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Avoiding empty pages . . . 0

Links were electronic now, not narrative. . . Until the advent of hyperlinks, only
God had been able to see simultaneously into past, present and future alike; human
beings were imprisoned in the calendar of their days.

S. Rushdie,Fury

“Money don’t buy happiness [. . . ]” – “I only wanted to rent it for a few weeks”

T. Pratchett,Maskerade

Nature is not embarrassed by difficulties of analysis.

A. Fresnel

To isolate mathematics from the practical demands of the sciences is to invite the
sterility of a cow shut away from the bulls.

P. Chebyshev
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I disapprove of certainties [. . .] They
limit one’s range of vision. Doubt is one
aspect of width.

S. Rushdie, Grimus

Basics 1
Splines – at least in our context here – are piecewise polynomials used for the description and
manipulation of curves. These curves are usuallynot graphs of a function butparametricones,
i.e.,f : [a, b] → Rd, where the parameter interval[a, b] is usually irrelevant1 and the dimension
d is 2 or 3. In order to store an manipulate such a curve efficiently on the computer, we require
two fundamental properties:

1. The curve must be represented by a finite number ofcoefficientsd1, . . . ,dn ∈ Rd.

2. The coefficients must reflect geometric properties of the curve.

There are various methods to construct such curves and the discussion of the advantages and
disadvantages of such representations are a topic all by itself. But since we have to make a
choice we simply choose splines here and will not regret it.

1.1 Knots and B–Splines

The basic concept underlying splines is that of aknot sequenceas it defines the regions restricted
to which splines are polynomials.

Definition 1.1 A finite, indexed setT = Tm,n = {t1, . . . , tm+n+1} is called aknot sequenceof
orderm if

1. t1 ≤ · · · ≤ tn+m+1.

2. tj < tj+m+1.

Obviously, the order of the knot sequence is only relevant for the second condition in the above
definition which says that themultiplicity of any knot must not exceedm + 1; the multiplicity

1We will, however, see examples where this matters, namely, when we want the curve to be arc–length param-
eterized, at least approximately.
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µ = µj of the knottj is simply the number that says how often this not is repeated withinT :

t1 ≤ · · · ≤ tj−1 < tj = · · · = tj+µ−1︸ ︷︷ ︸
µ

< tj+µ ≤ · · · ≤ tm+n+1. (1.1)

If µj = 1, for j = 1, . . . ,m + n + 1, then we say that the knot sequence consists ofsimple
knots.

Definition 1.2 For k = 0, . . . ,m, theB–splinesNk
j , j = 1, . . . , n + m − k, of orderk are

defined as

N0
j (· |T ) = χ[tj ,tj+1), (1.2)

Nk
j (· |T ) =

· − tj
tj+k − tj

Nk−1
j (· |T ) +

tj+k+1 − ·
tj+k+1 − tj+1

Nk−1
j+1 (· |T ) . (1.3)

Almost directly from this definition, we can conclude some fundamental properties of the B–
Splines.

The B–Splines are

1. nonnegative,Nk
j ≥ 0,

2. compactly supported,Nk
j (x |T ) = 0, x 6∈ [tj, tj+k+1],

3. piecewise polynomials of degree at mostk, Nk
j

∣∣
(t`,t`+1)

∈ Πk.

It is very easy to prove these properties simultaneously by induction onk: first, they are
immediately verified fork = 0 and then the inductive step consists of noting that the recurrence
(1.3) implies that

Nk
j (x |T ) = 0, x 6∈ ([tj, tj+k] ∪ [tj+1, tj+k+1]) = [tj, tj+k+1]

and that forx ∈ [tj+1, tj+k] all the terms in (1.3) are nonnegative while forx ∈ [tj, tj+1] ∪
[tj+k, tj+k+1] the negative linear term is rendered irrelevant by a zero spline function.

Remark 1.3 While for simple knots the recursion of Definition 1.2 works smoothly and flaw-
less, it has to be implemented with a little bit of care in the case of multiple knots! At some point
of the iteration, at least in the computation ofN1

j for somej, we will encounter the case of a
“division by zero”. But in fact, we will not! The associated support interval of the respective
is spline is the empty set and this tells us that we need not take this spline into account in the
recurrence.

The evaluation of a B–Spline at a vectorX of points will be done by theOctave –function2

BSplEval , so let us use this function to make ourselves acquainted to the system and plot

2The functions are designed in such a way that they should (!) also run underMatlab , but sinceOctave is
Open Source software and thus freely and generally available, we will continue to refer toOctave exclusively.
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some B–splines of orderm. A look at Definition 1.2 convinces us that the associated B–splines
areNm

1 , . . . , Nm
n , so in order to haven of them, our knot vector has to haven + m + 1 entries.

OK, let’s try the famouscubiccase and let us just use equidistant knots, say

octave> T = (0:10)
T =

0 1 2 3 4 5 6 7 8 9 10

So we haven = 11− 4 = 7 B–splines which we will evaluate at a fine grid and plot them:

octave> hold on; X = (0:.01:10);
octave> for j=1:7 plot( X,BSplEval( j,3,T,X ) ); end

That was easy. So let us get curious and try a non–equidistant spacing:

octave> T = sqrt(0:10); clearplot; X = (0:.01:max(T));
octave> for j=1:7 plot( X,BSplEval( j,3,T,X ) ); end

The results can be seen in Fig. 1.1, but they can only be a motivation to perform “independent”
experiments with B–splines relative to varying knot distributions. But let us stop playing and
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Figure 1.1: The B–splines with equidistant(left) and square root(right) knots.

return to theory.

Definition 1.4 A spline curvein Rd is a curve of the form

Smd = Sm (· |T ) d :=
n∑

j=1

dj Nm
j (· |T ) . (1.4)

A spline curve is represented by thecontrol points dj, j = 1, . . . , n, and theknot sequence
T , so all manipulations of spline curves have to be performed on either the control points or the
knots or both.



1.2 The de Boor algorithm 5

1.2 The de Boor algorithm

On our way to a better understanding of splines, we next consider a geometric algorithm for the
evaluation of spline curves which is due to de Boor.

Algorithm 1.5 (de Boor)
Input:

• knot sequenceT = Tm,n,

• control pointsd1, . . . ,dn ∈ Rd,

• x ∈ [tm, . . . , tn+1].

Procedure:

1. Determinè ∈ {m + 1, . . . , n} such that

x ∈ [t`, t`+1).

2. Initialize:
d0

j(x) = dj, j = i−m, . . . , i.

3. For k = 1, . . . ,m

(a) For j = i−m + k, . . . , i compute

αj(x) =
tj+m−k+1 − x

tj+m−k+1 − tj

and
dk

j (x) = α(x) dk−1
j−1(x) + (1− α(x)) dk−1

j (x). (1.5)

Result:Smd(x) = dm
` (x).

The correctness of the algorithm is proved rather easily: we just read the recurrence relation
of the B–Splines “backwards”:

Smd(x) =
n∑

j=1

dj Nm
j (x |T )

=
n∑

j=1

dj

[
x− tj

tj+k − tj
Nm−1

j (x |T ) +
tj+k+1 − x

tj+k+1 − tj+1

Nm−1
j+1 (x |T )

]

=
n∑

j=1

dj
x− tj

tj+k − tj
Nm−1

j (x |T ) +
n+1∑
j=2

dj−1
tj+k − x

tj+k − tj
Nm−1

j (x |T )

=
n+1∑
j=1

[
tj+k − x

tj+k − tj
dj−1 +

x− tj
tj+k − tj

dj

]
Nm−1

j (x |T ) .

The rest of the proof consists of carefully monitoring the spline’s support regions, thus extract-
ing the proper part from the set of control points.
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Figure 1.2: The cubic (m = 3) de Boor algorithm for a simple(left) and a double(right)
knot.

Remark 1.6 (Further properties)

1. The spline curve according to the de Boor algorithm is a curve from[tm+1, tn+1] → Rd.
Consequently, theboundary knotst1, . . . , tm+1 andtn+1, . . . , tm+n+1 must play a special
role.

2. This is a little bit strange since the B–Splines are defined everywhere onR, not just on
[tm+1, tn+1]. The algorithm, on the other hand, seems to work only on this interval.

3. In many applications, the boundary knots are taken asm + 1–fold knots, that is,

t1 = · · · = tm+1, tn+1 = · · · = tn+m+1.

This guarantees that at the boundary the spline passes through the first and last control
points and that its derivatives are given by the differences of boundary control points.

4. It is usually hard to remember all the index details of the algorithm, but simple to keep in
mind the geometric idea: the ratio in whichx divides certain knot intervals, first gener-
ated bym + 1, then bym and finally by2 knots, is used to divide appropriate faces of the
control polygon, which is the piecewise linear function connecting the control points.

5. The de Boor algorithm usesconvex combinationsand therefore the spline curve is always
contained in the convex hull of the control polygon – a property that eases the computation
of intersections.

Let us cast some light on the apparently contradictionary situation that the spline curve is de-
fined globally in terms of the B–splines but only locally in terms of the algorithm. To that end,
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we consider the simple fact that for the “constant curve”dj = 1, we have that

dk
j (x) = α(x) dk

j−1(x) + (1− α(x)) dk
j (x) = α(x) + 1− α(x) = 1,

hence
n∑

j=1

Nk
j (· |T ) = 1. (1.6)

However, the above identity only holds on the interval[tm+1, tn+1], see Fig. 1.3, so that the
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Figure 1.3: Plot of the function from (1.6) for the knot sequence{0, 1, 2, 3, 4, 5, 6, 7} (left)
– the identity is indeed valid only on the interval[3, 4] formed by the innermost boundary
knots.

With triple boundary knots there is a non–differentiable “break” at3 and4 while the knot
sequence{3, 3, 3, 3, 4, 4, 4, 4} offers a sharp cut–off(right).

answer to the dilemma is in fact a very simple one:

Splines are well–defined everywhere, but they are “nice” curves only on the interval
Im(T ) := [tm+1, tn+1].

This gives a good argument in favor ofm + 1–fold boundary knots as in this case

1.3 Curry, Schoenberg and other bases

The most fundamental result of spline theory says that the B–splines are not only special piece-
wise polynomial functions, but that they form a basis of a most peculiar space.

Definition 1.7 (Spline space)Thespline spaceof orderm associated to a knot sequenceT =
Tm,n, denoted bySm(T ) consists of all functionsf with the following two properties:

1. f is a piecewise polynomial function,f |(tj ,tj+1) ∈ Πm.
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2. f has a certain global smoothness:

tj−1 < tj = · · · = tj+µ−1 < tj+µ ⇒ f ∈ Cm−µ (tj−1, tj+µ) . (1.7)

In other words,

The spline spaceSm(T ) consists of all functions that are polynomials when restricted to
knot intervals and have continuous(m− µ)th derivatives at a knot of multiplicityµ.

