rwhich solves

min
f

n∑
j=1

(
f (x j )− y j

)2 +λ
∫ b

a

∣∣ f ′′(x)
∣∣2 d x, λ> 0. (1.2.31)

The REGULARITY PARAMETER λ > 0 then allows to balance between the two usually contra-
dictionary goals of data fidelity and smoothness. If λ→ 0 then the solution of (1.2.31) will
usually43 become an INTERPOLANT, satisfying f (x j ) = y j , j = 1, . . . ,n, while for λ→ ∞ one
obtains the linear function that best fits the data at the points.

42Whatever that is. In fact, the idea works with any linear space of functions.
43The associate spline space has to satisfy a certain relationship with the points x j to enable interpo-

lation.
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In our case, the functional would become44

Pλ(ψ) :=
(

m,n∑
j ,k=1

∇ f T
j kψ j k + g j k − f j k

)2

+λ
n∑

j ,k=1
‖∇ψ j k‖2

2. (1.2.32)

Also here, and this is the main reason why the 2–norms are used, the minimization problem
is turned into a system of linear equations. Indeed, using (1.2.21), we get

1

2

∂Pλ
∂ψ j k

=
(

m,n∑
j ,k=1

∇ f T
j kψ j k + g j k − f j k

)
∇ f j k +λ

(∇̂ψ)
j k ,

and the necessary condition ∂Pλ

∂ψ = 0 for the minimum becomes the linear system

(∇ f ∇ f T +λAT
∇ A∇

)
ψ= ( f − g )∇ f . (1.2.33)

The matrix that appears here has only half the size of the matrix in (1.2.27), has nonzero
diagonal elements and is, with a bit of luck45, positive definite. Under these conditions the
GAUSS–SEIDEL method converges and yields a solution of (1.2.33).

Remark 1.2.22. Implementing and optimizing the Gauss–Seidel method is an art by itself. It
also involves techniques like overrelaxion and, in particular, preconditioning to turn it into
a really efficient method. Moreover, the choice of the parameter λ in (1.2.33) is by no way
obvious.

It is time for summing up. Optical flow as a continuous model can be described as a par-
tial differential equation (1.2.5) that has either no or too many solutions. To overcome this
problem, we use a variational formulation and minimize an error functional E(ψ) instead,
giving us the best possible solution where the problem is unsolvable and chooses one solu-
tion where we have the choice. These solutions, however, can be very sensitive to noise since
many of the problems are still ill-conditioned. To overcome this, we again use optimization
and add a regularization functional R(ψ) that measures how well–behaved the solution is.
We can either solve it with precise side conditions

min
ψ

R(ψ) subject to E(ψ) = 0

or in the relaxed way
min
ψ

E(ψ)+λR(ψ), λ> 0.

Finally we have to discretize the optimization problems and solve them numerically. This will
be the recurrent scheme in this lecture.

44Now λ is not a Lagrange multiplier any more, but the regularity parameter. Since there is no penal-
ized approximation with side conditions, this should not cause any confusion.

45In mathematics one formulates this as condition, in engineering one simply runs the algorithm and
hopes for convergence.
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Function space methods 2
And thus there seems a reason in all things, even in law.

(H. Melville, Moby Dick: or, the White Whale)

2.1 Spaces & Distributions

Function spaces are an important concept in mathematics and thus it is no surprise that
they also play a fundamental role in mathematical imaging. Let us recall some mathematical
background in this section.

Definition 2.1.1. By a FUNCTION SPACE F we will mean a LINEAR SPACE or VECTOR SPACE of
functions over1 Rwhich means that

f , f ′ ∈F ⇒ a f +a′ f ′ ∈F , a, a′ ∈R.

It is called a NORMED SPACE if there is a NORM ‖ ·‖ : F →R, i.e., a mapping such that2

1. ‖ f ‖ ≥ 0 and ‖ f ‖ = 0 iff3 f = 0,

2. ‖c f ‖ = |c|‖ f ‖, c ∈R,

3. ‖ f + f ′‖ ≤ ‖ f ‖+‖ f ′‖,

such that F = { f : ‖ f ‖ <∞}. It is a BANACH SPACE if it is COMPLETE with respect to the norm,
i.e., if any CAUCHY SEQUENCE fn defined by

lim
n→∞ sup

m≥n
‖ fm − fn‖ = 0, (2.1.1)

has a limit in F .

Example 2.1.2 (Banach spaces).

1. IfΩ⊂Rs is compact, then the space C (Ω) of all continuous functionsΩ→R is a Banach
space for the norm

‖ f ‖∞ := ‖ f ‖Ω,∞ := max
x∈Ω

| f (x)|. (2.1.2)

1Sometimes C can also be a reasonable choice, but we will remain realistic here.
2These are the NORM AXIOMS.
3This abbreviation of “if and only if” is the invention of Paul Halmos, see [Halmos, 1988].

31
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2. For 1 ≤ p <∞ and Ω ⊆ Rn the Lp SPACE Lp (Ω) consisting of a all functions such that
the LEBESGUE INTEGRAL

‖ f ‖p := ‖ f ‖Ω,p =
(∫
Ω
| f (x)|p d x

)1/p

<∞ (2.1.3)

is finite, is a Banach space.

3. The continously differentiable functions C 1(Ω) are no Banach space with respect to
‖ ·‖∞, but with respect to

‖ f ‖ := ‖ f ‖∞+‖D f ‖∞ or ‖ f ‖ := max
(‖ f ‖∞,‖D f ‖∞

)
. (2.1.4)

Note that ‖D f ‖∞ = ‖∇ f ‖∞ depends on a vector norm for the gradient and is no norm,
but only a SEMINORM as it vanishes for any constant function.

Things are getting sightly more tricky with infinitely differentiable functions. We define by

C∞
00(Ω) = {

f ∈C∞(Ω) : supp( f ) compact
}

,

where the SUPPORT of a function is defined as the CLOSURE

supp ( f ) = {
x : f (x) 6= 0

}
of the set of points where the function does not vanish. Now set, for a compact K ⊆Ω

DK (Ω) = {
f ∈C∞

00(Ω) : supp ( f ) ⊆ K
}

and define a topology on that space by using open sets of the form4

Un,ε =
{

f : max
j=0,...,n

‖D j f ‖K ,∞ < ε
}

, n ∈N0, ε> 0,

where

D j f '
[
∂ j

∂xα
f : |α| = j

]
, j ∈N0,

stands for the j th (total) DERIVATIVE of f . The limit of DK over increasing compact subsets5

ofΩ then defines a space D(Ω) with a nice metric.

Lemma 2.1.3 (see [Yosida, 1965], I.1.Proposition 7). A sequence φn ∈ D(Ω), n ∈ N, converges
to φ ∈ D(Ω) if there is a compact K ⊂Ω such that supp ( fn) ⊆ K and

lim
n→∞

∥∥∥Dk (φn −φ)
∥∥∥

K ,∞ = 0, k ∈N0.

Definition 2.1.4. The space D(Ω) ⊂C∞
00(Ω) is called the space of TEST FUNCTIONS6. A DISTRI-

BUTION or GENERALIZED FUNCTION T is a CONTINUOUS LINEAR FUNCTIONAL on D(Ω), i.e., a
continuous linear mapping D(Ω) → R. The space of all generalized functions is denoted by
D(Ω)′.

4For the precise details see [Yosida, 1965].
5This is relevant ifΩ is unbounded, in particularΩ=Rs , ifΩ is compact, we do not need the K .
6They are distinguished by the fact that they are very nice functions.
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Example 2.1.5. Any LOCALLY INTEGRABLE7 function f :Ω→R defines a distribution

T f :φ 7→
∫
Ω

f (x)φ(x)d x. (2.1.5)

This is the canonical imbedding of integrable functions or the interpretation of a function as
generalized function.

The main point of generalized functions in image processing is that, seen as a distribution,
any function is infinitely differentiable. To see this, suppose that f ∈ C 1(Ω) let φ be any test
function such that8 K = supp (φ) ⊂Ω◦. Then we get by partial integration that

T∂ f /∂xk (φ) =
∫
Ω

∂ f

∂xk
(x)φ(x)d x =−

∫
Ω

f (x)
∂φ

∂xk
(x)d x.

Definition 2.1.6. The DISTRIBUTIONAL DERIVATIVE
∂ f
∂xk

of the function f is the functional

φ 7→ −
∫
Ω

f (x)
∂φ

∂xk
(x)d x, φ ∈ D(Ω).

If the distributional derivative is REGULAR, i.e., can be written in the form (2.1.5) for some
locally integrable f , then its interpretation as a function makes sense, if not, it should be
taken with care. The following standard example shows this.

Example 2.1.7. The distributional derivative of the function f (x) = |x|, x ∈ R, is the SIGN

FUNCTION

f ′(x) =
{
−1, x < 0

1, x > 0,
x ∈R, f (0) = 0,

where the value at 0 is irrelevant9. To compute the derivative of the sign function, we note
that for K ⊂ (0,∞)

T f ′′(φ) =−
∫

K
f ′(x)φ′(x)d x =

∫ ∞

0

d

d x
1︸︷︷︸

=0

φ(x)d x = 0,

and the same holds for K ⊂ (−∞,0). For K = [a,b], a < 0 < b, we then have that

T f ′′(φ) = −
∫ b

a
f ′(x)φ(x)d x =

∫ 0

a
φ′(x)d x −

∫ b

0
φ′(x)d x

= φ(0)−φ(a)︸︷︷︸
=0

−φ(b)︸︷︷︸
=0

+φ(0) = 2φ(0),

the second derivative of the absolute value or the derivative of the Heaviside function is there-
fore the DIRAC DISTRIBUTION δ, defined by δ f = f (0). This is not a function any more and to
treat it like a function is a popular misbehavior among physicists and engineers.

Exercise 2.1.1 The HEAVISIDE FUNCTION is defined as

H(x) =
{

0, x < 0,

1, x > 0,
x ∈R.

7This means that
∫

K | f (x)|d x <∞ for any compact K ⊂Ω.
8ForΩ=Rn this is always the case.
9The f of (2.1.5) is only unique up to a set of measure zero.
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1. Show that the Heaviside function is locally integrable.

2. Write the sign function in terms of the Heaviside function.

3. Compute the derivative of the Heaviside function.

♦
The Dirac distribution is the limit of the functions

fn(x) =
{

n −n2|x|, x ∈ [− 1
n , 1

n

]
,

0, otherwise,
x ∈R, n ∈N, (2.1.6)

in the sense that10

lim
n→∞T fn (φ) = δφ=φ(0), φ ∈ D(Ω),

which is known as WEAK∗ CONVERGENCE. It is often interpreted as the Dirac “function” being
infinite and perfectly localized at 0, which is a reasonable intuition but mathematically incor-
rect. However, it confirms our preceding intuition on edges: The sign function has a jump at
0 and hence its derivative there is even infinite. Mathematically: it can be approximated by a
sequence of functions such that ‖ fn‖1 = 1 and ‖ fn‖∞ →∞.

Remark 2.1.8. Working with distributions as generalized functions, one has to be a bit care-
ful. Many results extend to distributions, Fourier Analysis can be done almost completely
with tempered distributions, but proofs become more tricky. And there are plenty of proofs
around that work with a “Dirac function” and are plainly wrong.

2.2 Total and bounded variation

To represent images by means of function spaces also means that the associated norm mea-
sures the complexity of the image. The most classical one is the L2–norm, often called ENERGY

NORM in the signal processing context. It measures how “bright” the pixels are in average.
This, however, has nothing to do with the content of an image or the shapes it contains. For
that purpose, another norm is more suitable.

Let us begin with the univariate case here to get the geometric idea of the concept.

Definition 2.2.1 (Variation). Let f : I = [a,b] →R and a = x0 < ·· · < xn = b.

