
Generative Adversarial Networks

for
Multi-Instrument Music Synthesis

Master’s Thesis
submitted by

Tobias Susetzky

susetzky@fim.uni-passau.de

Supervised and examined by

Univ.-Prof. Dr. Tomas Sauer

Chair of
Digital Image Processing

University of Passau, Germany

Co-examined by

Univ.-Prof. Dr. Michael

Granitzer

Chair of Data Science
University of Passau, Germany

mailto:susetzky@fim.uni-passau.de

Abstract

Generative Adversarial Networks (GANs) recently succeeded in various tasks of
humans’ creative domain. In this master’s thesis, based on a GAN a score-to-audio
model is designed, built and analyzed. The model termed orGAN interprets sheet
music by controlling on- and offsets, volume, instrumental interaction etc., taking
the role of a human performer. It is capable of synthesizing scores of arbitrary
length for arbitrary combinations of 13 types of instruments at once with a very
high-quality sampling rate of 48kHz. For this, scores represented as pianorolls are
transformed into a spectrogram. This way, generative model architectures from
computer vision become applicable. After investigating the methodological concepts
in depth, this master’s thesis adapts a well-known image-to-image translation neural
network architecture: orGAN is a conditional PatchGAN with fully-convolutional
U-Net generator and an auxiliary instrument classifier. Experiments confirm the
findings of pix2pix [27] regarding the patch size and show the superiority of the
Multi-Scale Structural Similarity Index (MS-SSIM) over the L1 loss in a composite
objective function. The instrument classifier is found to foster transfer learning from
single- to multi-instrument play. Extensive human evaluation shows a superiority of
orGAN over related work and state-of-the art synthesizers in naturalness, timbre and
emotional expressiveness of the generated audio. Samples are available at https:

//students.fim.uni-passau.de/~susetzky/organ/.

Zusammenfassung

In dieser Masterarbeit wird ein auf einem Generative Adversarial Network (GAN)
basierendes Modell zum Überführen von Musiknoten in Audio entwickelt, imple-
mentiert und analysiert. Das Modell mit der Bezeichnung orGAN nimmt die Rolle
eines menschlichen Interpreten ein, indem es musikalische Parameter wie Lautstärke,
Anschlag oder die Abstimmung verschiedener Instrumente selbstständig kontrol-
liert. Es bietet die Möglichkeit, für Partituren unterschiedlicher Länge hochfre-
quente 48kHz-Aufnahmen mit beliebigen Kombinationen von 13 Instrumententypen
auf einmal zu erzeugen. Dafür werden sogenannte “Pianorolls” als Repräsentation
der Partitur in ein Spektrogramm überführt. Nach einer tiefgehenden Beschreibung
der zugrundeliegenden Konzepte wird die Anpassung einer GAN-Architektur aus
der Bildverarbeitung beschrieben: orGAN verwendet eine PatchGAN-Achitektur
mit Instrument Classifier im Discriminator, wobei der Generator eine Pianoroll als
Bedingung erhält und eine U-Net-Struktur aus Convolutional Layers besitzt. Ex-
perimente bestätigen die Ergebnisse des pix2pix-Modells [27] bezüglich der dabei
verwendeten Patch-Größe und zeigen, dass die Verwendung des Multi-Scale Struc-
tural Similarity Index (MS-SSIM) anstelle der L1-Metrik in der Loss-Funktion von
Vorteil ist. Es zeigt sich auch, dass der Instrument-Classifier ein Transfer Learning
von Einzelaufnahmen hin zu Audio mit mehreren Instrumenten fördert. Eine aus-
führliche Evaluation zeigt, dass orGAN verwandten Modellen und zwei herkömm-
lichen Synthesizern in Natürlichkeit, Klangfarbe und Emotionalität überlegen ist.

https://students.fim.uni-passau.de/~susetzky/organ/
https://students.fim.uni-passau.de/~susetzky/organ/

Acknowledgments

First, I want to express my gratitude to Professor Tomas Sauer at the University
of Passau who supervised this work sharing my fascination for the topic as well as
always providing helpful and precise advise.

I would also like to thank Bochen Li, Xinzhao Liu and their colleagues at the Uni-
versity of Rochester for providing me the URMP-Dataset, on which this work is
based.

Further, I want to give special thanks to my fellow students and precious friends!
In particular: Laura for her moral support and her musical expertise, Claudio for
co-developing audival, a dedicated platform for human music evaluation, in the
record-breaking time of six hours, Barbara for creatively naming this work “The or-
GAN -Project” as well as eliminanting bugs in writing and all those who participated
in the human evaluation process.

Last but by absolutely no means least, let me thank my parents for their patience
and unconditional support not only while writing this thesis, but during my whole
studies!

2

CONTENTS 3

Contents

1 Introduction 5

2 Related Work 9

3 Dataset, Pre- and Post-Processing 13

3.1 The URMP-Dataset and its Preparation 13
3.2 Audio Processing with the Short-Time Fourier Transform 17
3.3 Back-Conversion of Spectrograms to Waves 22
3.4 Pianoroll Generation . 26

4 Method 31

4.1 Machine Learning Tasks . 31
4.2 The Learning Process . 35

4.2.1 Optimization . 35
4.2.2 Descent Algorithms . 38
4.2.3 Backpropagation . 44

4.3 Neural Networks . 46
4.3.1 Neurons . 46
4.3.2 Activation Functions . 49
4.3.3 Dropout and Batch Normalization 53

4.4 Generative Adversarial Networks . 56
4.5 Autoencoder Architectures . 66
4.6 Up- and Downsampling through Convolution 68
4.7 The orGAN -Architecture . 75

5 Experiments 89

5.1 Loss Composition . 89
5.2 Varying Patch Size . 93
5.3 Transfer Learning for Multi-Instrument Play 95
5.4 Including an Instrument Classifier . 99

6 Evaluation 107

6.1 Human Perception . 107
6.2 Internal Comparison . 118

4 CONTENTS

7 Conclusion 127

List of Figures 131

List of Definitions 133

Index 135

References 139

Eidesstattliche Erklärung 147

5

Chapter 1

Introduction

One of the most intense forms of expressing human intelligence and creativity is a
musical performance: when playing an instrument, the musician not only has to
translate the notes into a deliberately timed sequence of actions on the instrument.
He or she also has to control the loudness, tempo, rhythm and pauses. It also has
to be decided for every note individually whether, for instance, a tone should have a
smooth, soft and slow on-/offset or should rather be played powerfully and without
fading out. Via controlling all of these parameters simultaneously, the performer has
a tremendous power on deciding what the actual intonation of a given score will be
like. This can lead to sounds highly varying depending on age, gender and physical
properties of the musician and its environment despite being all based on the very
same music sheet. Further, there are strong dependencies on the musical genre and
epoch as well as the assumptions professional musicians make about the intentions
of the composer or the conductor. Above all, a musician can and will always express
emotion via all of the mentioned parameters.

In short: humans do not simply map scores to audio in a deterministic manner but
instead incorporate a broad variety of factors based on which they interpret musical
scores. Additionally, the resulting sound is also determined by properties of the in-
strument where even little differences in material, manufacturing and environmental
temperature can have large effects. In an ensemble or an orchestra, also interactions
and interdependencies between performers will affect the resulting music.

All of the aforementioned makes the generation of music on a level which is com-
parable to the one of recordings of human performances a highly complex task.
Despite, or maybe just because of this, this challenge has been continuously ad-
dressed for decades: there is a variety well-established commercial as well as open
source synthesizers translating scores to audio of very high quality. Nevertheless,
most of them require extensive and time-consuming manual fine tuning and cus-
tomization through digital filters mimicking for instance the echo of different rooms.
Even dedicated experts are required that apply those synthesizers and carefully mix

6 CHAPTER 1. INTRODUCTION

different sound channels. However, the results obtained this way rarely achieve the
naturalness and emotional expressiveness of human performances. A cause might
be that those synthesizers largely act deterministically or just carefully incorporate
randomness which is then truely random instead of human-like. Therefore, such al-
gorithms always play correctly sticking exactly to the given score while, in essence,
often little “mistakes” or impurities are the key factors making a performance sound
human.

On the other hand, over the last years machine learning techniques and so-called
artificial intelligence have emerged dramatically and step by step have been success-
fully applied to a broad range of complex tasks of human domain. Starting from
computer vision problems over tasks of extracting semantics from written or spoken
word and predictive applications, artificial intelligence has already reached and in
some cases even to exceeded human performance in cognitive tasks. Besides this,
recently generative models have also emerged and spread widely headed by so-called
Generative Adversarial Networks [20]. The latter are a combination of two artificial
intelligence models competing against each other where one tries to produce real-
istic data while the other one strives for distinguishing those fakes from real world
samples. Besides the underlying mathematical motivation this has the intuitive in-
terpretation of an artist whose performance is continuously improved by feedback
from a critic mimicking the learning process via feedback in the human brain.

In this master’s thesis, a generative adversarial network architecture which has re-
cently succeeded in conditional image synthesis is adopted to perform music syn-
thesis approaching a level of human quality. The developed model, which has been
named orGAN , will be able to transform scores into waveform audio via spectro-
grams by interpreting the sheet music without any manual fine-tuning. orGAN is
one single model capable of performing audio synthesis for arbitrary combinations of
multiple instruments. This includes playing arbitrary many instances of one type of
instrument at once, for instance a violin orchestra. Another remarkable characteris-
tic is that orGAN covers almost the full range of instruments of a classical orchestra
including strings, woodwinds and brass. All of those instruments are commonly as-
sumed to be more difficult to synthesize than others such as a piano or a drum as
strings, for instance, have a very complex timbre and offer the musician a tremen-
dous amount of tuneable parameters to express his or her interpretation of the sheet
music. To be able to do this multi-instrument synthesis, this work investigates the
use of a tensor representation of multi-track scores by stacking the well-knwon pi-
anoroll [14] representations of all tracks so that the position in the stack indicates
the type of instruments, i.e. the timbre to synthesize. This technique has already
been used for score generation [13], but to the author’s best knowledge it has not
been used in a multi-instrument music synthesis GAN yet. Unlike other related
machine learning models, orGAN will be able to produce audio with a high-quality
sampling rate of 48.000 Hz.

7

After starting with a compact survey on related work (Chapter 2), the dataset
on which this work is based, the University of Rochester Multi-Modal Music Per-
formance Dataset [34], is described along with its usage as well as the pre- and
post-processing for the orGAN model (Chapter 3). The latter includes a brief in-
troduction to the foundations of signal processing relevant for this work (Section 3.2,
Section 3.3) followed by a description and a pros-and-cons analysis of the used score
representation (Section 3.4).

In Chapter 4, the theoretical concepts necessary to motivate, build and understand
the generative adversarial network architecture used in orGAN are build up and in-
vestigated from scratch: starting with a formal model of a supervised machine learn-
ing task (Section 4.1), the Section 4.2 dives into detail about the process through
which an artificial intelligence actually learns to perform a certain task. This covers
basic considerations of optimization as well as a step-by-step description of the evo-
lution of the so-called Descent Algorithms that perform the optimization through a
gradient-based procedure. Accordingly, an algorithm to efficiently compute gradi-
ents for large chains of functions called Back Propagation is outlined (Section 4.2.3).
Furthermore, a certain type of machine learning algorithms, that are in essence pow-
erful function approximators is introduced (Section 4.3): those are so-called Neural
Networks whose terminology arises from a biological motivation. Special forms of
them, which are relevant for this thesis, will also be covered: in particular Generative
Adversarial Networks (Section 4.4) used to actually generate new data, Autoencoder
architectures (Section 4.5) for learning high-dimensional data representations or se-
mantic input-to-output transforms as well as Convolutional Neural Networks capa-
ble of efficiently processing image-like data and respecting latent spatial information
(Section 4.6). Once all those theoretical concepts have been established, Section 4.7
combines and applies them to form the architecture of the orGAN neural network.

This thesis also experiments with different configurations of the neural network
model in Chapter 5: the discriminator of orGAN , i.e. the component which should
learn to distinguish real from synthesized (fake) music, outputs not just a scalar ran-
dom variable but instead a Markovian field of random variables, each one indicating
the probability for one patch of the synthesized spectrogram to be real. In Sec-
tion 5.2, different choices for the size of this Markovian field and correspondingly for
the size of those patches are investigated. Inspired by [27], the orGAN model uses
a performance objective which is made up of linearly combined similarity measures
between real and fake data. Experiments with different weights for its components
are outlined in Section 5.1. Further, this thesis investigates the ability of orGAN to
transfer to multi-instrument performances after being trained on single-instrument
samples (Section 5.3) as well the effects of including an additional component for
instrument classification in the discriminator (Section 5.4).

8 CHAPTER 1. INTRODUCTION

In Chapter 6, the performance of orGAN is evaluated relying largely on human
evaluation carried out using audival

1, a dedicated platform for human music evalu-
ation developed as a side-project of this thesis. In particular, the proposed synthesis
model is compared against related work and two off-the-shelf synthesizers, namely
musescore 3 and Apple’s Logic Pro revealing its superior performance in many
aspects.

Finally, Chapter 7 concludes this thesis with a brief summary of the achieved as
well as an outline of remaining open questions, possible extensions of orGAN and
challenges for future work.

1https://audival.io

https://audival.io

9

Chapter 2

Related Work

As mentioned in the introduction, this thesis applies a generative model: in 2014,
[20] introduced generative adversarial networks (GANs), a special type of neural
networks where two sub-networks, a generator and a discriminator, compete against
each other where the generator tries to mimic real world data while its adversary,
the discriminator, is trained to distinguish between real and fake. Such a model
allows artificial intelligence to actually create data from a random seed. Variants
have been proposed where a GAN additionally receives some side information to
condition the generation process [18]. Consequently, there have been approaches
letting the discriminator “verify” this condition by including an auxiliary classifier
[49].

GANs have been mainly applied for image synthesis at first. While the original
GAN was proposed as a multi-layer perceptron, i.e. a neural network of fully-
connected layers, for image processing the adversarial setting has been successfully
transferred to deep convolutional architectures [59]. For deep convolutional neural
networks itself, various architectures have been studied for a long time. Just to
mention a few, so-called autoencoders which first downsample their input by an
encoder sub-network, pass it through a bottleneck and then upsample it again in
another sub-network, the decoder, have been found to be very useful for learning
high-dimensional data representations, i.e. for compressing data [24]. They also
succeeded in denoising input data [70] and have been successfully used in conjunc-
tion with deep convolutional architectures [72] and even in adversarial settings [59].
A particular successful structure here, the U-Net [61], lets the decoder architecture
mirror the one of the encoder and introduces additional “skip-connections” between
corresponding encoder and decoder layers to improve gradient flow. Having a neural
network consisting of convolutional layers only, a so-called fully-convolutional net-
work, allows an application to input data of arbitrary size even after training [38].

There also exist various approaches for music synthesis using neural networks with
some architectural detail of the above: most remarkably, PerformanceNet [72] is a

10 CHAPTER 2. RELATED WORK

deep convolutional network performing exactly the task approached in this thesis,
namely score-to-audio synthesis. For this, it represents the scores of one track as a
binary pitch-over-time matrix, called a pianoroll [14]. Exploiting the spatial infor-
mation included in this, the network is trained to map the pianoroll to a spectrogram
which is transformed to waveform audio using the algorithm of Griffin and Lim [21].
The proposed network architecture is rather expensive in terms of parameters: after
applying a deep convolutional autoencoder, termed ContourNet, which is intended
to learn the macro structure of the spectrogram, another sub-network called Tex-
tureNet is applied for fine-tuning. The latter splits up the data trying to fine-tune
each frequency band separately. This way, a lot of “external information” is already
implicitly included in the training process by design. For further improvements,
PerformanceNet even includes an additional on-/offset encoder which is fed on- and
offset times of notes in addition to the pianoroll. PerformanceNet is actually not
one model, but instead an independent instance with a hand-crafted pre-processing
strategy different for every instrument on which it is trained. This not only makes
training rather cumbersome, in particular there is also no capability of synthesizing
multiple instruments at once, learning interdependencies and generalizing to new
instruments. This model can synthesize audio with a sampling frequency of 44.1
kHz. As it is fully-convolutional, it can accept scores of arbitrary length.

Meanwhile, GANSynth [17] as the name suggests uses a generative adversarial net-
work for this task: from a random seed and the pitch as side condition, the model is
trained to produce a waveform via the spectrogram of a single note of the NSynth-
Dataset. Therefore, this single model can synthesize a broad variety of instruments
but only sequentially. It can be considered a major drawback that the single notes
have to be merged externally in order to synthesize a whole song. However, as the
timbre is determined by the seed which is drawn from a continuous space, interpo-
lations in timbre and the generation of unreal sounds are possible.

Previous applications of GANs for audio synthesis largely focused on speech syn-
thesis but not music. Instead, most AI music synthesis has been performed by
auto-regressive models such as WaveNet [52]: this probabilistic model requires some
waveform audio input based on which it derives a continuation of this sequence. By
design, the model can be conditioned on the instrument but it cannot synthesize
a specific score by heart, yet there are modifications for this [42]. In a subjective
try-out by the author of this thesis, the music produced by WaveNet sounds largely
coherent, yet noisy. The model synthesizes audio with 16 kHz. A follow-up approach
with a GAN has been made with WaveGAN [12]: in an unsupervised way, it learns
to synthesize audio both, via a spectrogram and directly as waveform. This DC-
GAN [59] based model which also produces 16kHz audio has mainly been trained on
piano and drum music and puts a focus on sound effects for film and music industry.
The model produces one second chunks of audio which corresponds to a comparably
small output of size 128⇥ 128 in the spectrogram variant.

11

This master’s thesis will cope with much larger spectrograms in both, time and fre-
quency dimension. As compared to this a pianoroll representation is rather small,
orGAN implicitly has to solve a super-resolution problem. This has been done suc-
cessfully for images by the pix2pix GAN [27]: this model performs conditional image
synthesis using a GAN with a U-Net autoencoder as generator and a discriminator
which outputs independent real/fake classifications for equally sized patches of its
input data. The highly successful model not only experiments with different sizes
of these patches but also with a compound loss function including the L1 distance
between real data and fakes besides the regular adversarial loss. This is intended to
encourage learning of local details as well as the global macro-structure of the target
data. Considering spectrograms as a special type of images, in orGAN the archi-
tecture of this model is merged with the approach of PerformanceNet in order to
develop one single GAN model capable of multi-instrument score-to-music synthesis
for high frequency audio.

12 CHAPTER 2. RELATED WORK

13

Chapter 3

Dataset, Pre- and Post-Processing

3.1 The URMP-Dataset and its Preparation

The goal of this work is to develop a model that can translate scores to audio for
arbitrary combinations of multiple instruments with a focus on strings and winds
starting from a baseline created from single-instrument samples. This requires a
dataset that contains

(i) frame level time-aligned note annotations for every waveform audio recording

(ii) songs played by multiple natural1 instruments

(iii) songs covering a broad range of genre, tempi and styles/composers

(iv) aligned single recordings of all instruments playing the same song, from which
arbitrary combinations can be formed.

The most restricting factor here are the time-consuming annotations. Those are nec-
essary as aligning MIDI-formatted scores to audio recordings without a noticeable
shift over time is a challenging problem for music information retrieval itself (see
for instance [60]). One of the few freely available datasets of high quality fulfilling
the criteria above is the University of Rochester Multi-Modal Music Performance
(URMP) Dataset [34]: it includes data for 44 songs ranging from classical to mod-
ern content played with different ensembles from duets to quintets. It contains a
total amount of 1.3h of mult-instrument records split into 149 single records with a
total duration of approximately 4.5h. Details are provided in Table 3.1.2

1i.e. not from synthesizing devices such as an electronic piano and therefore no instruments
with a MIDI-interface (which would enable a simple transcription of the played music).

2As the multi-instrument samples are by definition not disjoint, the total number of samples is
less than the sum of the number of occurrences of all instruments.

14 CHAPTER 3. DATASET, PRE- AND POST-PROCESSING

Occurences

Instrument #Records Total Duration Single Multi Total

Violin 34 01:00:51 3331 25324 28655
Viola 13 00:26:00 1413 15079 16492
Cello 10 00:18:40 1211 8877 10088
Double Bass 4 00:09:48 337 4103 4440
Flute 18 00:32:55 1782 9805 11587
Oboe 6 00:11:43 591 4401 4991
Clarinet 10 00:18:06 945 4895 5849
Saxophone 11 00:15:47 828 4847 5675
Bassoon 3 00:04:15 207 2060 2267
Trumpet 21 00:40:11 2230 14394 16624
Horn 5 00:10:12 532 6178 6710
Trombone 9 00:18:07 928 6834 7762
Tuba 5 00:08:56 484 4892 5376

Total 149 04:35:31

Samples 14819 41820 56639

Table 3.1: Statistics of the pre-processed URMP-Dataset including the number of
samples from a 5s sliding window on trimmed single- and multi-instrument record-
ings. Note that the total number of multi-instrument samples is not the sum of the
occurences of all instruments as the sets of samples per instrument are obviously
not disjoint.

3.1. THE URMP-DATASET AND ITS PREPARATION 15

To obtain a large amount of data for learning multi-instrument play, during pre-
processing ensembles are formed: for every song, all possible ensembles are given
as the power set3 of instruments this song has been recorded for. For a song with
instruments4

{1, ..., n}, this results in |P({1, ..., n})| \{;} = 2n�1 combinations, so
that the whole dataset is augmented to 544 combinations of instruments (including
singles).

Despite the final model will be able to cope with inputs and outputs of arbitrary
length (see Section 4.6 and Section 4.7), the model is built from equally sized chunks
of scores and audio.5 Like the most related work PerformanceNet [72], this model
uses a chunk size of 5 seconds. To maximize the amount of training data, those
chunks are created by a window sliding over the scores represented as a so-called
Pianoroll (see Section 3.4) and over the waveform. This window simply drops the
small overflow that might occur and uses a stride of 1 as a simple method of data
augmentation. This is also done in PerformanceNet, but with providing additional
beforehand support to the model by tailoring the stride to each type of instrument.
As stated in [72, Sec. “Dataset”], the small stride leads to a high similarity of the
samples, but nevertheless “it still helps the model learn better, especially when we
use a small hop size in the STFT [Short-Time Fourier Transform, see Section 3.2]
to compute the spectrograms”. Using this stride results in a total amount of more
than 14,000 samples of single recordings and more than another 41,000 samples of
multi-instrument play.

The whole pre-processing of the URMP-Dataset is summarized in the following div-
ing into detail of its single steps after starting from the overall process outlined in
loose pseudocode6 in Algorithm 1. While its subroutines getInvolvedInstruments,
indicesToInstruments and trim are self-descriptive, others require further speci-
fication:

formEnsembles This routine takes the number n of available instruments for a
specific song as integer input and returns the power set P({1, ..., n}) \ {;} of
the set of indices of the given instruments. This equals the set of all i-tuples
of those indices with i 2 {1, ..., n} where only one permutation of each i-tuple
is included (e.g. (1, 2, 3), but not (2, 1, 3), (2, 3, 1) and so on).

getPianoroll This function loads the annotations for each instrument in an en-
semble and forms a representation called a pianoroll out of them as described

3excluding, of course, the empty set
4There might be multiple instruments of the same type performing the same song but using

different scores.
5This enables training with minibatches as described later in Section 4.2.2
6Please note that the actual implementation coming with this work might slightly differ from

the described algorithm in structure and naming for programming language specific reasons, but
follows the same logic.

16 CHAPTER 3. DATASET, PRE- AND POST-PROCESSING

Algorithm 1: Pre-Processing
Input: URMP-Dataset
Initialize preprocessedData [];
foreach song in URMP-Dataset do

instruments getInvolvedInstruments(song);
n length(instruments);
ensembles formEnsembles(n);
foreach e in ensembles do

ensembleInstruments indicesToInstruments(e);
wave sumPointwise(getSingleWaves(ensembleInstruments, song));
(pianoroll, musicBounds) getPianoroll(ensembleInstruments,
song);

wave trim(wave, musicBounds);
chunks chunkAndMakeSpecgrams(wave, pianoroll);
preprocessedData preprocessedData + chunks;

end

end

Output: A set of paired pianoroll and spectrogram chunks

in detail below in Section 3.4. Further, it determines the boundaries of play-
ing music over all ensemble instruments as a tuple of frame indices which is
used to trim leading and trailing silence in the pianoroll and later in the wave-
form audio as well. This routine is described further in the sequel, namely in
Algorithm 3.

getSingleWaves returns the list of audio waveforms of the single recordings of all
instruments in a given ensemble as time series of equal length. Those can be
merges by simple point-wise addition.

chunkAndMakeSpecgrams The model is intended not to generate a waveform di-
rectly, but instead a spectrogram which is retrieved from the waveform signal
using the Fourier Transform described later in Section 3.2. The creation of
this spectrogram as well the chunking of both the pianoroll and the wave-
form into 5s samples are summarized in the algorithm above as the function
chunkAndMakeSpecgrams which returns a list of tuples of pianoroll chunks and
the spectrogram of the corresponding audio sequence.

Slightly anticipating terms introduced later in Section 4.1, it shall be mentioned
here that during this pre-processing, a randomly drawn subset containing 10% of all
samples is split off and stored separately as a so-called Test Set which will be used
later for assessing the model’s performance.

3.2. AUDIO PROCESSING WITH THE SHORT-TIME FOURIER TRANSFORM 17

Figure 3.1: Using a low sample rate on signals with different frequency. Positions
where samples are drawn are marked with orange bars. While the low sampling
rate collects most of the low-frequency signal (top) sufficiently well, it largely fails
to capture the details of the high-frequency signal (bottom).

3.2 Audio Processing with the Short-Time Fourier

Transform

The task is of this work is to synthesize music and thus the model is trained using
waveform audio signals of real instrument recordings.

Definition 1 (Audio Signal and Sampling)

An Audio Signal for this work is modeled as a continuous function f : R�0 ! [�1, 1]
in time which is discretized in the recording process using a Sampling Operator

Sh : L(R)! `(Z) with Shf(k) := f(hk), k 2 Z

as described in [63, Ch. 2].7 The stride h 2 R determines the time span (in seconds)
between the drawing of two samples (also called Frames) and thus determines the
Sample Rate s := 1

h in frames per second. 2

Obivously, a higher sample rate results in a more precise representation of the origi-
nal signal and captures especially high frequency signals, i.e. periodic signals with a
short period, more accurately as illustrated in Figure 3.1. The audio of the URMP-
Dataset has been recorded using high-quality sampling with a sample rate of 48kHz,
i.e. s = 48, 000 frames per second.

Before going into detail on the processing of the URMP-Dataset audio, the mathe-
matical concept of a signal is related to music following [71, Ch. 1]: Usually, audio

7L(R) is the space of all real functions and `(Z) the one of all real sequences.

18 CHAPTER 3. DATASET, PRE- AND POST-PROCESSING

recordings are a mixture of multiple sinusoidal waves, named Pure Tone Waveforms
of different frequencies and loudness. In particular for music recordings, each note
played by an instrument is made up of multiple frequencies, i.e. pure tone waveforms,
summarized as Harmonics . Those consists of the so-called Fundamental Frequency
of the signal, which directly corresponds to the pitch of the note and of positive
integer multiples of this fundamental frequency, termed the Overtones . Unlike a
“synthetic signal”, fundamental frequency and harmonics are not constant within
the playing of one note in the recording of a natural instrument, but slightly vary
over time following an instrument-specific pattern, the Timbre. The third charac-
teristic of a sound beside timbre and pitch, the loudness, is directly determined by
the amplitude of the waveform.

Directly using waveform audio to train a machine learning model requires the model
to “extract” all of those properties “hidden” in the waveform before it can synthesize
music. To make the model’s task more feasible, an audio representation is used
which directly reveals most of the above information of a piece of audio:

Using the Fourier Transform, a signal can be projected from time into frequency
domain (see Figure Figure 3.2), i.e. transformed into a function that decomposes the
given signal by revealing the magnitude for each of the frequencies it incorporates
[63]:

Definition 2 (Time-Discrete Fourier Transform)

Given a discretized signal as sequence (ct) 2 `(Z), its Time-Discrete Fourier Trans-
form8 is

bc : R�0 ! C, ⇠ 7!
X

t2N0

cte
�it⇠

providing information on the presence of a pure tone waveform with frequency ⇠ in
the signals. 2

The Fourier transform returns a complex number whose absolute value |bc(⇠)| is the
magnitude of a pure tone wave with frequency ⇠ in signal c while its imaginary part
gives the Phase angle]bc(⇠), i.e. the temporal misalignment between this pure tone
waveform and the given signal [45].

Remark 3 Note that the Fourier Transform of a discrete signal is 2⇡-periodic as

bc(⇠ + 2⇡) =
X

t2N0

cte
�it(⇠+2⇡) =

X

t2N0

cte
�it⇠(ei⇡)|{z}

=�1

2t
= bc(⇠).

8In the sequel, it will be referred simply as Fourier Transform.

3.2. AUDIO PROCESSING WITH THE SHORT-TIME FOURIER TRANSFORM 19

Figure 3.2: The intention of the Fourier Transform: moving from time-domain and
the signal mapping time to a real value to the frequency domain and a function
mapping a frequency to its magnitude in the given signal. This way, a signal can be
decomposed into sinusoidal pure tone waves of different frequencies.
Graphic taken and modified from: https://upload.wikimedia.org/wikipedia/commons/6/61/
FFT-Time-Frequency-View.png

As pointed out in [45], above formulation bears the computational problems of deal-
ing with long and possibly infinite sums and a continuous frequency domain, which
cannot be handled in implementation practice. The first is tackled by computing
the Fourier Transform only over a fixed number T 2 N of samples of the input sig-
nal (see [45, Sec. 2.1.3] for details). To address the second problem, the frequency
range, which can be limited to [0, 2⇡] due to Remark 3, is sampled as well with a
sample rate of 1

N 2 Q [63]. A common choice is N = 2048. It is recommended to
couple N = T for invertibility and computational efficiency [45, Sec. 2.3.1].

Definition 4 (Discrete Fourier Transform)

For a time-discrete signal as sequence (ct) 2 `(Z), its Discrete Fourier Transform
(DFT) of order N , i.e. with a frequency sampling rate of 1

N , is defined as

(ct)t2{0,...,T} 7! (bcn)n2{0,...,N�1} with bcn := bc(n2⇡/N) =
T�1X

t=0

cte
�itn 2⇡

N

computed over T samples representing the whole signal (ct). 2

Remark 5 A DFT of order N is N -periodic as

bcn+N = bc((n+N)2⇡/N) = bc(n2⇡N + 2⇡)
Remark 3

= bcn

and thus can be represented by (bcn)n2{0,...,N}. Further, the DFT is symmetric in the

https://upload.wikimedia.org/wikipedia/commons/6/61/FFT-Time-Frequency-View.png
https://upload.wikimedia.org/wikipedia/commons/6/61/FFT-Time-Frequency-View.png

20 CHAPTER 3. DATASET, PRE- AND POST-PROCESSING

complex conjugate on this index set as

bcN�n :=
T�1X

t=0

ct e
�it2⇡
| {z }

=1

eitn
2⇡
N =

T�1X

t=0

cte�itn 2⇡
N = bcn

Hence, an order-N DFT effectively is (bcn)n2{0,...,bN
2 c}, i.e. it can be efficiently repre-

sented by bN2 c+ 1 frequency “bins”.9

To retrieve not only the frequency information averaged over the whole signal, but
instead over specific points in time, a sliding window with a certain size W 2 N
and Hop Size h 2 N, i.e. the stride of the window, can be used to compute the
DFT multiple times. The window is represented by a function w : Z! R, which is
non-zero only for a small interval {0, ...,W �1}, so that it can be convolved with the
original signal to single out chunks of W frames [45]. One may note, that the larger
the window, the higher is the “sampling rate in the frequency domain” and obviously
the larger is the number of frames on which frequency information is averaged over.
So achieving prefect resolution in both, frequency and time domain simultaneously
is not possible. The above in a formal definition:

Definition 6 (Short-Time Fourier Transform)

For a time-discrete signal as sequence (ct) 2 `(Z), its Short-Time Fourier Transform
(STFT) of order N , which uses a sliding window w : Z ! R of size W with stride
h is

(ct)t2N0 7! (bcm,n)(m,n)2(N0⇥{0,...,N�1}) with bcm,n :=
X

t2N0

ct w(t�mh) e�itn 2⇡
N .

where m indicates the sliding window’s position and n the frequency band. 2

Note that this is just an iterative application of the DFT for different window posi-
tions. In practice, computations are speed up highly using an efficient implementa-
tion of the DFT, the Fast Fourier Transform (FFT), instead if N is a power of 2,
while again coupling W = N for invertibility. The interested reader is referred to
[45, Sec. 2.4.3]. This work uses the STFT implementation of the librosa library
(see [43]) along with its default window function which is also used for instance in
[72], the bell-shaped symmetric Hann-Window defined as

w(k) :=

(
sin2(⇡k/(W � 1), k 2 {0, ...,W � 1}

0, else

9This is especially the case as further processing only deals with spectrograms (introduced later
in this section) which require only the magnitude, i.e. the real part, of the DFT’s output.

3.2. AUDIO PROCESSING WITH THE SHORT-TIME FOURIER TRANSFORM 21

The information extracted using the STFT can be arranged in a matrix which is
useful to summarize and visualize frequency information over time:

Definition 7 (Spectrogram)

Let (ct) 2 `(Z) be a discretized signal and (bcm,n)(m,n)2(N0⇥{0,...,N�1}) its order-N
STFT in a time range of M windows as specified above. Following [45, Sec. 2.1.4],
the Spectrogram is a matrix S 2 R(bN

2 c+1)⇥M where

Sn,m := |bcm,n|
2 = (Re bcm,n)

2 + (Im bcm,n)
2

2

Note that taking the absolute value provides the magnitude while discarding phase
information. Applying the shifted natural logarithm

eSn,m := ln(|bcm,n|
2 + 1) (3.1)

on top of the above computations for normalization as well as the emphasis of
“musical or tonal relationships” [45] and using a logarithmic scale on the y-axis
results in a Log-Magnitude Spectrogram as used for instance in [72, 17]. Above,
the logarithm incorporates a left-shift of 1 such that it only outputs non-negative
values and does not tend to infinity for the given non-negative inputs. Taking the
logarithm of the magnitude not only corresponds nicely to the human perception
of pitch, but also compresses the large range of magnitude values in favor of small
nuances which can be crucial for human audio perception [45, Sec. 3.1.2.1].
Encoding the magnitude as color, S can be visualized as in Figure 3.3: for visual-
ization, magnitudes are converted to decibels (which are aligned to a logarithmic
scale) through

dB(S) := 10 log10(S/r)

as described in [45, Sec. 1.3.3] where r is the reference for relatively mapping
mapping all magnitude values to the logarithmic decibel scale10. This compression
“enhance[s] small sound components that may still be perceptually relevant” and
“noise-like transients” at notes’ onsets [45, Sec. 2.1.4].

Overall, when it comes to choosing the parameters of spectrogram generation de-
scribed above, this work follows [72], which uses the STFT not only with N =
2048 = W frequency bins and frames per window but also identifies a small hop size
of h = 256 as crucial for the quality of the generated audio. Also this work adopts
the practice of slightly re-sampling audio in a way such that the number of frames
per second is divisible by h: the original audio is re-sampled with

snew := wps ⇤ h with wps :=
jsoriginal

h

k

10In the librosa [43] implementation, it is r = 1.0 by default.

22 CHAPTER 3. DATASET, PRE- AND POST-PROCESSING

Figure 3.3: A spectrogram of a chunk of music with frequencies (in Hertz) on the
y-axis, window steps at the x-axis (with time labels) and loudness in decibel encoded
as color. It clearly shows the fundamental frequency (“most intense lower bar of each
stack”) of each note together with its overtones.

where wps is the number of STFT-windows per second. For soriginal = 48kHz this
results in wps = 187 and snew = 47872Hz. Taking into account Remark 5 and a
time span of 5s, the resulting spectrogram with M = 5 ⇤ wps has a size of

✓
b
N

2
c+ 1

◆
⇥ (wps ⇤ 5), here 1025⇥ 935.

3.3 Back-Conversion of Spectrograms to Waves

The machine learning model developed in this worked will learn to output spectro-
grams. To make use of them, a procedure for a conversion back to waveform audio
is required. Inverting equation 3.1, the magnitude output of the STFT can be easily
reconstructed from a given log-magnitude spectrogram S 2 R(bN

2 c+1)⇥M by

|bcm,n| =

r���exp(eSn,m)� 1
���

where the operations are applied element-wise. For inverting the STFT, first con-
sider the inverse of its incorporated DFT:

Theorem 8 (Inverse DFT)

For an order-N DFT bC := (bcn)n2{0,...,N�1} which was computed over N samples11

C := (ct)t2{0,...,N�1} of a time-discrete signal (ct) 2 `(Z), its Inverse Discrete Fourier

11The matching T = N of the order of the DFT and the number of underlying samples is
required, as per DFT coefficient exactly one signal frame can be reconstructed.

3.3. BACK-CONVERSION OF SPECTROGRAMS TO WAVES 23

Transform (IDFT) is

IDFT(bC) :=

1

N

N�1X

n=0

bcneitn
2⇡
N

!

t2{0,...,N�1}

= C.

2

Proof As outlined in [63], it holds

IDFT(bC)t =
1

N

N�1X

n=0

bcneitn
2⇡
N

=
1

N

N�1X

n=0

N�1X

k=0

cke
�ikn 2⇡

N

!
eitn

2⇡
N

=
1

N

N�1X

k=0

ck

N�1X

n=0

ein
2⇡
N (t�k)

(⇤)
=

1

N

N�1X

k=0

ckNI{0}(t� k) = ct.

Short-handing ! := e2i⇡/N , the argument (⇤) above is that
N�1X

n=0

⇣
ei

2⇡
N (t�k)

⌘n
=

N�1X

n=0

(!(t�k))n

=

8
><

>:

PN�1
n=0 1 = N, for (t� k) 2 {0, N}

1�(!t�k)N

1�!(t�k) = 1�(

=1z}|{
!N

)t�k

1�!(t�k) = 0, else

where the latter exploits that t � k < N and thus w(t�k) < wN = 1 and therefore
the partial geometric series can be rewritten as the fraction above. ⌅

To reconstruct a signal from an STFT, also the sliding window process has to be
inverted as described in [66]:

Theorem 9 (Inverse STFT)

For an order-N Short-Time Fourier Transform (STFT)

bC := (bcm,n)m2{0,...,M�1},n2{0,...,N�1}

of T points C := (ct)t2{0,...,T} of a time-discrete signal (ct) 2 `(Z) using a slid-
ing window w of length W with stride h so that it fulfills the condition for perfect
reconstruction, namely

0 6=
M�1X

m=0

(w(t�mh))2 = const =: D 8t 2 {0, ..., T}.

24 CHAPTER 3. DATASET, PRE- AND POST-PROCESSING

its Inverse Short-Time Fourier Transform (ISTFT) is

ISTFT(bC) :=

1

D

M�1X

m=0

IDFT({bcm,1, ...,bcm,n})t�mh w(t�mh)

!

t2{0,...,T}

= C.

2

Proof As written in [66], it holds

ISTFT(bC)t =
1

D

M�1X

m=0

IDFT({bcm,1, ...,bcm,N})t�mh w(t�mh)

=
1

D

M�1X

m=0

ct w(t�mh) w(t�mh)

=
1

D
ct

M�1X

m=0

(w(t�mh))2

| {z }
=D

= ct. ⌅

For an illustration of the STFT and its inversion process, refer to Figure 3.4.

It can be seen that the ISTFT cannot be directly applied having only the magnitude
|bcm,n| without the phase information]bcm,n. This necessitates more sophisticated
strategies for reconstruction such as the Griffin-Lim Algorithm (GLA), which tries
to iteratively estimate a signal whose STFT magnitude is similar to the given one
[21]. In each iteration, a new estimation is computed by applying the STFT to
the current estimation, substituting the magnitude of the output with the target
magnitude while keeping the phase angle and then applying the ISTFT:

Algorithm 2: The Griffin-Lim-Algorithm
Shorthand I := {0, ...,M}⇥ {0, ..., N};
Input: STFT Magnitudes S := (|bcm,n|)(m,n)2I
Input: Target singal length T and STFT parameters
Input: Number of iterations X
Initialize signal C := (ct)t2T arbitrarily;
for x 1 to X by 1 do

bC STFT(C) ;
eC

⇣
Sm,nei]

bCm,n

⌘

(m,n)2I
;

C ISTFT(eC);
end

Output: Estimated signal C

Again, this work uses librosa’s implementation [43] of the Griffin-Lim algorithm.
This is an implementation of a variant of the GLA, the Fast Griffin-Lim Algorithm

3.3. BACK-CONVERSION OF SPECTROGRAMS TO WAVES 25

signal (ct)t2Z ct

window mwindow m � 1

W = Nh

order-N DFT

N

IDFT

+

ctsignal (ct)t2Z

Figure 3.4: The STFT as a windowed DFT with its reconstruction through the
IDFT and overlapping addition of the windowed outputs.

26 CHAPTER 3. DATASET, PRE- AND POST-PROCESSING

[56], which in a sense uses a momentum term to update the estimated signal in
each iteration with a varying intensity depending on the former estimation. As the
authors state, this not only speeds up computation but also causes an increase in
the quality of the output. Despite those gains, the (Fast) GLA is still comparatively
slow an will turn out to be the major bottleneck of computation when using this
work “in production” with long sequences of music.

3.4 Pianoroll Generation

Following [72], the scores given as frame level annotations which will serve as an
input to the audio generation model are represented as so-called Pianorolls as pro-
posed by [13] and also mentioned in [45, Sec. 1.2.1]: a pianoroll is a binary matrix
P 2 {0, 1}128⇥T representing a 2D-plot of the scores with time and pitch as axes.
Every entry Pp,t is 1 if and only if the note p 2 {0, ..., 127} (This is the range of the
MIDI standard.) is played at timestep t 2 {0, ..., T}.

The scores of multiple instruments playing the same song can be represented as a
set of multiple pianorolls [13]. The approach taken in this work is to stack those
pianorolls to an image-like rank 3 tensor where the position in the stack indicates
the type of instrument. This makes the instrument type an intrinsic property of
the model’s input and eliminates the need of training separate models like in [72] or
finding ways to incorporate contextual data. Anticipating Section 4.6, the under-
lying motivation is that this spatial encoding of the instrument type facilitates the
learning of instrument specific filters by the convolutional model described later.
The scores of different tracks are arranged so that those of related instruments,
i.e. strings, brass and woodwinds are closely together within this stack so that the
model can exploit this spatial information and is likely to apply similar transforms
to instruments with similar timbre.

Unfortunately, this representation does not come without drawbacks in the form of
ambiguities:

Instrument Ambiguity First, multiple instruments of the same type playing the
same notes are not distinguishable from one instrument playing those notes.
Accordingly, multiple instruments of the same type playing different single
notes are not distinguishable from a single-instrument playing multiple notes
at once.

Note Ambiguity Also, multiple notes without a pause or offset in between are
not distinguishable from one note: for instance two eighth notes of the same
pitch do not differ from a quarter note of the same pitch when the pianoroll
is retrieved from MIDI scores. This is an issue in particular, as the model is
trained with pianorolls made from frame-level annotations of real performances

3.4. PIANOROLL GENERATION 27

(a) Instrument Ambiguity (b) Note Ambiguity (c) On-/Offset Ambiguity

Figure 3.5: Ambiguities of the Pianoroll Representation

where this effect does not occur as musicians have to do a slight on-/offset
between two notes unless intended otherwise. Hence, a perfectly trained model
learns to map “a continuous bar” in the pianoroll always to one single note while
in production the same might represent multiple notes that are expected to
be played with on-/offsets in between.

On-/Offset Ambiguity Further, smooth offsets (onsets) of a short note with a
slow fade-out (fade-in) like at the end (beginning) of a song do not differ
from the hard offset (onset) of a long note. Again, the usage of frame-level
annotations versus MIDI-data opens a gap as in training, notes that should
be faded out (in) slowly are represented by an accordingly long “bar” in the
pianoroll while in production the model is likely to be expected to map “a
much shorter bar” to the same output.

As another drawback, pianorolls are a actually quite wasteful data representation in
terms of computational space as they are very sparse. Nevertheless, their huge ad-
vantage counterbalancing the mentioned issues is, that they make “the use of CNNs
[Convolutional Neural Networks, see Section 4.6] feasible”[13, Sec. “Data Represen-
tation”]. As pointed out by [72], they nicely correspond to the spectrograms of their
accompanying recording as it can be seen from Figure 3.6. This way, the problem of
score-to-audio translation becomes a super-resolution12 image-to-image translation
task [72, Sec. “Methodology”] where a contour plot needs to be converted into a
natural-looking image. The state of the art for the latter is set by the pix2pix model
[27] which becomes applicable here through the usage of pianorolls.

It is to be mentioned that for visualizing such a pianoroll or retrieving it from MIDI
data, this work relies on the package pypianoroll [14] provided by the authors of
MuseGAN [13]. The creation from the CSV-formatted annotations in the URMP-
Dataset is done from scratch using the procedure defined in Algorithm 3.

12as a pianoroll is much smaller than its corresponding spectrogram

28 CHAPTER 3. DATASET, PRE- AND POST-PROCESSING

Figure 3.6: The pianoroll representation of musical scores highly corresponds in
structure to the spectrogram of the associated performance recording.

Algorithm 3: getPianoroll
Input: A list of instruments and a song
Require: const d instrumentsInDataset;
Require: const s samplingRate;
Let l lengthInTimesteps(song);
Initialize pianoroll zeros(shape=(l, 128, d));
Initialize musicBounds (nil, nil);
foreach i in instruments do

foreach (onsetSecond, duration, pitch) in annotations(song) do

ton onsetSecond ⇤s;
toff (onsetSecond + duration)⇤s;
pold pianoroll[ton:toff, pitch, i];
pianoroll[ton:toff, pitch, i] maxPointwise(pold, 1);

end

tfirst firstOnsetSecond(song) ⇤s;
tlast (lastOnsetSecond(song) + lastNoteDuration(song))⇤s;
musicBounds = (min(musicBounds[0], tfirst), max(musicBounds[1], tlast))

end

Output: A pianoroll and musicBounds, i.e. a tuple describing boundary
time indices of the playing music

3.4. PIANOROLL GENERATION 29

The sampling rate used in this in algorithm is expected to be the same as in Sec-
tion 3.2 so that the pianoroll representation matches the associated spectrogram’s
timescale made up of 935 bins for a 5s audio signal. Here, this results in a pianoroll
shape of 128 ⇥ 935 which is smaller than the desired spectrogram output of the
model by far.

30 CHAPTER 3. DATASET, PRE- AND POST-PROCESSING

31

Chapter 4

Method

4.1 Machine Learning Tasks

For many computer science tasks of high common interest in fields such as com-
puter vision, natural language processing or music information retrieval a special-
ized pre-determined1 algorithm cannot be easily found. Instead, such tasks can be
approached with self-optimizing2 algorithms, so-called Machine Learning (ML) [19,
Sec. 5.1.1].

Definition 10 (Supervised Learning Task)

Given sets3 X ✓ Rdx and Y ✓ Rdy , a Supervised Learning Task is to approximate
an unknown mapping f ⇤ : X ! Y . This is done using a finite Dataset D :=
{(x, f ⇤(x)} ⇢ X ⇥ Y whose elements consist of Samples x and their corresponding
Labels or Ground Truth f ⇤(x). The function f ⇤ is called the Learning Goal . 2

The term supervised indicates, that for the learning process the ground truth is
provided, e.g. by a human expert. In contrast, Unsupervised Learning would try to
find a structure (e.g. a partitioning) on X using only {x|(x, ·) 2 D} without labels
[19, Sec. 5.1.1]. As this has no relevance for the task approached in this thesis, all
following considerations are restricted to Supervised Learning.

As it can be seen from the definition above, a Machine Learning Algorithm is re-
quired to be a highly flexible function approximator which can find f : X ⇥W! Y

1Pre-determined in the sense that all operations and input-independent parameters are fixed at
design-time.

2Self-optimizing in the sense that the algorithm can adjust its parameters itself with respect to
a given objective.

3As in [64, Def 1.1], the term set is used intentionally to keep the definition broad. Further, real-
valued data of arbitrary dimensionality can be re-shaped to a vector, which is why the definition
uses X ✓ Rdx , Y ✓ Rdy just as in [19, Pt. 1, Sec 5.1].

32 CHAPTER 4. METHOD

using D, such that it generalizes in a way that optimally f(x,W) ⇡ f ⇤(x) for
all x 2 X. To perform this approximation, f is based on Trainable Parameters
W 2 W ✓ RdW , expressed as fW := f(·,W), which are adjusted during a so-called
Training of the algorithm towards an optimum of a suitable, task-specific Loss Func-
tion4 quantifying the approximation quality [19, Secs. 5.1.2, 5.2]. This is essentially
the Learning Process of the model.

To determine the generalization ability of f after training, the dataset is partitioned
D := T [̇ U in a Training Set T and a Test Set U, where the latter is held out of
training, i.e. not used for the approximation process5 [19, Sec. 5.1.2]. During train-
ing, T is fed to f multiple times while in between the parameters W are adjusted
to minimize the loss of f on the training samples. One complete processing of the
whole set T is called an Epoch of the training. After training is completed, i.e. an
(locally) optimal configuration of parameters of f with respect to the loss function
has been found, the performance on the so far unseen6 test set U is evaluated yield-
ing the Generalization Error .

Modeling this from a stochastic point of view allows to derive a very common loss
function [19, Ch. 3, Ch. 5]: let the distribution of D be described by a probability
density function pdata. The training set then can be described by a joint Empirical
Distribution

p̂data(x, y) :=
1

|T|
X

(x0,y0)2T

�((x, y)� (x0, y0)), �(a) :=

(
1, if a = 0

0, else
(4.1)

assuming that samples are identically distributed. As well, the data distribution
produced by the machine learning model, i.e. here the function f , can be expressed
via a probability density function pmodel(·;W) parametrized by the weights of the
model. The goal of training is then, to achieve pmodel ⇡ p̂data. In particular, for
(x, y) 2 T the model should should map the sample x to the label y, i.e. fW (x)

!
= y.

Hence, in particular one is interested in the conditional distribution pmodel(y|x;W).
To assign the quality of this mapping quantitatively, an adequate similarity measure
for these distributions is needed:

Definition 11 (Kullback-Leibler Divergence)

Given two probability distributions p, q the Kullback-Leibler Divergence between p
and q is defined as

KLD(pkq) :=

Z
p(x) ln

p(x)

q(x)
dx = Ex⇠p(x)

ln

p(x)

q(x)

�
.

2

4This term will be clarified in the following.
5Usually, |T|� |U|, commonly in a 90:10 split.
6i.e. it has not been processed by the machine learning algorithm during training.

4.1. MACHINE LEARNING TASKS 33

Note that the KLD is non-negative and zero if and only if p = q but not symmetric.
Applying this, the loss of a model on the training set can be expressed as

KLD(p̂datakpmodel) = E(x,y)⇠p̂data [ln p̂data(x, y)� ln pmodel(y|x;W)]

= E(x,y)⇠p̂data [ln p̂data(x, y)]� E(x,y)⇠p̂data [ln pmodel(y|x;W)] . (4.2)

The goal is to find W such that fW ⇤ ⇡ f ⇤ and that the expression above is minimal,
i.e.

W ⇤ := argmin
W2W

L(W) = argmin
W2W

�E(x,y)⇠p̂data [ln pmodel(y|x;W)]

For this minimization, one can omit the first addend of equation (4.2) as it does not
depend on W . Then a loss function can be defined as

L(W,T) := �E(x,y)⇠p̂data [ln pmodel(y|x;W)] . (4.3)

As this equals
L(W,T) = H(p̂data) + KLD(p̂datakpmodel)

with H(p) := �Ez⇠p [ln p(z)] the Shannon Entropy , a measure of uncertainty in a
distribution, the right side of expression (4.3) is commonly termed the Cross-Entropy
of p̂data and pmodel while L(W) is the Cross-Entropy Loss .

As an alternative to the above, relying on the cross-entropy loss as a performance
measure can also be justified based on the concept of likelihood [19, Sec. 5.5]:
A so-called likelihood function, loosely spoken, assigns a value to any parameter
configuration of a parametrized probability distribution while fixing values for the
random variable. Here, the maximum likelihood over all model parameters W is

W ⇤ := argmax
W2W

Y

(x,y)2T

pmodel(y|x;W)

assuming that the samples are independent identically distributed (iid). Not chang-
ing the result of argmax , one can apply a logarithmic transform to prevent numer-
ical underflow as well as division by |T| yielding the expected value over the data
distribution:

W ⇤ = argmax
W2W

1

|T| ln
Y

(x,y)2T

pmodel(y|x;W) = argmax
W2W

1

|T|
X

(x,y)2T

ln pmodel(y|x;W)

⇡ argmax
W2W

E(x,y)⇠p̂data [ln pmodel(y|x;W)] = argmin
W2W

�E(x,y)⇠p̂data [ln pmodel(y|x;W)]

This matches exactly the expression (4.3) derived via the KLD.

In practice, this is commonly applied to classification tasks, i.e. guessing a label y
for a sample x: in this case, the label is often represented as a so-called One-hot

34 CHAPTER 4. METHOD

Figure 4.1: Examples for underfitting of a linear model (Left), fitting of a quadratic
function (Center) and overfitting of a polynomial of higher degree (Right) taken
from [19, Sec. 5.2]

.

Vector or a Multi-hot Vector y 2 {0, 1}dy depending on whether kyk 1 is required
or not. Then the cross-entropy loss of the model fW can be computed as

L(W,T) = �E(x,y)⇠p̂data [ln pmodel(y|x;W)] = �

Z
p̂data(x, y) ln pmodel(y|x;W) d(x, y)

⇡

X

(x,y)2T

p̂data(x, y) ln pmodel(y1, . . . , ym|x;W)

(⇤)
=

X

(x,y)2T

p̂data(x, y) ln
mY

i=0

pmodel(yi|x;W)

(4.1)
=

X

(x,y)2T

0

@ 1

|T|
X

(x0,y0)2T

�((x, y)� (x0, y0))

1

A

mX

i=0

ln pmodel(yi|x;W)

!

=
1

|T|
X

(x,y)2T

mX

i=1

yi ln(f
(i)
W (x)) + (1� yi) ln(1� f (i)

W (x)) (4.4)

where f (i)
W should indicate the i-th component of the output of fW . At (⇤) it is as-

sumed that the samples are iid over classes. For classification tasks, this necessitates
in particular a class-balanced training set. Assuming also the samples in the whole
domain D to be iid, it is justified to expect f to generalize form the training set
T to unseen data. In other words, at least a randomly chosen approximation of f ⇤

should perform equally on both, training and test set.

However, tailoring an approximation to the training set can instead of fitting the
learning goal fail in ways that either lead to

(i) bad performance on the training set called Underfitting , i.e. the model does
not approximate f ⇤ sufficiently well

4.2. THE LEARNING PROCESS 35

(ii) good performance on the training set, but bad performance on the test set
called Overfitting , i.e. the model does not generalize beyond T.

The risk of those errors is closely related to the representational capacity of the
family of functions that f can be drawn from by the algorithm called the Hypothesis
Space: while a small hypothesis space limits approximation power and thus can cause
underfitting, a too large search space might allow a too fine-grain approximation of
training data and thus is prawn to overfitting [19, Sec. 5.2] (Refer to Figure 4.1
for a visualization). The hypothesis space is largely determined by the parametric
form of f and the possibilities of the machine learning algorithm to adjust these
parameters during training. Besides, f can employ parameters that control its
behavior and in particular design choices which are not adjustable during training
but instead fixed beforehand by a human. Those are called Hyperparameters [19,
Sec. 5.3]. To tune them, one evaluates the performance of different training results
obtained from different hyperparameter configurations and adjusts those parameters
manually. In order to avoid overfitting them to the test set, one splits off another
partition V of D = T [̇ V [̇ U called the Validation Set7. This is held out from the
adaption process of the trainable parameters, but unlike U it is not just used once
for evaluating the trained model, but multiple times for different settings and stages
of training. This provides insights to the development of the model’s generalization
ability over training.

4.2 The Learning Process

4.2.1 Optimization

The task of supervised machine learning as described previously is essentially a task
of finding the best approximation of an unknown function. In other words, the
goal is to maximize the quality of the approximation by minimizing a loss function
through adjusting parameters of the approximating function. In general:

Definition 12 (Optimization)

The Optimization of a function L : Rn
! R is the task of finding the Optimum

x⇤ := argmin
x2Rn

L(x) or x⇤ := argmax
x2Rn

L(x).

The process of searching x⇤ is called Minimization or Maximization of L, accordingly.
The function L is called Objective Function. 2

As
argmax

x2Rn
L(x) = argmin

x2Rn
� L(x),

7Commonly this roughly equals a 80:20 split [19, Sec. 5.3].

36 CHAPTER 4. METHOD

the sequel focuses on minimization only. The basic formulations below are largely
taken from [64, Sec. 2.1] with minor adaptions.

Definition 13 (Minimum)

A function L : Rn
! R has a Local Minimum in x 2 Rn, if there is a Neighborhood

U ✓ Rn of x, i.e. it contains an Open Set B(x, ✏), formally

9B ✓ U : x 2 B and 9✏ 2 R>0 : 8x
0
2 Rn : kx� x0

k < ✏ =) x0
2 B (4.5)

and
8u 2 U : L(x) L(u). (4.6)

In case U = Rn, the point x is in particular a Global Minimum. 2

A maximum is defined analogously. When speaking of a minimum (maximum)
without further specification, this refers to a local minimum (maximum). To find
such a minimum, the derivative of L along a certain vector is defined:

Definition 14 (Gradient)

For a differentiable function L : Rn
! R and x 2 Rn, the row vector of all partial

derivatives
rL(x) :=

⇥
@L
@x1

(x), . . . , @L
@xn

(x)
⇤

is called the Gradient of L in x. 2

Definition 15 (Directional Derivative)

A function L : Rn
! R is directionally differentiable in x 2 Rn if

8v 2 Rn : DvL(x) := lim
h!0+

L(x+ hv)� l(x)

h
6= ±1.

Then, DvL(x) is the Directional Derivative for L in x in direction v 2 Rn. If L is
differentiable8, then

DvL(x) :=
d

d↵
L(x+ ↵v)

����
↵=0

= vTrL(x).
2

Proposition 16

If a differentiable function L : Rn
! R has a minimum at x 2 Rn, it holds

8v 2 Rn : DvL(x) = rL(x) = 0. 2

8i.e. L0(x) = limh!0
L(x+h)�L(x)

h 6= ±1

4.2. THE LEARNING PROCESS 37

Proof Let v 2 Rn arbitrarily. As x is a local minimum within an open set B(x, ✏),
it holds in particular for h < ✏

kvk

k(x± hv)� xk = |h| kvk < ✏
(4.5)
=) x± hv 2 B(x, ✏)

(4.6)
=) L(x) l(x± hv) (4.7)

and thus
DvL(x) = lim

h!0+

L(x+ hv)� L(x)

h

(4.7)
� 0. (4.8)

Overall it is

0
(4.8)
 D�vL(x)

f diff.able
= �vTrL(x) = � DvL(x)| {z }

�0 by (4.8)

 0

hence DvL(x) = 0 and as this holds for all v, it implies rL(x) = 0. ⌅

Using this, candidate points for optima can be found. To locate a potential mini-
mum, an algorithm can follow the negative gradient from every point in order to go
along the “steepest” direction:

Remark 17 The direction v 2 Rn with minimal directional derivative of a differ-
entiable function L : Rn

! R in a point x 2 Rn is a scalar multiple of the negative
gradient v = �rL(x). [19, Sec. 4.3]

Proof First, note, that by the law of cosine and the definition of the euclidean
norm it holds for a, b 2 Rn that

kak2 + kbk2 � 2 kak kbk cos � = ka� bk2 = kak2 � 2aT b+ kbk2

, kak kbk cos � = aT b. (4.9)

Considering only unit ball vector’s9, i.e. kvk = 1, the minimum value of the direc-
tional derivative from x is

min
v2Rn,kvk=1

DvL(x) = min
v2Rn,kvk=1

vTrL(x)

(4.9)
= min

v2Rn,kvk=1
kvk krL(x)k cos �

= krL(x)k min
v2Rn,kvk=1

cos �

= �krL(x)k = �
1

krL(x)k
krL(x)k2

(4.9)
= �

1

krL(x)k
r

TL(x)rL(x) = D� rL(x)
krL(x)k

L(x)

9Obviously, the magnitude of the direction vector is not relevant for finding the “steepest”
direction.

38 CHAPTER 4. METHOD

with � being the angle described by v and the gradient of L in x. As one can see,
it holds

argmin
v2Rn

DvL(x) = �rL(x).
⌅

4.2.2 Descent Algorithms

This can be used for Gradient Descent [10], a simple iterative procedure of mini-
mizing a loss function LT := L(·,T) evaluated on the training set T as above: as
described in Algorithm 4, starting from some parameter configuration W 2W, the
algorithm moves down the direction of steepest descent provided as �rLT according
to Remark 17 until the gradient is zero, i.e. a candidate for a minimum has been
reached. The step size ✏ 2 R>0 for this procedure is termed the Learning Rate.

Algorithm 4: Gradient Descent
Input: objective function L, initial model parameters W , training set T,

learning rate ✏
while rLT(W) 6= 0 do

Apply update: W W � ✏rLT(W);
end

Output: W , a candidate for a local minimum of LT

In practice, it would often be sufficient to have rLT close10 to zero. [19, Sec. 4.3]
Revisiting equation (4.4), one can see that evaluating LT(W) has a complexity of
O(|T|) [19, Sec. 5.9], which can slow down machine learning on large training sets
dramatically. Instead, the gradient can be estimated by iteratively computing the
gradient for randomly sampled11 very small subsets B ⇢ T, so-called Minibatches
[19, Sec. 5.9]. It is common to simply speak of Batches with a Batch Size of |B|,
which is for reasons of computational efficiency usually a power of 2 [19, Sec. 8.1.3].
Obviously,

lim
|B|!|T|

rLB(W) = LT(W)

i.e. a larger batch size results in a better estimation of the gradient on the whole
training set, so that there is a tradeoff between computational cost and accuracy.
Nevertheless, it has been shown [77] that even small batches can foster generaliza-
tion by adding noise when used together with a sufficiently small learning rate [19,
Sec. 8.1.3]. The processing of one minibatch is called one Training Step.

10in the sense of the euclidean metric
11It is sufficient to randomly sample minibatches once at the beginning of training [19, Sec.

8.1.3].

4.2. THE LEARNING PROCESS 39

Slightly modifying Algorithm 4 for use with minibatches according to [19, Alg. 8.1]
results in so-called Stochastic Gradient Descent :

Algorithm 5: Stochastic Gradient Descent (SGD)
Input: objective function L, initial model parameters W , training set T,

learning rate ✏
Sample minibatch B ⇢ T randomly;
while rLB(W) 6= 0 do

Sample minibatch B ⇢ T randomly;
Apply update: W W � ✏rLB(w);

end

Output: W , a candidate for a local minimum of LT

As mentioned before, a state with the gradient equal to zero won’t be reached in
practice, especially with stochastic gradient descent, which is only working with a
minibatch-based estimation of the gradient and thus introduces a source of noise [19,
Sec. 8.3.1]. Instead, after some time of training, LB will not decrease further or even
grow due to overfitting, i.e. refining the minimum of the training error too much.
To tackle this, one simply does not continue training beyond this critical point from
which no further improvements are made and adapts the stopping criterion of the
optimization algorithm such as Algorithm 5 accordingly. This technique is called
Early Stopping [19, Sec. 7.8].

The learning process twoards this point of stopping is highly influenced by the
learning rate: this hyperparameter has to be chosen carefully, as it is crucial for the
following tradeoffs coming with (stochastic) gradient descent [19, Sec. 8.3.1]:

(i) A small learning rate is useful to refine the approximation of a (potential)
minimum, but will slow down the algorithm as a whole.

(ii) A large learning rate accelerates training at the beginning but can make the
algorithm “jump” over a minimum (repeatedly).

(iii) When gradients are small, descent algorithms progress slowly.

(iv) When gradients are “noisy”, i.e. very inconsistent over training time, a descent
algorithm might zig-zag instead of approaching the minimum more directly.

The first two issues can be addressed by decreasing the learning rate over time
between training step 0 and step T from ✏0 to ✏T , such that (as described among
others in [19, Sec. 8.3.1]) for step t the learning rate is

✏t =

✓
1�

t

T

◆
✏0 +

t

T
✏T .

Here, a simple linear decrease of the learning rate is described, but of course, there
are more sophisticated strategies as well.

40 CHAPTER 4. METHOD

Momentum The two other issues can be addressed by using a technique first
described in [57]: instead of directly using the gradient, parameters are updated
using a moving average of the gradients of the previous steps to control not only
the direction in which to move but also the velocity, a so-called Momentum. This
procedure is outlined in Algorithm 6 in reference to [19, Alg. 8.2]. Despite Stochastic
Gradient Descent with Momentum is a rather basic and light-weight optimization
algorithm, it has proven to be highly successful in various complex tasks, for instance
[31], [68] and [23].

Algorithm 6: Stochastic Gradient Descent with Momentum
Input: objective function L, initial model parameters W , training set T,

learning rate ✏, momentum decay ↵
Sample minibatch B ⇢ T randomly;
while rLB(W) 6= 0 do

Sample minibatch B ⇢ T randomly;
Calculate update: v ↵v � ✏ rLB(w);
Apply update: W W + v;

end

Output: W , a candidate for a local minimum of LT

In Algorithm 6, the decay parameter ↵ controls the influence of gradients from pre-
vious steps and thus the balance between exploration of a “new search space” and
the exploitation in the current one, i.e. the refinement. This is yet another hyperpa-
rameter, for which values such as 0.5, 0.9, 0.99 are used widely and may be adopted
over time just like the learning rate [19, Sec. 8.3.2].

Again, such a hyperparameter adaption follows a rather arbitrary, “external” strat-
egy which does not take into account the gradients’ magnitude in each step . Further,
it applies the same learning rate to the update of every parameter. Both is critical as
it leads to divergence (hampers convergence) of the optimization algorithm when a
high (low) learning rate is used in regions with high (low) curvature and accordingly
large (small) gradients [6, Sec. 2].

AdaGrad To mitigate this, a descent algorithm called AdaGrad (Adaptive Gra-
dient) proposed by [15] calculates an individual learning rate for each parameter
in each step through scaling the “global” learning rate by an accumulation of the
corresponding partial derivatives from all previous training steps: Letting g :=⇥
g1, . . . , gn

⇤T
:= rLB(W) denote the gradient and defining initially R = 0 2 Rn⇥n,

AdaGrad aims to use the outer product matrix G := ggT to update W by

R R +G

W W � ✏R� 1
2 g

4.2. THE LEARNING PROCESS 41

But as finding a square root of R, i.e. matrix A such that AA = R, is compu-
tationally impractical [15, Sec. 1.1], AdaGrad uses a slightly different update rule
of

W W � ✏ diag (R)�
1
2 g = W � ✏

2

64

1p
R11

. . .
1p
Rnn

3

75 g

where Rii equals the cumulative sum of the values of g2i = @
@Wi

L2
B over all iterations

so far. Hence, the overall algorithm as described in [15, Sec. 1.1] can be written as:

Algorithm 7: Adaptive Gradient Descent (AdaGrad)
Input: objective function L, initial model parameters W , training set T,

global learning rate ✏, negligibly small constant � for numerical
stability

Initialize r := 0 2 Rn;
Sample minibatch B ⇢ T randomly;
while rLB(W) 6= 0 do

Sample minibatch B ⇢ T randomly;
Let

⇥
g1, . . . , gn

⇤
:= rLB(W);

Accumulate squared partial derivatives: r r +

2

64
g21
...
g2n

3

75;

Apply update: W W � ✏

2

64

1p
r1+�

g1
...

1p
rn+�

gn

3

75;

end

Output: W , a candidate for a local minimum of LT

Adagrad has been successfully applied among others in [65]. But it can be seen from
Algorithm 7, that the larger the (accumulated) partial derivative for one parameter
is, the lower will be the scaled learning rate used to update this parameter and vice
versa. While this is fine for a convex environment, i.e. curves with permanently
negative curvature where every local minimum is a global one, for non-convex func-
tions a learning rate being low due to gradients being large at the first steps can
lead to getting stuck in such a local minimum instead of finding the global one.

RMSProp This effect can be reduced by limiting the influence of the previously
observed gradients in each step by using an exponentially weighted moving average
of gradients instead of the cumulative sum [19, Sec. 8.5.2], [6, Sec. 4]. Modifying
AdaGrad this way results in the so-called RMSProp (Root Mean Square Propagation)

42 CHAPTER 4. METHOD

algorithm by [69]: RMSProp works just like AdaGrad except from the accumulation
of squared partial derivatives: the update rule used by RMSProp is

r ↵r + (1� ↵)

2

64
g21
...
g2n

3

75 (4.10)

where the decay rate ↵ 2 [0, 1) is again a hyperparameter. But initializing r = 0
introduces some sort of bias into the moving average such that for instance

r1 = (1� ↵)G1 6= G1

with the subscripts of r and G indicating the value of the respective variable in
iteration t of the algorithm and with G :=

⇥
g21, . . . , g

2
n

⇤T . Formally, as outlined in
[29, Sec. 3], consider Gt being independently drawn from a gradient distribution
Gt ⇠ pgrad(Gt), then unroll the recursive update rule (4.10) to

rt = (1� ↵)
tX

i=1

Gi↵
t�i

and compare

E [rt] = EGi⇠pgrad

"
(1� ↵)

tX

i=1

Gi↵
t�i

#

= (1� ↵)
tX

i=1

↵t�i EGi⇠pgrad [Gi]| {z }
=EGt⇠pgrad [Gt]

= EGt⇠pgrad [Gt] (1� ↵)
tX

i=1

↵t�i

= EGt⇠pgrad [Gt]
tX

i=1

(↵t�i
� ↵t�i+1) = EGt⇠pgrad [Gt] (1� ↵t)

!
= EGt⇠pgrad [Gt]

Hence, the bias can be corrected by

r̂t
rt

1� ↵t
.

Obviously, this holds for an update rule without squaring the gradient values as
well.

Adam A descent algorithm incorporating such a bias correction is Adam (Adap-
tive Moments) proposed by [29]: to a certain extent this can be seen as a merge of
RMSProp and Momentum as it maintains exponential moving averages of the gradi-
ent itself (called the first moment) and the element-wisely squared gradient (called

4.2. THE LEARNING PROCESS 43

second moment) as well as a bias correction for both. As outlined in Algorithm 8,
just like in RMSPRop the second moment is used to scale the partial derivatives,
which are estimated by the first moment, individually:

Algorithm 8: Adaptive Moments (Adam)
Input: objective function L, initial model parameters W , training set T,

global learning rate ✏, decay rates ↵, � 2 [0, 1), negligibly small
constant � for numerical stability

Initialize s, r := 0 2 Rn;
Initialize step t := 1;
Sample minibatch B ⇢ T randomly;
while rLB(W) 6= 0 do

Sample minibatch B ⇢ T randomly;
Let

⇥
g1, . . . , gn

⇤
:= rLB(W);

Compute first moment: s �s+ (1� �)

2

64
g1
...
gn

3

75;

Compute second moment: r ↵r + (1� ↵)

2

64
g21
...
g2n

3

75;

First moment bias correction: ŝ s
1��t ;

Second moment bias correction: r̂ r
1�↵t ;

Apply update: W W � ✏

2

64

1p
r̂1+�

ŝ1
...

1p
r̂n+�

ŝ1

3

75;

Increment t t+ 1;
end

Output: W , a candidate for a local minimum of LT

Despite this combination “does not have a clear theoretical motivation” [19, Sec.
8.5.3], Adam has turned out to be extremely successful: it outperforms SGD, Ada-
Grad and RMSProp [29, Sec. 6] and has shown great success in recent work similar
to or relevant for this project of music synthesis such as [27, 72, 17, 49, 59, 36, 28].
Therefore it can be seen as a de-facto standard in this field.

A big advantage of Adam is, that according to the authors its hyperparameters
require little fine-tuning for a specific task [29], [19, Sec. 8.5.3]. Default values
recommended by [29] for this algorithm are ✏ = 0.001,↵ = 0.9 and � = 0.999.

44 CHAPTER 4. METHOD

4.2.3 Backpropagation

Note: this section is written relying more on basic knowledge gained from various lec-
tures and projects in the field rather than an explicit source. Nevertheless, in parts it
loosely follows [19, Sec. 6.5], in particular regarding the idea of using computational
graphs.

Definition 18 (Jacobian)

For a differentiable multi-variate function,

f : Rn
! Rm, x =

2

64
x1

...
xn

3

75 7!

2

64
f1(x)
...

fm(x)

3

75

the matrix consisting of the gradients of the component functions fi as rows

Df(x) :=

2

64
rf1(x)

...
rfm(x)

3

75 2 Rm⇥n

is called the Jacobian of f in x. 2

All of the algorithms described above heavily rely on the gradient of the objec-
tive function being evaluated multiple times. But evaluating the gradient can be
computationally expensive: consider a chain of n differentiable functions

f := fn � . . . � f1, fi : Rmi ! Rmi+1 (4.11)

where (fj � fi)(·) := fj(fi(·)) denotes composition. According to the chain rule, it
holds

dz

dx
=

dz

dy

dy

dx
for z := g(y), y := h(x)

for scalar functions g, h : R! R and

D(g � h)(x) = Dg(h(x)) Dh(x) 2 Rk⇥n

for the multivariate case with h : Rn
! Rm, g : Rm

! Rk in x 2 Rn. Applying this
recursively, the derivative of function (4.11) in x 2 Rm1 is given as

Df(x) = Dfn(fn�1(. . . (f1(x)))) · Dfn�1(fn�2(. . . (f1(x)))) · . . . · Df1(x) (4.12)

It can be seen, that equation (4.12) is highly redundant as a straightforward im-
plementation would evaluate the same sub-expressions multiple times causing high
runtime.

4.2. THE LEARNING PROCESS 45

This can be avoided by evaluating the derivative of each chain element locally in-
stead of evaluating the derivative “as a whole”: consider the function (4.11) as a
Computational Graph, i.e. an acyclic directed graph with variables and “interme-
diate results” as nodes and operations as edges. For simplicity, in this section a
computational graph is restricted to have only one input node and not more than
one child per node12. For this, let

xi := (fi � . . . � f1)(x), i 2 {1, . . . , n}

denote the input to fi+1 or respectively the output of fi. Then the computational
graph representing the forward pass of the input value through the chain of functions
is:

x x1 x2 . . . xn
f1 f2 f3 fn

Then the derivative can be computed and evaluated for each node locally starting
from the output node and then this value can be reused in all parent nodes: compu-
tation starts with the local derivative of the edge to the last node x̃n := Dfn(xn�1)
which is then passed to the parent node to compute its local derivative as x̃n�1 :=
Df 0

n�1(xn�2) · x̃n and so on. This results in the backward pass:

x x1 x2 . . . xn�1 xn

x̃n�1 x̃n
. . .x̃2f 0(x)

f1 f2 f3 fn�1 fn

DfnDfn�1

·

Df3

·

Df2

·

Df1

·

In this procedure, the values of the components of f 0(x) are “propagating backwards
through the graph” starting from the output node. Hence, the algorithm performing

12This is without loss of generality as every node, i.e. every variable does not have to be a scalar
value but instead can also be a vector or matrix [19, Sec. 6.5.1].

46 CHAPTER 4. METHOD

this computation is called Back Propagation, first described in [62]. In pseudocode:

Algorithm 9: Simplified Back Propagation
Input: A computational graph G = (V,E) consisting of a set V of nodes

and a set E of edges containing one start node and not more than
one child per node.

Input: An input value x
Initialize J 1;
Initialize v 2 V the output node of the graph;
while hasParent(v) do

Let p parent(v);
Let f value(incomingEdge(v));
Update J Df(value(p)) · J ;
Optionally: use J to update parameters of f or store J in some data
structure for later usage;

end

Output: The Jacobian J of the function represented by G at point x

Note that the requirement to G of having only one input node and not more than
one child per node directly implies that the graph has a unique output node and
one parent per node.

This algorithm is just a brief sketch of the idea. Of course other implementations
might be preferably depending on the use case. Variants might be recursive, store
the “intermediately” computed derivatives of all fi to update their parameters later
in bulk (as it is done in [62]) or they might be updated on the fly as well. Most cur-
rent machine learning frameworks such as TensorFlow [1] do not evaluate derivatives
directly but first compute symbolic derivatives for later evaluation which are used
to augment the computational graph just as visualized above [19, Sec. 6.5.5]. Over-
all, backpropgation enables the efficient application of gradient-based optimization
methods to machine learning models of high complexity13.

4.3 Neural Networks

4.3.1 Neurons

One technique from the field of Machine Learning that has recently succeeded in a
variety of complex applications and thus gathered lots of attention in research are
so-called Neural Networks. As the name suggests, this biology-inspired algorithmic
concept tries to mimic the behavior of the human brain: it consists of multiple

13in the sense of the length of function chains and the number of parameters.

4.3. NEURAL NETWORKS 47

(a) The biological concept of a neu-

ron receiving inputs via multiple

dendrites, which are processed in-

side the cell body and fire an output

over the axon in case of an activation

of the neuron.

x1

x

x2

...

xn

w1

w

w2

...

wn

P

·

·

·

+
+

+

b

+

�

(b) Computational Graph of a neuron with

input x 2 Rn
, weights w 2 Rn

, bias b 2 R
and an activation function �.

Figure 4.2: Biological and mathematical illustration of a neuron.
Left graphic taken and modified from: https://ucsdnews.ucsd.edu/pressrelease/why_are_
neuron_axons_long_and_spindly

computational cells, the neurons, each receiving multiple numeric inputs which are
reduced by weighted addition to produce an output signal scaled by a non-linear
Activation Function14 and shifted by a bias term (See Figure 4.2). In the following,
this concept will be modeled formally while mostly relying on [19, Pt. II, Ch. 6]:

Definition 19 (Neuron)

Given weights w 2 Rn, a non-linear function � : R! R and a Bias b 2 R, a Neuron
is a function

h : Rn
⇥ Rn

⇥ R! R, (x, w, b) 7! �(
nX

i=0

wixi + b) = �(wTx+ b) (4.13)

processing an input x of dimension n 2 N. The function � is called activation
function15. 2

The construction of Definition 19 is visualized in Figure 4.2b.

14Loosely spoken within the analogy, the activation function determines whether and to what
extent the neuron will be activated by the input signals. Details can be found in the sequel.

15The only requirement for � at this point is to be a scalar function, which is non-linear (i.e. not
of the form �(x) = ax+ t). There are multiple other desirable properties such as differentiability
or monotonicity, but none of them is necessarily required for all activation functions. Thus, the
definition is kept broad here intentionally. Details follow. It is not explicitly defined as a parameter
of h as it is fixed at the design time of a neural network unlike w and b.

https://ucsdnews.ucsd.edu/pressrelease/why_are_neuron_axons_long_and_spindly
https://ucsdnews.ucsd.edu/pressrelease/why_are_neuron_axons_long_and_spindly

48 CHAPTER 4. METHOD

Notation For u := (u1, . . . , un)T 2 Rn, v := (v1, . . . , vm)T 2 Rm let

u
v

�
:= (u1, . . . , un, v1, . . . , vm)

T .

Remark 20 (Bias Packing) Substituting ŵ :=

w
b

�
and x̂ :=

x
1

�
, the function

in (4.13) can be shorthanded

hŵ(x) := h(x, w, b) = �(ŵT x̂).

For simplicity and compact reading, w and b will be combined to one vector and
commonly termed Weights instead of “weights and biases” in the following.

Multiple neurons can be arranged in a Layer :

Definition 21 (Fully-Connected Layer)

A Fully-Connected Layer or Dense Layer with m 2 N Units is a function f com-
prised of a family (h(i)

wi)i2{1,...,m} of neurons sharing the same activation function �
and receiving an input x 2 Rn:

f : Rn
⇥ Rm⇥n+1

! Rm, (x,W) 7!

2

64
h(1)
W1

(x)
...

h(m)
Wm

(x)

3

75

Note, that the weights (and biases) of all h(i) have been summarized in a matrix W 2
Rm⇥n+1 for which Wi := wi denotes the i-th row. The above can be shorthanded

f̂ : Rn
⇥ Rm⇥n+1

! Rm, (x,W) 7! �(Wx̂) with x̂ :=

x
1

�

where � is applied element-wise. Again, write f̂W := f(·,W). 2

The layer defined above is called fully-connected or dense as each single element of
the input vector is fed to each neuron separately as visualized in figure Figure 4.3.

In particular, for further considerations the reader may note that the output size
equals the number of units of the layer and has to be respected when “stacking”
multiple of those layers to construct a neural network :

4.3. NEURAL NETWORKS 49

x1 x2 . . . xn

h(2)
w2h(1)

w1 h(3)
w3

Figure 4.3: Computational Graph of a Fully-Connected Layer with input x 2 Rn

and three neurons h(1)
w1 , h

(2)
w2 and h(3)

w3 according to Definition 21.

Definition 22 (Neural Network)

A Neural Network of depth d 2 N with input size n 2 N consists of a family
(f (i)

W (i))i2{1,...,d} of fully-connected layers16 using weights W := (W (i))i2{1,...,d} such
that the input dimension of the i-th layer equals the number mi�1 2 N of units (and
thus the output size) of the previous layer:

8i 2 {0, . . . , d} : f (i)

W (i) : Rmi�1 ! Rmi with m0 := n.

Then letting x 2 Rn be some input, the neural network is given as

fW (x) := f(x,W) := f (d)

W (d) � . . . � f
(1)

W (1) .

In this setting, f (1)

W (1) is called Input Layer , f (d)

W (d) analogously Output Layer while
f (i)

W (i) , 1 < i < d are Hidden Layers. 2

4.3.2 Activation Functions

The neural network is intended to address a supervised learning task and thus to
approximate f ⇤ according to Definition 10. It is noteworthy that the non-linearity
of � according to Definition 19 is crucial for this ability: if � was of the form
�(y) = ay + t, then a fully connected layer f (i)

W (x) = �(W (i)x) = aW (i)
· +t would

16In general, of course any kind of (differentiable) function can be used as a layer of a neural
network. But as it will be shown later in this work, the only other type of layer relevant for a com-
putational analysis of this project (neglecting “non-computational” layers such as data reshaping)
is a convolutional layer. It will be shown that a convolutional layer is computationally equivalent
to a dense layer. Thus, the restriction to dense layers here appears reasonable.

50 CHAPTER 4. METHOD

�4 �2 0 2 4

�2

0

2

Sigmoid Activation Functions

logistic
d
ds logistic

tanh
d
ds tanh

Figure 4.4: Plots of two common sigmoid activation functions, tanh and logistic
along with their derivatives.

be a linear function and so would the whole network:

fW (x) = f (d)

W (d) � . . . � f
(1)

W (1)

= aW (d)...aW (1)x̂+ t+ t

= ad
dY

i=1

W (i)

| {z }
=:fW

x+ dt =: e�(fWx)

This would heavily counteract the intention of using a neural network as a highly
flexible function approximator. Further, as the calculations above show, with a lin-
ear � the whole network could be reduced to one single layer. Hence, non-linearity is
required for an activation function. Beside this, there are other desirable properties,
yet none of them is necessary for every activation function. Those will be briefly de-
scribed in the following while going through common choices for activation functions:

One wide-spread type of activation function since the early rise of neural networks
are Sigmoid Functions [32, Sec. 4.4], [22, Sec. 1]:

Definition 23 (Sigmoid Function)

A bounded, differentiable and monotonically increasing function � : R! R is called
Sigmoid Function if the limits for ±1 exist. 2

The limited range, the convergence in both limits and its monotonicity nicely fit the
biological analogy of a neuron which is either activated or not by its input signals,
for which a higher weight results in a higher activation of the neuron. But of course,
in particular differentiability and non-linearity are of practical relevance. It has been

4.3. NEURAL NETWORKS 51

shown early, that even a neural network of depth d = 1 using sigmoid activation is a
universal function approximator, i.e. it can approximate arbitrary continuous scalar
functions up to a negligible error [11]. For completeness, it shall be mentioned that
this has been generalized to “locally-bounded piecewise-continuous non-polynomial
activation functions” by [33] and to arbitrary functions by [25]. Those results are
known as the Universal Approximation Theorem.

Common examples of sigmoid functions depicted in Figure 4.4 are the Logistic Func-
tion

�(x) :=
1

1 + e�x

and the Tangens Hyperbolicus

tanh(x) =
ex � e�x

ex + e�x

as described in [32, Sec. 4.4]. Despite one is an instance of the other, the terms
logistic function and sigmoid function are often used interchangeably or even defined
as synonyms [75]. The logistic function has major drawbacks: the derivative of the
logistic function is given as

d

ds

1

1 + e�s
= �

�e�s

(1 + e�s)2
= (�(s))2e�s.

Hence, for a neuron processing x 2 Rn, the gradientrhw(x) =
⇥

@
@x1

hw . . . @
@xn

hw

⇤
(x)

consists of
@

@xi
hw =

@

@xi
�(wTx) = (

@

@xi
�)(wTx) · (

@

@xi
wTx) = (�(wTx))2e�wT x

· wi (4.14)

Therefore, with a length d chain of multiple neurons h := h(d)
wd � . . . � h

(1)
w1 such as in

a neural network with multiple fully-connected layers, the gradient is provided by
the chain rule as

@

@xi
h = (

@

@xi
h(d)
wd
) � h(d�1)

wd�1
� . . . � h(1)

w1
·

@

@xi
(h(d�1)

wd�1
� . . . � h(1)

w1
) (4.15)

= ((�(�(. . . (�(·))))| {z }
d times

)2 e�wT
d x wd) · (�(�(. . . �(·)))| {z }

d�1 times

)2e�wT
d�1x wd�1) · . . .

As one can see, @
@xi

h includes the derivative of � and thus the evaluation of � and
the exponential factor of equation (4.14) multiple times. The effect is summarized
among others in [41, Sec. 2], [55, Sec. 2]: due to the low range of d

ds� of (0, 0.25]
and the exponentials e�s, gradients of lower17 layers of h tend to zero. Conversly,

17A layer within a chain of layers is called lower in reference to its closeness to the end of the
chain.

52 CHAPTER 4. METHOD

with negative input values, e�wT s causes the gradients to increase dramatically.
These two problems are also known as the Exploding Gradients Problem and the
Vanishing Gradients Problem. The latter was first described by [7] for another
type of neural networks18. It becomes clear from the descriptions of optimization
algorithms in Section 4.2.1, that this is a major drawback as gradients directly
determine the magnitude of updates of a neural network’s weights. Thus, using the
logistic function for activation in multiple layers could hamper the learning process.
This is especially the case for limx!1 �(x) and hence, large (initial) values for a
neuron’s weights saturate � and smaller gradients dramatically [32, Sec. 4.4].

Remark 24 One may note, that

tanh(x) =
ex � e�x

ex + e�x
=

ex(1� e�2x)

ex(1 + e�2x)
=

2� (1 + e�2x)

1 + e�2x
= 2�(2x)� 1.

Thus, the Tangens Hyperbolicus suffers from vanishing gradients and saturation
problems as well, but in contrast to the logistic function, it is zero-centered as

tanh(x) = 0 , ex � e�x
, x = �x , x = 0.

This property is desirable as it causes the image to have a mean close to zero, which
has been found to support the learning and training process of the neural network:
a mean value which is large and positive (negative) causes also gradients to have
largely positive (negative) values and thus the weights are largely increased (de-
creased) all together so that multiple updates have to be carried out to both, lower
and higher weights 19[32, Sec. 4.3, 4.4]. Therefore, one should prefer tanh over the
logistic function.

The problems with sigmoidal functions described above have been overcome with
the invention of an activation function called Rectified Linear Unit (ReLU) defined
as relu(x) := max(0, x)20. Intentionally ignoring that ReLU is not differentiable at
zero, it is proposed along with

d

dx
relu =

(
0, x 0

1, x > 0
=: I>0

as its derivative [46].

18So-called Recurrent Neural Networks (RNNs).
19Which leads to a zigzagging in updates.
20Precisely spoken, a Rectified Linear Unit is a neuron employing the function max(0, ·) as

activation function. In contrast, ReLU is commonly used to refer to the activation function itself
(which is also done in this work).

4.3. NEURAL NETWORKS 53

So, analogously to Equation (4.14), the gradient of a ReLU neuron has components
of the form

@

@xi
hw = (

@

@xi
relu)(wTx) · (

@

@xi
wTx) = I>0(w

Tx) · wi

and hence rewriting equation (4.15) gives

@

@xi
h = I>0(relu(...(relu(·)))| {z }

d�1 times

)wd · I>0(relu(...(relu(·)))| {z }
d�2 times

)wd�1 · . . . (4.16)

for the elements of the gradient of a chain of neurons with ReLU activation. This
has not only a high ease of computation, it also preserves the gradients of previous
layers while they are “flowing” back through the function chain, which has been
found to accelerate the optimization process of a neural network tremendously. The
impact has been shown clearly in the AlexNet [31], the breakthrough of a so-called
Convolutional Neural Network (CNN) (This network type will be described later in
this chapter, namely in Section 4.6).
It has been shown, that also networks employing ReLU are universal function ap-
proximators [40]. However, as it becomes clear from equation (4.16), once a neuron’s
output becomes non-positive due to its weights, the gradient of this neuron becomes
zero and thus the unit’s weights will not be updated anymore (by a gradient-based
procedure) causing the Dying ReLU Problem [55, Sec. 2], [41, Sec. 2].

This can be overcome by allowing a small gradient for negative input values in-
stead of sharply thresholding at zero: the Leaky Rectified Linear Unit (LReLU) or
LeakyReLU is defined by [41] as

lrelu(x) :=

(
x, x > 0

0.01x, x 0
with

d

dx
lrelu =

(
1, x > 0

0.01, x 0
.

LReLU has already succeeded multiple times in related work [17, 27, 72, 49, 36, 12,
59, 28] and thus is also preferred in this project. Some other less common variants
of ReLU are summarized and compared in [55], yet not part of this work due to
their rare usage in this field.

4.3.3 Dropout and Batch Normalization

Neural Networks are often prawn to overfitting described earlier in Section 4.1. A
broad variety of countermeasures has been proposed. One of the simplest but yet
most effective ones is to randomly “disable” single neurons (and thus gradient-based
updates on them) by multiplying their output with a variable which is drawn from
a Bernoulli distribution every time data is fed to the network. This procedure is
called Dropout [67]:

54 CHAPTER 4. METHOD

Definition 25 (Dropout Layer)

A Dropout Layer of a neural network, or simply Dropout , is a function

f : Rn
! Rn,

2

64
x1

...
xn

3

75 7!

2

64
x1s1
...

xnsn

3

75 with si ⇠ Bernoulli(1� p)

where p 2 [0, 1) is the Dropout Rate, i.e. that probability that a neuron “drops out
of the network” as its output is multiplied by zero. 2

Clearly, this function is differentiable with respect to x, i.e. it is compatible with
backpropagation and it can be inserted after every kind of neural network layer.
Its biggest advantage is its computational inexpensiveness. The motivation behind
dropout is to simulate an ensemble of slightly different neural network architectures
(Precisely, 2m variants for a network with m units.) with shared weights trained
simultaneously which is well-known to improve learning results [67]. The authors
also extensively describe motivation from biology and genetics.

Note that the dropout rate above is a hyperparameter which has to be tuned care-
fully: a high value for p will reduce the representational capacity of the network at
each run too much and therefore hamper training. On the other hand, choosing p too
low might not tackle the problem of overfitting sufficiently well. A common setting
is p = 0.5. Usually, dropout is disabled at test time as it is not functionally needed
anymorew at this stage and would turn the trained model into an non-deterministic
algorithm. (To ensure that the actual output of each neuron in this situation does
not differ from the expectation value of its output during training, in this case the
output of each neuron is multiplied with its associated keep probability p�1.) While
non-determinism after training is clearly not desirable for e.g. classifiers, so-called
generative adversarial networks as introduced later in Section 4.4 rely on random-
ness at production time and can utilize dropout as a source of noise eliminating the
need of feeding a random “seed” [27].

Additionally, training can be improved by linearly transforming the input data of
a neural network to have a mean of zero and a standard deviation of one [32, 76],
called Normalization. This also applies to every sub-network, i.e. to every single
layer. Hence, [26] introduces a mechanism to apply this normalization not only
to the network’s input, but also between layers. While ideally mean and standard
deviation of the output of each layer should be computed after processing the whole
training data, this is mostly impracticable and thus, in minibatch learning (see
the previous Section 4.2.2) those statistics are computed over one batch of data
motivating the term Batch Normalization. As an additional simplification, [26]
suggests to normalize each feature independently:

4.3. NEURAL NETWORKS 55

Definition 26 (Batch Normalization Layer)

A Batch Normalization Layer of a neural network, or simply Batch Normalization,
with trainable parameters �, � 2 Rn is a function

f : Rn
⇥ Rn

⇥ Rn
! Rn,

⇣⇥
xi

⇤
i2{0,..,n} , �, �

⌘
7!

h
�i

xi�E[xi]p
Var[xi]+✏

+ �i

i

i2{0,..,n}

where exception and variance are estimated over a batch B of samples separately
for each feature by

E [xi] ⇡ µB,i :=
1

|B|

X

x2B

xi and Var [xi] ⇡ �2
B,i :=

1

|B|

X

x2B

(xi � µB,i)
2

and ✏ is negligibly small constant for numerical stability. 2

This operation indeed shifts the mean to zero as for a set A and eA := {
a�µA

�A
|a 2 A}

it is

µ eA =
1

|A|

X

a2A

a� µA

�A
=

1

�A

1

|A|

X

a2A

a�
X

a2A

µA

!!
= 0 (4.17)

and

� eA =

vuut 1

|A|

X

a2A

✓
a� µA

�A
� µ eA

◆2
(4.17)
=

1

�A

s
1

|A|

X

a2A

(a� µA)
2 = 1.

A few remarks on the practical use of the definition above: the trainable param-
eters � and � introduced above restore the full representational power of the net-
work threatened by the normalization [26]: for instance, letting �i =

p
Var [xi] and

�i = E [xi], the network can still represent the identity transform for feature i. The
function above is differentiable with respect to x, � and � enabling the application
of gradient descent algorithms. Usually, batch normalization is applied even before
the activation function of a layer [26, 19].

Using batch normalization enforces the same data distribution in the input of each
layer and through this makes the network less sensitive to the choice of the learning
rate and initial weights, which otherwise can cause heavy changes of those distribu-
tions as effects are amplified by backpropagation through various layers. Further, in
experiments it turned to out to act as a regularizer that helps to tackle overfitting
just like dropout [26].

56 CHAPTER 4. METHOD

4.4 Generative Adversarial Networks

Neural networks as described above approximate input-output mappings where the
output is some information extracted from the input data. This typically tackles
classification and regression problems. In contrast, so-called Generative Models try
to represent a real world data distribution such that “new samples” can be drawn
from it. One class of generative models, which has turned out to be highly successful
in tasks such as image generation [59, 27, 28, 20] relies on the game-theoretic con-
cept of a zero-sum game, a special instance of a strategic game, between two parties
competing via individual actions:

The following formulations are taken from [53, Ch. 2].

Definition 27 (Strategic Game)

A Strategic Game (N, (Ai), R) consists of

• a finite non-empty set N ⇢ N of players

• finite non-empty sets (Ai)i2N of available actions for each player i 2 N

• an order �i on ⇥j2NAj as a Preference Relation for each player i 2 N , notate
R := (�i)i2N .21

2

Remark 28 (Utility Function) The preference relations of a strategic game are
mostly implemented as utility functions U := (ui)i2N with ui : A! R, i 2 N via

a �i b , ui(a) � ui(b), a, b 2 A.

In this case, denote the strategic game as (N, (Ai), U).

Strategic games can (but not necessarily have to) bear an equilibrium in which no
player prefers another action over the one he has taken already:

Definition 29 (Nash Equilibrium)

A strategic game (N, (Ai), R) has a Nash Equilibrium in

a⇤ := (a⇤0, ..., a
⇤
N) 2 ⇥i2NAi

if
8i 2 N : 8ai 2 Ai : a⇤ �i (a

⇤
0, ..., a

⇤
i�1, ai, a

⇤
i+1, ..., aN)

21Defining the relation �i over all constellations of actions of all players instead of restricting to
Ai distinguishes a strategic game from a decision problem [53, Sec. 2.1].

4.4. GENERATIVE ADVERSARIAL NETWORKS 57

i.e. if every player i prefers its action a⇤i over any other of its available actions with
respect to the actions of the other players in a⇤ or – loosely spoken – if no player
can make improvements considering the situation of the other players. 2

A special form of strategic games are zero-sum games where two players are direct
opponents in the sense that an action’s utility value for one player is the inverse of
its utility value for the other:

Definition 30 (Zero-sum Game)

A strategic game (N, (Ai), R) of two players N = {n1, n2} is called Zero-sum Game
if with A := ⇥j2NAj it holds

8a, b 2 A : a �n1 b , b �n2 a. (4.18)

Condition (4.18) can also be expressed wLoG via utility functions un1 , un2 as

un1 = �un2 , i.e. un1 + un2 = 0

motivating the term “zero-sum”. The game is called finite, if all Ai are finite. 2

Definition 31 (Maxminimizer)

In a zero-sum game ({1, 2}, (Ai), (ui)), an action x⇤
2 A1 is a Maxminimizer for

player 1 (and analogously for player 2), in case

x⇤ = argmax
x2A1

min
y2A2

u1(x, y).
2

According to [53, Sec. 2.5], it can be shown, that maxminimizers equal Nash equi-
libria:

Theorem 32

A zero-sum game ({1, 2}, (Ai), (ui)) has a Nash equilibrium in (x⇤, y⇤) iff x⇤ and y⇤

are maxminimizers for player 1, player 2 and additionally

max
x2A1

min
y2A2

u1(x, y) = min
y2A2

max
x2A1

u1(x, y) (4.19)
2

Remark 33 For finite zero-sum games, condition (4.19) is always fulfilled, see [47,
50] and thus having maxminimizers for each player is sufficient for the existence of
a Nash equilibrium.

58 CHAPTER 4. METHOD

Remark 34 For a zero-sum game ({1, 2}, (Ai), (ui)), it holds

max
y2A2

min
x2A1

u2(x, y) = max
y2A2

min
x2A1

(�u1(x, y))

= max
y2A2

✓
�max

x2A1

u1(x, y)

◆
= �min

y2A2

max
x2A1

u1(x, y).

Proof (Theorem 32) “ =) ”: Let (x⇤, y⇤) be a Nash equilibrium. Then

8y 2 A2 : u2(x
⇤, y⇤) � u2(x

⇤, y)
u2=�u1=) 8y 2 A2 : u1(x

⇤, y⇤) u1(x
⇤, y)

=) u1(x
⇤, y⇤) = min

y2A2

u1(x
⇤, y) max

x2A1

min
y2A2

u1(x, y).

Also it holds because of (x⇤, y⇤) being a Nash equilibrium that

8x 2 A1 : u1(x
⇤, y⇤) � u1(x, y

⇤)

=) u1(x
⇤, y⇤) = max

x2A1

u1(x, y
⇤) � max

x2A1

min
y2A2

u1(x, y).

Hence,
u1(x

⇤, y⇤) = max
x2A1

min
y2A2

u1(x, y)

i.e. x⇤ is a maxminimizer for player 1. The corresponding result for y⇤ follows
analogously. Therefore, it holds additionally

max
x2A1

min
y2A2

u1(x, y) = u1(x
⇤, y⇤) = �u2(x

⇤, y⇤)

= �max
y2A2

min
x2A1

u2(x, y)
Remark 34

= min
y2A2

max
x2A1

u1(x, y).

“(=”: Let v⇤ = maxx2A1 miny2A2 u1(x, y) = miny2A2 maxx2A1 u1(x, y) and let x⇤, y⇤

be maxminimizers for player 1 and 2. Because of the latter, it is

8(x, y) 2 a1 ⇥ A2 : u1(x
⇤, y) � v⇤

^ u2(x, y
⇤) � max

y2A2

min
x2A1

u2(x, y)
Remark 34

= �v⇤

=) u1(x
⇤, y⇤) � v⇤ ^ u2(x

⇤, y⇤) � v⇤

u1=�u2=) u1(x
⇤, y⇤) � v⇤ � u1(x

⇤, y⇤)

=) u1(x
⇤, y⇤) = v⇤ ^ u2(x

⇤, y⇤) = �v⇤

Thus, according to the definition of v⇤, player 1 prefers none of its actions
over x⇤ in (· , y⇤) and accordingly does player 2. So, (x⇤, y⇤) is indeed a Nash
equilibrium of this strategic game. ⌅

4.4. GENERATIVE ADVERSARIAL NETWORKS 59

Remark 35 From Theorem 32 and its proof, it can be seen that the utility value
of a Nash equilibrium u1(x⇤, y⇤) = maxx2A1 miny2A2 u1(x, y) does not depend on x⇤

or y⇤. Hence, all Nash equilibria of a zero-sum game yield the same payoff.

Now above formulations can be used to define an adversarial setting between two
independent neural networks from which one tries to approximate a probability
distribution of real world data, the generator network, while the other one, called
discriminator, strives for distinguishing the generator from the true data distribution
by mapping a sample to the probability that this sample is from the real distribution
[20, 19]:

Definition 36 (Generative Adversarial Network)

A Generative Adversarial Network (GAN) is a zero-sum game

({G,D}, {AG, AD}, {uD, uG})

with

• two neural networks G : (Z ⇥WG) ! X and D : (X ⇥WD) ! [0, 1] with
weights WG 2WG,WD 2WD

22 as players.

• action sets AG := WG, AD := WD

• utility functions

uD(WD,WG) :=Ex⇠pdata(x) [ln(D(x,WD))]

+ Ez⇠pz(z) [ln(1�D(G(z,WG)WD))] (4.20)

and uG := �uD

where pdata is the density describing the probability distribution from which the
training data points x 2 Rdx =: X are drawn and pz the distribution of a random
noise variable z 2 Rdz =: Z serving as “seed” for G to generate data. 2

The intuition behind the utility functions is the following: the discriminator’s qual-
ity is determined by its ability to distinguish samples from the generator and the
true data distribution, i.e. its utility should be high if it outputs 1 for real samples
(i.e. Ex⇠pdata(x) [ln(D(x,WD))] is high) and conversely returns 0 for fake samples (i.e.
Ez⇠pz(z) [ln(1�D(G(z,WG),WD))] is high, too). The worse the generator can do
this distinction, the better is the expected quality of generator outputs, hence one

22The expressions WG,WD shall – in a simple way – represent the spaces where the weights of
G,D can be drawn from. Those spaces consist of all families of real-valued matrices matching the
shapes required for the weights of the layers of G or respectively of D.

60 CHAPTER 4. METHOD

defines uG := �uD. Above in equation (4.20), the logarithm is applied “because of
its interpretation as the likelihood [... but] still makes intuitive sense if we replace
[it] by any monotone function � : [0, 1]! R” [4] or even the identity [3].

As [51] states, “GANs are represented using floating point numbers, of which, for a
given setup [i.e. a certain GAN implementation], there is only a finite (albeit large)
number [of actions (weight configurations) in practice]”. This allows considering
GANs as finite zero-sum games and in particular omitting condition (4.19) when
applying Theorem 32 according to Remark 33: therefore, a Nash equilibrium of this
game exists and can be found in maxminimizers for D and G, in particular involving
the generator action

W ⇤
G = argmax

WG

min
WD

uG(WD,WG)
Remark 34

= argmin
WG

max
WD

uD(WD,WG)

As stated in Remark 35 it suffices to find any solution to the above problem in order
to achieve the highest possible utility for G. The equation above is re-written as
argmin to match the specifications of the whole optimization process of neural net-
works which has been defined as minimization earlier in Section 4.2.1. Both neural
networks are trained simultaneously according to the maxminimization above: while
the discriminator is trained to directly maximize uD (implemented as minimizing
�uD), the objective of the generator is to minimize uD. Note that the first addend
of uD is constant for all WG and that WD are not part of G’s optimization process.
Hence, one can define the loss functions

LG(WG) := Ez⇠pz(z) [ln(1�D(G(z,WG),WD))]

LD(WD) := �uD(WD,WG)

where WD are treated as fixed in LG and vice versa. The distinction between the
utility functions of the zero-sum game and the loss functions for optimization here
is made as in the following GAN variants are introduced that optimize additional
measures (that are not part of the zero-sum game) in parallel to the adversarial loss
that arises from the utility function.

Above formulations incorporate that after an ideal training process the generator
produces “fake data” so well, that the discriminator cannot distinguish them from
the real data anymore and outputs a probability of ⇠ 50% for each sample to be
real. At this state, the discriminator does not provide helpful “feedback” for the gen-
erator anymore, i.e. both G and D cannot improve any longer, a Nash equilibrium
has been found and the discriminator can be discarded while the generator may be
applied in production [20, 19].

Now it shall be verified, that indeed a Nash equilibrium is reached when the prob-
ability distribution of the data produced by the generator, pg, equals the true data
distribution pdata following [20]:

4.4. GENERATIVE ADVERSARIAL NETWORKS 61

Theorem 37 (Goodfellow, [20])

The best possible discriminator of a GAN with a fixed generator is

D(x,W ⇤
D) =

pdata(x)

pdata(x) + pg(x;WG)

where pg denotes the distribution produced by the generator with weights WG. 2

Proof Shorthand DWD := D(·,WD) and for the generator G analogously, then
re-write the function (4.20) as

uD(WD,WG) =

Z
pdata(x) ln(DWD(x)) dx+

Z
pz(z) ln(1�DWD(GWG(z))) dz

=

Z
pdata(x) ln(DWD(x)) + pg(x;WG) ln(1�DWD(x)) dx. (4.21)

For any (a, b) 2 R+ \ {(0, 0)} and function f : s 7! a ln(s) + b ln(1� s)it holds

0 =
df

ds
=

a

s
�

b

1� s
=

a� s(a+ b)

s� s2

() 0 = a� x(a+ b) () x =
a

a+ b
.

and

df

ds2
= �

a

s2
�

b

(1� s)2
< 0

and hence f has a unique maximum in a
a+b . As “the discriminator does not need

to be defined outside of supp(pdata) [supp(pg)” [20] where it might be pdata(x) =
0 = pg(x;WG), this result can be directly applied to (4.21) yielding the claim of the
theorem. ⌅

Hence, a “virtual” training criterion for the generator based on the best possible
adversary can be formulated as

L⇤
G(WG) := max

WD

uD(WD,WG)

=Ex⇠pdata(x) [ln(D(x,W ⇤
D))] + Ez⇠pz(z) [ln(1�D(G(z,WG),W

⇤
D))]

=Ex⇠pdata(x) [ln(D(x,W ⇤
D))] + Ex⇠pg(x;WG) [ln(1�D(x,W ⇤

D))]

Theorem 37
= Ex⇠pdata(x)

ln

pdata(x)

pdata(x) + pg(x;WG)

�
+ Ex⇠pg(x;WG)

ln

pg(x;WG)

pdata(x) + pg(x;WG)

�
.

62 CHAPTER 4. METHOD

In preparation for the proof of the following theorem, another similarity measure
between probability distributions is established briefly:

Definition 38 (Jensen–Shannon Divergence)

With KLD denoting the Kullback-Leibler divergence as introduced in Definition 11,
the Jensen-Shannon Divergence of probability distributions p, q is

JSD(pkq) :=
1

2
KLD

✓
p

����
p+ q

2

◆
+

1

2
KLD

✓
q

����
p+ q

2

◆

. 2

Theorem 39 (Goodfellow II, [20])

For a GAN with true data distribution pdata and generated distribution pg from a
generator G with weights W ⇤

G, it holds

pdata = pg(· ;W
⇤
G) () W ⇤

G = argmin
WG

L⇤
G

and L⇤
G(W

⇤
G) = � ln(4). 2

Proof For the virtual training criterion of the generator as formulated above it
holds

L⇤
G(WG) = Ex⇠pdata(x)

ln

pdata(x)

pdata(x) + pg(x;WG)
+ ln 2� ln 2

�

+Ex⇠pg(x;W)

ln

pg(x;WG)

pdata(x) + pg(x;WG)
+ ln 2� ln 2

�

= Ex⇠pdata(x)

ln

pdata(x)
1
2(pdata(x) + pg(x;WG))

�

+Ex⇠pg(x;WG)

ln

pg(x;WG)
1
2(pdata(x) + pg(x;WG))

�
� ln 4

= KLD
✓
pdata

����
(pdata + pg)

2

◆
+ KLD

✓
pg

����
(pdata + pg)

2

◆
� ln 4

= 2 JSD (pdata kpg)� ln 4.

As JSD � 0 and JSD(pkq) = 0 () p = q, the virtual training criterion L⇤ has
a global minimum with value � ln 4 in a weight configuration W ⇤

G which results in
pg = pdata. ⌅

In the setting of a GAN as described above, the noise variable z is crucial to intro-
duce randomness to the trained generator and allows it to produce arbitrary output

4.4. GENERATIVE ADVERSARIAL NETWORKS 63

D(G(z))

D(x)

G(z)
D

z
G

x
D

�uG

uD

ln(1� ·)

ln(1� ·)

+ ln(·)

Figure 4.5: The computation of the utility uG a of the generator network G and the
utility uD of the adversarial discriminator.

samples non-deterministically. To exert some control over the output, for instance
to produce images of a certain class, cGAN [18] extends a GAN by feeding it side
conditions as additional input:

Definition 40 (Conditional GAN)

A GAN ({G,D}, {AG, AD}, {uD, uG}) on weight spaces WG,WD, data space X and
noise space Z can be extended to a Conditional GAN (cGAN) by adding contextual
information y 2 Rdy =: Y drawn from the training data (x, y) ⇠ pdata(x, y) according
to a marginal distribution y ⇠ pdata(y) such that

G : (Z ⇥ Y ⇥WG)! X and D : (X ⇥ Y ⇥WD)! [0, 1].

and

uD(WD,WG) :=E(x,y)⇠pdata(x,y) [ln(D(x, y,WD))]

+ Ez⇠pz(z),y⇠pdata(y) [ln(1�D(G(z, y,WG), y,WD))]

with loss functions formulated accordingly. 2

It is remarkable, that no restrictions are imposed on the nature of the condition y
In particular, y can also be a (re-shaped) pianoroll as introduced at the beginning
in Section 3.4.

The generator here represents a conditional distribution pg(x|y;WG) which ideally
should approximate the joint true distribution pdata(x, y). The training process re-
mains the same as for a regular GAN, while the discriminator is expected to “first
acquire a use for the data y” before the generator follows [18]. This also bears the
danger of the discriminator improving so quickly compared to the generator that it
perfectly distinguishes fake and real for any generator output so that the generator
cannot improve anymore, i.e. collapses. One attempt to mitigate this is to slow

64 CHAPTER 4. METHOD

D(G(z, y), y)

D(x, y)

G(z, y)
D

z
G

x
D

y
D

G

�uG

uD

ln(1� ·)

ln(1� ·)

+ ln(·)

Figure 4.6: The computation of the utility uG a of the generator network G and
the utility uD of the adversarial discriminator in a conditional GAN with data x,
condition y and noise z.

down discriminator training by applying updates only every second epoch of train-
ing or simulating this by cutting the discriminator loss (and thus its gradient) in
half [27].

It is to mention that there are different approaches on how and at which point
to actually incorporate context information y within the neural networks G and
D: for instance, the original cGAN [18] uses y from the very top (input) layer
of the generator but at the last (output) layer of D. In contrast, the approach
of [44] already includes the condition in the first layers of the discriminator, too,
encouraging greater influence on the whole neural network.
Another way to incorporate the side information in the discriminator is to addition-
ally task it with reconstructing y from x instead of feeding it directly [49]:

Definition 41 (Auxiliary Classifier GAN)

A cGAN ({G,D}, {AG, AD}, {uD, uG}) as defined above is an Auxiliary Classifier
GAN (AC-GAN), if the discriminator in addition to distinguishing real and fake
samples is trained to reconstruct a side condition y from data x, i.e.

G : (Z ⇥ Y ⇥WG)! X and D : (X ⇥WD)! [0, 1]⇥ Y.

The utility functions from Definition 40 remain unchanged. Letting pd be the dis-
tribution modeled by D and considering the marginal pd(y) one can define

Ly(WD,WG) := �(E(x,y)⇠pdata(x,y) [ln pd(y|x;WD)]

+ Ez⇠pz(z),y⇠pdata(y) [ln pd(y|G(z, y,WG);WD)])

4.4. GENERATIVE ADVERSARIAL NETWORKS 65

and loss functions

LD(WD) := �uD(WD,WG) + Ly(WD,WG)

LG(WG) := Ez⇠pz(z),y⇠pdata(y) [ln(1�D(G(z, y,WG), y,WD))] + Ly(WD,WG).

2

According to [49], such an auxiliary classifier cannot only leverage further improve-
ments of a trained network using pre-trained classifiers, but also helps stabilize GAN
training. A prominent application of this technique in the field of music is GAN-
synth [17], where the side information is the pitch of a note for which a waveform
should be generated.

In case GANs are applied to generate images or image-like data, it is desirable that
the network not only learns the distribution of images as a whole, but instead also
local structure. In particular, early attempts of image synthesis [30] could produce
detailed images only for a very limited output size. In parallel, systems have been
proposed which are dedicated to texture synthesis using so-called Markovian Fields
[35], i.e. a structure23 of locally independent random variables. One way to combine
the latter with GANs is described by [36, 27]: instead of letting the discriminator
of a GAN output a scalar for real/fake classification of the output (image) as a
whole, it outputs a matrix where each entry classifies one patch of the input image
independently from the others, i.e. classifying local structure:

Definition 42 (Patch-based GAN)

A Patch-based Generative Adversarial Network (PatchGAN) with n⇥m Patches is
a GAN with a discriminator D : (X ⇥WD)! [0, 1]n⇥m and utility function

uD(WD,WG) := Ex⇠pdata(x) [ln(D(x,WD))] + Ez⇠pz(z) [ln(1�D(G(z,WG),WD))]

= Ex⇠pdata(x)

"
ln

mY

i,j

Di,j(x,WD)

#
+ Ez⇠pz(z)

"
ln

mY

i,j

(1�Di,j(G(z,WG),WD))

#

=
mX

i,j

Ex⇠pdata(x) [lnDi,j(x,WD)] + Ez⇠pz(z) [lnDi,j(G(z,WG),WD)]

where the outputs Di,j for patches (i, j) are assumed to be iid. As in Definition 36,
it is still uG := �uD with according loss functions. 2

23a graph or matrix

66 CHAPTER 4. METHOD

The underlying consideration is that values (pixels) outside one patch are indepen-
dent. Therefore, the loss of a generator in terms of a discriminator outputting such
a “classification heat map” can be seen as textural loss only that should be com-
bined with other measures (such as an Lp-metric between output and target) in
order to penalize also loss in global structure as it is done in [27]. Note that n and
m are hyperparameters which heavily affect the details in the images produced by
the GAN: as [27] reports, a low number of accordingly large patches produces sharp
and detailed results but might cause tiling artifacts while a high number of therefore
smaller patches appears to cause blurriness.

4.5 Autoencoder Architectures

In the previous Section 4.4, while introducing GANs no assumption has been made
on the nature of the generator except that is has been required to be a neural
network. While “classic” neural networks have been typically applied to classification
and regression problems, one special type of neural network architecture which can
achieve this efficiently are so-called Autoencoders [19, Ch. 14]:

Definition 43 (Autoencoder)

An Autoencoder a : (Rddata ⇥Wf ⇥Wg) ! Rddata with encoding size dh accepting
input of dimension ddata is a neural network consisting of two neural networks

f : (Rddata ⇥Wf)! Rdh and g : (Rdh ⇥Wg)! Rddata

combined as a := g � f where Wf ,Wg are again spaces of weights. In case dh <<
ddata, a is called an Undercomplete Autoencoder .24

2

The autoencoder is trained to approximate an identity mapping on the data space.
Then designing the autoencoder as undercomplete, i.e. making the encoding h :=
fWf

(x) a bottleneck, “forces” generalization by learning a lower-dimensional repre-
sentation of the input. From a stochastic point of view, encoder and decoder provide
conditional distributions pf (h|x;Wf) and pg(x|h;Wg) and their common objective
is the negative log-likelihood � ln pg(x|h;Wg) [19, Sec. 14.4].

In previous applications one was mainly interested in exploiting just the compression
property and using encoder and decoder separately in production [24]. Another way
is to use the network as a whole is to task it with reconstructing the original data
from a noisy version exploiting the abstraction capability of the autoencoder enforced
by its bottleneck [70]:

24As is this is the standard case in most applications [19], this work will refer to them simply as
autoencoders, too.

4.5. AUTOENCODER ARCHITECTURES 67

x h x
fWf gWg

ddata

dh

ddata

Figure 4.7: An (undercomplete) autoencoder with h := fWf
(x) as a low-dimensional

bottleneck between encoder fWf
and decoder gWg , where the latter tries to recon-

struct x 2 Rddata from encoding h 2 Rdh .

x

ex h g(fWf (ex)) L((Wf ,Wg), ·)

c

fWf gWg L

L

Figure 4.8: A denoising auto-encoder consisting of an encoder f and a decoder
g being fed data x 2 Rddata corrupted by process c : Rddata ! Rddata including
computation of the loss L between original data x and its reconstruction.

Definition 44 (Denoising Autoencoder)

A Denoising Autoencoder (DAE) is an autoencoder a with encoder f and decoder g,
that given a training data distribution represented by x ⇠ pdata(x) and a corruption
process of this data modeled by a conditional distribution ex ⇠ pc(ex|x) has the
learning objective of minimizing

L((Wf ,Wg),T) := �Ex⇠pdata(x)

⇥
Eex⇠pc(ex|x)

⇥
ln pg(x|fWf

(ex);Wg)
⇤⇤

. 2

DAEs have been successfully applied to lots of problems including for instance speech
enhancement [39] and it has been formally shown by [2, 8], that the denoising train-
ing forces the encoder and decoder network to implicitly learn the structure of the
true data distribution. By interpreting the original data as “noisy” version of some
high-dimensional information semantically and structurally related to this data, one
can apply those results for DAEs and use autoencoders to model almost any kind of
high-dimensional input-to-output mapping such as image-to-segmentation-map [5]
provided that the mentioned interpretation is justified. Hence, a DAE architecture
is well-suited for being used as the generator of a GAN performing image-to-image
translation.

68 CHAPTER 4. METHOD

x f (1)

W (1)
f

(·) 2 Rd1

f (2)

W (2)
f

(·) 2 Rd2

...

f (k�1)

W (k�1)
f

(·) 2 Rdk�1

f (k)

W (k)
f

(·) 2 Rdk

h 2 Rdh

g(k)
W (k)

g

(·) 2 Rdk

g(k�1)

W (k�1)
g

(·) 2 Rdk�1

...

g(2)
W (2)

g

(·) 2 Rd2

g(1)
W (1)

g

(·) 2 Rd1 a(x)
concat

concat

concat

concat

Figure 4.9: An autoencoder a with encoder f and decoder g following a
U-Net structure [61] with skip connection (red). The component functions
f (1), ..., f (k), g(1), ..., g(k) are the layers of the neural networks f and g where the
all pairs f (i), g(i) have matching output dimensions.

For tasks like the latter, where image-like data containing spatial information is
processed, autoencoders largely benefit from utilizing convolutional layers as intro-
duced in Section 4.6. In this special case, it has been found to be beneficial to
design the autoencoder in a way that not only the decoder’s architecture mirrors
the one of the encoder exactly, but also to introduce so-called Skip Connections by
concatenating the output of each encoder layer to the one of the corresponding layer
in the decoder [61]. As [72] mentions, this is especially useful to tackle the problem
of vanishing gradients in deep neural networks discussed earlier in Section 4.3, as
during backpropagation encoder gradients are allowed to “bypass” the decoder. Such
an architecture as depicted in Figure 4.9 has been named U-Net and has been very
successfully applied not only by the original authors [61], but also for score-to-audio
mappings [72] and even in conjunction with a cGAN on image-to-image translation
[27].

4.6 Up- and Downsampling through Convolution

This section loosely follows [19, Ch. 9]

Lots of common problems for neural networks are defined over high-dimensional
image-like data, i.e. data where each sample is a large multi-dimensional matrix, in

4.6. UP- AND DOWNSAMPLING THROUGH CONVOLUTION 69

which the elements (e.g. pixels of an image) are not independent but instead there
is local structure and the spatial position of each element bears semantic informa-
tion. Attempts to process such data with fully-connected layers as introduced in
Section 4.3 are likely to fail because of the following key issues:

Expensiveness As it becomes clear from Definition 21, a fully-connected layer with
m neurons requires a weight for each of its pairwise connections to its input
data. Assuming for example a medium sized RGB image of shape 512⇥512⇥3,
this results in more than 700.000⇥m weights for the input layer alone making
it very expensive in terms of required computation time and memory.

Redundancy By design a fully-connected layer does not respect spatial informa-
tion of the elements of its input data, i.e. it primarily extracts global patterns
from the data. To exploit small local structures such as edges in an image,
the weight matrix has to reflect this pattern at every possible location (i.e.
sub-matrix) making the weight information highly redundant.

Translation variance Input data with slight modifications that do not affect se-
mantics such as shifting an image by one pixel activates different neurons of a
fully-connected layer and thus its output can change heavily under translation.

Fixed Shape Once a fully-connected layer is defined, every data it is fed has to
match the size of the layer. From a pratical point of view, this restricts the
usage of a trained model in production as for instance an image classifier
cannot be directly applied to images larger than those it has been trained on.

These problems can be overcome by using not a fully-connected layer but instead
(a stack of) very small matrices, so-called Filters25, each one capturing a small
pattern, which are multiplied with the input data in a sliding window and reduced
by summation:

Definition 45 (Convolutional Layer)

Let H 2 Rm⇥u be a stack of m 1D-filters Hk 2 Ru of size u. Then a 1D-convolutional
layer with activation function �, bias b 2 Rm and filters H applied with stride s to
inputs x 2 Rn which are padded with p zeros at every side is a function

f :Rn
⇥ Rm⇥u

⇥ N⇥ N! Rm
⇥ Rb(n+2p�u)/s+1c

(x,H, s, p) 7!
⇥
�(ex ⇤s Hk + bk)

⇤
k2{1,..,m}

25In the literature, also the term Kernel is widely-spread.

70 CHAPTER 4. METHOD

Figure 4.10: A 2D convolution operation on a 5⇥5 input (blue) with one 3⇥3 filter
(gray), padding p = 1 (dashed) and unit stride resulting in an output (green) that
matches the input’s shape. Taken from [16].

with the padded input

ex :=
⇥
01 . . . 0p x1 . . . xn 01 . . . 0p

⇤

and the operation

⇤s : Ra
⇥ Rb

! Rb(a�b)/s+1c, A ⇤B :=
⇥Pa

i=1 Ast+iBi

⇤
t2{0,...,b(a�b)/sc}

Reformulations for the 2D-Convolution are straight forward.26
2

Note that padding the input with zeros does not affect the result of the convolu-
tion operation. The operation ⇤s defined above is actually not a (discrete strided)
convolution in the standard sense, but instead one that flips one of its arguments
and is termed Cross-Correlation. Nevertheless, literature and in particular machine
learning libraries refer to it just as “convolution” [19, 1] and so does this work.
A visualization of the convolution operation for one filter in the 2D case is provided
in Figure 4.10. Notice that similar to the number of neurons in a fully-connected
layer above the number of filters determines the depth of the output as it can be seen
from Figure 4.11. The remaining shape detail of the output is determined by the
filter size and the window stride: in the setting of Figure 4.10 with p = bu�1

2 c and
unit stride, the convolution operation preserves the input’s shape. Hence, setting
p = bu�1

2 c is often called SAME Padding . Another option is to simply drop over-
flowing values, i.e. setting p = 0, resulting in an output size of m⇥b(n� u)/s+1c.
As this mode does not “artificially” augment the input data, it is widely termed
VALID Padding .

A convolutional layer indeed solves the problems described at the beginning of this
section: the required memory for storing weights and executing operations depends

26but are omitted here to avoid confusion by an overflow of notation and index variables.

4.6. UP- AND DOWNSAMPLING THROUGH CONVOLUTION 71

⇥
01 . . . 0p x1 . . . xi . . . xi+u . . . xn 01 . . . 0p

⇤

⇤s

2

4
H11 . . . H1u

.
Hm1 . . . Hmu

3

5 =

2

64
o11 . . . o1k . . . o1,b(n+2p�u)/s+1c
...

...
om1 . . . omk . . . om,b(n+2p�u)/s+1c

3

75

Figure 4.11: Illustration of one step of a 1D-convolution on input data x 2 Rn with
a stack H 2 Rm⇥u of m filters of size u and stride s. The output is denoted as
o 2 Rm⇥b(n+2p�u)/s+1c. The graphic does not including activation function or bias
terms.

only on the number and size of filters, but not on the input. As filters in most
cases are of quadratic shape not exceeding a side length of 5 [19] and used in stacks
with a depth commonly ranging from 20 to 29, they can be efficiently stored and
processed.27 Being independent of the input dimension also enables the application
of a (trained) filter to arbitrary inputs. Further, each filter can learn its own local
structure and detect it anywhere in the input data as it is slid over. Hence, there is
no redundancy by design.

It is remarkable that a convolutional layer is in essence just an “efficient version”
of a fully-connected layer and all statements made for fully-connected layers can be
directly applied to convolutional layers, too, as the following holds: by re-arranging
the filter data, every convolutional layer can be reformed as a functionally equiva-
lent fully-connected layer: for filter Hk, form a matrix eHk 2 Rb(n+2p�u)/s+1c⇥(n+2p)

with all possible filter positions on the input data and multiply this with the padded
input signal [37]. This can be seen in detail in Figure 4.12. The convolutional layers
then can be expressed as �(eHkex) + b, which is exactly the form of a fully-connected
layer. The whole procedure naturally generalizes to a stack of filters and to the 2D
case. One can clearly see the redundancy and sparsity within eHk introduced here.

It has been made clear that a convolutional layer with SAME padding and unit
stride only alters the input’s depth but preserves all other shape details regardless
of filter design. This can be changed deliberately in order to reduce the input size
while increasing information depth, i.e. to compress the input: using SAME padding
and a stride greater than 1 or just no padding will result in Downsampling the input

27Again, using powers of two for the number of filters in every layer is beneficial for computational
efficiency.

72 CHAPTER 4. METHOD

1D-convolution with one filter

�(
⇥
01 . . . 0p x1 . . . xn 01 . . . 0p

⇤

⇤
⇥
Hk1 . . . Hku

⇤
+ b) =

⇥
o1 . . . ob(n+2p�u)/s+1c

⇤

:::

Equivalent fully-connected layer

�

0

BBBBBBBBBBBBBBBBBB@

b(n+2p�u)/s+1c⇥(n+2p)2

64
Hk1 . . . Hku 0 . . . 0
...

...
0 . . . 0 Hk1 . . . Hku

3

75⇥

(n+2p)⇥12

6666666666666664

01
...
0p
x1

...
xn

01
...
0p

3

7777777777777775

+ b

1

CCCCCCCCCCCCCCCCCCA

=

2

64
o1
...

ob(n+2p�u)/s+1c

3

75

(4.22)
:::

Transposed convolution

�

0

BBBBBBBBBBB@

(n+2p)⇥b(n+2p�u)/s+1c2

666666664

Hk1 0
...

...
Hku . . . 0
0 Hk1

...
...

0 Hku

3

777777775

⇥

2

64
o1
...

ob(n+2p�u)/s+1c

3

75+ b

1

CCCCCCCCCCCA

=

(n+2p)⇥12

64
ex1

...
exn+2p

3

75 (4.23)

Figure 4.12: Reformulation of a convolutional layer (top) as a fully connected layer
(bottom). In the latter, the inputs are multiplied by a matrix with one row for
each position of the filter when being slid over the padded input. Restoring the
original shape from the convolution output by another convolution can be achieved
by multiplying the transposed filter matrix (bottom).

4.6. UP- AND DOWNSAMPLING THROUGH CONVOLUTION 73

Figure 4.13: Downsampling in the form of a 2D convolution operation on a 5 ⇥ 5
input (blue) with one 3⇥ 3 filter (gray), SAME padding p = 1 (dashed) and stride
s = 2 resulting in an output (green) a lot smaller than the input. Taken from [16].

(see Figure 4.13). This enables the use of convolutional layers in the encoder of an
autoencoder architecture as introduced in Section 4.5. To build a mirroring decoder,
the convolution operation has to be “undone” in the sense that the original shape of
the input28 is restored. This can be achieved by multiplication with the transposed
of each filter [37] depicted in the bottom of Figure 4.12. This operation, which is
widely referred to as Transposed Convolution, is fairly easy to implement as it is
simply a well-known convolutional layer but with a certain configuration:

Definition 46 (Transposed Convolution)

For a convolutional layer f(·, H, s, p) with H 2 Rm⇥u and input size n, the cor-
responding Transposed Convolution layer with filter stack29 eH 2 Rem⇥u and input
y 2 Rn0 is a convolutional layer f(ey, eH, 1, u� p� 1) with

ey :=
⇥
y1 01 . . . 0s�1 y2 . . . yn0 . . . 01 . . . 0s�1 01 . . . 0a

⇤
.

where a := (i+ 2p� k) mod s. As derived in [16] its output size is then

s(n0
� 1) + a+ k � 2p 2

Note that in order to match equation 4.23, after each input value s � 1 zeros need
to be inserted in y resulting in ey. The additional a zeros at the left30 of ey are com-
pensating a possible loss of values due to overflowing windows during the original
“forward” convolution. Again, generalization to the 2D transposed convolution is
straightforward, yet rather cumbersome to notate.

28not necessarily the data itself
29Notice: usually, neither are the values of the filters of the transposed convolution related to

the ones of the “forward convolution” nor does transposed convolution (try to) invert convolution.
30In the 2D case, they would be correspondingly at the bottom, too.

74 CHAPTER 4. METHOD

Figure 4.14: Upsampling in the form of a 2D convolution operation on a 2⇥ 2 input
(blue) with one 3⇥ 3 filter (gray), SAME padding p = 2 (dashed) and stride s = 2
resulting in an output (green) with dimensions twice the ones of the input. Taken
from [16].

Figure 4.15: Checkerboard artifacts in upconvolution caused by uneven overlap of
the sliding window in in which a filter is applied. This arises from the filter size
(here u = 3) not being divided by the chosen stride (here s = 2). Taken from [48].

About terminology: when using a verbalization such as “a transposed convolutional
layer with m filters of size u, stride s and padding p”, this work, strictly speaking,
refers to the transposed of a convolutional layer with the mentioned specification.
As the transposed convolution operation yields an output larger than the input, it
performs a kind of Upsampling and therefore is often called Upconvolution as well.
Also the name Fractionally Strided Convolution31 can be found [37]. Some publi-
cations even refer to it as Deconvolution, but as this term is used differently in the
field of signal processing, this work sticks to the other terminology.

A common pitfall when using upconvolutional layers is to use a filter size which is
not divided by the stride: this leads to an uneven overlap of the sliding windows in

31Because when s > 1, moving one step in the upconvolution’s input corresponds to “less than
one step” in its output. (In such a situation, the in-between insertion of zeros in ey is necessary.)

4.7. THE ORGAN-ARCHITECTURE 75

Pianoroll Generator Spectrogram

Pianoroll

Spectrogram

Discriminator
Instrument classification

Real/Fake Heat map

Figure 4.16: High-level illustration of the orGAN system: the generator performs
score-to-audio translation via a U-Net like deep fully-convolutional autoencoder
while the discriminator downsamples a spectrogram concatenated with the corre-
sponding pianoroll to output a patch-wise real/fake classification of the spectrogram
and a vector of probabilities for all instruments for being played in this spectrogram.

which a filter is applied and in consequence can lead to checkerboard artifacts in the
output [48]. The simplest countermeasure is an appropriate layer design.

4.7 The orGAN -Architecture

All of the concepts described above are combined in this thesis to construct a gener-
ative adversarial network named orGAN for solving the problem of score-to-audio
translation. The used architecture is adopted from Pix2Pix [27] and PerformanceNet
[72]: the orGAN is an auxiliary classifier PatchGAN illustrated from a high-level
perspective in Figure 4.16:

The Generator The generator receives a batch of scores of shape (bs, 935, 128, 16)
as “side condition” , i.e. a batch of multi-instrument pianorolls as introduced in
section 3.4. This shape can be justified as follows: the number 128, as already men-
tioned, arises from the 128 different pitches available in the MIDI music data format.
orGAN ’s design offers data slots to play 16 instruments at once, from which only 13
are used for training with the URMP dataset. The remaining slots are introduced to

76 CHAPTER 4. METHOD

2D Convolution filter size stride padding
4 (2, 2) SAME

Batch Normalization

LReLU

Downsample

Figure 4.17: A downsampling module consisting of a 2D convolution with stride 2,
filter size 4 and SAME padding followed by batch normalization and leaky ReLU
activation.

obtain a shape of powers of 2 for computational efficiency as well as easy processing
by convolutional layers and, more importantly, to encourage a later extension of the
model for new instruments without requiring architectural changes. The number
935 is the number of windows per second (here 187) of the Fourier transform times
the duration of one sample (5 seconds). For details on this, consider Section 3.2 and
Section 3.4. The batch size bs is set to the unusually low number of 4 samples due
to limitations in available computational resources. Note that the generator does
not receive a random seed as additional input in the favor of a permanent use of
dropout following [27].

The generator consists of a U-net autoencoder architecture with skip connections
between corresponding encoder and decoder layers. It consists of convolutional lay-
ers only, i.e. it is a fully-convolutional model [38] that can process songs of arbitrary
length at once. To make the input nicely processable by the autoencoder, it is heav-
ily padded with zeros in both, time and frequency dimension to have a quadratic
shape with side length 1024. This shape almost matching the desired output shape
of a spectrogram opens the possibility to build a decoder which is an exact mirror of
the encoder – a practice that has been found to be beneficial for lots of autoencoder
architectures. For a comparison, consider that the pix2pix super-resolution model
[27] has been trained on images sized 256⇥ 256. The encoder of the generator then
samples its input down to a high-depth tensor of shape (bs, 1, 1, 512). For this, it
uses modules consisting of 2D convolution, batch normalization and LReLU (in this
order) summarized in Figure 4.17 following among others again [27]. To actually
achieve downsampling, those convolutions are carried out with a stride of 2 in both
dimensions and SAME padding while using a filter size of 4. The number of filters

4.7. THE ORGAN-ARCHITECTURE 77

2D Transposed filter size stride padding
Convolution 4 (2, 2) SAME

Batch Normalization

Dropout rate
0.5

ReLU

Upsample

Figure 4.18: An upsampling module consisting of a 2D transposed convolution with
stride 2, filter size 4 and SAME padding followed by batch normalization, dropout
(optionally) and ReLU activation.

per layer and therefore the output depth is doubled after each layer starting from
64 and holding at 512 filters. Batch normalization is used everywhere, except from
the input layer.

The decoder of the generator, as already mentioned, is build to perfectly mirror the
encoder. This means, it consists of 10 convolutional layers used for upsampling from
the bottleneck to a (bs, 1024, 1024, 16) output. To perform upsampling, those layers
perform a 2D transposed convolution with stride 2, SAME padding and a filter size of
4. This configuration should in particular avoid checkerboard artifacts as described
in Section 4.6. After each upconvolution, batch normalization and ReLU are applied
(see Figure 4.18). The number of filters is held at 512 for the first 4 upsampling
layers and then halved after each layer down to an output depth of 16 which is held
for the last two layers. All of those layers have U-Net like skip connections to their
counterparts in the encoder, i.e. their outputs are concatenated along the depth
axis after each layer. Like in [27], the first 3 of the layers also apply dropout with
a rate of 50% after batch normalization, but before applying the activation function.

After this stack, additional operations are applied to obtain an output in spectro-
gram shape (see Section 3.2), namely (bs, 935, 1025, 1): first, another upconvolu-

78 CHAPTER 4. METHOD

tion with one filter of size 2, unit stride32, VALID padding and LReLU yields a
(bs, 1025, 1025, 1) output. Then cropping the formerly added padding on the time
axis yields the target shape. In the output layer, LReLU is preferred over ReLU as
the latter would drop information in the negative domain. The negative output of
LReLU is flipped later when taking the absolute value during the conversion to wave-
form audio in post-processing (see Section 4.1). The whole generator architecture is
also described by Figure 4.19.

The Discriminator The discriminator accordingly receives two inputs: the spec-
trogram to classify as real or fake and the corresponding multi-instrument pianoroll
as condition to verify. At first, those inputs are processed separately: the spectro-
gram is padded in time to have a quadratic shape and then ran through a 2D convo-
lutional layer with filter size 2, unit stride and VALID padding resulting in a shape of
(bs, 1024, 1024, 1). The pianoroll, meanwhile, is just padded to (bs, 1024, 1024, 16).
After this point, both tensors can be concatenated along the depth axis and then pro-
cessed jointly by a stack of downsampling modules as in the generator from which
the first one does not apply batch normalization while the last two use dropout
in order to prevent overfitting and a “too good” performance of the discriminator
which might cause the generator to collapse. The data is downsampled towards the
shape (bs, 64, 64, 256) while increasing depth. This output is passed to two different
branches in parallel: the first branch leads to a real/fake classification via an ad-
ditional shape-preserving convolutional layer with batch normalization and LReLU
before a final convolution with one filter (and unit stride) and sigmoid activation
flattening the output to a (bs, p, p, 1) “heat map”. This “heat map” is the patch-
wise real/fake classification of the input spectrogram making orGAN a PatchGAN.
This output is denoted Dmap. Above, p is the number of patches per axis. This
work experiments with p 2 {32, 64, 128}. To monitor the behavior of the discrim-
inator during training, the mean Accuracy of its classifications with a threshold of
t = 0.5 on a batch of scores Bz ⇢ {0, 1}dz1⇥dz2 and an equally large batch of real
spectrograms By ⇢ Rdy1⇥dy2 is calculated as

acc(Bz, By, t) :=
1

|Bz|

X

(z,y)2(Bz⇥By)

1

2p2
(TP(Dmap(y), 1, t) + TN(Dmap(G(z)), 0, t))

(4.24)
where

TP,FP : ([0, 1]p⇥p
⇥ {0, 1}p⇥p

⇥ [0, 1])! N0,

TP(a, l, t) :=
X

i,j

It(aij)lij, FP(a, l, t) :=
X

i,j

It(aij)(1� lij)

32An upconvolution with this configuration as output layer is also beneficial for avoiding artifacts
[48].

4.7. THE ORGAN-ARCHITECTURE 79

Input output shape
(bs, 935, 128, 16)

Padding output shape
(bs, 1024, 1024, 16)

Downsampling
filters output shape batchnorm

64 (bs, 512, 512, 64) False

Downsampling
filters output shape batchnorm
128 (bs, 256, 256, 128) True

Downsampling
filters output shape batchnorm
256 (bs, 128, 128, 256) True

Downsampling
filters output shape batchnorm
512 (bs, 64, 64, 512) True

Downsampling
filters output shape batchnorm
512 (bs, 32, 32, 512) True

Downsampling
filters output shape batchnorm
512 (bs, 16, 16, 512) True

Downsampling
filters output shape batchnorm
512 (bs, 8, 8, 512) True

Downsampling
filters output shape batchnorm
512 (bs, 4, 4, 512) True

Downsampling
filters output shape batchnorm
512 (bs, 2, 2, 512) True

Downsampling
filters output shape batchnorm
512 (bs, 1, 1, 512) True

Upsampling
filters output shape dropout
512 (bs, 2, 2, 512) True

Concat output shape
(bs, 2, 2, 1024)

Upsampling
filters output shape dropout
512 (bs, 4, 4, 512) True

Concat output shape
(bs, 4, 4, 1024)

Upsampling
filters output shape dropout
512 (bs, 8, 8, 512) True

Concat output shape
(bs, 4, 4, 1024)

Upsampling
filters output shape dropout
512 (bs, 16, 16, 512) False

Concat output shape
(bs, 4, 4, 1024)

Upsampling
filters output shape dropout
256 (bs, 32, 32, 256) False

Concat output shape
(bs, 4, 4, 768)

Upsampling
filters output shape dropout
128 (bs, 64, 64, 128) False

Concat output shape
(bs, 4, 4, 640)

Upsampling
filters output shape dropout

64 (bs, 128, 128, 64) False

Concat output shape
(bs, 4, 4, 320)

Upsampling
filters output shape dropout

32 (bs, 256, 256, 32) False

Concat output shape
(bs, 8, 8, 160)

Upsampling
filters output shape dropout

16 (bs, 512, 512, 16) False

Concat output shape
(bs, 4, 4, 80)

Upsampling
filters output shape dropout

16 (bs, 1024, 1024, 16) False

2D Transposed filters size stride padding output shape
Convolution 1 2 (1,1) VALID (bs, 1025, 1025, 1)

LReLU

Cropping output shape
(bs, 925, 1025, 1)

Figure 4.19: A summary of the architecture of the generator used in orGAN relying
on multiple convolutional layers arranged in an U-Net like Encoder-Decoder design
with skip connections.

80 CHAPTER 4. METHOD

are the numbers of True Positives and False Positives (and analogously TN, FN the
True Negatives and False Negatives) given data a, labels l and threshold t with

It(b) :=

(
1, if b � t

0, else
.

Ideally, this accuracy should tend to 0.5 over training so that the discriminator
cannot distinguish real and fake samples anymore.

The Instrument Classifier The second branch within the discriminator is the
auxiliary classifier intended to identify all playing instruments analogously to the
pitch classifier of GANSynth [17]: after downsampling further to (bs, 2, 2, 32) using
the usual configuration with dropout in the last three layers, another convolution
with stride 2 and 16 filters of size 2 finally yields an output that can be flattened to a
(bs, 16) vector of so-called Logits, i.e. the unscaled values indicating the probability
for each instrument to be playing after they are passed through a suitable activation
function, which is here the sigmoid function.33 This output of the discriminator
D is denoted Dinst. Experiments with including the instrument classifier or not
for different hyperparameter configurations are described later in Section 5.4. This
discriminator outputs a multi-hot vector y 2 [0, 1]16 whose quality is measured via
the cross-entropy loss: the instrument classifier loss over a batch B of tuples (x, y)
of a real spectrogram x and the corresponding multi-hot vector indicating playing
instruments according to equation (4.4) is

Linst(WD, (Bx, By)) :=

�
1

|Bx|

X

(x,y)2(Bx⇥By)

16X

i=1

wiyi ln(D
inst
i (x)) + wi(1� yi) ln(1�Dinst

i (x)). (4.25)

The training data here is highly imbalanced, i.e. some classes (instruments) are
represented by more samples than others. To avoid the loss being misguided by
this, the loss for each instrument class i 2 {0, ..., 16} is weighted with

wi :=
1

|samples for class i|

|samples in total|
16

.

For further insights on the learning progress, the following statistics on the in-
strument classifier are tracked, yet not optimized: first, the accuracy according to
equation (4.24) as well as

33The softmax function is not suitable here as it “squeezes” the logits to a probability distribution
over all output variables. Instead, what is desired here is an independent probability value for each
of the instruments. Hence, the sigmoid function scaling every single logit down to the range [0, 1]
independently is chosen here.

4.7. THE ORGAN-ARCHITECTURE 81

Input output shape
(bs, 935, 128, 16)

Padding output shape
(bs, 1024, 1024, 16)

Input output shape
(bs, 935, 1025, 1)

Padding output shape
(bs, 1025, 1025, 1)

2D Convolution
filters size stride padding output shape

1 2 (2,2) VALID (bs, 1024, 1024, 1)

Concat output shape
(bs, 1024, 1024, 17)

Downsampling
filters output shape batchnorm

16 (bs, 512, 512, 16) False

Downsampling
filters output shape batchnorm

32 (bs, 256, 256, 32) True

Downsampling
filters output shape batchnorm

64 (bs, 128, 128, 64) True

Downsampling
filters output shape batchnorm
128 (bs, 64, 64, 128) True

Downsampling
filters output shape batchnorm
256 (bs, 32, 32, 256) True

2D Convolution
filters size stride padding output shape
512 4 (1,1) SAME (bs, 32, 32, 512)

Batch Normalization, LReLU

2D Convolution
filters size stride padding output shape

1 4 (1,1) SAME (bs, 32, 32, 1)

Sigmoid

Downsampling
filters output shape batchnorm
128 (bs, 16, 16, 128)

Downsampling
filters output shape batchnorm
128 (bs, 8, 8, 128) False

Downsampling
filters output shape batchnorm

64 (bs, 4, 4, 64) False

Downsampling
filters output shape batchnorm

32 (bs, 2, 2, 32) False

2D Convolution
filters size stride padding output shape

16 2 (2,2) VALID (bs, 1, 1, 16)

Reshape output shape
(bs, 16)

Sigmoid

Figure 4.20: A summary of the architecture of the discriminator used in orGAN relying on
multiple convolutional layers arranged in different pipelines: one input pipeline for the score and
one for the corresponding spectrogram (fake or real), downsampling both in parallel before their
output is concatenated and passed to a common downsampling stack. The result is fed to both, a
“Real vs. Fake”-Patch Classifier and an Instrument Classifier pipeline. Note that dropout when used
in downsampling modules is included at the same point as in upsampling modules (see Figure 4.18).
Depicted is the architecture variant for 32 patches per axis.

82 CHAPTER 4. METHOD

• Precision: prec := TP
TP+FP

• Recall aka True Positive Rate (TPR): rec := TPR := TP
TP+FN

• False Positive Rate (FPR): FPR := FP
FP+TN

It is important that the accuracy can be misleading when the numbers of samples per
class (here: instrument) are imbalanced which is clearly the case in this project (see
again Section 3.1).34 For a binary classifier as in this work, one can instead consider
the curve described by points (TPRd,l(·),FPRd,l(·)) := (TPR(d, l, ·),FPR(d, l, ·)) as
a function of the classification threshold t 2 [0, 1] while data d and labels l are fixed,
the so-called Recevier Operating Characteristic (ROC). An ideal binary classifier
perfectly separates data labeled 0 and 1 and therefore for every t, TPR = 1 =
1� FPR. Hence, one can strive for maximizing

AUC(d, l) :=

Z 1

t=0

TPRd,l(FPR�1
d,l (t)) dt,

the Area under Curve (AUC) or more precisely the Area under the Receiver Op-
erating Characteristic (AUROC). On can see that for a perfect classifier, AUC ap-
proaches 1. It also has to be mentioned that all those measures so far rate the
classification of each instrument in a multi-instrument sample independently. For
further insights, additionally the accuracy comparing multi-class classification out-
puts as a whole is tracked: in this work this is termed the Macro-Accuracy of the
instrument classifier defined as

accmacro(B, t) :=
1

|By|

X

(x,y)2B

I16(TP(Dinst(x), y, t) + TN(Dinst(x), y, t))

which can be expected to be very low until a late stage of training. All of those
measures of the instrument classifier are calculated only over the real samples as it,
for instance, would be misleading having the accuracy influenced by a sample which
is labeled “violin” while the fake produced by the generator sounds like “flute”.

The Composite Loss Inspired by [27] which designs a “composite loss” for the
generator as a linear combination of the “regular” GAN loss and the L1 distance
between real and fake output, this work experiments with different loss components
for both, generator and discriminator. Starting with the generator: first, for a batch
of scores Bz ⇢ {0, 1}dz1⇥dz2 , the adversarial loss for the generator G is computed as
cross-entropy loss

LadvG(WG, Bz) := �
1

|Bz|

X

x2Bz

X

i,j2{1,...,p}

ln(Dmap
i,j (G(z)))

34For instance, when given a dataset with 90% of all samples labeled “A”, even a classifier which
can not classify samples at all but instead always outputs “A” would achieve 90% accuracy.

4.7. THE ORGAN-ARCHITECTURE 83

Figure 4.21: A toy example to illustrate a drawback of the L1 loss (Mean Absolute
Error): a (schematic) target spectrogram with one pure tone (left) has a lower L1
distance to one containing a much a higher tone of lower intensity (center) than
one that represents a higher intensity tone very close to the target (right). This
is because the MAE as the name suggests is an average over all pixels and there-
fore insensitive to structural properties. This can be overcome by the Multiscale
Structural Similarity (MS-SSIM) [74].

as the discriminator D with p2 patches should (in the best case for G) output
1 2 [0, 1]p⇥p classifying the fakes as real. Further, the mean L1 distance to the real
spectrograms By ⇢ Rdy1⇥dy2 is calculated:

L1(WG, (Bz, By)) :=
1

|Bz|

X

(z,y)2(Bz⇥By)

1

dy1dy2

dy1X

i=0

dy2X

j=0

|G(z)i,j � yi,j|

This mean L1 loss, also called Mean Absolute Error (MAE), has a major drawback
for this application: it is computed pixel-wise and then returns the average error
over the whole spectrogram, i.e. it does not respect spatial structure. This can be
seen clearly from Figure 4.21: given a pure tone in the spectrogram at a certain
level, a spectrogram containing this tone at a much higher frequency has the same
L1 distance as one where this tone is only “one frequency bin away” from the target.
If the far away tone now has a lower intensity than the close one, its L1 distance
to the target is even better than the one of the close tone. Practically, this means
that a synthesizing model minimizing the L1 distance between generated and real
data might get stuck in a local optimum yielding a solution not even close to the
desired one. For instance, it could learn to play all tones of an instrument at higher
frequencies and make it sound like another (related) instrument.

In pix2pix, the discriminator is expected to compensate this as it is designed to
provide feedback for local structure only. Instead of relying on this, the drawback can

84 CHAPTER 4. METHOD

be overcome by using a similarity index interpreting the means µa, µb of images a, b 2
Rn⇥m as luminance, standard deviations �a, �b as contrast and their covariance �ab,
i.e. their “tendency to vary together”, as structural similarity yielding the following
comparisons for luminance l, contrast c and structure s [73]:

l(a, b) :=
µaµb + C1

µ2
a + µ2

b + C1

c(a, b) :=
�a�b + C2

�2
a + �2

b + C2

s(a, b) :=
�ab + C3

�a + �b + C3

with constants

C1 := (K1L)
2, C2 := (K2L)

2 and C3 := C2/2

for numerical stability with L the maximal possible distance for two values in
the image and hyper parameters K1, K2 << 1. Typically, the latter are set to
K1 = 0.01, K2 = 0.03 following the experimental results of [73]. Based on these
comparisons, an index for structural similarity of images can be build:

Definition 47 (Structural Similarity Index)

Given two images a, b, their Structural Similarity Index (SSIM) is defined as

SSIM(a, b) := [l(a, b)]↵ [c(a, b)]� [s(a, b)]�

with ↵, �, � > 0 chosen manually. 2

As shown by [73], SSIM is symmetric and has a unique maximum in 1 which is
reached if and only if a = b. It is recommended to compute it locally as among
others “image statistical features are usually highly spatially non-stationary” [73]:
while a basic sliding window approach is likely to produce block artifacts, it is
beneficial to convolve35 the images with a quadratic Gaussian filter, usually sized
11⇥11 with a standard deviation of 1.5, which computes the SSIM for every location
of this filter on the image before the results are averaged.
To better comply with human perception by comparing image structure at multiple
levels of perception, an extended similarity index using downsampling and SSIM
iteratively has been proposed:

35with unit stride, VALID padding

4.7. THE ORGAN-ARCHITECTURE 85

Figure 4.22: The computation of the structural similarity index (SSIM) between
two signals (images) x and y. Taken from [73].

Definition 48 (Multiscale Structural Similarity Index)

Given two images a, b, their Multiscale Structural Similarity Index (MS-SSIM) of M
levels or scales is defined as

MS_SSIM(a, b) := [lM(a, b)]↵M

MY

j=1

[cj(a, b)]
�j [sj(a, b)]

�j

with lj(a, b) := l(downj�1(a), downj�1(b)) the luminance comparison after a, b have
been downsampled j�1 times (and cj, sj analogously) and with ↵j, �j, �j > 0 chosen
manually. 2

The superscript downj�1 shall indicated iterated application. Above, downsampling
can be implemented for instance via 2⇥2 average pooling as it is done in Tensorflow
[1]: this means, every 2⇥ 2 region of the input image is reduced to the average over
its values. This equals a 2D convolution with one filter

h
1/4 1/4
1/4 1/4

i
, strides (2, 2) and

no bias. Just like SSIM, the MS-SSIM is also symmetric and has a unique maximum
in 1 reached at a = b as well. This work uses the default values from [74, 1], namely
M = 5 scales with parameter values v := (0.0448, 0.2856, 0.3001, 0.2363, 0.1333) for
↵j := �j := �j := vj for each of the “scales”.

Based on this, orGAN can incorporate another loss component penalizing lacks in
structure which is in this application even more important than in common image
processing tasks as a few malformed pixels might not be perceived as visually dis-
turbing while even deliberate changes in a spectrogram can corrupt the resulting
audio:

86 CHAPTER 4. METHOD

Figure 4.23: Log magnitude spectrograms (right) as produced by orGAN contain
values close within a small range and therefore have a high MS-SSIM by default.
The MS-SSIM yields more meaningful results for spectrograms with values on a
decibel scale (left) which show details more clearly.

Lmsssim(WG, (Bz, By)) :=
1

|Bz|

X

(z,y)2(Bz⇥By)

[1�MS_SSIM(G(z), y)]

This is expected to drive training towards achieving a MS-SSIM value close to 1
between real and fake spectrograms. As for the spectrograms produced by orGAN
magnitudes are close within a small range (which is beneficial for training), the
MS-SSIM between two of them is already very high by default (see Figure 4.23).
Therefore, before evaluating MS-SSIM, spectrograms are converted to decibel scale
which is also how they are presented to humans.

The “natural” loss function for the discriminator outputting the probability to be
real data for p patches, i.e. the cross-entropy loss, is

LadvD(Bz, By) := �
1

|Bz|

X

(z,y)2(Bz⇥By)

X

i,j2{1,...,p}

ln(1�Dmap
i,j (G(z))) + ln(Dmap

i,j (y))

Additionally, the discriminator should respect the instrument classification on the
real samples according to equation (4.25).
The overall loss functions for the generator G and discriminator D of orGAN finally
are linear combinations of all the component losses described above:

LG := LadvG + �L1L1 + �msssimLmsssim + �instLinst

LD :=
1

2
LadvD + �instLinst

where all weights are non-negative. The factor 1/2 in the discriminator loss is
intended to slow down the learning of D relative to G preventing a collapse as it
has been mentioned in Section 4.4 and proposed by [27]. Experiments for different

4.7. THE ORGAN-ARCHITECTURE 87

Figure 4.24: The output of the untrained orGAN model for one sample as a sanity
check of the architecture.

combinations of values for those weights and results will be described in Section 5.1.
Optimization is done by the Adam optimizer with a learning rate of 2 · 10�4 and
3 ·10�4 for certain setups. The whole training is executed on a single NVIDIA Volta
GPU, the Titan V X.

Noise Subtraction Most of the records come with decent background noise in the
lower frequencies of the spectrograms partially mixed with artifacts from the STFT.
In particular, there are samples containing “silence” within a song. orGAN tries to
synthesize this background noise, too. The problem is, that even delight deviations
from the natural background sounds can result in distributing noise. Therefore as a
step of post-processing, this work applies a very simple form of “denoising”: after a
model is trained, orGAN is fed an empty pianoroll resulting in a spectrogram of the
synthesized background noise and artifacts only. Afterwards, when synthesizing mu-
sic, this “standard noise” is subtracted from every generated spectrogram noticeably
improving the perceived audio quality. Note that this is done outside the training
loop and beyond all performance measures, so that there is no influence on empirical
results regarding the model. As an advantage beside the high ease of computation,
this procedure largely preserves instrument-specific detail and in particular can be
assumed to not affect the synthesized timbre.

As a simple sanity check of the network architecture, a visualization of orGAN ’s
output without having had any training before can be considered: in Figure 4.24,
it can be seen that the network produces random noise due to the initialization of
its weights while the score consisting of ones is passed through the whole network
without modifications due to the skip-connections and the usage of ReLU. It can
also be validated that the discriminator does not suffer from any bias but instead
outputs a probability of 0.5 everywhere.

88 CHAPTER 4. METHOD

89

Chapter 5

Experiments

5.1 Loss Composition

It has been described in Section 4.7 that inspired by pix2pix, orGAN uses a loss
function composed of multiple measures:

LG := LadvG + �L1L1 + �msssimLmsssim + �instLinst

LD :=
1

2
LadvD + �instLinst

While fixing the weight of the adversarial loss for the discriminator and the generator
at one, experiments are conducted with all other weights of these linear combina-
tions: Following [27] and [54], first the differences in using �L1 = 0 (termed Vanilla
GAN) versus �L1 = 100 (shortened L1 model) are explored.1. Then this is compared
against a variant with �L1 = 0 but �msssim = 100 (referred to as MS-SSIM model)
to check, whether the deviation of the MS-SSIM from one is indeed a performance
measure that is superior to the L1 distance in this task as conjectured in Section 4.7.
All those experiments are conducted with a baseline for the discriminator’s output
size of 64⇥ 64. To verify that the MS-SSIM loss does not make the adverasrial loss
unnecessary, but instead orGAN benefits from both, all those models are compared
against a model in which the adversarial discriminator is omitted but instead only
the generator with �msssim = 100 is trained (referred to as Vanilla MS-SSIM). For
the models that include an instrument classifier (see Section 5.4), a constant weight
of �inst = 0.5 is used so that it is roughly on the same level as the adversarial loss
at the beginning of training.

Vanilla GAN vs L1 Figure 5.1 illustrates that incorporating the L1 loss with
�L1 = 100 in addtion to the adversarial loss highly speeds up training: after starting

1In statements like this in this section, all weights that are not explicitly mentioned can be
considered zero.

90 CHAPTER 5. EXPERIMENTS

epoch 1 epoch 5 epoch 10 epoch 15 epoch 20 epoch 25 epoch 30 Real

Va
ni

lla
G

A
N

L1

Figure 5.1: The results for two randomly selected samples after different epochs of
training in a vanilla GAN (i.e. �L1 = 0) versus a model with �L1 = 100 referred to
as L1. It can be seen that the L1 model arrives at smooth but detailed and globally
coherent results significantly faster than the Vanilla GAN.

with a high degree of bluriness, the L1 model quickly learns to produce detailed yet
smooth local structure that is also globally coherent. In constrast, the vanilla GAN
focuses on fine-grain structural details with the drawback of producing prominent
artifacts more often and appearing rather jaggy. Nevertheless, both models con-
verge to the same level of L1 loss but, as one would expect, the L1 model achieves
a slightly lower minimum value in less training time (see Figure 5.2). However, it
is remarkable that from this metric, both models are very similar which does nei-
ther reflect the differences in the quality of the produced spectrograms nor in the
subjectively perceived audio quality.

L1 vs MS-SSIM Figure 5.4 shows exemplary that the MS-SSIM model appears
to produce much more accurate details than the L1 variant, especially when it comes
to overtones in the high frequencies which are crucial for perceiving the music as
clear instead of dull. Further, at a closer look the L1 model more often fails to
generate locally coherent structure. Also when it comes to faking on- and offsets
realistically, the MS-SSIM model outperforms the L1 variant.

MS-SSIM vs Vanilla MS-SSIM In order to verify that the generator actually
benefits from the discriminator’s feedback, an orGAN instance with �msssim = 100
(MS-SSIM) is compared to a model running the generator in stand-alone mode
without the discriminator, termed Vanilla MS-SSIM. It can be seen from Figure 5.3
that outside the adversarial setting the generator model trained with respect to
the MS-SSIM only produces blurry results. Those results become very similar to
the real spectrograms in global structure already after the first epochs of training.
However, after this point results do not improve further and the model completely
fails to generate the fine-grain frequency modulations making up timbre. Therefore,
the music synthesized with the vanilla MS-SSIM model lacks instrument specific
characteristics and is rather perceived as synthetic “beeps”.

5.1. LOSS COMPOSITION 91

0 10 20 30 40

2

3

4

·10�2

epoch

M
A

E
L1 loss over training

�L1 = 0
�L1 = 100

Figure 5.2: The development of the L1 loss on the validation set over training time:
both, the vanilla GAN with �L1 = 0 and the variant with �L1 = 100 converge to
the same level. However, as one can expect, the L1 variant is faster and achieves a
better minimum.

epoch 1 epoch 5 epoch 10 epoch 15 epoch 20 epoch 25 epoch 30 Real

Va
ni

lla
M

S-
SS

IM
M

S-
SS

IM

Figure 5.3: The results for two randomly selected samples over different epochs of
training in a non-adversarial vanilla MS-SSIM (i.e. �L1 = 0) versus a GAN model
with �msssim = 100 referred to as MS-SSIM. The latter takes more time of training
to achieve convincing results, but captures details accurately while the Vanilla MS-
SSIM model suffers from blurriness and largely fails to fake different timbres via
small frequency modulations.

92 CHAPTER 5. EXPERIMENTS

sample 1 sample 2 sample 3 sample 4 sample 5

Va
ni

lla
G

A
N

Va
ni

lla
M

S-
SS

IM
L1

M
S-

SS
IM

R
ea

l

Figure 5.4: Results obtained from a model trained with �L1 = 100,�msssim = 0
(marked L1) versus one trained with �L1 = 0,�msssim = 100 (marked MS-SSIM) and
spectrograms from real recordings. As a baseline, also samples from a configuration
incorporating only the adversarial loss (Vanilla GAN) and another one using the
generator outside the adversarial setting to maximize the MS-SSIM (Vanilla MS-
SSIM) are provided.

5.2. VARYING PATCH SIZE 93

5.2 Varying Patch Size

As described before, orGAN uses a PatchGAN architecture, i.e. its discriminator
outputs not a single scalar classifying the input as a whole but instead a n ⇥ n
tensor where each pixel corresponds to the classification of one patch in the input
tensor. For given output dimensions, the resulting patch size can be calculated by
considering the arithmetic of a convolutional layer (Section 4.6): one value in the
output of a 2D convolution with SAME padding, stride s and filter size u⇥ u has a
“preimage” (also called the Receptive Field) just as large as the filter. Therefore, an
output of size v ⇥ v has a receptive field sized

r(v, u, s) := (v � 1) ⇤ s+ u.

Applying this iteratively for all convolutional layers fm � . . . � f1, a single value in
the output, i.e. v = 1, can be traced back to its corresponding patch size p ⇥ p in
the input [27]:

p = r(r(. . . r(r(1, um, sm), um�1, sm�1) . . .), u1, s1)

The output size n⇥n is not explicitly mentioned above but instead latent in the net-
work architecture, i.e. in the number and configuration of the convolutional layers.
For the baseline of experiments here, a 64⇥ 64 output is used. The discriminator
architecture for this described as triples2 (a, u, s) from input to output layer where
a is the number of filters is

(16, 4, 2)! (32, 4, 2)! (64, 4, 2)! (128, 4, 2)! (256, 4, 1)! (512, 4, 1)! (1, 4, 1)

This results in p = 190. Additionally, a 32⇥ 32 output with architecture

(16, 4, 2)! (32, 4, 2)! (64, 4, 2)! (128, 4, 2)! (256, 4, 2)! (512, 4, 1)! (1, 4, 1)

and accordingly large p = 286 is tried. As a third variant, a fine-grain 128⇥ 128
output is used with the architecture

(16, 4, 2)! (32, 4, 2)! (64, 4, 2)! (256, 4, 1)! (512, 4, 1)! (1, 4, 1)

For this, the patches are much smaller having size p = 94. In order to avoid side
effects on the experimental results, above architectures are designed so that differ-
ences between them are as small as possible. The used compound loss here is the
MS-SSIM variant which has been found to be most beneficial in Section 5.1. To
emphasize the effect of the patch size via the adversarial loss, the experiments here
are carried out with �msssim = 10.

2Actually, the number of filters per layer is irrelevant for the computations here but nonetheless
is provided for a complete overview of the architecture. Anyway, in-between operations such as
ReLU and batch normalization are omitted here for compact reading.

94 CHAPTER 5. EXPERIMENTS

sample 1 sample 2 sample 3 sample 4 sample 5

p
=

94
p
=

19
0

p
=

28
6

R
ea

l

Figure 5.5: Fake spectrograms for different patch sizes in the discriminator: a 128⇥
128 output corresponding to 94⇥94 patches leads to tiling artifacts while the results
of the other variants are quite similar. However, medium sized patches of 190⇥ 190
appear to lead to slightly less structural errors compared to the model with p = 286.

5.3. TRANSFER LEARNING FOR MULTI-INSTRUMENT PLAY 95

From a subjective visual evaluation of the generated spectrograms as in Figure 5.5,
the p = 286 configuration appears to be be superior over the one with p = 94 as
it suffers much less from tiling artifacts. On the other hand, at a closer look it
produces erroneous structural details slightly more often than the medium patch
variant with p = 190 while both are on a very similar level of quality. This basically
coincides with the findings of [27].

To gain another qualitative insight, in Figure 5.6 the “noise” produced by the three
models is compared: the term noise here refers to the output of a model when it is
fed an empty pianoroll. Ideally, this should result in an audio containing only silence
or at most low-level background sounds that are also present in the training data.
Here, one has to observe artifacts instead. This is partially because of the STFT
which already produces some artifacts during pre-processing which the model tries
(and largely fails) to mimic along with “real audio”. Focusing on the model-specific
differences in this “synthesized noise”, one may notice that larger patches appear to
correspond to a lower recurring period of the artifact patterns. Conversely, a low
patch size results in smaller but more frequently recurring elements. Artifacts can
be partially reduced by assigning a higher weight to the MS-SSIM in the compound
loss: when choosing �msssim = 100 instead of �msssim = 10 as it has been for this
experiments, artifacts violating globally coherent structure are penalized more and
therefore they become less prominent (see Figure 5.7).

As the L1 loss is not directly optimized here, it can be used for a brief quantitative
comparison: from Figure 5.8 it can be inferred that all variants converge to the same
L1 loss. It has been mentioned before, that because of the nature of Lp metrics this
does not necessarily imply that their results are of the same musical and acoustic
quality. However, it can be seen that the configuration with p = 286 minimizes the
L1 loss a little faster than the others. In terms of the MS-SSIM, which is incorporated
in the compound loss function here and thus optimized directly, all models perform
in a very similar way while the p = 268 and p = 190 variants achieve better peaks
than the architecture with small p = 94 patches.

5.3 Transfer Learning for Multi-Instrument Play

So far, all orGAN models have been trained to synthesize only one instrument at a
time. A whole ensemble then can be faked by feeding orGAN the pianoroll for each
instrument separately and merging the resulting audio tracks via addition.

Native multi-instrument play To investigate the model’s capabilities for native
multi-instrument play, first it is analyzed how a model that has been trained on
single-instrument samples behaves when it is provided multi-instrument pianorolls.
In Figure 5.10, sample results of this experiment with the two models that have

96 CHAPTER 5. EXPERIMENTS

p = 94 p = 190 p = 286 Real

Figure 5.6: The artifacts produced when an orGAN model with patch size p⇥ p is
fed an empty pianoroll which should result in silence or background noise at most
(as in the spectrogram of a real recording at the left). The models for all patch sizes
show tiling artifacts and recurring patterns.

p = 190 p = 190
�msssim = 10 �msssim = 100

Figure 5.7: The artifacts in the output for models with different weights for the MS-
SSIM in the compound loss: penalizing the structural loss more leads to “smoother”
and “less random” artifacts already similar to the one in a spectrogram from a real
recording as shown in Figure 5.6. Also tiling patterns seem to vanish largely.

5.3. TRANSFER LEARNING FOR MULTI-INSTRUMENT PLAY 97

0 10 20 30 40 50

2

3

4

·10�2

epoch

M
A

E

L1 loss over training

p = 94
p = 190
p = 286

Figure 5.8: The development of the L1 loss on the validation set over training time:
all variants of the PatchGAN with different patch sizes p converge to the same level
of L1 loss in the long run. It can be seen that the configuration with p = 286 and a
32⇥ 32 discriminator output reaches its minimum a little faster than the others.

0 10 20 30
0.6

0.7

0.8

0.9

epoch

M
S-

SS
IM

MS-SSIM over training

p = 94
p = 190
p = 286

Figure 5.9: The development of the MS-SSIM on the validation set over training
time: the different patch configurations turn out to perform similarly over time
without systematical or remarkable differences.

98 CHAPTER 5. EXPERIMENTS

performed best so far, i.e. the MS-SSIM models with p = 190 and p = 286, are
provided: expectedly, both models fail to merge the different tracks right away.
Instead, only some elements of each track are present in the resulting spectrogram
while others appear to “multiply each other out” while being passed through the
convolutional layers.

Transfer learning A more sophisticated approach is to apply the concept of
transfer learning: instead of training a new model for multi-instrument play from
scratch, the trained single-instrument model can be used to refine its internal rep-
resentations according to new multi-track training data. This is expected to make
the task of learning the distribution of multi-instrument data more feasible, as the
score-to-audio translation for all instruments has already been learned. The “re-
maining” task then is to learn an adequate content-based strategy to merge tracks.
The result might be as simple as addition, but in this way, the model is given control
over the interaction of instruments. During this training, the model is not only fed
the new multi-instrument data but the already seen single-instrument data as well,
as it still should be able to synthesize both even after transfer learning. To be able
to rate the effects of transfer learning, another model is trained on both, single- and
multi-instrument samples from the very beginning.
From the samples in Figure 5.10 it can be seen, that even after training on multi-
instrument samples both models do not achieve the same fake quality as they did in
the single-instrument case. While the p = 286 model appears to miss detailed struc-
tural feedback from the discriminator so that its produced spectrograms highly lack
local coherence in fine-grain structure, the p = 190 model’s results are visually closer
to the real spectrograms. The model that is trained on all samples from the start
performs overall similar to the p = 190 after transfer learning: the results are acous-
tically quite close to the real data but still far from being visually equal. Because
of this, the resulting audio is clearly different from the real recording often miss-
ing tones or mixing up instrument timbres. Nevertheless the additional training at
least improves the visual and acoustic quality of single-instrument samples (see Fig-
ure 5.11) by reducing blurriness, enhancing contrast between frequency bands and
faking on-/offsets more accurately. The reason for this effect has to be suspected in
the additional amount of training data rather than in the multi-instrument nature
of the samples.

Playing all at once versus playing separately This raises the question, whether
letting a model (before or after transfer learning) fake all instruments of one song
separately and merging them via addition of the generated waveform audio can
provide more convincing results. This question may be answered by analyzing the
samples in Figure 5.12: there, the following variants are compared: first, samples
from the MS-SSIM model with p = 190 after transfer learning where all instruments
are played simultaneously, i.e. the model produces one pianoroll for all instruments

5.4. INCLUDING AN INSTRUMENT CLASSIFIER 99

(After transfer + at once) versus samples where each track has been passed sep-
arately to the same model (After transfer + separately). Second, those two are
set side by side with samples from the same model before transfer learning so that
tracks have to be synthesized separately as well (Before transfer + separately + mid
patch). Third, the latter is compared to its large patch counterpart with p = 286
(Before transfer + separately + large patch). Lastly, also samples from the model
trained on all samples from the beginning, i.e. without transfer learning are in-
cluded. At a first glance, intuition suggests that all those results are quite similar.
A detailed comparison with the real data reveals that the models without training
on multi-instrument data (i.e. the Before transfer models) lack structural precision
and contain small yet noticeable artifacts. The two After transfer models’ results
are closer to the ground truth on a visual level. In acoustic perception the After
transfer + separately strategy clearly outperforms After transfer + at once as the
latter expectedly expresses the different instruments less clear and tends to sporadic
yet disturbing erroneous mixtures of frequencies. The model without transfer learn-
ing produces visually similar results for most samples but also fails for a few by
producing structural errors. Especially the Without transfer + separately variant is
likely to produce artifacts. Nevertheless, their perceived audio quality in most cases
exceeds the one of the other models.

5.4 Including an Instrument Classifier

In order to improve the generation of realistic and adequate timbre, the inclusion
of an instrument classifier in orGAN ’s discriminator is investigated. Following the
approach of using a pitch classifier in GANSynth [17], this is intended to provide
additional feedback to the generator. The required architecture has already been
described in Section 4.7. Basically, the discriminator outputs a multi-hot vector in-
dicating all the detected instruments in a given sample in addition to its real versus
fake classification. It is noteworthy that the instrument classifier is only trained on
the real samples, i.e. the loss on the fake samples is not incorporated. Instead, the
latter is included in the generator’s compound loss (see Section 5.1). Restricting to
real data is not only required as otherwise the classifier could be mislead 3: it also
opens the possibility to use the instrument classifier as a simple “in-house quality
measure” for the generated samples instead of training such a model externally like
in GANSynth [17].

This work investigates the inclusion of the instrument classifier for both stages, be-
fore and after transfer learning for multi-instrument play, on the best performing

3for instance: if the generator’s fake looks like a violin while the ground truth is flute, the
discriminator would actually be penalized for “correctly” outputting the label for violin.

100 CHAPTER 5. EXPERIMENTS

sample 1 sample 2 sample 3 sample 4 sample 5

B
ef

or
e

Tr
an

sf
er

p
=

19
0

p
=

28
6

A
ft

er
Tr

an
sf

er

p
=

19
0

p
=

28
6

W
ith

ou
t

Tr
an

sf
er

p
=

19
0

R
ea

l

Figure 5.10: Multi-instrument samples before, after and without transfer learning: both models
that performed best so far, the MS-SSIM models with p = 190 and p = 286 fail to synthesize
multiple instruments at once without extra training (top two rows). After transfer learning, the
p = 190 model produces results (third row) that are at least visually close to the real data (last
row) while the samples from the large patch variant (fourth row) are missing structural coherence.
Training on all samples form the start without transfer learning (second last row) leads to an
overall quality similar to the p = 190 model with transfer learning.

5.4. INCLUDING AN INSTRUMENT CLASSIFIER 101

sample 1 sample 2 sample 3 sample 4 sample 5

B
ef

or
e

Tr
an

sf
er

A
ft

er
Tr

an
sf

er
W

ith
ou

t
Tr

an
sf

er
R

ea
l

Figure 5.11: Single-instrument samples before, after and without transfer learning
on the p = 190 MS-SSIM model: after transfer learning including multi-instrument
data, the model produces richer and more accurate fake spectrograms, especially
when it comes to the contrast between frequency bands as well as on- and offsets.
The very same effect can be observed without transfer learning, i.e. when training
on all samples right from the beginning of training.

102 CHAPTER 5. EXPERIMENTS

sample 1 sample 2 sample 3 sample 4 sample 5

Se
pa

ra
te

ly

B
ef

or
e

Tr
an

sf
er

p
=

28
6

B
ef

or
e

Tr
an

sf
er

p
=

19
0

A
ft

er
Tr

an
sf

er
p
=

19
0

W
ith

ou
t

Tr
an

sf
er

p
=

19
0

A
t

on
ce

A
ft

er
Tr

an
sf

er
p
=

19
0

W
ith

ou
t

Tr
an

sf
er

p
=

19
0

R
ea

l

Figure 5.12: Multi-instrument samples that have been faked at once, i.e. by a
model producing one spectrogram for all tracks (marked At once) versus a model
sequentially producing one spectrogram per track (Separately). In the latter case,
the resulting waveform audio is merged via addition.

5.4. INCLUDING AN INSTRUMENT CLASSIFIER 103

model, the MS-SSIM variant with patch size p = 190. This results in a comparison
of the strategies provided in Table 5.1. There is no transfer inst-pure model as it
seems highly counterintuitive to omit a previously included instrument classifier at
a later stage of training.

Training on

Model name single-instrument
samples

single- & multi-instrument
samples

single-pure no instrument classifier -
single-inst with instrument classifier -
transfer-pure-pure no instrument classifier no instrument classifier
transfer-pure-inst no instrument classifier with instrument classifier
transfer-inst-inst with instrument classifier with instrument classifier
multi-pure - no instrument classifier
multi-inst - with instrument classifier

Table 5.1: Different variants of including an instrument classifier in the training of
orGAN .

From a point of view focusing on the training process, all variants behave nearly
identically in particular in terms of the L1 loss and the MS-SSIM and in case an in-
strument classifier is included it quickly approximates an AUC value of 1. However,
there are noticeable differences in a qualitative visual analysis using Figure 5.13 and
Figure 5.14: in the multi model, i.e. the one that is directly trained on single- and
multi-instrument samples, the inclusion of an instrument classifier seems to make
almost no differences in the quality of the faked spectrograms which look sharper
than those from the single instrument models anyway. In this the single-instrument
model, the samples generated with single-inst appear sharper with clearer distinc-
tions between frequencies and more expressive timbre compared to the single-pure
variant. This also coincides with the acoustic perception. The improvements seem
very similar to the effects multi-instrument training had on the quality of single
samples (see Section 5.3, in particular Figure 5.11). Hence it can already be stated
that for the single-instrument models an instrument classifier fosters training as it
has the same effect as additional training data. Looking at the multi-instrument
samples in Figure 5.14, results are visually very close while in the waveform au-
dio those from the transfer-pure-inst model sound a little more natural and enable
clearer distinctions between instruments compared to the transfer-pure-pure variant.
Interestingly, for the transfer-inst-inst model the measures also indicate a training
progress almost identical to the other transfer variants but the produced samples
contain many artifacts are structural errors. Intuitively, it can be conjectured that as
the instrument classifier is trained on more data it becomes so strong that its relative
influence on the generator’s compound loss function exceeds the one of MS-SSIM

104 CHAPTER 5. EXPERIMENTS

so that the model overlearns timbre and micro structure at the cost of structural
coherence. This appears in particular reasonable, as one can observe similar effects
in the Vanilla GAN (see Section 5.1, in particular Figure 5.4) where there is only
a penalty on textural loss. In parts this can also be observed when comparing the
multi-pure to the multi-inst model. Nevertheless it requires further experiments such
as using adaptive weights in the compound loss function (Section 5.1) following an
adequate training schedule as it is often done for the learning rate of an optimizer
(see Section 4.2.1).

5.4. INCLUDING AN INSTRUMENT CLASSIFIER 105

sample 1 sample 2 sample 3 sample 4 sample 5

Si
ng

le

pu
re

in
st

M
ul

ti
pu

re
in

st
R

ea
l

Figure 5.13: Single-instrument samples for different inclusion strategies for an instru-
ment classifier (see Table 5.1): in the single-instrument model, the classifier clearly
enhances timbre while reducing blurriness while in the multi-instrument model with-
out transfer learning, no major effects stand out.

106 CHAPTER 5. EXPERIMENTS

sample 1 sample 2 sample 3 sample 4 sample 5

Tr
an

sf
er

pu
re

-p
ur

e
pu

re
-in

st
in

st
-in

st

M
ul

ti
pu

re
in

st
R

ea
l

Figure 5.14: Multi-instrument samples for different inclusion strategies for an instru-
ment classifier (see Table 5.1): for pure-inst and pure-pure the samples are visually
very close while first performs better in the acoustic perception. In contrast, the
inst-inst model also captures the overall structure of each sample well but shows
more fine-grain recurring artifacts. Similar can be observed for the multi instru-
ment model without transfer learning.

107

Chapter 6

Evaluation

6.1 Human Perception

The Test Design

Following common practice in the field [17, 72, 12], the gold standard for evaluating
this work is human judgment. For this, 486 individuals recruited from Amazon

Mechanical Turk as well as from the author’s social network are presented samples
from the previously held out test set (see Section 3.1). The participants are requested
to provide relevant discretized meta data without revealing their identity:

Item Options

Age < 18 | 18-25 | 26-40 | 41-50 | 51-60 | > 60

Gender male | female | diverse

Student Status Undergrad. Student | Graduate Student | neither

Musical Experience Professional | Hobby | neither

Use of Headphone True | False

Table 6.1: Meta-data items and available values requested from the participants in
the human evaluation process.

While the student status is requested mainly for statistical purposes and to filter
out cheaters via implausible combinations1, the items age, gender and musical ex-
perience as well as the usage of headphones during the evaluation can be assumed
to exert strong relevant influence on the ability to perceive details of music and to
identify types of instruments in it. There are no restrictions applied to the group of
participants i.e. in particular it is not a representative group.

1for instance, if a user selects undergraduate student together with age > 60 and professional
musical experience, he or she is likely to select random answers throughout the survey.

108 CHAPTER 6. EVALUATION

Each participant is presented 30 uniform-randomly selected samples and listens to
them one after another. Right after listening, each sample is rated on a 5-point
Likert scale, i.e. on the choice set

strongly disagree | disagree | neutral | agree | strongly agree

for each of the following statements:

(i) The music sounds like generated by human rather than by machine. (Natu-
ralness)

(ii) The timbre sounds as of real instruments. (Timbre)

(iii) The audio quality is good. (Quality)

(iv) The music expresses emotion. (Emotion)

(v) The music sounds good overall. (Overall)

Those items are presented in the same order for each sample. The so far test design
matches the most related work, namely [72], to enable a direct comparison.

In parallel, for each sample the participants are asked to select all instruments they
think to be able to identify in the given piece of music. For this, binary toggles
are presented for all of the instruments occurring in the URMP-Dataset (listed
in Section 3.1) grouped by instrument class (i.e. Strings, Woodwinds and Brass)
as depicted in Figure 6.1. This selection panel is the same for all samples. The
participant does not know about the true number of instruments playing in this
sample, i.e. how many instruments to select. The survey design deliberately does
not challenge the participants to guess the correct number of instances of the same
instrument to simplify the task in favor of more precise feedback. As acoustic
instrument classification in general can be assumed too be a very hard task at least
for non-professional humans, this in particular necessitates a comparison against
recordings from real instruments in order to retrieve some sort of “base error”. Once
a user has submitted both, Likert scale rating and instrumental classification, for
one sample, he or she is not allowed to make modifications to them anymore.

Conducting the Test

The survey is conducted over 150 randomly selected test set samples for each model
configuration that is evaluated. Note that the sets of samples for each model can
be disjoint but do not have to. The samples of all models are shuffled all together.
To compare the different configurations of orGAN against conventional approaches,
also samples generated from two off-the-shelf synthesizers, musescore 3

2 and Ap-

2https://musescore.org

https://musescore.org

6.1. HUMAN PERCEPTION 109

Figure 6.1: The user interface of audival with 5-point Likert scales for all criteria
(left) a multi-instrument selection panel (right).

ple’s state of the art Logic Pro X
3 generated from MIDI data from the test set are

included in the same way. This is also done in the evaluation of PerformanceNet
[72] enabling straight-forward comparison of the results. Note that when applying
those synthesizers just the MIDI data is imported and then synthesized with the
appropriate instruments. In particular, no effects are applied and there is no man-
ual fine-tuning. To have a solid baseline for interpretations, the pool of samples to
evaluate also contains 150 real recordings from the test set split from the URMP-
Dataset. In total, the 486 participants submit 10.067 ratings

4 for 11 model
configurations including synthesizers and the real sample collection. This results in
an average of ⇡ 6.10 ratings per sample, i.e. ⇡ 915 ratings per model configu-
ration. This is on the same quantitative level as the human evaluation of Google’s
GANSynth [17]. The distribution of the collected metadata of the participants is
provided in Figure 6.2.

The whole survey is conducted using the web application audival
5 which has been

created exclusively for this work by the author. Special features and advantages
of audival over common survey platforms are that it is tailored to this task, free,
enables anonymous usage and allows full customization as well as unlimited access

3https://www.apple.com/logic-pro/
4Not all participants finished the survey and thus there are users who have committed less than

30 ratings.
5https://audival.io

https://www.apple.com/logic-pro/
https://audival.io

110 CHAPTER 6. EVALUATION

Figure 6.2: The distributions of the collected metadata of all individuals in the
human evaluation process over the items described in Table 6.1.

to all raw data. Further, it comes with a yet very basic but nonetheless effective
“fake detection” mechanism by automatically rejecting ratings from users who always
provide the same answer for at least one type of question as well as ratings for which
the user invested less time than the duration of an audio samples (i.e. in this case
the user did not even listen to the sample he or she rated). Yet, the implementation
of this tool itself shall not be considered part of this thesis.

Results for Perception

For this evaluation, the orGAN variants are selected that seemed to performed best
in the experiments of Chapter 5. The average results from the Likert-scale ratings
are summarized in Table 6.2: it can be seen that the orGAN models outperform
state of the art synthesizers6 in terms of realistic timbre, emotional expressiveness
and naturalness of their generated music. However, this comes at the expense of
quality mainly caused by small artifacts which obviously do not occur in determin-
istic hand-crafted synthesizers. This also highly correlates with the rating of the
overall perception quality. Nevertheless, the two orGAN models without transfer
learning are able to outperform the synthesizers even in this category, yet by a very
small margin. Tackling quality issues is hard as even tiny structural errors on pixel
level in the spectrogram can cause a major loss of audio quality. Most applications of
generative models focus on image processing and computer vision and are not very

6used in basic configuration, i.e. without manual fine-tuning

6.1. HUMAN PERCEPTION 111

Perception

Model Timbre Naturalness Emotion Quality Overall

single-pure-190 2.44 2.34 2.31 2.20 2.24
single-inst-190 2.57 2.45 2.37 2.34 2.38
single-pure-94 2.45 2.38 2.26 2.29 2.28
single-pure-286 2.59 2.40 2.38 2.32 2.36
transfer-pure-pure-190 2.51 2.41 2.40 2.27 2.27
transfer-pure-inst-190 2.58 2.47 2.46 2.29 2.41
multi-pure-190 2.59 2.47 2.60 2.53 2.51
multi-inst-190 2.65 2.43 2.58 2.49 2.54

logic pro x 2.50 2.31 2.37 2.54 2.43
musescore 3 2.45 2.33 2.45 2.60 2.51
real 2.82 2.69 2.64 2.61 2.66

Table 6.2: The average perception of 5s samples from different models on a scale
from 0 = very bad to 4 = very good. The best performing fake model for each
category is in bold typeface. The infix inst marks models with instrument classifier
in contrast to pure. Accordingly, pure-pure and pure-inst performed transfer learning
where one uses an instrument classifier in the second training stage i.e. on single-
and multi-instrument samples. The prefix multi indicates that the model has been
trained on single- and multi-instrument data right from the start instead of using
transfer learning. The single models have only been trained on single-instrument
samples. The number as postfix indicates the patch size used for the PatchGAN.

sensible to fine-grain perturbations and therefore improvements remain a challenge
for future work.

Focusing not only on the top scores, but instead comparing the orGAN variants
among each other, from Figure 6.3 one can see that the single and transfer mod-
els using an instrument classifier outperform their pure counterparts in almost all
categories. Further, the single-instrument model with instrument classifier performs
similar to the transfer model without. This confirms the conjecture in Section 5.4
that including an instrument classifier has the same effect as using more training
data. However, this does not hold that clearly when the classifier is included from
the very beginning of training: the multi models show significantly better perfor-
mance than others in all categories, in particular in quality and emotion. For them,
the inclusion of an instrument classifier seems to have no major effect. Regarding
the patch size used in the discriminator, the human evaluation suggests superiority
of the 286⇥ 286 variant over using the smaller patches sized 94⇥ 94 and 190⇥ 190.
This is in slight contrast to the subjective analysis in Section 5.2.

112 CHAPTER 6. EVALUATION

Figure 6.3: The average rating on a 5-point Likert-scale from 0 = very bad to 4 =

very good for each model configuration and the off-the-shelf synthesizers musescore
3 and Logic Pro X as well as for real recordings from the URMP-Dataset.

Apart from the average ratings over all users, differentiating among raters reveals
interesting insights:7

first, Figure 6.4 shows that women distinguish better between models than men.
One may note, that women also take much more time to rate one sample (see Fig-
ure 6.8). Further, from all models they favor the orGAN multi-inst-190 while men
assign slightly higher ratings to orGAN single-inst-190 and the synthesizers.

Headphone usage has effects as well which are depicted in Figure 6.5: while the real
samples are perceived similarly in both situations, the ratings of the fake samples
are overall lower when listened to with headphones. It can be suspected that this is
due to the reduced environmental noise letting musical impurities and artifacts to
attract more attention. Also, headphone usage seems to encourage a clearer distinc-
tion between the different models and reveals quality lacks of orGAN , especially in
comparison to the synthesizers. In particular, with headphones the differences in
emotion, timbre and naturalness appear to become more clear so that in particular
the margin between ratings of the orGAN models and synthesizers in those cate-
gories increases.

7As the group of raters is neither representative nor has an equal distribution of characteristics,
the following results have to be interpreted carefully and are not statistically resilient.

6.1. HUMAN PERCEPTION 113

Another influential factor on the perception of music is the age of the listener: as
Figure 6.7 shows, the fakes are rated best in comparison to the real data by people
over the age of 60. It is well known that the frequency range perceivable by the
human ear decreases with increasing age. Therefore it can be conjectured, that in
the mentioned group the high-frequency noise and perturbations which are char-
acteristic for orGAN ’s fakes are not perceived that prominently. In all other age
groups, the real samples are rated best overall. While people between 51 and 60
prefer synthesizers over the orGAN models, the younger which also invest by far the
most time in the rating process (Figure 6.8) assign them high naturalness, emotion
and timbre quality. Also in the group aged 41 to 50, in particular the multi mod-
els perform well and are even rated better than the real data regarding emotional
expressiveness. In this context, it should be considered that this group also is the
one that invests the fewest time in the rating process. Meanwhile the largest group
of participants aged 26 to 40 rates all models similarly which can be caused by the
overproportional amount of data for this group.

One of the most interesting yet questionable results is yielded by the distribution
of ratings across levels of musical experience visualized in Figure 6.6: from the col-
lected data, it seems like the ability to distinguish real from fake samples decreases
with an increasing level of proficiency. The data even indicates that professionals in
the field of music (i.e. musicians, singers, producers, dancers and so on) perceive the
pure-inst-190 variant of orGAN as more realistic than the real samples. One may
note that number of professionals taking part in the evaluation is close to the one of
raters without experience in music (recall Figure 6.2) and thus the size of the test
group cannot not directly provide an explanation here. One plausible suspicion is
that “cheating” clickworkers who select answers in ratings and meta data questions
randomly have a higher effect in the group of professionals which is expected to be
relatively small when sampling randomly from the real world. Another conjecture is
that with less musical experience, users more likely attempt to do a binary real/fake
classification by selecting more “extrem” ratings and by this increase the margin. On
the other hand, professionals might attempt to do a more fine-grain rating so that
the mean rating of the real data is close to those of the fakes. Further, the level of
profession significantly correlates with age and, as it has been described in the above
paragraph, an increasing age reduces the ability to identify fakes via high-frequency
anomalies and noise. In addition, professionals (and “cheaters” who pretend to be)
take the fewest time per rating (see again Figure 6.8).

The effect of the job status (undergraduate, graduate, not a student) is not ana-
lyzed separately as this is not expected to excert relevant influence on the ratings
and further it highly correlates with age anyway.

114 CHAPTER 6. EVALUATION

Figure 6.4: The average perception of different models across gender of the evaluat-
ing human.

The key insights so far in summary:

• orGAN outperforms synthesizers regarding emotion, timbre and naturalness.

• orGAN suffers from artifacts and accordingly bad audio quality.

• Without Headphones, artifacts in fakes attract less attention.

• Elderly people rarely detect orGAN ’s fakes. Young and mid-aged humans can
distinguish them well while orGAN wins over the synthesizers especially in
the younger groups.

• It seems that with increasing musical experience the distinction between fake
and real samples gets worse. However, this appears implausible and might be
traced back to test effects.

Results for Classification

The instrument classification by the users yields some less informative yet inter-
esting insights as well: an analysis of the confusion matrices for single samples via
Figure 6.9 shows that recognizing instruments is a hard task for humans and there
is a lot of confusion even for the real recordings. Hence, all the results have to be in-
terpreted carefully. It can be seen that for the synthesizers as well as for the orGAN
models all kinds of strings and even some winds are likely to be recognized simply

6.1. HUMAN PERCEPTION 115

Figure 6.5: The average perception of different models across the usage of head-
phones during the evaluation.

Figure 6.6: The average perception of different models across musical experience of
the evaluating human.

116 CHAPTER 6. EVALUATION

Figure 6.7: The average perception of different models across age.

6.1. HUMAN PERCEPTION 117

Figure 6.8: The average time in seconds taken for rating one sample.

as a violin. Nevertheless there are little differences and each model comes with its
own strengths and drawbacks: the best distinction of violin and viola is achieved by
transfer-pure-pure-190. For cello, single-pure-190 outperforms all others. Double
bass is faked best by single-pure-286 while being often confused with other strings.
For flute, again transfer-pure-pure-190 wins even exceeding the results on the real
data by far. Regarding all other instruments, the data does not allow meaningful
conclusions beside that for all models it is hard to make clear distinctions between
closely related instruments. Nevertheless it appears that for many instruments, or-
GAN is superior or at least equal to the synthesizers. Overall, from analyzing the
single-instrument samples it seems that there is no clear “best choice” model for
all instruments, but instead one has to differentiate. Note that the evaluation here
does not necessarily include single samples of all instruments fore each model as the
samples are selected randomly.

This is compensated by widening the view to more data and include multi-instrument
samples (for which an instrument confusion matrix cannot be plotted easily): as the
plots in Figure 6.10 and Figure 6.11 state, for most instruments there is an orGAN
model roughly en pour with or outperforming the synthesizers. Considering the
mean portion of correct classifications over all instruments for each model in Fig-

118 CHAPTER 6. EVALUATION

ure 6.10, many models perform better than the real data8 where the orGAN variants
single-inst-190 and single-pure-190 perform best. Using Figure 6.11 to compare the
mean recognition rate of each instrument to the performance of each model confirms
that orGAN is indeed superior in most strings, but does not exceed synthesizers in
winds such as trumpet, tuba, oboe and bassoon. Nevertheless, recognition rates for
all instruments and models are rather unreliable and at an overall very similar level
so that this results should not be payed too much attention.

Comparison with existing Models

The design of the human evaluation process described above allows to directly com-
pare the results to those of PerformanceNet [72] and - as it is in included there –
to a WaveNet [52] modification proposed by [42]. Relying on the data provided in
[72], the comparison to PerformanceNet can only be done on the results for sam-
ples from cello, violin and flute and to compare both to WaveNet, only cello can be
used. Those are compared to the orGAN models with and without transfer learning
according to Figure 6.3, namely transfer-pure-inst-190 and multi-pure-190, as well
as the worst one: pure-190. After converting the results of the other models from
a [1, 5] Likert-scale to the range [0, 4], a direct comparison in Figure 6.12 reveals
the superiority of all orGAN variants over PerformanceNet. While being almost
en pour in naturalness, there are clear improvements in emotional expressiveness,
timbre, overall perception and in particular in quality. Also when putting the results
for cello next to those of the WaveNet based model, orGAN again performs best
by far as depicted in Figure 6.13. For those cello samples, the pure-190 model even
reaches the level of real data and in the criterion “emotion” even exceeds them. The
latter which can also be observed in the previously analyzed Figure 6.11 appears
implausible at a first glance and might be traced back to test effects such as the
samples containing a more “catchy” melody than others which causes a higher rat-
ing in “emotion”. Nevertheless, it can be said that the orGAN models exceed the
standard set by related work.

6.2 Internal Comparison

To conduct a straight-forward “internal” comparison of the best performing orGAN
models described in Chapter 5, some of the performance measures described in Sec-
tion 4.7 for the samples of the previously held out test set are reported and analyzed:
first of all, the top MS-SSIM values achieved by each model are considered as well
as the L1 loss between real and fake spectrograms, which has not been part of the
objective of the models investigated here. Related work such as GANSynth utilizes
a separately trained pitch classifier to evaluate the quality of their fakes. Following

8which again shows the questionable reliability of human instrument classification

6.2. INTERNAL COMPARISON 119

Figure 6.9: The confusion in human instrument classification for different models
over single-instrument samples only. Each row in a subplot is the distribution of
guesses over all samples from one instrument in the associated model.

120 CHAPTER 6. EVALUATION

Figure 6.10: The portion of correctly recognized samples per model.

6.2. INTERNAL COMPARISON 121

Figure 6.11: The portion of correctly recognized samples per instrument.

122 CHAPTER 6. EVALUATION

Figure 6.12: Perceptual comparison with PerformanceNet [72].

Figure 6.13: Perceptual comparison with PerformanceNet [72] and a WaveNet-based
model by [42]

6.2. INTERNAL COMPARISON 123

this idea, also the micro- and macro-accuracy as well as the area under of curve of
the trained instrument classifier, which is part of the discriminator for some orGAN
variants, is reported. This approach appears in particular justified as this classi-
fier has only been trained on the real samples and therefore is not tailored to the
fake output. Note that of course the same trained classifier, namely the one of the
transfer-pure-inst-190 model, is used for all comparisons here.

Another similarity measure between discrete probability distributions is the Wasser-
stein Distance [58]:

Definition 49 (Wasserstein Distance)

Given two discrete probability distributions represented as equally large finite sets
of points X := {Xi}i2I , Y := {Yi}i2I ⇢ Rd, I ⇢ N, the Wasserstein Distance is

W (X, Y) :=

s
min
�

X

i2I

��Xi � Y�(i)

��2 (6.1)

where � is any permutation of N := |I| elements. 2

This has the nice interpretation of, loosely speaking, measuring the minimum effort
required to transform X into Y respecting that any permutation of the data points
does not affect the overall distribution. Because of its metaphorical formulation
as the effort of transforming a pile of soil within a metric space into another one
measured in the distance it has to be moved, this is often referred to as Earth Mover’s
Distance. The problem of finding the minimum in expression (6.1) can be solved
for instance with linear programming algorithms for small N [58]. For scalability,
[58] proposes an approximation of the Wasserstein Distance by projecting each data
point onto the unit sphere:

Definition 50 (Sliced Wasserstein Distance)

Given two discrete probability distributions represented as equally large finite sets
of points X := {Xi}i2I , Y := {Yi}i2I ⇢ Rd, I ⇢ N, the Sliced Wasserstein Distance
(SWD) is

fW (X, Y) :=

sZ

✓2⌦
W (X✓, Y✓)2d✓, X✓ := {hXi, ✓i}i2I (6.2)

with the unit sphere ⌦ := {✓ 2 Rd
�� k✓k = 1}. 2

Above, h·, ·i denotes the inner product. Effectively, with exploiting bilinearity this

124 CHAPTER 6. EVALUATION

Test Results

Model MS-SSIM SWD L1 AUC microACC macroACC

single-pure-190 .897 .235 .023 .995 .869 .829
single-inst-190 .897 .339 .021 .998 .875 .849
single-pure-94 .861 .342 .019 .998 .870 .806
single-pure-286 .831 .354 .019 .999 .873 .875
transfer-pure-pure-190 .894 .296 .037 .995 .876 .789
transfer-pure-inst-190 .877 .233 .038 .989 .873 .914
multi-pure-190 .826 .175 .044 .990 .876 .861
multi-inst-190 .873 .237 .049 .996 .894 .947

Table 6.3: Internal tests results for different models: the MS-SSIM, the SWD and
the L1-distance between real and fake samples as well as the outcome of feeding the
fake samples to the instrument classifier trained along with the transfer-pure-inst-
190 model in terms of the AUC, the micro-accuracy and the macro-accuracy (see
Section 4.7 for a clarification on these terms).

results in

fW (X, Y) =

sZ

✓2⌦
min
�

X

i2I

|hXi, ✓i � hYi, ✓i|2d✓

=

sZ

✓2⌦
min
�

X

i2I

|hXi � Y�(i), ✓i|2d✓

In the evaluation of ProgressiveGAN [28], the SWD is computed between real and
fake samples at different levels of perception: similar to the approach of the MS-
SSIM (see Section 4.7), the image is downsampled iteratively by a factor of two
until a size of 16⇥ 16 is reached.9 At each level, random patches are extracted from
the real and fake image on which the SWD is calculated and reported for each level
separately.

In this work, the same technique is used to compare the different model variants of
orGAN described in the previous sections in Chapter 5. For compatibility with the
factor 2 downsampling, the spectrograms of size 935 ⇥ 1025 are padded with zeros
in time and the upper most frequency band which can be considered negligible for
this purpose is omitted to obtain a shape of 1024⇥ 1024.

A summary of all the measured results is provided in Table 6.3: it can be seen that
the two single-instrument models with patch size 190 achieve a higher MS-SSIM
value than the ones with p = 94 and p = 286. This is coherent to the findings

9This forms a Laplacian Pyramid [9].

6.2. INTERNAL COMPARISON 125

of Section 5.2. Further, in terms of the MS-SSIM they perform better than their
counterparts that are also trained on multi-instrument samples, i.e. transfer-* and
multi-*. This is probably due to their task being just easier or more precisely: re-
stricting the data distribution to single-instrument samples makes it easier to model.
Regarding the SWD between real and fake spectrograms, the multi-inst-190 model
performs best by far, which coincides with the perceptual evaluation above. The L1
distance does not reflect this: here, the multi-* models are actually the worst per-
forming ones. This can be explained with the multi instrument models being more
prawn to small structural errors due to the less clear distinction between single- and
multi-instrument play despite their superiority in overall perceived quality (look up
Section 5.3). Further, when considering those results it should be taken into ac-
count that the L1 metric is not sensitive to spatial features as described previously
in Section 4.7, in particular in Figure 4.21. When analyzing the results from the
instrument classifier, that has been trained along with the transfer-pure-inst-190
model on the real world data, it can be seen that all models achieve a very similar
mirco-accuracy lead by the multi-inst-190 model. This appears reasonable, as this
model has the most of training time with multi-instrument samples and an instru-
ment classifier (which partially even seems to lead to an overlearning of timbre as
mentioned previously). The results from the AUC are very inconclusive. The most
meaningful insights can be obtained from the macro-accuracy, i.e. the portion of
samples, where all playing instruments have been recognized correctly. The results
show that throughout all models, the variant with instrument classifier performs
better in terms of this measure than its pure counterpart. The top score is again
achieved by the multi-inst-190 model which can be justified the same way as for the
micro-accuracy.

126 CHAPTER 6. EVALUATION

127

Chapter 7

Conclusion

In this thesis, based on a Generative Adversarial Network an artificial intelligence
model for multi-instrument audio synthesis termed orGAN has been designed, built
and analyzed:

Provided a stack of pianoroll representations of scores for different instruments where
the position within the stack indicates the type of instrument, the model can gen-
erate a spectrogram which can be post-processed using the algorithm of Griffin and
Lim to obtain waveform audio that mimics a real instrument recording. The model
has full control over all musical parameters except timing and therefore takes the
role of a human performer capable of interpreting scores. Learning the timing as-
pect is not enabled by design as for training frame-level annotations are required.
Therefore, this may be approached by different models. The model is trained on
high-frequency data from 13 instruments at once covering a broad range of strings,
brass and woodwinds. For this, the URMP-Dataset is used from which 5s chunks
of 48kHz audio are sampled. This includes single-instrument samples as well as all
possible multi-instrument compositions. The pre- and post-processing has been de-
scribed in detail together with the needed basics of singal processing. Also drawbacks
of the pianoroll in the form of ambiguities regarding the number of instruments, note
separation and on-/offsets have been outlined along with its advantage of incorpo-
rating useful spatial information.

The model solves a contour-to-image mapping task together with a super-resolution
problem as a pianoroll is much smaller than its corresponding spectrogram. There-
fore, the GAN utilizes well-known architectures from the field of image processing.
In particular, it follows the pix2pix model and uses a U-Net autoencoder as generator
conditioned by a pianoroll as input. It is noteworthy that with spectrograms of size
935⇥ 1025, orGAN operates on much larger “images” than most generative models
so far. The discriminator is a PatchGAN together with an auxiliary instrument
classifier. The objective function is comprised of the loss of the adversary, the L1
distance as well as the multi-scale structural similarity between real and fake spectro-

128 CHAPTER 7. CONCLUSION

grams and the loss of the instrument classifier. As the model is fully-convolutional,
it can cope with scores and audio of arbitrary length. In the core of this thesis, the
methodological foundations of machine learning tasks, their learning process that
uses a gradient descent algorithm, the concept of neural networks as well as basic
regularization techniques have been described in depth together with special archi-
tectural styles of neural networks such as convolutional layers and autoencoders.
A focus has been set on the concept of a generative adversarial network and its
variants including cGAN, AC-GAN and PatchGAN. After laying out these concepts
step-by-step, building up on this the architecture of orGAN has been described.
Motivated by the mean absolute error’s missing sensitivity for spatial information,
the multi-scale structural similarity index has been established as another compo-
nent of the network’s loss function.

Further, a significant number of experiments has been conducted with different vari-
ations of orGAN : it has been shown that incorporating the L1 loss in the generator’s
objective speeds up training and reduces blurriness in the faked spectrograms. Us-
ing the MS-SSIM instead lead to further improvements, especially in high-frequency
details. Both variants outperformed a “vanilla” GAN and a stand-alone generator
optimizing the MS-SSIM. The first has been found to lack global coherence while
the latter produced samples missing fine-grain local structure. Therefore, it has
been shown that the adversarial setting is able to eliminate the need for dedicated
refinement architectures like the residual sub-network and the on-/offset encoder
in PerformanceNet. Investigations regarding the effect of different patch sizes for
the PatchGAN classifier largely confirmed the findings of pix2pix: small patches
sized 94 ⇥ 94 are likely to cause tiling artifacts while larger choices of 190 ⇥ 190
and 286 ⇥ 286 perform better on a visually similar level. After starting with mod-
els trained on single-instrument samples, the application of transfer learning for
multi-instrument recordings has been explored so that the model has been given
control over interactions between instruments: while all orGAN variants struggle,
the variant with patch size 190⇥ 190 performed remarkably better than the others.
Nevertheless, is did not achieve the same audio quality as faking each instrument
separately with the same model.1 It has been observed that after transfer learning
including multi-instrument samples, also the quality of single-instrument audio im-
proved which is probably due to the additional amount of training data. The same
effect has been observed for a model trained on both, single- and multi-instrument
samples, together from the beginning. This way, samples also achieve a much better
quality and have more clear timbres. It also turned out that the usage of an instru-
ment classifier in the discriminator which is trained on real data only fosters training
in the same way as more training data does, i.e. making timbre more clear and in-
creasing contrast between frequency bands. This turned out to beneficial mainly in

1Improving this in future would in particular address the necessity of applying Griffin-Lim
multiple times which slows down the generation process in production dramatically.

129

transfer learning, a usage across all phases of training yielded less promising results.
The latter is conjectured to be due to a too large influence of the instrument classi-
fier in the compound loss of the generator. It is up to further research to tackle this
e.g. via adaptive weighting of the instrument classifier loss over training.

For a perceptual analysis, all orGAN models have been involved in extensive hu-
man evaluation: in ratings for naturalness, timbre, emotion, quality and overall
perception of the generated samples together with human instrument classification,
orGAN outperformed state of the art synthesizers in the first three categories. Qual-
ity and overall perception are still largely affected by occasionally occurring artifacts
preventing the models to compete with deterministic synthesis strategies. Making
improvements here is the most important challenge open for further work. In con-
trast, the results from human instrument classification are rather inconclusive as
this is a challenging task even for professionals so that human raters barely deliver
reliable data. Nevertheless it has become clear that there is not “the one” orGAN
variant which is best for synthesizing all instruments. The orGAN variants which
still turned out to perform best overall, marked transfer-pure-inst-190 and multi-
pure-190 both use a patch size of 190⇥ 190 and incorporate the MS-SSIM in their
objective, but only one applies transfer learning with an instrument classifier in-
cluded in the second stage while the other one is trained on all samples from the
beginning of training. Both outperform PerformanceNet as well as an appropri-
ately modified WaveNet by far. The interested reader is highly recommended to
visit https://students.fim.uni-passau.de/~susetzky/organ/ to explore some
audio samples generated with orGAN .

Considering all of the above, it can be said clearly that Generative Adversarial Net-
works are applicable for realistic high-quality multi-instrument music synthesis.

Finally, a few ideas for future work shall be formulated briefly: first, as mentioned
above, it remains open to learn the timing aspect and improve audio quality by
tracing back and removing sources of artifacts. It would also be possible to in-
clude further conditions and contextual information in the generator such as genre,
composer or musical epoch and then vary these parameters for a given score after
training. Further, orGAN is designed to be extensible for learning new instruments.
Investigating this ability of extension for a trained model in order to synthesize
a whole orchestra including instruments such as drums and percussion completely
different from the ones synthesized so far is straight forward, yet interesting. A
more challenging task is to apply organ to synthesize vocals or “voice oohs” for
different vocal pitches: for this, it appears interesting to use a pianoroll-like repre-
sentation where the position in the pianoroll stack indicates the vocal pitch. This
way, synthesis of a human choir could be explored. This might be taken even fur-
ther: so far, there are to the best knowledge of the author not many generative
models conditioned on multi-dimensional input with spatial information. Using a

https://students.fim.uni-passau.de/~susetzky/organ/

130 CHAPTER 7. CONCLUSION

stack-like representation like the multi-track pianoroll, also computer vision tasks
such as merging fore- and background of different images or combining portraits to
group shots where the position of the portrait in the stack indicates the position of
the person in the output image seem intuitively plausible. Overall, there is a wide
range of further challenges.

LIST OF FIGURES 131

List of Figures

3.1 Low Sampling Rate for different Frequencies 17
3.2 The Intention of the Fourier Transform 19
3.3 A Spectrogram of an Input Signal . 22
3.4 STFT and ISTFT . 25
3.5 Ambiguities of the Pianoroll Representation 27
3.6 Correspondence of Pianoroll and Spectrogram 28

4.1 Examples of Over- and Underfitting 34
4.2 Biological and Mathematical Illustration of a Neuron 47
4.3 Computational Graph of a Fully-Connected Layer 49
4.4 Sigmoid Activation Functions . 50
4.5 Computation of generator’s and discriminator’s utility in a GAN . . . 63
4.6 Computation of generator’s and discriminator’s utility in a cGAN . . 64
4.7 An Undercomplete Autoencoder . 67
4.8 A Denoising Autoencoder . 67
4.9 U-Net structured Autoencoder . 68
4.10 A 2D-Convolution Operation for one Filter 70
4.11 Illustration of 1D-Convolution . 71
4.12 Re-forming a convolutional as a fully-connected layer 72
4.13 Downsampling by Convolution . 73
4.14 Upsampling by Convolution . 74
4.15 Checkerboard Artifacts in Upconvolution 74
4.16 High-level Illustration of the orGAN -Architecture 75
4.17 A downsampling module in orGAN 76
4.18 An usampling module in orGAN . 77
4.19 The Architecture of the orGAN -Generator 79
4.20 The Architecture of the orGAN -Discriminator 81
4.21 Drawbacks of the Mean Absolute Error 83
4.22 Computation of the Structural Similarity Index (SSIM) 85
4.23 Comparison of log magnitude- and dB-Spectrograms 86
4.24 Output of the untrained orGAN Model 87

5.1 Training Progress in the L1 model versus a Vanilla GAN 90

132 LIST OF FIGURES

5.2 L1 loss over Training Time for a vanilla GAN vs its L1 Variant 91
5.3 Training Progress in GAN with MS-SSIM versus a Vanilla MS-SSIM

model . 91
5.4 Samples for Compound Loss Variants 92
5.5 Samples for different Patch Sizes . 94
5.6 Artifacts for different Patch Sizes . 96
5.7 Artifacts for different MS-SSIM weights 96
5.8 L1 loss over Training Time for PatchGAN Variants 97
5.9 MS-SSIM over Training Time for PatchGAN Variants 97
5.10 Multi-Instrument Samples before, after and without Transfer Learning100
5.11 Single-Instrument Samples before, after and without Transfer Learning101
5.12 Simultaneously versus separately faked Multi-Instrument Samples . . 102
5.13 Single-Instrument Samples for different Variants of Instrument Clas-

sifier Inclusion . 105
5.14 Multi-Instrument Samples for different Variants of Instrument Clas-

sifier Inclusion . 106

6.1 User interface of audival . 109
6.2 Metadata of Human Raters . 110
6.3 Average Human Ratings per Model 112
6.4 Average Perception across Gender . 114
6.5 Average Perception across Headphone Usage 115
6.6 Average Perception across Musical Experience 115
6.7 Average Perception across Age . 116
6.8 Average Time per Rating . 117
6.9 Human Instrument Classification of Single-Instrument Samples 119
6.10 Human Instrument Classification per Model 120
6.11 Human Instrument Classification per Instrument 121
6.12 Perceptual comparison with PerformanceNet 122
6.13 Perceptual comparison with PerformanceNet and WaveNet 122

133

List of Definitions
1 Audio Signal and Sampling . 17
2 Time-Discrete Fourier Transform . 18
4 Discrete Fourier Transform . 19
6 Short-Time Fourier Transform . 20
7 Spectrogram . 21
10 Supervised Learning Task . 31
11 Kullback-Leibler Divergence . 32
12 Optimization . 35
13 Minimum . 36
14 Gradient . 36
15 Directional Derivative . 36
18 Jacobian . 44
19 Neuron . 47
21 Fully-Connected Layer . 48
22 Neural Network . 48
23 Sigmoid Function . 50
25 Dropout Layer . 54
26 Batch Normalization Layer . 54
27 Strategic Game . 56
29 Nash Equilibrium . 56
30 Zero-sum Game . 57
31 Maxminimizer . 57
36 Generative Adversarial Network . 59
38 Jensen–Shannon Divergence . 62
40 Conditional GAN . 63
41 Auxiliary Classifier GAN . 64
42 Patch-based GAN . 65
43 Autoencoder . 66
44 Denoising Autoencoder . 67
45 Convolutional Layer . 69
46 Transposed Convolution . 73
47 Structural Similarity Index . 84
48 Multiscale Structural Similarity Index 84
49 Wasserstein Distance . 123
50 Sliced Wasserstein Distance . 123

134 LIST OF DEFINITIONS

INDEX 135

Index

2D-Convolution, 70

Accuracy, 78
Activation Function, 47

Leaky Rectified Linear Unit
(LReLU), 53

Logistic Function, 51
Rectified Linear Unit (ReLU), 52
Sigmoid Function, 50
Tangens Hyperbolicus, 51

AdaGrad, 40
Adam, 42
Area under Curve (AUC), 82
Area under the Receiver Operating

Characteristic (AUROC), 82
Audio Signal, 17
Autoencoder, 66
Auxiliary Classifier GAN (AC-GAN),

64

Back Propagation, 46
Batch, 38
Batch Normalization, 55
Batch Normalization Layer, 55
Batch Size, 38
Bias, 47

Computational Graph, 45
Conditional GAN (cGAN), 63
Convolutional Neural Network

(CNN), 53
Cross-Correlation, 70
Cross-Entropy, 33
Cross-Entropy Loss, 33

Dataset, 31
Deconvolution, 74
Denoising Autoencoder (DAE), 67
Directional Derivative, 36
directionally differentiable, 36
Discrete Fourier Transform (DFT), 19
Downsampling, 71
Dropout, 54
Dropout Layer, 54
Dropout Rate, 54
Dying ReLU Problem, 53

Early Stopping, 39
Earth Mover’s Distance, 123
Empirical Distribution, 32
Epoch, 32
Exploding Gradients Problem, 52

False Negatives, 80
False Positive Rate (FPR), 82
False Positives, 80
Fast Griffin-Lim Algorithm, 24
Filter, 69
Fourier Transform, 18
Fractionally Strided Convolution, 74
Frame, 17
Fundamental Frequency, 18

Generalization Error, 32
Generative Adversarial Network

(GAN), 59
Generative Models, 56
Global Minimum, 36
Gradient, 36

136 INDEX

Gradient Descent, 38
Griffin-Lim Algorithm (GLA), 24
Ground Truth, 31

Hann-Window, 20
Harmonics, 18
Hop Size, 20
Hyperparameter, 35
Hypothesis Space, 35

Inverse Discrete Fourier Transform
(IDFT), 23

Inverse Short-Time Fourier Transform
(ISTFT), 24

Jacobian, 44
Jensen-Shannon Divergence, 62

Kernel, 69
Kullback-Leibler Divergence, 32

Label, 31
Layer, 48

Dense Layer, 48
Fully-Connected Layer, 48
Hidden Layer, 49
Input Layer, 49
Output Layer, 49

Learning Goal, 31
Learning Process, 32
Learning Rate, 38
Local Minimum, 36
Log-Magnitude Spectrogram, 21
Logits, 80
Loss Function, 32

Machine Learning (ML), 31
Machine Learning Algorithm, 31
Macro-Accuracy, 82
Maximization, 35
Maxminimizer, 57
Mean Absolute Error (MAE), 83
Minibatch, 38
Minimization, 35
Momentum, 40

Multi-hot Vector, 34
Multiscale Structural Similarity Index

(MS-SSIM), 85

Nash Equilibrium, 56
Neighborhood, 36
Neural Network, 49
Neuron, 47
Normalization, 54

Objective Function, 35
One-hot Vector, 34
Open Set, 36
Optimization, 35
Optimum, 35
Overfitting, 35
Overtones, 18

Patch, 65
Patch-based Generative Adversarial

Network (PatchGAN), 65
Phase, 18
Pianoroll, 26
Precision, 82
Preference Relation, 56
Pure Tone Waveform, 18

Recall, 82
Receptive Field, 93
Recevier Operating Characteristic

(ROC), 82
RMSProp, 41

SAME Padding, 70
Sample, 31
Sample Rate, 17
Sampling Operator, 17
Shannon Entropy, 33
Short-Time Fourier Transform

(STFT), 20, 23
Skip Connections, 68
Sliced Wasserstein Distance (SWD),

123
Spectrogram, 21
Stochastic Gradient Descent, 39

INDEX 137

Strategic Game, 56
Structural Similarity Index (SSIM),

84
Supervised Learning Task, 31

Test Set, 32
Timbre, 18
Time-Discrete Fourier Transform, 18
Trainable Parameters, 32
Training, 32
Training Set, 32
Training Step, 38
Transposed Convolution, 73
True Negatives, 80
True Positive Rate (TPR), 82
True Positives, 80

U-Net, 68
Undercomplete Autoencoder, 66

Underfitting, 34
Units, 48
Universal Approximation Theorem,

51
University of Rochester Multi-Modal

Music Performance (URMP)
Dataset, 13

Unsupervised Learning, 31
Upconvolution, 74
Upsampling, 74

VALID Padding, 70
Validation Set, 35
Vanishing Gradients Problem, 52

Wasserstein Distance, 123
Weights, 48

Zero-sum Game, 57

138 INDEX

REFERENCES 139

References

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al. Tensorflow: A system
for large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16) (2016), pp. 265–283.

[2] Alain, G., and Bengio, Y. What regularized auto-encoders learn from the
data-generating distribution. The Journal of Machine Learning Research 15, 1
(2014), 3563–3593.

[3] Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan. arXiv
preprint arXiv:1701.07875 (2017).

[4] Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. Generalization
and equilibrium in generative adversarial nets (GANs). In Proceedings of the
34th International Conference on Machine Learning-Volume 70 (2017), JMLR.
org, pp. 224–232.

[5] Badrinarayanan, V., Kendall, A., and Cipolla, R. Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 39, 12 (2017), 2481–2495.

[6] Bengio, Y. RMSProp and equilibrated adaptive learning rates for nonconvex
optimization. CoRR abs/1502.04390 (2015).

[7] Bengio, Y., Simard, P., Frasconi, P., et al. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural networks
5, 2 (1994), 157–166.

[8] Bengio, Y., Yao, L., Alain, G., and Vincent, P. Generalized denois-
ing auto-encoders as generative models. In Advances in neural information
processing systems (2013), pp. 899–907.

[9] Burt, P., and Adelson, E. The laplacian pyramid as a compact image code.
IEEE Transactions on Communications 31, 4 (1983), 532–540.

[10] Cauchy, A. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris 25, 1847 (1847), 536–538.

140 REFERENCES

[11] Cybenko, G. Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals and Systems 2, 4 (1989), 303–314.

[12] Donahue, C., McAuley, J. J., and Puckette, M. S. Synthesizing audio
with generative adversarial networks. CoRR abs/1802.04208 (2018).

[13] Dong, H.-W., Hsiao, W.-Y., Yang, L.-C., and Yang, Y.-H. Musegan:
Multi-track sequential generative adversarial networks for symbolic music gen-
eration and accompaniment. In Thirty-Second AAAI Conference on Artificial
Intelligence (2018).

[14] Dong, H.-W., Hsiao, W.-Y., and Yang, Y.-H. Pypianoroll: Open source
python package for handling multitrack pianoroll. ISMIR Late-Breaking Demos
Session (2018).

[15] Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[16] Dumoulin, V., and Visin, F. A guide to convolution arithmetic for deep
learning. arXiv preprint arXiv:1603.07285 (2016).

[17] Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., and
Roberts, A. GANSynth: Adversarial neural audio synthesis. arXiv preprint
arXiv:1902.08710 (2019).

[18] Gauthier, J. Conditional generative adversarial nets for convolutional face
generation. Class Project for Stanford CS231N: Convolutional Neural Networks
for Visual Recognition, Winter semester 2014, 5 (2014), 2.

[19] Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT
Press, 2016.

[20] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative ad-
versarial nets. In Advances in Neural Information Processing Systems (2014),
pp. 2672–2680.

[21] Griffin, D., and Lim, J. Signal estimation from modified short-time fourier
transform. IEEE Transactions on Acoustics, Speech, and Signal Processing 32,
2 (1984), 236–243.

[22] Han, J., and Moraga, C. The influence of the sigmoid function parame-
ters on the speed of backpropagation learning. In International Workshop on
Artificial Neural Networks (1995), Springer, pp. 195–201.

REFERENCES 141

[23] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2016), pp. 770–778.

[24] Hinton, G. E., and Salakhutdinov, R. R. Reducing the dimensionality
of data with neural networks. Science 313, 5786 (2006), 504–507.

[25] Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward
networks are universal approximators. Neural networks 2, 5 (1989), 359–366.

[26] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167
(2015).

[27] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-image trans-
lation with conditional adversarial networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (2017), pp. 1125–1134.

[28] Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive grow-
ing of GANs for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196 (2017).

[29] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

[30] Kingma, D. P., and Welling, M. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013).

[31] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural informa-
tion processing systems (2012), pp. 1097–1105.

[32] LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. Efficient
backprop. In Neural networks: Tricks of the trade. Springer, 2012, pp. 9–48.

[33] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. Multilayer feed-
forward networks with a nonpolynomial activation function can approximate
any function. Neural networks 6, 6 (1993), 861–867.

[34] Li, B., Liu, X., Dinesh, K., Duan, Z., and Sharma, G. Creating a
multitrack classical music performance dataset for multimodal music analysis:
Challenges, insights, and applications. IEEE Transactions on Multimedia 21,
2 (2018), 522–535.

[35] Li, C., and Wand, M. Combining markov random fields and convolutional
neural networks for image synthesis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2016), pp. 2479–2486.

142 REFERENCES

[36] Li, C., and Wand, M. Precomputed real-time texture synthesis with marko-
vian generative adversarial networks. In European Conference on Computer
Vision (2016), Springer, pp. 702–716.

[37] Li, F.-F., Karpathy, A., and Johnson, J. Cs231n: Convolutional neural
networks for visual recognition. University Lecture (2015).

[38] Long, J., Shelhamer, E., and Darrell, T. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2015), pp. 3431–3440.

[39] Lu, X., Tsao, Y., Matsuda, S., and Hori, C. Speech enhancement based
on deep denoising autoencoder. In Interspeech (2013), pp. 436–440.

[40] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. The expressive power
of neural networks: A view from the width. In Advances in neural information
processing systems (2017), pp. 6231–6239.

[41] Maas, A. L., Hannun, A. Y., and Ng, A. Y. Rectifier nonlinearities
improve neural network acoustic models. In Proc. ICML (2013), vol. 30, p. 3.

[42] Manzelli, R., Thakkar, V., Siahkamari, A., and Kulis, B. Condition-
ing deep generative raw audio models for structured automatic music. arXiv
preprint arXiv:1806.09905 (2018).

[43] McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Bat-
tenberg, E., and Nieto, O. librosa: Audio and music signal analysis in
python. In Proceedings of the 14th Python in Science Conference (2015), vol. 8.

[44] Mirza, M., and Osindero, S. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784 (2014).

[45] Müller, M. Fundamentals of music processing: Audio, analysis, algorithms,
applications. Springer, 2015.

[46] Nair, V., and Hinton, G. E. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th International Conference on Ma-
chine Learning (ICML-10) (2010), pp. 807–814.

[47] Neumann, J. v. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen
100, 1 (1928), 295–320.

[48] Odena, A., Dumoulin, V., and Olah, C. Deconvolution and checkerboard
artifacts. Distill 1, 10 (2016), e3.

[49] Odena, A., Olah, C., and Shlens, J. Conditional image synthesis with
auxiliary classifier GANs. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70 (2017), JMLR. org, pp. 2642–2651.

REFERENCES 143

[50] Oliehoek, F. A., Savani, R., Gallego, J., van der Pol, E., and Groß,
R. Beyond local nash equilibria for adversarial networks. In Benelux Conference
on Artificial Intelligence (2018), Springer, pp. 73–89.

[51] Oliehoek, F. A., Savani, R., Gallego-Posada, J., Van der Pol, E.,
De Jong, E. D., and Groß, R. Gangs: Generative adversarial network
games. arXiv preprint arXiv:1712.00679 (2017).

[52] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O.,
Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K.
Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
(2016).

[53] Osborne, M. J., and Rubinstein, A. A course in game theory. MIT press,
1994.

[54] Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros,
A. A. Context encoders: Feature learning by inpainting. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2016),
pp. 2536–2544.

[55] Pedamonti, D. Comparison of non-linear activation functions for deep neural
networks on mnist classification task. arXiv preprint arXiv:1804.02763 (2018).

[56] Perraudin, N., Balazs, P., and Søndergaard, P. L. A fast Griffin-Lim
algorithm. In 2013 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (2013), IEEE, pp. 1–4.

[57] Polyak, B. T. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics 4, 5
(1964), 1–17.

[58] Rabin, J., Peyré, G., Delon, J., and Bernot, M. Wasserstein barycenter
and its application to texture mixing. In International Conference on Scale
Space and Variational Methods in Computer Vision (2011), Springer, pp. 435–
446.

[59] Radford, A., Metz, L., and Chintala, S. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[60] Raffel, C. Learning-based methods for comparing sequences, with applications
to audio-to-midi alignment and matching. PhD thesis, Columbia University,
2016.

144 REFERENCES

[61] Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional net-
works for biomedical image segmentation. In International Conference on Med-
ical Image Computing and Computer-assisted Intervention (2015), Springer,
pp. 234–241.

[62] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning repre-
sentations by back-propagating errors. nature 323, 6088 (1986), 533–536.

[63] Sauer, T. Lecture notes in Einführung in die Signal- und Bildverarbeitung.
In lecture, Summer term 2018. Faculty of Computer Science and Mathematics,
University of Passau.

[64] Sauer, T. Lecture notes in Learning Theory. In lecture, October 2019. Faculty
of Computer Science and Mathematics, University of Passau.

[65] Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A unified
embedding for face recognition and clustering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2015), pp. 815–823.

[66] Selesnick, I. W. Short-time fourier transform and its inverse. Signal 10, 1
(2009), 2.

[67] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[68] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2015), pp. 1–9.

[69] Tieleman, T., and Hinton, G. Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural networks
for machine learning 4, 2 (2012), 26–31.

[70] Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. Ex-
tracting and composing robust features with denoising autoencoders. In Pro-
ceedings of the 25th International Conference on Machine Learning (2008),
pp. 1096–1103.

[71] Walker, J. S., and Don, G. W. Mathematics and music: Composition,
perception, and performance. Chapman and Hall/CRC, 2013.

[72] Wang, B., and Yang, Y.-H. PerformanceNet: Score-to-audio music gen-
eration with multi-band convolutional residual network. In Proceedings of the
AAAI Conference on Artificial Intelligence (2019), vol. 33, pp. 1174–1181.

REFERENCES 145

[73] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. Image
quality assessment: from error visibility to structural similarity. IEEE Trans-
actions on Image Processing 13, 4 (2004), 600–612.

[74] Wang, Z., Simoncelli, E. P., and Bovik, A. C. Multiscale structural simi-
larity for image quality assessment. In The Thrity-Seventh Asilomar Conference
on Signals, Systems & Computers, 2003 (2003), vol. 2, Ieee, pp. 1398–1402.

[75] Weisstein, E. W. Sigmoid function.

[76] Wiesler, S., Richard, A., Schlüter, R., and Ney, H. Mean-normalized
stochastic gradient for large-scale deep learning. In 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014),
IEEE, pp. 180–184.

[77] Wilson, D. R., and Martinez, T. R. The general inefficiency of batch
training for gradient descent learning. Neural networks 16, 10 (2003), 1429–
1451.

146 REFERENCES

	Introduction
	Related Work
	Dataset, Pre- and Post-Processing
	The URMP-Dataset and its Preparation
	Audio Processing with the Short-Time Fourier Transform
	Back-Conversion of Spectrograms to Waves
	Pianoroll Generation

	Method
	Machine Learning Tasks
	The Learning Process
	Optimization
	Descent Algorithms
	Backpropagation

	Neural Networks
	Neurons
	Activation Functions
	Dropout and Batch Normalization

	Generative Adversarial Networks
	Autoencoder Architectures
	Up- and Downsampling through Convolution
	The orGAN-Architecture

	Experiments
	Loss Composition
	Varying Patch Size
	Transfer Learning for Multi-Instrument Play
	Including an Instrument Classifier

	Evaluation
	Human Perception
	Internal Comparison

	Conclusion
	List of Figures
	List of Definitions
	Index
	References
	Eidesstattliche Erklärung

