
Chair of Digital Image Processing

Deep Learning for 3D
Super-Resolution

Master Thesis

Author: Omar Hussein

1st Supervisor: Prof. Dr. Tomas Sauer

2nd Supervisor: Prof. Dr. Michael Granitzer

Statutory Declaration

This is to certify that :

1. The thesis comprises only my original work towards the Master’s Degree.

2. Due acknowledgement has been made in the text to all other material used.

Omar Hussein

Passau, July 12, 2021

ii

Acknowledgments

I would like to thank my wonderful family and friends for supporting and encouraging

me while working on my master thesis. I would like to also thank Prof. Dr. Tomas

Sauer for offering me the chance to work on such an interesting project and for providing

useful feedback and guidance whenever it was required. My appreciation also goes to

Thomas Lang and Ruben Fischer for their support and interesting discussions. A great

deal of thanks to my friends Hazem Ghoraba and Marwa Hamrouni for their helpful

opinion, encouragement and support.

In addition, I would like to thank the Chair of Digital Image Processing for providing

the computing resources that were necessary for my work and the MGH-USC Human

Connectome Project for providing access to their valuable data that was extremely useful

for the project.

iii

Abstract

3D voxel images created by CT and MRI scans are extremely useful in the medical

and archaeological fields. However, various limitations of both technical and financial

nature make it challenging to obtain images with high resolutions which encourages

using super-resolution techniques to obtain high resolution (HR) images from their low

resolution (LR) counterparts. Deep learning has been demonstrated to provide state of

the art performance on the task of single image super-resolution by using convolutional

neural networks to learn the mapping between the LR and HR domains. 3D networks

have been shown to provide better performance on 3D image scans compared with 2D

networks, however, they are harder to train due to their increased complexity and size.

In this thesis, we propose a novel architecture for a 3D network (3DRDN) that utilizes

both Residual and DenseNet connections to minimize the required size and complexity

of the network for the task of super-resolution on 3D images. Furthermore, we integrate

the network in two additional generative adversarial networks (Wasserstein GAN and

Cycle-GAN) to obtain perceptually better upscaled images. To evaluate the performance

of our models, we perform experiments using two 3D image datasets which demonstrate

the excellent capabilities of our models on the task of 3D super-resolution.

Keywords: Super-Resolution, Deep Learning, 3D Convolutional Neural Network, Wasser-

stein GAN, Cycle-GAN, CT, MRI

iv

Image Processing Terminology

Expression Explanation

Resolution The size (no. of pixels/voxels) of a 2D or 3D image

Upscaling Increasing the resolution of an image

Downscaling Decreasing the resolution of an image

HR Image An image with original resolution that is considered ground truth

LR Image An image with a smaller resolution than its original counterpart

Scale Factor Resolution ratio of a HR to its LR counterpart

Image Fidelity How similar a processed image is to the ground truth

Super-Resolution Upscaling a LR image while maintaining its sharpness and fidelity

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 4

1.3 Outline . 7

2 Literature Review 8

2.1 2D Super Resolution . 9

2.2 Super Resolution on 3D Voxel Images . 11

3 Methods 14

3.1 Super Resolution Problem Statement . 14

3.2 Convolutional Layers . 16

3.3 3D versus 2D models . 18

3.4 Super Resolution Implementation Design 20

3.5 Generative Adversarial Networks . 22

3.5.1 Standard GAN . 23

3.5.2 Comparing probability distributions 25

3.5.3 Wasserstein GAN with gradient penalty 27

3.5.4 Cycle GAN . 32

vi

Contents

3.6 Skip Connections . 36

3.6.1 DenseNet Connections . 37

3.6.2 Residual Connection . 39

3.7 Network Architecture . 41

3.7.1 3DRDN . 41

3.7.2 3DRDN-WGAN . 44

3.7.3 3DRDN-CGAN . 46

3.8 Objective Loss Function . 47

3.8.1 3DRDN . 47

3.8.2 3DRDN-WGAN . 48

3.8.3 3DRDN-CGAN . 50

4 Experiments 54

4.1 Datasets . 54

4.2 Preprocessing . 55

4.3 Training Settings . 58

4.4 Evaluation . 59

4.4.1 PSNR . 59

4.4.2 SSIM . 60

5 Results 61

5.1 ABIDE Dataset . 62

5.2 Mummy Dataset . 69

6 Discussion 73

6.1 Dataset Comparison . 73

6.2 Model Assessments . 74

6.3 Model Generalizability . 76

vii

Contents

6.4 Upscaling with different factors . 76

6.5 Supervised versus Unsupervised Learning 77

6.6 Best Model for Super-Resolution . 77

7 Conclusion 79

7.1 Future Work Recommendations . 80

7.1.1 Data . 80

7.1.2 Preprocessing . 80

7.1.3 Objective Loss Function . 81

Appendix A Additional Visual Results 82

A.1 ABIDE Dataset . 82

A.2 Mummy Dataset . 85

Bibliography 90

viii

1 Introduction

1.1 Motivation

Magnetic Resonance Imaging (MRI) and Computed tomography (CT) scans are imag-

ing techniques that utilize electromagnetic waves to create a visual representation of a

scanned object and which are used in various fields such as the medical and archaeolog-

ical ones.

They operate by having a device emit a series of radiation beams at the object from

various directions and accordingly obtain multiple scans from different angles. This

results in multiple 2D cross-section images of the object which when stacked on top of

each other provide us with a 3D representation that is voxel based. The main difference

between the two scanning techniques is the waves utilized with CT scans using X-rays

and MRIs relying on radio waves and magnets fields. While they both create 3D images,

MRI scans generally produce more detailed representations while CT scans on the other

hand provide results faster and with less costs [1].

In the medical field, the scans are utilized as non-invasive techniques to obtain images of

various human body parts such as brain, soft tissues and bones. They are very useful in

diagnosing various medical ailments such as strokes, traumas and bone fracture. Another

1

1 Introduction

important utility for them is in diagnosing cancer and identifying the location of tumors

[1]. Figure 1.1 illustrates an MRI device and examples of MRI image output.

Figure 1.1: On the left [2] is an example of an MRI device used for scanning patients.
The two images [3], [4] on the right are samples of MRI scanned images.

Their non-invasiveness makes them also equally useful in the archaeological field as vari-

ous ancient historical objects, that need to be intricately examined, are easily susceptible

to damage from even a simple touch in some extreme cases. The most scanned archaeo-

logical objects are usually mummies but various other artifacts such as clay tablets and

statues are also examined. One of the most famous artifacts examined is an ancient

mummy found in the Austrian alps called Otzi (The Ice Man). Thanks to CT scanning,

the cause of death of Otzi was identified to be an arrowhead lodged in his shoulder [5].

Despite their great capabilities, there are some inherent limitations when using such

scanning systems. First of all, the higher a resolution for an examined object is needed,

the more scans need to be performed to get more accurate and detailed cross section

images. This is however undesirable for medical purposes, since the scan entails releasing

targeted doses of radiation at a patient. Although the doses are almost always small

2

1 Introduction

Figure 1.2: The left image [6] shows a Peruvian child mummy in preparation for being
CT scanned and the right image [7] shows the 3D model result.

and unharmful, they still have to be minimized as a safety procedure even if it means

sacrificing the resolution of the scanned images [8]. Furthermore, even in cases where

the medical safety of the examined object is not a concern such as with archaeological

artifacts, the cost of running the scanning device has to be taken into consideration

and evidently a higher resolution scan will require higher costs especially for MRIs.

Moreover, increasing the resolution in the Z-axis or Axial/Transverese plane, increases

the noise of the resultant scan. Lastly, setting a high resolution scan will sacrifice the

field of view of the scanning resulting in a smaller part being examined [9].

Due to the aforementioned reasons, in many cases only low resolution (LR) scans are

available. Such LR scans are unfortunately not accurate enough in some use cases such

as when doctors are trying to segment tumors to plan treatment or when archaeologists

try to identify intricate details of fragile historical artifacts. Fortunately, the concept of

obtaining high resolution (HR) images/scans from LR ones has been the target of various

research and is one of the classical computer vision and image processing problems [10].

While there are various methods for performing super-resolution, the focus in our work

will be on single image super resolution (SISR) where the upscaling is done on a single

LR input as opposed to other super resolution methods that utilize multiple LR input

3

1 Introduction

images to obtain a single HR output image.

Super-resolution problems are challenging because they are inherently ill-posed due to

the the existence of multiple possible solutions as each HR image could be downgraded

to multiple LR images. Prediction-based techniques that rely on using filters such as

Bicubic interpolation or Lanczos resampling were among the first methods utilized to

handle the problem. However while they are fast, they tend to produce overly smoothed

results without sharp edges or details [11].

Sparse coding was considered to be the state of the art in terms of achieving single image

super-resolution [10]. Its main focus is the extraction of both low and high resolution

patches, learning the mapping between them and optimally aggregating them back into

the new high/low resolution image form.

The authors of [10] have shown that a deep convolutional neural network is equivalent

to the pipeline process of sparse coding. Their work has motivated countless others to

utilize deep learning for performing super resolution. As a result, deep neural networks,

which have gained popularity thanks to the increased computational capabilities offered

by modern computing systems as well as increased available data for training, are now

one of the modern techniques used for performing super resolution on images and have

been the focus of various research to increase the quality of the upscaling process.

1.2 Contribution

The main focus of this thesis is the utilization of deep learning to perform super-

resolution on 3D voxel models which are the typical representations used for CT and

4

1 Introduction

MRI scans. To achieve our aim, we propose a novel network architecture which incor-

porates multiple state of the art deep learning methodology that is most beneficial for

the task of super-resolution.

To begin with, unlike most research where a 2D architecture is utilized for 3D super

resolution, our neural network model is 3D based which enhances the performance by

extracting more information for learning the LR to HR mapping. Furthermore, our

model incorporates both Residual and DenseNet connections which significantly eases

gradient flow during backpropagation and tailors the model for super-resolution thanks

to the input to output residual connection. Moreover, we integrate the model in a

Wasserstein GAN that enhances its upscaling by incorporating perception-based adver-

sarial loss to its objective loss function to improve the visual quality of its output. Lastly,

our model is also integrated in a Cycle GAN architecture which helps in stabilizing the

GAN training process and producing better visual results.

Our work is the only one, to the best of our knowledge, that integrates a 3D neural

network in a Cycle GAN architecture for the task of super-resolution.

Another investigation, that we found interesting and useful to pursue and which is not

solely related to the super resolution field but to the general image to image translation

field, is the comparison of the performance of a model when trained in an unsupervised

way with unpaired data (using Cycle GAN) versus when its trained in a supervised way

using paired data. Our results demonstrate that supervised learning produces better

results for the task of super-resolution.

In this thesis, we propose a novel architecture: 3D Residual and DenseNet Network

(3DRDN) which we utilized in 3 architectures:

5

1 Introduction

• 3DRDN: In which we train it as a single convolutional neural network with Resid-

ual and DenseNet connections in a supervised way with the L1 loss.

• 3DRDN-WGAN: In which we utilize it as a generator in a Wasserstein GAN

(with gradient penalty) architecture which in addition to the L1 loss is trained

with a perception based adversarial loss using the Wasserstein 1 distance.

• 3DRDN-CGAN: In which we utilize 2 3DRDNs as 2 generators in a Cycle-GAN

architecture and which both in addition to the L1 and adversarial loss are trained

with cycle consistency and identity losses.

The following points summarize our contributions:

1. We propose a new novel architecture 3DRDN for performing super resolution on

3D images from CT and MRI scans. The model is concise and efficient without

sacrificing the upscaling quality that it achieves.

2. We integrate the aforementioned 3DRDN with 2 different GAN architectures:

WGAN-GP that adds the adversarial loss for human perception consideration and

Cycle-GAN that adds a cycle consistency loss for better performance and stability

during training.

3. We propose the concept of combining both Residual and DenseNet connections.

The residual connection between simplifies the model’s learning and the dense-net

connections allow the reuse of features between layers further enhancing training

and decreasing the model’s size. