
University of Passau
Faculty of Computer Science and Mathematics

Chair of Digital Image Processing

Master Thesis in Computer Science

A Similarity Measure for 3D Shape

Retrieval using Deep Convolutional

Autoencoder and Haar Wavelets

submitted by

Alexander Paßberger

1. Examiner: Univ.-Prof. Dr. Tomas Sauer
2. Examiner: Univ.-Prof. Dr. Michael Granitzer

Date: May 21, 2023

Abstract

Computer vision is an interdisciplinary field that focuses on developing algorithms and tech-
niques that enable machines to interpret and understand visual information from the world
around us. Within this field, 3D shape retrieval has emerged as an exciting area of research,
that involves the search and retrieval of similar 3D shapes from a large database. The main
challenge in 3D shape retrieval is designing an appropriate architecture for encoding and a
similarity function for subsequent comparison. Both have to accurately capture the structural
similarities between 3D shapes to enable effective retrieval. In this thesis, a method for 3D
shape retrieval in regards to CT scans using a convolutional autoencoder is proposed. The
models obtained demonstrate promising results and lay the foundation for further advance-
ments in the field of shape retrieval.

To measure the similarity between the different latent encodings, a combined similarity func-
tion is proposed. Several similarity functions are evaluated for the given data in 2D, and the
best function is chosen. This function combines the Euclidean distance and the tanh squash
function, effectively shifting the weighting of outliers in comparison to inliers in regards to the
basic Manhattan or Euclidean distance. This incorporates a trade-off between the Manhattan
and Euclidean distances, which helps to address the curse of dimensionality.

The design of the architecture of the autoencoder plays a crucial role in the success of 3D
shape retrieval. In the theoretical designing phase, various architectural choices are explored,
including the number of layers, their distribution of convolutional and fully connected layers,
the type of activation functions, the size of the neurons and many more. These choices are
guided by the goal of capturing the essential structural features of the input shapes, while
keeping the model complexity manageable. The most promising theoretical configurations
are evaluated through pre-tests in 2D to identify the ones that yield good performance across
different datasets and tasks.

Once the theoretical architecture is defined, the next step is to transfer it to a 3D model
and evaluate its performance. To ensure the robustness and generalizability of the proposed
method, a precise evaluation is conducted using various augmentation methods. Techniques
such as rotation, scaling, translation, and noise addition are applied to the 3D shapes in the
test set, simulating realistic variations that may occur in real-world scenarios. The perfor-
mance of the retrieval system is then evaluated based on metrics such as precision, recall,
and mean average precision. Through these steps, the proposed method undergoes rigorous
testing and refinement, aiming to achieve high retrieval accuracy and robustness in 3D shape
retrieval tasks.

The integration of wavelets into the proposed method resulted in comparable retrieval per-
formance without significant advantages in calculation time or memory usage. However, the
current wavelet integration version shows limitations in handling noisy images, requiring the
development of more sophisticated integration techniques. These findings highlight the need

for further refinement and exploration to fully leverage the benefits of wavelets in neural net-
work based 3D shape retrieval, including robustness to noise and improved integration for
calculation advantages.

In summary, this thesis proposes a method for 3D shape retrieval using convolutional autoen-
coders in CT scans. The approach incorporates a combined similarity function and explores
architectural choices for effective shape encoding. The integration of wavelets shows potential
but requires further refinement to address noise challenges. Overall, this research lays the
foundation for advancing 3D shape retrieval and holds promise for applications in various
domains.

Contents

List of Acronyms iv

List of Figures vi

List of Tables vii

List of Python Code viii

1 Introduction 1

1.1 Related Work . 2

1.1.1 Algorithmic Image Retrieval and 3D Shape Retrieval 2

1.1.2 Neural Network Image Compression and Image Retrieval 2

1.1.3 Neural Network Feature Learning and 3D Shape Retrieval 3

1.2 Research Questions . 4

2 Background 5

2.1 Similarity Measures . 5

2.1.1 Similarity Function, Distance and Metric 5

2.1.2 Pair-Wise Distances . 6

2.2 Neural Networks . 7

2.2.1 Perceptron . 7

2.2.2 Feedforward Neural Networks . 8

2.3 Convolutional Neural Networks . 10

2.3.1 The Discrete Convolution Operation 10

2.3.2 The Convolution Layer . 11

2.3.3 The Pooling Layer . 11

2.4 Autoencoder . 12

2.4.1 Feed-Forward Autoencoder . 13

2.4.2 Convolutional Autoencoder . 14

2.5 Activation Functions . 15

2.5.1 Trivial Activation Functions . 15

2.5.2 S-Shaped Activation Functions . 16

2.5.3 Rectified Linear Units . 18

2.5.4 Exponential Linear Units . 20

2.6 Loss Functions . 22

2.6.1 Error Measures . 22

2.6.2 Sum Aggregated Scale-Dependent Error Measures 23

2.6.3 Mean Aggregated Scale-Dependent Error Measures 23

i

ii Contents

2.7 Optimization . 24
2.7.1 Gradient-Based Optimization . 24
2.7.2 Momentum-Based Optimization . 26
2.7.3 Adaptive Optimization . 27

2.8 Regularization . 28
2.8.1 Data Augmentation . 29
2.8.2 The Regularization Term . 29
2.8.3 Dropout . 30

2.9 Retrieval Performance Measures . 30
2.9.1 Recall . 30
2.9.2 Precision . 31
2.9.3 Average Precision . 31
2.9.4 Mean Average Precision . 31

2.10 Wavelets . 32
2.10.1 Analyzing Wavelet and Scaling Function 32
2.10.2 Haar Wavelet . 33
2.10.3 Multidimensional Haar Wavelet . 33

3 Method 36
3.1 Similarity Measure . 37
3.2 2D Model Design . 40

3.2.1 Network Architecture . 40
3.2.2 Network Implementation . 42
3.2.3 Training Architecture . 45
3.2.4 Training Implementation . 46
3.2.5 2D Retrieval Implementation . 49

3.3 2D Layer Configuration Tests . 50
3.3.1 Fashion-MNIST . 50
3.3.2 dSprites . 58

3.4 3D Model Design . 62
3.4.1 Network Implementation . 62
3.4.2 Input Pipeline . 63
3.4.3 Training, Evaluation and Visualization 65
3.4.4 Haar Wavelet Integration . 67

4 Results 68
4.1 Test Cases and Evaluation . 68

4.1.1 Shape Similarity Tests . 68
4.1.2 Translation Robustness Tests . 69
4.1.3 Rotation Robustness Tests . 70
4.1.4 Noise Robustness Tests . 70

4.2 Shapes3D . 72
4.2.1 Model Comparison: Performance Evaluation 72
4.2.2 Model 2 ”Translation”: Retrieval Visualization 74

4.3 Blended Multi-Shapes3D and Wavelet Integration 75
4.3.1 Model Comparison: Performance Evaluation 75
4.3.2 Exploring Edge Cases: Poor Retrieval Results 77

Contents iii

4.3.3 Real Data: Retrieval Visualization . 78
4.3.4 Differences in Noise Robustness . 80

5 Discussion 82
5.1 Handling Isotropic versus Anisotropic Scaling 82
5.2 Model Size and Augmentation . 82
5.3 Using Haar Wavelet Filters . 83

6 Conclusion and Future Work 85

Bibliography 87

Declaration 94

List of Acronyms

1D one dimensional . 32

2D two dimensional . 1

3D three dimensional . 1

Adagrad Adaptive Gradient Algorithm . 27

Adam Adaptive Moment Estimation . 28

AE Autoencoder . 2

AI Artificial Intelligence . 1

API Application Programming Interface . 40

CT Computer Tomography . 4

CAE Convolutional Autoencoder . 2

CNN Convolutional Neural Network . 1

DWT discrete Wavelet transform . 32

ELU Exponential Linear Unit . 20

FFT fast Fourier transform . 32

Fashion-MNIST a MNIST-like fashion product database 36

GAN Generative Adversarial Network . 3

iv

Contents v

GMAP Group Mean Average Precision . 66

GPU Graphics Processing Unit . 49

GZIP GNU zip . 63

leaky ReLU leaky Rectified Linear Unit . 19

MAE Mean Absolute Error . 14

MAP Mean Average Precision . 31

MBE Mean Bias Error . 24

MNIST Modified National Institute of Standards and Technology 2

MSE Mean Squared Error . 14

Nadam Nesterov-accelerated Adaptive Moment Estimation 28

NN Neural Network . 3

PCA Principal Component Analysis . 2

PELU Parametric Exponential Linear Unit . 21

PReLU Parametric Rectified Linear Unit . 19

RBM Restricted Boltzmann Machine . 3

ReLU Rectified Linear Unit . 18

SELU Scaled Exponential Linear Unit . 21

tanh Hyperbolic Tangent . 16

List of Figures

2.1 Graph representation of a fully connected neural network 9
2.2 Graph representation of a fully connected autoencoder 13
2.3 Plots of common activation functions and their derivatives 17
2.4 Plots of advanced ReLU based activation functions and their derivative . . . 20
2.5 Plots of the Haar wavelet ψ(t) and it’s scaling function φ(t) 34

3.1 Example graphic on different similarity types 37
3.2 Comparison of 2D retrieval results for Manhattan and Euclidean distances . . 38
3.3 2D retrieval improvements by tanh normalized similarity measure 39
3.4 Convolutional autoencoder encoder visualization 41
3.5 Example images from the Fashion-Mnist dataset 51
3.6 Processing of example images by fm 1 . 53
3.7 Processing of example images by fm 2 . 55
3.8 Retrieval results for Fashion-MNIST shoe query 56
3.9 Retrieval results for Fashion-MNIST pullover query 56
3.10 Retrieval results for Fashion-MNIST set restricted shoe query 57
3.11 Example images of the dSprites dataset . 58
3.12 Retrieval results for the dSprites heart query 61
3.13 Retrieval results for the dSprites ellipsoid query 61

4.1 Example volumes from the Shapes3D dataset 72
4.2 Volumes of three example test queries from Shapes3D 74
4.3 Retrieval results of Model 2 on the example test queries from Shapes3D . . . 74
4.4 Example volumes of the Multi-Shapes3D dataset 75
4.5 The loss curves of Model 2 and Model 3 . 75
4.6 Easy test queries of Multi-Shapes3D with bad retrieval results 77
4.7 Bad retrieval results for easy test queries on Multi-Shapes3D of Model 2 . . . 77
4.8 Bad retrieval results for easy test queries on Multi-Shapes3D of Model 3 . . . 78
4.9 Real data test queries of Multi-Shapes3D . 78
4.10 Retrieval results for real data test queries on Multi-Shapes3D of Model 2 . . 79
4.11 Retrieval results for real data test queries on Multi-Shapes3D of Model 2 . . 79
4.12 Speckle Noise processing comparison . 80
4.13 Salt & pepper noise processing comparison 81
4.14 Gauss noise processing comparison . 81

vi

List of Tables

3.1 Results of different Dense layer configurations of fm 1 51
3.2 Results of different regularization techniques on fm 1 52
3.3 Results of different alpha values for leaky ReLU on fm 1 52
3.4 Results of fm 1 without sigmoid activation at the latent layer 53
3.5 Results of different Dense layer configurations on fm 2 54
3.6 Results of the architectures fm 1 and fm 2 after 100 training epochs 55
3.7 Precision and modified average precision of different convolution kernel sizes . 60

4.1 Retrieval scores for Model 1 and variously trained Model 2 on Shapes3D . . . 73
4.2 Retrieval scores for Model 2 ”Translation” and Model 3 ”Haar Wavelet” on

Multi-Shapes3D . 76

vii

List of Python Code

3.1 The Autoencoder base class . 42
3.2 An implementation of a chained Convolution-Activation-Pooling layer 44
3.3 An example AE implementation . 44
3.4 An example implementation of an encoder . 45
3.5 An example implementation of a decoder . 45
3.6 Interface of the CAEManager Class . 47
3.7 Loading and preprocessing of Fashion-MNIST 48
3.8 dSprites input pipeline for the train set . 49
3.9 The calculation of the similarity list . 49
3.10 Layers and configuration of architecture 1 . 62
3.11 Layers and configuration of architecture 2 . 63
3.12 Definition of the read n prepare dataset method 64
3.13 The implementation of the translation augmentation. Only the most significant

code lines are given. 64
3.14 The relevant code lines of the implementation of gauss noise augmentation . . 64
3.15 The relevant code lines of the implementation of salt&pepper noise augmentation 65
3.16 The significant lines of implementation of the speckle noise augmentation . . 65
3.17 The calculation of the average precision in the util module 66
3.18 The convenience function evaluate group . 66
3.19 The self-defined layer ConvolveFilters for an arbitrary fixed convolution, which

is used to apply the wavelet filters to the input. 67
3.20 The calculation of the Haar wavelet filters in numpy 67

viii

1 Introduction

Computer vision is an interdisciplinary field of study that involves the development of al-
gorithms and techniques to enable machines to interpret and understand visual information
from the world around us. This technology has seen widespread use in numerous applications
such as surveillance, autonomous vehicles, face recognition, medical imaging, and many more
[1–4].

Research in Artificial Intelligence (AI) and computer vision has led to significant advances
in recent years, including the development of deep learning models such as Convolutional
Neural Networks (CNNs), which have revolutionized the field. These models have achieved
remarkable results in tasks such as object detection, image classification, and semantic seg-
mentation, and have become a cornerstone of modern computer vision [5–7]. The success of
these models can be attributed to their ability to automatically learn relevant features from
raw data and capture complex patterns and relationships within images. In addition, the
availability of large datasets and powerful computational resources has enabled researchers
to train increasingly larger and more complex models, leading to continued advances in the
state of the art [8, 9].

Another crucial task in modern day vision-based AI systems is the ability to compare pic-
tures or volumes, known as matching. Matching serves as the foundation for more complex
problems such as high-dimensional structure recovery, three dimensional (3D) reconstruction,
visual simultaneous localization, mapping, image mosaic, image fusion, image retrieval, tar-
get recognition, and more [10]. It is also an essential technique for 3D shape retrieval, which
is the focus of this thesis. 3D shape retrieval is the process of searching and retrieving 3D
models from a database based on their shape characteristics and features.

The field of image matching can be divided into four different approaches. The first approach,
known as area-based methods, uses similarity measurements on the original image pixels’
intensity or information without detecting any salient structures in the image. The second and
most important approach is feature-based methods, which extract key features and descriptors
and apply the matching task to them. The third and fourth approaches use classical machine
learning or deep learning techniques to solve the problem [10].

In object retrieval, the focus is on the shape rather than the whole image, and feature-based
solutions have been the state-of-the-art approach for algorithmic solutions [11]. While these
approaches have achieved decent results in various fields, a superior approach is still missing.
An overview of algorithmic object retrieval is presented in subsection 1.1.1. Machine learning
research has been predominantly focused on the deep learning field, with CNNs being at the
forefront of development due to their promising results [12]. In subsection 1.1.2 an overview
of machine learning approaches for two dimensional (2D) image retrieval is provided, while
subsection 1.1.3 discusses the same for 3D shape retrieval.

1

2 Introduction

In this thesis, the focus is on developing a method applicable for 3D shape retrieval using
Convolutional Autoencoders (CAEs). The key contribution is the design of an appropriate
Autoencoder (AE) architecture and similarity function that can accurately capture the struc-
tural similarities between 3D shapes, allowing for effective retrieval. Furthermore, wavelet
filters are integrated into the approach to hopefully enhance the feature extraction process,
leading to a more robust, accurate, and efficient retrieval system. Through experiments and
evaluations, the proposed method demonstrates promising results and lays the foundation for
further advancements in the field of shape retrieval.

1.1 Related Work

1.1.1 Algorithmic Image Retrieval and 3D Shape Retrieval

According to A. Goodrum [13], research on algorithmic retrieval started more than 50 years
ago, in the form of systems for text retrieval. As images include information on what the
image is about as well as what is actually depicted in the image, textual representation is
problematic. Therefore, research shifted towards content-based image retrieval techniques,
which rely on the extraction of primitive features. Quite a few of these content-based in-
formation retrieval systems were used commercially from the late 1990s onward. For more
detailed information, the reader is referred to the overview work of A. Goodrum [13].

At the time content-based information retrieval systems became available for images, research
for 3D images began. In 1993, Humblet & Dunbar [14] described a similarity searching
method for structure-activity and molecular design in medicine. Ankerst et al. [15] used 3D
shape histograms based on a flexible similarity distance function as a similarity model for 3D
objects. A lot of different approaches were presented in the early 2000s and onward as the
field got a lot of attention: Saupe, Vranić and Richter used spherical harmonics and moments
on polygonal meshes based on Principal Component Analysis (PCA) for normalization [16],
[17]. In 2002, Osada et al. [18] proposed a method based on shape signatures 3D polygonal
models. In contrast to the mentioned geometrical approaches, Chen et al. [19] proposed a
novel method based on visual similarities measured with image differences in the light field.
Further methods include spin image signatures [20], spectral embedding using eigenvectors
of an appropriately defined affinity matrix [21], a hybrid descriptor composed of 2D features
based on depth buffers and spherical harmonics 3D features [22], triangulated meshes [23],
a graph based representation after mesh segmentation [24], bag-of-words descriptors [25],
covariance based descriptors [26], multiscale fourier descriptor [27] and many more. For a
precise overview, see [28], [29] or the most recent[30].

1.1.2 Neural Network Image Compression and Image Retrieval

In 1989, Le Cun et al. [31] introduced a neural network with backpropagation for processing
images directly without the need for feature vectors as input. The network was trained
for recognizing zip-code digits and classifying them using a database that is now widely
known as the Modified National Institute of Standards and Technology (MNIST) database
of handwritten digits. An updated version of the database is still frequently used to evaluate
learning techniques and is freely available [32].

1.1 Related Work 3

Research on Neural Networks (NNs) for classification continued, but they were not applicable
for retrieval or even compression for a long time. However, this changed when Hinton &
Salakhutdinov [33] introduced the concept of AEs capable of reducing the dimensionality of
an 2D image in ”Reducing the Dimensionality of Data with Neural Networks”. Afterwards,
approaches to these problems began to shift towards machine learning.

For instance, Krizhevsky & Hinton [34] used deep AEs to compress 28x28-pixel images into
semantically hashed binary codes, according to Salakhutdinov & Hinton [35]. Xu & Fang
[36] presented a deep AE for image shape retrieval that directly worked on raw 2D images.
Their AE produced a 40-dimensional descriptor using a stack of Restricted Boltzmann Ma-
chines (RBMs) for pre-training. Later Cai et al. [37] presented a triplet CNN for content-based
image retrieval. Today, deep learning approaches dominate research on image compression.
”According to experimental results, [CAE] CAEs achieve better coding efficiency than JPEG
by extracting compact features. [Generative Adversarial Network (GAN)] GANs show po-
tential advantages on large compression ratio and high subjective quality reconstruction.
Super-resolution achieves the best rate-distortion (RD) performance among them, which is
comparable to BPG [...] Deep learning based approaches not only achieve better coding effi-
ciency, but also can adapt much quicker to new media contents and new media formats.” [38,
p. 1].

1.1.3 Neural Network Feature Learning and 3D Shape Retrieval

Following the successes of deep learning approaches in image classification, object detection,
and more, researchers turned their attention towards 3D shape retrieval. Early approaches,
such as that of Zhu et al. [39], simply projected 3D shapes into 2D space as multiple views
and then aggregated the learned 2D features. Similar methods were proposed by Liu et al.
[40], Zhou & Jia [41], and Leng et al. [42].

Other works have used graph-based 3D models, such as that presented by Xie et al. [43], which
converted them into multiple one-dimensional feature vectors using the heat kernel signature
at different scales based on eigenfunction expansion with the Laplace-Beltrami operator. Af-
terwards, a discriminative AE is employed to obtain a shape descriptor by combining these
feature vectors with the latent dimension. In a similar vein, Bu et al. [44] combined a geo-
metric bag-of-words descriptor with deep belief networks for shape analysis.

More recently, fully automated approaches have emerged, such as that of Wang et al. [45],
who used a combination of CAEs, AEs, and extreme learning for rapid 3D feature learning.
Another recent work, by Yu & Sabuncu [46], combined a spatial transformer network with a
CAE to obtain a rotation-, translation-, and axis-independent scaling-invariant descriptor for
instance retrieval. These and other deep learning approaches promise to greatly enhance 3D
shape retrieval, enabling more accurate and efficient search in 3D model databases.

4 Introduction

1.2 Research Questions

Using CAE seems to be the go-to approach for solving the problem of 3D shape retrieval. A few
different architectures were proposed and used with promising results for the task, combining
feed-forward AEs and CAEs. Hence, most of those papers lack a previous comparison of the
exact layer design of deep AE architectures and therefore an explanation for the proposed
solution. Therefore, the first research question of this thesis consists of finding an appropriate
architecture to combine the various layers in CAEs.

Research Question 1. Which combination of layers, activation, and regularization is suit-
able for an CAE in the case of shape retrieval, and how to set their hyper-parameter using
state-of-the-art optimization?

AEs only performs the compression of the data; for retrieval, one still has to find a suit-
able similarity metric. The second research question therefore addresses the field of vector
comparison:

Research Question 2. Which similarity metric provides useful results in the case of shape
retrieval on latent vectors retrieved from CAEs?

In section 2.10 the Haar wavelet, a well-known and well-working algorithmic edge detector,
is presented. The first convolutional layer of deep architectures should basically learn edge-
detecting filters as well. In some architectures, like the one from Kausar et al. [47], Haar
wavelet-decomposed images are used as input to a convolutional NN for decreasing the re-
quired GPU memory for breast cancer classification in histological images. As Computer
Tomography (CT) scans deliver huge volumetric images, further optimizing is desirable in
this type of volumetric shape retrieval, too. Therefore, the third research question arriving is
whether the Haar wavelet filters can also optimize CAEs in regards to the proposed method.

Research Question 3. Can Haar wavelet filters be used in CAEs for fast edge-detection to
reduce the convolutional layers of the proposed architecture and hence the overall computation
time or memory required?

2 Background

2.1 Similarity Measures

In deep learning approaches for retrieval, the calculation of features and the comparison of
their descriptions are the two main components. For the second part, the measure of the
similarity of the received encodings of different inputs of an AE, it is necessary to employ
suitable similarity measures.

In subsection 2.1.1, the different concepts related to measuring similarity, including similarity
and dissimilarity functions, distance functions, and metrics, are presented. Since the encoding
of an AE is a multi-dimensional n-vector x = (x1, ..., xn), and generally has no distribution,
a certain dimension can encode a specific feature that can be compared pair-wise. In subsec-
tion 2.1.2 an overview of suitable distances, especially combined distances based on numerical
distances between points, is given.

Only a limited overview of suitable distances is presented here, precisely combined distances
based on numerical distances between points. For further information on distances and met-
rics, the reader is referred to [48], [49] or especially for image retrieval, [50].

2.1.1 Similarity Function, Distance and Metric

A similarity function or a dissimilarity function are loosely defined concepts used to measure
the similarity or dissimilarity between two arbitrary objects.

Definition 2.1. Similarity Function
A function s is called a similarity function if it satisfies the following three properties [48]:

(i) non-negativity s(x, y) ≥ 0;

(ii) symmetry s(x, y) = s(y, x);

(iii) s(x, y) monotone increasing for x and y being more similar.

In contrast, a function S is called a dissimilarity function if for property (iii) it is monotone
increasing for x and y being more dissimilar.

Distances and metrics are more strictly defined concepts that share the first two properties
with similarity functions [48].

5

6 Background

Definition 2.2. Distance and Metric
A function d is called a distance function or short distance if properties (i)-(iii) are satisfied.
If d also satisfies properties (iv) and (v) it is called a metric.

(i) non-negativity d(x, y) ≥ 0;

(ii) symmetry d(x, y) = d(y, x);

(iii) identification mark d(x, x) = 0;

(iv) definiteness d(x, y) = 0 if and only if x = y;

(v) triangle inequality d(x, y) + d(y, z) ≥ d(x, z).

Sometimes the identification mark definition is omitted and definiteness, which implies an
identification mark, is directly used as a condition for a distance, for example in [49]. Gentle-
man et al. [48] also states that there is no need to require symmetry with some adjustments,
mentioning air plane flight times as non-symmetric examples.

2.1.2 Pair-Wise Distances

As mentioned, the latent encoding of an AE is a n-vector x = (x1, ..., xn). Given another
encoding y = (y1, ..., yn), it is only meaningful to compare xk, k ∈ (0, n) with yk, k ∈ (0, n),
hence pair-wise between points.

Definition 2.3. pairwise distance [48]
Given two n-vectors x = (x1, ..., xn) and y = (y1, ..., yn). A distance function d(x,y) is called
pairwise if and only if

d(x, y) = F [d1(x1, y1), ..., dn(xn, yn)], (2.1)

for d1, ..., dn each being distances.