Theorem 1.8 (Curry & Schoenberg) The B–splinesNm
j (· |T ) are abasisof the spline space

Sm(T ).

One way to prove this result is to use the derivative formula

d

dx
Nm

j (x|T ) =
m

tj+m − tj
Nm−1

j (x |T )− m

tj+m+1 − tj+1

Nm−1
j+1 (x |T ) , j = 1, . . . , n,

(1.8)
which can be verified by straightforward though tedious computations: take derivatives of the
recurrence (1.3), use (1.8) inductively for the lower order splines and recombine terms appropri-
ately. Since the B–splines are piecewise polynomials, (1.8) holds for anyx ∈ R \ T , i.e., away
from the knots, and another inductive argument can be used to obtain the continuity properties
of the derivatives at knots of some given multiplicity.

But the main consequence of Theorem 1.8 is the following:

Any functionf ∈ Sm(T ) can be uniquely written as

f =
n∑

j=1

fj Nm
j (· |T ) .

In particular,dim Sm(T ) = n.

There is another basis for theSm, namely the one based on thetruncated powerswhich, for
simplicity, we will only consider for simple knots. Here, the basis functions are the monomials
1, x, . . . , xm as well as the functions

(x− tj)
m
+ =

{
(x− tj)

m , x ≥ tj,
0, x ≤ tj,

j = m + 1, . . . , n.

These are againn linearly independent piecewise polynomial functions of global differentiabil-
ity m− 1, hence a basis for the spline space. Again, they are basically defined on[tm+1, tn+1],
but most of this functions have a very large support – quite in contrast to the B–spline.
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1.4 How to represent a spline?

Let us conclude the basics on splines by reviewing how a spline curve is represented on the
computer. The easiest way is to arrange the control pointsdj into a matrix:

d = [d1 · · ·dn] =

 d1,1 . . . dn,1
...

...
...

d1,d . . . dn,d

 ∈ Rd×n, dj =

 dj,1
...

dj,d

 .

To evaluate a spline at a (finite) point setX ⊂ R, we then compute the matrix

Nm(X) = Nm (X |T ) :=

[
Nm

j (x |T ) :
j = 1, . . . , n

x ∈ X

]
,

and the value of the splineSmd at the point setX is

Smd(X) = dNm(X). (1.9)

This simple piece of linear algebra will turn out to be very useful in the sequel. The function
to compute the matrixNm (X |T ), givenm, T andX, is BSplVander and the apparently
strange name will become clear fairly soon.
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Figure 1.4: A spline curve and its control polygon. It’s all quite easy . . .

Let us finally show how a spline curve can now be set up and plotted kike in Fig 1.4. First,
we define the knot sequence (with four–fold boundary knots) and the control matrix

octave> T = [ 0,0,0,0,1,2,3,4,4,4,4 ];
octave> d = [ 0 1 1 .5 0 0 1 ; 0 .4 .8 1 .8 .4 0 ];

To evaluate the spline at a fine grid, we simply call

octave> X = (0:.01:4); y = d * BSplVander( 3,T,X );

and plotting means to plotd andy :

octave> hold on; plot( d(1,:),d(2,:) ); plot ( y(1,:), y(2,:) );

And that’s it!
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Infinities and indivisibles transcend our
finite understanding, the former on
account of their magnitude, the latter
because of their smallness; Imagine what
they are when combined.

G. Galilei

Manipulating Splines 2
In this section we review some of the basic procedures needed in elementary computations of
splines.

2.1 Simple geometric transformations

If one wants to geometrically manipulate a spline curve, this is rather easy: forA ∈ Rd×d and
y ∈ Rd we just have

ASmd + y =
n∑

j=1

(Adj + y) Nm
j (· |T )− y

n∑
j=1

Nm
j (· |T )︸ ︷︷ ︸
=1

+y,

so that any affine transformation is performed by transforming the control polygon. This allows
us to easily rotate and translate curves.

2.2 Differentiation and integration

In many cases it is important to compute derivatives or antiderivatives of spline curves; we will
see applications for this later. To derive a formula, we make use of the derivative formula (1.8)
for the B–splines and get

Smd′(x) =
n∑

j=1

dj

[
m

tj+m − tj
Nm−1

j (x |T )− m

tj+m+1 − tj+1

Nm−1
j+1 (x |T )

]

= m

n∑
j=1

dj

tj+m − tj
Nm−1

j (x |T )−m

n+1∑
j=2

dj−1

tj+m − tj
Nm−1

j (x |T )

= m
n+1∑
j=1

dj − dj−1

tj+m − tj
Nm−1

j (x |T )
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=: Sm−1d
1(x),

where we made use of the permanent convention thatd0 = dn+1 = 0. Therefore, the coefficient
matrixd1 of the “derivative curve”Sm−1d

1 is obtained as

d1 = m dDn

 tm+1 − t1
...

tm+n+1 − tn+1


−1

:= m dDn ∆mT (2.1)

where thedifference matrix D is defined as

Dn =

 1 −1
... ...

1 −1

 ∈ Rn×n+1

and∆mT is the diagonal matrix formed by the inversem–differences between the knots:

∆mT = diag
[
(tj+m − tj)

−1 : j = 1, . . . , n + 1
]
.

By iteration of (2.1), we can also compute higher order derivatives as

d2 = dm(m− 1)Dn∆mT Dn+1∆m−1T,
...

dk = d
m!

(m− k)!

k−1∏
j=0

Dn+j∆m−jT =: dGk.

Since for anyx and anyd

dN (k)
m (x) = dk Nm−k (x |T ) = dGk Nm−k (x |T )

it also follows that the spline vectors satisfy the relationship

N (k)
m = Gk Nm−k (· |T ) , (2.2)

which allows us to directly connect these column vectors.
However, we missed a little problem at the moment! If we have boundary knots of multi-

plicity m + 1, thentm+1 = t1 andtn+m+1 = tn+1 so that∆mT takes the form

∆mT =


0
∗

.. .
∗

0


−1
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which, of course, tries the impossible task of inverting a singular matrix. Nevertheless, this is
not really a problem if we take into account that the first B–spline,Nm−1

1 is always supported on
[t1, tm+1] and thus cannot contribute to the behavior of the derivative onIm(T ) = [tm+1, tm+1].
The same also holds true for the rightmost boundary knottm+n+1.

Consequently, as long as we are interested in the behavior onIm(T ) only3, we can simply
ignore the first and the last B–spline and thus get that

Smd′ = Sm−1d̂
1
(
· | T̂

)
whereT̂ = T̂m−1,n−1 = {t2, . . . , tn+m} and

d̂
1

= m d D̂n∆mT̂ , D̂n =


−1

1
. ..
. .. −1

1

 ∈ Rn×n−1.

The respective matriceŝGk ∈ Rn×n−k can thus be recursively computed as

Ĝ0 = I, Ĝk = Ĝk−1 D̂n−k+1∆m−k+1T̂k, T̂k = {tk+1, . . . , tm+n+1−k} ,

and by means of

d̂
k
Nm−k

(
· | T̂k

)
= dN (k)

m (· |T ) ,

we obtain the counterpiece of (2.2):

N (k)
m (· |T ) = Ĝk Nm−k

(
· | T̂k

)
. (2.3)

Let us summarize.

Depending on which concept of derivatives one wants to consider, there are two ways
of determining the derivative of a spline curve, one that successivelyremovesoutmost
boundary knots, one that preserves them. Nevertheless:

1. On the “crucial” intervalIm(T ) both concepts are equivalent.

2. Boundary knots of multiplicitym + 1 have to use the second concept.

We can also use the derivative formula to compute the integral or antiderivative of a spline
curve as follows:

x∫
−∞

Smd(t) dt = Sm+1d
∗(x), x ∈ [tm, tn] , (2.4)

3Which is automatically indicated by giving the boundary knots multiplicitym + 1!
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where

d∗j =

j∑
k=0

tk+m+1 − tk
m + 1

dk, j = 0, . . . , n− 1. (2.5)

This formula is easily verified by applying the above derivative formula on (2.4) – this is a nice
and simple exercise.

2.3 Numerical integration of spline functions

Even if the formula (2.4) gives us a convenient way to determine the formal antiderivative of
a spline curve, it is only of limit use in computing spline integrals since mostly we will need
integrals of the form ∫

R
Nm

j (x |T ) Nm
k (x |T ) dx

which will appear naturally in the concept of least squares approximations. To that end, we will
make use of compositeGauss quadrature formula, cf. [7, 8]. First note that the product of
two splines is again a piecewise polynomial function onT , just the polynomial degree is2m
instead ofm. So it suffices to use a Gaussian quadrature of orderm, that is, withm + 1 knots
and weights, on each interval since such a quadrature integrates all polynomials of degree at
most2m + 1 exactly.

So, letξ0, . . . , ξm ∈ [−1, 1] the Gauss nodes of orderm for
∫ 1

−1
dx andw0, . . . , wm the

associated weights which can be found e.g. in [1]. Since∫ tj+1

tj

f(x) dx =
2

tj+1 − tj

∫ 1

−1

f

(
tj + (x + 1)

tj+1 − tj
2

)
dx,

so that the associated quadrature takes the form∫ tj+1

tj

f(x) dx ' 2

tj+1 − tj

m∑
k=0

wk f

(
tj+1 + tj

2
+

tj+1 − tj
2

ξk

)
. (2.6)

The integral over the “complete” curve can then easily be obtained by summing fromj =
m + 1, . . . , n or j = 1, . . . , n + m, respectively.

Again, this can be implemented efficiently in terms of linear algebra4 by defining the evalu-
ation vector

Ξj :=

[
t∗j +

tj+1 − tj
2

ξk : k = 0, . . . ,m

]
, t∗j =

tj+1 + tj
2

, j = m, . . . , n,

the matrix

F = diag

[
2

tj+1 − tj
: j = m + 1, . . . , n

]
[f (Ξj) : j = m + 1, . . . , n] (2.7)

4In Octave as well as inMatlab the users are encouraged to replace any type of loop by vectorization.
However, it would be more honest to state that loops are discouraged!
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and compute the integral as∫
Im(T )

f(x) dx =
n∑

j=m

∫ tj+1

tj

f(x) dx = 1T Fw

wherew = [wj : j = 0, . . . ,m] – the Gauss weights guarantee the validity of the equality sign
here.

Of course, (2.7) is only valid for single knots but since knot “intervals” between multiple
knots degenerate to a point and thus are irrelevant for the integration process, there is not much
to take care of.
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God does arithmetic

C. F. Gauss

Interpolation and
minimality 3

It’s common belief that splines are made for interpolation. There are arguments in favor of this
statement and arguments that do not support it. So let us begin with the “positive” side.

3.1 Interpolation at knots and the natural spline

The interpolation problem consists of finding, for given points orsitesX ⊂ R and given data
y ∈ RX , a functionf such that

f(X) = y, i.e. f(x) = yx, x ∈ X. (3.1)

Interpolation from a linear space likeSm(T ) can always be transfered into a linear algebra
problem: if we write a spline in its B–spline representation then the interpolation problem looks

n∑
j=1

dj Nm
j (x |T ) = yx x ∈ X

which can be rewritten into matrix form as

dNm(X) = y.

