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Abstract

Deep neural networks have reshaped the image segmentation process by using multi-layer
network architectures. Deep learning for computer vision surmounts many other techniques
in this field.

Image segmentation is a one-of-a-kind computer vision task that discerns patterns and dis-
tinct features related to the shape of the object. This aspect is very essential in many domains
where other computer vision tasks prove enigmatic.

On the other hand, segmentation tasks are formidable as it requires sufficient amounts of
data for the process. Availability of quality data is seldom and requires a vast amount of
resources. Annotation is one of the salient steps involved in image segmentation. The process
demands human intervention and expert knowledge to segment correctly. The time required
should also be scrutinized.

A potent approach to minimise these effects is sparse annotation. This approach should
be handled in such a way that there should not be any compromise in the resulting dense
segmentation.

In this work, a Deep neural network architecture 3D U-Net is used to train effectively on
sparse annotations. This model is designed in such a way that it can predict volumetric
segmentation. At the outset of this thesis, a sparse annotation strategy is developed to train
the model. The dataset used in this thesis is a 3D scan of the hardware tool “Spring”. The
model calls for special data augmentation techniques to extract elicit information. A method
called “data-augmentation-on-the-fly” is performed to reduce the computational power and
it also facilitates the model to learn on sparse labels.

Contributions are made at the architectural level to customize the model according to the
problem statement at hand. The skip-connections, upsampling layers operations of the archi-
tecture are responsible for high resolution and dense segmentation results.

Also, to instigate uniform learning a loss function is specially defined to work well with the
dataset used in this work. Experiences and evidence are measured using metrics such as IoU,
Dice ratio, and soft dice loss that shows great generalizability by the model.

Ultimately, an end-to-end architecture model is built that produces commendable dense
segmentation using an effective method of sparse annotation.

iii



Acknowledgments

I would like to express my sincere gratitude to my thesis supervisor Prof. Dr. Tomas Sauer,
Chair of Digital Image Processing at the University of Passau, for giving me the opportunity,
to carry out my thesis and introducing me to the topic. I would like to thank him for providing
me guidance throughout this journey and giving me valuable insights.

I would like to thank the second examiner Prof. Dr. Michael Granitzer, Chair of Data Science
at the University of Passau for providing me with valuable feedback.

I would like to acknowledge Mr. Thomas Lang, Scientific Assistant Forwiss Univerity of
Passau, for providing constant support, for all the interactive discussions, and for reviewing
the thesis that helped me a great deal.

I would like to extend my love and gratitude towards my parents Mr. Suresh Aithal and Mrs.
Sujatha Aithal for encouraging me as always to pursue my interests and for being the guiding
light. I would like to thank my younger brother Mr. Sudhanva Aithal for all the love and
care that helped me get through this expedition.

I sincerely thank my grandparents and close family members for all the support, blessings,
and immense hope that kept me going.

A heartfelt thanks to all my cousins for keeping me sane during this pandemic.

I would like to thank my best of friends for their support in making it happen. Also, I like to
thank my friends here in Passau, for all the motivation and support.

To my loved ones who have showered me with courage, constant validation, and assistance.
Thank you.

I am humbled by the blessings of the Almighty which helped me strive ahead amidst troubles.

I believe in the universe evoking my manifestation to complete my Master thesis successfully.

iv



List of Figures

2.1 Computer Vision Workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Comparison of performance of deep learning with other learning algorithms

[Dat]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Basic CNN Architecture [Wan+17]. . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Overview of computer vision tasks. . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Representation of Object detection and Segmentation, respectively [sha]. . . . 11
2.6 Semantic and instance segmentation [sha]. . . . . . . . . . . . . . . . . . . . . 11
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1 Introduction

Deep neural networks are good at performing various computer vision tasks. This was fol-
lowed by fully convolutional neural networks which were designed in such a way that they
provided state-of-the-art results for Object detection, recognition, and especially semantic
segmentation. These FCNs are complex structures with numerous training parameters But
the training of these networks requires a large dataset with manual labels.

Segmentation is a process of separating the pixels belonging to different classes or to distin-
guish between foreground and background [Fle]. For example, in biomedical image processing,
it might be the masks that define whether the tumor is healthy or cancerous [Bok+18], or in
a scene where there are people, trees, etc, segmentation offers a way to identify which pixels
belong to which class. Segmentation is very useful for these purposes as other processes such
as classification or object recognition may classify where the object is but is not successful
in predicting where exactly the corresponding pixels are in the scene. It is also important in
biomedical applications where the shape of the tumor helps in the diagnosis, which the object
recognition can not perform as it identifies where the tumor is and not the shape [Fle].

Image segmentation is a result of a set of segments that together form an image. It is used
in different tasks such as object localization, detection for object recognition, Bio-medical
imaging, satellite imagery, etc. The crux lies in the assignment of the right pixels to a certain
label by learning from similarities pixels, texture, intensity, distance.

Segmentation is a supervised learning process as it involves extensive manual annotation.
Supervised machine learning is a process that is designed to learn by the teachings of a
supervisor, follow certain instructions [Wil]. In the training, the model learns from the input
labels and will try to correlate the patterns, match, and give the expected output [Wil]. The
performance is determined by how well the learned model predicts an unseen dataset.

Coming back to the requirement of large datasets, the availability of huge annotated datasets
is seldom available. Data is growing day by day, but the labeled data is still in short supply.
There is a massive paucity of manual labels due to various reasons such as, the process is
tedious, shortage of experts in certain domains, etc.

As manual annotation is a labor-intensive process, any method to reduce the effort is appre-
ciable. This is where sparse annotation comes into picture. This process not only reduces the
effort of the user but also saves time as it is a very repetitive process. It allows the user to
concentrate only on a certain part of the image which is more important. It allows a quick
annotation when the dataset is huge and helps in under-represented parts [Bok+18]. It also
does not make sense to annotate all the neighboring slices as they contain similar information
[RFB15].

Pretrained models exist with a good amount of training experience. However, finetuning of
the network according to the needs may result in overfitting in some cases. This also requires

1



1.1 Motivation 2

enough samples, labels from the dataset in hand, for the network to train though the model is
acquainted with some similar feature. When dealing with sparse data regimes, such transfer
learning approaches often fail [Guh+18].

Semantic segmentation consists of a dense segmentation map, this must be unaffected when
sparse annotation is performed. This constantly necessitates the purpose of the U-Net model
that will be explored in this study. The U-Net was developed for biomedical image segmen-
tation at the computer science department of Freiburg 1. It is a fully connected layer capable
of providing dense segmentations with sparsely annotated data samples [RFB15]. The im-
portant factor that allows this feature is the preservation of the spatial resolutions by the two
paths i.e., contracting and synthesis path [RFB15].

Determination of the pixel’s presence according to its label for any other dataset requires
customization of the model accordingly as segmentation is one of the non-trivial tasks of com-
puter vision which requires both localization and classification. U-Net was built for biomedical
image segmentation, but this study is basically to explore whether this architecture is suited
for segmentation in other domains. Also, Sparse annotation of the samples is considered to
verify the prediction of dense segmentation.

1.1 Motivation

Segmentation in general is a difficult process as it requires more data to train compared
to other computer vision tasks. The model requires supervision in the form of annotated
datasets. The annotation further requires expertise, and it is also a time-consuming process.
To annotate, knowledge about the dataset and the skill level required is high. Acquisition of
data on the other hand is expensive as well. This creates a situation to identify a smarter way
to train the model and consume fewer data without hindering the performance. Motivation
is derived from the known fact that the segmentation task requires a lot of supervision as
compared to other tasks of computer vision and is very sensitive to both quality and quantity
of annotations [Taj+20].

Annotation of 3D samples may seem monotonous sometimes due to its repetitive nature.
In this work, the intention is to reduce the effort of manual annotation, save resources and
time. A strategy is defined to use the available samples efficiently. This work involves using
the available resources to their full potential. Sparse annotations have proved to reproduce
dense segmentation for 3D volumetric data [Çiç+16]. Sparse annotation defines a process
that conveys information of the image through fewer data points. With regards to the 3D
data, it provides chunks of data through a small number of slices.

Over the years deep learning has heavily influenced computer vision tasks and has been
successful in providing models which are capable of handling sparse annotations. The method
of sparse annotation provides a gateway to reduce the manual burden. The aim is to eliminate
the lack of abundant data. Data augmentation techniques to enhance the sparsely annotated
labels are performed, which aids the model to generalize well.

Research related to a fully connected network shows limitations in producing high-quality
output for 3D volume data in the field of biomedical imaging. To build a fully convolutional

1https://lmb.informatik.uni-freiburg.de/resources/opensource/unet.en.html

https://lmb.informatik.uni-freiburg.de/resources/opensource/unet.en.html


1.2 Objective 3

neural network with sufficient layers to provide a high-resolution output is also in the scope.
The model built, is inspired by 3D U-Net which supports deep layering and provides high
performance with sparse labels.

Many annotation tools support 3D volumetric renderings but limit the view as only 2D slices
can be displayed on a computer screen. This provides an additional boost to practice sparse
annotation techniques wherever possible for better usability.

This study also explores the usage of these annotation techniques and models in a rather
different environment other than bio-medical imaging to reproduce its performance. It drives
an initiative to experiment with this setting for other 3D datasets and note observations.
Inspiration from sparse annotations gives hope to prove the fact that less is more.

1.2 Objective

This thesis describes a novel approach to get dense segmentation using sparse labels. A deep
learning model with the ability to provide full volumetric segmentation with a limited amount
of labelled data is explored.

The goal is to remove unwanted information from the acquired data, identify the region of
interest, segment the object out of its noisy environment. For this, tools such as 3D slicer are
used. Manual sparse annotation is performed on the 3D volumetric data.

The data is then fed to a deep learning model, along with sparse labels. The performance is
measured through metrics to helps us understand the effectiveness of the sparse annotation.

The aim is to leverage a model to its full potential to produce full segmented volumetric 3D
data using sparse labels.

1.3 Research Questions

A Volumetric convolutional neural network is analyzed in this thesis and it is customized
according to the problem statement at hand. In any research work, the first step is to
understand the problem, next will be pre-processing the data, then designing the model, etc.
These phases of work require strategies for them to turn into meaningful results. Some of
them arise questions and those are discussed in this section.

• Can 3D U-Net be adapted for other applications as stated?

• Can the model train on sparse annotations?

• How does loss function be specially designed to allow sparse annotation to work?

• What is the effect of the amount of sparse data on the result?

• Can the model provide comparable results on this new kind of dataset?

• Can this proposed method overcome the bottlenecks of the previous architectures?

These questions will be explored extensively, with a lot of experimentation, and comparisons
and conclusions will be drawn.
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1.4 Challenges

Semantic segmentation is a computer vision task that has rapidly developed in recent years.
This work deals with a semantic segmentation problem using the 3D U-Net model. U-Net
is known for producing good results with sparsely labelled data. Understanding the problem
statement and trying to find tools and methods to solve the problem should be carefully
curated.

There are many problem statements where the 3D U-Net fits in perfectly, for example in
cancer tumour detection, satellite imagery, and other bio-medical research. There are no
explicit examples other than the ones in [Çiç+16] which describes the sparse-based strategy
in detail for a bio-medical example. The available ones cannot be easily adapted to the
dataset which this work handles, and also it depends on the input data at stake. So, a sparse
annotation strategy needs to be planned that is best suited for this dataset.

Class imbalance is one of the major issues in the field of deep learning. This work also deals
with the counter effects of data imbalance. This high class imbalance and it must be managed
in addition to the sparsity in the data.

The dataset that this work deals with is a mechanical spring that is embedded into a piece of
hardware along with other parts. To manually segment the object out of the noisy environ-
ment 3D slicer tool need to be used. Identifying the region of interest in all the samples and
conclusively arriving at a satisfactory region, avoiding all the unnecessary artifacts requires
research into the functions of the tool as they are mostly related to biomedical imaging.

Precise localization of the pixels that belong to the region of interest must be carried out as
they are not based on a single portion of the image. Also, even though the labelled data is
sparse, attention should be given to which slices to be annotated as repeating patterns may
lead to overfitting the model.

The dataset involves, understanding the patterns which require studying the CT scan in
depth. Usage of the data in hand must be carefully considered as it is limited and suitable
data augmentation techniques must be performed to extract most of the information.

Finetuning an existing deep learning model to match different needs requires a lot of effort
as the first research goes into understanding the model, and then applying a dataset to the
model. Building a custom model to suit the problem statement is necessary.

Adaptation of 3D U-Net in this genre of dataset lacks to the best of my knowledge. This
is a challenge as well as a very interesting quest to dive into and find solutions. Evaluating
the model built in this work will be challenging as there are no adaptions on U-Net for the
dataset in this context. It is interesting to see U-Net’s efficacy on this new kind of labelled
dataset.

The optimal result would be expected to be satisfactory, and hope the labelled dataset would
provide justice to the model regardless of its shape, size, and orientation.
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1.5 Structure of the Thesis

This thesis comprises six chapters in total. The structure is as discussed below. The cur-
rent chapter is introductory and consists of motivation, objective, research questions, and
challenges.

Chapter 2 describes the theory behind all the fundamental concepts that are required in
this work. It starts with an introduction to computer vision and deep learning and dives
into basic components that are used to build the Convolutional neural network. The basic
U-Net architecture which inspired this work is introduced along with its parameters. Sparse
annotation is explained in detail. It also includes related work that is important with respect
to this particular thesis. It explains the existing methods in detail as a start to the exploration.

Chapter 3,this chapter consists of the pipeline of the model. Each of the stages is described in
depth. The stages include data preparation, data pre-processing, manual annotation process
where the sparse annotation strategy is described. The data augmentation techniques used
to aid the network to generalize well are depicted. The training procedure is clearly expressed
with all the values of learnable parameters. The optimizer that is used in the approach is
also stated.

In Chapter 4 all the experimentations that are conducted in this thesis are described with
clarity. The performance metrics that are used to evaluate the model are presented along with
their functionality. The loss function that encourages learning on sparse labels is described.
The hardware and software tools that are used to produce this work is also presented in this
chapter. The libraries used along with their uses in the work are mentioned.

Chapter 5 this chapter consists of all the justifications in the form of results. It consists of
loss, accuracy plots, the prediction for the experiments carried out. It contains the scores of
all the performance metrics in detail. The results are discussed for their actions in the exper-
iments. The answers to the research questions are sought through the emerging solutions.

In the conclusion, the overall view of the thesis, along with the methods used, results obtained
are summarised. Discussion regarding future developments are made.



2 Theoretical Background

In this section fundamentals of computer vision and its tasks, Deep neural networks, Basic
CNN architecture, Deep learning techniques are introduced. Later on, the original 3D U-Net
model is discussed along with its elements.

2.1 Computer Vision

Understanding human vision is complex in nature, it is also developed by mutation over the
years. Fast forward to today machines have adapted that visual ability as well. A little
flashback to when photography first started, it used light-capturing techniques to exactly
mimic human vision. Later it was discovered that analysing the captured image is the hard
part. That is where the algorithms come into the picture, for example, a simple image of
a flower is so easily perceptible by the human but is a bunch of matrices for a computer.
Computer vision as a field helps machines to understand the real-world scene through various
algorithms. Algorithms are built based on how the brain operates. Due to advancements
in technology, computers can understand certain aspects that are complicated for humans.
There are still areas that need improvement as sometimes machines may not be as accurate
as expected.

The problem that makes computer vision so challenging is that there is so much creativity,
but generalization seems formidable. There is no firm hold on human vision in the first place
and more exploration should be done on the human brain. Additional complexity is added
by the visual world itself because of varying surrounding conditions.

The tasks involved in a computer vision process, in general, are image acquisition, processing,
evaluation of high dimensional data into meaningful interpretations. Image processing is a
field that explores only simplifying or enhancing the existing images. It might help in noise
reduction, cropping, and some image pre-processing techniques which may serve as input
to the computer vision process. Figure 2.1 illustrates the basic diagram to understand the
workflow of computer vision.

Image
acquisition CV TasksFeature

extractionPre-processing High-Level 
processing

Application

Figure 2.1: Computer Vision Workflow.

6
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2.2 Deep learning

To overcome the challenges, deep learning for computer vision can be used it helps to achieve
state-of-the-art results.

Deep learning is a fundamental concept behind computer vision and its potential. It has
transfigured the concept of computer vision.

It is a broader part of machine learning which includes layers of self-learning and intelligent
decision making. These layers form an artificial neural network and include different types of
learning such as supervised learning, semi-supervised learning, unsupervised learning. These
neural networks take inspiration from connecting biological nodes. The word “deep” refers
to all the layers of neural network. In this work, a deep learning model is trained on a basis
of supervised learning. The performance comparison of deep learning with other learning
algorithms is demonstrated in Figure 2.2.

Deep learning 
Algorithms

Traditional Machine
 leaning algorithms

Data

Pe
rf

or
m

an
ce

Figure 2.2: Comparison of performance of deep learning with other learning algorithms [Dat].

With the huge data that is available in the world, there are large neural networks that can
be trained on. Deep learning provides scalability, and the performance increases directly with
the increasing data in contrast to machine learning techniques that reach a constant behavior
state.

Each of the deep learning layers can learn and enhance the input data with a bit more
symbolic representation. Deep learning is popular these days due to its high level of accuracy
when trained with a large amount of data. Machine learning algorithms have variety, but
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they require a lot of human assistance. In contrast, deep learning algorithms try to extract
high-level features through deep layering. They are more likely to solve the problem using
fully connected layers.

2.2.1 Deep neural networks

The most common and popular layered deep learning architecture is the Convolutional neural
network (CNN). It offers biological vision similar to human vision [Lin20]. Yann leCun, a
postdoctoral computer science researcher was responsible for introducing CNN to the world.

The layers of the CNNs contain artificial neurons which is an imitation of the biological
equivalent, calculates the weighted sum of the inputs and provides an activation value as
output [LB+95]. The observations from Figure 2.3, show that the CNN has several other
components such as pooling layers. A classic CNN contains a convolution layer, followed by
activation operations, pooling layers, and a fully connected layer in the end, that completes
the network architecture.

Classifier

Full connectionPoolingConvolutionsPoolingConvolutions

Image

Figure 2.3: Basic CNN Architecture [Wan+17].

CNN employs the method of breaking the image down into multiple filters smaller in size.
The filter is a combination of pixels on which the network performs multiplication by the
weights provided and finds a pattern that the network is looking for. The name “convolu-
tion” is derived by multiplication function and a weighted sum that is performed after the
multiplication. The filter is also known as the kernel which acts as a slider and performs the
element-wise multiplication. The weighted sum is an individual number that is cast into a
feature map [Cha]. The portion of the filter that moves along the input image is referred to
as strides. They are symmetrical in nature and can be changed according to the example
[brob].

Bigger parts of the images are learned through the subsequent layers. Usually, in the initial
stages, the model tries to learn rough edges, small details of the given input image. The
convolved features of the first layers activate or promote learning of the high-level features.

As the number of convolutions increases model will learn more features specific to the image
and tries to learn by the help of combined features learnt in the previous layers [Cha]. Deeper
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the layer higher the level of features learned. Generation of activation maps takes place in
every layer of the CNN. These are the visual outputs that portray the most relevant features
of the input [Dic]. Effective convolutional layers provide deep layers to understand low-level
features. These convolutional layers should record the precise position as small variations may
alter the feature maps. This is handled by pooling in the subsequent layers [broc]. Pooling
layers summarizes the features by using a downsampling approach which depicts the presence
of the input image. This is done with the help of strides [broc].

The fully connected layer is a very important part that binds all the elements from the
previous layers and drives the final decision making. These are different from the fully con-
nected neural networks which are models comprising fully connected neuron nodes. Lastly,
the classifier provides us with the class labels.

2.2.2 Tasks of a deep neural network

The basic tasks that can be performed using a deep neural network are Classification, object
detection, and segmentation.

2.2.2.1 Classification

Classification is considered as a basic job in machine learning that separates given data into a
class suitable according to the likelihood or probability. It is a sub-part of supervised learning
which will predict a label using pre-categorized data. For example, consider a data set that
contains images of cats and dogs, this will be labelled forehand so that the classifier will
understand the features of both and predict any one of the class. This is a simple example of
a binary classification problem.

Mainly there are two types of classification, supervised and unsupervised classification. In
supervised classification the user is bound to provide a set of labels to the model. These labels
corresponds to the class of each individual image. The model tries to identify the images based
on the features learnt from the manual labels. On the other hand, unsupervised classification
does not require any labels to train the model. It tries to form clusters by observing the
characteristics ingrained in the image.

There are two phases in the classification process, first phase refers to the training phase
that configures the classifier to create meaningful correct labels as outputs. It tries to find a
similar pattern from the provided labelled data. The second phase is known as testing and
it deals with the unseen data, it means that the data provided is new and the model has not
been trained on them.

There are many metrics to evaluate a classification problem, such as precision, recall, F-
measure, accuracy, etc.

2.2.2.2 Object detection

Consider a situation where there are both dogs and cats in a particular image. This situation
requires a piece of additional information about the given input i.e., the location of the
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dog and cat. Object detection can provide location information or the presence of multiple
objects. It is a more challenging job where it first identifies the location of the object, draws
a bounding box over it and the belonging class. Sometimes, this method is also referred
to as object recognition. The Object localization technique determines the location of the
particular object present in a given image. No further classification is done on the identified
objects, bounding boxes of the objects is given as result. Figure 2.4 illustrates the overview
of tasks a deep learning model can handle. These are the basic computer vision tasks.

Object Recognition

Object 
DetectionImage Classification

Object Localization

Object Segmentation

Figure 2.4: Overview of computer vision tasks.

2.2.2.3 Object Segmentation

Further extension of computer vision tasks leads us to object segmentation. Consider a
problem where the shape of the image is required to do exploratory analysis. Classification
and object detection will not be able to identify the shape of the object. For example, in
the case of identifying cancer, detection needs to be done based on the tumour samples from
patients, it is very hard to classify as most of the time it might not be precise. This requires
the information that the underlying pixels contain. The distinction between the background
and foreground pixels gives us the exact shape of the object that makes the process more
correct.

Being a supervised learning process, segmentation is a labour extensive process as it involves
manual annotation. It is designed to correlate patterns and learn the given labelled inputs.
The performance is determined by how well the learned model predicts on an unseen dataset.

A visual representation of how segmentation is different from detection is demonstrated in
Figure 2.5.

The one in the left with the bounding boxes is object detection and the one in the right
is the process of object segmentation. Segmentation creates a pixel-wise mask of the object
and gives us ample amount of information regarding which pixels belong to which object in a
picture that contains multiple individual objects. This granular understanding of the object
is necessary for the field of biomedical imaging, satellite imagery, self-driving cars, etc.
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Object Detection Instance  Segmentation

Figure 2.5: Representation of Object detection and Segmentation, respectively [sha].

There are two main categories of image segmentation, when Figure 2.6 is considered, ob-
servation can be made that the two images employ the method of creating pixel-wise masks.
In the left image, the masks are created based on background and foreground information.
Pixels that belong to the same class are masked together. This is an example of semantic
segmentation. But, in the right image, every instance is masked differently, meaning even
though there are only people in the image, each individual is considered as one instance and
hence the name instance segmentation.

Figure 2.6: Semantic and instance segmentation [sha].

In this work a classic case of semantic segmentation is considered. As mentioned earlier
segmentation is a supervised task that needs expert labelling techniques for the model to
learn from. The annotation process is very time-consuming and especially hard in the case
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where the masks must be perfect to attain the needs of a segmentation model.

2.2.3 Basic U-Net architecture

In this section, a brief idea about what U-Net comprises is described. U-Net is one of the
popular encoder-decoder models for image segmentation. It is considered better than CNNs
as it provides localization along with pixel classification.

Consider an example of 3D U-Net as shown in Figure 2.7. Observation can be made that
it is a symmetrical architecture with equal computational blocks on both sides. The first
half is called an analysis path/contraction path which has traditional 3× 3× 3 convolutions
and max-pooling layers along with batch normalization. This is used before the activation
function ReLU in each layer.

3      32      64

64        128

128             256 256 + 512

256

256

128128 + 256

64 + 128 6464 3

Figure 2.7: Original Basic U-Net architecture [Çiç+16].

To compensate and to keep the architecture synchronous with the analysis path, in the
synthesis or the expansion path, upsampling layers are used.

The feature map from the analysis path is concatenated with the synthesis path through skip
connections. The dimensions of the feature maps should match to concatenate them. This
operation is done at every level.

This creates a pathway to the feature from the analysis part of the network to the expansion
path. This ensures that high resolution is preserved at the output layer. The output layer
has a simple convolution block with the number labels as output classes.
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One other advantage of this architecture is that it aims to restore the input image to the full
dimension through these operations.

The U-Net has the ability to train on sparse annotations because of the weighted softmax
cross-entropy loss. The usage of batch normalization, and ReLU help in faster convergence.
Along with this, a strong data augmentation can result in good segmentation results.

2.2.4 Convolution

It is a well-organized function, which merges two functions. It acts as a filter that moves over
the image and brings out information in the form of features. It creates a reduction in the
data space but has the ability to retain information.

Figure 2.8: Convolution operation [ban].

They connect the neurons and the adjacent layers through local patterns by exploiting the
spatially-local correlation [ban]. It intuitively produces feature maps for the upcoming layers
by sliding window concept, where the filter with learnable weights glides over the input and
produces weighted sum which acts as the feature maps [ban]. The region that the filter
concentrates is called the receptive field which extracts the context information [Lam].

Figure 2.8 demonstrates an example of a 3D convolution block. In this work, 3D convolution
is used. The 3D convolutions contain filters that move in all three dimensions which produce
cubical or cuboidal features, i.e., 3-dimensional volume as output.

2.2.5 Transposed Convolution

A technique that performs the convolution operation in a backward direction. It is used
to convert low-resolution images into high-resolution images. This involves an upsampling
process with the help of learnable parameters. In the Figure 2.9 the process is described,
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here the function is trying to increase the size of the image by taking on an element, i.e.,
upsampling small values to larger matrix values [Nao].

Figure 2.9: Transposed convolution operation [Nao].

The top highlight here is there exists connectivity between the input and output samples,
hence there is a way that it can be traced back and the dimensions can be restored in the
upsampling layer.

2.2.6 Dropout

It is a regularization method that helps curb overfitting. It randomly drops nodes from the
network, which changes the structure of the architecture every time. By dropping out nodes
the connections of the node also drop, this helps the network to update the weights of other
units which in turn makes the model robust [broa]. It counterfeits a sparse representation,
which motivates the model to learn them. This proves beneficial for some autoencoder models
and encourages sparse representations [broa]. Dropout is used in all the layers of the net-
work during training. It is more suitable for wide or larger networks as it sometimes causes
thinning. It provides more reduction in generalization error when there is a small dataset at
hand [broa]. The crippled nodes learn independently, hence reducing the dependency in the
network. Figure 2.10 illustrates the dropout action.

2.2.7 Class imbalance

Class imbalance is a very familiar and common hitch when it comes to any computer vision
task. This happens when one class overpower the other classes and the distribution gets highly
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Figure 2.10: Dropout Operation [Mak].

imbalanced. Sometimes, when it comes to semantic segmentation the background information
will be more in number than the foreground. This highly affects the performance, as the model
tends to learn the majority class.

Some of the ways to overcome this issue are using strong data augmentation techniques, to
randomly translate the data into new variants of its own. This is a data-level technique that
can be applied to reduce the level of class imbalance in a way.

Another strategy would be to adapt a cost-sensitive learning. This may be implemented as
a weighted loss function, which will penalize false negatives more than false positives. In this
way, the weights will be useful, as the unwanted samples are not represented.

Accuracy is not a good measure for class imbalance problems as it favors the dominant class.
By doing this, the accuracy value might be high, but the results will not be informative. Some
of the metrics such as IoU, Dice which are more robust against class imbalance can be used.

These loss functions and metrics will be discussed in chapter 5.

2.2.8 Annotation

Annotation is a process of labelling in which the computer vision tasks require learning the
features of a given input image. Adding this metadata helps the model to recognize patterns
and decide the outcome [fac]. This method is also called tagging, labelling, etc. It provides
a path for model training. The annotation may vary from labelling, manual segmentation,
marking depending on the situation. 3D segmentation especially in the field of medical image
segmentation is difficult and requires a lot of expertise as details are very important and it
gives analysis for disease diagnosis [Zha+19].
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2.2.9 Sparse Annotation

Annotation of huge datasets is very expensive and time-consuming. It is also hard to find
fully annotated data sets [Zha+19], for 3D image segmentation problems. It requires a lot
of manpower and skill. To eliminate this, a technique called sparse annotation is introduced.
A few annotated slices will be good enough to feed to the segmentation model. Sparse
annotation is practical, time-saving, and efficient. It is generally not necessary to annotate
all the slices as they are adjacent to each other and neighbouring slices do contain similar
information. Sparse annotation eliminates redundancy, also it makes sure that important
features are taken into consideration. By doing this the model can learn the same patterns
as it would have with fully annotated data.

Usually, there is a high requirement of data for learning-based approaches, fully annotated
data sets are not the solution. This type of annotation will provide a better set of data
for the model to generalize well. It is a practical way to annotate a particular dataset. In
applications dealing with image data, there will be repetitive structures in the slices that will
not add any additional information to the labelled data [Çiç+16]. Some data sets are hard
to get, especially in the case of 3D volume data, this can be tackled using sparse annotation.

Due to the advancement in the technology, there is now sufficient research in the field
that provides a model to produce dense volume information using these sparse annotations.
Transfer learning is an effective and faster way of making the model learn similar patterns,
this is definitely true in the case of 2D image segmentation problems, but it is hard to deal
this way in the case of 3D data. Effective training of the model is possible with the limited
number of resources, alleviating the burden of manual annotation. Lack of dense labelling
requirement by an expert is eliminated. Limitation of data sets can be due to scarce data
or weak annotations, if the problem statement in hand allows then this can be eliminated
through sparse annotations [Taj+20].

In some situations, it might be overfitting when more of the data goes into the model,
constraining the model of its learning and hindering the performance of the model. It is
sometimes unnecessary to use much of the computational power to train the data when the
model can work with less.

These factors lead to the consideration of sparse annotation strategy, along with the inspi-
ration discussed in the earlier sections.

2.3 State of the art

In the early days of the neural network era, basic structures mimicking the human brain
were adapted to solve machine learning problems. Traditional approaches for semantic seg-
mentation were dependant on feature engineering. Over the years the neural network has
evolved through experience and now can learn features automatically. Complex problems can
be converged using the introduction of CNN. It was first introduced to process array data,
later extended to work for 2D, 3D images, and videos in [LB+95]. The inspiration came from
the simple cell structure of animal’s visual and neural systems for the authors in [HW62].
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A typical CNN contains filters, which convolve over the image patches, and produces feature
maps for the further steps. A typical convolutional neural network architecture was intro-
duced, and it worked well for images, as high correlated patches are captured using specified
filters, and these local features are scanned irrespective of their location in the image to create
feature maps for the entire image [SM18].

During the famous Image net challenge, CNN had half the error rate compared to other
models [KSH12]. For many image classification and segmentation methods, this is considered
as the state of the art. It can be categorized into two tasks namely, supervised learning and
unsupervised learning. Supervised learning is a task that requires some attention from the
user, to provide label information. Unsupervised learning no there is no ground truth label
for the input data. This work follows a supervised learning approach.

One other alternative for CNN is Fully connected neural networks, these are one step ahead
of CNN and can be distinguished by their layer design. FCNs have a modified architecture
as the end layers of CNN are converted into convolutional layers which allow the input and
output dimensions to be the same [LSD15]. FCNs provide an end-to-end classification and
segmentation model by adding more deeper layers and loss for the spatial coefficients [LSD15].
FCNs can accept different size input data, it can also hold the spatial information intact.
These are major factors in image localization. These qualities of FCN make it a great standard
for image segmentation.

Many architectures such as dilated convolutions introduced [YK15] were able to maintain
high-resolution outputs. These methods are widely popular for 2D image segmentation prob-
lems. 3D image segmentation requires deeper networks, more memory requirements, which
keep the resolution intact and the needs vary from 2D image segmentation.

Recent studies show significant performance breakthroughs in 3D image segmentation. Some
attempts have been made by applying these 3D CNNs on volumetric images, these are bio-
medical images. Milliteri et al in [Mil+17] proposed a fully automatic voting approach whose
core is 3D CNN. It is a robust learning-based segmentation approach that processes volumes
in a patch-wise manner. Features from the deepest part of the network were explored and
voted. It claims to perform well with limited training samples, it works well with segments
that were partly visible or corrupted [Mil+17]. Research shows that it is not a fully connected
network and can be applied for the only blob-like structures. Deep learning models for 3D
segmentation require a lot of data, due to this scaling of the data needs to be considered.
One such approach was done by Kleesiek et al in [Kle+16], which is considered to be one of
the few end-to-end models. It is also a learning-based model which then trained and scaled
properly can handle multi-channel modalities [Kle+16]. Even though the model is end-to-end,
the network is not sufficiently deep and usage of max-pooling layers is not done to the extent
of reproducing high-quality image segmentation [Çiç+16].

This work presents a network that is inspired by 2D U-Net from Ronneberger et al in
[RFB15]. It was designed for 2D image segmentation. What stand’s out in this architecture
is that it a deep network containing max-pooling layers, convolutions, etc. It is an encoder-
decoder structure having slip connections to both sides of the architecture which is the key for
high-resolution output same as input without any compromise. The encoder path contains
max-pooling layers, up convolution layers and the decoder path contains deconvolutions for
upsampling. This is extended to work for 3D images by the same authors. In [Çiç+16],
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they present a model with good augmentation techniques which can generalize 3D images
efficiently. The authors in [Sze+16] were able to achieve good results using regularization
parameters and design principles to scale up the existing networks. However, few bottlenecks
were found by using these aggressive regularizations [Sze+16]. The U-Net has been consistent
and proved to overcome this by using batch normalization.

U-Net is unique in a way, as discussed earlier CNN can provide deep layers for 3D image
segmentation, but U-Net can provide both localization and pixel-wise classification. Memory
constraints need to be taken into consideration while handling image segmentation problems,
as U-Net can run on a strategy known as sparse annotations, which can be advantageous over
FCNs as well.

Methods in [Mil+17],[Kle+16] were used in the medical field where labelled datasets are
rare to find and need extensive time and knowledge to able them, U-Net provided excellent
performance as the network was able to train using few annotated samples. This is a very
good practice to minimize the requirement of a large amount of data. A drastic reduction in
time and effort can be observed.

A sparse annotation strategy can be seen in [Zhe+20], which uses a selection algorithm that
will identify slices of high influence to annotate so as to reduce the manual annotation. In
[Çiç+16], usage of different labels are done, to differentiate between background and fore-
ground information. They are also unlabelled slices, which makes the data sparse, and is not
considered for the loss function.

Weighted softmax cross-entropy loss along with sufficient batch normalization layers have
been able to provide good results [Çiç+16]. This plays a major role in the model to train
using sparse annotations.



3 Methodology

This chapter describes the pipeline of the process and its stages in detail. The building blocks
of the U-Net are unfolded. The 3D U-Net model constructed in this work is described along
with the training procedure used.

3.1 Pipeline of the process

Figure 3.1 describes the pipeline of the process from the data being fed to the model till the
segmented output image is produced. The process takes place in two stages, namely training
and testing. All the important stages are as described in Figure 3.1. These topics will be
further discussed in upcoming sections.

3.2 Data Pre-processing

This section describes all the pre-processing steps such as data preparation, manual annota-
tion, data augmentation, etc.

3.2.1 Data preparation

The data is a spring scan of a car tire. Four scans are corresponding to the position of the
tires namely Spring RightFront, Spring RightBack, Spring LeftFront, Spring LeftBack. The
data is made available by Fraunhofer EZRT in Fürth measured using XXL-CT system [fra].
This high-energy computer tomography data is a part of a complete scan of a ford fiesta car,
each individual voxel has an edge length of 1.6mm [fra].

The data is available in raw .mha1 format and it is viewed in ITK snap2 by using little
adjustment. The data in its raw form contains noise artifacts. These are removed by first
viewing the data in a better stencil. By adjusting the contrast information the location of
the spring or the region of interest is identified. This is now ready for segmentation. Using
the segment editor tool and its operation the manual segmentation is done.

The 3D images available have different characteristics. Some of them have noise artifacts
around them. Few of them have unwanted parts inside the hollow part of the spring. A rod
like structure that is not part of the spring is present in the scan. This should be carefully
considered and should not be included in segmentation. The intensity of these pixels is similar

1https://whatext.com/mha/
2http://www.itksnap.org/pmwiki/pmwiki.php
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Figure 3.1: Pipeline of the process.

to that of the pixels of the spring, to avoid these artifacts in the prediction, segmentation of
the pixels that belong to the spring needs to performed cautiously. In the next subsection,
the process of manual annotation is explained in detail.

3.2.2 Manual annotation using 3D slicer

The most common open-source software for Image processing is 3D slicer3. It provides image
registration, image segmentation, volume rendering, individual slice view, etc. It is a GPU-
enabled tool that offers various functionalities for segmentation operations. These tools are
mainly for biomedical imaging, these are utilized to segment the volume in hand.

The slicer tool provides methods like thresholding, grow from seeds in the segment editor
for the user to conveniently annotate the samples. It provides three views of the image, the
coronal, axial, and sagittal view. Slices can be skimmed through just by using the scroll
button, this provides more insights into the image. It also provides the 3D view of the
segmented image to make sure the region is correctly segmented. In order to view the image

3https://www.slicer.org/

https://www.slicer.org/
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Figure 3.2: Illustration of slices and the 3D volume rendered in slicer tool.

in 3D, and select the region of interest there are available presets which can be used as a
stencil to proceed further. Figure 3.2 demonstrates how a raw image looks in slicer along
with the 3D view. Here the environmental artifacts are removed, but the spring exists in a
noisy environment. A image that contains a rod like structure aforementioned is chosen for
display.

Values can be set on the thresholding function, according to the dataset. The thresholding
functions highlight the parts of the high intensity, which then will be easier to annotate.
The intensity values can be adjusted so that region of interest gets highlighted. This then
is annotated using the draw or paint tool. Any regions that are slightly marked incorrectly
can be erased using an eraser option. Also, with the 3D view available, a scissor tool can
be used to clip off the excess in the 3D view itself so there will be no hassle to go through
the slices and erase them individually. The Figure 3.3 illustrates manually annotated spring
of the corresponding raw image in Figure 3.2, from the 3D view in the top left corner of the
traditional view setup in slicer software, it can be observed that additional background noise
has been removed and only the region of interest is manually segmented.

So the main labels that are marked while annotating are “0” which is the background, “1”
the foreground, the label “2” which is the unlabelled is specified in the code.

For reference purposes first a full annotation of two of the images is done. After experimenting
with that, it can be understood how to sparsely annotate the rest of the samples. These
samples were sparsely labelled based on the number of slices randomly in the beginning.
Wherever there was more intensity of pixels that belonged to the foreground annotation was
done on those slices to observe the characteristics. Later using the threshold function from
the slicer tool, all the important pixels belonging to the spring were fully annotated.
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Figure 3.3: Segmented slices and the corresponding 3D mask.

Figure 3.4: Label data Distribution for one in two samples unlabelled.

The sparse annotation strategy used in this work concentrates on the effect of the number
of slices that are fed as sparse labels to the model. To be precise slices are unlabelled at four
intervals. At first, every alternative slice was marked unlabelled, for the next experiment,
every one in four slices was marked unlabelled, next, every one in eight and in the end, every
one in ten slices was marked unlabelled. This was fed to the model as separate trail runs to
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observe the influence of different levels of sparsity on the network. The results of this strategy
will be analyzed in chapter 5.

Eventually when the segmentation is finished it is saved into nifti4 format i.e., .nii.gz as it
will be easy to read in the code.

Figure 3.5: Label data Distribution for one in four samples unlabelled.

The segmented image is converted into .nii.gz format using ITK snap. For the process to be
easy, the files are reshaped into the same size. To do this, one image is taken as a reference
and using python library the affine matrix5 of that image is calculated. Later it is applied to
the rest of the images and segmentation masks. The values in the image were already in the
range of 0-1 hence the division by the value 255 was not carried out.

These annotated slices play a huge part in the model as they will be weighted later according
to their importance and that’s what makes the model train on sparse data.

The Figures 3.4, 3.5, 3.6, 3.7 shows the data distribution when different strategies of unla-
belled slices are used. There is a clear case of class imbalance when the graphs are observed.
The labels corresponding to “1” are in the middle which shows a very less samples.

4https://nifti.nimh.nih.gov/
5https://nipy.org/nibabel/coordinate_systems.html

https://nifti.nimh.nih.gov/
https://nipy.org/nibabel/coordinate_systems.html
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Figure 3.6: Label data Distribution for one in eight samples unlabelled.

Figure 3.7: Label data Distribution for one in ten samples unlabelled.

3.2.3 Data Augmentation

Data augmentation is very helpful in creating an additional dataset from the existing data
when there are fewer data available. Invoking the same concept, when there is sparse data,
to learn any slight changes in the image is very crucial. Also, when there is a problem of
class imbalance, a feasible data augmentation technique is very much necessary. U-Net is
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optimized with the help of data augmentation to effectively learn on sparse data.

The Image data generator class in the Keras framework offers different manipulations for
enhancing the data. Although augment means to enhance or add more data, typically Keras
ImageDataGenerator class receives these raw images as inputs, performs transformations and
the model will be trained on this new variant of train data by replacing the old [Ros19]. It
helps in creating alternate versions of input data artificially [Ros19]. The methods used in
this work are as follows.

• Rotation

• Width and Height shift range

• Shear range

• Zoom range

• Horizontal and Vertical flip.

Rotation is a basic operation that can be used if the image needs to be skewed in other
directions. Given the number of degrees, the pixels are rotated clockwise by moving the
pixels out of the image frame [brof]. When moved, empty pixels will be created. These will
be filled by the nearest neighbour fill strategy. Figure 3.8 illustrates a sample train image
slice which has been rotated and flipped with rotation range “15”. From the data trail in the
right image slice i.e., in the augmented image a height shift can also be observed.

Figure 3.8: Augmented image with Rotation and height shift.

Width and height shift comprise the movement of pixels in any one of the directions. The
dimension of the image will be retained [brof]. Shifting of the pixels may create a region of
emptiness, this will be filled by replicating the edge pixels. Usually, a float value or a range is
specified for the operation to be performed. The fill mode argument of the class also comes
in handy to fill the other nodes.

The zoom range is done for the specified value or a range of values. This then is taken as a
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Figure 3.9: Zoomed in image slice with width shift operation.

percentage amount and new pixels are added to zoom the data. For example, the effect of the
zoom when a value of “0.5” is given, then the image is zoomed-in 50% [brof]. The zoom-out
operation can be done by giving values greater than 1. A zoomed image slice with a width
shift is demonstrated in Figure 3.9. The value of zoom given is “0.5”, and the image has
zoomed in. Again, the right side of the image is a result after data augmentation.

As the name suggests, shear means a sort of distortion, it tries to mimic the human vision,
meaning, as there are different angles of an image it assists the computer to view the same.
It creates a slant version of the image somewhat similar to a parallelogram [Sar19].

Horizontal and vertical flip can increase the diversity of data by flipping the image in either
direction. The selection of images that needs to undergo this operation is chosen randomly.
It is done by reversing the rows and columns of the pixel [brof]. An example train image slice
with the horizontal flip can be observed in Figure 3.10. Vertical flip is not carried out, as it
did not seem to add any new feature dimension with the image sample used in this work.

As mentioned by the authors in [Çiç+16] it provides efficient training, saves computational
memory. By doing this a bunch of different images will be available for training, which is
equivalent to the number of iterations. It also makes sure that there is variety at each step of
the training epoch. Keras ImageDataGenerator 6 class provides this type of augmentation.
In the below Figure 3.11 inspired by [Ros19], there is a demonstration of image augmentation
on-the-fly. The steps includes a new set of data provided to the Data augmentation object.
This then randomly chooses the samples and performs a series of technical transformations.
This new variant is now returned for model training. This augmentation is done during the
training time and not stored anywhere else prior to this, hence saving memory and the name
on-the-fly.

6https://keras.io/api/preprocessing/image/

https://keras.io/api/preprocessing/image/
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Figure 3.10: An example of horizontal flip translated on a train image slice.

Image Dataset

Data Augmentation
Techniques

Randomly Transformed
Images

Train U-Net in batches

Figure 3.11: Process of Data augmentation on-the-fly.

This increases the overall generalizability of the model by not defeating the purpose of “seen”
data for the model, i.e., every time the model is provided with new data, which accomplishes
the motive of data augmentation on-the-fly.
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3.3 Building blocks of a 3D U-Net

In this section, a brief discussion about the core components that make a U-Net is discussed.
The main building block of a U-Net consists of 3D convolutions. Given the 3D input image,
there is a need for a filter that slides through the 3D space. This is combined with the acti-
vation function ReLU. The activation function holds the responsibility to activate particular
nodes of the output. There are many different activation functions for Neural networks such
as sigmoid, tanH, etc. These can be differentiated into two types, one is linear activation
function and the other non-linear.

Non-linear activation functions are used to train complex and deep neural networks [broe].
The sigmoid7 and the tanH8 functions are widely used for neural network applications but
reach saturation when the values are large or very small. Saturated weights become hard for
the algorithm to alter the weights for the model to generalize [broe]. A function that provides
more sensitivity towards the deep network was found, and that is a rectified linear unit [broe].

An example diagram of which values it can activate is as shown in Figure 3.12. This has pro-
vided many advantages over time. Some of them include that the computations are cheaper,
allow negative inputs to provide pure zero values which are called sparse representation which
can accelerate model learning [GBB11]. The equation of ReLu is as given in equation 3.1
[broe]:

f(x) = max(0, x) (3.1)

To overcome the bottlenecks of previous architectures as discussed in section 2.3 by authors in
[Çiç+16] batch normalization layers were introduced. Sometimes while training deep networks
due to the mini-batch variations the input weights get distributed which is called an “internal
covariate shift” which may off balance the target [broa]. Batch normalization is meant to
stabilize the neural networks and make them faster [IS15]. Recent studies have shown that it
provides a smoothening function that improves the results [San+19]. It is advised to use this
function before the activation function layer if the activation is ReLu [broa]. Considering the
“U” like architecture that this work explores, adding batch normalization layers is the best
way to deal with non-linearities.

Feature maps are very sensitive to changes as they memorize the pattern of the feature in
the input image [brod]. These changes might occur due to the image translations, rotations,
etc. The network is inserted with pooling layers to overcome this by making the layers which
helps in making the feature maps more susceptible to the location of the feature in the image
by downsampling them. This way it is ensured that all the important features still can be
accessible by the model [brod]. A max-pooling operation is chosen which constructs feature
maps using the maximum value from each patch of the input image [brod]. In this work
MaxPooling3D operation provided by Keras is used.

7https://www.sciencedirect.com/topics/computer-science/sigmoid-function
8https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html

https://www.sciencedirect.com/topics/computer-science/sigmoid-function
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html
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Figure 3.12: Graph of ReLU function [broe].

This highlighted version of features is often considered more concentrated in terms of impor-
tant features. A 2× 2 value denotes the filter that specifies the strides which hover over the
initial input and finds one maximum value per operation.

Since the U-Net is symmetrical, this downsampled image needs to be upsampled to match
the input and output resolution without any compromise as it is the ultimate goal of this
architecture. Upsampling layer is a simple way to double the dimensions of the input image
when needed [brog]. This helps fill in the features of an image. Often padding is used in typical
CNNs but this architecture requires more dense and detailed features hence Conv3DTranspose
operation provided by Keras is used. This unpooling or transposed convolution maintains the
compatibility or connectivity with the convolution [Sou]. It is called the reverse operation or
deconvolution as it inverses the operation of mapping pixels to features [ZF14].

Other than the components mentioned in [Çiç+16], this work explores the dropout function,
and observations are made on the performance changes. Dropout is a regularization method
introduced in [Sri+14] which randomly drops samples and they will not be responsible neu-
rons, i.e., they will not be activated and hence their weights won’t be updated during the
backward pass [ZF14]. The strategy here is that when some neurons are not activated, other
neurons will act independently to make the network learn [ZF14]. It is advised to use dropout
in larger networks and at each layer to effectively learn representations [ZF14]. It is the best
technique to prevent overfitting in a wide or large network as it limits the number of neurons
that learn the representations [Bud]. So this is a good measure to decrease the co-dependency
and make the model learn more robust features [Bud].
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3.3.1 Construction 3D U-Net Architecture

Based on the components discussed in the previous subsection, architecture is built based
on the requirements of the given dataset. The model structure is similar to that of a basic
U-Net from [Çiç+16] with modifications of layers. An addition of dropout layers has been
introduced to prevent overfitting. The descriptive model is illustrated in Figure 3.13.

The analysis and synthesis path are in synergy as per the model architecture [Çiç+16] sug-
gests. In short, it is an encoder-decoder architecture each having separate convolutional layers.
There are four levels in each of the paths. The analysis path contains two convolutions with
kernel size 3× 3× 3 followed by the ReLu activation function along with batch normalization
and a max-pooling layer. In level one again there are two 3× 3× 3 convolutions followed by
batch normalization and ReLu [Çiç+16]. The value of the feature map which is denoted as
a base filter incrementally increases starting from the value 8 then 16, 32, 64 and so on. This
is done to maintain continuous learning and to support the model to express more features
as the layers go deep. This block of code remains the same throughout the levels in the
downsampling part. It is called downsampling as both the convolution and the max-pooling
reduces the image size. Major reduction is done through the max pooling operation as it
retains only the important features. After every level, a dropout function is introduced with
a rate of “0.15”. This layer is inserted after every level of convolution block.

To match the dimensions of the analysis layer the feature map value decreases at the same
pace in the decoder path as it increased in the encoder path. The levels match each other’s
dimensions by using skip connections. These connections help in feature retention by trying
to re-use the features of previous layers. This is done with the help of concatenate function.
The arguments of this function include the previous up convolution layer output with the
last output convolution block which is at the same level as the up convolution block in the
first argument of the concatenate function. This is to ensure that there is symmetry and the
base filter value matches as concatenate function requires arguments of the same shape. The
Padding value is kept “same” through the architecture. This is done because as mentioned
in [jor] research shows that the original architecture in [Çiç+16] used a “valid” padding
which resulted in a decrease in the resolution, whereas padding value “same” maintains the
resolution, as it performs reflection in the borders to obtain the padding values [jor]. Usually,
the output of the convolution block from the encoder path will be the tensors after the dropout
layer.

Downsampling decreases the resolution of the features, which is compensated by the upsam-
pling layer. Though it is expensive, the synthesis path learns more deeply than the analysis
path as it concentrates on the “where” information rather than “what”. However, the analysis
done in the encoder path is necessary for the synthesis path to decode the right labels. The
output layer consists of a convolution block with kernel size (1, 1, 1). This helps the model to
know how many outputs labels the user is expecting.
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3.4 Training

There are four samples of the dataset, as discussed in data preparation, different angles of the
hardware tool spring are available. The training is done on GPU offered by Google Colab9.
The method of random data augmentations on the fly is discussed in the 3.2.3. While the
model is training, for every steps-per-epoch the generator function is called and random slices
are selected for training.

In this work, slice count is given as 10 and the batch size is 5. This means that every steps-
per-epoch randomly selects 10 slices in batches of 5 which results in 50 slices for one step.
The images undergo data augmentation every time, and these are not done prior to training,
hence it saves a lot of computational memory. After the augmentation, the model gets a new
set of images sent to train the model.

There is a custom loss function that is used in the training to compute how the network
output varies from actual truth labels. For this purpose, the labels are converted into the
“one hot encode vectors”. This is a matrix where all entries are zero and only the position of
the true class is activated with a value “1”.

The number of classes for the output prediction is also mentioned which is three in this case.
In this loss function, class weights are also mentioned. The weight of the unlabeled pixels
is given “0” weight as it should not contribute to the loss. These class weights are then
multiplied with the one-hot vector to get weighted one hot vector values.

All the images are maintained the same size to reduce layer complexity and output dimension
caused by batch variations. According to research the steps per epoch plays an important
part for the models to understand the features and helps them to converge well. The model
was trained for 7 epochs with steps per epoch being 150. In this work, the steps per epoch
represent the total number of batches run within an epoch. Since a generator function is
used, at every step per epoch many slices are randomly sampled. This creates an environment
similar to training on that many numbers of epochs. The reason for choosing the values for
epochs and steps per epoch is discussed in chapter 5

The training and validation accuracy is calculated along with the loss value from the custom
loss function. Corresponding plots are discussed in detail in chapter 5.

For testing, to predict the unseen data, the labels should not be in the one-hot encoded
format. Hence using the argmax 10 function it is converted so that the model can predict.

Optimizers help in tuning the network to minimize the loss and improve efficiency. In this
work, Adam optimizer which is derived from the name adaptive movement estimation and
was first introduced in [KB14] is used. It is an alternative to the classical stochastic gradient
which keeps the learning rate constant to update all weights, whereas Adam is a type of
optimizer influenced by the combination of AdaGrad11 and RMSProp12. It uses an adaptive
learning rate strategy where it computes adaptive learning rates for each and every parameter.
It estimates the exponential moving average of first and second moments of gradients [Broa].

9https://colab.research.google.com/
10https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
11https://ruder.io/optimizing-gradient-descent/
12https://keras.io/api/optimizers/

https://colab.research.google.com/
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://ruder.io/optimizing-gradient-descent/
https://keras.io/api/optimizers/
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It is preferred for its fast convergence. It is also best suited for sparse gradients [Broa]. Adam
optimizer is a favorable choice for segmentation tasks when compared to other stochastic
methods. It is an effective and practical approach for larger models [Broa]. The Equation 3.2
shows the first and second moments and the Adam update rule [Fir]:

m̂t = mt

1−βt
1

v̂t = vt
1−βt

2

θt+1 = θt − η√
v̂t+ε

m̂t

(3.2)

The first and second moments are calculated as initially m̂t and v̂t are biased towards zero.
These moments are used to update the parameters which is calculated as shown in the equation
θt+1 [Fir].

The learning rate is an important hyperparameter that can be tuned to control the model so
that it gets adjusted to the problem at hand. In this work learning rate of “0.001” is used.
Besides learning rate schedulers are also used to aid in faster convergence.

The Learning rate scheduler is adapted to keep track of the learning rate and adjust it based
on a predefined schedule. The ReduceLROnPlateau13 function is available on Keras which
gets activated when a constant model performance is detected for some epochs, and it tries
to adjust the learning rate [Brob]. It requires a metric to monitor on and in this work, it
monitors validation loss. Also, there is a specified argument called patience which instructs
the function to wait before deciding to change the learning rate.

A typical question in deep learning is when to stop training as it can have serious conse-
quences. If the model undergoes minimal training it loses the capability to generalize well. If
the model is trained too much it may lead to overfitting. An optimal way to tackle this is to
use an approach called early stopping. The problem of training just enough can be obtained
by using this as it saves the model from not being able to predict on new data and also stop
learning noise. This is a form of neural network regularization method [Brob]. More often it
monitors the validation dataset and in this work also the same procedure follows.

A callback function which is called ModelCheckpoint14 is used to save the model when it is
at its lowest validation loss. Based on the argument save best only when set to true, helps in
loading the model again whenever predictions are to be made.

13https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau
14https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint
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Figure 3.13: 3D U-Net Architecture.



4 Experimental setup

Mainly two experiments are stated in [Çiç+16], (i) Semi-automated segmentation and the
(ii) Fully-automated segmentation.

The first experiment might be considered similar to the training phase, where the model
requires full segmentation of a small number of volumetric images, i.e along with the labels for
the prediction [Çiç+16]. However, the 3D U-Net model is presented with sparsely annotated
labels. The model learns the patterns from the sparse data and becomes a trained model
which will be then ready to predict dense segmentations. The idea here is to encourage the
model to produce dense segmentation even though the trained labels are sparse and the test
data is unlabelled.

On the other hand, Fully-automated-segmentation is where raw test data is presented to a
fully trained network without any labels, and the performances are evaluated. In the four
image samples available three samples were used for training purposes and the trained model
was made to predict on the fourth image.

4.1 Performance metrics

The customized loss function is the prominent feature of the experiment. Custom loss helps
us to tackle a specific problem exclusive to experiments that are executed in this work. The
strategy here is to give importance to labels that matter, for example, the foreground, so that
their weight contribution is more than the other labels. This loss function helps in weighing
each and every pixel in the image and for their easy recognizability.

A weighted softmax cross-entropy loss1 is adapted in this thesis and is as shown in the
Equation 6.1 [jor].

softmax logits = softmax(logits)loss softmax cross multi

= sum(cls weight ∗ label ∗ (−1) ∗ log(softmax logits))
(4.1)

The labels, logits, and cls weights are all single column array [jor]. To tackle the problem of
class imbalance, giving the label importance in the loss function creates a sense of prioritized
weightage in favor of the experiment i.e., to segment the pixels belonging to the spring.
It can be inferred that the sense of imbalance has not been prioritized, meaning by using
this loss function one can not only optimize the network but also handle class imbalance as
corresponding “0” labels will be given less priority. To pass the loss while compiling, care
must be taken so that the loss function returns a scalar.
1https://www.tensorflow.org/api˙docs/python/tf/nn/softmax
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This act of penalizing a label is what makes weighted softmax entropy special and which
allows it to train on sparse labels.

In this work, the weights are chosen according to the imbalance graph in section 3.2.2, a scalar
function [1, 7, 0] is set as the class˙weight where weight “0” represents that the unlabelled
slices and are not considered for the loss calculation, “1” represents the weight of background
pixels which are more in number and not important for the prediction. A weight of “7” for
the critical foreground information, i.e., where the pixels of the spring are situated. This
was decided by hyperparameter tuning in the validation space. Initially, when the data was
inspected for the number of samples in each class a high-class imbalance was observed. When
the ratio was computed it became apparent that the class ratio of the labels 1 and 0 was
found out to be 1 : 10. To be more precise the division yielded a value of 70. So different
values for the correct class were tested starting from 70. Slowly decreasing the bias resulted
in correct predictions. Turns out, a bias of 10% just was enough to obtain fair predictions.
Therefore, a weight of “7” was set for the foreground samples.

The most common metrics used in machine learning are accuracy, precision, recall, F1 score.
However, these metrics provide behavioural characteristics and this work requires more in-
tuitive metrics to understand the prediction. Therefore, to evaluate the results IoU/Jaccard
index, dice metric, and soft dice loss are used.

IoU/Jaccard index is a metric that is a measure of how accurately the ground truth and the
prediction masks are overlapped with respect to the regions that are in both ground truth
and prediction.

Consider the Figure 4.1, the blue square region in the numerator quantifies to a perfect
identification of pixels belonging to the ground truth. These values are referred to as true
positives [jor]. Though the denominator is an amalgamation of the pixels in the region of
both ground truth and prediction, formulation considers the fact that true positives must be
subtracted to avoid redundancy. The region in red depicts the false positives, indicating the
pixels that should not have been segmented. Pixels belonging to the yellow region show what
the model missed to catch as the correct label [jor].

Dice coefficient measures an overlap between the target and the predicted segment [jor]. It
can be calculated as demonstrated in Equation 4.2 [jor] :

Dice = 2|A ∩B|/|A|+|B| (4.2)

Where |A∩B| represents the segments common to both A and B. the denominator denotes
the number of elements belonging to both |A| and |B|. The pixels that do not provide any
information are masked with a zero value from the target matrix, which will eliminate low-
confidence values affecting the score. This way it is ensured that correct predictions will help
to maximize the values. The numerator with the multiplication factor of “2” is responsible
for a good dice score.

Dice can be used as a loss function also as it is differentiable whereas IoU is not. The usual
trend is to use dice coefficient for image segmentation problems. The design of Dice metric is
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Figure 4.1: IoU calculation [jor].

meant to perform well on imbalanced classes. Hence, a comparative study between both the
metrics is explored.

1−
2

∑
pixels

ytrue ypred∑
pixels

y2true +
∑

pixels

y2pred
(4.3)

Soft dice loss on the other hand is obtained from 1- dice, this is formed in such a way to
minimize the loss. The Estimation of the loss is done by the predicted probabilities alone and
no threshold is used, hence the name, “soft dice loss” [jor]. The soft surrogates of the losses
have been introduced recently by optimizing these metrics to alleviate inconsistencies. The
4.3 describes the soft dice loss function.

The Figure 4.2 represents a example of mask value of the prediction and the target class.
This describes the neural network’s output prediction. In the Equation 4.3, the numerator
highlights the common activations between the two masks and the denominator tells us about
the number of activations in two independently. This creates a sense of normalization and
assists the soft dice in learning from the prediction whose spatial representation is less for a
particular image.

The metrics used in this work are quite similar, however, the weightage given to the true
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Figure 4.2: Example prediction and actual ground truth mask

values [jor].

positives in the dice metric is more compared to the weightage given to the false positives
and negatives, which is not true when it comes to the IoU score where weights are distributed
uniformly. Both IoU and dice metrics range from 0 to 1, where 1 is a complete overlap of the
target and prediction.

4.2 Tools

In this section, the hardware, software tools, Libraries, that helped to achieve the results will
be discussed.

4.2.1 Hardware

Google provides a cloud-based environment called colaboratory. Google Colab provides
high computational power for free, with GPU up to 12 GB RAM. This cloud service provides
NVIDIA Tesla K80 GPU along with other types of GPU. Google Colab is also integrated with
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interactive python (Ipython) which provides engaging visualizations. It provides “Hardware
Accelerator” i.e., GPU which saves time, as training takes a very long time on a CPU.

4.2.2 Software

The tools used for visualization of 3D images are 3D slicer and ITK snap. The same tools
are used for data preparation and processing. Both of them are open-source software. It is
mainly used for challenging clinical applications. It provides quick deployment of 3D images,
slice view, and orthogonal views. Processes such as segmentation, manual annotation can be
performed using features in the tool such as segment editor, volume rendering. The version
of 3D slicer used is 4.10.2.

Image Segmentation has proved effective for many applications when compared to other com-
puter vision tasks. This calls for an effective designing mechanism to use the computational
power resourcefully. The deep learning models have the capability to handle high-resolution
spatial and temporal data. To aid the process, GPUs are required to handle this computa-
tionally expensive process.

The programming language used is python with version 3.7.10. To manage the deep learning
tasks TensorFlow framework is used. It is open-source which has many data and machine
learning libraries, which can be used for a variety of tasks. It has many high-level and low-
level APIs. It provides a high-level object-oriented API known as Keras. All the layers of
the 3D U-Net model are imported using tensorflow.keras.layers. The keras.preprocessing is a
deep learning module that enables the data augmentation process. It provides various aug-
mentation techniques as discussed in section 3.2.3. The version of the TensorFlow used is
2.4.1 and a 2.4.0 version of Keras was used.

Libraries used

The pre-processing of the 3D image is done using libraries such as nilearn, nibabel. These
are used to view and process the image which is in Nifti format. Though nilearn does not
have a graphical interface, it creates interaction through Ipython and allows the user to plot
the slices using the plotting function. Nibabel library helps in loading the data, to get the
parameters of the image. To get the affine matrix of the image nilearn provides a resampling
attribute. Now, this can be used to change the shape of the data as aforementioned in section
3.2.2.

Libraries such as NumPy, pandas, are pre-installed in Google Colab. NumPy2 is used to
handle multi-dimensional arrays and matrices, which are the building blocks of any machine
learning or deep learning project. Many operations can be performed using the NumPy
library, few of them used in this work are, finding min and max values, generating random
values, finding the count of values using value counts. Sklearn3 model selection is used for
train and test split. Skimage4 was mainly used for plotting montage views.

2https://numpy.org/
3https://scikit-learn.org/stable/
4https://scikit-image.org/

https://numpy.org/
https://scikit-learn.org/stable/
https://scikit-image.org/


5 Results

In this chapter, the results obtained using different experimentations are discussed. Along
with Semi-automated and Fully-automated segmentation, comparisons are made with batch
normalization, with dropout, and without batch normalization.

5.1 Predictions of Semi-automated segmentation.

The training of Semi-automated segmentation phase took 18.36 minutes to complete 150 steps
per epoch for one setting. The training is done for all the combination of unlabelled data
with different settings such as With and without batch normalization and with dropout.

The predictions for each of the experiments done in the Semi-automated segmentation phase
are illustrated in this section. In the Figure 5.1, prediction shows a clear definition of back-
ground and foreground and there is a smooth and dense prediction.

Actual Volume Actual  Mask

     
Prediction

Figure 5.1: Volumetric prediction for one in two unlabelled slices.

To investigate further, a deeper slice level prediction is considered in the Figure 5.2. Here
more subtle changes can be seen if carefully observed, the localization of pixels in the actual
image slice in the second row, there are slight parts of the spring visible. Though this has
not been done in the manual annotation (as it can be observed in the actual mask slices), the
prediction has recognized these pixels and the correct labels are provided.

An example of some of the slices corresponding predictions for one in two slices unlabelled
is illustrated in Figure 5.3. Here the checkered pattern image shows the actual masks, the
yellow coloured boxes indicate the slices that are unlabelled. It is clear that the U-Net can
predict for sparse labels, as prediction of true labels in slices corresponding to unlabelled slices
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Actual Image slices Actual mask slices

Predicted slices

Figure 5.2: Slice level prediction for one in two unlabelled slices.

can be observed. Meaning, from the predicted slices it can be observed that the model has
predicted for all the actual image slices even though sparse labels are sent.

This can be observed as a fact that the U-Net has learned from similar slices. On the
other hand from the Figure 5.4 which belongs to the prediction providing every 8th slice as
unlabelled shows a counter-effective prediction where the U-Net is not able to predict the
pixels even though it is present in the ground truth mask. This might be since there are
not many samples with the same localization of the pixels in batches that are trained, maybe
there are not many variations, patterns to learn from the slices as they were randomly chosen.
This is reflected in the IoU score as well which will be discussed further. From Figure 5.5
it can be inferred that the model could predict better with more number of samples, which
is obvious as the number of pixels labelled “1” will be more in the samples. The slight
misclassification seen in Figure 5.1 is eliminated in the Figure 5.5. Also in Figure 5.2, there
are some misclassified pixels in the last two rows that also have been carefully considered in
5.6, and only the pixels belonging to the spring are predicted. The augmented slices can be
spotted in the fourth row of actual volume slices which are flipped and also a high-intensity
noise rod in the middle of the sample which is rightfully not picked by in the prediction.
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Actual Image slices

Predicted slices

Actual sparse labels

Figure 5.3: Representation of predictions with corresponding unlabelled slices.

The Figures 5.7 and 5.9 show a reduction in the misclassified pixels with only a few pixels
that are similar to the shape of annotation. All these results were predicted by a model with
batch normalization.

The Figure 5.9 provides the highest IoU score with a near to perfect dense volumetric
segmentation with no noise artifacts.

The Semi-automated segmentation, gives us generalizations over sparse labels. The result of
the dense segmentation can be measured using the IoU, Dice, and the Soft dice loss metric.

The unlabelled slices express the amount of sparse data that is being fed to the model. For
example, 2 slices denote that every two slices were marked unlabelled, i.e., every alternate
slice is unlabeled and considered as sparse labels, and so on.

A quantitative analysis using the metrics discussed in 4 is carried out. From the Table 5.1
it can be observed, how the IoU metric varies according to the number of samples that are
provided as unlabelled. The IoU with batch normalization increases as the number of samples
increases. However, there is a slight change as the highest value of IoU is recorded for the
experiment with every one in four slices marked unlabelled. Considering the loss plot for
5.13 in training 3.4 the convergence characteristics discussed in that section pay off and as a
result, and produces a good prediction compared to others. The results of the ablation study
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Actual Image slices Actual Mask slices

Predicted slices

Figure 5.4: Missed prediction by the model.

Actual Volume Actual  Mask

      Prediction

Figure 5.5: Volumetric prediction for one in four unlabelled slices.
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Actual Image slices Actual Mask slices

Predicted slices

Figure 5.6: Slice level prediction for one in four unlabelled slices.

Actual Volume Actual  Mask

      Prediction

Figure 5.7: Volumetric prediction for one in eight unlabelled slices.

on the model by removing the batch normalization layers provided less performance. Hence
proving the fact that batch normalization does improve the predictions.

Although giving the label “2” for every 10th slice can be considered sparse enough as the
distribution of labels from Figure 3.7 illustrates that there are many unlabelled samples when
compared to the true labels. However, it can not be denied that even though having more
unlabelled samples i.e., by giving the label “2” for one in every two slices the model still
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Actual Volume Actual  Mask
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Figure 5.8: Volumetric prediction for one in ten unlabelled slices.

Actual Image slices Actual Mask slices

Predicted slices

Figure 5.9: Slice level prediction for one in ten unlabelled slices.

Unlabelled Ground truth slices
IoU
with BN

Iou without
BN

Every 2 slices 0.548 0.480

Every 4 slices 0.618 0.550

Every 8 slices 0.614 0.500

Every 10 slices 0.611 0.554

Table 5.1: IoU scores for with and without Batch normalization.
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creates a dense volumetric prediction.

Unlabelled Ground truth slices
Dice metric
with BN

Dice metric
without BN

Every 2 slices 0.683 0.618

Every 4 slices 0.732 0.683

Every 8 slices 0.648 0.637

Every 10 slices 0.759 0.683

Table 5.2: Dice scores for with and without Batch normalization.

The Table 5.2 shows the dice metric results for the two combinations. The scores have
drastically increased as compared to the IoU scores. As previously discussed in 4, this is
because the dice metric counts the number of pixels overlapped in prediction and target, and
divides with all the pixels belonging to that image. There are some cases where the dice
metric is less where it was supposed to be more favorable, but again this is because of its high
variance. Sometimes predicting a tiny pixel wrong can meddle with prediction.

This makes the dice metric very much dependent on the current batch of the images, and
it is hard to guess what kind of slices are presented to the corresponding batch and how the
model predicts. The dice metric doesn’t need to be always more than any value, but most of
the time it is better than IoU.

The soft dice is another intuitive metric in support of the dice coefficient, in general, a value
less than “0.5” is considered good in the case of balanced datasets. In Table 5.3, the loss
values for all experiments are below the threshold. Given the fact that there is a high class
imbalance, dice has given great success. The introduction of dropout along with dice loss
provides better performance.

In addition to batch normalization, random dropping out of the nodes definitely decreases
the chances of the model learning redundant information. This is clearly shown in Table 5.4
as the IoU increases significantly. But there is a slight drop in the IoU when every one in
eight slices are marked unlabelled. It can be suspected that dropout introduces additional
normalization into the network and sometimes it may not work well. This random dropout
may create an imbalance in the nodes and hence introduces noise in the network. Maybe

Unlabelled Ground truth slices
Soft dice loss
with BN

Soft dice loss
without BN

Every 2 slices 0.179 0.225

Every 4 slices 0.121 0.182

Every 8 slices 0.206 0.210

Every 10 slices 0.108 0.182

Table 5.3: Soft dice loss scores for with and without Batch normalization.
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some of the important neurons are dropped out and hence they did not undergo training.
Therefore the model did not capture those features in the testing phase. But, overall the
dropout proves beneficial other than these slight variations.

The Table 5.4 shows the results of the model with dropout, there is a significant increase in
the Dice scores as well.

Unlabelled Ground truth slices
IoU
Score

Dice
Metric

Soft dice
loss

Every 2 slices 0.813 0.871 0.05

Every 4 slices 0.804 0.863 0.06

Every 8 slices 0.722 0.792 0.067

Every 10 slices 0.835 0.887 0.048

Table 5.4: Results with Dropout.

The highest IoU recorded in all of the experiments with the epochs in hand is when the
model uses dropout along with every 10th slice unlabelled.

5.2 Predictions of Fully-automated segmentation.

The training of Fully-automated segmentation took 18.89 minutes for one setting. Here, the
training was done on three settings.

The results of training and validation loss are expressed in the form of plots. These are
learning curves that help in monitoring the performance.

From the graphs in Figure 5.10 a fair increase in the accuracy can be observed, but the
validation loss has its moments. The validation loss changes so rapidly because of the samples
that are randomly chosen. The initial high in the validation accuracy is the model starting to
overfit maybe because of similar samples in the batch. After a few epochs, it can be observed
that validation accuracy drops.

Such drops are normal while doing batch training, as the image slices are randomly selected,
and for the model to generalize well, it requires at least most of the features from the dataset
and not only the features that are particular to that batch. This behaviour can be seen in
the plot from Figure 5.11 also, there is a sudden drop where the model hit the local minima1

and was able to work through it in the coming epochs.

Consecutive constant predictions show that the model is still not sure about the prediction
and it is in its learning stage. But it can be noted that there is a quick recovery from this
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Figure 5.10: Training,validation accuracy and loss plot for every one in two slices unlabelled.

bad prediction phase in the coming epochs.

Figure 5.12 shows the gradual increase in the accuracy and portrays constant learning mean-
ing that the dataset is not providing sufficient information for the model, and it is yet to learn
all the patterns. Then the model hits its global minima2, which refers to the lowest value
when compared to all epochs. The batch normalization is indeed very helpful to combat this
and the accuracy is better in the future epochs.

The plot in Figure 5.13 shows a sporadic change in the accuracy. This shows that the model
has converged smoothly, and is confident in its prediction.

The plot in Figure 5.11 illustrates that the training and validation accuracy is very high at

1https://www.allaboutcircuits.com/technical-articles/understanding-local-minima-in-neural-network-
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Figure 5.11: Training,validation accuracy and loss plot for every one ten slices unlabelled.

the same time towards the end. This can be inferred to the effect of the number of slices in
the dataset. The sparsity of the data is very less and there are more than enough samples
to train on. This might be the reason, as the model would have learnt almost all kinds of
features that the limited train and validation dataset has to offer.

The validation loss and training loss are also in the same plots, and discussions on them are

training/
2http://proceedings.mlr.press/v97/du19c.html
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Figure 5.12: Training,validation accuracy and loss plot for one in eight slices unlabelled.

quite straightforward as the loss is increased when the accuracy is decreased and vice versa.
However, some regions towards the end in Figure 5.10 and 5.11 show similar behaviour in
both accuracy and loss. This occurrence may be reasoned as the model is more confident in
learning true positives and true negatives meaning it is becoming good at learning. It does
not necessarily mean that the loss and accuracy must go hand in hand, both of them are
correlated to each other. In general, a normal case of loss reduction as the epochs increases
is observed.

As mentioned in 3.4, the value of 150 is used for the steps per epoch. However, experimen-
tation was conducted with more number of epochs and the results did not vary much as the
model was already being trained well using more number of steps per epochs. So, there was
not a significant improvement in the results when the epochs were increased to 100 or more.
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Figure 5.13: Training,validation accuracy and loss plot for one in four unlabelled slices.

Also, as discussed, the ReduceLROnPlateau function does not allow the model to continue
training even when the results are constant. This can be observed from the Figure 5.14 which
depicts the plots of training and validation loss for one in every four samples unlabelled, here
the training has stopped at epoch 30 as constant loss value prevailed. Similarly from the Fig-
ure 5.15, it can be concluded that since the accuracy did not vary much the training stopped
at epoch 50. This plot belongs to a model trained with one in ten samples unlabelled. The
predictions and scores for these trained models did not prove worthy to train the model for
that many epochs as training with fewer epochs proved sufficient.
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Figure 5.14: Loss plots when model is trained for more epochs.

Figure 5.15: Accuracy plots when model is trained for more epochs.

The results experimentation done for these three settings are discussed. Initially, when the
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images were viewed two kinds of variants were observed. As mentioned in 3.2.1 images contain
a rod-like structure in the hollow space of the spring, which is considered as noise.

The train scenarios have 2 images, validation has 1 image and the test has 1 unseen image.
A different structure was found in the scans of both sides of the front spring, i.e., Left front
and Right front. All the labels in the training data are sparsely annotated.

Test Sample IoU Score Dice Metric Soft Dice loss

Spring Back Scan sample 0.584 0.651 0.09

Spring Front Scan sample 0.741 0.813 0.06

Combination of back
and front scan sample

0.70 0.783 0.07

Table 5.5: Results of Fully-automated segmentation.

The first scenario consists of front scans as train samples and was tested on a back sample.
Here front and back samples denote the scan of the spring. In the second scenario, the model
is trained on the back scans of the spring and tested on a front scan. In the third scenario,
to introduce the model for both the samples, a combination of both variations of data was
induced, i.e., one front scan and the other back scan. The results can be observed from Table
5.5.

Actual Volume Actual  Mask

      Prediction

Figure 5.16: Prediction of Fully-automated segmentation.

The comparison between the prediction, actual volume, and mask are illustrated in Figure
5.16. The results are moderate as they are trained from scratch. The results depicted in
Figure 5.16 are for one in every two slices annotated to achieve the most sparse labels. The
results are good despite this setup. The differences in the score can be seen from Table 5.5.
When the model is trained on the spring back samples and tested for the front sample, a good
score of IoU and Dice ratio was observed. This can be asserted as the model learned from
the fairly good samples without the additional noise artifacts, which led the model to predict
better.

All these results were predicted by a model with batch normalization and dropout as it
achieved good results in the Semi-automated segmentation phase.
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5.3 Discussion

The favorable results from both experiments i.e., Semi-automated and Fully-automated seg-
mentation prove successful experimentation. Based on the test evidence observation can be
made that the 3D U-Net can produce dense volumetric segmentation and can be adapted
for other applications. The batch normalization proves beneficial as it helped the model to
converge better.

The Accuracy and loss plots from section 5.13 show that usage of regularization helps a great
deal when the model is stuck in the minima. It can also be observed that both validation
and train accuracy show resilience. The drops in accuracy can be accounted as spurious-like
predictions, however, with the data augmentation on-the-fly, new batches of samples provide
variety leading to better accuracy.

To overcome the bottlenecks of previous architecture batch normalization and dropout were
used. From the experimentations, conclusions can be drawn that the dropout adds an addi-
tional boost to the model. The results of which are in the table 5.4 and are better than the
model with only batch normalization.

From the predictions in the Figures 5.8, 5.5, it can be interpreted that the U-Net provides
a good prediction for the new kind of data set that is being used. This customized model
has made it possible to learn the distinct features particular to this data. However, some
discrepancy in the prediction can be seen in figure 5.4, which can be treated as minor adverse
effects due to the variation in the data.

The custom loss function, performed as intended by weighing down the less informative
samples. These will not be included in calculating the loss hence improving the loss function.
As a result, the model was able to train well even on sparse data. As illustrated in the figure
5.3, the prediction is made even for the unlabelled slices, this validates that model has the
ability to learn with sparse labels, with the loss function helping to prioritize the correct class.

The effect of the number of data samples on the model is as demonstrated through IoU, Dice,
and soft dice scores. The model is able to predict correctly with all of the different setups of
unlabelled combinations of data. It is evident that the model can produce excellent results
with high sparse labels such as when one in every two samples was marked unlabelled in the
figure 5.1. This shows that the U-Net is a powerful architecture with great generalizability.

The model has not only learnt features relevant to the training set but has made an effort to
learn more globally so that it can be prepared for the unseen test data in the future. This can
be credited to the usage of different kinds of experiments performed to observe the learning
process.

Dice loss manifests a great reproducibility over actual segmentations and it is clearly apparent
from the scores in the tables 5.2 and 5.5. It provides a sense of greater intuition than the IoU
measure as in this work data imbalance prevails. The results are adequate to mention that
the research exploration was rewarding.



6 Conclusion

Image segmentation is a demanding task as it involves both classification and localization.
There might exist a trade-off in the accuracy measure as one has to be careful when learning
high-level semantic features that are obtained in the later stages. Merely handling these
profound highlights is not enough as sometimes, localization will be missed as they correspond
to low resolution.

The architecture of the model must be able to handle variations in the data and should
preserve all the feature information along with its location in the feature map. This works
deals with a robust 3D U-Net architecture that precisely captures both the context, location
information and maintains high-resolution features of a hardware 3D Spring tool. The batch
normalization layer in the network contributes to the performance, however, the addition of
dropout increases the efficacy to a significant amount. Increasing accuracy from the plots
shows signs of good learning as more and more images are being correctly segmented.

Deciding on the weights using the softmax loss function where the preference is given to the
foreground information and setting the weight to zero for the unlabelled samples, helps in
predicting the information unscathed.

On the contrary, some constraints persist related to less dense predictions in some cases, this
is because of the absence of variety in the slices. But, batch training is not responsible for
producing the model with a variety of the slices in the data all the time as the samples are
chosen randomly. Being said that the model is not highly sensitive to noise as it thrives at
holding the shape of the spring with minor distortions.

It is important to emphasize, learning happens at a fast pace giving both context and locale
details. The resolution of the output is not compromised due to the symmetric nature of
the U-Net along with high-level feature management by the upconvolutional operations. The
U-Net is able to capture all the intricate features corresponding to the given dataset.

The operations performed by the data augmentation produced a plausible image dataset that
was enduring and aided the model profusely on the performance.

Some facsimiles are trained as these augmentations are done randomly, but the goal to
generalize the model is satisfied.

Successful experimentations demonstrate the highest IoU value of 0.835 for Semi-automated
segmentation and 0.741 for Fully-automated segmentation. Dice metric has proved very
intuitive in understanding the predictions when data is imbalanced with the highest value of
0.887 for Semi-automated segmentation and a value 0.813 for Fully-automated segmentation.
All these results are recorded for the model with the dropout layer. The Semi-automated
segmentation results are for every one in ten samples unlabelled and the Fully-automated
segmentation is for every one in two samples unlabelled.

54
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These prove the fact that the model can segment with sparse data and indicating less is more.
This maneuvers an effective method of annotation, which reduces manual labour greatly. It
provides sufficiently good results with limited amounts of data.

The quality of the prediction reveals that labels are not required in large quantities. This
solves the problem of rare, and expensive labelled data in some domains. The aim of this
work is satisfied as dense segmentation was performed by the model from Sparsely annotated
samples.

6.1 Future Work

Many variants of U-Net such as attention U-Net, Residual U-Net, Dense and adversarial U-
Net which has more dense layers and skip connections encourages exploring. Despite other
architectures, U-Net provides a breakthrough to many problems. This aspect of the U-Net
can be further explored to suit more kinds of data sets as utilized in this work and many more
such exquisite genres. It can be expanded to other applications.

Exploration can be done on an architectural level by creating a different set of layers for
the analysis and the synthesis part. Better pre-trained networks that are familiar with more
features can be used in encoder and decoder path to extract more information.

To get more balanced data, resampling and random cropping can be executed at the data
level. A different sparse annotation strategy can be used to intelligently annotate the dataset.

Techniques such as active learning may be adapted to increase the segmentation accuracy.
Also, more unsupervised feature learning can be incorporated to reduce human intervention.
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A List of Acronyms

3D Three Dimensional

ANN Artificial Neural Network

FCN Fully Convolutional Network

CNN Convolutional Neural Network

DNN Deep Neural Network

CV Computer Vision

2D Two Dimensional

CT Computer Tomography

IoU Intersection Over Union

ReLU Rectifies Linear Unit

ITK Insight Segmentation and Registration Toolkit

GPU Graphics Processing Unit

GB GigaByte

API Application Programming Interface

RAM Random Access Memory
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