The definition of pairwise distances is general for arbitrary distances dk, k ∈ (1, n). The
most common, non-correlation-based pairwise distances are all derived from the parametric
Minkowski metric. The Minkowski metric itself is based on the Lp norm substituted with the
difference vector.

Definition 2.4. Lp Norm
For p ∈ R, p ≥ 1, the Lp norm is given by:

||x||p =

(
n∑
k=1

|xk|p
)1

p
. (2.2)

2.2 Neural Networks 7

Definition 2.5. Minkowski metric
In accordance to the Lp norm, the Minkowski metric is defined by:

dmin(x, y) = F (z1,, ..., zn) =

(
n∑
k=1

zpk

)1

p
, zk = dk(xk, yk) = |xk − yk|. (2.3)

As the name implies, the distance also satisfies the properties of a metric. The most important
cases to mention are for p = 1, 2, namely the Manhattan metric and the Euclidean metric.
For simplicity, they are often just called Manhattan or Euclidean distances, to better blend
in with a group of choose-able distances in a framework.

Definition 2.6. Manhattan Metric

dman(x, y) =

n∑
k=1

|xk − yk| (2.4)

Definition 2.7. Euclidean Metric

deuc(x, y) =

√√√√ n∑
k=1

(xk − yk)2 (2.5)

2.2 Neural Networks

NNs are a class of machine learning models inspired by the structure and function of the
human brain. The simplest and earliest form of a NN is the Perceptron [51], which can
only handle linearly separable problems. To overcome this limitation, the feedforward NN
was developed, consisting of multiple layers of interconnected neurons that use non-linear
activation functions and more powerful optimization algorithms [52]. These networks are
able to model highly non-linear and complex relationships between inputs and outputs and
have been successfully applied in many computer vision domains.

In the following sections, these two network models are presented in more detail. The basic
concept of the perceptron is introduced first in subsection 2.2.1 before moving on to the more
complex feedforward neural network in subsection 2.2.2.

2.2.1 Perceptron

Feedforward NNs are also referred to as multilayer perceptrons based on Frank Rosenblatt’s
1957 presented perceptron algorithm [51]. The Perceptron algorithm is a type of feedforward
NN that can be used for binary classification problems.

8 Background

At each iteration, the perceptron calculates a linear combination of the input features x, the
weight vector w and a bias wb. For simplicity of notation, the vectors x and w are expanded
such that x0 = 1 and w0 = wb. After the calculation of z, a step function ϕ (such as the
Heaviside function) is applied to produce a binary output y. The perceptron then updates its
weights w based on the difference between the predicted output Py and the actual output Ay,
multiplied by the input features and a learning rate η. This update rule aims to minimize the
error between the predicted and actual outputs over the training examples. The calculation
of the basic perceptron is presented in Definition 2.8.

Definition 2.8. Perceptron [51]
Let x be the expanded input vector of length n+1, w the expanded weight vector of length n+1
and ϕ a Heaviside mapping function. For each training object at each iteration the Perceptron
calculates the mapping

y = ϕ(z) = ϕ(
n∑
k=0

wkxk) = ϕ(wb + w1x1...+ wnxn) = ϕ(wTx). (2.6)

It then updates the weights vector w accordingly to the learning rate η and the difference
between the predicted output and actual output [53].

wk = wk +∆wk, (2.7)

∆wk = η(Ay − Py)xk (2.8)

The perceptron is a simple but powerful algorithm that has inspired many modern NN archi-
tectures. However, it has limitations in its ability to handle non-linearly separable problems
[52].

2.2.2 Feedforward Neural Networks

Feedforward NNs are a powerful class of NNs that build on the concepts introduced by the
Perceptron. In modern deep feedforward networks, many neurons are combined in parallel
and in chains to form complex computations. Each neuron is based on the perceptron but
replaces the heavyside step function ϕ with a non-linear activation function. To learn the
parameters of the network, more powerful optimization algorithms based on the gradient are
used [53]. These optimization algorithms are presented in detail in section 2.7.

Definition 2.9. Feedforward Network
Let x be the input vector, θ be the parameters of the whole network, and y be the desired output
given by a function y = f∗(x). Then the feedforward network defines the mapping y = f(x; θ)
and learns the values of θ such that f approximates f∗ as well as possible [52].

A feedforward NN maps an input vector x to an output vector y by applying a composition
of d multiple functions chained together like f(x) = fd(...(f2(f1(x)))) to the input. The

2.2 Neural Networks 9

Figure 2.1: The graphic shows a fully connected NN with a depth of 3 and a configuration of 8-5-1
neurons at the layers. Each of the circles corresponds to a neuron in the network

chaining of these functions proposes the term network, whereas each function f l, l ∈ (1, d)
proposes a layer of the network. Each layer is furthermore composed of single neurons, and the
number of neurons matches the dimensionality of the layer function f l. The number of nodes
in each layer determines the width of the network, while the number of layers determines its
depth [52].

The goal of training is to find the values of θ that minimize a specified loss function, which
measures the discrepancy between the predicted output and the desired output [52].

The mapping f can be presented by an acyclic graph, either using the layer functions as
nodes or all single neurons [52]. An example graph with single neurons as nodes is shown in
Figure 2.1

10 Background

2.3 Convolutional Neural Networks

CNNs are a specialized type of NNs designed to process grid-like data, such as time-series,
images, or volumes, by training convolutional kernels [52]. Instead of the general matrix
multiplication used in traditional NNs, CNNs employ the linear mathematical convolution
operation, which is also used in algorithmic image and signal processing [54]. This leads
to Goodfellow’s definition: ”Convolutional networks are simply neural networks that use
convolution in place of general matrix multiplication in at least one of their layers.” [52,
p. 330].

Using filters and masks in algorithmic digital image processing is inspired by the way the
human visual cortex processes information. The convolution of a signal with a kernel as a
masking operation is similar to how the receptive field processes stimuli [54]. Similar to these
hand-designed algorithms, convolutional layers extract hierarchical features, which are then
used in fully connected layers for classification or encoding in the case of AEs [53].

The ground-breaking work of Le Cun et al. [31] in 1989 introduced such CNNs and revolu-
tionized machine vision, inspiring a generation of researchers and enabling them to achieve
excellent results. In 2019, Yann LeCun, Yoshua Bengio, and Geoffrey Hinton were awarded
the Turing Award in the field of artificial intelligence for their contributions [53]. Today,
CNNs are the go-to approach for image- and signal-related tasks.

2.3.1 The Discrete Convolution Operation

The convolution operation is a mathematical operation on two real-valued functions that
is widely used in various fields, including signal processing, image processing, and machine
learning [52]. In the context of CNNs, the convolution operation is used to process grid-like
data such as images, time series, or volumes.

Images or volumes and their convolution kernels used during processing are multidimensional
arrays and therefore discrete. The discrete convolution of two one-dimensional signals is
defined in the following.

Definition 2.10. Discrete one-dimensional Convolution [54]
Let x1, x2 be two discrete one-dimensional real-valued signals. Then the convolution operation
is given by:

x1[n1, n2] ∗ ∗h[n1, n2] =
+∞∑

k1=−∞

+∞∑
k2=−∞

x2[k1, k2] · x1[n1 − k1, n2 − k2]. (2.9)

In practice, assuming every point outside the finite set is zero, the infinite summation can
be implemented as a summation over a finite set [52]. Thus leading to the definition of the
discrete convolution for an n-dimensional signal as:

2.3 Convolutional Neural Networks 11

Definition 2.11. Discrete n-dimensional Convolution
Let x1, x2 be two discrete n-dimensional real-valued signals. Then the convolution operation
is given by:

x1[n1, ..., nm] ∗ ∗x2[n1, ..., nm] =
∑
k1

...
∑
km

x2[k1, ..., km] · x1[n1 − k1, ..., nm − km]. (2.10)

By applying the convolution operation with different convolution kernels at the layer level, a
CNN learns to extract various feature maps of the input, leading to hierarchical features in
subsequent layers. The convolution operation is a key component in the design of CNNs and
is responsible for their ability to process grid-like data effectively [53].

2.3.2 The Convolution Layer

The convolution layer is the most important building block of CNNs. The filters learn to detect
specific patterns or features in the input data, such as edges, corners, textures, or shapes. The
convolution layer thus learns to extract hierarchical features from the input, with the lower
layers detecting low-level features and the higher layers detecting more complex features that
are combinations of the lower-level features [52, 53].

In such a layer, the matrix multiplication of the perceptron is replaced with a convolution
operation, resulting in a trainable filter kernel. Multiple kernels are applied by convolutions
to the layers input, outputting a feature map for each kernel. The trainable weights in the
kernel correspond to the weight vector in feed-forward networks or perceptrons, respectively.
To better see the similarities, the multiple sums can be transferred into one big sum using
new one-dimensional indices. As the second signal h becomes the trainable filter kernel, its
values are furthermore simply denoted as w alike. The n-dimensional convolution can then
be rewritten like this:

∑
k1

...
∑
km

x2[k1, ..., km] · x1[n1 − k1, ..., nm − km] =
∑
k

wkxk. (2.11)

By adding bias to the calculation and wrapping everything up with an activation function, the
basic convolution layer with no padding and stride one is obtained. For practical applications,
mostly the same padding is used, which simply puts a padding around the input input such
that the output feature maps are of the same size as the input images. Strides, on the
other hand, correspond to the step size of the summation indices or simply the step size
of the performed filtering and can act as an alternative to using pooling layers. For more
information on padding and strides, readers are referred to [55].

2.3.3 The Pooling Layer

The convolution operation is complex and both heavy in calculation time as well as in memory
usage. To reduce the amount of processing data, a form of sub-sampling is needed in practice
[54]. As the basic sub-sampling algorithm (simply omitting every nth value) leads to poor

12 Background

performance, so-called pooling algorithms are mostly used. These algorithms calculate a new
value based on their local neighborhood [54].
An alternative to mention are all convolutional networks. They rather hide the sub-sampling
directly in the convolution by iterating with step sizes of more than oner over the input indices
than using explicit pooling layers (see for example [56]).

Definition 2.12. The 2D Pooling Operation
Let the step size be s and the input feature map m be rectangular of size n × n. Then m is
divided into k = i2, i = n/s rectangle pooling regions r0,0, ..., ri−1,i−1. Each of these pooling
regions builds a group with |rl,j | = n2, l, j ∈ (0, i − 1) input activations. Then pooling of the
specific operator ϕ calculates

∀l, j ∈ (0, i− 1) : pl,j = ϕ(rl,j) = ϕ

 msl,sj ... msl,sj+s−1

...
msl+s−1,sj ... msl+s−1,sj+s−1

 , (2.12)

where sl and sj denote the indices of the top-left corner of each pooling region.

The result is a sub-sampled i×i matrix p. The operation can also be seen as shifting a pooling
kernel across the input feature map, comparable to filtering with masks. Higher-dimensional
pooling is performed accordingly. The most common pooling algorithms are:

- average or mean pooling [31]: ϕ(r) = mean(r)

- max pooling [57]: ϕ(r) = max(r)

- Lp pooling [58]: ϕ(r) =

(
1

k

∑
l∈r a

p
l

)1

p , al being the feature value at position l in r

2.4 Autoencoder

AEs are a type of NN that have gained a lot of attention in recent years due to their ability to
convert high-dimensional data into low-dimensional codes. Basically, AEs are just a special
case of NNs consisting of two symmetrically connected networks and can be trained alike [52].

The concept of an AE can be traced back to the early days of perceptron-based NNs. Rumel-
hart et al. [59] describes an AE like NN as early as 1985, but without a small central layer.
Goodfellow et al. [52] in contrast to their standard literature book ”deep learning” Ballard
[60] as first theoretical contributions [61]. However, it wasn’t until 2006 that AEs was imple-
mented as a symmetric NNs with a small central layer by Hinton & Salakhutdinov [33].

Since then, AEs has become the go-to approach for dimensionality reduction, feature learning,
and representation learning, outperforming previous hand-designed algorithms like JPEG for
image compression [38].

2.4 Autoencoder 13

Figure 2.2: The graphic shows a deep fully connected undercomplete autoencoder with a total of
five layers. The configuration of 8-4-1-4-8 neurons at the layers is chosen randomly. The
marked left circle defines the encoder f(x), the right circle the decoder g(h).

2.4.1 Feed-Forward Autoencoder

An AE is comprised of two connected feed-forward networks that build a larger network.
As shown in Figure 2.2, a feed-forward AE consists of an encoder function h = f(x) and
a decoder function r = g(h). The encoder function compresses the input x into a lower-
dimensional representation called the encoding or code h. This last layer of the encoder, the
latent layer, acts as the input layer for the decoder function. The decoder function then tries
to reconstruct the original input x from the code h. The decoder, generally (it is common
practice but not mandatory), is a network symmetric to the encoder. For compression-related
problems, one is generally interested in the received encoding h, not the reconstruction [52].

The overall computation of an AE is therefore given by y = g(f(x)), where y is the output
of the network. However, this implies the problem of an AE learning to just copy the input.
To address this problem, it is mandatory to restrict the AE during training to only copy
approximately and only copy input that resembles training data [52]. A variety of restrictions
exist for feed-forward AE, however, all of them force the model to prioritize which aspects of
the input should be copied, leading to the learning of useful properties of the data [52].

The easiest way to prevent the AE from learning the identical function is to restrict the
dimensionality of the encoding h, known as Undercomplete AE. ”Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the training
data” [52, p. 503].

Definition 2.13. Undercomplete Autoencoder
An Undercomplete AE is an AE that fulfils the property:

(i) dim(h) < dim(x),

where dim(·) denotes the dimensionality of a vector.

14 Background

The learning process of an AE involves minimizing a loss function. As AE try to reconstruct
the input, the loss function penalizes g(f(x)) for being dissimilar from x [52]. The weights
are then updated during back-processing to minimize L(x, g(f(x))).

Common loss functions such as Mean Squared Error (MSE) or Mean Absolute Error (MAE)
can be used for L. An overview of loss functions is provided in section 2.6. Since the input is
used as a reference for the loss, AEs are a form of unsupervised learning that can be applied
to unlabeled data [52].

The AE is capable of learning a powerful non-linear generalization of PCA, especially with
non-linear encoder and decoder functions [52]. However, to achieve proper functioning, it is
essential to set suitable dimensions for all hidden layers. When the AE has too much capacity,
it may simply copy the input data and fail to extract useful information. In contrast, an AE
with insufficient capacity may not be able to reconstruct the input well and is unable to
learn a good encoding function [52]. Even an AE with one latent dimension and a powerful
non-linear encoder and decoder could theoretically learn the function:

f(g(x)) =

{
f(x) = i ∀x(i)

g(i) = x(i) ∀i.
(2.13)

Such an AE thus performs a copying [52]. On the other side, an AE with too little capacity
fails to reconstruct the input well and thus fails to learn a good encoding function.

2.4.2 Convolutional Autoencoder

Convolutional Autoencoders (CAEs) combine the two concepts of AEs and CNNs. While
the encoder part of a standard AE is a feed-forward network, the encoder of an CAE is a
CNN, which is better suited for image data. To reconstruct the input data, the decoder
part of the CAE requires transposed operations for the convolution and pooling layers used
in the encoder. This can be achieved through the use of transposed convolution layers, and
unpooling layers, respectively.

The transposed convolution is basically a convolution operation, but with the forward and
backward passes switched. Depending on the settings of the convolutions in the encoder,
different paddings might be needed for implementation. For more detailed information on
the transposed convolution, the reader is again directly referred to [55]. The unpooling
operation also depends on the pooling algorithm used in the encoder. For average pooling,
the basic upsampling algorithm of duplicating each value by the desired amount, also known
as the nearest neighbor, is sufficient [62]. For max pooling, the value is usually set at a fixed
place in the output image and filled with zeros around it. Sometimes the place is also chosen
randomly. The version of always using the upper left corner is known as bed of nails [62]. To
restore more spatial information, a more advanced algorithm called what-where pooling was
proposed in [63]. It restores the value at the right position during unpooling, but it needs a
special max pooling to also store the position information in the first place.

The combination of convolution and deconvolution layers in the CAE allows for the learning
of compressed representations of image data while preserving important spatial information
[52]. Since the encoder and decoder of CAEs are CNNs, they can be trained end-to-end using
backpropagation, making them suitable for large-scale image processing tasks [64].

2.5 Activation Functions 15

2.5 Activation Functions

Having presented the abstract, high-level concepts used in this thesis, it is time to dive deeper.
The upcoming sections take a detailed look at the building blocks of NNs and especially of
CAEs, which are crucial for their performance. As a start, the absolute essential activation
functions are presented. Without an activation function, the neurons of an NN would output
a linear function. This would limit the capability of NNs to that of a linear regression model,
which further implicates the need for non-linear activation functions [65].

An activation function takes the weighted sum of inputs and biases to produce an output,
which decides the activation of the neuron. Mostly simple functions are used, which have a
well-defined suitable derivation to aid the gradient processing during back-propagation [66].
Over time, a lot of different activation functions have been proposed. The most commonly
used and most promising ones for the task are presented starting at section subsection 2.5.3.
Furthermore, the developments that led to the state of the art are presented in the upcoming
sections. For further information and more activation functions like the very common Softmax
function in classification tasks, the reader is referred to Nwankpa et al. [67].

2.5.1 Trivial Activation Functions

Binary Step Activation

A mandatory requirement for an activation function is to either produce an activated or
deactivated neuron. The simplest activation function is therefore a binary threshold function,
namely the binary step function.

Definition 2.14. Binary Step Function [65]

binary(xk) =

{
1, xk ≥ 0

0, xk < 0
(2.14)

The threshold of 0 can be set to a more suitable value. It is easy to implement and suitable
for a simple linear binary classifier. It is not suited for multi-class classification, non-linear
classification, or back propagation as the gradient is zero [65].

Linear Activation

According to Sharma et al. [65]: ”The main drawback of the binary step function was that
it had zero gradient because there is no component of x in binary step function”. Again, just
using the next simplest function available gives the linear activation function.

Definition 2.15. Linear Function

lin(xk) = αx, (2.15)

16 Background

with the chosen constant scalar α. The linear function has a non-zero gradient; however, the
value of the gradient is the same for every value. The weights and biases will be updated,
but not the errors. It is therefore only suitable for simple tasks or when interpretability is
required [65].

2.5.2 S-Shaped Activation Functions

The linear function made clear that a good activation function needs to update the weights
and biases such that learning happens and the error reduces. Back propagation uses the
derivative; big differences should result in bigger updates, and complex problems should be
possible to solve. Therefore, the activation function should be non-linear but fully differen-
tiable, with a derivative centered at null.
S-shaped functions like the sigmoid function or the Hyperbolic Tangent (tanh) match those
wanted properties quite well, with their derivative being Gaussian-shaped. Even more, they
transform the values into a restricted range while deriving. This resulted in S-shaped func-
tions being the dominant activation functions in NNs for a long time [65]. There exist more
improved variants of the presented basic functions, for which the reader is referred to [67] if
interested.

Sigmoid

The classic s-shaped functions in machine learning are the sigmoid functions. Mostly the
logistic sigmoid activation function, also referred to as the squashing function or Expit, is
used [67]. It differs slightly from the basic sigmoid function by a scaling factor to make it
more symmetric about zero [65]. Figure 2.3 shows the graph of the function and its derivative.

Definition 2.16. Logistic Sigmoid

σ(xk) =

(
1

1 + e−xk

)
(2.16)

The derivative of the Logistic Sigmoid is ([68] for detailed steps):

σ′(xk) =
e−xk

(1 + e−xk)2
= σ(xk)(1− σ(xk)). (2.17)

The logistic sigmoid function and its derivative are easy to understand and apply. It delivers
good results in shallow architectures, but the gradient is only updated in one direction due to
the value transformation between zero and one. This leads to slow convergence and saturated
neurons in deep architectures with problems like the ”vanishing gradient problem”: activation
gradients die, hence stopping the training process itself [66]. The sigmoid activation function
is still sometimes used in deep learning today, but it appears only at the output layer[67].

2.5 Activation Functions 17

Figure 2.3: Graphic a) shows the plot of the common activation functions Sigmoid, tanh, ReLu, and
Softplus. The shifting relation between the sigmoid and the tanh function can easily be
seen in it. It also clearly shows that ReLu is a combination of a binary step function and
a linear function, and SoftPlus is a smoothed version of Relu. Graphic b) shows their
corresponding derivatives. The S-Shape function shows its expected Gaussian-shape
form. For the not fully differentiable ReLu function, relu’(0)=0 is used, resulting in a
binary step function.

Hyperbolic Tangent

A major problem with the sigmoid function is its transformation into zero-one space. To ad-
dress the problem, a new function is formed by shifting the sigmoid function. The newly cre-
ated function Hyperbolic Tangent (tanh) ranges between negative one and one. The graphic
Figure 2.3 shows the tanh function in red. It can be written in a few different forms, of which
the last one is the most commonly used.

Definition 2.17. Hyperbolic Tangent

tanh(xk) = 2 · σ(2xk)− 1 =
1− e−2xk

1 + e−2xk
=

(
exk − e−xk

exk + e−xk

)
(2.18)

The derivative is ([69] for detailed steps):

tanh′(xk) = 1− tanh(xk)
2. (2.19)

The tanh function is non-linear and bounded. The gradient is steeper than the sigmoid
gradient. But most important, it is symmetrically centered around zero [70]. This provides
better training performance in deep architectures, as it is less complex in the back-propagation
process. The function was broadly used in recurrent NNs for natural language processing and

18 Background

speech recognition [67].
It still suffers from the vanishing gradient problem and produces some dead neurons, as it
can only attain a gradient of one when the input value is zero.

2.5.3 Rectified Linear Units

Rectified Linear Unit (ReLU)

The ReLU function itself was first used for NNs in 1975 by Fukushima [71]. The name
”Rectified Linear Unit” however, derives from the 2010 paper of Nair & Hinton [72]. The
function successfully eliminates the vanishing gradient problem of the earlier sigmoid and
tanh functions. Until now, it has been the most commonly used activation function and
absolutely dominates as an activation function in the hidden layers of practical deep learning
applications [67].
The function is a very simple one and is basically a combination of a binary step function and
a linear function. It rectifies inputs less than zero by simply setting them to zero and keeps
values greater than zero.

Definition 2.18. Rectified Linear Unit

relu(xk) = max (0, xk) =

{
xk, ifxk ≥ 0

0, ifxk < 0
(2.20)

The derivative is:

relu′(xk) =

1, ifxk > 0

0, ifxk < 0

undefined, ifxk = 0

. (2.21)

It is important to note that the derivative of ReLU is undefined for the case x = 0 in terms
of analysis. As the derivative is necessary for back-propagation, it is mostly set to 0 in the
field of NNs (e.g., in TensorFlow). The plotted graph of ReLU and its derivative is shown in
green in Figure 2.3 together with the previously presented activation function, and in black
with other ReLU based activation functions in black in Figure 2.4. The set value f ′(0) = 0 is
used for derivation, as mentioned.
ReLU offers better performance in deep learning than sigmoid and tanh due to its simplicity.
It does not compute exponentials or divisions in either direction. ReLU furthermore offers
more generalization and produces sparse hidden units as it forces the values between zero and
maximum [67]. It solves the biggest problems of sigmoid and tanh, but still has its shortcom-
ings. It is prone to overfitting and sometimes fragile during training, due to the dead gradient
problem. As negative values are strictly set to zero, gradients can become trapped in a zero
update loop, and therefore neurons give zero activation [67].

2.5 Activation Functions 19

Softplus

Another function to mention here is Softplus, presented by Dugas et al. [73].

Definition 2.19. Softplus

softplus(xk) = log(1 + exk) (2.22)

The function is a smoothed version of ReLU and is a primitive of the sigmoid function. It
has a non-zero gradient, which stabilizes the performance of deep NNs [67] and decreases the
possibility of neuronal death [70]. It is not often used due to its complexity, and is mostly
applied in statistical applications [67]. The graph and derivative can be seen in Figure 2.3 in
orange.

Parametrized ReLU and Leaky ReLU

As setting negative values simply to zero sometimes results in a zero update loop, a few other
ReLU variants were introduced. For leaky Rectified Linear Unit (leaky ReLU) L. Maas et al.
[74] replaced the negative side of the function with the extremely small linear function 0.01x.
This results in a binary linear function. The small value is now mostly replaced by a fixed
parameter, α.

Definition 2.20. Leaky ReLU

lrelu(xk) =

{
xk, ifxk ≥ 0

αxk, ifxk < 0.
(2.23)

Common values are α = 0.2 (keras standard value) or α = 0.3 (TensorFlow standard value).

In 2015, He et al. [75] replaced the simple scalar α with a vector a = a0, ..., an, learned while
training. This results in a parametrized linear function known as Parametric Rectified Linear
Unit (PReLU).

Definition 2.21. Parametrized ReLU

prelu(xk) =

{
xk, ifxk ≥ 0

akxk, ifxk < 0
(2.24)

Both versions seem to deliver promisingly better results in so far tested cases than ReLU.
Furthermore, a randomized ReLU function as well as an S-shaped ReLU were proposed, but
they lack deeper research [67].

20 Background

Figure 2.4: Graphic a) shows the plot of ReLu and its different proposed variations, namely
leaky ReLU, ELU and SELU. For leaky ReLU α = 0.3 is chosen, the standard used
in numpy ml and TensorFlow. The scale was set differently for the other figures to
better highlight the differences, as the positive values stayed the same for all of them.
Graphic b) again shows their corresponding derivatives. Interesting to mention is the
spike at around zero for SELU, with values greater than one. The parametrized versions
of ReLu and ELU are omitted in the graphic due to practical problems with drawing
them. As their parameters are learned as hyperparameters during training, their graphs
change as well.

2.5.4 Exponential Linear Units

Whereas the previously presented methods replaced the negative part of ReLU with a linear
function, Exponential Linear Unit (ELU) and its variants replaced the negative side with
exponential functions.

Exponential Linear Unit (ELU)

The basic ELU function was presented in 2015 by Clevert et al. [76].

Definition 2.22. Exponential Linear Unit

elu(xk) =

{
xk, ifxk > 0

α(exp(xk)− 1), ifxk ≤ 0
(2.25)

Whereas α is a hyperparameter to control saturation for negative net inputs. ELUs derivative

2.5 Activation Functions 21

is given by:

elu′(xk) =

{
1, ifxk > 0

elu(xk) + α, ifxk ≤ 0
. (2.26)

”In contrast to ReLUs, ELUs have negative values which pushes the mean of the activations
closer to zero. Mean activations that are closer to zero enable faster learning as they bring
the gradient closer to the natural gradient [...]” [76, p. 5]. The ELU function provides more
robust representations, faster learning, and better generalization compared to ReLU variants,
but it suffers from known problems with other activation functions as values are not centered
at zero [67].

Parametric Exponential Linear Unit (PELU)

To solve the shortcomings of ELU Trottier et al. [77] introduced PELU. It differs by two
additional parameters, β and γ and is given by:

Definition 2.23. Parametric ELU

pelu(xk) =

γx =
α

β
xk, ifxk > 0

α(exp(
xk
β
)− 1), ifxk ≤ 0

(2.27)

The equation γ =
α

β
is derived by the constraint of always being differentiable at xk = 0. As

PELU provides fewer bias shifts and vanishing gradients, it seems to be a good option for
convolutional NNs.

Scaled Exponential Linear Unit (SELU)

Another novel variant of ELU is SELU presented by Klambauer et al. [78] in 2017. Its goal
is to receive a self-normalizing NN, by normalized activations that cannot be derived from
any other presented activation function. Activations of a NN are normalized if the mean and
variance across samples are within predefined intervals, which results in them being transitive.

Definition 2.24. Scaled ELU

selu(xk) = λ

α

β
xk, ifxk > 0

α(exp(x)− α), ifxk ≤ 0
(2.28)

With λ > 1 being a slope control parameter. This ensures a slope larger than one for positive
net inputs. The parameters α and λ are constants; as a result, the authors propose to initialize

weights using Lecun-Normal initialization [78] wij ∼ N (0,
1

fan in
).

22 Background

2.6 Loss Functions

In section 2.5 an important building block of the forward processing in an AE network was
presented. To enable the model to learn, it has to be changed over time in such a way that it
adapts to the data. This learning process is archived by changing the weights of the neurons
during back-propagation. In order to update the weights in this backward calculating process
accordingly, it is mandatory to first evaluate the correctness of the current results. For this
purpose, loss functions are used, mostly in the form of performance metrics.
Loss functions compute a derivation of the label value from the predicted result. The concepts
are based on the ones of distance functions and metrics shown in section 2.1. In contrast to
metrics, the notation here is changed to a and p for the actual value respectively predicted
value. Loss functions consist of three parts: a point distance d as presented, a normalization
N to enable comparison between multiple series of various dimensions, and an aggregation
operator G to retrieve a single value [79].

2.6.1 Error Measures

The properties of a performance metric are mostly determined by the distance function used.
Most common are performance metrics based on subtracting point distances, often familiar
from the Minkowski metric and Lp norm. These are simply referred to as error measures [79],
whereas the error is denoted as D. Important error types are [79]:

- D1 = Ak − Pk, the (magnitude of) error: The simplest way of determining a point dis-
tance is by just subtracting the predicted from the actual. It is efficient, uses the same
units as the data, is easy to interpret, and, in many cases, is proportional to the busi-
ness objective. Its greatest advantage is simultaneously its greatest disadvantage. The
positive and negative values may diminish during the aggregation phase, which could
lead to a falsely accurate result, but showing the magnitude and hence the direction of
the error can be used to distinguish between overestimation and underestimation.

- D2 = |Ak−Pk|, the absolute error: This calculation only uses positive values and there-
fore avoids falsely accurate results. As a result of this, the bias can no longer be derived.
Apart from that, the error still sticks to the data units and is easily interpretable.

- D3 = (Ak − Pk)2, the squared error: This error also avoids negative values but no
longer weights all values the same. This leads to strong errors being penalized more,
while small errors are penalized less. It has good mathematical properties, like being
continuously differentiable.

- D4 = ln(Pk/Ak) = ln(Pk)− ln(Ak), the logarithmic quotient error

- D5 = |ln(Pk/Ak)|, the absolute logarithmic quotient error

The logarithmic errors are only included for completeness. A detailed description is given in
the cited literature of Botchkarev [79].

For image AEs the compare value is the input, precisely single-series vectors of continuous
values including zeros. This would lead to problems in losses with normalization N = a−ci like
mean percentage error [79]. There is also no need for the loss function to be dimensionless.

2.6 Loss Functions 23

Hence, only scale-dependent error measures are presented in this thesis. They are sufficient
for the task and defined by [79]:

Definition 2.25. Scale-Dependent Error Measure
A performance metric L is called a scale-dependent error measure if and only if the following
properties apply:

(i) L is an error measure, e.g. D is a point-wise distance function based on subtraction

(ii) L is scale-dependent, e.g. it is unitary normalized by N = 1

The final phase of aggregating over a data set is accomplished by common aggregation func-
tions like the arithmetic mean (referred simply to as mean in the following), the median, the
geometric mean, the sum, or the harmonic mean [79]. The following sections present some of
the most commonly used scale-dependent error measures. These use sum and mean aggre-
gation and are based on the magnitude of the absolute and squared errors. For a complete
overview of aggregation, normalization, and point distance techniques, the reader is referred
to [79].

2.6.2 Sum Aggregated Scale-Dependent Error Measures

Sum aggregation is the most basic aggregation operator possible, without any averaging. As
values are only summed together, there are no new properties added by this aggregation
operator. There seems to be no commonly used loss based on the magnitude of error or sum
aggregation, only the absolute and squared errors. These are denoted as L1 loss and L2 loss,
respectively [80].

Definition 2.26. L1 Loss

L1(a, p) =

n∑
k=1

|ak − pk| =
n∑
k=1

ek (2.29)

Definition 2.27. L2 Loss

L2(a, p) =
n∑
k=1

(ak − pk)
2 =

n∑
k=1

ek (2.30)

2.6.3 Mean Aggregated Scale-Dependent Error Measures

The (arithmetic) mean aggregation is the most popular aggregation method used. It is sim-
ple to calculate, and the result value corresponds to the expected value of the error. The
result, however, is strongly affected by outliers and skewed data, resulting in an asymmetrical
distribution of data and extreme values [79].

24 Background

The most basic loss function in this class is the Mean Bias Error (MBE), the mean aggre-
gation of the magnitude of error ek. In contrast to the previous section, there is therefore a
magnitude-based loss in this class, but it is still rarely used in machine learning due to the
canceling problem of the magnitude error [81].

Definition 2.28. Mean Bias Error (MBE)

mbe(a, p) =

∑n
k=1(ak − pk)

n
=

∑n
k=1 ek
n

(2.31)

More common is the MSE with the absolute error ei which of course means aggregated.

Definition 2.29. Mean Absolute Error (MAE)

mae(a, p) =

∑n
k=1 |ak − pk|

n
=

∑n
k=1 ek
n

(2.32)

Similar, the MSE is defined based on the squared error.

Definition 2.30. Mean Squared Error (MSE)

mse(a, p) =

∑n
k=1(ak − pk)

2

n
=

∑n
k=1 ek
n

(2.33)

2.7 Optimization

The optimization algorithm is responsible for the network’s actual learning. The algorithm
addresses the problem of minimizing or maximizing a function, called the objective function
or criterion J(θ,X,A). In the case of deep learning, it is common practice to only use
minimization criteria. The objective function is then referred to as a loss function or error
function [52], as presented in the previous section 2.6. The predicted values are calculated
from the given input dataset X and the parameters θ.

In most cases, this calculation is gradient-based. It is important to notice that the gradient
calculation itself is not done by the optimization algorithm. The optimization algorithm only
defines how to change the weights and is an important part of the bigger back-propagation al-
gorithm. This algorithm calculates the loss and gradient, then adjusts the weights of each layer
in accordance with the chosen optimization algorithm while propagating the error through
the whole network. For more information on the back-propagation algorithm, the reader is
referred to chapter 6.5 in [52, p. 204].

2.7.1 Gradient-Based Optimization

The basic gradient descent technique for reducing an objective function J(θ, x, a) was already
introduced in 1847 by Cauchy. It reduces J(θ, x, a) by changing θ in small steps of the opposite
sign, according to the derivative. For more details, see Chapter 4.3 in [52, p. 82].

2.7 Optimization 25

Batch Gradient Descent

Batch gradient descent computes the gradient descent for the entire dataset X. This results
in accurate calculation, but it is slow, intractable for big datasets depending on memory size,
and does not allow for on-the-fly updates [82].

Definition 2.31. Batch Gradient Descent [82]
Let θt ∈ Rd be a model’s parameter set at step t, J(θ,X,A) an objective function, and η
the learning rate determining how big the update steps should be. The calculation of batch
gradient descent for the entire dataset is then given by:

θt+1 = θt − η · ∇θtJ(θ
t, X, a). (2.34)

According to Ruder, ”Batch gradient descent is guaranteed to converge to the global minimum
for convex error surfaces and to a local minimum for non-convex surfaces” [82, p. 2].

Stochastic Gradient Descent

Stochastic gradient descent performs one update at a time, which reduces redundant com-
putations for large datasets. It is much faster than batch gradient descent and makes online
learning possible, but it causes the objective function to fluctuate [82].

Definition 2.32. Stochastic Gradient Descent [82]
Let again θt ∈ R be a model’s parameters at step t, J(θ,X,A) an objective function, and η
the learning rate. Furthermore, let xi be a single training example from the dataset X with
its corresponding label ai. Stochastic gradient descent then computes the update:

θt+1 = θt − η · ∇θtJ(θ
t;xi; ai). (2.35)

The fluctuation enables exploration of better local minima but also complicates convergence
to the global minimum as it continues to overshoot. When decreasing the learning rate slowly
over time, stochastic gradient descent, however, converges to a local or global minima and
therefore shows similar convergence behavior to batch gradient descent [82].

Mini-Batch Gradient Descent

The mini-batch gradient descent algorithm is a compromise between both previously presented
algorithms by using subsets, or mini-batches, of the training examples. This reduces the
variance and therefore fluctuation, while optimized matrix operations make it computationally
efficient [82].

Definition 2.33. Mini-Batch Gradient Descent [82]
Let θt ∈ R be a model’s parameters at step t, J(θ,X,A) an objective function, and η the
learning rate. Furthermore, let x(i;i+n) be a batch of n training examples with its n labels
a(i;i+n). Mini-batch gradient descent computes the update rule:

θt+1 = θt − η · ∇θtJ(θ
t;x(i;i+n); a(i;i+n)) (2.36)

26 Background

2.7.2 Momentum-Based Optimization

The classical gradient algorithms are known to possibly converge very slowly. To improve
the speed, multiple methods have been proposed, like the conjugate gradient method or the
momentum gradient method. Due to calculation difficulties, only the momentum method has
been used until now [82].

Momentum

The basic momentum method includes a fraction γ of the previous update vector ∆θt−1 to
the calculated update ∆θt . This accelerates the gradient descent in the right direction, which
reduces oscillations [82].

Definition 2.34. Gradient Descent with Momentum [83]
Let θt ∈ R be a model’s parameters at step t, J(θ,X,A) an objective function, and η the
learning rate. Furthermore, let γ be the momentum term, usually set to 0.9 and ∆θ be the
update vector. Gradient descent’s update rule is then given by:

∆θt = η · ∇θt,X,AJ(θ
t) + γ∆θt−1 (2.37)

θt+1 = θt −∆θt . (2.38)

The momentum term increases gradients in the same direction and decreases gradients in
changing directions [82]. This averages short-axis oscillation while contributing to the long-
axis and hence improves convergence speed [83]. The shown definition uses batch gradient
descent just for simplicity. Momentum can be combined with either of the presented gradient
descent algorithms and is mostly combined with mini-batch gradient descent if used in real
networks.

Nesterov Accelerated Gradient

Nesterov accelerated gradient is an improvement of the basic momentum method, which
implements a lookahead. By calculating θt− γ∆θt−1 , an approximation of the future position
of the parameters is retrieved [82].

Definition 2.35. Nesterov Accelerated Gradient [84]
Let θt ∈ R be a model’s parameters at step t, J(θ, x, a) an objective function, and η the
learning rate. Furthermore, let γ be the momentum term and ∆θ be the update vector. The
Nesterov-accelerated gradient update rule is given by:

∆θt = η · ∇θtJ(θ
t − γ∆θt−1 , X,A) + γ∆θt−1 (2.39)

θt+1 = θt −∆θt . (2.40)

Instead of first computing the gradient and taking an accordingly big step in the direction,
like basic momentum, Nesterov’s accelerated gradient first takes a big step, then calculates
the gradient and makes a correction. This leads to better responsiveness and, hence, increased
performance [82].

2.7 Optimization 27

2.7.3 Adaptive Optimization

In 2011, Duchi et al. [85] published the paper ”Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”. Their presented algorithm, Adaptive Gradient Al-
gorithm (Adagrad) soon became the basis for state-of-the-art optimization algorithms until
now.

Adaptive Gradient Algorithm (Adagrad)

The Adagrad algorithm assigns frequently occurring features low learning rates and vice versa,
which means it adapts the learning rate. In contrast to the previously presented procedural
schemes, it dynamically uses knowledge from previous observed data [85].

Definition 2.36. Adagrad [85]
Let θti ∈ R be a model’s parameter i at step t, let gt,i = ∇θtJ(θ

t
i , X,A) be the gradient of

the objective function with respect to the parameter θi a time step t and η the learning rate.
Let Gt ∈ Rd×d be a diagonal matrix with the entries i, i being the sum of the squares of the
gradients and ϵ a smoothing term to avoid division by zero. Adagrad then computes the update
rule:

θt+1
i = θti −

η√
Gt,ii + ϵ

· gt,i. (2.41)

Due to Gt being a diagonal axis, the update rule can further be vectorized for an efficient
implementation [82].

Adadelta and RMSprop

The Adadelta Method [86] is an improvement of the Adagrad algorithm, addressing the two
main drawbacks. According to Zeiler, these are ”1) the continual decay of learning rates
throughout training and 2) the need for a manually selected global learning rate” [86, p. 3].
It reaches this goal by restricting the window of the accumulated past gradients to a fixed
size w. This sum is recursively defined due to efficiency reasons as a decaying average of all
past squared gradients. [82].

Definition 2.37. Adadelta [86]
Let E[g2]t be the running average of squared gradients at time step t with another fraction γ
(also usually set to 0.9) and the gradient gt. Let furthermore E[∆θ2]t be another exponentially
decaying average of squared parameter updates. Let ϵ be a smoothing term and RMS be the
root mean squared error criterion. The Adadelta update rule is given by:

∆θt =

√
E[∆θ2]t + ϵ√
E[g2]t + ϵ

=approx. RMS[∆θ]t−1

RMS[g]t
gt (2.42)

θt+1 = θt −∆θt (2.43)

E[g2]t = γE[g2]t−1 + (1− γ)g2t (2.44)

E[∆θ2]t = γE[∆θ2]t−1 + (1− γ)∆θ2t . (2.45)

28 Background

The Adadelta algorithm requires no setting of the learning rate and is insensitive to hy-
perparameters. It separates dynamic learning rates per dimension, while its computational
overhead compared to gradient descent stays low. The results are robust to large gradients
and noise. The method can handle a variety of architectures and is applicable in local and
distributed environments [86].

A quite similar adaptive learning rate method to Adadelta is RMSprop, which is an unpub-
lished algorithm that has been proposed by Hinton [87] in his Coursera class. The algorithms
have been developed independently, addressing the same shortcomings as Adagrad. In short,
RMSprop only uses the decaying average of the squared gradients [82].

Adaptive Moment Estimation (Adam)

The Adam algorithm basically combines the adaptive algorithms from before (Adadelt, RM-
Sprop) with the Momentum algorithm [88].

Definition 2.38. Adam [88]
Let mt be an exponentially decaying average of past gradients similar to Momentum, and vt be
an exponentially decaying average of past squared gradients like in Adadelta. Then m′ is the
bias corrected first moment estimator, and v′ is the bias-corrected second moment estimator.
The Adam update rule is:

θt+1 = θt − η√
v′ + ϵ

m′
t (2.46)

mt = β1mt−1 + (1− β1)gt (2.47)

m′
t =

mt

1− βt1
(2.48)

v′ =
vt

1− βt2
. (2.49)

According to Kingma & Ba [88] acadam performs better than other previous adaptive learning
methods, which were shown empirically on a few different architectures. They also proposed
a variant of Adam based on the infinity norm called AdaMax which hasn’t been tested widely.
Another proposed variant of the Adam algorithm is Nesterov-accelerated Adaptive Moment
Estimation (Nadam) presented by Dozat [89]. Nadam changes the momentum term in Adam
to the known Nesterov Momentum, thus combining both advantages.

2.8 Regularization

Regularization plays a huge role in machine learning, especially deep learning. In the past,
regularization was mostly defined as any modification made to a learning algorithm to reduce
its test error but not its training error [52]. More recent works like [90] however mention
that many considered regularization techniques also reduce the training error and therefore
give the more general definition: ”Regularization is any supplementary technique that aims
at making the model generalize better, i.e., produce better results on the test set” [90, p. 1].

2.8 Regularization 29

These methods cover a huge collection of techniques, including changes to the activation
function or optimizer and the whole network itself. The following sections only present a
brief overview of important topics that are not included in standard building blocks and
maybe later used regularization methods. For deeper information, the reader is referred to
chapter 7 in [52, p. 228] and [90].

2.8.1 Data Augmentation

”The best way to make a machine learning model generalize better is to train it on more
data” [52, p. 240]. A way to increase the limited training datasets in practice is to generate
fake data and add it to the training set. This process is known as data augmentation or
dataset augmentation [52].

Data augmentation is especially effective in object recognition tasks, as images can be trans-
ferred easily. Operations such as translation, rotation, scaling, or noise are trivial image
operations. Due to images being high-dimensional data with a huge feature space, these
extra training samples improve generalization quite effectively [52].

The possibilities of data regularization allow one to theoretically generate infinitely augmented
datasets, as long as one doesn’t disturb the dataset. A lot of more general transformations rely
on disturbing with a stochastic parameter [90]. In the case of this thesis, not only augmented
but also pure synthetic data is used and mixed with real-life data for reliable results.

2.8.2 The Regularization Term

The regularization term involves adding a penalty term to the objective function, which limits
the capacity of the models. In deep learning, regularization can theoretically be applied to
the weights or the activations of the models, but application to the weights is usual. The
abstract regularization looks something like [52]

J (θ,X,A) = J(θ,X,A) + αΩ(θ), (2.50)

with a regularization penalty Ω(θ), which relative contribution is weighted by the hyper-
parameter α. The most common norm penalties Ω(θ) used are the L1 or L2 weight decay.

Definition 2.39. The L1 Regularization Term
L1 regularization adds a penalty term to the objective function that encourages the model to
use fewer features by driving some of the weights to zero. L1 regularization results in a more
sparse representation in comparison with L2 regularization. The regularization term used is
given by [52]

Ω(θ) = ||w||1. (2.51)

30 Background

Definition 2.40. The L2 Regularization Term
L2 is the most common regularization term used, which drives the weights closer to the origin.
The term used is given by [52]

Ω(θ) =
1

2
||w||22. (2.52)

For a more detailed overview and exact analysis of the behavior of these regularization terms,
the reader is referred to [52] chapter 7.

2.8.3 Dropout

Dropout was presented in 2014 by Srivastava et al. [91] as a simple way to prevent overfitting.
”The term ’Dropout’ refers to dropping out units (hidden and visible) in a neural network”
[91, p. 1930]. This means each unit is deactivated by a fixed probability p at random, and
all its incoming and outgoing edges are temporarily removed. This dropout of neurons is
only performed during training, while all neurons and connections stay active at test time.
The dropout technique therefore creates a subsample at each iteration, which can be seen as
training a collection of 2n thin subnetworks. All are using weight sharing, and all are getting
trained very rarely.
Dropout is a broadly used technique in deep learning nowadays, but it has mostly been used
in classification tasks. For a mathematical description of the Dropout neural network model,
the reader is referred to the original literature [91, p. 1933].

2.9 Retrieval Performance Measures

After having presented all the theoretical background needed for designing the desired CAE
based retrieval system, one finally needs a way to measure the performance of different config-
urations or systems. For this purpose, search engine metrics are used to evaluate the ability
of the found retrieval systems to retrieve and rank relevant material in response to a query
[92].

The fundamental retrieval performance measures are precision and recall. Whereas precision
measures the accuracy of an information retrieval system, recall measures the coverage of
the relevant documents. Most other, more sophisticated performance measures are either
precision-based, recall-based, or a combination of both [92].

2.9.1 Recall

As mentioned, recall is a performance measure for the coverage of the relevant results of a
retrieval system. Precisely, its value is the fraction of all relevant results retrieved [92]. As
for the case of this thesis, recall itself as a fundamental measure is not of much interest. The
thesis is focused on designing a CAE based method for similarity comparison suitable for
volumes but does not implement a complete retrieval system retrieving only relevant results
from a database. Instead, for evaluation, small datasets are used that are ranked completely,

2.9 Retrieval Performance Measures 31

and a predefined number of results are returned in ranked order. Thus, no decision is made for
a cutoff of relevant results. Recall might, however, be used as part of the combined measures
presented in subsequent subsections.

Definition 2.41. Recall [92]
Let Q be a query, R be the set of relevant results in the whole searched document collection,
and A be the retrieved document set. Let further |A| and |R| be the number of documents in
A and R, respectively, and |R∩A| the number of documents both in R and A. Then the recall
of the retrieval system is defined by

R =
|R ∩A|
|R|

. (2.53)

2.9.2 Precision

Precision is a retrieval performance measure for the accuracy of an information retrieval
system. Instead of the fraction of all relevant results retrieved by recall, precision is the
fraction of retrieved responses that are relevant [92].

Definition 2.42. Precision [92]
Let Q be a query, R be the set of relevant results in the whole searched collection, and A be
the retrieved document set. Let further |A| and |R| be the number of documents in A and R,
respectively, and |R∩A| the number of documents both in R and A. Then the precision of the
retrieval system is defined by

P =
|R ∩A|
|A|

. (2.54)

2.9.3 Average Precision

As the name average precision implies, this measure is the mean of the precision scores. As the
score after each relevant document retrieved is taken, it actually combines recall and precision
for ranked retrieval results. The measure is highly sensitive to the ranking of retrieval results,
as higher-ranked responses contribute more to the average than lower-ranked responses [92].

Definition 2.43. Average Precision [92]
Let again R be the set of relevant results of size |R| in the searched collection, and r ∈ R be
the ranks of the retrieved relevant document. Let further P (r) be the precision of the top r
retrieved responses. Then the average precision of the retrieval system is defined by

AP =

∑
r∈R P (r)

|R|
. (2.55)

2.9.4 Mean Average Precision

The Mean Average Precision (MAP) as the name suggests, is the arithmetic mean of the
average precision. The mean is calculated for the average precision values over a set of n

32 Background

queries. MAP was the standard retrieval performance measure for over 25 years and is still
the go-to approach, except for systems with incomplete relevance information [92]. For the
sake of the thesis, MAP is more than sufficient and is thus the last performance measure
presented.

Definition 2.44. Mean Average Precision [92]
Let N be the evaluation set of |N | queries. Let further AP (n), n ∈ N be the average precision
of a single query response n. Then the MAP of the retrieval system is defined by

MAP =
1

|N |
∑
n∈N

AP (n). (2.56)

2.10 Wavelets

The first usages of wavelets date back until 1909, when Haar [93] proposed what is known as
the Haar wavelet today. However, most of the basic research concerning wavelets was done
much later by Ingrid Daubechies in the 1990s [94]. Since then, they have been widely used in
various fields, including computer vision, image compression, and edge detection. Nowadays,
a whole deck of wavelets exists, including Haar, Daubechies, Coiflet, Symmlet, and more [95].
In the case of this thesis, only the Haar wavelet is presented in detail, which has been proven
to be an effective edge detector due to its ability to capture abrupt changes in a signal.

