
Chair of Digital Image Processing

Single Image Super-Resolution for Car Plates
Using Generative Adversarial Networks

Master Thesis by

IHEB CHHIBI

1. Examiner 2. Examiner

Prof. Dr. Tomas Sauer Prof. Dr. Michael Granitzer

September 2, 2021

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Structure of the Thesis . 3

2 Background 5

2.1 Definition of Terms . 5

2.1.1 Machine Learning . 5

2.1.2 Deep Learning and Neural Networks 6

2.1.3 Convolutional Neural Networks (CNNs) 7

2.1.4 VGG Networks . 8

2.1.5 Residual Networks . 10

2.1.6 Generative Adversarial Networks (GANs) 12

2.1.7 Batch Normalization (BN) . 14

2.1.8 Bicubic Interpolation . 15

2.2 State of the Art . 17

2.2.1 Prediction-Based Algorithms . 17

2.2.2 Learning-Based Algorithms . 17

2.2.3 Loss Function . 19

3 Methods 21

3.1 Network Architecture . 22

3.1.1 Batch Normalization Layer Removal 22

3.1.2 Residual-in-Residual Dense Block (RRDB) 23

3.2 Relativistic Discriminator . 25

3.3 Perceptual Loss Function . 27

3.4 Network Interpolation . 28

ii

Contents

4 Results and Technical Details 30

4.1 Dataset . 30

4.1.1 Number Dataset . 30

4.1.2 German License Plate Dataset . 31

4.2 Training Details . 34

4.3 Experimental Results . 35

4.3.1 Number-Dataset-Based Model . 35

4.3.2 License-Plate-Based Model . 40

5 Discussion 47

5.1 Training Results . 47

5.1.1 PSNR Model Training . 47

5.1.2 ESRGAN Model Training . 47

5.2 Testing Results . 49

5.3 Interpolation Results . 49

5.4 Pre-trained Model Results . 52

6 Conclusion 54

Appendix A Training Graphs 56

Bibliography 60

Eidesstattliche Erklärung 65

iii

Abstract

Despite the advance realized by recent studies in the field of image processing, and

Super-Resolution more specifically, researchers focus their investment on models and

architectures capable of generating the finest texture details while adapting their find-

ings both to single image and multiple image Super-Resolution. The datasets used for

training the models based on Neural Networks are chosen according to their high qual-

ity, randomness, and feature richness. The super-resolved images acquire remarkable

details, yet are often unpredictable and hardly fit for monotonous tasks.

In this thesis we offer to test a state-of-the-art architecture, that is Enhanced Super-

Resolution Generative Adversarial Network (ESRGAN) [Tan18], on a custom-generated

dataset applicable to car license plates.

The adopted model enhances the standard SRGAN generator [Twi17] using a recursive

Residual-in-Residual Dense Block (RRDB) featuring only convolutional and Rectified

Linear Activation (ReLU) layers. It also applies a relativistic aspect to the conventional

discriminator through Relativistic average GAN or RaGAN. The model also upgrades

the adversarial loss with two additional terms, namely the perceptual loss using VGG-

extracted features, and a standard pixel loss. The trained Neural Network outperforms

on the first generated dataset that adopts a trivial structure, delivering remarkable

Peak Signal-to-Noise Ratio (PSNR) values of over 40 dB. Hence the need to create more

robust data samples that resemble real license plates. We generate a second dataset with

images deriving from the German license plate structure. The solution was successful

in producing perceptually satisfying images with relatively high PSNR. It also proved

scalable if trained on high-quality datasets.

iv

Acknowledgments

First and foremost, I would like express my deepest gratitude to my supervisor, Professor

Dr. Tomas Sauer, for giving me the opportunity to execute and achieve my master thesis,

and for his valuable expertise and insightful feedback.

I would also like to acknowledge Mr. Ruben Fischer for his technical support and

guidance throughout the model training phase, as well as Dr. Wiem Fekih Hassan for

providing the knowledge and advice I needed to successfully write my dissertation.

Finally, I would like to thank all my family and friends for their unwavering support and

wise counseling during my master thesis and overall education.

v

List of Figures

2.1 Comparison between basic and machine learning algorithms 6

2.2 Graphical representation of a NN with n inputs, n outputs and 3 hidden

layers . 7

2.3 Representation of iconic CNNs and their recorded accuracy in the ILSVRC

contest [Das17] . 8

2.4 VGG16 and VGG19 model architectures 9

2.5 Residual block: a representation of a skip connection 10

2.6 Graph representing a dense block; Nodes refer to network layers, arcs

refer to skip connections; A deeper node is modeled by a darker color . . 11

2.7 Graphical representation of GAN training process 13

2.8 Representation of three different interpolation techniques [Coo21] 15

2.9 Comparison between 2D nearest neighbor, bilinear and bicubic interpola-

tion techniques [Cmg21] . 16

2.10 Image MSE/SSIM Hypersphere [Sim03] 20

3.1 The implemented architecture is ESRGAN [Tan18], similar to the SRGAN

network [Twi17] with a customizable ”basic block”. 21

3.2 Comparison between SRGAN residual block and ESRGAN residual block

(without BN) . 23

3.3 Representation of a Residual in Residual Dense Block (RRDB) (a) The

basic architecture for the ESRGAN generator (b) First zoom in: residual

block (c) Second zoom in: dense block 24

3.4 Representation of ReLU and LReLU functions for x ∈ [0, 1] 25

3.5 Feature maps before and after activation for a sample license plate image

extracted from different VGG19 layers 29

4.1 Random number sequence generated using the Charles Wright font . . . 31

4.2 German license plate format . 32

vi

List of Figures

4.3 German registration and safety seals . 33

4.4 Learning rate evolution during training 34

4.5 PSNR model total loss . 36

4.6 ESRGAN model discriminator loss . 36

4.7 ESRGAN model generator loss . 37

4.8 Representation of the network interpolation result for different α values . 38

4.9 PSNR model total loss . 41

4.10 ESRGAN model discriminator loss . 41

4.11 ESRGAN model generator loss . 43

4.12 Representation of the network interpolation result for different α values . 46

5.1 Magnified windows of the custom-trained ESRGAN model results 50

5.2 Magnified windows of the network interpolation result for different α values 51

5.3 Magnified windows of the pre-trained ESRGAN model results 53

A.1 PSNR loss: a model comparison . 56

A.2 ESRGAN discriminator loss: a model comparison 56

A.3 ESRGAN generator loss: a model comparison 57

vii

List of Tables

2.1 Brief description of the terms used in the GAN loss function equations . 13

3.1 Brief description of the terms used in the RGAN and RaGAN loss function

equations . 26

3.2 Brief description of the terms used in the MSE and VGG loss function

equations . 28

4.1 Number-dataset result presentation: Comparison between different ap-

proaches and model assessment using the metrics PSNR/SSIM 39

4.2 Additional results featuring a number sequence in Arial font and a let-

ter sequence in Charles Wright font: Comparison between different ap-

proaches and model assessment using the metrics PSNR/SSIM 40

4.3 License-plate-dataset result presentation: Comparison between different

approaches and model assessment using the metrics PSNR/SSIM 44

4.4 Results using a pre-trained ESRGAN: Comparison between different ap-

proaches and model assessment using the metrics PSNR/SSIM 45

viii

1 Introduction

1.1 Motivation

For the past two to three decades, a relatively large amount of human and material

resources was dedicated to studying the feasibility of certain challenges that were once

perceived as fictional. The introduction of the term Deep Learning (DL) to the Machine

Learning (ML) community was a big step forward into the newly introduced paradigm

shift. Researchers started viewing challenges with theoretically unachievable results from

wider angles. With that being said, discussions about the starting point and the most

promising approach evolved into discussions about finding the best architecture and the

most suitable dataset. Within the introduced context comes the topic to be discussed

in this thesis, namely Super-Resolution (SR) and Single Image Super-Resolution (SISR)

to be more specific, which has been an attractive topic during the last decade. SISR

basically aims to recover High-Resolution (HR) images from Low-Resolution (LR) input

images [Twi17]. This issue, also known as zoom in and enhance as referred to by Crime

Scene Investigation (CSI) movies, states that in order to render an image more appealing

to the human eye, it needs to either regain missing information lost due to limited

hardware performance or have its details adapted to its dimensions. This contradicts

the data processing inequality concept stating that ”no clever manipulation of the data

can improve inference” [Xie], or in our case, the image resolution.

The SISR challenge started to gain attention in the early 2000s and was then considered

one of the most attractive research topics [Yu18]. The idea of restoring high frequency

details proved to be useful and was exploited in many fields such as medical image pro-

cessing (reconstruction of cardiac Magnetic Resonance Imaging (MRI)) [Rue14], satellite

image processing [AN02], and face recognition [Kak11], where high edge-precision is most

wanted.

1

1 Introduction

The primary SISR algorithms used smoothing interpolation methods, mainly the Bicubic

Interpolation [Twi17]. Being the target method for non-trainable SISR due to the ap-

pealing nature of its results, it is still used as a reference to measure the recent methods’

outperformance. Following the data processing inequality previously stated, a higher

image resolution can be achieved through an additional source of information. This is

where Neural Networks (NNs) come to pass. A pre-trained NN can learn to add new

details into a LR image using pattern similarity based on knowledge acquired from a

dataset of non-specific images.

In the recent years, Research performed by Chao Dong et al. [HT15] on Super-Resolution

Convolutional Neural Network (SRCNN) proved the efficiency of pre-trained NNs over

traditional methods that include interpolation [Asi08], internal similarities [X14], or

single image example based SR [GM12]. This brought prosperity to the ongoing topic

upgrading the challenge from seeking the best algorithm to developing the finest NN

architecture.

Numerous architectures and different training strategies were also developed, all with

the same goal, and that is to outperform the traditional 3-layer SRCNN. In that regard,

better results have been achieved, yet these results tend to be over-smoothed and usually

lack high texture details. The SR problem as implemented using NNs usually comes

with a high downscaling factor. A considerable amount of information is lost upon

downscaling a HR image, and the reconstruction of the SR counterpart is examined

and optimized through pixel-wise difference using the Mean Squared Error (MSE). The

challenge then comes to minimizing the MSE, which is also convenient since it results

in a maximization of the Peak Signal-to-Noise Ratio (PSNR) [Twi17]. Referring to the

MSE proved to be mathematically clear, convenient, and easy, therefore its appeal as

an assessment function [Sim04]. However, pixel-wise difference-based methods usually

struggle to generate high texture details essential to upgrade the perceptual quality of

the SR image, therefore, they do not necessarily match the human eye evaluation.

Further research has been conducted to propose new perceptual-driven methods to ei-

ther replace or enhance the previously established MSE functions [Tan18]. The resulted

perceptual loss takes advantage of the work proposed by Andrew Zisserman et al. [ZS15]

to optimize SR algorithms in a feature space instead of a pixel space [Tan18] using a

pre-trained Visual Geometry Group (VGG) model.

2

1 Introduction

Overcoming training limitations encountered by SRCNNs was the next step. The primal

focus was to enhance the CNN architecture using pixel dependency [NS17]. Later, skip

connections were added to the prime Neural Network, making the training less consuming

and allowing the model to deepen its layers, hence the replacement of SRCNNs with

Super-Resolution Residual Networks (SRResNets). Ledig et al. [Twi17] proposed a new

paradigm, that is to produce images that look real and appealing to the eye instead

of the focus on real images. This is when Super-Resolution Generative Adversarial

Networks (SRGANs) were introduced [Twi17]. The architecture used two trainable

neural networks instead of one and added a second term to the perceptual loss, namely

the adversarial loss.

1.2 Structure of the Thesis

In this thesis, we adopt the model Enhanced Super-Resolution Generative Ad-

versarial Networks (ESRGANs) first introduced by Wang. et al. [Tan18], and

derived from the pioneer work presented by Ledig et al. in the SRGAN paper [Twi17].

We train the model on a custom-created dataset that fits the proposed problematic.

Chapter 2 is divided into two main sections. In Section 2.1, we thoroughly go through

the knowledge background needed to apprehend the presented solution. We combine the

mathematical background corresponding to the Super-Resolution topic applied in image

processing, along with the knowledge related to the field of Artificial Intelligence (AI)

and Machine Learning. In Section 2.2, we give an insight into the models, architectures,

and research previously established in the Super-Resolution study discipline.

Chapter 3 gives a detailed description of the used method. We further explain the

specifications already mentioned in the ESRGAN research paper [Tan18], with emphasis

on the architectural upgrades in comparison to the model built by Ledig et al. [Twi17].

Each independent section will be accompanied with explanatory elements 1 adapted to

our custom dataset.

Chapter 4 is divided into three main sections. Section 4.1 thoroughly describes the cus-

tom datasets. In this section, we go through the context of creation for each dataset

and explain the different elements utilized as common parts for the image samples.

1Figures and equations

3

1 Introduction

In Section 4.2, we provide further training details, including the hardware and soft-

ware properties, and the values for the training parameters. The last section delivers

the results found during both the training phase and the testing phase. The training

phase is illustrated through graphs that depict different loss functions and their evolu-

tion throughout the whole process. The testing phase is assessed through a perceptual

comparison between the different model outputs.

In Chapter 5, we consider all pre-established speculations and obtained results into a

thorough evaluation of the utilized model. The analysis contains an assessment of the

model regarding both used datasets, chosen training parameters, and network interpo-

lation. We also compare our model to a loaded pre-trained ESRGAN and discuss the

major differences between these solutions.

Finally, in Chapter 6, we conclude with a brief review of the thesis and a summary of

the final evaluation. We also discuss the next step to further improve our model training

and open space for potential future development.

4

2 Background

This chapter provides the necessary knowledge to comprehend the thesis content.

2.1 Definition of Terms

2.1.1 Machine Learning

Before diving into a basic definition of Machine Learning, it is important to highlight

the fact it gained its popularity over the past few decades for numerous reasons. It is

only natural that the abundance of data becomes an attractive factor to why ML usage

is important, especially with the exponential growth of the information records and the

inability of the human effort to adapt to it. ML comes with the promise of acquiring

meaning from all that data.

We introduce ML as a replacement for algorithmic methods traditionally used in en-

gineering approaches [Sim18]. In Figure 2.1a, the standard procedure describes the

necessity of collecting the knowledge to build an explicit algorithm that directly solves

a pre-defined challenge using a designed mathematical model. ML can be presented as

a branch of computer science arising from the study of pattern recognition and com-

putational learning theory [VB16]. The diagram in Figure 2.1b defines basic ML as

a data-driven algorithm able to learn and refine certain decision-making parameters,

without explicit design, through a pre-processed set of examples. Therefore, a basic

ML process is a replacement of the knowledge acquisition step with a relevant dataset

collection step that is an easier procedure in most cases.

Hence the purpose behind building ML models is to reduce human interaction bringing

the dawn of self-automated machines with a self-built set of rules generated from learned

examples.

5

2 Background

Acquire the
Knowledge

Develop the
Algorithm

Mathematical
Model

(a) Basic Algorithmic Process Diagram

Acquire the
Data Learn

Custom
Dataset

(b) Machine Learning Process Diagram

Figure 2.1: Comparison between basic and machine learning algorithms

2.1.2 Deep Learning and Neural Networks

Deep Learning represents a specific sub-branch of Machine Learning. Although this

practice came as a response to much more complicated challenges that needed better

understanding of the data at hand to provide a more accurate set of results, the ”Deep”

in Deep Learning rather refers to the amount of layers used in the architecture [Cho18].

The more layers a DL model has, the deeper it is. Compared to other shallow ML

techniques, DL models feature multiple layers (up to hundreds)[Cho18]. Such stacked

up layers are referred to as Neural Networks.

The terminology Neural Network refers to neurobiology. Although such model structures

are not an honest representation to how the human brain functions, they are strongly

inspired by the neurons’ way of communication within the nerve tissue. Figure 2.2

presents a simplified architecture of a basic NN prototype. The macroscopic hierarchy

of the model is described as a 3-level hierarchy featuring an input layer with n input

nodes, l hidden layers, and an output layer with m output nodes. All these nodes are

connected via weighted links. The sole purpose behind the model training is to adjust

these weights (or parameters) initially randomly assigned, such that the provided net-

work appropriately allocates its inputs to their desired targets [Cho18]. This process

requires a factor allowing the model performance observation, meaning a loss function

that measures how close is the set of parameters to the target set providing an ideal or

close to ideal result, and that is by computing the absolute distance between the pre-

6

2 Background

Input layer Hidden layers Output layer

Input 1

Input 2

Input n

Output 1

Output m

i h1 h2 hl o

Figure 2.2: Graphical representation of a NN with n inputs, n outputs and 3 hidden
layers

diction and the true value [Cho18]. Updating the weights accordingly is the optimizer’s

task. This is done through an algorithm called backpropagation which is considered the

core algorithm when it comes to DL [Cho18].

2.1.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a form of deep learning models that is

specifically designed to solve computer vision problems. The hidden layers in CNNs

(referenced to in subsection 2.1.2) are mainly convolutional layers able to detect and

recognize different patterns. Although CNNs were recently able to migrate towards

solving more generic challenges such as Natural Language Processing (NLP), this pattern

detection is what makes it primarily used for image analysis. The convolution operation

is a basic mathematical operation involving an input and a pre-defined filter to produce

an activation [Kre19]. In the case of patterns recognition for image processing tasks,

the input is a 3-dimensional tensor with a height, a width, and a depth dimension (or

channel dimension) [ON15]. For RGB images (implemented in the dataset used for this

thesis), the depth is a 3-dimensional axis (red, green and blue channels) [Cho18].

7

2 Background

A
lex

N
et

G
oo

gL
eN

et

R
es

N
et

-1
8

VG
G
-1

6

VG
G
-1

9

55

60

65

70

T
o
p
-1

A
cc
u
ra

cy
[%

]

Figure 2.3: Representation of iconic CNNs and their recorded accuracy in the ILSVRC
contest [Das17]

Within the context of visual pattern recognition, a number of iconic CNN architec-

tures has risen above others, delivering remarkable accuracy scores in the annual Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC) held by the ImageNet project

[Das17]. Figure 2.3 exhibits a bar chart with the results achieved by some of these ex-

emplary CNNs. In the following two subsections, we further describe the architectures

we adopted in our work (among those mentioned in the bar chart).

2.1.4 VGG Networks

VGG is an iconic deep Convolutional Neural Network designed by Visual Geometry

Group of Oxford University (hence the name) [ZS15]. The NN comprises up to 19 layers

and is known for outperforming traditional architectures in the field of image recognition

and classification. Numerous modern image processing architectures are built on top of

VGG networks. Authors often exploit a pre-trained VGG model to produce a feature

space replacing the conventional pixel space.

Figure 2.4 depicts both VGG16 and VGG19 architectures. Each model features a number

of convolutional layers with multiple kernels of size 3x3, max-pooling layers of kernel size

2x2, and fully connected layers.

8

2 Background

3x3 conv, 64

3x3 conv, 64

max pool, /2

224x224 RGB Image

3x3 conv, 128

3x3 conv, 128

max pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

max pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool, /2

4096 fc, ReLU

4096 fc, ReLU

1000 fc, softmax

3x3 conv, 64

3x3 conv, 64

max pool, /2

224x224 RGB Image

3x3 conv, 128

3x3 conv, 128

max pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

max pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool, /2

4096 fc, ReLU

4096 fc, ReLU

1000 fc, softmax

VGG16 VGG19

Figure 2.4: VGG16 and VGG19 model architectures

9

2 Background

weight layer

weight layer

+

ReLU

ReLU

identity

X

Figure 2.5: Residual block: a representation of a skip connection

2.1.5 Residual Networks

Enhancing a Neural Network to learn high-level features requires deeper architectures,

meaning adding more layers. Although deep NNs often suffer from a major problem, that

is vanishing and exploding gradients. A solution would be to exploit residual networks,

which is a type of NNs implementing skip connections [Sun15].

Residual networks are built over residual blocks (seen in Figure 2.5). Each residual

block implements a skip connection or a shortcut that takes an activation from one layer

feeding it to another layer deeper in the NN, thus making identity functions easier to

learn.

Basic residual networks are constructed by stacking up residual blocks. More sophis-

ticated models are referred to as Dense Convolutional Networks (DenseNets) [Maa18].

Such NNs feature a different unit than residual blocks, namely dense blocks, where all

layers are fully connected, meaning that a layer’s activation is forwarded to all subse-

quent layers within the same dense block (see Figure 2.6).

For the sake of further simplification, we give the mathematical models for each residual

network:

10

2 Background

Figure 2.6: Graph representing a dense block; Nodes refer to network layers, arcs refer
to skip connections; A deeper node is modeled by a darker color

Consider a residual network (or a dense block) of K layers and a single input image

x0. We denote as xk the output of the kth layer and Hk its non-linear transformation

[Maa18].

Feed-forward Networks. Traditional NNs connect the kth layer output directly to the

(k+ 1)th layer input [Maa18]. The transformation is modeled by the following equation:

xk = Hk(xk−1) (2.1)

Residual Networks. ResNets add a second connection that bypasses the transforma-

tion layer (skip-connection) adding an identity-function term to the previous formula

[Maa18]. The transformation is then modeled by the following equation:

xk = Hk(xk−1) + xk−1 (2.2)

Dense Convolutional Networks. DenseNets connect the output of the kth layer to

all (k + i)th subsequent layer inputs [Maa18]. Each layer k within a dense block then

receives concatenation of previous activations as input. The transformation is modeled

by the following equation:

xk = Hk([x0, x1, ..., xk−1]) (2.3)

Where [x0, x1, ..., xk−1] denotes the tensor of feature-maps forwarded to the kth layer by

the layers 0, .., k − 1.