The matrixNm(X) (or its transpose, depending on the “school”) is calledVandermonde ma-
trix of the interpolation problem; this also explains the name of the functionBSplVander .

The interpolation problem has a unique solution for all prescribed data if and only if the
matrixNm(X) is nonsingular.

If we want to interpolate with splines, there are some “important” or even natural sites present,
namely, the knotsT . So it is apparently not a bad idea to interpolate at therelevant knots
tm+1, . . . , tn+1. However, these are onlyn−m+1 points so that the matrixNm ({tm+1, . . . , tn+1})
is not even a square one and thus cannot be invertible – we are facing anunderdeterminedsys-
tem if we consider the interpolation problem

Smd (tm+j) = yj, j = 1, . . . , n−m + 1.
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Do we explicitly have to say that this only works for simple knots?

To make the interpolating spline unique, we will have to add further linear conditions on the
spline, preferably at the end points. Ifm is an odd number, thenm − 1 is even and one could
add(m−1)/2 conditionssymmetricallyto both end points of the interval. Some typical choices
would be

Natural conditions: Make derivatives ofhigh ordervanish,

S(k)
m d (tj) = 0, k =

m− 1

2
+ 1, . . . ,m− 1, j = m + 1, n + 1.

Hermite conditions: Prescribe values for thederivatives

S(k)
m d (tj) , k = 1, . . . ,

m− 1

2
, j = m + 1, n + 1.

Periodic conditions: “Close” the curve periodically,

S(k)
m d (tm+1) = S(k)

m d (tn+1) , k = 1, . . . ,m− 1.

Except the natural conditions5 these additional conditions require additional assumptions as
well: in the Hermite case one has to “guess” derivatives at the end points, for example by taking
differences of the data to be interpolated, while the periodic conditions only make sense if the
curve is periodic itself, i.e., ify1 = yn−m+1.

3.2 Minimality of the natural spline

There is another method to solve underdetermined systems, which is byminimization. Instead
of looking for a solution to (3.1), one minimizes (or maximizes) a certain functional subject
to (3.1). We will return to this issue later in wider generality. Here we simply realize that the
natural spline defined just above is indeed the solution to a minimization problem.

To that end, we define the energy seminorms

|f |k :=

∫
Im(T )

(
f (k)(x)

)2
dx

and define thenatural spline interpolant Sm,T f of orderm with respect toT at a function
f ∈ C(R) as the unique natural spline which satisfies

Sm,T f (tj) = f (tj) , j = m + 1, . . . , n + 1.

Theorem 3.1 Letm = 2r + 1 be an odd number andf ∈ Cr+1(R). Then

|Sm,T f |r+1 ≤ |f |r+1 . (3.2)

5Though it is not clear from this definition what is so “natural” about it.



3.2 Minimality of the natural spline 17

In more prosaic words, we can express Theorem 3.1 as

Among all C(m+1)/2–solutions of an interpolation problem attm+1, . . . , tn+1, the natural
spline minimizes the energy functional|·|r+1.

This finally explains the name “natural spline”. Indeed, the mathematical object is named

Figure 3.1: A “real” spline. The weights (and they rightfully carry that name) fix the
flexible ruler at the interpolation points which takes an energy minimal interpolating shape.
Thanks to Dr. Hollenhorst of the University Giessen Computing Center for permitting me
to use the device

after a tool to draw interpolating curves by means of a flexible ruler (Fig 3.1) – which bends
into a shape that minimizes the bending energy of the curve. Now, an approximation, but only
an approximation, of the bending energy is| · |2 so that the natural cubic spline is indeed an
approximation to the “real” object. Nevertheless,w we have to record that

The cubic natural spline is not a spline!

Since the proof of Theorem 3.1 is elementary and fairly instructive, let us have a look at it.
Proof of Theorem 3.1: We use the abbreviationsSf = Sm,T f andI = Im(T ) and begin with

|f − Sf |2r+1 =

∫
I

(
f (r+1)(x)− (Sf)(r+1) (x)

)2

dx

=

∫
I

(
f (r+1)(x)

)2 − 2f (r+1)(x)(Sf)(r+1) (x) +
(
(Sf)(r+1) (x)

)2

dx

= |f |2r+1,I − 2

∫
I

(
f (r+1)(x)− (Sf)(r+1) (x)

)
(Sf)(r+1) (x) dx− |Sf |2r+1 . (3.3)
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Figure 3.2: The natural side conditions of a cubic spline: The free ends outside the bound-
ary assume linear shape.

For j = m + 1, . . . , n partial integration gives us

tj+1∫
tj

(
f (r+1)(x)− Sf (r+1)(x)

)
Sf (r+1)(x) dx

=
(
f (r)(x)− Sf (r)(x)

)
Sf (r+1)(x)

∣∣tj+1

tj
−

tj+1∫
tj

(
f (r)(x)− Sf (r)(x)

)
Sf (r+2)(x) dx

=
k∑

l=0

(−1)r−l
(
f (r−l)(x)− Sf (r−l)(x)

)
Sf (r+l+1)(x)

∣∣tj+1

tj

+(−1)k+1

tj+1∫
tj

(
f (r−k)(x)− S

(r−k)
f (x)

)
Sf (r+k+2)(x)︸ ︷︷ ︸

=0fork=r

dx, k = 1, . . . , r

=
r∑

l=0

(−1)r−l
(
f (r−l)(x)− Sf (r−l)(x)

)
Sf (r+l+1)(x)

∣∣tj+1

tj
,

Summing overj all the interior term cancel and we get∫
I

(
f (r+1)(x)− Sf (r+1)(x)

)
Sf (r+1)(x) dx

=
r∑

l=0

(−1)r−l
(
f (r−l)(x)− Sf (r−l)(x)

)
S

(r+l+1)
f (x)

∣∣∣∣∣
tn+1

tm

= 0.
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If we substitute this into (3.3) we end up with

|Sf |2r+1 = |f |2r+1 − |f − Sf |2r+1 ≤ |f |2r+1

with equality iff f − Sf ∈ Πr. �

3.3 Schoenberg, Whitney, Greville

In the preceding section we insisted on interpolation at the “relevant” knots and had to pay a
price for that by being forced to add further conditions that made the interpolation problem
uniquely solvable. However, it is an interesting question howinterpolation sites x1, . . . , xn

have to be placed such that we can interpolate from then–dimensional vector spaceSm (Tm,n).
It is intuitively clear that the interpolation points cannot be chosen arbitrarily: since any

spline is a polynomial of degree at mostm when restricted to a (nontrivial) knot interval
[tj, tj+1], such an interval cannot contain more thanm + 1 sites as then the associatedlocal
interpolation problem would become unsolvable. Hence, there must be a relationship between
the sites and the knots and this relationship is as simple as one may imagine.

Theorem 3.2 (Schoenberg & Whitney)Interpolation at the sitesX = {xj : j = 1, . . . , n},
x1 < · · · < xn has a unique solution inSm (T ) if and only if6

tj < xj < tj+m+1, j = 1, . . . ,m. (3.4)

Geometrically, we can slightly rephrase condition (3.4):

Each site has to be at a position where the B–spline with the same index is positive.

A complete proof of Theorem 3.2 is beyond our scope here7, but it is rather easy and illustrative
to see why this condition is necessary. Suppose, for example, that there is some indexj such
thatxj ≤ tj, and therefore alsoxj ≤ tk, k ≥ j, because the knots are in increasing order. Since
the B–splinesNm

k are supported on[tk, tk+m+1], it follows that

Nm
k (xj |T ) = 0, k = j, . . . , n.

Now look at the firstj columns of the Vandermonde matrixNm(X), that is,

N1 (x1 |, T ) . . . N1 (xj |, T )
...

...
...

Nj−1 (x1 |, T ) . . . Nj−1 (xj |, T )
Nj (x1 |, T ) . . . Nj (xj |, T )

...
...

...
Nn (x1 |, T ) . . . Nn (xj |, T )


=



N1 (x1 |, T ) . . . N1 (xj |, T )
...

...
...

Nj−1 (x1 |, T ) . . . Nj−1 (xj |, T )
0 . . . 0
...

...
...

0 . . . 0


6To be precise, this only holds when the multiplicity of the knots is≤ m so that the B–splines are at least

continuous.
7But it is notsoooooooodifficult either.
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and these columns are linearly dependent as they consist ofj vectors which are different from
zero at most in the firstj − 1 components. Hence, the matrix cannot be invertible. If, on the
other hand, there is somej such thatxj ≥ tj+m+1 then an analogous reasoning with the firstj
rows of the matrix leads to the same result.

So, Theorem 3.2 tells precisely where to put the knots in order to achieve unique interpola-
tion. What it does not tell us is how tosystematicallychose the sites from the knots. But there
is a “canonical” choice, called theGreville abscissae:

xj =
1

m

m∑
k=1

tj+k, j = 1, . . . , n. (3.5)

Note that the two “outmost” knots,t1 and tn+m+1 do not enter the definition of the Greville
abscissae. It is easy to see that they are indeed suitable interpolation points since

tj ≤ tj+1 ≤
1

m
(tj+1 + · · ·+ tj+m) ≤ tj+m ≤ tj+m+1

with equality in the leftmost inequality if and only iftj = · · · = tj+m and equality in the
rightmost inequality if and only iftj+1 = · · · = tj+m+1, hence theSchoenberg–Whitney
condition (3.4) can only be violated in the appearance of inner knots of multiplicitym+1. But
that is forbidden for interpolation anyway.

At a knot of multiplicitym+1 the spline curve has a discontinuity and thus an interpolation
value there cannot be determined – is it the left or the right limit?

Another justification of the Greville abscissae comes from looking at theSchoenberg operator

Smf :=
n∑

j=1

f (xj) Nm
j (· |T ) , (3.6)

which does not interpolate but uses the values off at the Greville abscissae as “control points”.
We will return to this operator later.

3.4 Parametric interpolation

In applications, the abscissae of the interpolation are seldom given. The only available informa-
tion are a sequence of points,y1, . . . ,yn, which come, for example from scanning or sampling
a workpiece. Therefore, the sites as well as the knots can, shall and have to be determined from
the data! There are many strategies to find suitable parameter values, some of them listed in [6],
but practically all of them motivated by heuristic considerations.

Intuitively8, the distance between the interpolation sitesxj should match the distance be-
tween the data points, that is,

x1 = 0

8So we are at heuristics here as well.
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x2 = ‖y2 − y1‖2

...

xk = xk−1 +
∥∥yk − yk−1

∥∥
2

=
k∑

j=2

∥∥yj − yj−1

∥∥ , k = 2, . . . , n.

Next, we can try to determine the knotsT such thatx = [xj : j = 1, . . . , n] are the associated
Greville abscissae and, recalling our initial considerations, we can also insist on multiplicity
m + 1 on the boundary, that ist1 = · · · = tm+1. Then we could solve successively from (3.5):

t1 = · · · = tm+1 = x1

tm+2 = m x2 −
m−1∑
k=1

tk+2

...

tm+j = m xj −
m−1∑
k=1

tk+j, j = 2, . . . , n

(3.7)

Note, however, that we have no multiplicitym + 1 at the right boundary then! Moreover, (3.7)
is not a good strategy as the following numerical example shows: we sample the circumference
of the circle,

octave> y = [ cos( 2*pi*(0:6)/7 ); sin( 2*pi*(0:6)/7 ) ]
y =

1.00000 0.62349 -0.22252 -0.90097 -0.90097 -0.22252 0.62349
0.00000 0.78183 0.97493 0.43388 -0.43388 -0.97493 -0.78183

and compute the knot sequence

octave> T=GrevilleKnots( 3,y )
ans =

Columns 1 through 8:

0.00000 0.00000 0.00000 0.00000 2.60330 2.60330 2.60330 5.20660

Columns 9 through 11:

5.20660 5.20660 5.20660

which shows that we get a triple knot in the interior. The associated Greville abscissae are

octave> T=GrevilleKnots( 3,y )
ans =

Columns 1 through 8:

0.00000 0.00000 0.00000 0.00000 2.60330 2.60330 2.60330 5.20660
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Columns 9 through 11:

5.20660 5.20660 5.20660

And indeed, the solution is disappointing – though the function in Fig 3.3 interpolates at the
corners of the polygon, it does not really look exciting because of the triple knot. In other

-1.5
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 0.5

 1

-1.5 -1 -0.5  0  0.5  1  1.5
 0.3

 0.35
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 0.55

-0.96 -0.94 -0.92 -0.9 -0.88 -0.86 -0.84

Figure 3.3: Interpolant whose knots are computed by the formula (3.7). The triple knot
cause the result to be non–differentiable at the marked knot, see detail(right).

words, the naive strategy is not a working one. It even gets worse as there are examples when
the computed knot sequence is not increasing!

In general, any valid knot sequencet = [tj : j = 2, . . . ,m + n] must be a solution of

1

m

 1 . . . 1
... ...

1 . . . 1

 t =: Mt = x,

 −1 1
... ...

−1 1

 t = DT t ≥ 0. (3.8)

Note that (3.8) is a system of linear inequalities which can be solved together with the mini-
mization of an arbitrary linear functional by means of linear programming, see [5, 16] and also
[9] for the connection to the theory of games. In fact, we could try to maximize the distance
between the knots, i.e., solve the minimization problem

min
t,s,s

−s,

[
M 0 0
DT −1 −I

] t
s
s

 =

[
x
0

]
, t, s, s ≥ 0, (3.9)

which can be solved by means of linear programming. It turns out, however, that for many
configurations of Greville abscissae this optimization problem hasno solution, the associated
feasible set is empty.



3.4 Parametric interpolation 23

Therefore, the “standard” approach is to define knots whose distance coincides with the
distance between the interpolation points and then use a natural spline interpolant. Alter-
natively, one could use knots which are spaced according to the distances of the data points
and then use their respective Greville abscissae.
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A mathematician, like a painter or poet,
is a maker of patterns. If his patterns are
more permanent than theirs, it is because
they are made with ideas.

G. H. Hardy,A mathematician’s apology

What is wrong with
interpolation? 4

So, splines can interpolate, either at Greville abscissae or at the knots, but there are some un-
avoidable problems that simply come from interpolating with smooth functions.

4.1 Dependency on the parameterization

The first problem with interpolation is that the outcome depends strongly on the parameteri-
zation of the interpolation sites. Let us illustrate this with the seven points on the circle from
above and cubic splines. Thus we needn+m+1 = 7+3+1 = 11 knots with boundary knots
of multiplicity 4. Let us start equally spaced, that is,

octave> T = [ 0 0 0 0 1 2 3 4 4 4 4 ];
octave> X = Greville( 3,T )
X =

0.00000 0.33333 1.00000 2.00000 3.00000 3.66667 4.00000

where the functionGreville clearly computes the Greville abscissae of given order for a
given knot sequence. Next, we set up the Vandermonde matrix and compute the control points
via

octave> V = BSplVander( 3,T,X )’; d = ( V \ y’ )’;

The little bit of transposition is for technical reasons only; and indeed, the result in Fig 4.1.
OK, that is not too bad, but now we increase the distance between the knots and therefore

between the Greville abscissae in a non–proportional fashion:

octave> T = [ 0 0 0 0 1 4 9 16 16 16 16 ];X = Greville( 3,T );

Not surprisingly, the respective interpolant has a larger deviation in the “later” part of the curve
while the interpolant with decreasing differences between the knots, generated by

octave> T = [ 0 0 0 0 1.3 1.7 1.9 2 2 2 2 ];X = Greville( 3,T );
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Figure 4.1: The spline interpolant with equidistant knots and associated equidistant Greville
abscissae. It can be seen that the deviation of the spline from the data polygon becomes
larger where the polygon has “short” pieces.

takes its maximal deviation in its “early” stages, see Fig 4.2. This shows that the outcome is
really sensitive to the chosen parameterization of the interpolation sites; unfortunately, as the
example with the Greville abscissae shows, it is not so easy to choose these values appropriately.

Proper parameterization of the interpolating curve is crucial for the quality of the result.

4.2 Overshooting – the curse of interpolation

The really nasty side of interpolation by smooth functions becomes apparent when interpolating
on lines that enter corners. Let us, for example, sample the lines[0, 0] → [1, 0] and [1, 0] →
[1, 1] and put an interpolant through these points. So, let us try four points on each line

octave> y = [ (0:1/3:1 ); zeros( 1,4 ) ];
octave> y = [ y, [ ones( 1,3 ); ( 1/3:1/3:1 ) ] ];

choose the necessary11 equidistributed knots,

octave> T = [ 0 0 0 (0:4) 4 4 4 ];

and compute the coefficients of the interpolant by our “standard” methods:

octave> d = ( BSplVander( 3,T,Greville( 3,T ) )’\y’ )’;

Fig. 4.3 shows the result of this interpolation and it the usually unwanted overshooting. Of
course, the effect becomes smaller if the sampling density is higher, but it still persists.

What is worse than the fact that at the corner there is a large deviation from the “ideal” shape
of the curve is the loss ofshape information: the original curve is convex, the interpolant is
not. This, however, is a general principle:
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Figure 4.2: The interpolants with increasing(left) and decreasing(right) differences be-
tween the knots.

Differentiable interpolants cannot preserve convexity of the data to be interpolated.

The simplest example that shows that convex differentiable interpolation of convex data is
impossible, interpolatesf(x) = |x| at the points0, ±1

2
and±1. We will show that any convex

C1–interpolant must be linear on[−1, 0] as well as on[0, 1] and thus cannot be differentiable at
0.

Denote the interpolant byg. Convexity ofg implies that forx ∈ [0, 1] we have

g(x) = g (x 1 + (1− x) 0) ≤ (1− x) g(0) + x g(1) = (1− x) f(0) + x f(1) = f(x),

henceg(x) ≤ f(x), x ∈ [0, 1]. Moreover,

g′
(

1

2

)
= lim

h→0+

g
(

1
2

+ h
)
− g

(
1
2

)
h

≤
f
(

1
2

+ h
)
− f

(
1
2

)
h

= 1

as well as

g′
(

1

2

)
= lim

h→0+

g
(

1
2

)
− g

(
1
2
− h
)

h
≥

f
(

1
2

)
− f

(
1
2
− h
)

h
= 1,

so thatg′
(

1
2

)
= 1. Now suppose that there existsx∗ ∈

[
0, 1

2

]
such thatg (x∗) < f (x∗) and

write x ∈
[
x∗, 1

2

]
as

x = λx∗ + (1− λ)
1

2
, λ =

1
2
− x

1
2
− x∗

∈ [0, 1].

Then, again by convexity,

g(x) ≤ λ g (x∗) + (1− λ) g

(
1

2

)
= λ f (x∗) + (1− λ) f

(
1

2

)
+ λ (g (x∗)− f (x∗))
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Figure 4.3: Overshooting of the spline interpolant in corners, with four(left) and ten(right)
sampling points on the piecewise linear curve.

= f

(
1

2

)
−
(

1

2
− x

)
+ λ (g (x∗)− f (x∗))

= x +
1
2
− x

1
2
− x∗

(g (x∗)− f (x∗)) .

Hence, forh > 0,

g

(
1

2

)
− g

(
1

2
− h

)
≥ h

(
1− g (x∗)− f (x∗)

1
2
− x∗

)
leading to the contradiction that

g′
(

1

2

)
≥ 1− g (x∗)− f (x∗)

1
2
− x∗

> 1.

In the same way the existence ofx∗ ∈
[

1
2
, 1
]

with g (x∗) < f (x∗) would imply thatg′
(

1
2

)
< 1,

again a contradiction. Consequently, we must have thatg = f but theng cannot be differentiable
atx = 0.

To close this section, we show one more picture, Fig. 4.4 which discourages the use of
interpolation.

4.3 Handling corners

But what to do if the data stems from extremely precise measurements so that interpolation
is necessary as deviation from the measurements cannot be tolerated. This situation occurs,
for example in coordinate measurement technology. There is a simple trick to handle such
configurations:
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Figure 4.4: Running around a square by means of interpolation shows both possible effects:
Overshooting and looping.

Apply edge detection methods and interpolate corners with knots of multiplicitym – these
knots are always in the set of Greville abscissae.

There remains the question of how the edge detection can be performed. Some possible meth-
ods are

• Use the second (divided) differences of the data points – where these differences are large,
corner can be assumed.

• Use wavelet methods. As illustrated in Fig. 4.5, the wavelet coefficients indicate the
locations of the corners, one can even read information off their amplitude and the way in
which they change signs.

In fact, a combination of the two approaches above has given very good results in a coordi-
nate measurement application, [11]. It is, however, reasonable to do a finer piecewise linear
resampling of the curve in order to get equidistant points on the piecewise linear curve.

4.4 Why approximation can be better

So, interpolation has its limits and they are due to principal reasons and not to technical lim-
itations. In this respect, the reconstruction of a functionf from sampled values by means of
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Figure 4.5: The “D3” Daubechies wavelet coefficients(right) of a function(left). Significant
coefficients “point” to the edges.

interpolation can be tricky and can lead to artifacts. Though this can be overcome to some ex-
tent by edge detection, but even then there are quite a few detail problems that have to be taken
into account.

A completely different approach to thereconstruction of functions from sampling values
is the aforementionedSchoenberg operator

Smf =
n∑

j=1

f (xj) Nm
j (· |T ) , xj =

1

m

m∑
k=1

tj+k, j = 1, . . . , n. (4.1)

which is a so–calledquasi–interpolant at theGreville abscissae. The use of Greville abscissae
is no accident here!

Proposition 4.1 The Schoenberg operator haslinear precision, that is,Sm` = ` for ` ∈ Π1

andm ≥ 1.

Proof: The casem = 1 is obvious, as there the quasi–interpolant is a piecewise linear inter-
polant of a linear function and thus linear again. Form ≥ 2 we have that

Sm` =
n∑

j=1

`

(
1

m

m∑
k=1

tj+k

)
Nm

j (· |T ) =
1

m

n∑
j=1

m∑
k=1

` (tj+k) Nm
j (· |T ) .

By (2.1),

(Sm`)′ =
n∑

j=1

1

tj+m − tj

m∑
k=1

(` (tj+k − tj−1+k)) Nm−1
j (· |T )

=
n∑

j=1

` (tj+m)− ` (tj)

tj+m − tj
Nm−1

j (· |T ) = `′
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which is a constant. Hence,Sm` is a linear function with the same slope and if at least one
of the end knots has multiplicitym or m + 1 then it interpolates there and the two functions
coincide as claimed. �

The reason for the specific choice of Greville abscissae is the preservation of linear func-
tions

But why linear precision? The reason is that we can prove a quantitative result for the overall
error of approximation which ensures us that for sufficiently dense sampling (more precisely, for
a sufficiently dense choice of knots) we can approximate any function as good as we want. We
will also look at the proof as it is quite illuminating and serves as a prototype for more general
results onapproximation order of function spaces. For more information see [3, 17, 19]. So,
here is the result.

Theorem 4.2 Suppose thatf ∈ C2 [tm+1, tn+1], then

‖f −Smf‖∞ := max
x∈[tm+1,tn+1]

|f(x)−Smf(x)| ≤ m2 ‖f ′′‖∞ h2, (4.2)

where
h = max

j=1,...,m+n
|tj+1 − tj| (4.3)

is theknot spacingdistance.

Proof: The proof is surprisingly simple. Consider a nontrivial knot intervalIj = [tj, tj+1),
then

Smf |Ij
=

j∑
k=j−m

f

(
tk+1 + · · ·+ tk+m

m

)
Nm

k (·|T ) , (4.4)

and choosingt∗ = 1
2
(tj−m+1 + tj+m) as the midpoint of the interval spanned by the “relevant”

knots, a Taylor expansion off aroundt∗ yields that

f(x) = f (t∗) + (x− t∗) f ′ (t∗)︸ ︷︷ ︸
=:T1f

+
(x− t∗)2

2
f ′′ (ξ) , ξ ∈ (x, t∗) .

Hence, forx ∈ Ij,

|f(x)− T1f(x)| = |x− t∗|2

2
|f ′′ (ξ)| ≤

1
4
(tj−m+1 + tj+m)2

2
max
x∈Ij

|f ′′(x)| ≤ m2h2

2
‖f ′′‖∞

(4.5)
and moreover, fork = j −m, . . . , j,

|f − T1f |
(

tk+1 + · · ·+ tk+m

m

)
≤ m2h2

2
‖f ′′‖∞ . (4.6)
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Therefore

Sm (f − T1f)|Ij
≤ m2h2

2
‖f ′′‖∞

j∑
k=j−m

Nm
k (·|T )︸ ︷︷ ︸

≤1

≤ m2h2

2
‖f ′′‖∞

and so

max
x∈Ij

|Smf − f | (x) ≤ max
x∈Ij

|Sm (f − T1f)| (x) + max
x∈Ij

|T1f − f | (x)

+ max
x∈Ij

|Sm (f − T1f)| (x)︸ ︷︷ ︸
=0

≤ m2 h2 ‖f ′′‖∞

but since the right hand side is independent ofj, the estimate holds globally which is nothing
but (4.2). �

So what is the essence of the proof? It is composed of two main ingredients:

Locality: On a given knot intervalIj only a finite number of splines is “active” and the
part of the Schoenberg interpolant that is affected by the behavior off onIj has size
at mostmh.

Polynomial preservation: The Greville abscissae are chosen such that the linear part of
the Taylor polynomial becomes irrelevant in the difference between the function and
the spline approximant.

This type of argument that probably dates back even before [18] indeed works in much more
general circumstances, for example also in the analysis of integer translates of compactly sup-
ported functions in the framework of translation invariant spaces and wavelet analysis.

Also note that the above proof can be refined to a more “local” flavor: The approximation
error is bounded by thelocal knot spacing and thelocal maximum of the second derivative so
that a good approximation can still be obtained as long as the product remains small.

To obtain a good approximation, the Schoenberg operator needs a high density of knots
where the function has a large second derivative (“curvature”). Where the second derivative
is small, however, the knot spacing can be selected larger.

Finally, it should be mentioned that the Schoenberg operator is avariation diminishing ap-
proximation operator, see [12] which can also be found in [13]. There one also finds the famous
Marsden identity which allows a generalization of evaluation at Greville abscissae to function-
als9 that allow a reproduction of polynomials of degree higher than1 as well as a quantitative
convergence proof for the Schoenberg operator.

9Involving derivatives of higher order, however.
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In mathematics you don’t understand
things. You just get used to them.

J. von Neumann

Smoothing splines 5
We have already learned that the natural splines is the solution to a certain minimization prob-
lem. In this chapter we will consider interpolants or approximants which are defined as the
solution of certain minimization problems. Typically, the functional to be minimized will be a
weighted combination of anapproximation functional(“How far is the spline from the given
data or curve”) and asmoothness functional(“How well–behaved is the spline”) where we can
vary the norms in which these functionals are taken as well as the properties of the spline to be
taken into account.

5.1 Interpolation and minimization

The first idea is to choose, among all interpolants available, the one which minimizes a cer-
tain functional – this concept ofoptimal interpolation 10 has been very popular in statistical
estimation and is famous under the name ofkriging , cf [4].

Let us consider two examples in terms of splines. To that end, we use interpolation sites
X = {xj : j = 1, . . . , n′}, n′ ≤ n, to obtain anunderdeterminedinterpolation problem, and
find a unique solution by minimizing an “additional” functional – in the context of linear models
this is usually a covariance estimate. For example, our minimization problem could take the
form

min
f∈Sm(T )

∫
R
|f ′′(x)|2 dx, f(X) = y, y ∈ RX . (5.1)

Now, our matrix–vector notations turn out to be quite handy. Writing the spline asf = Smd =
dNm, the minimization problem (5.1) can be written in terms of the coefficient (row) vectord
as

min
d

∫
R

dN ′′
m(x)N ′′

m(x)T d dx =: dAdT , dNm(X) = y, (5.2)

which is a quadratic optimization problem with linear equality side conditions ind. By means
of Lagrange multipliers11 this is turned into the linear system the minimum is determined by

10See, for example, the references in [14].
11Optimizers would speak of Kuhn–Tucker conditions
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solving the linear system[
2A Nm(X)

NT
m(X) 0

] [
dT

λ

]
=

[
0
yT

]
, (5.3)

where, according to (2.2)

A =

[∫
R

Nm
j (x)′′Nm

k (x)′′ dx : j, k = 1, . . . , n

]
=

∫
R

G2Nm(x)NT
m(x)GT

2 dx = G2

(∫
R

Nm(x)NT
m(x) dx

)
GT

2

is a square positive semidefinite matrix. Moreover, since theB–spline Gramian

Bm = Bm(T ) :=

∫
R

Nm(x)NT
m(x) dx (5.4)

is (strictly) positive definite, we haveAx = 0 if and only if G2x = 0 which is the case if and
only if x is a segment of a linear sequence. Consequently, the linear system in (5.3) has a unique
solution if and only if the interpolation problem does not have a solution by linear functions,
that is, if the data is not located on a straight line.

This approach of minimal interpolation works in the same way for anyquadratic func-
tional to be minimized and always leads to a linear equation. More complicated but smooth
functionals would result innonlinearequations, but those require more intricate nonlinear
methods.

Other functionals to be minimized can be obtained bydiscretizingthe energy functional, i.e.,
by computing the vector

f := f ′′(Z) = dNm(Z)′′, Z ⊂ R,

and then minimizing a vector norm off , for example

‖f‖1 =
∑
z∈Z

|f ′′ (z)| .

Suppose that#Z = N , i.e.,Z = {z1, . . . , zN}, then the minimization problem would be

min
d,u,v1,v2≥0

1T u =
N∑

j=1

uj,

 NT
m(X) 0 0 0

NT
m(Z)′′ I −I 0

−NT
m(Z)′′ I 0 −I




dT

u
v1

v2

 =

 yT

0
0

 ,

and can be solved again by linear programming. Minimizing with respect to the`1–norm is a
common principle in image processing and the associated inverse problems, cf. [10].
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5.2 Minimizing the sup–norm and linear programming

Instead of minimizing “average” properties of a certain derivative, we can also use as criterion
the minimization of theglobal maximum of a certain derivative, that is,

min
d

∥∥S(k)
m d

∥∥
∞ = min

d
max

t∈[tm+1,tn+1]

∥∥S(k)
m d

∥∥ , dNm(X) = y.

Let us consider this problem first fork = m − 1, i.e., the maximal order of differentiation12

since then the spline curve

S(m−1)
m d = dN (m−1)

m = dĜm−1 N 1

(
· | T̂

)
is a piecewise linear curvewhich takes its maximum at one of the knots ofT̂ and the value
there is the respective control point. As coefficient norm onRd we also choose the∞–norm
and define

v := max
t∈[tm+1,tn+1]

∥∥S(m−1)
m d

∥∥
∞ = max

j=1,...,n−m+1

∥∥∥∥(dĜm−1

)
j

∥∥∥∥
∞

.

Thus,v is the smallest positive number such that∣∣∣∣(dĜm−1

)
j

∣∣∣∣ ≤ v 1, j = 1, . . . , n−m + 1,

that is,
−v1 ≤

(
dĜm−1

)
j
≤ v1 or ±

(
dĜm−1

)
j
≤ v1.

Using theslack variablessj,+, sj,− ∈ Rd
+, we thus get the identities

±
(
dĜm−1

)
j
− v1 + sj,± = 0, j = 1, . . . , n−m + 1, (5.5)

which have to be satisfied together withdNm(X) = y. With the notation

s± =
[
s±j : j = 1, . . . , n−m + 1

]
,

the equations (5.5) take the matrix form

±dĜm−1 − v 1d1
T
n−m+1︸ ︷︷ ︸

=:1d×n−m+1

+s± = 0.

Then the solution of the linear program

min
d,v,s±

v,

 NT
m(X) 0 0 0

Ĝ
T

m−1 −1n−m+1×d I 0

−Ĝ
T

m−1 −1n−m+1×d 0 I




dT

v
sT

+

sT
−

 =

 yT

0
0

 (5.7)

gives the control polygon such thatglobally the respective spline curve has minimal norm of
the(m− 1)st derivative. There are however, several remarks to be made.

12Note that form = 3 this problem corresponds to minimizing the largest value thatS′′
md can assume.
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1. Since most implementations of the simplex algorithm can only handlevector valuedright
hand side in (5.7), the columns of the right–hand side matrix and the respective pieces
of the “big” matrix have to be “stacked” on top of each other. This job is easily done by
using thereshape command.

2. The form (5.7) is usuallynot proper to be entered directly into an implementation of the
simplex algorithm as most of them use the implicit assumption that all variables have to
be positive and there is no justification to assume thatd has this property. However, any
d can obviously be written asd = d+ − d− with d± ≥ 0 so that formally we just have
to introduce a new variable to be “on the safe side”. Nevertheless, this approach is not
recommended.

3. The unfortunate reason for this problem is thatd is a free variable and is not bounded a
priori, the bound ford just comes from the minimization. This “degeneracy” can cause
trouble in many simple implementations of the simplex method which can be inappropri-
ate for our slightly more sophisticated optimization problem.

4. Also note that (5.7) cannot be consideredcomponentwise, that is, each row ofd would
be determined by a scalar linear program as in (5.7) – the components are all coupled by
the numberv which is a maximum overall components.

5. If we limit each component byvj, j = 1, . . . , d, and minimize overv1 + · · · + vd, then
this corresponds to using the1–norm as coefficient norm onRd.

6. General keep in mind that this approximation problems result in verylarge linear pro-
grams that may be hard to store and hard to solve. After all, theworst case complexity
of a linear program withn variables isO (2n), though this happens only for very spe-
cial and academic examples, and it is reported that in average and computational practice
[16, 20] the complexity seems to be more on theO(n)–side. But there is no guarantee . . .

But what to do in the case thatk < m− 1? Here the maxima are not assumed at the knots,
but nevertheless we can use the idea of (5.7) and just replaceĜm−1 by Ĝk there. What we
minimize then is not the norm of the derivative but the norm of the largest coefficient of the
derivative curve. However, since

‖Smd(x)‖ ≤
n∑

j=1

‖dj‖ Nm
j (x |T ) ≤ max

j=1,...,n
‖dj‖

n∑
j=1

Nm
j (x |T )︸ ︷︷ ︸
=1

= max
j=1,...,n

‖dj‖ ,

“small” control points also lead to globally “small” splines curves and so the target of mini-
mization still make sense. But more important, this minimization problem can be solved by
readily available efficient algorithms, in this case, the simplex method.
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5.3 Least squares and energy functionals

The minimizing approach from the preceding subsection still insisted on interpolation. Of
course, there are situations where interpolation is a reasonable approach, but in many real world
application at least one of the following two situations occurs:

1. The data can be contaminated by noise, so that interpolation always interpolates the
noise as well, causing, for example, unnecessary oscillation in the spline.

2. Interpolation may not even be necessary and it would be sufficient to reproduce
the data with a certain tolerance. Hence, this tolerance could be used to obtain
“smoother” solutions of the approximation problem.

Thesmoothing splinesis defined as the solution of the optimization problem

min
f∈Sm(T )

∑
x∈X

‖f (x)− yx‖
2
2 + λ

∫
R
‖f ′′(t)‖2

2 dt (5.8)

for a parameterλ > 0 to be chosen appropriately.

The idea in the smoothing spline is to “balance” accuracy to the data against smoothness
(in the “geometric” sense of little oscillation) with the help of the parameterλ.

Of course, there are a lot of things that can be varied in (5.8):

1. One could pick a smoothness measure different from| · |2, the integral over the second
derivative, for example integrate over higher order derivatives or even linear combinations
of derivatives of different orders.

2. Both norms, the one in the “approximation term” as well as the one in the “smoothness
term”, can also be endowed with weights.

A fairly general form of the smoothing spline problem can be stated withweights wx ≥ 0,
x ∈ X, and parameters13 λ1, . . . , λm−1 as

min
f∈Sm(T )

∑
x∈X

wx |f(x)− yx|2 +
m−1∑
r=1

λr

∫
R

∣∣f (r)(x)
∣∣2 dx. (5.9)

To determine the solution of this problem, we first write use the (row) vectors

f(X) = [f(x) : x ∈ X] = dNm(x) and y = [yx : x ∈ X]

13Why at mostm−1 such terms? They will correspond to derivatives and a spline of orderm can only guarantee
at mostm− 1 continuous derivatives.
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and note that, withW = diag [wx : x ∈ X],∑
x∈X

wx |f(x)− yx|2 = (dNm(X)− y) W (dNm(X)− y)T

= dNm(X)WNT
m(X)dT − 2 dNm(X)WyT + yT Wy

as well as, recalling (5.4) ∫
R

∣∣f (r)(x)
∣∣2 dx = dGrBm−rG

T
r dT .

Consequently, the functional to be minimized in terms of the coefficient vectord takes the form

Φλ(d) = d

(
Nm(X)WNT

m(X) +
m−1∑
r=1

GrBm−rG
T
r

)
dT − 2 dNm(X)WyT + yT Wy

which is a quadratic form with positive semidefinite14 quadratic coefficient whose minimum
can be located by solving∇dΦλ(d) = 0, that is,(

Nm(X)WNT
m(X) +

m−1∑
r=1

λrGrBm−rG
T
r

)
dT = Nm(X)WyT . (5.10)

As we will see later, these normal equations take a rather nice form for splines – the matrices
appearing on the right hand side are banded ones and permit a solution inO(n).

Note that for smoothing splines there is no connection needed any more between the di-
mension of the spline space and the number of “interpolation” conditions:

1. If the dimension of the spline space is too small, however, then this may result in
a severe defect in approximation, i.e. the approximation term will always be rather
large and may even dominate the smoothness term.

2. If the dimension of the spline space is large enough or maybe too large, then we will
obtain an interpolating or at least “almost interpolating” function for small parame-
ters ofλ.

It is clear that there is a large number of degrees of freedom, from choosing the dimension of
the spline space, the location of the sitesX up to the choice of the parametersλ. For the latter
ones there exists the concept ofcross validationwhich fixes the parameters such that they are
optimal in a certain statistical context.

In fitting problems where a smoothest possible spline is to be found which is “sufficiently
close” to given data, a different strategy can be applied:

14And in most cases strictly positive definite.
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1. Choose the spline space large enough to enable interpolation15.

2. Solve the problem forλ = 0, thus computing an interpolant whose coefficients even
satisfyΦ0(d) = 0.

3. Enlargeλ to improve the smoothness of the function as long as the approximation prop-
erty is still maintained.

This procedure leads to a choice ofλ which gives the “smoothest” approximant within a given
tolerance.

5.4 Efficient implementation of Gramians

Finally, there is the need to compute the B–spline Gramian

Bm(T ) =

[∫
R

Nm
j (x) Nm

k (x) dx :
j = 1, . . . , n
k = 1, . . . , n

]
(5.11)

and we better do this in an efficient way. The matrix is obviously symmetric, so it suffices
to compute the entries of the upper triagonal part, i.e., forj ≤ k. Moreover, sinceNm

j is
supported on[tj, tj+m+1] andNm

k on [tk, tk+m+1], respectively, the integral is nonzero if and
only if tk ∈ [tj, tj+m], hence if and only ifk ≤ j + m. In other words, all we need to compute
for givenj ∈ {1, . . . , n} are the integrals∫

R
Nm

j (x) Nm
k (x) dx =

∫ tj+m

tj

Nm
j (x) Nm

k (x) dx, k = j, . . . , j + m.

This already gives us an important but not too surprising observation:

The GramianBm(T ) is a symmetric banded matrix withm sub- and superdiagonals.

This method is implemented in the functionBSplGram . To obtain the Gramian of a derivative,
in other words, the matrix

B(r)
m :=

∫
R

N (r)
m (x)N (r)

m (x)T dx =

[∫
R

Nm
j (x)(r) Nm

k (x)(r) dx :
j = 1, . . . , n
k = 1, . . . , n

]
,

we substitute (2.3) and obtain that

B(r)
m =

∫
R

Ĝr N (r)
m

(
x | T̂k

)
N (r)

m

(
x | T̂k

)T

Ĝ
T

r dx

= Ĝr

(∫
R

N (r)
m

(
x | T̂k

)
N (r)

m

(
x | T̂k

)T

dx

)
Ĝ

T

r = Ĝr Bm−r

(
T̂k

)
Ĝ

T

r ,

which is the most economic way to compute this matrix. Note thatBm−r

(
T̂k

)
∈ Rn−r×n−r

which nicely explains the loss of rank that occurs when passing to derivatives.

15It is no mistake that the word “unique” is missing here – we do not care for a unique interpolant, any interpolant
will do!
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5.5 An example of smoothing splines

Let us finally consider an example, the “standard” case where smoothness is considered in terms
of second derivatives and we use the Greville abscissae with respect toT as approximation sites.
So, we begin by

octave> T = [ 0 0 0 ( 0:10 ) 10 10 10 ];X = Greville( 3,T );

and consider smoothing of a randomly perturbed linear function:

octave> y = X .* ( 1 + .4*( rand( size(X) ) .- 1 ) );

The perturbation is a relative error of at most 20%. To solve, for givenλ > 0, the minimization
problem (with identical weights), we first compute the two matrices

octave> A = BSplVander( 3,T,X ); A = A*A’;
octave> B = BSplGramDer( 3,T,2 );

as well as the right hand side

octave> yy = BSplVander( 3,T,X ) * y’;

We ploty

octave> clearplot; plot( X,y,"*" )

define a point set for plotting the splines,

octave> Z = (min(T):.01:max(T));

and compute and plot the smoothing splines are computed by calling

octave> l = 0; d = ( ( A + l*B ) \ yy )’;
octave> s = d*BSplVander( 3,T,Z ); plot( Z,s );

The effect of increasing the smoothing parameter can be nicely seen in Fig. 5.1. The deviation
from the data increases, but the smoothness of the spline, in the sense of reduced oscillation, is
increased in exchange. One remarkable property of this process is as follows

The solution forλ = 0 of this optimization problem is the good oldnatural cubic spline.
The solution forλ = ∞, on the other hand, is thelinear regression, i.e., the unique line
that has minimal least squares distance from the data.



40 5 SMOOTHING SPLINES

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  2  4  6  8  10

Figure 5.1: The smoothing splines for the parameter valuesλ = 0, 0.01, 0.1, 1, 10.

5.6 A sup–smoothing spline

We could also combine the idea of the smoothing spline

Balance approximation at the sites with a smoothness term

with the minimization with respect to the∞–norm which will16 lead once more to a linear
program. So, we now consider the problem

min
d

(
max
x∈X

‖Smd(x)− yx‖+ λ max
j=1,...,n−k

∥∥∥∥(d Ĝk

)
j

∥∥∥∥) . (5.12)

We already know how to change a minimax problem into a linear program, see (5.7), and the
side conditions coming from the smoothing term are almost like there, except that we drop the
interpolation term: [

Ĝ
T

k −1n−k×d I 0

−Ĝ
T

k −1n−k×d 0 I

]
dT

v
sT

+

sT
−

 =

[
0
0

]
(5.13)

16This is no surprise – at least it should not be!
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To handle the first, the “approximation”, term, we also proceed as above, set

u = max
x∈X

‖Smd(x)− yx‖ = max
x∈X

‖dNm(x)− yx‖ ,

hence, with additional slack variablest±,

±dNm(X)− u1 + tx,± = ±yx, x ∈ X,

giving [
NT

m(X) −1#X×d I 0
−NT

m −1#X×d 0 I

]
dT

u
tT
+

tT
−

 =

[
yT

−yT

]
. (5.14)

Dropping the subscript of the1–matrices17, we thus find that the sup–smoothing spline solving
(5.12) is the solution of the linear program

min u + λv,


NT

m(X) −1 I 0 0 0 0
−NT

m −1 0 I 0 0 0

Ĝ
T

k 0 0 0 −1 I 0

−Ĝ
T

k 0 0 0 −1 0 I





dT

u
tT
+

tT
−
v
sT

+

sT
−


=


yT

−yT

0
0

 . (5.16)

In a linear programming environment with a normal form

min cT x, Ax ≤ b,

we can drop the slack variables± andt± and just consider

min u + λv,


NT

m(X) −1 0
−NT

m(X) −1 0

Ĝ
T

k 0 −1

−Ĝ
T

k 0 −1


 d

u
v

 ≤


yT

−yT

0
0



Hence, in principle it is possible to solve this problem numerically, however, the remarks
made after (5.7) still haven’t lost any of their validity and it will be necessary to really test the
performance and quality of this method on real–world data. What remains unchanged, however,
is the fact that the problem still containsd as afree variable. We compare the behavior of
the smoothing splines with respect to the two different norms in Fig 5.2. Apparently, the sup–
smoothing spline has a much stronger tendency to trade in deviation from the data points against
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Figure 5.2: The smoothing splines forp = ∞ (left) andp = 2 (right) and the parameter
valuesλ = 0, 0.05, 0.1, 1. The parameter values are not really comparable in these two
situations but it seems that the sup–smoothing spline has a general tendency to emphasize
the smoothness part more strongly.

smoothness of the curve – once more smoothness in the sense of reduced oscillation. Another
example is shown in Fig. 5.3, this time for a sampled absolute value function. Again the effect
of the smoothing parameter can be seen nicely and of course the limit is not the line which
minimizes the maximal distance to the data.

17They should be clear from the context now!
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Figure 5.3: Approximating a sampled absolute value function with the sup–smoothing
spline for the parameter valuesλ = 0, .5, 1, 2, 3, 4, 5, 10.
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Although this may seen as a paradox, all
exact science is dominated by the idea of
approximation

Bertrand Russell

Knot insertion and removal 6
The Curry–Schoenberg theorem tells us that a spline is a piecewise polynomial function of a
given order of smoothness at the knots, depending on the multiplicity of the knot. Trivially,
a polynomial is a also a piecewise polynomial – with the little side effect that the connection
between the polynomial pieces in this case is aCm or aC∞ one; there is no more distinction
between the two of them for polynomials inΠm. In other words:

If we insert knots into a given knot sequence, then any spline with respect to the coarse
knot sequence is also a spline with respect to the fine knot sequence.

6.1 Refinement of knot sequences

So what does it mean to refine a knot sequence? Intuitively, there must be two properties:

1. The refined knot sequence must contain any knot of the “original” knot sequence.

2. The multiplicities of each knot in the refined knot sequence must be at least as high as the
multiplicity of the knot in the original knot sequence.

There are two ways to refine a knot sequence:

Insertion of a new knot: replaceT by T ∗ where

T ∗ = {t1, . . . , tj, t∗, tj+1, . . . , tm+n+1} , tj < t∗ < tj+1.

Increase the multiplicity: replaceT by T ∗ where

T ∗ = {t1, . . . , tj, tj, tj+1, . . . , tm+n+1} , tj < tj+1.
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We will call T ∗ = T ∗m,n∗ a refinement of T , written asT ⊆ T ∗, if T ∗ is again a valid18 knot
sequence of orderm and if there exist a strictly increasing functionν : {1, . . . , n + m + 1} →
{1, . . . , n∗ + m + 1} such thatt∗ν(j) = tj, j = 1, . . . , n + m + 1. Note that this definition is just
a formalization of the intuitive criterion mentioned before.

One might argue whether it makes sense to refine a knot sequence “outside” the boundary
knots. The above definition does not exclude this, but it also does not encourage such a
strategy!

Clearly, any piecewise polynomial onT is also a piecewise polynomial onT ∗ and since the
multiplicities of knots can only be increased when passing to refined knot sequence, the respec-
tive smoothness conditions becomerelaxed. Therefore, we have the following observation:

If T ⊆ T ∗ then alsoSm(T ) ⊆ Sm (T ∗).

The B–splines with respect toT ∗ are a basis ofSm (T ∗), which containsSm (T ), and so there
must be, for any coefficient vectord, an associated coefficient vectord∗ such that

n∑
j=1

dj Nm
j (· |T ) =

n∗∑
j=1

d∗j Nm
j (· |T ∗)

and of course the question is how to computed∗.

6.2 Knot insertion

We will focus here on the method to insert asingle knot, usually referred to as theBoehm algo-
rithm – in contrast to this one, there also exists theOslo algorithm which inserts an arbitrary
number of knotssimultaneously.
We consider the following situation:

Insert a knott∗ between two distinct knotstj < tj+1 such thattj ≤ t∗ < tj+1. That is, we
increase the multiplicity of a knot “from the right”.

Our first observation is that knot insertion is and must be alocal process, it only affects those
B–splines whose support contains the interval[tj, tj+1], and these are precisely the B–Splines
Nm

j−m, . . . , Nm
j . That also means that only the associated control pointsdj−m, . . . ,dj will be

relevant for the knot insertion algorithm. Moreover, insertion of a single knot will result in
n∗ = n + 1, so thatd∗ contains exactly one coefficient more thand.

Algorithm 6.1 (Knot insertion)
Input:

18This means that there still a no knots whose multiplicity exceedsm + 1.
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• Knot sequenceT = Tm,n.

• Knot to be insertedtj ≤ t∗ < tj+1.

Procedure:

1. For k = 1, . . . , j −m set
d∗k = dk.

2. For k = j −m + 1, . . . , j

(a) Compute

αk =
tk+m − t∗

tk+m − tk

(b) Set
d∗k = αk dk−1 + (1− αk) dk.

3. For k = j + 1, . . . , n + 1 set
d∗k = dk−1.

Result: Control pointsd∗ such that

Smd∗ (· |T ∗) = Smd (· |T ) .

Once more, we can express this process in terms of linear algebra, namely as a matrix multipli-
cation

d∗ = dA (t∗) , A (t∗) =



1
...

1 αj−m+1

1− αj−m+1
.. .
.. . αj

1− αj 1
...

1


∈ Rn×n+1.

Note thatA (t∗) is a very sparse, banded matrix. The procedure to compute such a knot insertion
matrix is namedKinsMat , the pairA, T ∗ by the functionKInsert . Let us reconsider our
earlier example, namely

octave> T = [ 0,0,0,0,1,2,3,4,4,4,4 ];
octave> d = [ 0 1 1 .5 0 0 1 ; 0 .4 .8 1 .8 .4 0 ];

and insert the knott∗ = 2.5. The new control polygon can be determined as

octave> [A,Tt] = KInsert( 3,T,2.5 ); dd = d * A;
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Figure 6.1: Knot insertion. The two control polygons and the two splines are drawn, but of
course only one spline curve is visible as knot insertion does not change the curve.

The result of single knot insertion is shown in Fig. 6.1. Since knot insertion is again aconvex
combination process, the new control polygon always lies inside the convex hull of the original
one.

Knot insertion can be repeated. For example, we can insert a knotm times and since spline
functions alwaysinterpolate19 at knots of multiplicitym, this gives a way toevaluatea spline
function at the newly inserted knot – which happens to be the de Boor algorithm if looked at
carefully.

octave> d = [ 0 1 1 .8 .2 0 0 1 ; 0 .2 .6 1 1 .6 .2 0 ];
octave> T = [ 0,0,0,0,1,2,3,4,5,5,5,5 ];
octave> for j=1:3 [ A,T ] = KInsert( 3,T,2.5 ); d = d*A; end

Then one of the control points is indeed located on the curve. This can be seen in Fig 6.2 where
the outcome of triple knot insertion for a cubic spline is depicted.

There is a nice side effect of our “linear algebra” approach to do knot insertion, it allows us
to dovirtual knot insertion : instead of modifying the control polygon and the knot sequence,
we just store the matrix

A (t∗1, . . . , t
∗
k) = A (t∗k) · · ·A (t∗1)

19We did not mention this property before which follows quite immediately from the de Boor algorithm, because
at knots of multiplicitym one always “sits” on the left boundary of all the intervals to be considered, so that the
coefficientdj−m is reproduced in all stages of the algorithm.
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Figure 6.2: An example of triple knot insertion with the intermediate control polygons and
the control points of final level. One of them now lies on the curve where the triple knot
has been inserted.

that defines the action of knot insertion; note, however, thatA
(
t∗j
)

depends on the knot se-
quenceT ∪

{
t∗1, . . . , t

∗
j−1

}
so that there is no commuting of the knot insertion matrices or

something similar.

6.3 First applications of knot insertion

Knot insertion has more use than just improving the flexibility of a spline curve by adding fur-
ther control points, though of course this has been the main intention in and for the development
of knot insertion algorithms.

We begin by the conversion of a spline curve intopiecewise polynomial form, often sim-
ply called the PP form of the spline curve. The polynomial pieces could be represented with
respect to the monomial basis, but since that one is not of geometric relevance, we might as
well reference to theBézier representationof a polynomial curve on the nondegenerate inter-
val [tj, tj+1]:

p(x) = Bnd(x) =
n∑

j=0

d

(
n

j

)
λj(x) (1− λ(x))n−j , λ(x) =

x− tj
tj+1 − tj

.

The B́ezier representation of a polynomial on[a, b] corresponds to a most simple spline function,
namely the one with knots of multiplicitym + 1 ata andb and nowhere else. So, if we want to
compute the restriction of a spline curve to an interval[a, b], tj ≤ a < b ≤ tj+1, then this can
be obtained quite easily:



6.3 First applications of knot insertion 49

The restriction of a spline curve to a given interval whose interior does not contain a knot
can be obtained by inserting the endpoints of the interval into the knot sequence until they
are knots of multiplicitym + 1.

Clearly, the knot insertion only gives the coefficients of the Bézier representation of the polyno-
mial, but these coefficients can be easily converted into coefficients with respect to amonomial
representation. There are some advantages of a piecewise polynomial representation:

• NC–milling machines “understand” polynomials, so the coefficients (of degree up to5)
can be fed into an NC machine directly.

• The local polynomial evaluation can be done with a complexity ofO(m) while the de
Boor algorithm or also the spline recurrences have the higher complexity order ofO (m2).
Hence, if a spline has to be evaluated at many points, such a conversion could be worth-
while.

Note thatMatlab ’s spline toolbox even has a built–in conversion routine for determining the
piecewise polynomial form, see [2].

The next application is thecomparison of spline curves. Here, we consider two spline
curves,

Smd (· |T ) =
n∑

j=1

dj Nm
j (· |T ) and Smd′ (· |T ′) =

n′∑
j=1

d′j Nm
j (· |T ′) .

Let T ∗ = T ∪ T ′ be the union of the two knot sequences, i.e., thesmallestknot sequence such
thatT ⊆ T ∗ andT ′ ⊂ T ∗, then we can insert the “missing” knots into both sequences and write

Smd (· |T ) = SmdA (T ∗ \ T ) (· |T ∗)

as well as
Smd′ (· |T ′) = Smd′A (T ∗ \ T ′) (· |T ∗)

so that the difference between the two splines is estimated by

‖dA (T ∗ \ T )− d′A (T ∗ \ T ′)‖

where as norms we could either take theFrobenius norm

‖dA (T ∗ \ T )− d′A (T ∗ \ T ′)‖F =

(
d∑

j=1

n∗∑
k=1

∣∣∣(dA (T ∗ \ T ))j,k − (d′A (T ∗ \ T ′))j,k

∣∣∣2)1/2

(6.1)
or thevector sup–norm

‖dA (T ∗ \ T )− d′A (T ∗ \ T ′)‖∞ = max
j=1,...,d

max
k=1,...,n∗

∣∣∣(dA (T ∗ \ T ))j,k − (d′A (T ∗ \ T ′))j,k

∣∣∣ .
(6.2)
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Therefore, we can approximate a given splineSmd′ (· |T ′) by a spline of the formSmd (· |T )
with a possibly different knot sequence20 by once more solving one of our smoothing problems
like either

min
d
‖dA (T ∗ \ T )− d′A (T ∗ \ T ′)‖2

F +
m−1∑
r=1

λr

∫ ∥∥S(r)
m d

∥∥2
(6.3)

or

min
d
‖dA (T ∗ \ T )− d′A (T ∗ \ T ′)‖∞ +

m−1∑
r=1

λr

∫ ∥∥∥dĜr

∥∥∥
∞

(6.4)

by the smoothing spline methods described in the previous chapters. Again, for sufficiently
small values ofλ, the approximants will come to the original spline as close as possible while
for larger values ofλ they will put more emphasis on reducing oscillation.

It is important to emphasize that the minimization is still performed in terms ofd only – the
knot insertion process is represented entirely by the matrixA (T ∗ \ T ). So this is another
case ofvirtual knot insertion .

6.4 Zeros of spline functions

A somewhat unexpected application of knot insertion is the determination of zeros, or, more
generally, in the curves, the determination ofintersection of a spline curve with a given line.
In fact, this is essentially the problem of finding a zero of a spline curve: Leta, b ∈ Rd the
beginning and end point of the line in question and set

lj =
tn+1 − xj

tn+1 − tm+1

a +
xj − tm+1

tn+1 − tm+1

b, j = 1, . . . , n,

where thexj are once more theGreville abscissae, thenSml is a linear function21 And thus
the splineSmd− Sml = Sm (d− l) has a zero precisely at the points whereSmd intersects the
line.

The standard method to computezeros of functionsis Newton’s method, which determines
a zero off by means of the iteration

xk+1 = xk −
f (xk)

f ′ (xk)
, k = 0, 1, 2, . . . ,

subject to an initial valuex0. However, Newton’s method has some problems here:

1. The iteration depends on a good initial valuex0 as it is well known to converge only
locally. How to determine this value is usually difficult.

20For example, the knots inT can be placed with a density according to the curvature of the splineSmd′.
21More precisely, it is the Schoenberg operator applied to the linear function connectinga andb.
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2. To perform the iteration, the derivative of the spline has to be evaluated. This is in fact the
smallest of our problems since the de Boor algorithm can easily be extended to provide
this value too.

3. If we work with splinecurves, we deal withvector valuedfunctions so that the iteration
above is not even well–defined22! The “self–suggesting” cure is to consider the curve
component by component, but then we have to look forsimultaneous zerosof these
scalar functions, so in most cases a zero in one component may be rendered useless.

These difficulties can be overcome by a knot–insertion based algorithm due to Mørken and
Reimers [15]. We will just describe the basic idea here, details and, in particular, a proof of23

convergence can be found in [15]. In fact, the basic idea behind the method is really very
intuitive:

Intersect the control point with the line and insert the abscissa of this intersection into the
knot sequence.

In fact, if there isno intersection between the control polygon and the line, then there isno
intersection between the curve and the line24 since the curve lies in the convex hull of the control
polygon. Generally, thevariation diminishing property of the splines, [12, 13] says that any
hyperplane inRd has more intersections with the control polygon than with the curve. Hence,
if there is no intersection with the polygon, there is no intersection with the curve and we can
immediately stop the search for zeros.

If, on the other hand, the control polygon intersects or has a zero somewhere, then this
happens between two control points, saydj anddj+1, more precisely, at the point

λ dj + (1− λ) dj+1, λ ∈ [0, 1].

Motivated by the Schoenberg operator, we interpretSmd = Smf for some continuous function
f and obtain thatdk = f (xk), so that it is natural to connect the control points to the Greville
abscissae. Therefore, a good25 guess for the zero is the point

t∗ = λ xj + (1− λ) xj+1,

which is precisely the knot to be inserted intoT . This leads to a refined control polygon and
the process is repeated until there exists a control which is either sufficiently close to the line or
sufficiently small, depending on the type of problem one considers. In fact, the idea of iterating
zeros of linearized objects appears very similar to Newton’s method where a zero of the tangent
is computed.

22How to divide a vector by a vector?
23Even quadratic
24Ford > 2 one has to be slightly more careful here!
25Or, more correctly, alinearized.
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An important application of zero finding is the determination of closest points: Given a point
y ∈ Rd and a spline curveSmd, defined in terms of its knot sequence and control polygon, find
the closest point toy on the curve with respect to the euclidian distance, i.e., solve

min
x
‖Smd(x)− y‖2 .

Squaring the objective function once more we thus get that we can as well minimize

‖Smd(x)− y‖2
2 =

d∑
j=1

djNm(x)NT
m(x)dT

j − 2djNm(x)yj + y2
j

=
d∑

j=1

n∑
k,`=1

djkdj`N
m
j (x)Nm

k (x)− 2
d∑

j=1

n∑
k,`=1

djkyjN
m
k (x) +

d∑
j=1

y2
j ,

where this timedj denotes thejth row of the matrixd and thus thejth component of the curve.
The function above is a scalar valuedspline function of degree at most2m with breakpoints at
the knots ofT , so it belongs toS2m (T ∗), where

T ∗ = {t1, . . . , T, tn+m+1, . . . , tn+m+1} ,

so that just the coefficients of the boundary points are adapted. Consequently,

‖Smd(x)− y‖2
2 =

n∑
j=1

cj N2m
j (x |T ∗) = c N 2m (x |T ∗) ,

and to computec we would need two operations:

1. a multiplication formula for splines,

2. a degree raising formula for splines,

but here we restrict ourselves to mentioning that both operations can be performed. To find the
abscissax of the closest point on the curve, we now “only” have to apply our zero search to the
function

d

dx
‖Smd(x)− y‖2

2 = cĜ1 N 2m−1

(
x | T̂ ∗

)
.

6.5 Knot removal

Knot removal is the inverse process of knot insertion – instead to passing fromT to T ∗ ⊃ T ,
we want to pass fromT ∗ to T . Since we still haveSm (T ) ⊂ Sm (T ∗), we cannot expectknot
removal to be done exactly, but have to do it in such a way that the “knot removed” spline curve
approximates the original one “as good as possible”. So now we start withSmd∗ and want to
determined after removingt∗ from T ∗. To determined, we simply re–insertt∗ and compare
the resulting control polygondA (t∗) with d∗, minimizing, for example, the expression

‖dA (t∗)− d∗‖2
2 = dAAT dT − 2d∗AT dT + d∗ (d∗)T
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leading once more to thenormal equations

dAAT = d∗AT .

This, however, is only one way to determine the control polygon of a knot removed spline.
Based on our knowledge from the smoothing splines, we can immediately come up with gener-
alizations and extensions:

1. use a different norm, in particular‖dA (t∗)− d∗‖∞. This will lead to another linear
programming problem with all the pleasant things like free variables and so on.

2. minimize also with respect to a weighted norm that contains asmoothing term for Smd.
After all, knot removal can be seen as passing from a “complicated” to a “simpler” curve
and it may be beneficial if this curve is also as smooth as possible.

3. remove several knots at once – the matrixA is then a little bit more intricate.
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[4] R. Christensen,Advanced linear modeling, 2. ed., Springer Texts in Statistics, Springer,
2001.

[5] G. B. Dantzig,Linear programming and extensions, Pinceton University Press, 1963.

[6] G. Farin, Curves and surfaces for computer aided geometric design, Academic Press,
1988.

[7] W. Gautschi,Numerical analysis. an introduction, Birkhäuser, 1997.
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control polygon, 6
convex combination, 47
convex combinations, 6
cross validation, 37

difference matrix, 11

fitting problems, 37
free variable, 35, 41
Frobenius norm, 49

Gauss quadrature formula, 13
global maximum, 34
Greville abscissae, 20, 29, 50

interpolation problem, 15
interpolation sites, 19
intersection, 50

knot removal, 52
knot sequence, 2, 4
knot spacing, 30
kriging, 32

Lagrange multipliers, 32
linear precision, 29
linear regression, 39

Marsden identity, 31

monomial representation, 49
multiplicity, 2

natural cubic spline, 39
natural spline, 16
natural spline interpolant, 16
Newton’s method, 50
normal equations, 53

optimal interpolation, 32
Oslo algorithm, 45

piecewise linear curve, 34
piecewise polynomial form, 48

quadratic functional, 33
quasi–interpolant, 29

reconstruction, 29
refinement, 45
relevant knots, 15

Schoenberg operator, 20, 29
Schoenberg–Whitney condition, 20
shape information, 25
simple knots, 3
simultaneous zeros, 51
sites, 15
slack variables, 34
smoothing splines, 36
smoothing term, 53
spline curve, 4
spline function, 52
spline space, 7

truncated powers, 8

Vandermonde matrix, 15
variation diminishing, 31, 51
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vector sup–norm, 49
virtual knot insertion, 47, 50

weights, 36

zeros of functions, 50