1. The VARIATION of f with respect to x0, . . . , xn is defined as

V ( f ; x0, . . . , xn) :=
n∑

j=1

∣∣ f
(
x j

)− f
(
x j−1

)∣∣ . (2.2.1)

2. The TOTAL VARIATION of f is

V ( f ) := lim
δ→0

sup
x j+1−x j<δ

V ( f ; x0, . . . , xn) (2.2.2)

3. The function f is said to be of BOUNDED VARIATION if V ( f ) <∞.

10Of course this requires that 0 ∈Ω.
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2.2 Total and bounded variation

The concept of variation samples the function at n + 1 points and tries to detect where it
changes most. For that purpose we only need points x j where two successive summands
f (x j+1)− f (x j ) and f (x j )− f (x j−1) are of different sign. If both expressions were positive or,
equivalently, f (x j−1) ≤ f (x j ) ≤ f (x j+1), then the sum contains a term of the form∣∣ f (x j+1)− f (x j )

∣∣+ ∣∣ f (x j )− f (x j−1)
∣∣

= f (x j+1)− f (x j )+ f (x j )− f (x j−1) = f (x j+1)− f (x j−1) = ∣∣ f (x j+1)− f (x j−1)
∣∣ ,

and x j could have been left out as well. An analogous result holds if the function is decreas-
ing, i.e., f (x j−1) ≤ f (x j ) ≤ f (x j+1).

To understand the meaning of this property, we can assume that f ∈C 1(I ) has a continuous
derivative and note that f (x j )− f (x j−1) = f ′(ξ j ) (x j − x j−1) for some ξ j ∈ [

x j−1, x j
]
, which

yields

V ( f ; x0, . . . , xn) =
n∑

j=1
| f ′(ξ j ) (x j −x j−1)︸ ︷︷ ︸

>0

| =
n∑

j=1

∣∣ f ′(ξ j )
∣∣ (x j −x j−1)

→
∫

I
| f ′(x)|d x,

hence
V ( f ) = ‖ f ′‖1, (2.2.3)

at least for C 1 functions. In the general case, we can use the distributional derivative, with the
norm defined as the OPERATOR NORM

‖T f ‖1 := sup
φ∈D(K )

|T f φ|
‖φ‖K ,∞

, K = supp (φ).

Indeed, we have ∫
I
| f ′(x)|φ(x)d x ≤ max

x∈I
|φ(x)|︸ ︷︷ ︸

≤maxx∈K |φ(x)|

∫
I
| f ′(x)|d x = ‖φ‖K ,∞ ‖ f ′‖1

and, with φ→ 1, ∫
I
| f ′(x)|φ(x)d x →‖φ‖K ,∞ ‖ f ′‖1,

so that
‖ f ′‖1 = ‖T f ‖1, f ′ ∈ L1(I ). (2.2.4)

Therefore, we can always define the total variation in the sense of generalized functions.

Remark 2.2.2. The variation V ( f ) = ‖ f ′‖1 is zero if and only if f is constant: if there were two
points x, x ′ such that f (x) 6= f (x ′), then V ( f ; a, x, x ′,b) 6= 0. A proof based on distributions
would be significantly more complicated. The idea would be to decompose f = f1 + f2 into a
regular part f1 ∈ L1 which has to be the constant and a singular part which may consist of a
sum of shifted Dirac distributions. Since

δ′(φ) =−φ′(0)

by Definition 2.1.6, these components have to vanish as well and so f has to be the constant
function.
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2 Function space methods

Definition 2.2.3 (TV norm I). The TV NORM of a function f is defined as

‖ f ‖T V := | f (a)|+V ( f ) = | f (a)|+‖ f ′‖1. (2.2.5)

Proposition 2.2.4. The TV norm is a norm and the space of functions of bounded variation is
a Banach space with respect to the TV norm.

In higher dimensions, the TV norm is similar, but with a slight difference: the first derivative,
∇ f = D f , is vector valued and, in order to get a functional, we have to apply a norm on Rs to
it.

Definition 2.2.5. By | · | : Rs → R we denote the EUCLIDEAN NORM |x| =
p

xT x, by | · |1 the
1–norm

∑ |x j |.
Definition 2.2.6 (Total variation). The TOTAL VARIATION V ( f ) of a function f :Ω→R,Ω⊆Rs ,
is defined as

V ( f ) = ∥∥∇ f
∥∥

1 :=
∫
Ω

∣∣∇ f (x)
∣∣ d x, (2.2.6)

if necessary in the distributional sense. It is also frequently called the TV NORM11 and written
as

‖ f ‖T V :=V ( f ) =
∫
Ω

∣∣∇ f (x)
∣∣ d x. (2.2.7)

Remark 2.2.7. The total variation from Definition 2.2.6 is zero if and only if f is a constant
function. Since there is no simple definition like (2.2.2), the proof is more complicated and
technical, see for example [Yosida, 1965], I.3.Lemma 2.

There is a DUAL version of the Definition (2.2.7) that will be useful in the future and is com-
patible with the distributional meaning. To formulate it, let us recall the DIVERGENCE div f of
a function f :Rs →Rs , defined as

div f :=
s∑

j=1

∂ f j

∂x j
. (2.2.8)

Proposition 2.2.8. For any locally integrable f :Ω→Rwe have that

V ( f ) = sup

{
−T f (div φ) =−

∫
Ω

f (x)
(
div φ(x)

)
d x :φ ∈ D(Ω)s , |φ| ≤ 1

}
. (2.2.9)

Proof: If f is differentiable, then, by the CAUCHY SCHWARTZ INEQUALITY,

−
∫
Ω

f (x)
(
divφ(x)

)
d x =−

s∑
j=1

∫
Ω

f (x)
∂φ j

∂x j
(x)d x

=
s∑

j=1

∫
Ω
φ j (x)

∂ f

∂x j
(x)d x =

∫
Ω
φT (x)∇ f (x)d x ≤

∫
Ω
|φ(x)|︸ ︷︷ ︸

≤1

|∇ f (x)|d x

≤
∫
Ω
|∇ f (x)|d x

with the supremum being assumed by the choice φ→ ∇ f
|∇ f | . The rest is obtained by approxi-

mating f by differentiable functions which are DENSE among distributions, cf. [Yosida, 1965].
�

The use of the euclidean norm is no accident, it is very reasonable from a geometric point of
view. We will get back to that later in the context of image reconstruction.

11Even if, strictly speaking, it is only a seminorm since V ( f ) = 0 for constant functions; in an Lp (Rs )
space it may thus be a norm.
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2.2 Total and bounded variation

Proposition 2.2.9 (Rotation invariance of total variation). If R ∈ Rs×s is a ROTATION matrix
and RΩ=Ω, then

V
(

f (R·))=V ( f ). (2.2.10)

Proof: Since
(∇ f (R·)) (x) = R∇ f (Rx), we get

V
(

f (R·))= ∫
Ω

(
∇T f (Rx)RT R︸︷︷︸

=I

∇ f (Rx)
)1/2

d x = 1

|detR|︸ ︷︷ ︸
=1

∫
RΩ

∣∣∇ f (x)
∣∣ d x =V ( f ),

which is (2.2.10). �

Discretizing the gradient as

∇ f ∼∇h f := 1

h
∆h f = 1

h

 f (·+he1)− f
...

f (·+hes)− f

 , h > 0, (2.2.11)

where ∇h →∇ f whenever f is differentiable12, we have that

(∇h f ) j = 1

h

∫ h

0
(∇ f ) j (·+ te j )d t , h > 0, j = 1, . . . , s,

and so, by the classical norm inequalities, cf. [Golub and van Loan, 1996],

|x|2 ≤ |x|1 ≤
p

s|x|2, x ∈Rs ,

we have that∫
Rs

∣∣∇h f (x)
∣∣ d x ≤

∫
Rs

∣∣∇h f (x)
∣∣
1 d x =

∫
Rs

∣∣∣∣ 1

h

∫ h

0
(∇ f ) j (·+ te j )d t

∣∣∣∣
1

d x

≤ 1

h

∫ h

0

∫
Rs

∣∣∇ f
∣∣
1 (x + te j )d x d t ≤ 1

h

∫ h

0

∫
Rs

p
s
∣∣∇ f

∣∣ (x)d x d t =V ( f ).

If, on the other hand, f is continuous and h sufficiently small, then

1

h

∫ h

0
|(∇h f ) j (x + te j )|d t ≈ |(∇h f ) j (x)|.

This means that the naive discretization works reasonably for the total variation. The main
argument in favor of total variation comes from the following concept.

Definition 2.2.10. For y ∈R the LEVEL SET Λy ( f ) of a function f is defined as

Λy ( f ) := {
x ∈Ω : f (x) > y

}
. (2.2.12)

The associated LEVEL CURVE is
λy ( f ) := ∂Λy ( f ). (2.2.13)

Level sets are binary images, that is, a pixel belongs to the level set or not. They can be simply
generated by Octave:

>> A = imread( "Meersaugrau.png" );
>> imagesc( A > 200 );
>> figure(); imagesc( A > 100 );
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2 Function space methods

Figure 2.2.1: Two level sets for our guinea pig with the values 100 (left) and 200 (right)

Level curves are not curves of all pixels with a certain value, but the boundary of a level set. We
can thus compute the level curves by determining all pixels in the boundary, i.e., all pixels that
have a black and a white pixel in the neighborhood. A simple Octave routine that determines
all pixels whose neighborhood does not consist of a single value is given in Fig. 2.2.2. The
images can be seen in Fig. 2.2.3.

%% *** Advanced Imaging ***
%% LevelBound.m
%%
functionfunctionfunction B = LevelBound( F,y )

B = F > y; % Level set

[m,n] = sizesizesize(B);
%% padding
BB = [ zeroszeroszeros(1,n+2); zeroszeroszeros(m,1),B,zeroszeroszeros(m,1); zeroszeroszeros(1,n+2) ];
C = zeroszeroszeros( sizesizesize( B ) );

forforfor j=0:2
forforfor k=0:2

C = C + BB( j+1:m+j,k+1:n+k );
endendend

endendend

B = ( C > 0 ) .* ( C < 9 );

Figure 2.2.2: LevelBound.m: Matlab code for level curve computation.

The images show that there are two types of level curves: the ones that correspond to con-
tours, others that correspond to texture. The contour ones are “normal” curves while those
corresponding to texture are of a more fractal nature.

Back to mathematics: if f is continuous13, then we indeed have

λy ( f ) = {
x ∈Ω : f (x) = y

}
and the curve can be tracked by means of the gradient: the tangent of the level curve is or-
thogonal to the gradient as already mentioned before. Though it is almost impossible to give

12Does that also have to hold for the distributional derivative? Forget it!
13Which discrete images are not, but let us assume it nevertheless.
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2.2 Total and bounded variation

Figure 2.2.3: Level curves for the level sets from Fig. 2.2.1, drawn in black.

Figure 2.2.4: Level curves for the grayscale Passau image using the quite arbitrary values 50
(left), 100 middle and 200 (right).

a PARAMETRIZATION of that curve, we can measure its length in the following way. Given a
number δ> 0, we cover the set λy ( f ) by balls of diameter δ:

λy ( f ) ⊆ ⋃
x∈X

Bρx (x), ρx < δ, Bρ(x) := {x ′ : |x −x ′| ≤ ρ}.

Here X ⊂Ω is a set of centers which can be finite or infinite. Now we set

H d
δ

(
λy ( f )

)
:= 4d inf

X

∑
x∈X

ρd
x

as the d–dimensional volume of the coverage14 and

H d (
λy ( f )

)
:= sup

δ>0
H d
δ

(
λy ( f )

)
as the limit obtained when the “fineness” of the covering goes to zero.

Definition 2.2.11. For X ⊂ Ω, the number H d (X ) is called the d–dimensional HAUSDORFF

MEASURE of the set X .

It can be shown that the onedimensional or MONODIMENSIONAL Hausdorff measure of a
curve coincides with its ARC LENGTH if a curve is RECTIFYABLE. After that short excursion, we
can understand the following result that ties the total variation to level curves: The variation
coincides with the length of the level curves in the sense of the monodimensional Hausdorff
measure.