The wavelet transform is a mathematical technique used for signal processing and image anal-
ysis that is related to the Fourier transform and filter banks [96]. Concerning the discrete
space, ”The fast Fourier transform (FFT) and discrete Wavelet transform (DWT) are both
linear operations that generate a data structure containing log2 n segments of various lengths”
[95, p. 53]. Their inverse matrix is the transposed matrix for both, which makes them in-
terpretable as rotations in function space. While the FFT transforms signals into the sine
and cosine spaces, the new basis domain of the wavelet transform is more complex, proposing
an infinite set of possible basis functions. These more complicated basis functions are the
so-called wavelets, or analyzing wavelets. While both functions are localized in frequency,
wavelets are also localized in time or space. This additional localization in space is what
makes wavelets useful when dealing with 2D or 3D images instead of one dimensional (1D)
signals [95].

2.10.1 Analyzing Wavelet and Scaling Function

In algorithmic usage, usually a multi-scale analysis is performed to capture information at
various resolutions. In the case of this thesis, however, only the analyzing wavelet and scaling
function with the highest resolution in its filter representation are used as replacements for
the first convolutional layer. Thus, a full definition of wavelets and the wavelet transform,
including the wavelet decomposition by subsequent scaling, is omitted here. Interested readers
on the whole wavelet topic are referred to [96].

2.10 Wavelets 33

For the case of the thesis, the definition is restricted to the most significant properties of the
analyzing wavelet, ψ(t) as follows: The analyzing wavelet can be seen as a high-pass filter
concerning frequency analysis.

Definition 2.45. Characteristics of Wavelets [96]
A function ψ(t) is called a mother or analyzing wavelet if it fulfills the following two properties:

(i) ψ(t) is localized in time

(ii)
∫∞
−∞ ψ(t)dt = 0.

Furthermore, each wavelet has a corresponding scaling function, φ(t). The scaling function
is a low pass filter, which gives the complement (or missing) frequencies after filtering with
ψ(t). This makes the transform invertible [95].

2.10.2 Haar Wavelet

The Haar wavelet system basically decomposes a signal into the difference and the arithmetic
mean of its neighbors. The definition for the 1D Haar wavelet and scaling function for signals
in time is given in 2.46. Their corresponding plots are shown in Figure 2.5.

Definition 2.46. Haar wavelet [96]

φ(t) =

{
1, if 0 ≤ t < 1

0, otherwise
and ψ(t) =

1, if 0 ≤ t < 1/2

−1, if 1/2 ≤ t < 1

0, otherwise

(2.57)

One usually further wants the wavelets to be normalized in regards to energy preservation,
which means ||ψ||2 = 1. For a Haar wavelet operating in Rn, n ∈ N with scale s, this can be
achieved by a simple prefactor [96].

Definition 2.47. Normalization of the Haar wavelet
Let n ∈ N be the dimension of the operating space, and let further s be the scaling of the
wavelet. Then the Haar wavelet can be L2 normalized by

an,s = 2−ns/2 (2.58)

an,1 = 2−n/2. (2.59)

2.10.3 Multidimensional Haar Wavelet

The normalization factor is already presented in correlation to the used dimension. As already
mentioned, the 1D Haar wavelet calculates the mean and the difference of two neighbors, which
is sufficient for reconstruction. In the 2D case, this expands to the mean of a 2x2 square and
three differences, and for 3D to the mean of a 23 volume and seven differences, respectively.

34 Background

Figure 2.5: The graphic shows the plot of the Haar scaling function φ(t) (left) and the Haar wavelet
ψ(t) (right). The presented plots are the basic versions with a scaling factor of one
and normalization omitted. One can clearly see how the Haar wavelet fulfills both the
localization in time as well as the zero integral properties of a wavelet.

In general, the operations are separable, and the multi-dimensional ones can be obtained
by subsequent applications in the different dimensions. Thus, for the wavelet and scaling
functions, a multi-dimensional version can be obtained by subsequent outer products[96].

Definition 2.48. Outer Product
Given two vectors x and y of size m× 1, then the outer product is defined as

x⊗ y =

x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn
...

...
. . .

...
xmy1 xmy2 . . . xmyn

 . (2.60)

With the definition of the outer product and a rewriting of the wavelet and scaling functions
to 1D filters in the form of Lφ = [1, 1] and Hψ = [1,−1], the 2D Haar wavelets can now be
obtained by [96]

Approximation : A = Lφ ⊗ Lφ (2.61)

Vertical : V = Lφ ⊗Hψ (2.62)

Horizontal : H = Hψ ⊗ Lφ (2.63)

Diagonal : D = Hψ ⊗Hψ. (2.64)

2.10 Wavelets 35

The resulting 2D Haar wavelets of the outer product calculation in filter matrices notation
then are:

A =

[
1 1
1 1

]
, H =

[
1 −1
1 −1

]
, V =

[
1 1
−1 −1

]
, D =

[
1 −1
−1 1

]
. (2.65)

In the same form, the 3D haar wavelets can be obtained by the outer product calculation:

W1 = Lφ ⊗ Lφ ⊗ Lφ (2.66)

W2 = Lφ ⊗ Lφ ⊗Hψ (2.67)

W3 = Lφ ⊗Hψ ⊗ Lφ (2.68)

W4 = Lφ ⊗Hψ ⊗Hψ (2.69)

W5 = Hψ ⊗ Lφ ⊗ Lφ (2.70)

W6 = Hψ ⊗ Lφ ⊗Hψ (2.71)

W7 = Hψ ⊗Hψ ⊗ Lφ (2.72)

W8 = Hψ ⊗Hψ ⊗Hψ. (2.73)

3 Method

The primary objective of this thesis is to devise an effective CAE architecture that can encode
3D voxel data such that, together with a suitable similarity measure, a retrieval algorithm
can be obtained. To accomplish this, a four-step approach, as delineated in this chapter, will
be followed.

The first step in this thesis is to define the term ”similarity” accurately and propose a suitable
similarity measure that operates on 1D arrays. In the middle part of an CAE, the feed-forward
AE is composed of fully connected layers. Before processing through these dense layers, the
feature maps obtained from the convolutional layers are flattened since feedforward layers can
only process 1D data. The latent dimension of an AE is also a fully connected layer, producing
a 1D array as output or encoding. Therefore, the desired similarity measure operates on 1D
vectors, regardless of the input dimension. A detailed definition of the similarity measure can
be found in section 3.1.

In the second step, various network architectures for encoding 2D image datasets are proposed,
and their performance is evaluated briefly afterwards. As datasets, a MNIST-like fashion
product database (Fashion-MNIST) and a 2D shapes dataset known as dSprites are used. The
architectures are optimized using the basic reconstruction error until a satisfactory solution
is found. Various layer and hyperparameter configurations are tested on these two datasets
and evaluated for their quality of outcome.
The middle part of an CAE architecture is nearly identical for 2D and 3D input data, as
it works on flattened input. Therefore, the results for the middle feed-forward AE can be
directly transferred to the later 3D architectures. While the number of neurons may differ due
to the larger data size of 3D (the number of voxels versus the number of pixels), the relative
compression rates should remain applicable. Furthermore, 2D and 3D convolution as well
as 2D and 3D pooling share many similarities in terms of their calculation and parameters.
Thus, the well-working parameter settings for 2D datasets should be mostly transferable to
3D shapes, especially if they share spatial similarities.
To enable accurate similarity comparisons between shapes, it is crucial that the encoding
capture the necessary shape information. Therefore, the architectures are designed with
retrieval suitability in mind. For the architectures with the best reconstruction, further
quality evaluation of the encoding based on its performance with the proposed similarity
measure on retrieval is done. This approach ensures that the encoding effectively includes
the desired shape information for accurate similarity comparisons. Thus, this part also serves
to evaluate the effectiveness of the proposed similarity measure. The groundwork laid in this
section will be essential for the subsequent sections that focus on 3D data.
As the part is quite huge, it is split into two sections. In section 3.2 the theoretical design
and TensorFlow implementations of the models are described, whereas section 3.3 presents
the incremental tests carried out as well as their corresponding layer configurations.

Third, the previous results are used to design a working 3D network model in section 3.4. For

36

3.1 Similarity Measure 37

the scope of this thesis, it is difficult to accumulate enough data from different 3D CT scans
to fulfill the task on real-life 3D data only. The model is therefore trained on increasingly
difficult synthetically generated 3D shape datasets. On the way, the AE is incrementally
tested and improved based on the results of various proposed performance tests. All tests are
designed with regard to retrieval performance. In order to still provide a practical proof of
concept at the end, a half-synthetic dataset is created and used. For this purpose, CT data is
augmented by various transformations, to blend in with the purely synthetic shapes to create
multiple classes of objects of comparable size and space.

Fourth and last, the previously found model is expanded to exploit the known edge detecting
Haar wavelet filters in subsection 3.4.4. The newly created model is tested against the previous
one in various domains.

3.1 Similarity Measure

There are numerous distance functions, similarity metrics, and measures available, each suit-
able for different purposes. In the background section, several distance functions suitable for
vector comparison were discussed. When designing a similarity measure for a specific case, a
lot of questions arise about the desired behavior of the measure.

AEs encode input data into a smaller descriptor describing the content of the input data.
As they are trained on reconstruction, these descriptions not only contain the content inside
but also encode rigid transformations such as translation, rotation, or scaling that need to
be restored in the decoder. The same counts for non-rigid transformations. Although non-
rigid transformations are also important, for the current thesis’s desired use case, which is
industrial CT scans, they can mostly be ignored.

Figure 3.1: The graphic shows four different images, each with a triangle inside. The first triangle in
the upper left image sits down in the middle; the second in the upper right is up in the
middle; and the third is down left in the middle left. The fourth down right sits again
down in the middle but is scaled differently. Which images are the most similar?

38 Method

To better understand the problems that arise when designing a similarity measure for indus-
trial CT scans, let’s consider Figure 3.1. A human observer would assume that triangles one,
two, and three are all the same but translated across the image, while triangle four is another
yet somewhat similar triangle. However, suppose an AE encodes the images based on the left
corner x, left corner y, length of the triangle, and height of the triangle in total pixels. In that
case, triangle four would be the most similar to triangle one, regardless of using Manhattan
or Euclidean distance. This is because the translation of all others is always nominally bigger
than the difference in triangle height.

Unfortunately, the question of how to generally weight outliers in comparison to multiple
smaller differences is a tough one to answer. The question has been studied extensively
in regards to the Lk norm, with only reasonable success. [97] showed that the traditional
approach of using the Euclidean norm fails in higher dimensions because the data becomes
more and more sparse, causing traditional algorithmic techniques to fail. This issue has
become known as the curse of dimensionality. Later in 2020, [98] showed that fractional
norms and quasi norms do not offer any improvement either.

Figure 3.2: The graphic shows the different ordering received when directly applying the Euclidean
(rows 1 and 2) or the Manhattan distance (rows 3 and 4) to the latent encodings received.
To really see the differences, a very tiny subset of just 100 samples was used. Whereas
the Euclidean distance still only returns shoes, the ordering if only looked at returned
shoes is sometimes a bit worse than with the Manhattan distance.

A preliminary experiment conducted on one of the trained models for Fashion-MNIST con-
firmed the common belief that the Manhattan distance is more effective in producing well-
ordered retrieval results locally. However, the Euclidean distance was able to better sort the
images globally, especially to first return same class images even with substantial variations
like objects that had large deformations. One example of the test is shown in Figure 3.2. Al-

3.1 Similarity Measure 39

though the Euclidean distance might be more robust against transformations, it becomes less
and less effective in sorting highly similar objects accurately as the dimensionality increases.
As the dimensionality tends to increase in more complex 3D scenarios, Manhattan more and
more outperforms Euclidean. It is hard to say for now how much bigger the 3D encodings
will be. As a starting point, the Euclidean distance is chosen, as in the tests performed, it
was still superior. As additional adjustments are applied that improve the results unrelated
to the distance function used, the advantages of Manhattan shrink further.

Since there is no information on how exactly an AE will encode the given data, a useful step
is to normalize all values into the same space. As these are real-valued floats without a given
maximum or minimum, a mapping function like tanh has to be used for this purpose. However,
if one directly normalizes the input values with such a function, significant differences are
reduced as the normalization is not linear. For the Euclidean distance, this reduces the
weighting of the outliers and could lead to a weighting in between the two former distances
and thus a better result. For Manhattan, the question arises as to whether one should prefer to
normalize the absolute difference values of the encodings subtraction. To answer the question,
a few more tests were conducted on the Fashion-MNIST dataset that briefly evaluated the two
different approaches for both distance functions. Surprisingly, both performed worse when
the difference was normalized, while both performances increased by normalizing the input
values. The improved results obtained with the Euclidean distance together with the tanh
normalization directly performed on the input values are shown in Figure 3.3.

Figure 3.3: The graphic shows the order received when directly applying the tanh normalization to
the input values before using the Euclidean distance.

All together, the Euclidean distance is used on the tanh squished values as it seems to be
the most appropriate solution based on the empirical knowledge and pretests conducted.
Switching to the Manhattan distance is left open for choice if the proposed similarity measure
does not perform well in the higher-dimensional 3D encodings. The similarity measure is given
by definition 3.1.

Definition 3.1. The tanh squashed Euclidean distance

dteuc(x, y) =
n∑
k=1

(tanh(xk)− tanh(yk))
2. (3.1)

40 Method

3.2 2D Model Design

In this section, the designed network and training architectures for the first 2D evaluations,
as well as the code used for loading, training, and testing, are presented. The network
and training architectures are designed to achieve the thesis’ goal of efficient and accurate
similarity retrieval. The aim is to develop a robust and efficient network for similarity retrieval
on 2D images, which can then be mostly transferred to the 3D case. The section should
provide a comprehensive understanding of the pretest architectures by presenting the design
considerations along with the TensorFlow implementations and supporting code. To ensure
that the code examples in the thesis remain relevant and concise, only select portions are
presented.

The implementation is carried out using Python 3.10 inside PyCharm Professional 2021.3.2.
The TensorFlow framework (GPU version 2.10.1) is utilized along with its integrated Keras
Application Programming Interface (API) (tensorflow.keras) for implementing the CAEs. In
addition, TensorFlow datasets 4.8.2 is used for testing the models on more complex datasets.
Packages such as pickle, pathlib, scipy (version 1.7.1), numpy (version 1.22.3), and matplotlib
(version 3.4.3) assist with data manipulation, loading and storing, computation, and visualiza-
tion. To maintain organization, all packages are installed using a Conda virtual environment
and the provided TensorFlow installation option.

3.2.1 Network Architecture

One of the most fundamental questions in designing an AE is determining its depth. Accord-
ing to Glorot & Bengio [99], the optimal depth for a feed-forward AE is typically five, with
the exception of the sigmoid activation function. However, the choice of depth in CAEs can
depend on various factors and is often based on empirical knowledge. For instance, it is com-
monly recommended to use two or three convolutional layers for feature extraction, followed
by one or two dense layers for further compression. The exact amount varies depending on the
complexity of the data being processed. Convolutions are performed with the same padding
in this thesis, according to the empirical and TensorFlow standards. For exactly choosing
the hyper-parameters of the fully connected and convolutional layers, various pretests are
performed in 2D.

The second consideration addresses the use of pooling layers. ”Once features are extracted,
their exact location becomes less important as long as their approximate position relative to
others is preserved.” [100, p. 10]. Using some kind of pooling or down-sampling seems cru-
cial for efficiency, and throughout the years, pooling has indeed provided a good solution for
the task. According to Springenberg et al. [56] the vast majority of CNNs use max-pooling,
hence self presenting an architecture where pooling is completely replaced by convolutions.
Unfortunately, that only counts for supervised tasks.
Concerning CAEs in feature learning, Wang et al. [45] decided for average pooling, stating it
preserves shape information well. Zhao et al. [63] presented an improved kind of max-pooling
that also preserves the raster location and not only the maximum itself, skipping the informa-
tion to the decoder. For CAEs in the feature learning position, information stays important.

3.2 2D Model Design 41

Figure 3.4: The presented graphic illustrates one half of a CAE, specifically the encoder, which
features an architecture similar to one used in later 2D tests on the Fashion MNIST
dataset. The gray rectangle boxes represent the processed data at different layers. The
input image of 28x28 pixels and depth 1 is located on the left-most side.
The blue boxes with red arrows in between represent the convolutions performed (3x3
kernels) or average pooling operations (2x2 kernels). The depth of the feature maps
increases after the convolution steps as multiple feature maps are produced, while the
pooling steps decrease the height and width of each feature map.
The black arrows on the right side indicate the flatten and fully connected layers. The
decoder half would look similar, but mirrored to the right. The pooling operations
become unpooling operations, the convolutions become transposed convolutions, and the
flattening becomes a reshape.

For shape retrieval in an unsupervised field, it is clearly mandatory to preserve shape in-
formation while compressing. TensorFlow currently provides a max pool with argmax layer
that preserves the position of the maximum, but only for 2D data, and the appropriate un-
pooling operation for even using the provided argument is still lacking. TensorFlow, on the
other hand, provides average pooling, including an 3D implementation, as well as an up-
scaling layer suitable for average-unpooling, which is used for the sake of this thesis. Strided
convolution and deconvolution are considered alternatives in the case of average pooling not
performing well enough; otherwise, they are left open for future research.

Addressing the decoder, the transposed convolution layers are used such that filter sizes
are symmetrical, not the processing through the layers. This means, for example, that the
transposed convolution layer for a convolution layer with filter size eight would also have filter
size eight. Thus, an additional transposed convolution layer with filter size one is needed to
regain a one-channel image at the end. This additional last transposed convolution layer can
be seen as the symmetric corresponding layer to the input layer. This style of decoder layer
design is commonly used and, for example, recommended in TensorFlow Tutorials [101].

In the algorithmic part of the model, only the activation function is left open to choice. Most
state-of-the-art deep networks use the sigmoid function at the output layer, squashing the
values in the positive range between zero and one. Such a configuration is useful for classifica-

42 Method

tion, but to allow the last deconvolution to reconstruct the input data, activation is omitted
at the output layer of AEs. In regards to the similarity measure of the latent vector, which
uses a sigmoid function before comparison, it could be interesting to directly apply it as an
activation function at the latent layer. As usually the hidden layer also omits an activation
function, the applicability of directly integrating the sigmoid function in the hidden layer is
evaluated in the 2D pretests.
Addressing the hidden layers, ReLU and its multiple variants seem to be good choices. SELU
is omitted, as it comes with a lot of adjustments to make to get a normalized network and
therefore is too complex for 3D data later. Computation time and complexity are crucial
factors to keep in mind when dealing with voxel data. Thus, linear is preferred over expo-
nential and non-parametric over parametric. So ReLU is used at the first starting point,
then leaky ReLU is evaluated followed by PReLU and ELU. The more complex activation
functions are only chosen if the improvement in results is significant enough to outweigh the
longer computation times.

3.2.2 Network Implementation

The AE models are implemented in their own classes, which inherit from a base model class
specific to the dataset. To improve code readability, self-defined aggregated layers are used
in conjunction with pre-existing layers provided by Keras. Additionally, certain parame-
ters are implemented as enums or given default values from utility classes, as is common in
programming.

The Base Class

1 class AEBase(keras.models.Model):

2 DATASET_NAME_SHAPE = (X, Y, Channels)

3 # additional specific constants

4

5 def __init__(self): # , additional arguments

6 # additional specific attributes

7 self.encoder = keras.Sequential ()

8 self.encoder.add(keras.layers.Input(shape=self.

DATASET_NAME_SHAPE))

9 self.decoder = keras.Sequential ()

10

11 def call(self , input_data):

12 encoded = self.encoder(input_data)

13 decoded = self.decoder(encoded)

14 return decoded

Python Code 3.1: The Autoencoder base class

The base class for the dataset-specific AE models encapsulates the underlying encoder and
decoder structures, as well as standard parameters such as the input shape. This allows for a

3.2 2D Model Design 43

more streamlined implementation of the models and ensures consistency across the dataset-
specific classes.

When instantiated, the class initializes the encoder and decoder as separate sequential models
and assigns the constant input shape to the encoder. This allows for easy access to the encoder
for extracting the latent representation after the model is trained.

To enable training of the AE models using the standard Keras training interface, the call()
method is overridden. It is worth pointing out that the method of writing is correct. One
should never override Python’s call () operator in Keras, as it is already implemented to
keep track of internal state information. As it then forwards to the provided call() method,
the desired behavior of the operator gets available despite not overriding it itself. The call()
method takes a tensor as input and passes it through the encoder to get the latent representa-
tion. It then passes the latent representation through the decoder to obtain the reconstructed
output. Finally, the reconstructed output is returned as the output of the call() method.

Self-Defined Layers

In Keras, there is a wide range of built-in layer types with various arguments and options that
can be used to customize the network architecture. Before addressing the self-defined layers,
a short overview of the included layers is given, as the newly introduced layers are based on
them. In the case of 2D data, commonly used layers are Input, Flatten, Reshape, Activation,
LeakyReLU, Conv2D, Dense, AveragePooling2D, Conv2DTranspose, and UpSampling2D.

The input layer specifies the shape of the input data, while the flatten layer flattens multi-
dimensional data into an 1D array suitable for subsequent dense layers. The Reshape layer
converts an 1D array back into a multidimensional format for further (transposed) convolu-
tion processing. These layers were only included for completeness. They are not used in the
self-defined layers.

In most cases, the activation function can be directly specified as a parameter to the Conv2D,
Conv2DTranspose, or Dense layers. In some cases, like for the leaky ReLU activation function,
which requires an additional parameter alpha, the activation is implemented as a separate
layer in TensorFlow. These activation functions, implemented as their own layers, cannot be
passed as parameters. To restore the behavior of passing activation functions as a parameter
to the layers, own layers with additional parameters, otherwise deriving the behavior from the
Keras ones, are implemented. For implementing this behavior, the explicit activation layer is
used.

Further, Conv2d and Conv2DTranspose are always followed by an AveragePooling2D or Up-
Sampling2D layer after activation, respectively. To further streamline the model implemen-
tations, the pooling or upsampling operations are directly included in the chain of these new
layers. In the case of the dense layer, only the functionality of passing layer activations as
parameters is implemented.

To create custom layers in Keras, one can derive a new layer class from the Keras layer base
class and override the constructor and call() methods. In this case, the initialization method
initializes the three desired layers that will be chained together. For the Conv2D and Aver-
agePooling2D layers, the arguments are simply passed on to the integrated layers. For the

44 Method

desired activation function, a separate function is called, which either returns an activation
layer with the specified activation function or a LeakyReLU layer if it is chosen. The three
layers are then sequentially chained by calling them in the overridden call method.

1 class ConvActPool(layers.Layer):

2 def __init__ (... expanded arguments):

3 super ().__init__ ()

4 self.conv = layers.Conv2D (... pass forward arguments)

5 self.activation = get_activation_layer(activation ,

leaky_alpha)

6 self.pooling = layers.AveragePooling2D (... pass forward

arguments)

7

8 def call(self , input_tensor):

9 x = self.conv(input_tensor)

10 x = self.activation(x)

11 return self.pooling(x)

Python Code 3.2: An implementation of a chained Convolution-Activation-Pooling layer

Three custom layers have been implemented based on this approach. The ConvActPool layer
is used to replicate the Conv2DisActivation. AveragePooling2D chain from the example. The
UpsConvTAct layer is used for the decoder chain of UpSampling2D, Conv2DTranspose and
Activation. Finally, the DenseActivation layer is used for the usual dense activation chain.
All three subclasses are implemented similarly to the example code provided. Thus, the code
provides a flexible and easily customizable way to define a new layer type based on a layer
chain in Keras.

An Example AE Network Model

1 class AE(AEBase):

2 def __init__(self , alpha=STANDARD_LEAKY_RELU_ALPHA):

3 super ().__init__(alpha)

4 self.create_encoder ()

5 self.create_decoder ()

6 self.compile(optimizer=OPTIMIZER_FM , loss=STANDARD_LOSS ,

metrics=STANDARD_METRICS)

7

8 def create_encoder(self):

9 # encoder definition here

10

11 def create_decoder(self):

12 # decoder definition here

Python Code 3.3: An example AE implementation

The code snippet presents an example AE with the basic structure of the constructor that

3.2 2D Model Design 45

is common to all AE implementations. It includes an additional alpha argument for the
LeakyReLU activation function that is passed on to the superclass initialization. The encoder
and decoder methods are defined to create the corresponding layers and add them to the
respective Keras sequential models.

An example encoder using the presented building blocks is shown in the next code snippet,
consisting of two ConvActPool layers, a Flatten layer, two Dense layers with and without
LeakyReLU activation, and a final Dense layer.

1 def create_encoder(self):

2 self.encoder.add(ConvActPool (8, kernel_size =3, leaky_alpha=

self.alpha))

3 self.encoder.add(ConvActPool (16, kernel_size =3, leaky_alpha=

self.alpha))

4 self.encoder.add(layers.Flatten ())

5 self.encoder.add(DenseLeakyReLU (512, leaky_alpha=self.alpha))

6 self.encoder.add(layers.Dense (64))

Python Code 3.4: An example implementation of an encoder

The last code example shows the decoder definition consisting of an Input layer, two Dense-
LeakyReLU layers, a Reshape layer, two UpsConvTAct layers, and a final Conv2D layer. The
activation parameter of the self-defined layers is set to LeakyReLU as the standard, so it does
not need to be explicitly defined.

1 def create_decoder(self):

2 self.decoder.add(layers.Input(shape =64)),

3 self.decoder.add(DenseLeakyReLU (512, leaky_alpha=self.alpha))

4 self.decoder.add(DenseLeakyReLU (784, leaky_alpha=self.alpha))

5 self.decoder.add(layers.Reshape(target_shape =(7, 7, 16)))

6 self.decoder.add(UpsConvTAct (16, kernel_size =3, leaky_alpha=

self.alpha))

7 self.decoder.add(UpsConvTAct (8, kernel_size =3, leaky_alpha=

self.alpha))

8 self.decoder.add(layers.Conv2D(1, kernel_size =3, strides=1,

padding=’same’))

Python Code 3.5: An example implementation of a decoder

3.2.3 Training Architecture

The first decision in training the proposed network is to choose a suitable loss function for
calculating the reconstruction error. Since the input and output data are 2D images, the
direction of the error is not relevant, but it is important that diminishing values do not occur.
As a result, a magnitude-based error is not suitable. Two appropriate options are the absolute
error and the squared error. While the absolute error is a possibility, there is no particular

46 Method

advantage to using it since the result does not need to be interpretable as it is primarily used
for automatically adjusting the weights.
However, if large adjustments are made to unsuitable weights, this may lead to differences in
the outcome for other bins of the reconstruction vector. Then changing all network weights
to be similarly penalized might lead to bad progression. Therefore, a squared error-based
loss function is preferred, as it primarily adjusts the biggest problems in the network in each
iteration. It may require a few more training iterations in some cases, but it should increase
the chances of reaching a (local) optimum at all. In addition, the squared error does not
require the computation of the square root and is therefore more efficient.
Mean aggregation may further amplify strong outliers, while sum aggregation preserves the
current attributes. It is difficult to determine how much stronger outliers should be penalized
compared to small errors, and this likely depends on the specific data properties. Since
TensorFlow provides implementations of MAE and MSE but not L2, MSE is chosen for the
initial training. If the MSE does not deliver satisfactory results, a self-implemented L2 loss
function may be used. In addition to automatic training, both MSE and MAE are used for
evaluation purposes. In summary, the chosen loss function is the MSE because it primarily
addresses the biggest problems in the network, is more efficient than the absolute error, and
is implemented in TensorFlow in contrast to the L2 loss.

Regarding optimization, the choice of the algorithm can have a significant impact on the
training performance and convergence speed. Adam is a popular choice as it delivers state-
of-the-art performance and has been extensively evaluated. Recent studies have shown that
other algorithms, such as AdaMax and Nadam, can achieve competitive results in some cases
[82, 102]. Although they have not been evaluated that much, it would be reasonable to
consider Nadam for the given case. Nesterov Momentum is known to perform better than
basic Momentum; therefore, the empirical advantages found so far are strongly supported
by a theoretic advantage of Nadam. As currently the Nadam and AdaMax TensorFlow
implementations are experimental, this is open for future research, and for now Adam is
used.

As for regularization, it is important to prevent overfitting and ensure that the network gen-
eralizes well to unseen data. The used datasets provide a large number of diverse training
examples. While data augmentation is therefore not needed, additional regularization tech-
niques might still be useful. A few of these techniques, like using the regularization term or
ropout are tested briefly to see whether they are able to improve test results in the pretests.
Normalizing the input data is used to ensure that the network is not biased towards specific
features or values. As is common practice for images, the data is normalized to values in an in-
terval ranging from one to zero. This additionally helps calculations during back-propagation.

3.2.4 Training Implementation

The implementation of the training process consists of several components. At the center of
it all, a database-specific training script is used to manage preparing the data, performing
the training, and validating the received results. The script first loads the desired dataset,
then either loads a saved AE or builds a new one. It trains or continues to train and saves the
trained models, and at the end, it quickly evaluates the current AE architecture’s performance
based on the reconstruction error or by visualizing the reconstruction. The script defines the

3.2 2D Model Design 47

processing flow, by mostly calling functions from util scripts or the CAE manager class.

The load util script delivers functions to get the save and load paths, for loading the data,
preprocessing it and splitting it into training and validation sets. Once the data is prepared,
the CAE manager class is used as a high-level wrapper for loading, saving, and fitting the
models. The manager class provides a user-friendly interface for performing common tasks
such as training the model, saving the trained model, and loading a saved model. The final
validation of the results validation util script together with a plotter util if graphical output
is desired.

The loss function and optimizer, as discussed in detail in subsection 3.2.3 are only parameters
to the compile() method of the Keras model API. The method is called at the end of the
base class, as shown in the code example, and the values are set through a configuration file,
so one could change them for all architectures on a single line.

Overall, the training implementation is designed to be modular and flexible, allowing for easy
customization and adaptation to different datasets and use cases.

CAEManager

1 def __init__(self , base_path_template , load_epoch=

DEFAULT_LOAD_EPOCH , autoencoder=None):

2

3 def load(self):

4

5 def save(self):

6

7 def fit_until_epoch(self , train_data , epoch , validation_data=

None):

8

9 def train_and_save(self , train_data , epochs , val_data=None ,

interim_callback=False):

10

11 def validate(self , validation_data , keep_history=True ,

keep_params=True , batch_size=None):

12

13 def get_encoding(self , test_data):

14

15 def get_decoding(self , encoded):

16

17 def get_from_history(self , key):

18

19 def get_trained_epochs(self):

Python Code 3.6: Interface of the CAEManager Class

The CAEManager class is responsible for managing instances of the AE models and provides
an interface of methods to interact with the model. The manager class extends the func-

48 Method

tionality of the Keras API by keeping track of, saving, and restoring the history and params
dictionaries of the model after each call to the fit() or evaluate() methods. The class can be
initialized with a new AE instance or by specifying a save and load folder built from a base
path template and load epoch, from which a saved model is loaded.

Most of the methods in the CAEManager class are extended wrapper methods of the Keras
model methods. For example, the load() and save() methods extend the Keras inbuilt save and
load methods by also saving the current history and params dictionaries of the models using
the pickle package. The fit until epoch() and validate() methods are also just wrappers around
the corresponding Keras methods, but they keep the total history and params dictionaries
after calling fit() multiple times. This ensures that the dictionaries do not get overwritten
and only consist of the values from the last fit call.

The train and save() method is a high-level wrapper of the fit until epoch() method. It takes
an array of epochs as input and calls the fit wrapper, save method, and any specified callback
for each epoch value. The getters in the CAEManager class are simply short-cuts to frequently
used values or methods inside the managed AE instance.

Overall, the CAEManager class provides a user-friendly interface for managing and training
AE models while keeping track of important meta-data.

Load Util

The code for loading the data, forming the input pipeline, and retrieving the model save and
load folder is contained in a load script within the util module. To retrieve the model save
and load folder, the get base path templates() method returns either a template path open
to include the epochs folder or the exact folder with the epoch included. The method involves
a simple chaining of folders for the AE names, versions, etcetera that is not shown here.

For the first dataset used, Fashion-MNIST, the input pipeline is straightforward, as it is in-
cluded in TensorFlow under the keras datasets package. The dataset comes in a supervised
representation given by numpy arrays. The pipeline loads the data, converts the gray-scale
images into the scale [0, 1], and returns the result together with the image shape.

1 def load_prepared_fashion_mnist ():

2 (x_train , y_train), (x_test , y_test) = fashion_mnist.load_data

()

3 x_train = x_train.astype(’float32 ’) / 255.

4 x_test = x_test.astype(’float32 ’) / 255.

5 return (x_train , y_train), (x_test , y_test),

FASHION_MNIST_SHAPE

Python Code 3.7: Loading and preprocessing of Fashion-MNIST

The second dataset used, dsprites, is loaded from the external TensorFlow Datasets package
and comes in an unsupervised format as a TensorFlow Dataset object. The images are con-
structed from a latent representation, whose values are given with each image. The input
pipeline extracts only the images for all splits, as the other values are not needed for training
an AEs. For the train split, it duplicates the images to a tuple of (image, image) as required

3.2 2D Model Design 49

for the MSE measure. The not shown function as tuple applies a given function and returns a
tuple of the result. The images are converted to grayscale in the extract image function by us-
ing tf.cast(). The resulting dataset is then prepared for subsequent training using predefined
calls to the TensorFlow functional Dataset API. The values used for shuffle and batch size are
chosen accordingly to work with the used Graphics Processing Unit (GPU) for testing. The
provided code is prepared for the thesis to best show the pipline preprocessing done; in the
actual code, the calls are divided into multiple functions, and the validation set is prepared
in parallel.

1 # Prepare data for efficient training

2 ds_train , ds_val = tfds.load(’dsprites ’, split=split ,

shuffle_files=True , as_supervised=False)

3 ds_train = ds_train.map(partial(as_tuple , extract_image),

num_parallel_calls=tf.data.AUTOTUNE)

4 ds_train = ds_train.shuffle (200000)

5 ds_train = ds_train.cache ()

6 ds_train = ds_train.batch(batch_size =500)

7 ds_train = ds_train.prefetch(tf.data.AUTOTUNE)

Python Code 3.8: dSprites input pipeline for the train set

3.2.5 2D Retrieval Implementation

1 def calculate_nearest(encodings , subject_index ,

calculate_indices=True):

2 subject_encoding = encodings[subject_index]

3 retrieval_list = []

4 for i in range(len(encodings)):

5 other_encoding = encodings[i]

6 if calculate_indices:

7 retrieval_list.append ((i, sigma_manhattan(subject_encoding

, other_encoding)))

8 else:

9 retrieval_list.append ((other_encoding , sigma_manhattan(

subject_encoding , other_encoding)))

10 retrieval_list.sort(key=lambda a: a[1])

11 return retrieval_list

Python Code 3.9: The calculation of the similarity list

At last, retrieval is implemented as a script inside the util package. The main interface in
the script is save retrieval, which takes as input the image encodings, subject index, data to
plot, save path, data type, and subsample size. The function uses a while loop to gradually
decrease the subsample size, and saves the resulting plot to the specified save path. By saving
a multiple of subsamples of decreasing size, differences in the quality of retrieval can be easier
detected. For the saving and retrieval of the plotter util script provides an appropriate

50 Method

function.

The interesting kernel implementation of finding the retrieval order itself is inside the calcu-
late nearest() function. The function calculates the distance between the subject encoding
and all other encodings in the list using the proposed distance function. The distance function
itself is implemented using Scipy’s distance.cityblock() and expit() functions. By storing the
results in a tuple list, they can be sorted by the distances, while later the indices or other
encoding can be retrieved.

3.3 2D Layer Configuration Tests

In order to establish a starting point for designing the subsequent 3D architecture, implemen-
tations and evaluations of specific network configurations were made to test the quality of
the previously made theoretic decisions and to retrieve good settings for open choices. These
2D pretests are conducted on multiple architectures with a variety of different configurations.
As already mentioned, the two widely used datasets are: a MNIST-like fashion product
database (Fashion-MNIST) and a dataset of 2D shapes known as dSprites. The architecture
evaluation results and their implications for further architecture design are presented, and
the retrieval performance of the best architectures is also briefly discussed.

The Fashion-MNIST dataset is used to rapidly try different architectures and layer con-
figurations and evaluate their ability to efficiently encode and reconstruct the data. The
best-performing solutions are then subjected to a brief performance test using the proposed
similarity measure for retrieval.
The dSprites dataset afterwards is used to further test the capability and transferability of the
found architecture concepts. The encoding and decoding of these simple, rigidly translated
shapes act as a simplified version of the later 3D data encoding. The test in particular further
develops the convolutional parts of the architectures.

3.3.1 Fashion-MNIST

The first dataset used in this thesis is the Fashion-MNIST dataset, introduced by Xiao et al.
[103] in 2017. This dataset consists of 70.000 gray-scale 2D images, each with a shape of
28 × 28 pixels. The images depict fashion products from 10 different categories, and the
dataset is intended to serve as a more challenging alternative to the basic MNIST dataset.
As a result, it is directly included in TensorFlow’s tensorflow.keras.datasets package. The
dataset was chosen due to its simplicity and direct integration with TensorFlow, allowing for
rapid testing of initial concepts. Examples of the input data can be seen in Figure 3.5.

Dense Layer Configuration

To start with, a simple architecture is proposed. It consists of two convolutional layers with
8 and 16 filters, respectively, each with a kernel size of 3. Basic ReLU activation is used,
and no regularization techniques are applied. Two Dense layers are included in the middle of
the architecture, and different configurations of neuron sizes are tested to determine the most

3.3 2D Layer Configuration Tests 51

Figure 3.5: The graphic shows 20 example images from the Fashion-MNIST dataset. The examples
are chosen randomly from the test dataset.

suitable one. The results of the tests are presented in Table 3.1, which shows the different
configurations of Dense layers and their corresponding MAE and MSE values for the train
and validation sets after 30 trained epochs. The configuration with the best reconstruction
error is highlighted in green. An important thing to notice for reproducibility is that these
tests were performed at an early stage and had sigmoid activation at the latent layer.

Dense Layers Train MSE Train MAE Validation MSE Validation MAE

256, 32 0.0076 0.0438 0.0079 0.0452
256, 64 0.0065 0.0409 0.0066 0.0412
512, 64 0.0062 0.0395 0.0064 0.0400
400, 64 0.0064 0.0403 0.0070 0.0430

Table 3.1: The table shows the results of different neuron size configurations of the Dense layers in
fm 1. The best results where obtained by a combination of 512 and 64 neurons as marked
with green.

The best found configuration colored in green is denoted as fm 1. For later retrieval testing,
also the first worst row is denoted as fm 0.

Regularization

At the next step, different regularization techniques were tested, including L1 and L2 kernel
regularization with a standard regularization value of 0.01 and dropout. The L1 regularization
layers were placed between each layer at the encoder and after the dense layers only. L2
regularization and dropout were only tested after the dense layers of the encoder. As Dropout
spans a sub-network, the training epochs were increased to 100 in the affected tests. The
tests were also performed with sigmoid activation at the latent layer and not rerun due to
the extremely bad results.

52 Method

Regularization Train MSE Train MAE Val MSE Val MAE

L1 Encoder 0.6251 0.2321 0.6270 0.2313
L1 Dense 0.6169 0.2320 0.6179 0.2283
L2 Dense 0.0215 0.0757 0.0220 0.0781

Dropout (0.2) 0.0056 0.0369 0.0054 0.0353
Dropout (0.3) 0.0061 0.0386 0.0056 0.0357
Dropout (0.5) 0.0071 0.0421 0.0061 0.0381

Table 3.2: The table shows the results of different regularization techniques evaluated on the cur-
rent fm 1 model. All regularizations and positions of regularization performed extremely
poorly.

As Table 3.2 clearly shows, none of the tested regularization techniques improved the results
at all. Regularization was therefore chosen not to be further used or researched in the scope
of this thesis.

Activation Function

As part of the last tests of configurations for fm 1, various activation functions were evaluated.
The first leaky ReLU was tested as an alternative activation function with different alphas
on the previous found best configuration, as due to its linear function at the negative side, it
is the least computation intensive activation of the more complex ReLU versions.
The results after again 30 epochs of training are shown in Table 3.3. The tests were also
performed with a sigmoid activation in the middle, to gain comparable values to ReLU, as
removing that sigmoid activation improves the results already on its own.

Alpha Train MSE Train MAE Validation MSE Validation MAE

0.3 0.0051 0.0371 0.0054 0.0380
0.2 0.0052 0.0374 0.0055 0.0383
0.4 0.0052 0.0382 0.0055 0.0398
0.35 0.0051 0.0376 0.0053 0.0383

Table 3.3: The table shows how ReLU’s alpha parameter affects the outcome of the fm 1 model. The
best results were obtained with a value of 0.35, but the differences are so tight that these
could be random numeric variances. The value is still used from now on, as it definitely
does not perform worse.

It seems that leaky ReLU significantly increases the results at all tested alpha values, with
a maximum of improvement at around 0.35. The model was thus retrained without the
sigmoid activation at the latent layer and the best-found alpha value. The updated results
and configuration are used as a base for further activation function comparisons. The values
are shown together with the values for ELU and PReLU in Table 3.4. Additionally, the
training time per epoch is given at this time to also take computation times into account.

3.3 2D Layer Configuration Tests 53

Activation Time Train MSE Train MAE Validation MSE Validation MAE

leaky ReLU 12s/epoch 0.0048 0.0362 0.0051 0.0368
PReLU 17s/epoch 0.0046 0.0343 0.0049 0.0354
ELU 12s/epoch 0.0050 0.0359 0.0052 0.0359
SELU 12s/epoch 0.0056 0.0406 0.0057 0.0410

Table 3.4: The table shows the effect of more sophisticated RelU variants and their computation time
per epoch. While PReLU was the most accurate, it came with a significant increase in
computation time.

The two exponential-based ReLU versions could not improve the reconstruction results any
further. It is, however, worth mentioning that the difference for ELU is marginal; it actually
delivered better results than leaky ReLU did for any other alpha values tested. Concerning
computation times, no practice difference per training epoch could be measured for the used
data.
PReLU on the other hand, was actually able to further improve the model a bit. The im-
provement, however, comes along with a significant 41.67 % longer computation timer per
training epoch. leaky ReLU with an alpha value of 0.35 is thus kept as the activation function
for now, but PReLU might be considered again later if further improvements are necessary.

Figure 3.6 shows a few example inputs, their latent encoding, and reconstruction received
from using the fm 1 model as presented, after further training to 100 epochs.

Figure 3.6: The graphic shows the processing of five example inputs by fm 1. In the first row, the
original input data is displayed. The second row shows a plot of the received 64-value
latent encoding. The reconstruction built from the encoding with the decoder is shown
in row three.

54 Method

FM 2

After testing the different effects of Dense layer configuration, activation, and regularization
on the first architecture, another configuration of convolutional layers is tested. The number
of convolutional layers, the kernel, pooling sizes, and paddings of them stay the same. The
number of filters is increased to 16 and 32, respectively, for a theoretically more powerful
model. As more feature maps result in more data at the hidden layers, suitable sizes for the
neuron parameter of the Dense layers are evaluated again. This should give a more general
relative compression size to the input size. Furthermore, an architecture with three Dense
layers is proposed. As more input data is put into the first Dense layer, stronger compression
is required, and thus more Dense layers might be appropriate. The architecture is denoted as
fm 2. The results are shown in Table 3.5.

Dense Layers Train MSE Train MAE Val MSE Val MAE

512, 64 0.0046 0.0354 0.0049 0.0358
800, 64 0.0041 0.0339 0.0047 0.0354
1028, 64 0.0041 0.0340 0.0047 0.0358
1200, 64 0.0041 0.0342 0.0047 0.0351

1200, 600, 64 0.0046 0.0359 0.0051 0.0372

Table 3.5: The table again shows various neuron sizes at the Dense layers, but now for the new
architecture, fm 2. The ideal configuration varies due to different input sizes from previous
and is now found at 800 and 64 neurons, respectively.

The results obtained from the new architecture confirm the intuition that increasing the
number of feature maps can improve the model’s performance. The best configurations were
found to have a neuron size in the range of 800 to 1200 at the first Dense layer. The smallest
configuration (row one) and the three-layer configuration (last row) yielded slightly worse
results than the other configurations. The three-layer configuration may have suffered from
slower training, but the potential improvements did not seem to be worth the additional
training time. It is worth noting that the training time per epoch has already increased
hugely overall, even for row two configuration, by 208% to 37 s/epoch.

Rows two to four of the table showed extremely similar results, making it difficult to determine
which configuration is slightly better. Depending on whether MSE or MAE and train or
validation values are considered, the best configuration differs. Therefore, row two with a first
neuron size of 800 was chosen to be denoted as fm 2 due to its lower computational complexity.
In general, a maximum compression of about 50% in the first layer seems appropriate.

After further training to 100 epochs, the values presented in Table 3.6 were obtained. Fig-
ure 3.7 shows the retrieved latent encoding and reconstruction from fm 2 using the same
inputs as for the fm 1 visualization. Overall, fm 2 delivered slightly better results than fm 1.

3.3 2D Layer Configuration Tests 55

Figure 3.7: The graphic shows the processing of five example inputs by fm 2. In the first row, the
original input data is displayed. The second row shows a plot of the received 64-value
latent encoding. The reconstruction built from the encoding with the decoder is shown
in row three.

Comparison of FM 1 and FM 2

Architectures Time Train MSE Train MAE Val MSE Val MAE

fm 1 12s/epoch 0.0043 0.0313 0.0048 0.0329
fm 2 37s/epoch 0.0035 0.0318 0.0034 0.0307

Table 3.6: The table shows the final values of reconstruction accuracy and computation time obtained
for fm 1 and fm 2. The models were both trained for 100 epochs at the time of comparison.

The found models fm 1 and fm 2 are now briefly tested and compared with respect to their
results provided together with the proposed similarity measure. This comparison is intended
to briefly confirm two intuitive hypotheses:
First, the proposed architecture and similarity measure are generally suitable to deliver a
retrieval algorithm. This implies that shape information is indeed preserved during encoding
and that rigid or non-rigid transformations are handled well by the AEs.
Second, the reconstruction error used for training approximately also implicates good encod-
ing results for retrieval. For this hypothesis, the model fm 0 is also taken into comparison.

For retrieval, the test split of the Fashion-MNIST dataset containing 10,000 test images is
used. Example results for two calls with different queries on architectures fm 1 and fm 2 are
shown in Figure 3.8 and Figure 3.9.

56 Method

Figure 3.8: The graphic shows the retrieval results of a call with a shoe image as a query on fm 1
(row one and two) and fm 2 respectively (row three and four). The input query image is
shown in the left upper corner. Then the 15 most similar images are shown in descending
order, together with the calculated value of the proposed distance function.

Figure 3.9: The graphic shows the retrieval results of a call with a pullover image as a query on fm 1
(row one and two) and fm 2 respectively (row three and four). The input query image is
shown in the left upper corner. Then the 15 most similar images are shown in descending
order, together with the calculated value of the proposed distance function.

3.3 2D Layer Configuration Tests 57

The retrieved images in both fm 1 and fm 2 show that the proposed architecture and simi-
larity measure are indeed suitable for delivering a retrieval algorithm. In both cases, similar
items are grouped together in the retrieved images, demonstrating that shape information is
preserved during encoding and that the AEs can handle rigid or non-rigid transformations
well.

In order to better visualize the differences between the retrieval results of the three architec-
tures, for the second hypothesis, multiple subsets are built. Each subset only consists of the
first x test images. This reduces the amount of very similar shapes, so correct ordering can
be easily checked by human vision. Figure 3.10 shows the results for the three architectures
fm 0, fm 1 and fm 2 on a quite extreme subset of 50 images only.

Figure 3.10: The graphic shows the retrieval results of the previous shoe image query on a 50-image
subset. The first two rows are the results of fm 0, row three and four are the results of
fm 1 and row five and six are the results of fm 2.

The results overall confirm hypothesis 2. However, the results of fm 1 are slightly better than
the results of fm 2 with a lower reconstruction error. Approximately the same implication
holds as suggested. However, a too powerful model further reduces the reconstruction error

58 Method

but reduces the abstraction generality of the encoding. Thus, the retrieval results obtained
get worse if the improvement comes solely from more feature maps, but the correlation holds
for different configurations with the same settings for the convolution layers. Although the
results are still of very high quality, the problem should not be that important on a bigger
dataset or when using data augmentation to force the learning of a more general encoding,
unless the model is chosen to be too powerful.

3.3.2 dSprites

Before transferring the previously found architecture concepts to 3D data, a few more tests are
made with a more comparable 2D dataset. ”dSprites is a dataset of 2D shapes procedurally
generated from six ground truth independent latent factors. These factors are color, shape,
scale, rotation, and the x and y positions of a sprite” [104]. A few random example images
from the dataset are shown in Figure 3.11.

Figure 3.11: The graphic shows 20 randomly chosen example images from the dSprites dataset.

The dataset was chosen for several reasons, including its use as inspiration for the 3D datasets
used in later tests. This addresses both the procedural generation from a latent vector as well
as the use of augmented basic shapes. As the retrieval algorithm is designed to be used in
the context of industrial CT scans, basic shapes are a good first approximation.

Aside from that, the dataset consists of binary images with hard edges, and the shapes
themselves are edgeless and filled inside with a single value. This makes it very difficult to
automatically encode images concerning feature detection and rigid transformation invariance.
The dataset acts as an early edge case test for CAE retrieval. It should be very well suited for
testing one more configuration parameter, which could be crucial in later 3D volumes: The
kernel size of the convolutional layers.

The kernel size is an important hyper-parameter in CNNs, as it determines the size of the
local receptive field that the network uses to detect features in the input data [105]. In the
case of images with hard edges and no surface features, a smaller kernel size may be more

3.3 2D Layer Configuration Tests 59

appropriate to capture the sharp edges of the shapes. This is particularly relevant in 3D
volumes from CT scans, where objects are often filled with a single material, resulting in a
lack of surface features. A larger kernel size may instead smooth out the edges and capture
more high-level features. This leads to most modern networks having larger sizes in the lower
levels [105], which will also be adapted in the following models.

By testing different kernel sizes on the dSprites dataset, important insights into the optimal
configuration for later experiments on 3D volumes are gained. Evaluating kernel sizes by
testing or visualization is still a common approach, although more sophisticated ways like
automated retrieval of ideal sizes have been presented in recent years [105, 106].

As the kernel size affects the generalization of the feature maps gained, more transformation-
robust features might have worse reconstructions than more specific features. Using the
reconstruction error like in the previous section is not applicable for finding the best results.
As the dSprites dataset is not split into a train and test set, exact information on relevant
results of a chosen subset and query could only be retrieved by counting through all test
examples. The only applicable performance measure, as it is, is precision. The size of the
retrieved results (A) is set to the 15 best matches. As precision alone would, however, not
take into account the ordering of these 15 items, a modified average precision is also applied
in case precision returns the same values. The set of relevant items R is simply set to the
set of relevant items A in the response. As overall precision is the same as the precondition
and thus the amount of correctly retrieved shapes in A, the modified average precision gives
a higher score for better sorted responses.

As a beginning, a configuration similar to fm 1 with 8 and 16 feature maps, respectively, is
trained. As the input images now have the shape 64 × 64, adjusting the dense layer sizes is
again required. Based on the previous configuration, an estimated size of 2400 should work
well. For training, a subset of the first 200,000 images is used, and for evaluation, the 1,000
following images are used. The model has been trained for 20 epochs on this training subset.
Using kernel size three for all layers is used as a configuration, and the results are used as a
base comparison point. For the other configuration, the following considerations were made:

The first layer should detect edges. As the images include no noise and were generated with
perfect edges, a kernel size of three should be sufficient for detection. For the later disturbed
3D data, the size might be increased to four or five.
The second layer should then directly retrieve the global features from the pooled 32 × 32
feature maps. The retrieved features are already more global by using a same-size kernel due
to the reduced spatial dimension of the data after pooling. Assuming the original objects
are at most a third of the size of the original input image, a maximum filter size of eleven is
needed to capture the whole object. As a lower bound, the next bigger filter size of four is
taken. Although it is mostly common to use uneven filter sizes, a valid padded size might be
beneficial when retrieving the final features in the last convolution layer. The sizes tested are
therefore between four and eleven.

An additional convolutional layer for first detecting medium-level features like corners could
be required. This further reduces the spatial dimension of the feature maps and thus helps
computation efficiency with bigger data, which could be beneficial if not even necessary in
the upcoming 3D models. A short test of configurations with a third convolutional layer of 32
filters is performed, too. The models have a medium kernel size of four to five in the second

60 Method

layer and a filter kernel size of four to eight in the third layer. As the input to the third layer
is reduced down to 16 × 16, filter kernel size eight already captures half of the whole image
and should be more than sufficient. The input to the first Dense layer is half as big, so the
neuron size was reduced to 1200.

The resulting precision and modified average precision values for all tested configurations are
presented in Table 3.7.

Kernels Heart 1000 Heart 100 Ellipse 250

3, 3 1/3, 0.61 1/3, 0.29 4/15, 0.25
3, 4 1/3, 0.55 2/5, 0.34 1/5, 0.24
3, 5 1/3, 0.64 2/5, 0.42 1/5, 0.23
3, 7 1/3, 0.55 4/15, 0.37 2/15, 0.33
3, 8 1/3, 0.62 2/5, 0.39 2/15, 0.25
3, 9 1/3, 0.64 2/5, 0.36 4/15, 0.25
3, 11 1/3, 0.64 2/5, 0.35 2/15, 0.26

3, 4, 4 2/5, 0.61 2/5, 0.35 1/5, 0.30
3, 5, 8 2/5, 0.63 2/5, 0.33 1/5, 0.47

Table 3.7: The table shows the precision and modified average precision of the different convolution
kernel configurations tried on the dSprites dataset. The left side gives the kernel sizes of
the convolutional layers. Inside the table, the first number is the obtained precision score,
and the second is the modified average precision.

The results are not the best overall, but in general, they got better by increasing the second
layer kernel as well as by adding a third kernel. The precision and modified average precision
values given, however, only slightly represent this finding. Unfortunately, the model still has a
lot of problems dealing with similar shapes and strong rotation or scaling. When retrieving for
a heart, a lot of ellipses with similar edges are obtained, and vice versa. Visualized examples
for the heart 1000 query are presented inFigure 3.12. Furthermore, Figure 3.13 shows a not-
in-the-table-evaluated example of an ellipse 1000 query. The query actually returns more
hearts than the heart query itself, giving a strong hint for yet-to-be-solved problems with
shapes with similar substructures.

Overall, the dSprites tests clearly showed some yet-to-be-solved shortcomings of the proposed
models. Especially when dealing with rotation and scaling, which seemed to perform badly
until now if no transformation-invariant surface features could be detected, a better-suited
setting of the convolutional kernel sizes only slightly improved the ability to handle transfor-
mations.

Most real-world objects, even from industrial CT scans, will have more surface features than
these perfectly generated one value shapes. However, a lot of smaller objects, like nails or
other small construction parts, do indeed only consist of a single material. More improvement
possibilities for this are discussed in the upcoming section of the 3D model, as the generator-
based dataset is more suitable to provide the desired manipulations to the data for further
improvements.

3.3 2D Layer Configuration Tests 61

Figure 3.12: The graphic shows the retrieval results for the first heart query on a subset of 1000
samples. The first three rows correspond to the first 3, 3, and 8 configurations, and
rows three and four correspond to the last 3, 5, and 8 configurations. Although only
one correct heart more is returned in these first 15 responses, these hearts, as well as
the shape similar ellipses, are sorted better..

Figure 3.13: The graphic shows the retrieval results for the ellipsoid query, but on a subset of 1000
samples on the last model with configurations 3, 5, and 8. The query returns more
hearts than the previous heart query, though it still returns a comparable amount of
ellipses.

62 Method

3.4 3D Model Design

As all the basic questions addressing configuration and design are answered, this section
presents the extension of the previous findings to 3D data. In the 3D-CAE architectures,
the input data is a volumetric image. The previous convolutional layers are replaced by 3D
convolutional layers, as well as the 2D pooling layers with 3D ones, which take into account
the spatial information in the x, y, and z dimensions. Aside from that, the architecture
stays mostly the same. Overall, two architectures are proposed based on the 2D findings and
restricted by computational feasibility.

Regarding the implementation, a lot of previous code can be reused, like the CAEManager
class or the retrieval index calculation on the encodings. All together, three big blocks have
to be changed or recoded: First, new self-defined layers have to be implemented using the
corresponding 3D layers of Keras to gain the same comfort for defining the models as before.
Second, a completely new input pipeline is needed for the self-generated 3D datasets. Third,
new train and evaluate scripts are needed, as well as a new 3D plotter for visualization and
an implementation of the MAP calculation.

3.4.1 Network Implementation

The new building blocks, or self-defined layers as called before, for the 3D models are im-
plemented just the same as the previous 2D ones as sublayers. Instead of Conv2D or Aver-
agePooling2D the included Conv3D, Conv3DTranspose or AveragePooling3D layers are used.
The DenseActivation layer can even be reused directly as is, as the data at that point is
already flattened.

Based on these 3D chained layers, two architectures are proposed. Only the add code for
the encoder and decoder is given here for a more clean presentation. Inside the project itself,
the models are implemented the same way as the 2D models, as a subclass of the AEBase class.

1 encoder.add(ConvActPool3D (4, kernel_size =3))

2 encoder.add(ConvActPool3D (8, kernel_size =5))

3 encoder.add(ConvActPool3D (16, kernel_size =8))

4 encoder.add(layers.Flatten ())

5 encoder.add(DenseActivation (5000))

6 encoder.add(layers.Dense (128))

7

8 decoder.add(layers.Input(shape =128))

9 decoder.add(DenseActivation (5000))

10 decoder.add(DenseActivation (8192))

11 decoder.add(layers.Reshape(target_shape =(8, 8, 8, 16)))

12 decoder.add(UpsConvTAct3D (16, kernel_size =8))

13 decoder.add(UpsConvTAct3D (8, kernel_size =5))

14 decoder.add(UpsConvTAct3D (4, kernel_size =3))

15 decoder.add(layers.Conv3DTranspose (1, kernel_size =3))

Python Code 3.10: Layers and configuration of architecture 1

3.4 3D Model Design 63

1 encoder.add(ConvActPool3D (8, kernel_size =3))

2 encoder.add(ConvActPool3D (16, kernel_size =3))

3 encoder.add(ConvActPool3D (32, kernel_size =3))

4 encoder.add(ConvActPool3D (64, kernel_size =4))

5 encoder.add(layers.Flatten ())

6 encoder.add(DenseActivation (2500))

7 encoder.add(layers.Dense (128))

8

9 decoder.add(layers.Input(shape =128))

10 decoder.add(DenseActivation (2500))

11 decoder.add(DenseActivation (4096))

12 decoder.add(layers.Reshape(target_shape =(4, 4, 4, 64)))

13 decoder.add(UpsConvTAct3D (64, kernel_size =4))

14 decoder.add(UpsConvTAct3D (32, kernel_size =3))

15 decoder.add(UpsConvTAct3D (16, kernel_size =3))

16 decoder.add(UpsConvTAct3D (8, kernel_size =3))

17 decoder.add(layers.Conv3DTranspose (1, kernel_size =3))

Python Code 3.11: Layers and configuration of architecture 2

3.4.2 Input Pipeline

The datasets used in the 3D cases are generated from a latent generator and stored in the
TFRecord format, compressed with GNU zip (GZIP). Thus, the input pipeline has to first
read and parse a GZIP compressed TFRecord, then build a dataset from it, and on the fly
apply transformations if desired.

For the first task, a tf records util module is used. It proposes a function read tfrecords gzip,
which takes a file path and a train bool to either read a train dataset or a test dataset with the
additional relevant information needed for MAP calculation. The function code is omitted
here, as it is basically the same as in the TensorFlow documentation for how to read and
parse a TFRecord.

The dataset building pipeline itself is this time encapsulated inside a Shapes3DLoader class,
which is useful for retrieving different combinations of applied augmentation and batching to
the data by using different values when initializing the Shapes3DLoader object for batch size,
max shift and noise parameters. Although named after the first dataset used later, it is
generalized and reused for the Multi-Shapes3D dataset, too.
The actual interface to read and build the dataset is the read n prepare dataset method,
whose code is shown in the following.

The method first reads the given file by using the tf records util module and then applies basic
shuffle and cache operations to the data. It then maps the random augmentation method on
the dataset, which performs the desired augmentation and is discussed in more detail after-
wards. The next call adds the channel dimension and makes a double tuple, hence adding the
target data for loss calculation. At last, the dataset is batched, pre-fetched, and returned.

64 Method

1 def read_n_prepare_dataset(self , records_file):

2 dataset = read_tfrecords_gzip(records_file)

3 dataset = dataset.cache().shuffle (75)

4 dataset = dataset.map(self.random_augmentation ,

num_parallel_calls=tf.data.AUTOTUNE)

5 dataset = dataset.map(self.expand_channels_add_target ,

num_parallel_calls=tf.data.AUTOTUNE)

6 dataset = dataset.batch(self.batch_size)

7 dataset = dataset.prefetch(tf.data.AUTOTUNE)

8 return dataset

Python Code 3.12: Definition of the read n prepare dataset method

The mentioned random augmentation method itself consists of a simple chain of if statements
based on the initialization values for the different augmentations. For each true path, a ran-
dom set is chosen, and the random augmentation is applied to the data by calling functions
from a transformation util module. The transformation module proposes a function for trans-
lation as well as a function for speckle, gauss, and salt and pepper noise. It also has a wrapper
function for applying the desired noise. The code for all four augmentations implemented is
given in the following code snippets.

1 padding = ((abs(x_shift), abs(x_shift)), (abs(y_shift), abs(

y_shift)), (abs(z_shift), abs(z_shift)))

2 padded_tensor = tf.pad(tensor , padding , mode=’constant ’)

3

4 # Determine the slice indices for the translated tensor

5 return padded_tensor[x_start:x_end , y_start:y_end , z_start:z_end

]

Python Code 3.13: The implementation of the translation augmentation. Only the most significant
code lines are given.

For translation, the volume is expanded by padding in all directions needed, and then a
volume of original size is clipped out of the padded volume, such that the resulting volume
corresponds to a volume with the desired translation applied.

1 noise = tf.random.normal(shape=tf.shape(tensor), mean=mean ,

stddev=stddev , dtype=tensor.dtype)

2 noise_tensor = tf.add(tensor , noise)

3 return tf.clip_by_value(noise_tensor , 0.0, 1.0)

Python Code 3.14: The relevant code lines of the implementation of gauss noise augmentation

Gauss noise is applied as usual by adding a normal distributed volume of the same size to the
input tensor. The mean is fixed at 0.0 and the derivation at 0.03 for augmentation usage.

3.4 3D Model Design 65

1 noise = tf.random.uniform(shape=tf.shape(tensor), minval=0,

maxval=1, dtype=tensor.dtype)

2 salt_mask = tf.cast(noise < prob , tf.float32)

3 pepper_mask = tf.cast(noise > (1 - prob), tf.float32)

4 #Some further preparations of the masks

5 noise_tensor = tf.multiply(tensor , salt_mask_transpose) +

pepper_mask

6 return tf.clip_by_value(noise_tensor , 0.0, 1.0)

Python Code 3.15: The relevant code lines of the implementation of salt&pepper noise
augmentation

Salt and Pepper noise is implemented on the basis of a single, uniform distribution for effi-
ciency reasons. The not-shown further preparation of the masks deals with points that are
in both masks. The probability is fixed set to 0.02 for augmentation.

1 noise = tf.random.normal(shape=tf.shape(tensor), mean =0.0,

stddev=std_dev , dtype=tf.float32)

2 noisy_tensor = tensor + tensor * noise

3 return tf.clip_by_value(noisy_tensor , clip_value_min =0.0,

clip_value_max =1.0)

Python Code 3.16: The significant lines of implementation of the speckle noise augmentation

For the speckle noise, the standard derivation is again fixed at 0.03 in the case of augmentation.

For the later, also used rotation transformation, a different train dataset with rotations already
applied is used. Rotations would require a rearranging of the data from voxel format to point
cloud format, such that a rotation matrix can be applied. This would be computationally
costly to do on the fly in the input pipeline, and as the latent generators are capable of
generating rotated objects, this approach was chosen.

3.4.3 Training, Evaluation and Visualization

Training, evaluation, and visualization are, like before, performed in separate scripts. For
training, these are quite simple, as the loading and preparing are handled by the previously
presented Shapes3DLoader class. Like before, training itself is encapsulated in the CAEMan-
ager class; thus, the script only instantiates and then calls the provided function in the right
order and with the desired arguments to train the desired model by the desired train method.

The evaluation script, however, comes in with more new code needed. Most of the evaluation
happens in the evaluate query function, which evaluates a single test case query completely,
returning the average precision received. First, another wrapper method, get encodings en-
capsulates the calculation of the latent encoding for a whole input test set, returning the
input volumes, the encoded latent representations, and the corresponding relevant informa-
tion. This method is called inside evaluate query and the information used for sorting the
relevant information according to the latent distances.

66 Method

For the calculation of the average precision itself, a new util script for calculating the average
precision of a single query is added. The calculation is performed with a basic for loop on a
relevant boolean array, which uses the sorted relevant information.

1 index = 1

2 relevant_so_far = 0

3 score = 0.0

4 for entry in ds_val_sorted [1:]:

5 if entry:

6 relevant_so_far += 1

7 score += relevant_so_far / index

8 index += 1

9 return score / relevant_so_far

Python Code 3.17: The calculation of the average precision in the util module

For a more convenient evaluation, the whole calculation is wrapped by an evaluate group
function, which gets every test case TFRecord from a given folder, calls the single evaluation,
and at the end calculates the Group Mean Average Precision (GMAP) received. For even
further convenience, another function calls the evaluate group function subsequently for each
group, calculating the overall MAP. For simplicity, print statements to obtain the values were
removed from the code here.

1 files = get_files_from_folder(folder)

2 scores = []

3 counter = counter_start

4 for file in files:

5 ds_val = tf_records_util.read_tfrecords_gzip(file , enc_type=’

test’)

6 scores.append(evaluate_query(cae_m , ds_val))

7 counter += 1

8 gmap = numpy.array(scores).sum() / scores.__len__ ()

9 return gmap

Python Code 3.18: The convenience function evaluate group

Concerning visualization, the vedo package is now used, and a new plotter3d util script is
provided. The vedo package delivers an append method for volumes, which makes it possible
to show multiple volumes in sorted order in a single plot. The data used later is again
grayscale, but visualized in color by Vedo’s standard color mapping. For the visualization of
the detailed look into the latent encodings, the z2D plotter is expanded to provide a plotting
option that uses a previously made snapshot of a 3D volume as the first image.

3.4 3D Model Design 67

3.4.4 Haar Wavelet Integration

To integrate the Haar-Wavelet filters, another sublayer ConvolveFilters is implemented. For
reusability, the layer is implemented to perform a fixed convolution, but for any given filter.
It furthermore proposes the option to load the filter from a numpy file. The filtering is per-
formed by a convolutions handled by TensorFlows’ conv3d function.

1 class ConvolveFilters(layers.Layer):

2 def __init__(self , filters , is_file=True):

3 super ().__init__ ()

4 self.filters = self.load_prepare_filters(filters) if

is_file else filters

5

6 def call(self , input_tensor):

7 filtered = tf.nn.conv3d(input_tensor , self.filters , strides

=(1, 1, 1, 1, 1), padding=’SAME’)

8 return filtered

Python Code 3.19: The self-defined layer ConvolveFilters for an arbitrary fixed convolution, which
is used to apply the wavelet filters to the input.

For using the new layer, one has to define the Haar-Wavelet filters either in a numpy file or
as a TensorFlow constant in the code. The layer can then be used as a replacement for the
first convolution layer of the encoder in the model definition. The implementation includes a
util script, haar wavelets that returns the normalized 2D or 3D Haar wavelets depending on
the parameter n. The shown code snippet was altered. 2D specific code is omitted, and only
the relevant 3D calculation is presented.

1 scaling = numpy.ones (2)

2 wavelet = numpy.array([1, -1])

3 normfactor = 2 ** (-n / 2)

4 mean = numpy.tensordot(scaling , scaling , 0)

5 vertical = numpy.tensordot(scaling , wavelet , 0)

6 horizontal = numpy.tensordot(wavelet , scaling , 0)

7 diagonal = numpy.tensordot(wavelet , wavelet , 0)

8

9 w1 = numpy.tensordot(scaling , mean , 0) * normfactor

10 w2 = numpy.tensordot(scaling , vertical , 0) * normfactor

11 w3 = numpy.tensordot(scaling , horizontal , 0) * normfactor

12 w4 = numpy.tensordot(scaling , diagonal , 0) * normfactor

13 w5 = numpy.tensordot(wavelet , mean , 0) * normfactor

14 w6 = numpy.tensordot(wavelet , vertical , 0) * normfactor

15 w7 = numpy.tensordot(wavelet , horizontal , 0) * normfactor

16 w8 = numpy.tensordot(wavelet , diagonal , 0) * normfactor

Python Code 3.20: The calculation of the Haar wavelet filters in numpy

4 Results

4.1 Test Cases and Evaluation

For evaluating the quality of the current state of a trained model, the gold standard in retrieval
evaluation, MAP is used. As MAP is an accumulation of average precision values, the retained
average precision values for each query are given as well. The MAP values are first calculated
for each category of queries, denoted as GMAP. For a further overall comparison with a
single value, MAP based on the categories MAP values instead of single average precision
values is built, whereas shape similarity is double weighted. The model’s training strategy is
adjusted in order to improve results as desired.

The test datasets and corresponding queries used for calculating the MAP are described
abstractly, such that the tests can be applied to both 3D datasets used as well as for evaluating
the later Wavelet model.

4.1.1 Shape Similarity Tests

The first queries used for testing should evaluate the model’s overall quality in detecting and
retrieving similar shapes. For this, three test cases in total are used in ascending difficulty.
Each of these test cases is run with three different input queries, resulting in nine total queries.
Using multiple inputs for each test case is done to improve the quality of the scores.

Test Case 1: Single Object Isotropic Scaling
Test Dataset: All basic shapes of the dataset plus multiple isotropic scaled versions of one
specific shape
Query: The basic non-scaled version of the chosen shape
Description: A very simple test on how well isotropically scaled shapes are handled as
similar shapes all scaled versions are counted as relevant with respect to the average
precision calculation and ideally should be retrieved first.

Test Case 2: Single Object Scaling
Test Dataset: All basic shapes of the dataset plus multiple isotropic and anisotropic scaled
versions of one specific shape
Query: the basic version of the specific shape
Description: A medium test on how well handled shapes are with either isotropic or
anisotropic scaling. For average precision calculations, all scaled versions are seen as
relevant and thus should be retrieved first without a special order. More information on this
treatment can be found in the corresponding discussion section in the later discussion
chapter.

68

4.1 Test Cases and Evaluation 69

Test Case 3: Multiple Object Scaling
Test Dataset: All basic shapes of the dataset in multiple isotropic and anisotropic scaled
versions
Query: the basic version of a chosen shape
Description: A more advanced test on how well handled shapes are with either isotropic or
anisotropic scaling. By scaling all shapes in multiple ways, the transformed shapes can no
longer be simply distinguished by size from the other shapes. For average precision
calculation again, all scaled versions are seen as relevant and thus should be retrieved first
without a special order.

4.1.2 Translation Robustness Tests

In the second test group, the robustness of the model against translations is evaluated. The
translations overall are minor translations, as in practice objects for CT scans are usually
inside a holder, and thus major translations are not relevant for the case. The tests themselves
are structured quite similarly to the previous ones but are only performed with one input shape
per test case, except for the first case, which is performed with a different shape once for each
axis. The total transformations applied are reduced the more axes and objects are translated,
to keep the test sets at a pleasant size. In total, five queries are evaluated.

Test Case 4: Single Object Single Axis Translation
Test Dataset: All basic and scaled shapes of the dataset plus multiple single axis
translated versions of one specific shape
Query: The basic version of the chosen translated shape
Description: A very simple test on how well minor single-axis translations are handled as
similar shapes. All translated versions are counted as relevant with respect to the average
precision calculation and ideally should be retrieved first.

Test Case 5: Single Object Translation
Test Dataset: All basic and scaled shapes of the dataset plus multiple single and multi
axis translated versions of one specific shape
Query: The basic version of the chosen translated shape
Description: A medium test on how well translations are handled as similar shapes, all
translated versions are counted as relevant with respect to the average precision calculation
and ideally should be retrieved first.

Test Case 6: Multiple Object Translation
Test Dataset: All basic and scaled shapes of the dataset in multiple single and multi axis
translated versions
Query: The basic version of the chosen translated shape
Description: A more difficult, real-data-comparable test on how well translations are
handled as similar shapes all translated versions of the input shape are counted as relevant
with respect to the average precision calculation and ideally should be retrieved first.

70 Results

4.1.3 Rotation Robustness Tests

Third, the more complex transformation of rotating the object is used, and the model’s
robustness is evaluated against it. The tests are structured quite similarly to the previous
one and performed with one shape per axis for the first test and a single shape for the
subsequent test cases. Like with translations, minor rotations are used only in regards to
practical relevance. However, an additional test is added specifically for 90-degree rotations,
which could occur in practice when placing the object into the holder. This results in a total
of six test queries.

Test Case 7: Single Object Single Axis Rotation
Test Dataset: All basic and scaled shapes of the dataset plus multiple single axis rotated
versions of one specific shape
Query: The basic version of the chosen rotated shape
Description: A very simple test on how well minor single-axis rotations are handled as
similar shapes. All rotated versions are counted as relevant with respect to the average
precision calculation and ideally should be retrieved first.

Test Case 8: Single Object 90 Degree Rotation
Test Dataset: All basic and scaled shapes of the dataset plus multiple 90 degree rotated
versions of one specific shape
Query: The basic version of the chosen rotated shape
Description: A very simple test on how well 90-degree rotations are handled as similar
shapes. All rotated versions are counted as relevant with respect to the average precision
calculation and ideally should be retrieved first.

Test Case 9: Single Object Rotations
Test Dataset: All basic and scaled shapes of the dataset plus multiple single and multi
axis rotated versions of one specific shape
Query: The basic version of the chosen rotated shape
Description: A medium test on how well rotations are handled as similar shapes. All
rotated versions are counted as relevant with respect to the average precision calculation
and ideally should be retrieved first.

Test Case 10: Multiple Object Rotation
Test Dataset: All basic and scaled shapes of the dataset in multiple single and multi axis
rotated versions
Query: The basic version of the chosen rotated shape
Description: A more difficult, real-data-comparable test on how well rotations are handled
as similar shapes all rotated versions of the input shape are counted as relevant with respect
to the average precision calculation and ideally should be retrieved first.

4.1.4 Noise Robustness Tests

At last, the models robustness against various forms of noise is evaluated. The first noise type
used is speckle noise, as it is common in CT scans and, furthermore, only affects non-empty

4.1 Test Cases and Evaluation 71

space. The second type of noise used is salt and pepper noise, which is generally common for
digital image processing. It affects the empty space but only sets zero or maximum values,
so it should still be manageable to handle. Last, random gauss noise is evaluated as a more
difficult noise type. The noise test cases are only performed with one shape input each, but
a different one for each noise type and for single or multiple noisy objects, which should be
sufficient. In total, six test queries are evaluated.

Test Case 11: Single Noisy Volume Speckle
Test Dataset: All basic and scaled shapes of the dataset plus multiple speckle noisy
versions of one specific shape
Query: The basic version of the chosen noisy shape
Description: A very simple test on how well speckle noise is handled. All noisy versions
are counted as relevant with respect to the average precision calculation and ideally should
be retrieved first.

Test Case 12: Multiple Noisy Volumes Speckle
Test Dataset: All basic and scaled shapes of the dataset in speckle noisy versions
Query: The basic version of the chosen noisy volume
Description: A more difficult, real-data-comparable test on how well speckle noise is
handled. All noisy versions of the input shape are counted as relevant with respect to the
average precision calculation and ideally should be retrieved first.

Test Case 13: Single Noisy Volume Salt & Pepper
Test Dataset: All basic and scaled shapes of the dataset plus multiple salt and pepper
noisy versions of one specific shape
Query: The basic version of the chosen noisy shape
Description: A very simple test on how well salt and pepper noise is handled. All noisy
versions are counted as relevant with respect to the average precision calculation and ideally
should be retrieved first.

Test Case 14: Multiple Noisy Volumes Salt & Pepper
Test Dataset: All basic and scaled shapes of the dataset in salt & pepper noisy versions
Query: The basic version of the chosen noisy volume
Description: A more difficult, real-data comparable test on how well salt and pepper noise
is handled All noisy versions of the input shape are counted as relevant with respect to the
average precision calculation and ideally should be retrieved first.

Test Case 15: Single Noisy Volume Gaussian
Test Dataset: All basic and scaled shapes of the dataset plus multiple Gaussian noisy
versions of one specific shape
Query: The basic version of the chosen noisy shape
Description: A very simple test on how well Gaussian noise is handled. All noisy versions
are counted as relevant with respect to the average precision calculation and ideally should
be retrieved first.

72 Results

Test Case 16: Multiple Noisy Volumes Gaussian
Test Dataset: All basic and scaled shapes of the dataset in Gaussian noisy versions
Query: The basic version of the chosen noisy volume
Description: A more difficult, real-data comparable test on how well Gaussian noise is
handled. All noisy versions of the input shape are counted as relevant with respect to the
average precision calculation and ideally should be retrieved first.

4.2 Shapes3D

The first 3D dataset used in this thesis is a dataset of basic augmented 3D shapes, denoted as
Shapes3D. The dataset generator is based on Python’s raster geometry package and is basi-
cally a high-level latent generator wrapper of it, with some additional functionality like noise
and rotation added. The latent generator gives the opportunity to generate self-defined sub-
datasets from it, which are used for incremental training and the generation of the proposed
test datasets. The shapes included are cube and cuboid, sphere and ellipsoid, rhomboid,
cylinder, and prism. A few random examples of these shapes can be seen in Figure 4.1.

Figure 4.1: The graphic shows 10 random example shapes from the Shapes3D dataset. The examples
were restricted to isotropically scaled versions only.

4.2.1 Model Comparison: Performance Evaluation

For a start, the two proposed models are trained for 1000 epochs on the scaled versions of
the shapes only. Afterwards, the better model is further trained with first translation as
augmentation only and second with translation, rotation, and noise as augmentation. The
retained average precision, GMAP and MAP scores for all four models are presented in
Table 4.1. Visualized examples for some test case queries are shown in Figure 4.2, along with
the corresponding first ten retrieval results of the best model in Figure 4.3.

4.2 Shapes3D 73

Query Model 1 Model 2 Model 2 ”Translation” Model 2 ”Augmentation”

1: Cuboid 0.6488 0.6667 0.7750 0.8125
1: Rhomboid 1.0000 1.0000 1.0000 1.0000
1: Prism 1.0000 0.9500 1.0000 0.9500
2: Cuboid 0.8318 0.8241 0.9067 0.8065
2: Rhomboid 0.9644 0.9787 0.9805 0.9651
2: Prism 0.9952 0.9502 0.8984 0.9707
3: Cuboid 0.6791 0.6730 0.8294 0.6310
3: Rhomboid 0.3760 0.5336 0.6216 0.5568
3: Prism 0.9491 0.7593 0.4440 0.8913

GMAP Shape 0.8272 0.8151 0.8284 0.8427

4: Cuboid 0.9673 0.9705 0.9861 0.9615
4: Ellipsoid 0.8554 0.8871 0.9034 0.9182
4: Cylinder 0.8423 0.8772 0.9152 0.8831
5: Prism 0.9991 0.9970 0.9859 0.9981
6: Rhomboid 0.3677 0.5614 0.4531 0.5684

GMAP Translation 0.8063 0.8586 0.8487 0.8659

7: Cuboid 0.9533 0.9506 0.9780 0.9294
7: Ellipsoid 0.8491 0.8389 0.8799 0.8829
7: Cylinder 0.7986 0.8204 0.8808 0.8422
8: Cylinder 0.9700 0.9565 0.9529 0.9475
9: Prism 0.9998 0.9951 0.9765 0.9985
10: Rhomboid 0.7698 0.8281 0.8407 0.6618

GMAP Rotation 0.8901 0.8983 0.9181 0.8771

11: Cuboid 0.5250 0.9533 0.9708 0.9606
12: Cuboid 0.2909 0.7706 0.8420 0.7573
13: Rhomboid 0.9047 0.9621 0.9821 0.9451
14: Ellipsoid 0.7166 0.7954 0.8913 0.7561
15: Prism 0.5248 0.9609 0.9471 0.9689
16: Cylinder 0.4462 0.7070 0.9165 0.7294

GMAP Noise 0.5680 0.8582 0.9249 0.8529

MAP 0.7838 0.8490 0.8697 0.8562

Table 4.1: The table shows the received retrieval scores for the two proposed model architectures, with
basic in columns one and two. For the better Model 2, the results after more sophisticated
training with additional translation or full augmentation training are presented in columns
three and four.

74 Results

4.2.2 Model 2 ”Translation”: Retrieval Visualization

Figure 4.2: The graphic shows the first 10 shapes of three chosen test query examples for translation
robustness in row one, rotation robustness in row two, and noise robustness in row three.
An example for shape similarity queries is omitted, as scaled versions are already shown
in the example images of the database.

Figure 4.3: The graphic shows the first 10 shapes retrieved by Model 2 ”Translation”. The results
correspond to the test case queries presented above.

4.3 Blended Multi-Shapes3D and Wavelet Integration 75

4.3 Blended Multi-Shapes3D and Wavelet Integration

The second 3D dataset used is the Mult-Shapes3D dataset, which consists of three augmented
real object CT-scans and three synthetic double shapes. The shapes are displayed in Figure 4.4
and have a volume size of 64 × 64 × 64. The Mult-Shapes3D dataset enables the evaluation
of the model 2 Translations’ effectiveness in capturing intricate details of more complex 3D
shapes. It gives a more real-life comparable benchmark for the performance of the so far best
model and is thus also used for the comparison with the Haar Wavelet integrated Model 3.

Figure 4.4: The graphic shows the six shapes from the Multi-Shapes3D dataset. The first three
shapes (piston, egg with kangaroo, and egg with figure) are down-sampled and clipped
versions of real-object CT scans. The other three shapes are synthetic shapes, generated
by merging two shapes from the Shapes3D dataset into one volume.

4.3.1 Model Comparison: Performance Evaluation

The two models are compared using the defined test cases as previously mapped on the
Multi-Shapes3D database. Graphic Figure 4.5 shows the plotted loss curve for Model 2
”Translation” and Model 3 ”Haar Wavelet” on Multi-Shapes3D.

Figure 4.5: The loss curves of Model 2 and Model 3

The plot is clipped in
the y direction for bet-
ter visualization. The ac-
tual starting values after
one epoch are 0.2743 for
Model 2 and 0.0996 for
Model 3. Both models
reach a value of around
0.0400 after the second
training epochs, which
further training curve is
approximately the same
as the presented plot.

76 Results

The retrieved average precision and MAP scores are shown in Table 4.2. The training times
per epoch are four seconds for Model 2, five seconds for Model 3 with filter loading from
file and again four seconds for Model 3 with filters hard-coded in the model declaration.
Addressing memory usage, no significant differences are obtained.

Query Model 2 ”Translation” Model 3 ”Haar Wavelet”

1: Cuboid/Rhomboid 0.6667 0.7679
1: Piston 0.9167 1.0000
1: Prism/Cylinder 0.8304 0.7361
2: Cylinder/Ellipsoid 0.7511 0.7389
2: Egg 1 1.0000 1.0000
2: Prism/Cylinder 0.7389 0.7245
3: Egg 2 0.9805 0.9805
3: Cuboid/Rhomboid 0.7712 0.7462
3: Prism/Cylinder 0.4300 0.3934

GMAP Shape 0.7873 0.7875

4: Piston 0.9986 1.0000
4: Cuboid/Rhomboid 0.9468 0.9599
4: Egg 2 0.9943 0.9938
5: Prism/Cylinder 0.9842 0.9841
6: Cuboid/Rhomboid 0.7152 0.6158

GMAP Translation 0.9278 0.9107

7: Cuboid/Rhomboid 0.9229 0.9357
7: Cylinder/Ellipsoid 0.8210 0.7740
7: Egg 1 0.9909 0.9956
8: Egg 2 0.9964 0.9991
9: Prism/Cylinder 0.9740 0.9694
10: Cuboid/Rhomboid 0.6873 0.7247

GMAP Rotation 0.8988 0.8997

11: Cuboid/Rhomboid 0.9443 0.6607
12: Piston 0.2848 0.2104
13: Cylinder/Ellipsoid 0.8110 0.6071
14: Egg 1 0.9205 0.3404
15: Prism/Cylinder 0.8433 0.4326
16: Egg 2 0.2674 0.2241

GMAP Noise 0.6785 0.4126

MAP 0.8159 0.7596

Table 4.2: The table shows the received GMAP and overall MAP scores of the previous best Model
2 ”Translation” and Model 3 ”Haar Wavelet”. Model 3 has the integration of wavelet
filters as the first layer on Blended Multi-Shapes3D. The models were both trained for 500
epochs before evaluation.

4.3 Blended Multi-Shapes3D and Wavelet Integration 77

4.3.2 Exploring Edge Cases: Poor Retrieval Results

This subsection provides visualizations of edge cases with comparable bad retrieval results.
This aims to gain a deeper understanding of the capabilities of the proposed models. These
visualizations provide insights into the retrieval performance of Model 2 and Model 3 on easy
test cases, highlighting the instances where the models struggled to produce accurate results.
Figures 4.6, 4.7, and 4.8 display the input shapes and retrieval results for Model 2 and Model
3 on the chosen bad results of easy test cases from the Multi-Shapes3D dataset.

Figure 4.6: The graphic shows the first 10 shapes of the three chosen single transformation test
queries, which should be comparable easy but returned quite bad results for both models.
The chosen queries are 1: Cuboid/Rhomboid presented in row one, 2: Prism/Cylinder
in row two, and 7: Cylinder/Ellipsoid in row two.

Figure 4.7: The graphic shows the first 10 shapes retrieved by Model 2 ”Translation” for the chosen
bad results on easy test case examples.

78 Results

Figure 4.8: The graphic shows the first 10 shapes retrieved by Model 3 ”Haar Wavelet” for the chosen
bad results on easy test case examples.

4.3.3 Real Data: Retrieval Visualization

Figure 4.9: The graphic shows the first 10 shapes of four test query examples, each chosen at random
from the real data test cases of each category. Test case 2 with Egg 1 as query is shown
in row one; test case 4 with Piston as query is shown in row two; test case 8 with Egg
2 as query is shown in row three; and test case 12 with Piston as query is shown in row
four.

This subsection presents the visualizations of test queries with real data-based input and
the corresponding retrieval results for Model 2 and Model 3 on the Multi-Shapes3D dataset.
These visualizations provide insights into the retrieval performance of Model 2 and Model
3 on real data test queries, giving an understanding of how the models handle real-world

4.3 Blended Multi-Shapes3D and Wavelet Integration 79

Figure 4.10: The graphic shows the first 10 shapes retrieved by Model 2 ”Translation” for the ran-
domly chosen real data test cases.

shapes.

Figure 4.11: The graphic shows the first 10 shapes retrieved by Model 3 ”Haar Wavelet” for the
randomly chosen real data test cases.

80 Results

4.3.4 Differences in Noise Robustness

The wavelet-expanded model performed comparable well except for the noise test cases. For
this reason, a deeper look into the encoding under various types of noise is specifically exam-
ined here. The noise types considered in this evaluation are speckle noise, salt and pepper
noise, and Gaussian noise. The changing encoding of both models is visualized and compared
as the noise scale varies for each type of noise.

The resulting encodings for the different noise types are displayed in the corresponding figures.
Figure 4.12 showcases the encodings for the cuboid/rhomboid shape augmented with speckle
noise. Figure 4.13 presents the encodings for the cylinder/ellipsoid shape augmented with
salt and pepper noise. Figure 4.14 illustrates the encodings for the egg1 shape augmented
with Gaussian noise.

Insights into the noise robustness of the wavelet expanded model are provided by examining
these encodings. The encodings under different noise conditions allow for the assessment
of the model’s ability to handle noise and the identification of any limitations or areas for
improvement.

Speckle Noise

Figure 4.12: The graphic presents the received encoding for the cuboid/rhomboid shape augmented
by speckle noise in ascending noise scale order. The noise is scaled to fit a (0,255)
gray-scale image; noise scale 2 corresponds to a Gauss standard derivation of 2/255 for
the multiplicative part.

4.3 Blended Multi-Shapes3D and Wavelet Integration 81

Salt & Pepper Noise

Figure 4.13: The graphic presents the received encoding for the cylinder/ellipsoid shape augmented
by salt and pepper noise in ascending order. The noise is scaled to fit a (0,255) gray-
scale image; noise scale 2 corresponds to a probability of 2/255 for a changed pixel.

Gauss Noise

Figure 4.14: The graphic presents the received encoding for the egg1 shape augmented by gauss noise
in ascending noise scale order. The noise is scaled to fit a (0,255) gray-scale image; noise
scale 2 corresponds to a Gauss standard derivation of 2/255.

5 Discussion

5.1 Handling Isotropic versus Anisotropic Scaling

Concerning the second and third test cases, all scaled versions of the objects are considered
relevant. However, in terms of human perception or mathematical reasoning, the algorithm
should ideally prioritize returning the isotropically scaled objects before the anisotropically
scaled ones. Humans tend to perceive proportionally scaled versions of objects as the same
but scaled, while anisotropically scaled objects are perceived as similar but distinct objects.
For instance, a scaled cube remains a cube, while a cuboid is a distinct shape resulting from
scaling one side only. From an objective standpoint, objects with only one side length changed
are often spatially more overlapping than those with all side lengths scaled.

In conclusion, while treating all scaled versions of objects as relevant in the second and third
test cases is acceptable for evaluating the algorithm’s ability to detect similar shapes, a more
human-centric or mathematically logical approach would prioritize isotropic scaling before
anisotropic scaling. This approach would result in a similarity measure that aligns more with
human perception. However, implementing this approach would require more sophisticated
performance measures than MAP to properly account for both types of scaling. As this thesis
is intended to provide groundwork for research, this is left open for future researchers.

5.2 Model Size and Augmentation

The first results obtained for Shapes3D by comparing Model 1 with basic shape training
and Model 2 with basic shape training are mostly as expected. Overall, the bigger model
delivers better results. Except for the noise robustness tests, the results are, however, quite
comparable. If noise robustness is not desired, one might even prefer the smaller model
for complexity reasons. For the thesis, however, the second model is chosen to be further
evaluated as noise is quite common in CT scans.

Let’s take a look at the differences between Model 2 and Model 2 further trained with random
translation as augmentation. Overall, the translation-trained version performs better than
expected, but the group scores are a bit surprising at first. The model gets better in the
shape, rotation, and noise similarity tests. At the translation tests, which it was explicitly
trained on, it performs worse.
A similar unexpected behavior occurred with the fully augmentation-trained Model 2. It de-
livers better results concerning shape and translation similarity but worse results for rotation
and noise similarity.

If you think about this, at first sight, contrary behavior becomes logic. Although augmenta-
tion is used a lot in classification tasks, using it in AEs cannot accomplish the same improve-

82

5.3 Using Haar Wavelet Filters 83

ments. In classification, a predefined label is used for training, and thus the model learns to
correctly detect the augmented shapes of these classes. An AE on the other hand, uses the
input as a target for learning and compares it with its own reconstruction. As a comparison
with the MSE or MAE is pointwise, augmentation is part of the reconstruction error obtained
for adjusting the weights. Thus, as soon as augmented shapes are used for training, the model
is forced to encode at least some information for restoring the augmentation information in
the decoder later.

Having this behavior of augmentation with AEs in mind, the obtained scores became obvious.
Adding translation forces the model to encode spatial position information into the latent
dimension. This position information helps distinguish different shapes from each other,
even if they are rotated or noisy. Then adding noise and rotation information in the latent
dimension improves shape and translation similarity, with the trade-off of reducing the former
robustness.

Using one type of augmentation improves the robustness against all others and thus the overall
performance of a model. Using too much augmentation can, however, decrease performance
again. It seems plausible to use translation augmentation as is for the more advanced dataset
and the given task. The real data objects are usually placed in a holder that is in a fixed
position. Translations should thus not occur much, but the object can be rotated inside as
well as the images obtained noisy. Using translation as augmentation thus makes the model
most robust against real-world occurring augmentations in CT scans.

5.3 Using Haar Wavelet Filters

The rationale for using Haar wavelet filters was based on their reputation as high-quality
edge detectors. The hope was that using them would reduce the number of trainable pa-
rameters by eliminating a convolutional layer, resulting in more efficient training and faster
backpropagation.

However, the experiments conducted did not yield the desired results. Training times per
epoch remained the same when using the filters hard-coded, and even increased when loading
the filters from a file. It appears that having one less convolutional layer for backpropagation
does not have a significant impact on performance compared to using a self-implemented
convolution layer with fixed filters. Although the self-defined layer may be less optimized, the
difference should be minor since it utilizes TensorFlow’s convolution operation.
There were no significant differences observed in memory usage. When increasing the number
of filters until a GPU memory error occurs, the error typically arises during the second
convolution operation. As the second layer is trainable anyway, using fixed filters in the first
convolution step has little effect on the architecture’s memory usage.
In addition to training times and memory usage, evaluating loss over time is also important.
Since one less layer of filters is trained, the number of epochs required to reach a (local)
optimum may be significantly reduced, resulting in an overall reduced training time, although
the computation time per epoch remains constant. Unfortunately, the results did not confirm
this hypothesis either. The models achieved comparable loss values after only two epochs,
with only a small advantage observed for the Haar-Wavelet filters during the first 100 epochs.
The only significant difference was observed at the beginning and after a single training

84 Discussion

epoch. However, it is important to note that Haar-Wavelet filters still outperformed random
initialization at first.

Concerning similarity, Model 3 performed similarly to Model 2 for shape similarity and trans-
lation robustness. This is as expected, as the filters are known for their high-quality edge
detection, making them suitable for subsequent high-level feature detection. Translation in-
variance is achieved through pooling and is independent of the filters used in the first layer.
The results regarding rotation robustness were unexpected but impressive. Despite rotated
edges producing distinct feature maps, the model was able to handle them well. It was origi-
nally hypothesized that the learned edge detectors might be more robust to rotation, but it
seems that rotation is handled by the deeper pooling and convolution layers in a similar way
to translation. This is consistent with the common understanding that CNNs tends to learn
edge-detecting filters in the first layer, which are then used for higher-level feature detection
in subsequent layers. Overall, these findings suggest that the use of Haar wavelet filters in the
first convolutional layer may not be as crucial for rotation robustness as originally thought.

However, the quality of the results dropped significantly when noise was introduced. The addi-
tional visualization with ascending noise scales clearly illustrates what is happening. Speckle
noise, which only alters the shape but not the empty volume, is still handled well, but edges
become slightly disorganized, and the model performs worse than Model 2. Nevertheless, the
latent representation still looks similar.
On the other hand, a small amount of salt and pepper noise was enough to completely disrupt
the algorithm. The Haar-Wavelet filters detected edges everywhere in the volume, making it
impossible to recover them in subsequent layers. As a result, the latent representation was
a nearly random mess with very little relevant information for similarity. This behavior was
consistent with the handling of Gaussian noise. Edges were detected everywhere, resulting in
a completely disorganized encoding. The latent dimension had even less similarity-relevant
information, if any.

6 Conclusion and Future Work

Considering the concept of similarity in latent encodings, there is still room for further research
on designing a specific distance function. While existing literature has covered the differences
between various distance metrics, more research is needed on how they interact with different
forms of normalization. This would help improve the accuracy and efficiency of similarity
measures in latent space.

For the general model architecture, using two or three convolutional layers and two dense
layers seems appropriate. There hasn’t been much change in recent years, and neither has
this thesis. Using slowly increasing filter kernel sizes is also in accordance with state-of-
the-art architectures. The newly proposed activations, however, achieved better results than
the state-of-the-art go-to approach of using ReLU. The brief comparison of the 2D dataset
results might be worth expanding into in-depth research on the 3D models. In terms of
regularization, the extremely bad results achieved here are open to further exploration. Quite
a few papers used some form of regularization to receive sparse latent encodings. However,
diving further into regularization in the field of CAEs and exploring sparse representation for
similarity measures would have been out of the scope of this thesis.

The proposed test suite and evaluation measure for 3D shape retrieval have proven effective
in assessing the quality of various model architectures on the Shapes3D and Multi-Shapes3D
datasets. The final architectures have achieved well-working results, which seem to be overall
promising to further develop into a real-life retrieval algorithm.

While various data augmentations were found to improve the models performances, they may
not be ideal for similarity-based tasks. They enforce the encoding of spatial information such
that the reconstruction error is minimized. As spatial data is not relevant for shape retrieval,
future research could explore the use of denoising AEs as an alternative. There seem to be
three reasonable ways to go: directly train the proposed models further in an all-denoising
way; either train two separate AEs, one for denoising and one for shape matching; or even
train a separate AE for each augmentation form to denoise before matching shapes.

Regarding the use of wavelet filters for faster computations, the results obtained were com-
parable in shape matching as well as computation time and memory usage, with a strong
trade-off in terms of noise. Real improvements could only be achieved in the first two epochs,
regarding the loss values. Still, the simple approach of just using the Haar-Wavelet filters as
the first layer performed comparably well in most cases, which shows that further research
into such an approach could be beneficial.

In terms of future work, there are several approaches that could be explored to further fine-
tune the Haar-Wavelet integration for more efficient computation and memory usage. One
potential option is to apply the wavelet filters to the dataset as a preprocessing step. This
would allow the AE to directly encode and reconstruct the multiple wavelet feature maps.
By this approach, the first wavelet layer as well as the last deconvolution layer could be

85

86 Conclusion and Future Work

omitted, resulting in a smaller AE. To implement this approach, the wavelet filter maps
could be calculated once for every training set, and a Haar wavelet preprocessed dataset
could be created. For the test set, the input pipeline could take care of the first filtering
step. This would eliminate one layer each in the encoder and decoder. The complexity of the
input filtering and deconvolution would thus be reduced from O(2mn) down to O(n) where
m is the number of training epochs and n the number of training examples. The bigger loss
calculation should be negligible in comparison to the total calculation time. Aside from the
theoretical big computation improvements, it should be noted that the issue of bad noise
handling would still need to be addressed. One solution to this could be to explore a chain
of denoising, wavelet filtering, and shape encoding techniques.

Another potential option for improving the use of Haar wavelet filters in CAEs is to consider
initializing the first layer of a CAE with Haar-Wavelet filters rather than using random ini-
tialization. Model 3 yielded significantly better results for very little training time, suggesting
that it could be a promising approach worth further investigation. However, it remains an
open question whether this initialization strategy could cause the model to become stuck in
a local optimum and fail to handle noise effectively, or if the model would adapt out of this
niche with further training. Further research is needed to explore this possibility.

Overall, this thesis provides a thorough analysis of using CAEs for similarity-based shape
retrieval. While the proposed models show promise for real-world applications, further op-
timization is needed to improve accuracy on transformed data as well as computation and
memory efficiency. Although compression is a legitimate tool to use for the retrieval of 3D
data, the compression used to get to a 643 volume removed quite a bit of information relevant,
for example, to correctly sort similar shapes with different textures.

Bibliography

1. Turk, M. & Pentland, A. Eigenfaces for recognition. Journal of Cognitive Neuroscience
3, 71–86 (1991).

2. Geiger, A., Lenz, P. & Urtasun, R. Are we ready for autonomous driving? The KITTI
vision benchmark suite in Conference on Computer Vision and Pattern Recognition
(2012), 3354–3361.

3. Litjens, G. et al. A survey on deep learning in medical image analysis. Medical Image
Analysis 42, 60–88 (2017).

4. Arulkumar, S., Ganesan, K. & Priyadharsini, R. A review of computer vision applica-
tions in surveillance systems. Journal of Ambient Intelligence and Humanized Comput-
ing 10, 3407–3423 (2019).

5. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition in
Conference on Computer Vision and Pattern Recognition (2016), 770–778.

6. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image
recognition in International Conference on Learning Representations (2015).

7. Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic seg-
mentation in Conference on Computer Vision and Pattern Recognition (2015), 3431–
3440.

8. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolu-
tional neural networks in Advances in Neural Information Processing Systems (2012),
1097–1105.

9. He, K., Zhang, X., Ren, S. & Sun, J. Identity mappings in deep residual networks in
European Conference on Computer Vision (2016), 630–645.

10. Ma, J., Jiang, X., Fan, A., Jiang, J. & Yan, J. Image Matching from Handcrafted to
Deep Features: A Survey. International Journal of Computer Vision 129, 23–79 (2021).

11. Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification 2nd (John Wiley &
Sons Inc. A Wiley-Interscience Publication, New York, USA, 2001).

12. Stahl, T., Koch, C. & Wersig, S. Künstliche Intelligenz in der Praxis: Autoencoder
– Eine vielseitig einsetzbare Architektur. AI Spektrum - Das Magazin für künstliche
Intelligenz (2019).

13. A. Goodrum, A. Image Information Retrieval: An Overview of Current Research. In-
forming Science: The International Journal of an Emerging Transdiscipline 3, 063–066
(2000).

14. Humblet, C. & Dunbar, J. B. in Annual reports in medicinal chemistry, Volume 28 (ed
Hagmann, W. K.) 275–284 (Academic Press, 1993). isbn: 9780120405282.

87

88 Bibliography

15. Ankerst, M., Kastenmüller, G., Kriegel, H.-P. & Seidl, T. inAdvances in spatial databases
(eds Goos, G. et al.) 207–226 (Springer, 1999). isbn: 978-3-540-66247-1.

16. Saupe, D. & Vranić, D. V. 3D Model Retrieval with Spherical Harmonics and Moments
in Pattern recognition (eds Goos, G., Hartmanis, J., van Leeuwen, J., Radig, B. &
Florczyk, S.) 2191 (Springer, 2001), 392–397. isbn: 978-3-540-42596-0.

17. Vranic, D. V., Saupe, D. & Richter, J. Tools for 3D-object retrieval: Karhunen-Loeve
transform and spherical harmonics in 2001 IEEE Fourth Workshop on Multimedia
Signal Processing (Cat. No.01TH8564) (2001), 293–298.

18. Osada, R., Funkhouser, T., Chakzelle, B. & Dobkin, D. Shape Distributions Princeton,
USA, 2002.

19. Chen, D.-Y., Tian, X.-P., Shen, Y.-T. & Ouhyoung, M. On Visual Similarity Based 3D
Model Retrieval. Computer Graphics Forum 22, 223–232 (2003).

20. Assfalg, J., Bertini, M., Bimbo, A. D. & Pala, P. Content-Based Retrieval of 3-D Objects
Using Spin Image Signatures. IEEE Transactions on Multimedia 9, 589–599 (2007).

21. Jain, V. & Zhang, H. A spectral approach to shape-based retrieval of articulated 3D
models. Computer-Aided Design 39, 398–407 (2007).

22. Papadakis, P., Pratikakis, I., Theoharis, T., Passalis, G. & Perantonis, S. 3D Object
Retrieval using an Efficient and Compact Hybrid Shape Descriptor in Eurographics 2008
Workshop on 3D Object Retrieval (eds Stavros Perantonis, Nikolaos Sapidis, Michela
Spagnuolo & Daniel Thalmann) (The Eurographics Association, 2008). isbn: 978-3-
905674-05-7.

23. Zaharescu, A., Boyer, E., Varanasi, K. & Horaud, R. Surface feature detection and
description with applications to mesh matching in 2009 IEEE Conference on Computer
Vision and Pattern Recognition (IEEE, 2009), 373–380. isbn: 978-1-4244-3992-8.

24. Agathos, A. et al. 3D articulated object retrieval using a graph-based representation.
Visual Computer 26, 1301–1319 (2010).

25. Lavoué, G. Combination of bag-of-words descriptors for robust partial shape retrieval.
The Visual Computer 28, 931–942 (2012).

26. Tabia, H. & Laga, H. Covariance-Based Descriptors for Efficient 3D Shape Matching,
Retrieval, and Classification. IEEE Transactions on Multimedia 17, 1591–1603 (2015).

27. Yang, C. & Yu, Q. Multiscale Fourier descriptor based on triangular features for shape
retrieval. Signal Processing: Image Communication 71, 110–119 (2019).

28. Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y. & Ramani, K. Three-dimensional
shape searching: state-of-the-art review and future trends. Computer-Aided Design 37,
509–530 (2005).

29. Tangelder, J. W. H. & Veltkamp, R. C. A survey of content based 3D shape retrieval
methods. Multimedia Tools and Applications 39, 441 (2007).

30. Devareddi, R. B. & Srikrishna, A. Review on Content-based Image Retrieval Models
for Efficient Feature Extraction for Data Analysis in 2022 International Conference on
Electronics and Renewable Systems (ICEARS) (2022), 969–980.

Bibliography 89

31. Le Cun, Y. et al. Handwritten Digit Recognition with a Back-Propagation Network
in Proceedings of the 2nd International Conference on Neural Information Processing
Systems (ed MIT Press) (1989), 396–404.

32. LeCun, Y., Cortes, C. & Burges, C. MNIST handwritten digit database http://yann.

lecun.com/exdb/mnist/ (2022).

33. Hinton, G. E. & Salakhutdinov, R. R. Reducing the Dimensionality of Data with Neural
Networks. Science (New York, N.Y.) 313, 504–507 (2006).

34. Krizhevsky, A. & Hinton, G. Using Very Deep Autoencoders for Content-Based Image
Retrieval tech. rep. (2011).

35. Salakhutdinov, R. & Hinton, G. Semantic hashing. International Journal of Approxi-
mate Reasoning 50, 969–978 (2009).

36. Xu, G. & Fang, W. Shape retrieval using deep autoencoder learning representation
in 13th International Computer Conference on Wavelet Active Media Technology and
Information Processing (ICCWAMTIP) (IEEE, 2016), 227–230. isbn: 978-1-5090-6126-
6.

37. Cai, Z., Gao, W., Yu, Z., Huang, J. & Cai, Z. Feature extraction with triplet convolu-
tional neural network for content-based image retrieval in Proceedings of the 2017 12th
IEEE Conference on Industrial Electronics and Applications (ICIEA) (IEEE, 2017),
337–342. isbn: 978-1-5090-6161-7.

38. Cheng, Z., Sun, H., Takeuchi, M. & Katto, J. Performance Comparison of Convolu-
tional AutoEncoders, Generative Adversarial Networks and Super-Resolution for Image
Compression arXiv.org. 1807.00270v1 (Tokyo, Japan, 2018).

39. Zhu, Z., Wang, X., Bai, S., Yao, C. & Bai, X. Deep Learning Representation using
Autoencoder for 3D Shape Retrieval arXiv.org (PR, China, 2014).

40. Liu, Z.-M. et al. 3D model retrieval based on deep Autoencoder neural networks in 2017
International Conference on Signals and Systems (2017), 290–296.

41. Zhou, W. & Jia, J. A learning framework for shape retrieval based on multilayer per-
ceptrons. Pattern Recognition Letters 117, 119–130 (2019).

42. Leng, B., Guo, S., Zhang, X. & Xiong, Z. 3D object retrieval with stacked local convo-
lutional autoencoder. Signal Processing 112, 119–128 (2015).

43. Xie, J., Fang, Y., Zhu, F. & Wong, E. Deepshape: Deep learned shape descriptor for
3D shape matching and retrieval in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (2015), 1275–1283.

44. Bu, S., Han, P., Liu, Z., Han, J. & Lin, H. Local deep feature learning framework for
3D shape. Computers & Graphics 46, 117–129 (2015).

45. Wang, Y., Xie, Z., Xu, K., Dou, Y. & Lei, Y. An efficient and effective convolutional
auto-encoder extreme learning machine network for 3d feature learning. Neurocomput-
ing 174, 988–998 (2016).

46. Yu, E. M. & Sabuncu, M. R. A Convolutional Autoencoder Approach To Learn Volu-
metric Shape Representations For Brain Structures in 2019 IEEE 16th International
Symposium on Biomedical Imaging (2019), 1559–1562. isbn: 1945-8452.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

90 Bibliography

47. Kausar, T., Wang, M., Idrees, M. & Lu, Y. HWDCNN: Multi-class recognition in breast
histopathology with Haar wavelet decomposed image based convolution neural network.
Biocybernetics and Biomedical Engineering 39, 967–982 (2019).

48. Gentleman, R., Ding, B., Dudoit, S. & Ibrahim, J. in Bioinformatics and Computational
Biology Solutions Using R and Bioconductor (eds Gentleman, R., Carey, V. J., Huber,
W., Irizarry, R. A. & Dudoit, S.) 189–208 (Springer, New York, NY, 2005).

49. Khachumov, M. V. Distances, metrics and cluster analysis. Scientific and Technical
Information Processing 39, 310–316 (2012).

50. Hoi, S., Liu, W., Lyu, M. R. & Ma, W.-Y. Learning Distance Metrics with Contex-
tual Constraints for Image Retrieval in Proceedings / 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR 2006, June 17 - 22,
2006, New York, NY (eds Fitzgibbon, A., Taylor, C. J. & LeCun, Y.) (IEEE Computer
Society, 2006), 2072–2078. isbn: 0-7695-2597-0.

51. Rosenblatt, F. The perceptron - A perceiving and recognizing automaton BibTeX 85-
460-1 (Ithaca, New York, 1957).

52. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (The MIT Press, Cambridge,
USA, 2016).

53. Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn: Das um-
fassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics
3rd (eds Raschka, S. & Mirjalili, V.) (MITP, Frechen, Germany, 2021).

54. Werner, M.Digitale Bildverarbeitung: Grundkurs mit neuronalen Netzen und MATLAB-
Praktikum (Springer Vieweg, Wiesbaden, 2021).

55. Dumoulin, V. & Visin, F. A guide to convolution arithmetic for deep learning arXiv.org.
1603.07285v2 (2018).

56. Springenberg, J. T., Dosovitskiy, A., Brox, T. & Riedmiller, M. Striving for Simplicity:
The All Convolutional Net arXiv.org. 1412.6806v3 (Freiburg, 2014).

57. Zhou, Y.-T. & Chellappa, R. Computation of optical flow using a neural network in
IEEE 1988 International Conference on Neural Networks 2 (1988), 71–78. https:
//www.semanticscholar.org/paper/Computation-of-optical-flow-using-a-

neural-network-Zhou-Chellappa/32bbc3ac0235055f5d8cf4fe8a8a3637e2017e3c.

58. Sermanet, P., Chintala, S. & LeCun, Y. Convolutional Neural Networks Applied to
House Numbers Digit Classification arXiv.org. 1204.3968v1 (2012).

59. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning Internal Representations
by Error Propagation (Defense Technical Information Center, Fort Belvoir, VA, 1985).

60. Ballard, D. H. Modular Learning in Neural Networks in Proceedings of the Sixth Na-
tional Conference on Artificial Intelligence (AAAI Press, 1987), 279–284. isbn: 0934613427.

61. Le Cun, Y. & Fogelman-Soulié, F. Modèles connexionnistes de l’apprentissage. Intel-
lectica Revue de l Association pour la Recherche Cognitive 2, 114–143 (1987).

62. jun94. [DL] 12. Unsampling: Unpooling and Transpose Convolution https://medium.

com/jun94-devpblog/dl-12-unsampling-unpooling-and-transpose-convolution-

831dc53687ce (2023).

https://www.semanticscholar.org/paper/Computation-of-optical-flow-using-a-neural-network-Zhou-Chellappa/32bbc3ac0235055f5d8cf4fe8a8a3637e2017e3c
https://www.semanticscholar.org/paper/Computation-of-optical-flow-using-a-neural-network-Zhou-Chellappa/32bbc3ac0235055f5d8cf4fe8a8a3637e2017e3c
https://www.semanticscholar.org/paper/Computation-of-optical-flow-using-a-neural-network-Zhou-Chellappa/32bbc3ac0235055f5d8cf4fe8a8a3637e2017e3c
https://medium.com/jun94-devpblog/dl-12-unsampling-unpooling-and-transpose-convolution-831dc53687ce
https://medium.com/jun94-devpblog/dl-12-unsampling-unpooling-and-transpose-convolution-831dc53687ce
https://medium.com/jun94-devpblog/dl-12-unsampling-unpooling-and-transpose-convolution-831dc53687ce

Bibliography 91

63. Zhao, J., Mathieu, M., Goroshin, R. & LeCun, Y. Stacked What-Where Auto-encoders
arXiv.org. 1506.02351v8 (2015).

64. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical
Image Segmentation. Medical Image Computing and Computer-Assisted Intervention
(MICCAI) 9351, 234–241 (2015).

65. Sharma, S., Sharma, S. & Athaiya, A. ACTIVATION FUNCTIONS IN NEURAL NET-
WORKS. International Journal of Engineering Applied Sciences and Technology 04,
310–316 (2020).

66. Vu, L. & Nguyen, Q. U. An Ensemble of Activation Functions in AutoEncoder Applied
to IoT Anomaly Detection in 2019 6th NAFOSTED Conference on Information and
Computer Science (NICS) (eds Bao, V. N. Q., Quang, P. M. & van Hoa, H.) (IEEE,
2019), 534–539. isbn: 978-1-7281-5163-2.

67. Nwankpa, C., Ijomah, W., Gachagan, A. & Marshall, S. Activation Functions: Com-
parison of trends in Practice and Research for Deep Learning arXiv.org. 1811.03378v1
(2018).

68. Chakraborty & Arunava. Derivative of the Sigmoid function - Towards Data Science.
Towards Data Science (2018).

69. Z, P. Derivative of Tanh Function https://blogs.cuit.columbia.edu/zp2130/

derivative_of_tanh_function/ (2022).

70. Wang, Y., Li, Y., Song, Y. & Rong, X. The Influence of the Activation Function in a
Convolution Neural Network Model of Facial Expression Recognition. Applied Sciences
10, 1897 (2020).

71. Fukushima, K. Cognitron: a self-organizing multilayered neural network. Biological Cy-
bernetics 20, 121–136 (1975).

72. Nair, V. & Hinton, G. E. Rectified Linear Units Improve Restricted Boltzmann Ma-
chines (2010).

73. Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C. & Garcia, R. Incorporating Second-Order
Functional Knowledge for Better Option Pricing. Advances in Neural Information Pro-
cessing Systems 13 (2000).

74. L. Maas, A., Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural network
acoustic models (2013).

75. He, K., Zhang, X., Ren, S. & Sun, J. Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification arXiv.org. 1502.01852v1 (2015).

76. Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and Accurate Deep Network Learn-
ing by Exponential Linear Units (ELUs) arXiv.org. 1511.07289v5 (2015).

77. Trottier, L., Giguère, P. & Chaib-draa, B. Parametric Exponential Linear Unit for Deep
Convolutional Neural Networks arXiv.org. 1605.09332v4 (2016).

78. Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-Normalizing Neural
Networks. Advances in Neural Information Processing Systems 30 (NIPS (2017).

79. Botchkarev, A. A New Typology Design of Performance Metrics to Measure Errors
in Machine Learning Regression Algorithms. Interdisciplinary Journal of Information,
Knowledge, and Management 14, 045–076 (2019).

https://blogs.cuit.columbia.edu/zp2130/derivative_of_tanh_function/
https://blogs.cuit.columbia.edu/zp2130/derivative_of_tanh_function/

92 Bibliography

80. Janocha, K. & Czarnecki, W. M. On Loss Functions for Deep Neural Networks in
Classification arXiv.org. 1702.05659v1 (2017).

81. Parmar, R. Common Loss functions in machine learning - Towards Data Science. To-
wards Data Science (2018).

82. Ruder, S. An overview of gradient descent optimization algorithms arXiv.org. 1609.04747v2
(2016).

83. Qian, N. On the momentum term in gradient descent learning algorithms. Neural Net-
works 12, 145–151 (1999).

84. Nesterov, Y. A method for unconstrained convex minimization problem with the rate
of convergence o(1/k squared) (1983).

85. Duchi, J., Hazan, E. & Singer, Y. Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. Journal of Machine Learning Research 12, 2121–2159
(2011).

86. Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method arXiv.org. 1212.5701v1
(2012).

87. Hinton, G. Neural Networks for Machine Learning: Lecture 6e tech. rep. ().

88. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization arXiv.org.
1412.6980v9 (San Diego, 2017).

89. Dozat, T. Incorporating Nesterov Momentum into Adam in Proceedings of the 4th In-
ternational Conference on Learning Representations (2016), 1–4.

90. Kukačka, J., Golkov, V. & Cremers, D. Regularization for Deep Learning: A Taxonomy
arXiv.org. 1710.10686v1 (2017).

91. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout:
A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learn-
ing Research 15, 1929–1958 (2014).

92. Liu, L. Encyclopedia of database systems (Springer, New York, NY, 2020).

93. Haar, A. Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen
69, 331–371 (1910).

94. Daubechies, I. The wavelet transform, time-frequency localization and signal analysis.
IEEE Transactions on Information Theory 36, 961–1005 (1990).

95. Graps, A. An introduction to wavelets. IEEE Computational Science and Engineering
2, 50–61 (1995).

96. Bergh, J., Ekstedt, F. & Lindberg, M. Wavelets mit Anwendungen in Signal- und
Bildbearbeitung (Springer, Berlin and Heidelberg, 2007).

97. Aggarwal, C. C., Hinneburg, A. & Keim, D. A. in ICDT ’01: Proceedings of the 8th In-
ternational Conference on Database Theory (ed van den Bussche, J.) 420–434 (Springer,
2001).

98. Mirkes, E. M., Allohibi, J. & Gorban, A. Fractional Norms and Quasinorms Do Not
Help to Overcome the Curse of Dimensionality. Entropy (Basel, Switzerland) 22 (2020).

Bibliography 93

99. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward
neural networks. Journal of Machine Learning Research - Proceedings Track 9, 249–
256 (2010).

100. Khan, A., Sohail, A., Zahoora, U. & Qureshi, A. S. A survey of the recent architectures
of deep convolutional neural networks. Artificial Intelligence Review 53, 5455–5516
(2020).

101. Convolutional Variational Autoencoder https://www.tensorflow.org/tutorials/

generative/cvae (2023).

102. ADEM, K. & KILICARSLAN, S. Performance Analysis of Optimization Algorithms
on Stacked Autoencoder in 3rd International Symposium on Multidisciplinary Studies
and Innovative Technologies (IEEE, 2019), 1–4. isbn: 978-1-7281-3789-6.

103. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms arXiv.org. 1708.07747v2 (2017).

104. Loic Matthey, Irina Higgins, Demis Hassabis & Alexander Lerchner. dSprites: Disen-
tanglement testing Sprites dataset 2017.

105. Han, S. et al. Optimizing Filter Size in Convolutional Neural Networks for Facial Action
Unit Recognition arXiv.org. 1707.08630v2 (2017-07-26).

106. Zeiler, M. D. & Fergus, R. Visualizing and Understanding Convolutional Networks
arXiv.org. 1311.2901v3 (2013-11-12).

https://www.tensorflow.org/tutorials/generative/cvae
https://www.tensorflow.org/tutorials/generative/cvae

Declaration of Academic Integrity /
Eidesstattliche Erklärung

Ich erkläre, dass ich die vorliegende Arbeit selbständig, ohne fremde Hilfe und ohne Be-
nutzung anderer als der angegebenen Quellen und Hilfsmittel verfasst habe und dass alle
Ausführungen, die wörtlich oder sinngemäß übernommen wurden, als solche gekennzeichnet
sind. Mit der aktuell geltenden Fassung der Satzung der Universität Passau zur Sicherung
guter wissenschaftlicher Praxis und für den Umgang mit wissenschaftlichem Fehlverhalten
bin ich vertraut. Ich erkläre mich einverstanden mit einer Überprüfung der Arbeit unter
Zuhilfenahme von Dienstleistungen Dritter (z.B. Anti-Plagiatssoftware) zur Gewährleistung
der einwandfreien Kennzeichnung übernommener Ausführungen ohne Verletzung geistigen
Eigentums an einem von anderen geschaffenen urheberrechtlich geschütztenWerk oder von an-
deren stammenden wesentlichen wissenschaftlichen Erkenntnissen, Hypothesen, Lehren oder
Forschungsansätzen.

Passau, 21. Mai 2023

Firstname Lastname

I hereby confirm that I have composed this scientific work independently without anybody
else’s assistance and utilising no sources or resources other than those specified. I certify that
any content adopted literally or in substance has been properly identified. I have familiarised
myself with the University of Passau’s most recent Guidelines for Good Scientific Practice
and Scientific Misconduct Ramifications. I declare my consent to the use of third-party
services (e.g., anti-plagiarism software) for the examination of my work to verify the absence
of impermissible representation of adopted content without adequate designation violating the
intellectual property rights of others by claiming ownership of somebody else’s work, scientific
findings, hypotheses, teachings or research approaches.

Passau, 21. Mai 2023

Firstname Lastname

94

	List of Acronyms
	List of Figures
	List of Tables
	List of Python Code
	Introduction
	Related Work
	Algorithmic Image Retrieval and 3D Shape Retrieval
	Neural Network Image Compression and Image Retrieval
	Neural Network Feature Learning and 3D Shape Retrieval

	Research Questions

	Background
	Similarity Measures
	Similarity Function, Distance and Metric
	Pair-Wise Distances

	Neural Networks
	Perceptron
	Feedforward Neural Networks

	Convolutional Neural Networks
	The Discrete Convolution Operation
	The Convolution Layer
	The Pooling Layer

	Autoencoder
	Feed-Forward Autoencoder
	Convolutional Autoencoder

	Activation Functions
	Trivial Activation Functions
	S-Shaped Activation Functions
	Rectified Linear Units
	Exponential Linear Units

	Loss Functions
	Error Measures
	Sum Aggregated Scale-Dependent Error Measures
	Mean Aggregated Scale-Dependent Error Measures

	Optimization
	Gradient-Based Optimization
	Momentum-Based Optimization
	Adaptive Optimization

	Regularization
	Data Augmentation
	The Regularization Term
	Dropout

	Retrieval Performance Measures
	Recall
	Precision
	Average Precision
	Mean Average Precision

	Wavelets
	Analyzing Wavelet and Scaling Function
	Haar Wavelet
	Multidimensional Haar Wavelet

	Method
	Similarity Measure
	2D Model Design
	Network Architecture
	Network Implementation
	Training Architecture
	Training Implementation
	2D Retrieval Implementation

	2D Layer Configuration Tests
	Fashion-MNIST
	dSprites

	3D Model Design
	Network Implementation
	Input Pipeline
	Training, Evaluation and Visualization
	Haar Wavelet Integration

	Results
	Test Cases and Evaluation
	Shape Similarity Tests
	Translation Robustness Tests
	Rotation Robustness Tests
	Noise Robustness Tests

	Shapes3D
	Model Comparison: Performance Evaluation
	Model 2 "Translation": Retrieval Visualization

	Blended Multi-Shapes3D and Wavelet Integration
	Model Comparison: Performance Evaluation
	Exploring Edge Cases: Poor Retrieval Results
	Real Data: Retrieval Visualization
	Differences in Noise Robustness

	Discussion
	Handling Isotropic versus Anisotropic Scaling
	Model Size and Augmentation
	Using Haar Wavelet Filters

	Conclusion and Future Work
	Bibliography
	Declaration