11

2 Background

2.1.6 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are complex NNs introduced by Goodfellow

et al. [CB14] and based on two sub-neural networks, namely the generator and the

discriminator, trained simultaneously. In the context of image processing, it has the task

of generating real looking images by recursive comparison to a set of authentic input

examples [Cho18]. In order to understand the mechanism of GAN training, countless

analogies could be referred to. In the book Deep learning with python [Cho18], this

mechanism is modeled by the act of faking real paintings. The generator is simulated as

a forger and the discriminator as the art dealer. At the start of training, the the forger

delivers obvious fakes that the dealer easily spots from the real paintings, the latter is

then bound to give feedback about the differences between real and fake paintings. As

the training continues, the forger becomes better at faking authentic artwork, and the

dealer improves his ability to spot differences. The goal then is to have real-looking fake

results. In practice, real images are samples from the provided set of data. Fake images

on the other hand are forwarded by the generator to match those samples (Figure 2.7).

As a result of this dual composition, training a GAN can be both difficult in terms it

needs substantial tuning of the model architecture and parameters [Cho18], and tricky in

terms of convergence given its dynamic nature. In theory, a NN convergence is achieved

through a gradient descent algorithm which, to put simply, is driven by a mechanism of

back propagation to seek the global minimum. GAN training, on the other hand, seeks

a balance between two agents rather than a predetermined extremum [Cho18].

GAN training can be defined using the following functions [Jol18], i.e. the discriminator

loss and the adversarial loss:

LGAND = Exr∼P [f̃1(D(xr))] + Exf∼Q[f̃2(D(G(xf)))] (2.4)

LGANG = Exr∼P [g̃1(D(xr))] + Exf∼Q[g̃2(D(G(xf)))] (2.5)

Table 2.1 describes the used terms.

12

2 Background

Term Description

f̃1, f̃2, g̃1, g̃2 Scalar-to-scalar functions
P Distribution of real data
Q Distribution of fake data
D(x) Discriminator evaluated at x
G(x) Generator evaluated at x
xr Reference to real data
xf Reference to fake data
LD Discriminator loss
LG Adversarial loss

Table 2.1: Brief description of the terms used in the GAN loss function equations

Real Images

Random Input Generator Sample

Sample

Discriminator
Real?

Fake?
Loss

Fine Tune Training

Figure 2.7: Graphical representation of GAN training process

13

2 Background

2.1.7 Batch Normalization (BN)

When using large datasets for training a NN, we often come across an imbalance in

different dimensions of the data, which calls for data pre-processing, a very important

step that precedes the training phase [Dee18]. Specifically, the imbalance in numeri-

cal scales requires a prior normalization1 and standardization 2 that prevents problems

during training, such as long training processes and exploding gradients.

NNs often use Stochastic Gradient Descent (SGD) to learn and update weights after

each epoch. This method has proven to be simple and effective, yet it might occur

that one of the weights becomes significantly larger than the others and cascades as

the networks go deeper to cause instability. In their paper entitled Accelerating Deep

Network Training by Reducing Internal Covariate Shift [IS15], Ioffe et al. proposed to

apply BN on specific layers within the network.

Applying a BN simply refers to normalizing each dimension of each batch’s output

vector [IS15]. If we denote a d -dimensional layer’s vector x = (x(1), ..., x(d)), a basic

normalization would be:

x̂(k) =
x(k) − E[x(k)]√

V ar[x(k)]
(2.6)

Such normalization can sometimes change the layer’s representation. The countermea-

sure proposed by Ioffe et al. [IS15] is that ”the transformation should represent the

identity function”. This is accomplished by introducing two new learnable parameters

for each activation, namely γ(k) and β(k), respectively used for scaling and shifting as

follows:

y(k) = γ(k)x̂(k) + β(k) (2.7)

We then denote the normalized output for each batch element i as yi = BNγ,β(xi)

To sum up, we can say that instead of normalizing the data before passing it to the

input layer, what BN does is apply batch norm to the output data for the activation

function in single layers, therefore speeding up the training process and avoiding the

over-influence of large values.

1A typical normalization practice is to transform all numerical values down to a scale of 0 to 1
2Basically subtracting the mean of the dataset from each point and then dividing the difference by

the standard deviation

14

2 Background

Original Nearest Neighbor Bilinear Bicubic

Figure 2.8: Representation of three different interpolation techniques [Coo21]

2.1.8 Bicubic Interpolation

Interpolation is considered a central technique when it comes to processing images

[San13]. Its use cases involve restoring images upon simple modifications such as rota-

tion or scaling and adapting to new hardware or channel upon display or printing. Such

frequent tasks require fast response where the quality is often overlooked. Image inter-

polation is considered a SR algorithm that requires no training. Instead, it calculates an

empty pixel’s value from nearby deterministic pixels using a predefined mathematical

function. This function has as variable the distance dk between the considered pixel and

the k closest pixels. It is described by the following formula:

f(x) =
∑
k

aku(dk) (2.8)

Where u() is the interpolation kernel and ak are the interpolation coefficients [San13].

The kernel u() is explicitly written according to the chosen interpolation method. In this

context, three techniques in particular, namely nearest neighbor, bilinear and bicubic,

are often used due to their highly adaptive nature and ease of computation (Figure 2.8).

When a smooth result is desired and speed of computation can be overlooked, bicubic

interpolation is often preferred over bilinear or nearest neighbor in image resembling

[San13]. In exchange for a minor time lag, the output is smoother in comparison to

other methods. In SISR, bicubic interpolation is usually the default reference for more

sophisticated algorithms to build a thorough PSNR comparative study.

Bicubic interpolation takes into consideration 16 pixels (4x4) instead of 4 pixels (2x2)

15

2 Background

2D Nearest Neighbor Bilinear Bicubic

Figure 2.9: Comparison between 2D nearest neighbor, bilinear and bicubic interpolation
techniques [Cmg21]

as used in 2D nearest neighbor and bilinear techniques (shown in Figure 2.9), which

explains the time lag leveraged in a more complex calculation [San13]. Therefore, the

bicubic kernel uses the corner pixel coordinates as well as the derivatives computed at

these pixels. The bicubic interpolation function is given by the following formula:

f(x, y) =
3∑
i=0

3∑
j=0

aijx
iyj (2.9)

and the problem is reduced to calculating the coefficients aij.

16

2 Background

2.2 State of the Art

2.2.1 Prediction-Based Algorithms

An introduction to SISR were prediction-based algorithms. Although SR and fine-

textured details were not the goals of such methods, the outcome was remarkably more

appealing than the basic nearest neighbor process. Techniques such as bilinear and

bicubic interpolations were used, to later become a basic reference for comparison to

newly developed formulas [Twi17]. Further advanced refinements such as Cubic B-spline

functions by Hou and Andrews [HA78] and Curvature Based techniques by Ghuatam

et al. [Gop15] then came to adjust basic interpolation flaws [Asi08]. Aftab et al. also

proposed a fast hybrid method for transitioning between covariance-based interpolation

techniques and curvature-based interpolation techniques to test on aerial images [Asi08].

To further emphasize texture details, Xin Li and Michael T. Orchard developed an

edge-directed interpolation algorithm based on the geometric duality between the LR

covariance and the HR covariance [LO04].

2.2.2 Learning-Based Algorithms

Although the previously mentioned algorithms had a more appealing output than the

original LR input, they only delivered over-smoothed results and the solutions didn’t

quite add any information that wasn’t already in the image.

The research performed by Hong Chang et al. [Xio04] was one of the first steps into

implementing learning-based methods in SR. The algorithm used Locally Linear Em-

bedding (LLE) to train an ML model on a set of small image patches in two different

feature spaces [Xio04]. Later on, other ML algorithms such as random tree [SP15] and

random forest [LB15] were used to overcome minor regression flaws discovered in the

process [Twi17].

It wasn’t until the introduction of NNs to the SISR practices that we could expect drastic

changes on high-frequency-detail levels. The pioneer work performed by Dong et al.

[HT15] in the SRCNN paper delivered exceptional results and a significant improvement

to the state-of-the-art. The model used a 3-layer deep SRCNN to learn an end-to-end

mapping between the LR and HR images. The SRCNN paper set a new direction to

17

2 Background

solving the SISR problem. Research authors began investing in different methods to

either enhance or deepen the basic CNN architecture. The work proposed by Andrew

Zisserman et al. [ZS15] features a developed CNN for large-scale image recognition.

Jiwon Kim et al. [LL16] developed a Deeply-Recursive Convolutional Network (DRCN)

with up to 16 recursions. The model used recursive supervision and skip-connections

to avoid eventual exploding and vanishing gradient issues that may be caused by the

recursion depth. Yet exceeding the three layers still came with a high price of both

performance and training.

The introduction of GANs was a remarkable milestone in NN architectures. The success

of the 2-tier model in achieving subjectively appealing results combined with the network

scalability made it the perfect candidate to follow the trail of pioneer work in SISR. In

this context, Ledig et al. [Twi17] developed a photo-realistic SISR model using SRGAN.

The model uses two NNs, namely a generator and a discriminator, and implements

residual blocks with skip connections. The discriminator is then trained to differentiate

between real images and super-resolved images [Twi17], while the generator is trained

to output results that highly resemble the HR input.

Following the model of Ledig et al. [Twi17] to leverage residual network architectures

in SISR, Bee Lim et al. proposed a modified deep residual network (SRResNet) in the

paper Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR)

[NL17]. The research used a similar model construction, featuring minor modifications

to the different residual blocks by removing BN layers.

In their recent paper Enhanced Super-Resolution Generative Adversarial Network (ESR-

GAN)[Tan18], Wang et al. proposed structural improvements to the SRGAN model key

components. They removed BN layers as proposed by the EDSR paper [NL17]. They

also added more layers to SRGAN architecture and used residual scaling to stabilize

the model training, resulting in a replacement of primal residual blocks with Residual-

in-Residual Dense Block (RRDB) [Tan18]. The discriminator also received further en-

hancement using Relativistic average Generative Adversarial Network (RaGAN) which,

instead of differentiating between real and fake images, learns to detect whether the

output looks more realistic than fake data or less realistic than real data.

18

2 Background

2.2.3 Loss Function

One of the known struggles faced by the CNN architecture in the SRCNN paper [HT15]

alongside its limited scalability, is the use of pixel-wise loss functions, the Mean Squared

Error (MSE) to be more specific. Pixel-dependent metrics usually attract research au-

thors due to their mathematical simplicity and clear physical meaning [Sim04]. During

the SRCNN training, minimizing the MSE as a loss function results in a direct maximiza-

tion of the PSNR, a convenient compromise to enhance the model efficiency. However,

such metrics usually fail to match perceived visual quality and tend to overlook fine tex-

ture details rendered as high-frequency image features. In Figure 2.10 a representation

of the MSE/SSIM3 hypersphere is shown, where all distorted images on the circle are

equally distant from the original image in terms of MSE, yet they do not look equally

appealing. Various methods have been proposed as an upgrade to the classic MSE loss

function. In their paper pixel recursive super resolution [NS17], R. Dahl et al. introduce

an extension to the pixelCNN using a probabilistic deep network architecture [NS17].

Later on, pixel-dependent loss functions have been replaced by perceptual-driven ap-

proaches. Inspired by perceptual similarity for object recognition [Bet15], Johnson et

al. [Fei16] define the perceptual loss as a combined feature reconstruction loss and a

style reconstruction loss. The result is used for training feed-forward networks for image

transformation tasks. For SR tasks in particular, the perceptual loss is reduced to the

feature reconstruction, and minimized in a feature space instead of a pixel space. In

the SRGAN paper [Twi17], Ledig et al. formulate the perceptual loss as the weighted

sum of a content loss calculated on a VGG19-extracted feature space, and an adversarial

loss. While the content loss trains the model to generate more appealing images, the

adversarial loss is trained to generate realistic super-resolved images based on a set of

HR-LR samples. To further enhance the SRGAN model, Wang et al. [Tan18] propose to

add the weighted MSE (either L1 or L2 loss) to the equation, in order to set a compro-

mise between perceptually pleasing output and a high PSNR. A further improvement in

the ESRGAN architecture is modifying the VGG loss to compare feature maps before

activation, as these feature maps contain information that is essential to the training

and assessment of the model, which is being removed by the activation functions.

3Structural Similarity Index

19

2 Background

Reference
Image

Equal-MSE
Hypersphere

Image with
worst SSIM

Image with
best SSIM

Figure 2.10: Image MSE/SSIM Hypersphere [Sim03]

20

3 Methods

Our main goal is to train a Neural Network to estimate a High-Resolution German

license-plate image, from its Low-Resolution counterpart, by forwarding an output image

that we denote SR and that the network assumes is real.

In this chapter, we describe the method ESRGAN used in this thesis, first implemented

by Wang et al and described in their paper [Tan18] as an enhanced version of the iconic

SRGAN paper [Twi17]. We decompose the chapter into four sections according to the

model’s highlighted enhancements, in comparison to previous algorithms. We describe

in the first section the network architecture with a focus on the generator (A basic

architecture is modeled in Figure 3.1). In the second section, we explain the concept

of RaGAN and relativistic discriminator. Finally, the third and fourth sections both

discuss the effect of combining old and new approaches linearly to optimize both the

perceptual loss and the network result’s visual properties.

C
on

v

C
on

v

C
on

v

U
ps

am
pl

in
g

C
on

vBasic
Block

Basic
Block

Basic
Block

...

SR

LR

Figure 3.1: The implemented architecture is ESRGAN [Tan18], similar to the SRGAN
network [Twi17] with a customizable ”basic block”.

21

3 Methods

3.1 Network Architecture

The general architecture is a dual CNN trained as a GAN (referenced in 2.1.6) where the

generator learns to trick the discriminator into forwarding super-resolved images1 as real

images. Using this algorithm, the model will not only forward perceptually superior and

pleasant license plates2, but will also output legit German license plates with matching

flags and registration seals.

Following Ledig et al. in the SRGAN paper [Twi17], the generator features a number

of stacked basic blocks (Figure 3.3a). Each basic block should comprise a subnetwork

implementing a residual learning technique (referenced in subsection 2.1.5).

In this section, we will describe the two modifications applied to the generator’s structure

in the ESRGAN method [Tan18]: First is the removal of all BN layers, and second is

the application of RRDB depicted in Figure 3.3, which combines both major residual

learning techniques (subsection 2.1.5) in a single basic block.

3.1.1 Batch Normalization Layer Removal

For most NNs, including SR and other PSNR-related tasks, BN layers proved to be

efficient for speeding up the training process and avoiding exploding gradients (see sub-

section 2.1.7), therefore increasing the network’s performance.

However, when it comes to deeper networks, including GANs, BN layers usually intro-

duce displeasing artifacts hindering the stability of the training performance [Tan18].

As previously mentioned, BN layers use the mean E(x) and the variance V ar(x) over

a mini-batch for normalization. Furthermore, these values are approximated over the

training dataset when applied for testing. When such measures have uncorrelated val-

ues, Batch Normalization tends to introduce unpleasant artifacts reducing the model’s

ability for generalization, a valuable characteristic of SR.

In the case of performing SISR for German license plates, the provided dataset has a

limited diversity range3. However, the choice of removing BN layers is based on the

statement that they perform badly on deeper networks and GANs in particular [Tan18].

1For the rest of the thesis, we will refer to license-plate images simply by images
2Meaning clear, nonblurry letters and digits
3Only the used characters and their distribution is different from one image to another, whereas the

general structure is fixed

22

3 Methods

+

B
N

LR
eL

U
C

on
v

B
N

C
on

v
+

LR
eL

U
C

on
v

C
on

v

SRGAN ESRGAN

Figure 3.2: Comparison between SRGAN residual block and ESRGAN residual block
(without BN)

3.1.2 Residual-in-Residual Dense Block (RRDB)

In an attempt to follow the study speculating that adding more connections can always

improve the model’s performance [NL17], We implement a 3-tier residual architecture,

i.e. a residual-in-residual dense architecture, while keeping the basic generator struc-

ture used in the SRGAN paper (Figure 3.1) [Twi17; Tan18]. All levels of the executed

structure are modeled in the figure 3.3. Each one of these levels implements a different

residual learning technique:

• (a) First level: Fundamental generator architecture mentioned in the SRGAN

paper [Twi17] and featuring a number of cascading basic blocks. These blocks are

customized using two deeper residual levels.

• (b) Second level: A basic block is in fact a residual block featuring a number of

dense blocks with skip connections (see Figure 3.3b). In order to further enhance

fundamental residual blocks, we use residual scaling [NL17], meaning that we scale

down each block output or residual by multiplying a decimal constant β ∈ [0, 1]

before adding the identity function to ensure stability.

• (c) Third level: As already mentioned in the subsection 2.1.5, dense blocks

connect each irreducible block’s output to all subsequent blocks (see Figure 3.3c).

Each irreducible block comprises a convolutional layer and a LReLU layer (see

Figure 3.4a and Figure 3.4b).

23

3 Methods

C
on

v

C
on

v

C
on

v

U
ps

am
pl

in
g

C
on

vBasic
Block

Basic
Block

Basic
Block

...

SR

LR

+ + +

x
β

+

Dense
Block

Dense
Block

Dense
Blockx

β

x
β

x β

C
on

v

C
on

v

C
on

v

LR
eL

U

LR
eL

U

C
on

v
LR

eL
U

C
on

v
LR

eL
U

(a)

(b)

(c)

Figure 3.3: Representation of a Residual in Residual Dense Block (RRDB)
(a) The basic architecture for the ESRGAN generator
(b) First zoom in: residual block
(c) Second zoom in: dense block

24

3 Methods

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

(a) ReLU

−1 −0.5 0 0.5 1

0

0.5

1

(b) LReLU with a slope of 0.2 for x < 0

Figure 3.4: Representation of ReLU and LReLU functions for x ∈ [0, 1]

3.2 Relativistic Discriminator

Aside from the generator, we further improve the discriminator following the research

proposed by Jolicoeur-Martineau [Jol18]. We therefore implement a Relativistic Gen-

erative Adversarial Network (RGAN), an enhanced version of the Standard Generative

Adversarial Network or SGAN. In the case of SGAN, the discriminator D calculates the

likelihood that the input image is real (see subsection 2.1.6). This deterministic assump-

tion usually lacks precision, unless the model concurrently reduces the probability that

real data is real [Jol18]. RGAN on the other hand uses a discriminator that estimates

the probability that the real image xr is more realistic than a fake image xf [Jol18;

Tan18]. RGAN can then be defined by the following functions:

LRGAND = E(xr,xf)∼(P,Q)[f1(C(xr)− C(xf))] + E(xr,xf)∼(P,Q)[f2(C(xf)− C(xr))], (3.1)

LRGANG = E(xr,xf)∼(P,Q)[g1(C(xr)− C(xf))] + E(xr,xf)∼(P,Q)[g2(C(xf)− C(xr))]. (3.2)

All used terms are described in the Table 3.1.

25

3 Methods

Term Description
f1, f2, g1, g2 Scalar-to-scalar functions
P Distribution of real data
Q Distribution of fake data
C(x) Discriminator before activation, evaluated at x
xr Reference to real data
xf Reference to fake data
LD Discriminator loss
LG Adversarial loss

Table 3.1: Brief description of the terms used in the RGAN and RaGAN loss function
equations

Precisely, we implement a variant of RGAN called Relativistic average Generative Ad-

versarial Network or RaGAN [Jol18] established as estimating the probability that real

images xr are more realistic than fake images xf on average4. RaGAN can then be

defined by the following functions:

LRaGAND = Exr∼P [f1(C(xr)− Exf∼QC(xf))] + Exf∼Q[f2(C(xf)− Exr∼PC(xr))], (3.3)

LRaGANG = Exr∼P [g1(C(xr)− Exf∼QC(xf))] + Exf∼Q[g2(C(xf)− Exr∼PC(xr))]. (3.4)

All used terms are described in the Table 3.1.

Furthermore, we consider the following equations as additional information:

D(x) =

{
sigmoid(C(x)− Exf∼QC(xf), if x is real

sigmoid(C(x)− Exr∼QC(xr), if x is fake
(3.5)

As a result, both real and fake image gradients are used for training the RaGAN gener-

ator, as opposed to the standard GAN generator that only uses fake data.

4Unlike RGAN that uses randomly sampled data

26

3 Methods

3.3 Perceptual Loss Function

Aside from the adversarial loss mentioned in section 3.2, we use a more efficient percep-

tual loss Lp proposed by Johnson et al. [Fei16], implemented by Ledig et al. [Twi17],

and further enhanced by Wang et al. [Tan18].

Up until the recent years, many SR state-of-the-art approaches applied methods based

on pixel-wise MSE loss that can be defined as follows:

LMSE =
1

WH

W∑
x=1

H∑
y=1

(IHRx,y −G(ILR)x,y)
2 (3.6)

The aim was to target a distinctly high PSNR5.

What Ledig et al. did in their SRGAN paper [Twi17] was trivialize the importance of

a high PSNR compared to sharp edges and high frequency content, hence the definition

of perceptual loss or VGG loss (see subsection 2.1.4).

The VGG loss is extracted from a pre-trained VGG19 network and defined by the fol-

lowing formula:

LV GG/i,j =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(φi,j(I
HR)x,y − φi,j(G(ILR))x,y)

2 (3.7)

Similar to 3.6, LV GG is established as the euclidean distance between a generated image

G(ILR) and its HR counterpart IHR (All used terms are described in the Table 3.2.)

Furthermore, we adopt the version applied by Wang et al. in ESRGAN [Tan18], where

the VGG features are used before activation6 as shown in Figure 3.5. The reason behind

this update is to overcome feature sparsity caused by the activation function in deep NNs

[Tan18] and leading to weak performances. Another reason is to avoid odd brightness

added by the use of activated features in comparison to the original image.

In conclusion, the total loss function used for GAN training is:

LGAN = Lp + λLRaGANG + ηL1, (3.8)

5The very definition of Super-Resolution
6Instead of after activation as implemented in SRGAN

27

3 Methods

Term Description
W,H Image width and height in pixels
Wi,j, Hi,j Feature map width and height within the VGG network
IHR High resolution image
ILR Low resolution image
G(x) Generator evaluated at x
φi,j Feature map obtained between the j-th convolution and the i-th

maxpooling layer

Table 3.2: Brief description of the terms used in the MSE and VGG loss function equa-
tions

where L1 = Exi||G(xi)−y||1 represents the 1-norm distance between the generated image

and its HR counterpart (ground-truth), and λ, η represent stabilizing coefficients.

3.4 Network Interpolation

GAN-based networks occasionally introduce a distinctive unpleasant noise that can be

remarkable to a certain degree. In order to eliminate or reduce such noise, we leverage

PSNR-oriented methods abilities for minor artifact removal by using network interpo-

lation, a flexible and efficient technique implemented by Wang et al. in an attempt to

enhance the SRGAN structure [Tan18]. We first train a PSNR-oriented model and then

use it for GAN training and fine-tuning. The derivative model GINT is an interpolation

between both networks GPSNR and GGAN , defined by the following parameters:

θINTG = (1− α) θPSNRG + α θGANG , (3.9)

where θINTG , θPSNRG and θGANG represent the respective parameters of GINT , GPSNR and

GGAN , and α ∈ [0, 1] represents the interpolation parameter.

Network interpolation can be advantageous so far as using any meaningful value α ∈]0, 1[

can generate relatively noise-reduced results. Additionally, the parameter α can be

continuously evaluated for quality assessment without re-training the models involved.

28

3 Methods

(a) Original image

Feature map of VGG19 Layer-Filter

Feature map of VGG19 3-8 Feature map of VGG19 14-4

Be
fo

re
 a

ct
iv

at
io

n
Af

te
r a

ct
iv

at
io

n

(b) Feature maps

Figure 3.5: Feature maps before and after activation for a sample license plate image
extracted from different VGG19 layers

29

4 Results and Technical Details

4.1 Dataset

The training data consists of a set of png images generated using the python imaging

library Pillow1. We train two separate complex models2 using two different sets of data,

a number dataset and a German license plate dataset.

In the next subsections, we go through the specifics of each dataset.

4.1.1 Number Dataset

For a first dataset, we use a fundamental imagery template. The data samples produced

are basic RGB images3 of size 256x256. Each sample features a white background with

a centered text (as depicted in Figure 4.1). The texts are randomly generated number

sequences with a length of 10, a font size of 30, a font color black, and a font style

Charles Wright Bold.

LR images are obtained from HR images using bicubic for down-sampling with a factor

of 4, i.e. LR images are of size 64x64.

We generate 5000 HR samples for training and 500 HR samples for testing (LR image

generation is part of the ESRGAN code). We also provide additional data samples with

different properties for further testing purposes, which we discuss in section 4.3.

1Check https://pillow.readthedocs.io/
2Each complex model is an interpolation of a PSNR model and a ESRGAN model
3HR images

30

4 Results and Technical Details

Figure 4.1: Random number sequence generated using the Charles Wright font

4.1.2 German License Plate Dataset

For a second dataset, we use a regular German license plate structure as a more com-

plex template (Depicted in Figure 4.2). A regular car plate has five main components

described as follows4:

1. Flag, we display the European Union flag. This component is part of a fixed

background and is static throughout the whole dataset.

2. Country, the D underneath the EU flag stands for ”Deutschland” or Germany.

This component is also part of a fixed background and is static throughout the

whole dataset.

3. City or region, by definition, this part contains 1 to 3 letters, a prefix representing

the city or region. It also reflects the region size, as larger cities require fewer

letters, and therefore more alphanumerics in the unique section of the plate. For

our data samples, we utilize a randomly generated sequence of alphanumerics of

length 1-3.

4. Registration and safety seals, two seals aligned vertically. The lower seal

identifies the respective German state. The upper seal is the safety inspection

4Check https://www.customeuropeanplates.com/german-license-plate-codes/

31

4 Results and Technical Details

4. Registration and Safety Seals1. Flag

2. Country
3. City or Region 5. Random Letters and Numbers

Figure 4.2: German license plate format

sticker. We use the green sticker (see Figure 4.3r) as the upper seal throughout

the entire dataset. As lower part, we randomly select one of the existent 17 seals

depicted in Figure 4.3

5. Random letters and numbers, the unique identifier for the vehicle. It usually

contains 1 or 2 random letters followed by 1 to 4 digits. We use a randomly

generated sequence of alphanumerics for our dataset. The length of the sequence

depends on the length of the previously generated sequence in (3), in a way that

the total length of the text equals 8.

Furthermore, the data samples produced are RGB images5 of size 512x512. Each sample

features a basic empty license plate of height 116 as background (parts 1 and 2 as depicted

in Figure 4.2) with changing text and images for seals. The texts are randomly generated

alphanumeric sequences with a length of 8, a font size of 70, a font color black, and a

font style Fälschungserschwerende Schrift.

LR images are obtained from HR images using bicubic for down-sampling with a factor

of 4, i.e. LR images are of size 128x128.

We also generate 5000 HR samples for training and 500 HR samples for testing (LR

image generation is part of the ESRGAN code).

5HR images

32

4 Results and Technical Details

(a) Bayern (b) Baden (c) Berlin

(d) German Government (e) Hamburg (f) Niedersachsen

(g) Rheinland Pfalz (h) Saarland (i) Sachsen Anhalt

(j) Sachsen Leipzig (k) Schleswig (l) German flag

(m) Thuringen (n) US military seal
(o) Bundesfinanzverwaltung

blue

(p) Bundesfinanzverwal-
tung red

(q) Bundesfinanzverwaltung
white

(r) safety seal

Figure 4.3: German registration and safety seals

33

4 Results and Technical Details

2e-5

6e-5

1e-4

1.4e-4

1.8e-4

0 200k 400k 600k 800k 1M

(a) Learning rate for PSNR model

1e-5

3e-5

5e-5

7e-5

9e-5

0 100k 200k 300k 400k

(b) Learning rate for ESRGAN model

Figure 4.4: Learning rate evolution during training

4.2 Training Details

We perform all our network trainings on a GeForce RTX 3090 GPU with a version 11.2

CUDA. For network implementation, we use Python 3.8.10 and tensorflow v2.5.0.

We train four models in total (a PSNR model and an ESRGAN model for each dataset

mentioned in section 4.1) and use the same values for common training parameters6 as

practiced in regular ESRGAN [Tan18].

We set the mini-batch size to 16 throughout the entire training phase. As a first step,

we train a PSNR-based model with L1 as loss function and set the number of iterations

to 1 ∗ 106. The learning rate is initialized as 2 ∗ 10−4 and halved every 2 ∗ 105 iterations

(see Figure 4.4a).

The trained PSNR model is then utilized to initialize the GAN training as a second step.

The number of iterations is set to 4 ∗ 105 and the learning rate is initialized as 1 ∗ 10−4.

The latter is then decreased by half every 5 ∗ 104 iterations (see Figure 4.4b). We use

the loss function in the equation 3.8 to train the generator, and set the parameters to

λ = 5 ∗ 10−3 and η = 1 ∗ 10−2.

Finally we apply Adam [Ba17], a technique for stochastic optimization, and set the

associated parameters to β1 = 0.9 and β2 = 0.99.

6Same parameter values for both datasets

34

4 Results and Technical Details

4.3 Experimental Results

This section presents both qualitative and quantitative results obtained during our mod-

els’ training and testing. We mainly focus on the final super-resolved outcome, i.e. all

previously discussed enhancement methods are taken into consideration.

In a first part, we describe the results achieved in the first two models (PSNR and GAN)

associated with the number dataset specified in subsection 4.1.1. This includes training

results depicted in Tensorboard, testing results as generated SR images in comparison

to the HR counterpart and the bicubic scaling, and interpolation results using a list of

values for α (see section 3.4).

In a second part, we describe the results achieved in the second two models (PSNR and

GAN) associated with the German license plate dataset specified in subsection 4.1.2.

Similar to the first part, we include training results as Tensorboard charts, testing

results as generated SR images in comparison to the HR counterpart and the bicubic

scaling, and interpolation results using a list of α values (see section 3.4). We also

compare our custom-model-generated license plates to a sample generated using a pre-

trained ESRGAN 7.

4.3.1 Number-Dataset-Based Model

Training Results

We initially evaluate the PSNR-oriented model during training by plotting the loss

function w.r.t. the processed mini-batches (see Figure 4.5). The obtained graph is a

quasi-exponential decay, referencing a basic loss function behavior. The training starts

with a loss value of ∼ 0.17. The function then keeps on decreasing on average within

the interval [0, 200k]. We then note a quasi-constant evolution modeled by noisy levels

or plateaux within intervals [µ200k, (µ + 1)200k], µ ∈ {1, 2, 3, 4}. The loss value at the

end of the training is 2.4672e− 4.

In a second step, we commence the GAN training and depict the discriminator loss

function (Figure 4.6). We observe after a transition phase within the interval [0, 50k], a

7Check https://github.com/peteryuX/esrgan-tf2

35

4 Results and Technical Details

0

1e-3

2e-3

3e-3

4e-3

5e-3

6e-3

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Figure 4.5: PSNR model total loss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50k 100k 150k 200k 250k 300k 350k 400k

Figure 4.6: ESRGAN model discriminator loss

value stabilization featuring two main stages: a first stage where the loss is null or quasi-

null and a second stage where the loss undergoes sudden jumps in value (e.g. 0.4237).

As a matter of fact, the discriminator is used to classify both real and fake images. In

case it labels a fake instance as real or a real instance as fake, the loss function receives

a penalty, hence the noted local maxima.

The generator performance is represented by four different plots as seen in Figure 4.7

(a plot for each term in the equation 3.8). We observe that each of the represented loss

functions has a different scale with a domination of the adversarial loss (Figure 4.7b),

hence the high similarity between the adversarial loss graph and the total loss graph8.

The perceptual loss (Figure 4.7a) is set to a scale that gives it a support role without

over-influencing the total loss. As for the pixel loss (Figure 4.7c), it has a scale of mini-

mal influence, translating its secondary role.

8Note that although the loss function isn’t decreasing, this doesn’t deny the model convergence.

36

4 Results and Technical Details

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50k 100k 150k 200k 250k 300k 350k 400k

(a) Perceptual loss Lp

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 50k 100k 150k 200k 250k 300k 350k 400k

(b) Adversarial loss LRaGANG

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5

8e-5

9e-5

1e-4

1.1e-4

0 50k 100k 150k 200k 250k 300k 350k 400k

(c) Pixel loss L1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 50k 100k 150k 200k 250k 300k 350k 400k

(d) Total loss LGAN

Figure 4.7: ESRGAN model generator loss

37

4 Results and Technical Details

α=1 α=0.8 α=0.6 α=0.4 α=0.2 α=0

ESRGAN-based PSNR-based

Figure 4.8: Representation of the network interpolation result for different α values

Testing Results

We represent the final result for the first set of data in the summarizing table 4.1, where

we depict the bicubic interpolation, the PSNR-oriented model output, the ESRGAN

model output, and the original HR image respectively. For the model assessment, we

use the metrics PSNR and SSIM discussed in subsection 2.2.3. We observe for this

example that the PSNR-oriented model output and the ESRGAN model output (second

and third columns) are indistinguishable from the ground truth (fourth column). We

also note that the pre-trained model slightly outperforms the ESRGAN model w.r.t.

the measured PSNR, which is intuitive since it’s mainly trained to maximize this value.

Furthermore, we obtain the highest SSIM value for both models.

Network Interpolation Results

In order to evaluate the network interpolation method (see section 3.4), we depict the

output of the combined models w.r.t. a set of α values. The figure 4.8 represents

six different results for α varying in [1.0, 0.8, 0.6, 0.4, 0.2, 0.0]. We further discuss the

results in chapter 5.

Additional testing Results

We further test the obtained model on data samples that slightly deviate from the

number dataset specification. For this matter, we use two generated images having each

exactly one modified property according to the dataset definition in subsection 4.1.1.

The first example seen in the table 4.2 is a generated number sequence using the Arial

font. The second example is a generated letter sequence using the Charles Wright font.

38

4 Results and Technical Details

Bicubic PSNR (Pretrain) ESRGAN Ground Truth

24.50dB/0.96 42.18dB/1.00 40.21dB/1.00 -

24.01dB/0.96 41.89dB/1.00 40.18dB/1.00 -

24.66dB/0.97 41.70dB/1.00 39.93dB/1.00 -

24.54dB/0.96 42.01dB/1.00 39.92dB/1.00 -

Table 4.1: Number-dataset result presentation: Comparison between different ap-
proaches and model assessment using the metrics PSNR/SSIM

39

4 Results and Technical Details

Bicubic PSNR (Pretrain) ESRGAN Ground Truth

23.45dB/0.95 27.34dB/0.99 27.41dB/0.99 -

23.94dB/0.96 31.04dB/0.99 30.48dB/0.99 -

Table 4.2: Additional results featuring a number sequence in Arial font and a letter
sequence in Charles Wright font: Comparison between different approaches
and model assessment using the metrics PSNR/SSIM

Naturally, the noted PSNR and SSIM are lower than the prior testing result values.

We also observe that the model achieves a better performance in the second example,

since the obtained letters are both correct and distinguishable, and the output image is

visually more appealing.

4.3.2 License-Plate-Based Model

Training Results

Similar to the previous dataset, we first assess the PSNR-oriented model during training

by plotting the loss function against the processed mini-batches (see Figure 4.9). The

resulting graph is a quasi-exponential decline, resembling the behavior of a simple loss

function. The training begins with a loss value of ∼ 0.18. The function then continues to

decrease on average in the range [0, 200k]. We then note a quasi-constant evolution rep-

resented by noisy levels or plateaux within intervals [µ200k, (µ+1)200k], µ ∈ {1, 2, 3, 4}.

40

4 Results and Technical Details

5e-4

1e-3

1.5e-3

2e-3

2.5e-3

3e-3

3.5e-3

4e-3

4.5e-3

5e-3

5.5e-3

6e-3

6.5e-3

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Figure 4.9: PSNR model total loss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50k 100k 150k 200k 250k 300k 350k 400k

Figure 4.10: ESRGAN model discriminator loss

The loss value at the end of the training is 5.4344e− 4. We also observe slightly higher

values on average compared to the previous PSNR model.

As soon as the PSNR model training is over, we can start training the GAN model.

We represent in an independent plot the evolution of the discriminator loss w.r.t. the

defined steps (see Figure 4.10). Compared to the previous discriminator chart (Figure

4.6), the current chart highlights remarkable distortions. A transition phase is still noted

between steps 0 and 100k. The minima and maxima then start to decrease, accompanied

by a less prominent distortion. We note a convergence at the end of the training with a

steadier state translated in more values closer to null and lower maxima (between steps

350k and 400k).

We also depict the current generator performance in four different graphs seen in Figure

4.11 (a plot for each term in the equation 3.8). Unlike the previous model, the scales

associated to both the perceptual loss Lp (Figure 4.11a) and the adversarial loss LRaGANG

(Figure 4.11b) are comparable. Furthermore, we note the decreasing aspect on average

of the feature loss and the increasing aspect on average of the adversarial loss. Therefore,

The total loss is over-influenced by Lp during the first steps of training, and by LRaGANG

41

4 Results and Technical Details

during the last steps. The pixel loss L1 (Figure 4.11c) still has a scale of minimal

influence by choice.

Testing Results

Similarly, the table 4.3 summarizes the final result for the second dataset. We also

depict the bicubic interpolation, the PSNR-oriented model output, the ESRGAN model

output, and the original HR image respectively, and use the metrics PSNR and SSIM

discussed in subsection 2.2.3 for the model assessment. In this example, the PSNR-

oriented model output and the ESRGAN model output (second and third columns) are

rather distinguishable from the ground truth (fourth column) and from each other, where

the difference appears in smaller details (state flags and safety seals). The pre-trained

model still outperforms the ESRGAN model w.r.t. the measured PSNR, and we obtain

high values for the SSIM in the given samples.

Network Interpolation Results

In parallel to the previous set of data, we depict the output of the combined models

relevant to the license plate dataset w.r.t. different α values. The figure 4.12 represents

six distinct outputs for α varying in [1.0, 0.8, 0.6, 0.4, 0.2, 0.0]. In Chapter 5, we go

over the results in more detail.

Pre-trained model Results

Finally, we illustrate in the table 4.4 the SR output license plates using a pre-trained

ESRGAN. The loaded model is trained on a DIV2K9 dataset, a famous high-quality

dataset of 1000 images often used for Super-Resolution and image restoration purposes.

We further discuss the result details in chapter 5.

9https://data.vision.ee.ethz.ch/cvl/DIV2K/

42

4 Results and Technical Details

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50k 100k 150k 200k 250k 300k 350k 400k

(a) Perceptual loss Lp

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 50k 100k 150k 200k 250k 300k 350k 400k

(b) Relativistic average discriminator loss LRaGANG

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5

8e-5

9e-5

1e-4

1.1e-4

0 50k 100k 150k 200k 250k 300k 350k 400k

(c) Pixel loss L1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 50k 100k 150k 200k 250k 300k 350k 400k

(d) Total loss LGAN

Figure 4.11: ESRGAN model generator loss

43

4 Results and Technical Details

Bicubic PSNR (Pretrain) ESRGAN Ground Truth

24.51dB/0.94 35.67dB/0.99 35.51dB/0.99 -

25.00dB/0.94 36.78dB/0.99 36.30dB/0.99 -

24.68dB/0.94 36.37dB/0.99 36.00dB/0.99 -

24.75dB/0.94 36.20dB/0.99 35.87dB/0.99 -

Table 4.3: License-plate-dataset result presentation: Comparison between different ap-
proaches and model assessment using the metrics PSNR/SSIM

44

4 Results and Technical Details

Bicubic ESRGAN Ground Truth

24.75dB/0.94 29.00dB/0.97 -

24.68dB/0.94 28.91dB/0.97 -

25.00dB/0.94 29.27dB/0.98 -

24.51dB/0.94 28.80dB/0.97 -

Table 4.4: Results using a pre-trained ESRGAN: Comparison between different ap-
proaches and model assessment using the metrics PSNR/SSIM

45

4 Results and Technical Details

α=1 α=0.8 α=0.6 α=0.4 α=0.2 α=0

ESRGAN-based PSNR-based

Figure 4.12: Representation of the network interpolation result for different α values

46

5 Discussion

In this chapter, we closely examine the outcome of our experiment (chapter 4). We

navigate through the obtained result of each phase and formulate a comparative de-

scription between the models associated with the first and second datasets respectively.

The model comparison will be accompanied by visual support in the form of magnified

windows of previously inserted SR images. We also discuss the pre-trained model re-

sult and explain the returned behavior as well as the major difference in comparison

to our custom-trained network. For simplicity purposes, we will refer to the number-

dataset-based model as number model and to the license-plate-based model as plate model.

Further visual support is found in the Appendix A.

5.1 Training Results

5.1.1 PSNR Model Training

During the PSNR model pre-training, we note a quasi-identical performance from both

models. The comparative Figure A.1 displays a twin decreasing behavior of the L1 loss,

with the plate model returning slightly higher values. This is expected behavior since

the second dataset is more complex, therefore has more features to learn.

5.1.2 ESRGAN Model Training

In this subsection, we focus on the training result of the defined ESRGAN model (see

chapter 3). We first steer our discussion into the represented discriminator loss and

adversarial loss in order to examine the GAN performance independently. In a second

47

5 Discussion

steps we consider the secondary loss functions, i.e. the perceptual loss Lp and the pixel

loss L1.

First and foremost, we need to explain the GAN training process. Both the generator

and discriminator are trained simultaneously. Their respective loss functions are derived

from the same formula, but the loss values are complementary. In a scenario where the

discriminator is penalized for misclassifying a data sample, its recorded loss is forwarded

to the generator as compensation. Therefore, if the discriminator has a large loss rate,

the generator loss should be low and vice versa. The final goal behind the training

process is to minimize the sum of both losses.

In figures A.2 and A.3, we observe that the GAN behaviors for both models are opposite

of each other. The number model presents low discriminator loss values, therefore high

generator loss. This might lead to the conclusion that for such a trivial dataset, GAN

training can be overlooked. The discriminator seems to converge after 1/8 of the training

time, and the generator is bound to be unstable throughout the majority of the defined

steps. Therefore, the PSNR model is enough to train such a model.

The plate model on the other hand displays a rather standard GAN behavior. The

generator exhibits minimal and consistent loss values during the training procedure.

Oppositely, the discriminator sets out a conventional learning pattern. We divide the

discriminator training process into three different phases w.r.t. the specified steps:

• Between steps 0 and 100k : A totally distorted loss function with high maxima

and high minima, a transition phase for the discriminator.

• Between steps 100k and 300k : The learning phase. The discriminator loss

function displays high maxima and rather low minima.

• Between steps 300k and 400k : Low minima and maxima values indicate the

model’s quasi-convergence.

As a consequence, the model’s convergence is represented by a quasi-steady generator

loss and a decreasing discriminator loss on average.

As previously mentioned, the number model ESRGAN training is hardly affected by

the terms appearing in the equation 3.8, including the feature loss Lp and the pixel

loss L1, since the PSNR pre-training already achieves the desired results. This can be

reflected by non-decreasing perceptual and pixel losses. Whereas these functions may

48

5 Discussion

be significant for the plate model, especially at the beginning of the GAN training. In

Figures A.3a and A.3c, we note a diminishing loss, accentuated in the interval [0, 100k].

This leads to an increase of the total loss (Figure A.3d) resulting in a quicker transition

phase.

5.2 Testing Results

To evaluate the ESRGAN plate model performance, we provide magnified windows of

an acquired SR image and its HR counterpart in Figure 5.1. We select for the purpose

a box containing both the safety and registration seals, as well as a single character

or alphanumeric1. We note that the custom-trained model provides a close-to-identical

output on the alphanumeric character level. Both letters B appearing in the magnified

boxes are indistinguishable to the human eye. We also note that the acquired seals are

blurry copies of the original. This is mainly a consequence of the limited resources and

the relatively low resolution of the training dataset seals, to begin with. The generator

didn’t add any new outlines it didn’t learn. Instead, it applied the predefined parameters

to two plate components with different resolutions.

In light of the supplied dataset, we may infer that the developed model performs as

intended. The super-resolution is mostly required for the combination of numerals and

letters, 2, since it’s the component that makes the license plate unique. The super-

resolved seals might not be of high quality, yet they’re still identifiable due to the reduced

number of possibilities3 (17 as depicted in Figure 4.3).

5.3 Interpolation Results

We further depict in Figure 5.2 magnified windows of the acquired interpolation result

for the values α = 1 (ESRGAN model), α = 0.6 (hybrid model) and α = 0 (PSNR

model) respectively.

1Without loss of generality
2We count 368 combinations as defined
3We note a possibility to be a combination of the safety seal and a state/German seal

49

5 Discussion

Figure 5.1: Magnified windows of the custom-trained ESRGAN model results

50

5 Discussion

α=1 α=0.6 α=0
Figure 5.2: Magnified windows of the network interpolation result for different α values

A first trivial observation would be that the network interpolation does not effect the

displayed digit. We therefore focus our attention on the safety and state seals.

The differences between the shown safety seals are minor and may be reduced to a change

in color brightness (ESRGAN model delivers a brighter green color). The state seal on

the other hand has more distinct features. The ESRGAN model (α = 1) establishes

over-the-top high-frequency edges that may as well be superfluous for a simple classifi-

cation task with few classes at hand. For α = 0, a pure PSNR model begins to exhibit

minor flaws, in a way that we can detect undesirable artifacts being introduced to the

SR output. Network interpolation offers a fair compromise between both models, where

unwanted artifacts can be removed or reduced, with a liberty of navigating between

smooth and sharp edges.

51

5 Discussion

5.4 Pre-trained Model Results

We conclude this section with an evaluation of the loaded model trained on the DIV2K

dataset. The results in section 4.3 show that the model under-performs in general (1/10

the PSNR compared to the custom-trained model). Figure 5.3 displays modified super-

resolved edges on the curved side of the letter B. Furthermore, the obtained safety seal

develops new inner edges. The state seal script (state name) is deleted and a number of

its specific features are also removed. In summary, despite the loaded ESRGAN being

trained on data samples possessing higher resolution and richer features, we notice the

difference in performance.

The nature of the training dataset highly affects the ESRGAN performance. A model

with the task of front-view face generation would produce human-like features if applied

to a low-resolution animal or object image. This behavior is mainly leveraged in image

translation [DC20] where input is required to gain learned features from the training

dataset (e.g. translating a zebra to a horse, translating summer to winter, etc.).

52

5 Discussion

Figure 5.3: Magnified windows of the pre-trained ESRGAN model results

53

6 Conclusion

With Single Image Super-Resolution being one of the most attractive topics during

the past two decades, numerous research papers have been written, algorithms have

been developed, taking advantage of previous work while trying to correct or enhance

discovered flaws or weak connection nodes in the built architectures. All with the sole

purpose of delivering a state-of-the-art model.

In this thesis, we exploit the Enhanced Super-Resolution Generative Adversarial Net-

work, a model developed by Wang et al. [Tan18] and based on the pioneer work done

by Ledig et al. in the Super-Resolution Generative Adversarial Network (SRGAN) pa-

per [Twi17]. In this work, a more sophisticated architecture is used for the generator,

based on a chain of customizable blocks. The used block is a Residual-in-Residual Dense

Block (RRDB), which is a complex neural network featuring two state-of-the-art designs,

namely the dense block and residual block with Batch Normalization (BN) removal, and

benefiting from the residual scaling technique. The discriminator is given a relativistic

aspect implementing the Relativistic average Generative Adversarial Network (RaGAN)

technique instead of an absolute comparison for real and fake data. Furthermore, the

loss functions gain two additional terms. The perceptual loss helps give the output im-

age better perceptual qualities at the expense of a high PSNR, white a weighted L1 loss

aims to keep a certain balance between sharp edges and undesired artifacts.

The model also offers a compromise between a PSNR-based model and a GAN-based

model via the network interpolation technique without the need for re-training.

We train the network on two custom-created datasets. The first dataset is a straightfor-

ward dataset defined as samples of RGB images with a white background and a centered

randomly-generated number sequence of length 10. The second dataset is more complex,

constructed to match a standard German license plate. For generating the data sam-

ples, we applied a customary car-license-plate frame, a copy of the green safety seal, and

54

6 Conclusion

copies of all available state seals. For the identification, we used two randomly generated

alphanumeric sequences with a total length of 8.

With a scaling factor of 4 and a count of 5000 samples for training, the model over-

performs on the first defined dataset. The purpose behind this phase was to test the

model’s performance on a set of data created exclusively for the specified task.

The second dataset is meant to introduce more complicated outlines, with different

shapes and colors. As expected, the model still outperforms at scaling the alphanumeric

sequence, meaning the part of the license plate granting its unicity. The model also

delivers a distinguishable set of seals, another changing aspect of the plate, yet far from

being given the label high quality. This is mainly due to the limited resources used to

create the dataset. Such a network is usually trained on 2k resolution images. Hence,

we need to provide sample elements with higher resolution.

Nonetheless, the model proved its capability, and with appropriate training data, we

could aim for a scaling factor of 8.

Future Work

As previously mentioned, the next step would be to train the model using a High-

Resolution image dataset. The scaling factor could be increased to 8 instead of 4 with

the corresponding training parameters adapted accordingly.

Going back to the CSI use case mentioned in Chapter 1, a clear shot at the license plate

isn’t always guaranteed, making the frames used for training the model rarely the case

at hand. A solution would be to pair the SR model with a trainable Adaptive Threshold

algorithm as a precursor. The aim of this algorithm is to separate the desired license

frame from its background.

55

A Training Graphs

0

1e-3

2e-3

3e-3

4e-3

5e-3

6e-3

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Number PSNR Model

Plate PSNR Model

Figure A.1: PSNR loss: a model comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50k 100k 150k 200k 250k 300k 350k 400k

Number ESRGAN Model

Plate ESRGAN Model

Figure A.2: ESRGAN discriminator loss: a model comparison

56

A Training Graphs

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 50k 100k 150k 200k 250k 300k 350k 400k

(a) Perceptual loss Lp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50k 100k 150k 200k 250k 300k 350k 400k

(b) Adversarial loss LRaGANG

2e-5

2.5e-5

3e-5

3.5e-5

4e-5

4.5e-5

5e-5

5.5e-5

6e-5

6.5e-5

7e-5

7.5e-5

8e-5

0 50k 100k 150k 200k 250k 300k 350k 400k

(c) Pixel loss L1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50k 100k 150k 200k 250k 300k 350k 400k

(d) Total loss LGAN

Number ESRGAN Model

Plate ESRGAN Model

Figure A.3: ESRGAN generator loss: a model comparison

57

Acronyms

AI Artificial Intelligence.

BN Batch Normalization.

CNN Convolutional Neural Network.

CSI Crime Scene Investigation.

DenseNet Dense Convolutional Network.

DL Deep Learning.

DRCN Deeply-Recursive Convolutional Network.

EDSR Enhanced Deep Residual Networks for Single Image

Super-Resolution.

ESRGAN Enhanced Super-Resolution Generative Adversarial

Network.

GAN Generative Adversarial Network.

HR High-Resolution.

ILSVRC ImageNet Large Scale Visual Recognition Challenge.

LLE Locally Linear Embedding.

LR Low-Resolution.

LReLU Leaky Rectified Linear Activation.

ML Machine Learning.

58

Acronyms

MRI Magnetic Resonance Imaging.

MSE Mean Squared Error.

NLP Natural Language Processing.

NN Neural Network.

PSNR Peak Signal-to-Noise Ratio.

RaGAN Relativistic average Generative Adversarial Network.

ReLU Rectified Linear Activation.

ResNet Residual Network.

RGAN Relativistic Generative Adversarial Network.

RRDB Residual-in-Residual Dense Block.

SGAN Standard Generative Adversarial Network.

SGD Stochastic Gradient Descent.

SISR Single Image Super-Resolution.

SR Super-Resolution.

SRCNN Super-Resolution Convolutional Neural Network.

SRGAN Super-Resolution Generative Adversarial Network.

SRResNet Super-Resolution Residual Network.

SSIM Structural Similarity Index.

VGG Visual Geometry Group.

59

Bibliography

[Asi08] Hassan Aftab; Atif Bin Mansoor; Muhammad Asim. “A New Single Image

Interpolation Technique For Super Resolution”. In: (Dec. 2008) (cit. on pp. 2,

17).

[AN02] A. J.Tatem; H.G. Lewis; P.M. Atkinson and M.S. Nixon. “Super-Resolution

Mapping of Urban Scenes from IKONOS Imagery Using a Hopfield Neural

Network”. In: IEEE 2001 International Geoscience and Remote Sensing Sym-

posium (Aug. 2002), pp. 3203–3205 (cit. on p. 1).

[Ba17] Diederik P. Kingma; Jimmy Lei Ba. “Adam: A Method For Stochastic Opti-

mization”. In: arXiv:1412.6980v9 (Jan. 2017) (cit. on p. 34).

[Bet15] Leon A. Gatys; Alexander S. Ecker; Matthias Bethge. “Texture Synthesis

Using Convolutional Neural Networks”. In: arXiv:1505.07376v3 (Nov. 2015)

(cit. on p. 19).

[Cho18] François Chollet. Deep Learning with Python. Manning Publications, 20 Bald-

win Road, PO Box 761, Shelter Island, NY 11964, 2018 (cit. on pp. 6, 7, 12).

[Cmg21] Cmglee. Bicubic Interpolation. 2021. url: https://en.wikipedia.org/

wiki/Bicubic_interpolation (cit. on p. 16).

[Coo21] Gordon Cooper. Enhance Image! Real-time Super Resolution with ARC EV

Processor IP. 2021. url: https://www.synopsys.com/designware-ip/

technical- bulletin/super- resolution- with- arc- ev.html (cit. on

p. 15).

[CB14] Ian J. Goodfellow; Jean Pouget-Abadie; Mehdi Mirza; Bing Xu; David Warde-

Farley; Sherjil Ozair; Aaron Courville and Yoshua Bengio. “Generative Ad-

versarial Nets”. In: arXiv:1406.2661v1 (June 2014) (cit. on p. 12).

60

Bibliography

[Das17] Siddharth Das. CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet

and more. . . 2017. url: https://medium.com/analytics-vidhya/cnns-

architectures - lenet - alexnet - vgg - googlenet - resnet - and - more -

666091488df5 (cit. on p. 8).

[Dee18] Deeplizard. Batch Normalization (“Batch Norm”) Explained. 2018. url: https:

//deeplizard.com/learn/video/dXB-KQYkzNU (cit. on p. 14).

[DC20] Hajar Emami; Majid Moradi Aliabadi; Ming Dong and Ratna Babu Chin-

nam. “SPA-GAN: Spatial Attention GAN for Image-to-Image Translation”.

In: arXiv:1908.06616v3 (Dec. 2020) (cit. on p. 52).

[Fei16] Justin Johnson; Alexandre Alahi; Li Fei-Fei. “Perceptual Losses for Real-

Time Style Transfer and Super-Resolution”. In: arXiv:1603.08155v1 (Mar.

2016) (cit. on pp. 19, 27).

[Gop15] Ghuatam; Das; M Gopi. “Curvature minimizing depth interpolation for intu-

itive and interactive space curve sketching”. In: Computer Graphics Interna-

tional (CGI), New York, USA (June 2015) (cit. on p. 17).

[GM12] Marco Bevilacqua; Aline Roumy; Christine Guillemot and Marie-Line Alberi

Morel. “Low-complexity single-image super-resolution based on nonnegative

neighbor embedding”. In: British Machine Vision Conference (2012) (cit. on

p. 2).

[HT15] Chao Dong; Chen Change Loy; Kaiming He and Xiaoou Tang. “Image Super-

Resolution Using Deep Convolutional Networks”. In: (July 2015), pp. 1–14

(cit. on pp. 2, 17, 19).

[HA78] H.S Hou and H.C Andrews. “Cubic splines for image interpolation and digital

filtering”. In: IEEE Transactions Acoustics, Speech, Signal Processing (1978),

pp. 508–517 (cit. on p. 17).

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift”. In: arXiv:1502.03167v3

(Mar. 2015) (cit. on p. 14).

[Jol18] Alexia Jolicoeur-Martineau. “The relativistic discriminator: a key element

missing from standard GAN”. In: arXiv:1807.00734v3 (Sept. 2018) (cit. on

pp. 12, 25, 26).

61

Bibliography

[Kak11] Emil Bilgazyev; Boris Efraty; Shishir K. Shah; Ioannis A. Kakadiaris. “Im-

proved Face Recognition Using Super-Resolution”. In: IEEE RFID Virtual

Journal (Dec. 2011) (cit. on p. 1).

[Kre19] Prof. Dr. Ralf Krestel. CNN-for-Images. University of Passau, 2019 (cit. on

p. 7).

[LL16] Jiwon Kim; Jung Kwon Lee and Kyoung Mu Lee. “Deeply-Recursive Convo-

lutional Network for Image Super-Resolution”. In: arXiv:1511.04491 (Nov.

2016) (cit. on p. 18).

[LB15] S. Schulter; C. Leistner and H. Bischof. “Fast and Accurate Image Upscaling

With Super-Resolution Forests”. In: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (June 2015), pp. 3791–3799 (cit. on p. 17).

[LO04] Xin Li and Michael T. Orchard. “New Edge-Directed Interpolation”. In: IEEE

TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 10 (Oct. 2004),

pp. 1521–1527 (cit. on p. 17).

[Maa18] Gao Huang; Zhuang Liu; Laurens van der Maaten; Kilian Q. Weinberger.

“Densely Connected Convolutional Networks”. In: arXiv:1608.06993v5 (Jan.

2018) (cit. on pp. 10, 11).

[NL17] Bee Lim; Sanghyun Son; Heewon Kim; Seungjun Nah and Kyoung Mu Lee.

“Enhanced Deep Residual Networks for Single Image Super-Resolution”. In:

arXiv:1707.02921 (July 2017) (cit. on pp. 18, 23).

[NS17] R. Dahl; M. Norouzi; and J. Shlens. “Pixel recursive super resolution”. In:

arXiv preprint arXiv:1702.00783 (Mar. 2017) (cit. on pp. 3, 19).

[ON15] Keiron O’Shea and Ryan Nash. “An Introduction to Convolutional Neural

Networks”. In: arXiv:1511.08458v2 (Dec. 2015) (cit. on p. 7).

[Rue14] Kanwal K. Bhatia; Anthony N. Price; Wenzhe Shi; Jo V. Hajnal; Daniel

Rueckert. “Super-Resolution Reconstruction of Cardiac MRI Using Coupled

Dictionary Learning”. In: IEEE International Symposium on Biomedical Imag-

ing (July 2014), pp. 947–950 (cit. on p. 1).

[SP15] J. Salvador and E. Pérez-Pellitero. “Naive Bayes Super-Resolution Forest”.

In: IEEE International Conference on Computer Vision (ICCV) (Dec. 2015),

pp. 325–333 (cit. on p. 17).

62

Bibliography

[San13] Anil B Gavade; Prasana Sane. “Super Resolution Image Reconstruction By

Using Bicubic Interpolation”. In: Advanced Technologies in Electrical and

Electronic Systems (Nov. 2013), pp. 204–209 (cit. on pp. 15, 16).

[Sim18] Osvaldo Simeone. “A Very Brief Introduction to Machine Learning With Ap-

plications to Communication Systems”. In: arXiv:1808.02342v4 (Nov. 2018)

(cit. on p. 5).

[Sim03] Zhou Wang; Alan Conrad Bovik; Hamid Rahim Sheikh; Eero P. Simoncelli.

The SSIM Index for Image Quality Assessment. 2003. url: https://www.

cns.nyu.edu/~lcv/ssim/#MAD (cit. on p. 20).

[Sim04] Zhou Wang; Alan Conrad Bovik; Hamid Rahim Sheikh; Eero P. Simoncelli.

“Image Quality Assessment: From Error Visibility to Structural Similarity”.

In: IEEE Transactions on Image Processing (Apr. 2004), pp. 600–612 (cit. on

pp. 2, 19).

[Sun15] Kaiming He; Xiangyu Zhang; Shaoqing Ren; Jian Sun. “Deep Residual Learn-

ing for Image Recognition”. In: arXiv:1512.03385v1 (Dec. 2015) (cit. on p. 10).

[Tan18] Xintao Wang 1; Ke Yu 1; Shixiang Wu 2; Jinjin Gu 3; Yihao Liu 4; Chao

Dong 2; Chen Change Loy 5; Yu Qiao 2; Xiaoou Tang. “ESRGAN: Enhanced

Super-Resolution Generative Adversarial Networks”. In: (Sept. 2018), pp. 1–

23 (cit. on pp. iv, 2, 3, 18, 19, 21–23, 25, 27, 28, 34, 54).

[Twi17] Christian Ledig; Lucas Theis; Ferenc Huszár; Jose Caballero; Andrew Cun-

ningham; Alejandro Acosta; Andrew Aitken; Alykhan Tejani; Johannes Totz;

Zehan Wang; Wenzhe Shi Twitter. “Photo-Realistic Single Image Super-Resolution

Using a Generative Adversarial Network”. In: (May 2017), pp. 1–19 (cit. on

pp. iv, 1–3, 17–19, 21–23, 27, 54).

[VB16] Annina Simon; Mahima Singh Deo; S. Venkatesan and D.R. Ramesh Babu.

“An overview of machine learning and its applications”. In: EJESE, Volume

1, Issue 1 (Jan. 2016), pp. 22–24 (cit. on p. 5).

[X14] Cui; Z.; Chang; H.; Shan; S.; Zhong; B.; Chen; X. “Deep network cascade

for image super-resolution”. In: European Conference on Computer Vision

(2014), pp. 49–64 (cit. on p. 2).

[Xie] Dr. Yao Xie. “Lecture 4: Data-processing, Fano”. In: ECE587, Information

Theory, Duke University (), pp. 1–24 (cit. on p. 1).

63

Bibliography

[Xio04] Hong Chang; Dit-Yan Yeung; Yimin Xiong. “Super-Resolution Through Neigh-

bor Embedding”. In: IEEE Xplore (July 2004) (cit. on p. 17).

[Yu18] Weifeng Ge; Bingchen Gong; Yizhou Yu. “Image Super-Resolution via Deterministic-

Stochastic Synthesis and Local Statistical Rectification”. In: arXiv:1809.06557v1

(Sept. 2018) (cit. on p. 1).

[ZS15] Andrew Zisserman and Karen Simonyan. “Very Deep Convolutional Networks

for Large-Scale Image Recognition”. In: (Apr. 2015) (cit. on pp. 2, 8, 18).

64

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich diese Masterarbeit selbstständig und ohne Benutzung an-

derer als der angegebenen Quellen und Hilfsmittel angefertigt habe und alle Ausführungen,

die wörtlich oder sinngemäß übernommen wurden, als solche gekennzeichnet sind, sowie,

dass ich die Masterarbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde

vorgelegt habe.

Passau, September 2, 2021

IHEB CHHIBI

65