14More precisely, the volume of the bounding cubes.
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2 Function space methods

Theorem 2.2.12 (CO–AREA FORMULA, see [Mallat, 1999], Theorem 2.7). If d = 2 and V ( f ) <∞
then

V ( f ) =
∫
Ω
|∇ f (x)|d x =

∫ ∞

−∞
H 1 (

λy ( f )
)

d y. (2.2.14)

Proof: A complete proof based on distributional derivatives is substantially technical and
beyond the scope of this lecture. Here, we repeat an intuitive reasoning from [Mallat, 1999]
for the case when f is continuously differentiable. In this case, we can write λy ( f ), y ∈ R, as
a continuous curve ϕ(y, ·) : [0,`y ] →R2 which we can assume to be paramtrized according to
the arc lenght, i.e., |ϕ′(y, ·)| ≡ 1 for any y . Since(

ϕ′(y, t )
)T ∇ f

(
ϕ(y, t )

)= 0,

the gradient corresponds to the direction

ν(y, t ) =
(

0 1
−1 0

)
ϕ′(y, t ),

normal to the tangent and satisfies

∣∣∇ f
(
ϕ(y, t )

)∣∣=∇ f
(
ϕ(y, t )

)T
ν(y, t ) = d y

dν

or15 ∣∣∇ f
(
ϕ(y, t )

)∣∣dν= d y.

Every point x can be uniquely written as x =ϕ(y, t ) and we can use the local coordinate sys-
tem generated by ϕ′(y, t ) and ν(y, t ), whose functional determinant is

det

(
ϕ′

1(y, t ) ϕ′
2(y, t )

−ϕ′
2(y, t ) ϕ′

1(y, t )

)
= |ϕ′(y, t )|2 = 1

since ϕ is arc length parametrized. Hence, with proper extension of the curve,∫
Ω
|∇ f (x)|d x =

∫
R

∫
R

∣∣∇ f
(
ϕ(y, t )

)∣∣dν︸ ︷︷ ︸
=d y

d t =
∫ ∞

−∞

∫ `y

0

∣∣ϕ′(y, t )
∣∣d t d y

=
∫ ∞

−∞
H 1 (

λy ( f )
)

d y,

since for rectifiable curves the Hausdorff measure and the arc length coincide. �

To implement the computation of the total variation or TV is very simple when using the
gradient discretization (2.2.11) and replacing the integral by a RIEMANN SUM:

V (F ) =∑
j ,k

∣∣∇ f j k
∣∣ . (2.2.15)

Applying the TV to 8×8 blocks of the image, we already get a method to estimate the “frac-
tality” of image regions and to distinguish between conturs and regions with rich texture, see
Fig. 2.2.5.

15To write this mathematically correct needs substantial effort.
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2.3 Denoising and the ROF functional

Figure 2.2.5: 8×8 Block TV of the guinea pig (left) and the Passau (right) image.

%% *** Advanced Imaging ***
%% ImageGradient.m
%%
functionfunctionfunction B = ImageGradient( F )

[m,n] = sizesizesize(F);

%% x component
B(:,:,1) = ([ zeroszeroszeros(m,1), F ] - [ F,zeroszeroszeros(m,1) ]) (1:m,1:n);
%% y component
B(:,:,2) = ([ zeroszeroszeros(1,n); F ] - [ F; zeroszeroszeros(1,n) ]) (1:m,1:n);

Figure 2.2.6: ImageGradient.m: Gradient of an image with simple Matlab tricks.

2.3 Denoising and the ROF functional

In many realistic situation, for example in image acquisition with digital cameras, the recorded
image is not the “real image” but is affected with noise. Instead of f we know f̂ = f +ν or, in
case of sampled images the values16

f̂α = f̂ j k = f (xα)+ηα, α ∈ Γ,

whereα indexes the pixel or voxel in the image and Γ is the SAMPLING SET, usually an equidis-
tributed grid. With our 2D–images it will be used together with j k and with the same mean-
ing.

The simplest way to denoise images is by convolution. It makes the fundamental assump-

16Using notation from roundoff error analysis where the “∧” usually indicates the perturbed quantity.

%% *** Advanced Imaging ***
%% TotalVariation.m
%%
functionfunctionfunction tv = TotalVariation( F )

Ig = ImageGradient( F );
tv = sumsumsum( sumsumsum( sqrtsqrtsqrt( Ig(: ,: ,1).^2 + Ig(: ,: ,2).^2 ) ) );

Figure 2.2.7: TotalVariation.m: Computation of the discrete total variation of an image.
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tion that the noise has mean value zero, i.e,∫
Ω
η(x)d x = 0.

Now one chooses a function φ with 0 ∈ supp (φ) =:Ωφ and

|φ| :=
∫
φ(x)d x 6= 0,

and applies the CONVOLUTION, defined as17

g ∗h :=
∫

g (·−x)h(x), g ,h :Rs →R,

to consider

f̂ ∗ φ

|φ| (x) := 1

|φ|
∫

t∈Ωφ

f (x − t )φ(t )d t + 1

|φ|
∫

t∈Ωφ

η(x − t )φ(t )d t .

Now we are in a slight dilemma: if we makeΩφ very small but still located around the origin,
then the first integral approaches f (x), see [Akhieser, 1988], if, on the other hand, we make
Ωφ large and φ ≈ 1, then it will cancel the noise. Most of the classical mean value filters for
denoising then try to find some compromise and end up with a filter that decimates the noise
but, unfortunately, blurs the image which means that texture and, even worse, edges get lost
to some extent.

To overcome that problem, we return to regularization and combine a data fidelity func-
tional with the TV norm.

Definition 2.3.1. The RUDIN–OSHER–FATEMI FUNCTIONAL, better known as ROF FUNCTIONAL

is defined for functions f , g as

‖ f − g‖2
2 +λ‖g‖T V , λ> 0. (2.3.1)

Remark 2.3.2. In the original paper [Rudin et al., 1992], the λ is a factor of the data fidelity
functional. Here we use the formulation that is more common nowadays.

In other words: given any image f , the functional measures the distance between f and g
and, at the same time, incorporates the regularity of g with respect to the TV norm.

Remark 2.3.3. In APPROXIMATION THEORY this concept is known as K –functionals and in-
terpolation between spaces, cf. [Berens, 1968, Butzer and Berens, 1967]. The application in
imaging, however, had to treat the more important point of how to solve optimization prob-
lems resulting from the ROF functional.

The task in DENOISING is now very simple: “just” solve the minimization problem

min
g

J (g ) := min
g

‖ f − g‖2
2 +λ‖g‖T V . (2.3.2)

Before we have a look at the theory behind this problem, let us approach it naively and con-
sider the discrete version

min
g

J (g ) i.e., min
g j k

1

2

∑
j k

(
f j k − g j k

)2 +λ∑
j k

∣∣∇g j k
∣∣ . (2.3.3)

17For the convolution it is reasonable to have no boundary; this is usually achieved by periodizing or
padding an image of finite size.
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2.3 Denoising and the ROF functional

If we try to put this into a black box optimizer, we are not successful

>> F = imread ( "Meersaugrau.png" );lambda = .1;
>> f = @(G) sum(sum( (F-G).^2 )) + lambda*TotalVariation( G );
>> Gm = fminsearch( f,F );
error: out of memory or dimension too large for Octave’s index type

So what about our idea of taking derivatives and setting them equal to zero? The problem is
the second term which is for images of the form

m−1∑
j=1

n−1∑
k=1

∣∣∇g j k
∣∣=∑

j k

√(
g j+1,k − g j k

)2 + (
g j ,k+1 − g j k

)2.

We embed it into infinite images by setting g j k = 0 if j ≤ 0 or j > m, and k ≤ 0 or k > n,
respectively. The partial derivative with respect to gr s , r, s = 1, . . . ,m,n of the biinfinite sum∑

j ,k∈Z

∣∣∇g j k
∣∣=∑

j k

√(
g j+1,k − g j k

)2 + (
g j ,k+1 − g j k

)2

is
1

2

∂

∂gr s

∑
j ,k∈Z

∣∣∇g j k
∣∣= gr s − gr−1,s

|∇gr−1,s |
+ gr s − gr,s−1

|∇gr,s−1|
− gr+1,s −2gr s + gr,s+1

|∇gr s |
, (2.3.4)

which is nonzero for r, s = 1, . . . ,m,n. In the case r = 1, the first term becomes

g1s

|∇g0s |
= g1s√

(g1s − g0s)2 + (g0,s+1 − g0s)2
= g1s

|g1s |
,

and analogously for s = 1. The function in (2.3.4) is no more linear in g . Moreover, we may
divide by zero if the approximating image g j k is locally constant. To overcome this, the usual
way is to modify |∇g j k | into

∣∣∇εg j k
∣∣ :=

√
ε+ (

g j+1,k − g j k
)2 + (

g j ,k+1 − g j k
)2, ε> 0,

which explicitly avoids division by zero and gives the same results when ε→ 0. Moreover,

∂

∂gr s

∑
j ,k∈Z

∣∣∇εg j k
∣∣= gr s − gr−1,s

|∇εgr−1,s |
+ gr s + gr,s−1

|∇εgr,s−1|
− gr+1,s −2gr s + gr,s+1

|∇εgr s |
. (2.3.5)

Since
∂

∂gr s

∑
j k

(
f j k − g j k

)2 = 2
(
gr s − fr s

)
,

the GRADIENT of the discrete ROF functional takes the form(
(g j k − f j k )+λ

(
g j k − g j−1,k

|∇εg j−1,k |
+ g j k − g j ,k−1

|∇εg j ,k−1|
− g j+1,k −2g j k + g j ,k+1

|∇εg j k |
)

: j ,k

)
. (2.3.6)

Solving this nonlinear equation is not easy but the fact that we can explicitly compute the
gradient of the ROF functional suggests to minimize the function J (g ) by means of GRADIENT

DESCENT. The idea is the observation that −∇J (g ) is the direction of STEEPEST DESCENT of
the function J at the point g and that, if ∇J (g ) 6= 0, there is some t > 0 sucht that

J
(
g + t ∇J (g )

)< J (g ).
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%% *** Advanced Imaging ***
%% ROFEvaluate.m
%%
functionfunctionfunction [t,D] = NaiveGradientStepsize( t,F,G,lambda ,epslon )

D = (-1) * ROFGradient( F,G,lambda ,epslon );
inc = 1.2; dec = .7;

f2 = f0 = ROFEvaluate( F,G,lambda );
f1 = ROFEvaluate( F,G+t*D,lambda );

ififif ( f1 < f0 )
%% Can we do better? Enlarge t
f2 = ROFEvaluate( F,G+inc*t*D,lambda );
whilewhilewhile( f2 < f1 )

t = t*inc;
f1 = f2;
f2 = ROFEvaluate( F,G+inc*t*D,lambda );

endendend
elseelseelse

%% Decrease t until we are better than preceding value
do

t = t*dec;
f2 = ROFEvaluate( F,G+t*D,lambda );

until ( ( f2 < f0 ) || ( t < 100*epsepseps ) )
endendend

Figure 2.3.8: NaiveGradientStepsize.m: Naive stepsize computation for gradient descent.

Determining t is not easy, but there exist rules to do so, see, for example, [Nocedal and Wright, 1999,
Sauer, 2013b, Spellucci, 1993]. We use a very naive method here, shown in Fig. 2.3.8.

We can now experiment with a simple gradient descent method. The arguments are the
reference image f , an initial value for g , values for λ and ε and an upper bound for the num-
ber of iterations. Hence, the call is like

>> F = (double)(imread("Meersaugrau.png") );
>> G = NaiveGradientDescent( F,F,1,10^(-8),30);

We can test our algorithm on the guinea pig example with the values λ = 1,10,1000 and
at most 50 iterations. Here, we use the original image as reference image and just try to
smoothen it by enforcing different levels of TV regularity. In other words, we consider the
grainy texture in the image as noise. The results of the regularized image where we “denoise”
the texture are shown in Fig. 2.3.9. The (discrete) TV norm of the image is 1.4943e+07. The
first two images there show little difference to the original image, the third one has much less
texture but still nicely recovers the contours.

It should however be mentioned that the algorithm we used here is only heuristics and
quite poor ones in addition. It converges, if at all, very slowly and we cannot guarantee that
it reaches a minimum. So the art consists not so much in setting up the ROF functional but
finding the minimizer in decent time and good accuracy.

Example 2.3.4. At the moment, we do not really know whether and how fast our little algo-
rithm converges. This can be seen in Fig 2.3.10 where the procedure is once stopped after 100
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2.3 Denoising and the ROF functional

Figure 2.3.9: TV minimized versions of the guinea pig with λ= 1,10,1000. Total variations are
1.4165e+07 (left), 1.1676e+07 (middle) and 3.8807e+06 (right).

Figure 2.3.10: Highly regularized (λ = 10000) version of the image, total variation is
2.7951e+06 after 100 iterations (left) and 1.6061e+06 after 1000 iterations
(right). We do not know what the minimum is, but the contours are preserved
quite well.
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2 Function space methods

Figure 2.3.11: Regularization of the Passau image with λ= 100 (left) and absolute value of dif-
ference from the original image (right) where black corresponds to large values.

Figure 2.3.12: Original image (left) and perturbed by 10% noise with Octave’s rand function.

iterations and once after 1000 iterations. This still gives no indication what the real optimum
is as gradient descent is known to converge very slowly.

At the end of this section, let us briefly get a first idea how this method works for its original
purpose, namely denoising. We use the image from Fig. 2.3.12, normalize it to [0,1] and then
attach 10% random noise to it before we run TV regularization on it:

>> F = double( imread( "giardiniereGray.png" ) );
>> F = ( F - min(min(F)) ) / ( max(max(F)) - min(min(F)) );
>> F = F + .1*( 1 - 2*rand(size(F)));

After that, we apply our naive gradient descent

>> G = NaiveGradientDescent( F,F,1,10^(-8),480);

The result can be seen in Fig. 2.3.13. Obviously denoising works quite well and the preserva-
tion of edges is remarkable.

In order to better understand how such optimization problems can be solved in an efficient
and reliable way, we once more need additional background. Especially we will learn how the
minimization problem was treated in the original paper [Rudin et al., 1992].
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2.4 The basic idea of variational calculus

Figure 2.3.13: TV regularization with weightλ= 1 (left) andλ= 10 (right). The oversmoothing
is visible but the letters and symbols are still perfectly recognizable.

2.4 The basic idea of variational calculus

One way to solve the continuous minimization problem is by VARIATIONAL CALCULUS of which
we will recall the basic concepts here. For more information see [Gelfand and Fomin, 1963].
Variational calculus, a classical topic in Analysis, considers the minimization of functionals
of the form

J [ f ] =
∫ b

a
F

(
x, f , f ′)d x (2.4.1)

with respect to18 f : R→ R, where F
(
x, y, y ′) : R3 → R is a function in the three formal vari-

ables x, y, y ′.
The fundamental underlying concept is the DIFFERENTIAL of a functional, defined as fol-

lows: we fix f and consider, for functions h, the difference

∆J [h] =∆J [h, f ] = J
[

f +h
]− J [ f ].

We call J DIFFERENTIABLE at f if there exists a linear functional δJ [h] such that

∆J [h] = δJ [h]+o (‖h‖) = δJ [h]+εh ‖h‖, lim
‖h‖→0

εh = 0.

If such a δJ [h] exists, it has to be unique. Assuming there were two differentials δ1 J [h] and
δ2 J [h], we would obtain

δ1 J [h]−δ2 J [h] =∆J [h]−ε1,h ‖h‖−∆J [h]+ε2,h ‖h‖ = (
ε2,h −ε1,h

) ‖h‖,

hence

lim
‖h‖→0

δ1 J [h]−δ2 J [h]

‖h‖ = lim
‖h‖→0

(
ε2,h −ε1,h

)‖h‖
‖h‖ = 0,

which means that the difference is the zero functional.

Remark 2.4.1. The functional J [ f ] is usually not differentiable but “only” convex, i.e.

J
[
α f + (1−α)g

]≤α J
[

f
]+ (1−α) J

[
g
]

, α ∈ [0,1].

In this case one will not consider the differential but the subdifferential, cf. [Rockafellar, 1970];
we will get to this later.

18We restrict ourselves to univariate functions in this exposition, but the main part of the concept is
independent of the number of variables as we will see soon.
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2 Function space methods

The following is the well–known “zero of derivative” condition.

Proposition 2.4.2. If the functional J [ f ] is minimized by f ∗, then δJ
[
h, f ∗]= 0 for all h.

Proof: If f ∗ is a local minimum, we get for sufficiently small ‖h‖ that

0 ≤ J
[

f ∗+h
]− J

[
f ∗]= δJ [h]+εh ‖h‖,

implying that δJ [h] ≥ 0. Now,
0 ≤ δJ [h] =−δJ [−h] ≤ 0

is only possible with δJ [h] = 0. �

Next, we use a Taylor expansion of F to obtain

∆J [h] = J
[

f +h
]− J [ f ] =

∫ b

a
F

(
x, f +h, f ′+h′)−F

(
x, f , f ′) d x

=
∫ b

a
h
∂F

∂y

(
x, f , f ′)+h′ ∂F

∂y ′
(
x, f , f ′) d x +·· · ,

which gives

δJ [h] =
∫ b

a
h
∂F

∂y

(
x, f , f ′)+h′ ∂F

∂y ′
(
x, f , f ′) d x. (2.4.2)

Theorem 2.4.3. If f minimizes the functional J from (2.4.1), then

∂F

∂y

(
x, f , f ′)− ∂

∂x

∂F

∂y ′
(
x, f , f ′)= 0. (2.4.3)

Definition 2.4.4. The differential equation (2.4.3) is called EULER–LAGRANGE EQUATION of
the variational problem.

The proof of Theorem 2.4.3 relies on the following Lemma which we are not going to prove
here.

Lemma 2.4.5. If f0, . . . , fn ∈C n ([a,b]) satisfy∫ b

a

n∑
j=0

f j (x)h( j )(x)d x = 0 (2.4.4)

for all h ∈C n[a,b] such that h( j )(a) = h( j )(b) = 0, j = 0, . . . ,n, then

n∑
j=0

(−1) j f ( j )
j (x) = 0, x ∈ [a,b]. (2.4.5)

Exercise 2.4.1 Prove Lemma 2.4.5. ♦
Proof of Theorem 2.4.3: Apply Lemma 2.4.5 to the identity

0 = δJ [h] =
∫ b

a
h
∂F

∂y

(
x, f , f ′)+h′ ∂F

∂y ′
(
x, f , f ′) d x.

�
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2.4 The basic idea of variational calculus

There is, of course, a multivariate version of the Euler–Lagrange equation, working with func-
tionals of the form

J [ f ] :=
∫
Ω

F (x, f ,∇ f )d x =
∫
Ω

F (x, f , f1, . . . , fs)d x, f j := ∂ f

∂x j
, (2.4.6)

for some Ω ⊂ Rs , see [Gelfand and Fomin, 1963, p. 152ff]. Though the proof is “essentially”
the same, it is technically more involved, for example, the partial integration needed in the
proof of Lemma 2.4.5 has to be replaced by GREEN’S THEOREM about integration along the
boundary. Still, ∂J [h] = 0 implies the differential equation

0 = ∂F

∂ f
−

s∑
j=1

∂

∂x j

∂F

∂ f j
= ∂F

∂ f
−divx ∇ f ′F. (2.4.7)

Let us apply (2.4.7) to the functional

J [g ] = ‖ f − g‖2
2 +λ‖g‖T V =

∫
Ω

(
f (x)− g (x)

)2 +λ ∣∣∇g (x)
∣∣ d x,

i.e.

F (x, g , g1, g2) = (
f (x)− g (x)

)2 +λ
√

g 2
1 (x)+ g 2

2 (x).

Thus,
∂F

∂ f
=−2

(
f (x)− g (x)

)
,

and
∂F

∂ f j
=λ g j (x)√

g 2
1 (x)+ g 2

2 (x)
,

leading to the nonlinear SECOND ORDER19 partial differential equation

0 = 2
(

f (x)− g (x)
)+λ

 ∂

∂x1

g1(x)√
g 2

1 (x)+ g 2
2 (x)

+ ∂

∂x2

g2(x)√
g 2

1 (x)+ g 2
2 (x)

 , (2.4.8)

with the BOUNDARY CONDITIONS

∂g

∂n
(x) = 0, x ∈ ∂Ω, (2.4.9)

where n denotes the outward pointing normal of the boundary curve. A shorthand for (2.4.8)
is20

0 = ( f − g )+λ div
∇g

|∇g | = ( f − g )+λ∇· ∇g

|∇g | . (2.4.10)

which also generalizes to higher dimensions.

Remark 2.4.6. There is a physical background to many of these equations, essentially from
classical mechanics. This is the reasons why “strange” operators like divergence were intro-
duced: they are very useful for physicists.

19Recall that g j = ∂g
∂x j

.
20The factor 2 in the data fidelity term can be compensated by replacing λ by 2λ and then cancelling

the factor 2
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2 Function space methods

Unfortunately, such partial differential equations are not easy to solve, fortunately, there ex-
ists a lot of software for tackling such problems.

Remark 2.4.7. For the quite similar functional

J [ f ] =
∫
Ω

√
1+|∇ f (x)|2 d x

measuring the SURFACE ENERGY21, the solution of the associated Euler–Lagrange equations

div
∇ f√

1+|∇ f |2
= 0

is the respective MINIMAL SURFACE, depending only on the boundary condition, like a soap
bubble.

The differential equation (2.4.10) fits into a larger and well–studied class of partial differential
equations, related to second order flow problems.

Definition 2.4.8. For functions u : R×Rs → R, (t , x) 7→ u(t , x), a differential equation of the
form

∂u

∂t
−∇x · (h∇x u)+au = f , (2.4.11)

with functions a, f ,h :Rs →R is called PARABOLIC.

Example 2.4.9. The simplest example of a parabolic equation is the HEAT EQUATION

∂u

∂t
−∇x ·∇x u = f ; (2.4.12)

taking into account that

∇·∇= div∇=
s∑

j=1

∂2

∂x2
j

=∆,

this process is based on the LAPLACE OPERATOR. We will get back to that later.

One then considers the time dependent functions u(t , ·), in our case a sequence of images,
by solving an ORDINARY DIFFERENTIAL EQUATION and to watch how the images develop or
evolve over time. The key observation is as follows.

Observation 2.4.10. The image u(t , ·) is a solution of the Euler–Lagrange equation (2.4.10) if
and only if it is a STATIONARY POINT of the process

∂u

∂t
= ( f −u)+λ∇· ∇u

|∇u| , (2.4.13)

i.e., if ut := ∂u
∂t = 0.

Based on this observation, the simplest way to solve the Euler–Lagrange equation is to per-
form an EULER SCHEME, see for example [Isaacson and Keller, 1966, Stoer and Bulirsch, 1978],
on the ordinary differential equation (2.4.13) and set

u(t +h, ·) = u(t , ·)+h

((
f −u(t , ·))+λ∇· ∇u(t , ·)

|∇u(t , ·)|
)

(2.4.14)

21It could also be considered a higher dimensional arc length of the surface graph.

50



2.4 The basic idea of variational calculus

with a proper STEPSIZE h and an appropriate discretization of the derivatives. This process
is iterated until it becomes stationary, i.e. does not change much any more. Of course, this
can be improved by chosing a better ODE solver like Runge–Kutta methods and details like
stopping criteria and numerical issues matter as well.

Exercise 2.4.2 Implement the iteration (2.4.14) in Matlab or Octave. ♦
This is how the denoising was performed in the original paper [Rudin et al., 1992], namely by
computing the time dependent process u(t , ·) by means of discretizing (2.4.13) and comput-
ing the image at the next time step until the process became stationary. However, since they
were working on an explicit noise model, there was also a re–estimation of λ=λ(t ) according
to the computed image u(t , ·).
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Optimization 3
It was crazy. I liked it.

(R. Chandler, The Little Sister)

We will stick with the ROF functional from (2.3.1), but now will use methods from opti-
mization to find the optimal balance between data fidelity and low variation.

3.1 Convex optimization and subgradients

Convex functions play a fundamental role in optimization and it is no surprise that Optimiza-
tion and Convex Analysis have a lot in common, cf. [Rockafellar, 1970, Stoer and Witzgall, 1970].
In what follows, V will stand for a VECTOR SPACE and H for a HILBERT SPACE, i.e., a vector
space with a NORM that is induced by a SCALAR PRODUCT 〈·, ·〉.

Definition 3.1.1 (Convexity). A function f : V → R, V some VECTOR SPACE, is called CONVEX

if

f
(
(1−α)x +αx ′)≤ (1−α) f (x)+α f (x ′), α ∈ [0,1], (3.1.1)

holds for any x, x ′ ∈V . A subset X of V is called CONVEX1 if

x, x ′ ∈ X ⇒ (1−α)x +αx ′ ∈ X , α ∈ [0,1]. (3.1.2)

The BOUNDARY ∂X of a convex set X consists of all points y ∈ X that cannot be written as a
convex combination y = (1−α)x +αx ′, α ∈ [0,1], x, x ′ ∈ X \ {y}.

Convex functions form a POSITIVE CONE, i.e., if f , g are convex, then so is any function of the
form α f +βg , α,β≥ 0. We already know two important types of convex functions on vector
and Hilbert spaces.

Proposition 3.1.2 (Norms are convex).

1. The function ‖ ·‖ is convex on any vector space.

2. The function ‖ ·‖2 is convex on any Hilbert space.

Proof: For 1) we simply use the norm axioms triangle inequality and positive homogeneity:

‖(1−α)x +αx ′‖ ≤ ‖(1−α)x‖+‖αx ′‖ = (1−α)‖x‖+α‖x ′‖.

1The same word for two different concepts which are, however, closely related.

53



3 Optimization

Statement 2) follows from a more general fact: if f is nondecreasing and convex and g is
convex, then, since f is nondecreasing and convex, we have that(

f ◦ g
)(

(1−α)x +αx ′) = f (g
(
(1−α)x +αx ′)︸ ︷︷ ︸

≤(1−α)g (x)+αg (x ′)

≤ f
(
(1−α)g (x)+αg (x ′)

)≤ (1−α) f
(
g (x)

)+α f
(
g (x)

)
.

Since ‖ · ‖ is convex and nonnegative and (·)2 is convex and nonincreasing on R+, the claim
follows. �

Exercise 3.1.1 Show that for general convex functions f , g the function f ◦ g need not be
convex. Hint: f = g = e−x does the job. ♦
Corollary 3.1.3. The ROF functional (2.3.1) is convex for any λ≥ 0.

A useful description of convex functions is the following one.

Theorem 3.1.4. A continuously differentiable function f : H →R is convex if and only if〈∇ f (x)−∇ f (x ′), x −x ′〉≥ 0, x, x ′ ∈H . (3.1.3)

Remark 3.1.5. Note that the gradient of f : H →R is a function ∇ f : H →H since the first
derivative of a function is a linear function on the domain, hence an element from the DUAL

SPACE. For a Hilbert space, this space of all continuous2 linear functionals, is the same Hilbert
space again; this observation is the RIESZ REPRESENTATION THEOREM for REFLEXIVE SPACES.

Proof of Theorem 3.1.4: We just show that convexity implies (3.1.3), for the converse see
[Rockafellar, 1970]. Since, for 0 <β1 ≤β2 and x, y ∈H convexity implies

x +β1 y = β2 −β1

β2
x + β1

β2
(x +β2 y) ⇒ f (x +β1 y) ≤ β2 −β1

β2
f (x)+ β1

β2
f (x +β2 y)

and thus the MONOTONICITY PROPERTY

f (x +β1 y)− f (x)

β1
≤ f (x +β2 y)− f (x)

β2
, 0 <β1 ≤β2, (3.1.4)

and

D y f (x) = 〈∇ f (x), y
〉= inf

β≥0

f
(
x +β y

)− f (x)

β
(3.1.5)

as well as3

D y f (x) = 〈∇ f (x), y
〉= sup

β≥0

f (x)− f
(
x −β y

)
β

(3.1.6)

Thus, by applying (3.1.6) and (3.1.5), we get〈∇ f (x)−∇ f (x ′), x −x ′〉= 〈∇ f (x), x −x ′〉−〈∇ f (x ′), x −x ′〉
= sup

β≥0

f (x)− f
(
x −β(x −x ′)

)
β

− inf
β≥0

f
(
x ′+β(x −x ′)

)− f (x ′)
β

≥ f (x)− f (x ′)
1

− f (x)− f (x ′)
1

= 0,

2Or bounded, which is the same.
3Replace y by −y in (3.1.5).
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3.1 Convex optimization and subgradients

which is (3.1.3). �

Interesting local extrema of convex functions have to be minima. The proof is simple and
gets us acquainted to the concept.

Lemma 3.1.6. Let f : V →R be a convex function and X ⊆V a convex subset4 of V .

1. If x∗ ∈ X a strict local maximum of f , then x∗ ∈ ∂X .

2. Any local minimum of f on X is also a global minimum on X

Proof: 1): Suppose that x∗ 6∈ ∂X , then there are x, x ′ ∈ X and α ∈ (0,1) such that x∗ = (1−
α)x +αx ′. By moving x, x ′ closer to x∗ along the line through that points, we can ensure
that f (x) < f (x∗) and f (x ′) < f (x∗) since x∗ is a strict local maximum. It then follows from
convexity that

f (x∗) = f
(
(1−α)x +αx ′)≤ (1−α) f (x)︸︷︷︸

< f (x∗)

+α f (x ′)︸ ︷︷ ︸
< f (x∗)

< (1−α) f (x∗)+α f (x∗) = f (x∗)

which is a contradiction.
For 2) assume that x ∈ X is a local minimum and x ′ ∈ X the global minimum with f (x ′) <

f (x). Since X is convex, all the points

xt := (1− t )x + t x ′, t ∈ [0,1], x0 = x, x1 = x ′,

are contained in X and we have that

f (xt ) = f
(
(1− t )x + t x ′)≤ (1− t ) f (x)+ t f (x ′)︸ ︷︷ ︸

< f (x)

< ((1− t )+ t ) f (x) = f (x)

holds for any t ∈ [0,1] and contradicts the assumption that x is a local minimum if we let
t → 0. �

For convex functions on Hilbert spaces there exists a slightly more involved but very powerful
concept, see [Rockafellar, 1970].

Definition 3.1.7 (Subgradient). Let f : H → R. An element v ∈ H is called a SUBGRADIENT

of a convex function f : H →R at x ∈H if

f (x ′) ≥ f (x)+〈
v, x ′−x

〉
, x ′ ∈H . (3.1.7)

The set ∂ f (x) of all subgradients at x is called the SUBDIFFERENTIAL and f is said to be SUBD-
IFFERENTIABLE at x if ∂ f (x) 6= ;.

Remark 3.1.8. If f is differentiable at x then5 ∂ f (x) = {∇ f (x)}, the subdifferential is a true
generalization of the derivative.

4Since vector spaces are trivially convex, X =V is well included, even if statement 1) becomes mean-
ingless then since ∂V =;.

5The derivative of a function defined on a Hilbert space is always an element of the Hilbert space.
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Remark 3.1.9. The subdifferential is additive for convex functions which have a subdifferen-
tial everywhere6 in the sense that A +B = {a +b : a ∈ A,b ∈ B}, whenever A,B are subsets of
some additive set. One inclusion is easy: if v ∈ ∂ f (x) and w ∈ ∂g (x) then

( f + g )(x ′) = f (x ′)+ g (x ′) ≥ f (x)+〈
v, x ′−x

〉+ g (x)+〈
w, x ′−x

〉
= ( f + g )(x)+〈

v +w, x ′−x
〉

,

hence ∂( f + g ) ⊇ ∂ f +∂g . The converse inclusion is trickier and requires the aforementioned
assumptions. Moreover, the subdifferential is POSITIVE HOMOGENEOUS:

∂(λ f )(x) =λ∂ f (x), λ> 0. (3.1.8)

Indeed, we only need to multiply (3.1.7) by λ> 0 to obtain that v ∈ ∂ f (x) is equivalent to

λ f (x ′) ≥λ f (x)+〈
λv, x −x ′〉,

i.e., λv ∈ ∂(λ f )(x).

Example 3.1.10. Let us consider the subdifferential of the convex function ‖ · ‖ : H → R. In
the case x = 0 a vector v belongs to the subgradient if and only if〈

v, x ′〉= 〈
v, x ′−0

〉≤ ‖x ′‖−‖0‖ = ‖x ′‖, x ′ ∈H ,

which happens if and only if ‖v‖ ≤ 1. This is easy to see: if ‖v‖ ≤ 1 then the Cauchy–Schwarz
inequality yields 〈

v, x ′〉≤ ∣∣〈v, x ′〉∣∣≤ ‖v‖‖x ′‖ ≤ ‖x ′‖, x ′ ∈H ,

while for ‖v‖ > 1 the choice x ′ = v gives〈
v, x ′〉= 〈v, v〉 = ‖v‖2 > ‖v‖ = ‖x ′‖

and establishes the converse.
The case x 6= 0 follows from a more general principle as the norm is differentiable there

with derivative7 ‖x‖−1x.

The subdifferential allows us to characterize minima of even nonsmooth convex functions
like the ROF functional.

Theorem 3.1.11. x ∈ H is a minimum of the convex function f : H → R if and only if 0 ∈
∂ f (x).

Proof: If 0 ∈ ∂ f (x), then (3.1.7) with v = 0 immediately yields f (x ′) ≥ f (x), x ′ ∈ H . Con-
versely, if x is a local, hence by Lemma 3.1.6 a global minimum, then

f (x ′) ≥ f (x) = f (x)+〈
0, x −x ′〉, x ′ ∈H ,

tells us that 0 ∈ ∂ f (x). �

It is time to return to the ROF functional which now we write in the form

J (u) = 1

2

∥∥ f −u
∥∥2

2 +λ‖u‖T V , (3.1.9)

6More precisely: the interior of the set {x : ∂ f (x) 6= ;} must have nonempty intersection with the
respective set of the other one, see [Chambolle et al., 2009, Proposition 3.7].

7Keep in mind: The derivative is a linear form!
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where the factor 1
2 just has the purpose of making computations a bit simpler. By the Re-

marks 3.1.9 and 3.1.8 we then get that

∂J (u) = ∂
(

1

2
‖u − f ‖2

2 +λ‖u‖T V

)
= ∂1

2
‖u − f ‖2

2 +λ∂‖|∇u|‖1 = (u − f )+λ∂‖u‖T V ,

and the8 minimum is reached if

0 ∈ ∂J (u) ⇔ f −u

λ
∈ ∂‖u‖T V . (3.1.10)

3.2 Duality

Definition 3.2.1 (Conjugate). The LEGENDRE–FENCHEL CONJUGATE of f : H → R is defined
as

f ∗(x) := sup
v∈H

(〈v, x〉− f (v)
)

. (3.2.1)

If we fix v then the function x 7→ fv (x) := 〈v, x〉− f (v) is a linear function, hence CONVEX and
CONCAVE. Moreover, the pointwise supremum of convex functions is convex again:

fv
(
(1−α)x +αx ′)≤ (1−α) fv (x)+α fv (x ′) ≤ (1−α)sup

v
fv (x)+αsup

v
fv (x ′) = (1−α) f ∗(x)+α f ∗(x ′)

holds for all v , hence also for the supremum over v and thus we have the following observa-
tion.

Observation 3.2.2. The function f ∗ is convex9.

Consequently, also the BIDUAL function

f ∗∗ = (
f ∗)∗ = sup

v∈H

(〈v, x〉− f ∗(v)
)

is also convex so that biduality can only be an identity for convex functions. And indeed it is.

Theorem 3.2.3. If f : H →R is a PROPER10, LOWER SEMICONTINUOUS11 convex function, then
f ∗∗ = f .

Proof: One half is easy: since, by definition f ∗(x) ≥ 〈v, x〉− f (v) for any v ∈H , we have that

f (v) ≥ 〈v, x〉− f ∗(x) ⇒ f (v) ≥ sup
x∈H

(〈v, x〉− f ∗(x)
)= f ∗∗(v).

To show that f ∗∗(x) ≥ f (x) one needs a slightly more tricky argument based on the hyper-
plane separation theorem, cf. [Sauer, 2017a], and the notion of the epigraph; for details see
[Chambolle et al., 2009]. �

8Because of convexity.
9To be precisely, one has to be a little bit more careful. The supremum can be ∞ and the only convex

function with f (x) =∞ for some x is the trivially convex f ≡∞.
10 f 6≡ ±∞, to exclude trivialities.
11That means

f (x) ≤ liminf
x ′→x

f (x ′), x ∈H .

57



3 Optimization

Since

〈v, x〉 = 〈v, x〉− f (x)+ f (x) ≤ sup
x∈H

(〈v, x〉− f (x)
)+ f (x) = f ∗(v)+ f (x), v, x ∈H ,

and therefore, for v ∈ ∂ f (x),

f ∗(v) ≥ 〈v, x〉− f (x) ≥ 〈
v, x ′〉− f (x ′), x, x ′ ∈H ,

so that
f ∗(v) = sup

x ′∈H

(〈
v, x ′〉− f (x ′)

)≤ 〈v, x〉− f (x) ≤ f ∗(v).

Together with Theorem 3.2.3, this leads to the following dual description of the subdifferen-
tial.

Proposition 3.2.4 (LEGENDRE–FENCHEL IDENTITY). If f is convex then

v ∈ ∂ f (x) ⇔ 〈v, x〉 = f (x)+ f ∗(v) ⇔ x ∈ ∂ f ∗(v). (3.2.2)

Next, we compute the dual formulation of the ROF minimization. To that end, we recall that
according to (3.1.10) u is solution if f −u

λ ∈ ∂‖u‖T V which is by Proposition 3.2.4 equivalent to

u ∈ ∂
∥∥∥ f −u

λ

∥∥∥∗
T V

. In other words, the problem

min
u

‖u − f ‖2
2 +λ‖u‖T V

becomes, setting v := f −u
λ , i.e., u = f −λv , equivalent to

f −λv = u ∈ ∂‖v‖∗T V ⇔ 0 ∈λv − f +∂‖v‖∗T V ⇔ 0 ∈ v − f

λ
+∂ 1

λ
‖v‖∗T V ,

see (3.1.8), so that minimizing the ROF functional is equvialent to its DUAL PROBLEM

min
v

1

2

∥∥∥∥v − f

λ

∥∥∥∥2

2
+ 1

λ
‖v‖∗T V . (3.2.3)

To explore this further, we need the convex dual of the convex functional ‖·‖T V . To this extent,
we recall the dual formulation of the TV norm from (2.2.9) and rewrite it as

‖u‖T V = sup
|φ|≤1

〈−divφ,u
〉=− inf

|φ|≤1

〈
divφ,u

〉
, (3.2.4)

where we use the inner product
〈

f , g
〉= ∫

Ω f g .

Remark 3.2.5. From now on, the presentation is not mathematically precise. If it were, we
would have to care for proper function spaces or carefully formulate things in a distributional
sense which is how we obtained the (dual) definition of the TV norm. This is doable, but very
technical.

We can rewrite the CONSTRAINED formula (3.2.4) into an unconstrained one by using the sim-
ple trick of using

‖u‖T V = sup
v

(〈v,u〉−h(v)) , h(v) = 1

χK (v)
, K = {−divφ : |φ| ≤ 1

}
, (3.2.5)
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where the reciprocal of the characteristic function takes the values 1 and ∞, but is neverthe-
less convex since K is closed and convex. Comparing (3.2.5) with (3.2.1), we thus have that
‖u‖T V = h∗(u) and thus

‖u‖∗T V = h∗∗(u) = h(u).

Therefore, (3.2.3) becomes

min
v

1

2

∥∥∥∥v − f

λ

∥∥∥∥2

2
+ 1

λ
h(v) ⇔ min

v∈K

1

2

∥∥∥∥v − f

λ

∥∥∥∥2

2

so that (3.2.3) is equivalent to12

min
|φ|≤1

1

2

∥∥∥∥divφ− f

λ

∥∥∥∥2

2
, (3.2.6)

from which we recover the desired u as u = f −λv = f +λdivφ. Note that (3.2.6) can be easily
discretized by associating vectors φ j k to any pixel and we get

min
|φ j k |≤1

1

2

∑
j k

((
φ1

j+1,k −φ1
j k

)
+

(
φ2

j ,k+1 −φ2
j k

)
− f j k

λ

)2

and the side condition could even be expressed by Lagrange multipliers, leading to a lin-
ear system, however with a distinction whether any restriction is ACTIVE or not, i.e., whether
|φ j k | = 1 or |φ j k | < 1. There are methods for this, see for example [Nocedal and Wright, 1999],
but since we went so far in convex optimization, we want to learn more about methods from
there.

3.3 Proximal operators and splitting

If we consider the minimization problem

min
u

1

2
‖u − f ‖2

2 +λF (u), λ> 0, (3.3.1)

where F is a convex function(al), then this problem always has a unique solution as the func-
tion to be minimized is STRICTLY CONVEX. The solution u is characterized by

0 ∈ u − f +λ∂F (u) ⇔ f ∈ (I +λ∂F ) (u) ⇔ u = (I +λ∂F )−1 ( f ),

with equality since the solution is unique.

Definition 3.3.1. The mapping f 7→ proxF ( f ) := (I +λ∂F )−1 ( f ) is called the PROXIMAL MAP

for the function(al) F .

Example 3.3.2. A simple example is when F = 1
χK

is a reciprocal characteristic function of a
compact set K , i.e.,

F (u) =
{

1, u ∈ K ,

+∞, u 6∈ K .

Since u = proxF ( f ) minimizes (3.3.1), i.e.,

proxF ( f ) = argmin
u

1

2
‖u − f ‖2

2 +λ
{

1, u ∈ K ,

+∞, u 6∈ K ,

12The “−” in front of the divergence can be discarded since the φ are symmetric around zero.
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3 Optimization

it follows that u is the ORTHOGONAL PROJECTION of f on K , i.e.

proxF ( f ) = PK ( f ) := argmin
u∈K

‖u − f ‖2. (3.3.2)

The proximal map has another interesting property. To that end, we recall the dual of (3.3.1),
namely,

min
v

1

2

∥∥∥∥v − 1

λ
f

∥∥∥∥2

2
+ 1

λ
F∗(v) (3.3.3)

yielding
1

λ
f ∈

(
I + 1

λ
∂F∗

)
(v) ⇔ v =

(
I + 1

λ
∂F∗

)−1 (
1

λ
f

)
.

Substituting this into the duality relation u = f −λv used to derive (3.2.3), we thus get for the
primal and dual minimizer

(I +λ∂F )−1 ( f ) = u = f −λv = f −λ
(

I + 1

λ
∂F∗

)−1 (
1

λ
f

)
or

f = (I +λ∂F )−1 ( f )+λ
(

I + 1

λ
∂F∗

)−1 (
1

λ
f

)
, λ> 0. (3.3.4)

This identity, called MOREAU’S IDENTITY, decomposes f into a primal and dual component
and can be seen as some analogy of an orthogonal decomposition. Setting λ= 1 in (3.3.4), we
get the slightly simpler form

f = (I +∂F )−1 ( f )+ (
I +∂F∗)−1 (

f
)

. (3.3.5)

Example 3.3.3 (Example 3.3.2, continued). If proxF ( f ) = PK ( f ), then it follows from replacing
f by λ f in (3.3.4) that(

I + 1

λ
∂F∗

)
( f ) = f − 1

λ
(I +λ∂F )−1︸ ︷︷ ︸
=proxF=PK

(
λ f

)= f − 1

λ
PK

(
λ f

)=: u∗

Hence, the dual minimizer can be found easily by “shrinking” f to the compact set K . If Pk is
not positively homogeneous, this can really depend on λ.

Now we want to use our brand new knowledge of convex optimization to derive algorithms
that converge faster than gradient descent.

Remark 3.3.4. It is known from optimization [Nocedal and Wright, 1999, Sauer, 2013b] that
with a proper choice of stepwidth, for example the so–called Wolfe conditions, gradient de-
scent converges to a CRITICAL POINT where the gradient vanishes. However, it is also known
that this convergence can be and often is very slow.

The first trick is called SPLITTING. Suppose we can write an minimization problem

min
u

F (u)+G(u)

in such a way that F is smooth, i.e., at least differentiable and G is SIMPLE in the sense that

proxG = (I +λ∂G)−1

can be computed easily.

60



3.3 Proximal operators and splitting

Example 3.3.5. These requirements are met in the dual ROF problem (3.2.6) where

F (φ) = 1

2

∥∥∥∥divφ− 1

λ
f

∥∥∥∥2

2
and G(φ) =

{
0, ‖|φ|‖∞ = maxx |φ(x)| ≤ 1

+∞, otherwise.

Though the set of all φ with |φ| ≤ 1 is convex, the functional G is not strictly convex, and its
set valued subgradient takes the form

∂G(φ) =


0, |φ| < 1,

{ψ :ψTφ≥ 0},
∥∥ |φ|∥∥∞ = 1,

Rs ,
∥∥ |φ|∥∥∞ > 1,

hence for any φ on the boundary of the unit ball |φ| ≤ 1, the subgradient consists of all direc-
tions pointing “outwards” of the convex set or into the halfplane generated by the separating
hyperplane attached to φ, see Fig. 3.3.1. Hence the set

Hφ = (I +λ∂G) (φ)

coincides with this halfplane and φ is the preimage for any point from there. In summary,

(I +λ∂G) (φ) =


φ, |φ| < 1

Hφ, ‖|φ|‖∞ = 1,

R2, ‖|φ|‖∞ > 1.

(3.3.6)

Every point outside the convex set lies in (at least) one of these hyperplanes Hφ and admits
the respective φ as its preimage with respect to I +λ∂G . The “best” preimage however, is the
closest one, the ORTHOGONAL PROJECTION of ψ to the convex set and is, for balls, defined by

proxG (φ) = φ

max
(∥∥ |φ|∥∥∞ ,1

) . (3.3.7)

Hence, the proximal map is indeed easy to compute.

Now the minimization is split into two parts: A gradient step for F and a projection step
according to G , that is, starting with u0 = f one computes

vk+1 = uk −αk ∇F
(
uk

)
, (3.3.8)

uk+1 = proxG

(
vk+1

)
, (3.3.9)

or, as a single step

uk+1 = proxG

(
uk −αk ∇F

(
uk

))
, (3.3.10)

where αk is the stepwidth of kth iteration. This simple form of the iteration still converges
relatively slow, but there has been a lot of recent work to apply acceleration methods for con-
vergence to this iteration.
What does all this mean for discretized ROF? Here φ consists of the pixel vectors φ j k ∈R2 and

F (φ) = 1

2

∑
j k

(
divφ j k −

1

λ
f j k

)2

= 1

2

∑
j k

(
φ1

j+1,k −φ1
j k +φ2

j ,k+1 −φ2
j k −

1

λ
f j k

)2

,
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H

φ

Figure 3.3.1: Subgradient of the characteristic function of a convex set. The image of a pointφ
inside is the point itself, the image of a point φ on the boundary is the halfspace
generated by the (red) tangent hyperplane to the convex set.

such that

∂F

∂φ1
r s

=
(
divφr−1,s − 1

λ
fr−1,s

)
−

(
divφr s − 1

λ
fr s

)
= δ−1

(
divφ− 1

λ
f

)
r s

where δ−1 denotes the partial backwards difference operator with respect to the first variable.
A similar argument works the second variable, so that we can summarize it as

∇F = ∂F

∂φ
=∇−

(
divφ− 1

λ
f

)
=

δ−1 (
divφ− 1

λ f
)

δ−2
(
divφ− 1

λ f
)
 .

Exercise 3.3.1 Implement the split iteration for the ROF functional in Matlab/Octave. ♦

3.4 Split Bregman and primal–dual

The next type of methods uses so–called “augmented Lagrangian” methods. Here, we intro-
duce an additional variable p =∇u and solve

min
u,p

1

2
‖u − f ‖2

2 +λ‖|p|‖1 subject to p =∇u. (3.4.1)

A direct Lagrange multiplier approach is difficult because the norm applied to p is still not
smooth. Instead, one considers, for yet another smoothing parameter α, the functional

Lα(u, p,µ) := 1

2
‖u − f ‖2

2 +‖|p|‖1 +
〈
µ, p −∇u

〉+ α

2
‖p −∇u‖2

2

by alternatingly minimizing with respect to the two variables and then updating µ. The pro-
cedure is

uk+1 = argmin
u

Lα(u, pk ,µk ),

pk+1 = argmin
p

Lα(uk , p,µk ),

µk+1 = µk +α
(
pk+1 −∇uk+1

)
.
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3.4 Split Bregman and primal–dual

Clearly, µ does not change if pk+1 and uk+1 perfectly satisfy the relationship pk+1 −∇uk+1,
otherwise one makes a step in the direction of the gradient of

〈·, p −∇u
〉

in order to makeµ as
“dual” as possible and to more strictly enforce this condition. This method which is based on
a more heuristic approach can be shown to converge, for references see [Chambolle et al., 2009].

For the primal–dual method, we take yet another general form of the problem formulation,
namely

min
u

F (u)+G(Au) (3.4.2)

where F,G are convex and A is a linear operator.

Example 3.4.1. In the ROF case, this corresponds to F = 1
2‖ ·− f ‖2

2, G =λ ‖| · |‖1 and A =∇.

We use the fact G∗∗ =G to consider minu F (u)+G∗∗(Au) and since

G∗∗(Au) = max
v

〈v, Au〉−G∗(v),

the problem (3.4.2) can be rewritten as

min
u

max
v

H(u, v) = min
u

max
v

〈v, Au〉−G∗(v)+F (u), (3.4.3)

which is now a MINIMAX PROBLEM. The idea is to approach it by alternativ ascending and
descending steps with respect to v and u. Since the problem is convex–concave13, we can
interchange14 min and max to obtain

min
u

F (u)+G(Au) = min
u

max
v

〈v, Au〉−G∗(v)+F (u)

= max
v

min
u

〈
A∗v,u

〉−G∗(v)+F (u) = max
v

(
−G∗(v)+min

u

〈
A∗v,u

〉+F (u)
)

= max
v

(
−G∗(v)+min

u

(−(〈−A∗v,u
〉−F (u)

)))
= max

v

(
−G∗(v)−max

u

(〈−A∗v,u
〉−F (u)

)
︸ ︷︷ ︸

=F∗(−A∗v)

)

= max
v

−(
G∗(v)+F∗(−A∗v)

)
.

Since this implies for any u, v that

−(
G∗(v)+F∗(−A∗v)

)≤ F (u)+G(Au),

it follows that the DUALITY GAP

γ(u, v) = F (u)+G(Au)+G∗(v)+F∗(−A∗v) (3.4.4)

is always nonnegative and becomes zero if and only if u and v are optimal solutions, respec-
tively. This leads to a very handy stopping criterion: iterate the method until γ(u, v) becomes
small because then the (unknown) optimal values are almost reached; the duality gap even
tells us to which percentage the approximate solution is already optimal as it always provides
a lower bound for the function to be minimized.

13The linear function is both, −G∗ is concave and F is convex, hence we maximize a concave function
and minimize a convex one.

14In general this is not permitted, cf. [Sauer, 2017b].
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In the iteration, we use the idea of the Douglas–Rachford split (3.3.10) and once intepret
the minimization problem with respect to u for fixed v as

min
u

(〈v, Au〉−G∗(v)
)+F (u)

which results in

0 ∈α∂u
(〈v, Au〉−G∗(v)+F (u)

)=αA∗v +α∂F (u) =αA∗v −u +u +α∂F (u),

where α> 0 is arbitrary. This can be rewritten as

u −αA∗v ∈ (I +α∂F )(u),

yielding the iteration

uk+1 = (I +α∂F )−1
(
uk − A∗vk

)
= proxF

(
uk −α∇u

(〈
A∗v,u

〉−G∗(v)
)

(uk )
)

.

Analogously, we get for the concave maximization problem with respect to v for fixed u that

0 ∈β∂u
(〈v, Au〉−G∗(v)+F (u)

)=βAu +u − (u +∂G∗(u)),

i.e.,
u +βAu ∈ (I +β∂G∗)(u)

and we obtain the iteration

vk+1 = (
I +β∂G∗)−1

(
uk +βAuk

)
= proxG∗

(
vk +β∇v

(〈
v, Auk

〉
+F (u)

)
(vk )

)
.

Together, this results for stepsize parameters α,β> 0 in the iteration

vk+1 = (
I +β∂G∗)−1

(
vk +βAuk

)
(3.4.5)

uk+1 = (I +α∂F )−1
(
uk −αA∗vk+1

)
(3.4.6)

that is repeated until γ(uk , vk ) is small enough.

Example 3.4.2 (Conjugate of gradient). To make this method applicable in the setting of the
ROF functional, we need to know what the CONJUGATE A∗ of the gradient operator A = ∇ is.
Since A maps functions on Rs to s–valued functions, the standard inner product results in

〈
φ,∇ f

〉= s∑
j=1

∫
Ω
φ j (x)

(∇ f
)

j (x)d x =−
s∑

j=1

∫
Ω

∂φ j

∂x j
(x) f (x)d x

for any smooth function φ :Ω→R2 whose support is contained in the interior ofΩ. Hence15,
we meet an old friend:

∇∗ =−div. (3.4.7)

To formulate (3.4.5) and (3.4.6) explicitly for the ROF problem, we recall that F = 1
2‖ ·− f ‖2

2,
hence

(I +α∂F )(u) = u +α∂F (u) = u +α(u − f ) =−α f + (1+α)u,

15Does that surprise anyone?
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3.4 Split Bregman and primal–dual

so that

uk −α div vk+1 = (1+α)u −α f ⇔ u = 1

1+α
(
uk +α

(
f −div vk+1

))
yields that (3.4.6) simplifies to the convex combination

uk+1 = 1

1+α
(
uk +α

(
f −div vk+1

))
= 1

1+αuk + α

1+α
(

f −div vk+1
)

. (3.4.8)

The dual of

G(v) =λ
∫
Ω
|v(x)|d x = sup

|w |≤λ

∫
Ω

wT (x) v(x)d x = sup
w

(〈w, v〉−hλ(w)) = h∗
λ(v)

where

hλ(w) =
{

0, |w | ≤λ,

+∞, |w | >λ,

is G∗ = h∗∗ = h. As in Example 3.3.5, specifically (3.3.7), we can turn (3.4.5) into the projection
step

vk+1 = vk +α∇uk

max
( 1
λ

∥∥∣∣vk +α∇uk
∣∣∥∥∞ ,1

) . (3.4.9)

Remark 3.4.3. Note that points v with |v | >λ are useless for the iteration as then γ(u, v) =∞
for |v | > 1 since G∗(v) =∞ in this case and all other functionals are finite. Since our goal is
γ(uk , vk ) → 0, we always have to project to the λ–ball anyway.

For a working algorithm, we need to compute the duality gap (3.4.4). The first three parts are
clear:

F (u) = 1

2

∥∥ f −u
∥∥2

2 ,

G(Au) = λ ‖|∇u|‖1 =λ‖u‖T V ,

G∗(v) = h(v) = 0,

at least for the admissible values of v , otherwise the gap is +∞. It remains to compute

F∗(−A∗v) = max
u

〈−A∗v,u
〉−F (u) = max

u

〈−A∗v,u
〉− 1

2
‖ f −u‖2

2.

The extremal u is found by setting

0 =∇u

(〈−A∗v,u
〉− 1

2
‖ f −u‖2

2

)
=−A∗v − (u − f ) ⇒ u = f − A∗v.

Resubstituting this yields that

F∗(−A∗v) = 〈−A∗v, f − A∗v
〉− 1

2

∥∥ f − ( f − A∗v)
∥∥2

2 = ‖A∗v‖2
2 −

〈
A∗v, f

〉− 1

2

∥∥A∗v
∥∥2

2

= 1

2

∥∥A∗v
∥∥2

2 −
〈

A∗v, f
〉

, (3.4.10)

which sums up into

γ(u, v) = 1

2
‖ f −u‖2

2 +λ‖u‖T V + 1

2
‖div v‖2

2 −
〈

div v, f
〉+G∗(v) (3.4.11)

65



3 Optimization

and only makes sense if |v | ≤λ.
It is illustrative to see what this means for λ → 0 and λ → ∞. In fact, if λ = 0, then, v

has no choice but being identically zero and u = f is the optimal choice wich also makes
(3.4.11) equal to zero. If λ→∞, then u = 0 and v = 0 is the overregularized solution and the
smoothest function imaginable.

There is only one item of bad news: it is not so simple. There is no guarantee that naive
methods based on alternating optimization for separated variables converge and therefore
stepsize selection and smoothing of the steps becomes very important. For details see [Chambolle et al., 2009]
and [Zhu and Chan, 2008].
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Imaging applications 4
It always does seem to me that I am doing more work than I should do. It is
not that I object to the work, mind you; I like work: it fascinates me. I can
sit and look at it for hours. I love to keep it by me: the idea of getting rid of it
nearly breaks my heart.

(J. K. Jerome, Three Men in a Boat)

We finally try to find out how we can apply the ideas for ROF regularization to classical
imaging problems.

4.1 Denoising

As already mentioned before, the original purpose of ROF regularization was the denoising
of images. The usual model is that of additive, independent noise at the pixels, i.e. the MEA-
SURED QUANTITY is

f̂ j k = f j k +η j k , j = 1, . . . ,m, k = 1, . . . ,n. (4.1.1)

For some reasons that will become clear soon, we now restrict ourselves to the discrete sit-
uation. Next, one makes assumptions on the distribution of the error, based on some poor
man’s probability.

Definition 4.1.1. A PROBABILITY DENSITY p :R→R is a function such that

p(t ) ≥ 0, t ∈R,
∫
R

p(t )d t = 1. (4.1.2)

A density function is the GAUSSIAN DISTRIBUTION with MEAN µ and VARIANCE σ, defined as

p(t |µ,σ2) := (
2πσ2)−1/2

e−
1

2σ2 (t−µ)2

. (4.1.3)

Exercise 4.1.1 Verify that the Gaussian distribution is a probability density. ♦
Now the probabilistic model of an image is that each pixel is a realization of a random process
and has the distribution

P
(

f̂ j k = y
)= p

(
y | f j k ,β

)
; (4.1.4)

assuming independence of the pixel values, the LIKELIHOOD of a certain measurement is

P ( f̂ ,β) =∏
j k

p
(

f̂ j k | f j k ,β
)

.
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The goal is now to determine the distribution parameters f j k in such a way that the likeli-
hood of the measurement f̂ is maximized. Since the log is monotonic, we can also maximize
logP ( f̂ ,β) or minimize the function

− logP ( f̂ ,β) =− log

(∏
j k

p
(

f̂ j k | f j k ,β
))=−∑

j k
log p

(
f̂ j k | f j k ,β

)
= ∑

j k

(
1

2β

(
f̂ j k − f j k

)2 + log2π+ logβ

2

)
= 1

2β

∥∥ f̂ − f
∥∥2

2 +mn
log2π+ logβ

2
.

Noting that the additive term does not depend on f and thus does not affect the minimiza-
tion problem, we can add a REGULARIZATION TERM ‖ f ‖T V and end up with the minimization
problem

min
f

1

2β
‖ f̂ − f ‖2

2 +‖ f ‖T V ⇔ min
f

1

2
‖ f̂ − f ‖2

2 +β‖ f ‖T V , (4.1.5)

where now the (unknown) variance of the noise becomes the smoothing parameter. However,
provided that we know an approximant f for the mean values, we can determine the β that
gives the best explanation of the observation by considering

d

dβ

(− logP ( f̂ ,β)
)=− 1

2β2 ‖ f̂ − f ‖2
2 +

mn

2β

and setting it equal to zero, yielding the average error

β= ‖ f̂ − f ‖2
2

mn
. (4.1.6)

This leads to the generic denoising algorithm that repeats

1. fk+1 = argmin f
1
2‖ f̂ − f ‖2

2 +βk‖ f ‖T V ,

2. βk+1 = 1
mn ‖ f̂ − fk‖2

2,

until the result is “good enough”. This is also the basic idea behind [Rudin et al., 1992].

Remark 4.1.2.

1. It is important to keep in mind that the validity of this approach depends on the validity
of the NOISE MODEL which has to be independent and Gaussian. There are indeed
examples like POISSON NOISE1 or SALT AND PEPPER NOISE2. These error models lead to
different optimization problems like

min
f

‖ f̂ − f ‖1 +λ‖ f ‖T V (4.1.7)

for salt and pepper noise.

2. Moreover, in contrast to the ROF functional, the one in (4.1.7) is CONTRAST INVARIANT

which means that if we replace f̂ by c f̂ , c > 0, then the optimal f is also just multiplied
by a constant. This is simply the positive homogeneity of (4.1.7).

3. Regularizing with the TV norm has no real statistical meaning and just asks for a “nice”
explanation of the measurements. The “statistics” only affect the data fidelity func-
tional.

1Noise distributed with respect to a Poisson distribution that acts in a multiplicative way.
2A pixel is either correct or totally wrong which happens with defect pixels in camera detectors or

transmission errors.
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4.2 Zooming and deblurring

Another application of ROF regularization is in digital zooming and deblurring, more gen-
erally, in solving an INVERSE PROBLEM for the image. To that end, let A be a linear operator
between images which may also change the size of the image.

Example 4.2.1. Standard examples for such operators are

1. DOWNSAMPLING:

A :R2m×2n →Rm×n , (A f ) j k = f2 j ,2k ,
j = 1, . . . ,m,
k = 1, . . . ,n.

Of course, any other factor is possible and for continuous images we can even consider
A f = f (X ·) where X ∈Rs×s is an arbitrary scaling matrix.

2. BLURRING: the original image is convolved with a signal g which usually acts as a low
pass filter, i.e., ĝ (0) 6= 0. The operation is then

(A f ) j k = (
g ∗ f

)
j k =∑

r s
gr s f j−r,k−s ,

and A is a so-called TOEPLITZ MATRIX with a lot of special structural properties.

3. INTERPOLATION/INPAINTING: the operator extracts certain pixels

(A f )r = f j (r ),k(r ), r = 1, . . . , N .

This could also be seen as an unstructured downsampling operator.

The way to apply our techniques from the preceding chapters is now simple: just integrate A
into the data fidelity term and solve

min
u

1

2
‖ f − Au‖2

2 +λ‖u‖T V . (4.2.1)

Since

∂

(
1

2
‖ f − Au‖2

2

)
= A∗ (

f − Au
)= A∗ f − A∗Au, (4.2.2)

the subgradient of the data fidelity functional is still handled quite easily.

Remark 4.2.2. In terms of numerical linear algebra, (4.2.2) is just the least squares solution
for the linear system Au = f and the regularization could be interpreted as a TIKHONOV REG-
ULARIZATION of the linear system, cf. [Golub and van Loan, 1996].

Note that A∗A is usually not an invertible operator, but the linear system

A∗Au = A∗ f

is always solvable for u. This is standard numerical linear algebra, see, for example [Golub and van Loan, 1996].

Remark 4.2.3. For successful deblurring, the nature of the blurring operator must be avail-
able, in other words, the coefficients c of the filter have to be known. Otherwise there is no
chance of feeding the operator A into (4.2.1).
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4.3 Segmentation

Finally, we want to decompose an image f : Ω→ R into segments S1, . . . ,Sn ⊂ Ω of almost
constant value, say c1, . . . ,cn . Of course, in order to form a PARTITION, the segments should
be disjoint, i.e.,

S◦
j ∩S◦

k =;, j 6= k,

where S◦ denotes the interior of the region S, and cover the region,

Ω=
n⋃

j=1
S j .

The underlying assumption for segmentation is that the image f is (approximately) constant
on theses regions.

Example 4.3.1. In COMPUTERIZED TOMOGRAPHY the VOXEL values correspond to a material
property, essentially related to the density of the material. Thus, segmentation separates dif-
ferent material components.

The trick in segmentation is to approximate the CHARACTERISTIC FUNCTIONS

χ j :=χS j :Ω→ {0,1}

which now have to form a PARTITION OF UNITY

n∑
j=1

χ j (x) = 1, x ∈Ω. (4.3.1)

Hence, segmentation is to approximate f as good as possible by the piecewise constant func-
tions

n∑
j=1

c j χ j (x),

for example,

min
S1,...,Sn ,c1,...,cn

∥∥∥∥∥ f −
n∑

j=1
c j χ j

∥∥∥∥∥
2

2

. (4.3.2)

Since∥∥∥∥∥ f −
n∑

j=1
c j χ j

∥∥∥∥∥
2

2

=
∫
Ω

(
f (x)−

n∑
j=1

c j χ j (x)

)2

d x =
n∑

k=1

∫
Sk

(
f (x)−

n∑
j=1

c j χ j (x)

)2

d x

=
n∑

k=1

∫
Sk

(
f (x)− ck

)2 d x =
n∑

k=1

∫
Ω
χk (x)

(
f (x)− ck

)2 d x

=
n∑

k=1

∥∥χk
(

f − ck
)∥∥2

2 ,

the minimization problem can be rewritten as

min
S1,...,Sn ,c1,...,cn

n∑
k=1

∥∥χk
(

f − ck
)∥∥2

2 . (4.3.3)
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Moreover, the partition should be simple which leads to the MUMFORD–SHAH problem

min
S1,...,Sn ,c1,...,cn

λ
n∑

k=1
‖χk‖T V + 1

2

n∑
k=1

∥∥χk
(

f − ck
)∥∥2

2 . (4.3.4)

The total variation of the characteristic function, hence the length of the level curve for the
jump function, is called the PERIMETER of the set Sk . For a careful definition and properties
of this object, see [Chambolle et al., 2009].

Once the partition is known, the best ck are easily computed.

Lemma 4.3.2. For fixed S1, . . . ,Sn , we have that

argmin
c

n∑
k=1

∥∥χk
(

f − ck
)∥∥2

2 =
(

1

|Sk |
∫

Sk

f (x)d x : k = 1, . . . ,n

)
, |Sk | :=

∫
Sk

1d x, (4.3.5)

where c = (c1, . . . ,cn).

Proof: To minimize the functional

F : c 7→ 1

2

∫
Sk

(
f (x)− c

)2 d x,

we take the (sub)gradient with respect to c and obtain the requirement

0 =
∫

Sk

( f (x)− c)d x =
∫

Sk

f (x)d x −|Sk |c,

which immediately yields (4.3.5). �

Remark 4.3.3. To solve (4.3.3) alone, one could use the following simple greedy algorithm
known as K –MEANS CLUSTERING. Starting with an arbitrary partition S1, . . . ,Sn first set

ck = 1

|Sk |
∫

Sk

f (x)d x

and then
Sk := {

x :
∣∣ f (x)− ck

∣∣< ∣∣ f (x)− c j
∣∣ , j 6= k

}
.

This is quite simple for discrete images, just classifying the pixels with respect to the closest
constant3, but it will lead to arbitrarily complex and disconnected decompositions which is
the reason why a regularization like in (4.3.4) has to be present.

With the 2–norm as data fidelity term we thus get the AVERAGE of f on the segements of the
partitions as best constants, the 1–norm would give the MEDIAN over the domain.

Due to Lemma 4.3.2, the minimization problem is a minimization problem entirely in the
partition, the respective constants are uniquely determined by the partition. Nevertheless,
this “simplification” does not make the problem easy: the discrete counterpart of the parti-
tion problem, the so–called POTT’S MODEL is known to be NP–hard, so the only thing that we
can hope for is a CONVEX APPROXIMATION of this problem.

The trick here is that of a CONVEX ENVELOPE, i.e., trying to find, for a general, probably
nonconvex function F a convex functional G such that G ≥ F , and then to minimize G . In
addition, we want that G = F whenever F is convex, not losing quality on good functionals.

3Yes, it also needs a rule to decide if f (x) has the same distance to two of the ck , but this is easy to
solve.
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Lemma 4.3.4. For any F , the BICONJUGATE functional F∗∗ is a convex envelope.

Proof: We just have to recall the part of the proof that we gave in Theorem 3.2.3, showing that
F∗∗ ≥ F without any assumptions on F . �

Definition 4.3.5. By BV (Ω, X ), X ⊂R, we denote the functions of BOUNDED VARIATION onΩ
with values in X , i.e.,

f ∈ BV (Ω, X ) ⇔ f :Ω→ X , ‖ f ‖T V <∞. (4.3.6)

The characteristic functions we are considering, do now belong to BV (Ω, {0,1}) and must sum
to 1. We can thus define the functional

H(v) :=


n∑

k=1
‖vk‖T V , vk ∈ BV (Ω, {0,1}) ,

∑
vk = 1,

+∞, otherwise,
v = (vk : k = 1, . . . ,n) . (4.3.7)

Based on this one can consider the convex optimization problem

min
v
λH∗∗(v)+

n∑
k=1

‖vk ( f − ck )‖2
2 (4.3.8)

for fixed c1, . . . ,cn which can then be iterated just like in the K –means case. It turns out that
the DOMAIN of H∗∗, i.e., the set of all v such that ∂H∗∗(v) 6= ; consists of BV (Ω, [0,1]n), hence
the envelope given by the biconjugate problem just yields the continuous version of the prob-
lem.

Since K = BV (Ω, [0,1]n) is again a convex set, the functional4

G(v) =
{

0, 0 ≤ v ≤ 1,
∑

vk = 1,

+∞, otherwise,

can be used to complete the minimization problem as

min
v
λ

(
n∑

k=1
‖vk‖T V +G(v)

)
+

n∑
k=1

∥∥vk ( f − ck )
∥∥2

2 , (4.3.9)

which is now a convex problem that can be handled with the methods of the preceding chap-
ter. Again, the “characteristic function” G is handled by an orthogonal projection on the con-
vex set K .

4For the vector valued v = (vk : k = 1, . . . ,n) the inequality 0 ≤ v ≤ 1 has to be understood coordinate-
wise, hence as 0 ≤ vk ≤ 1, k = 1, . . . ,n.
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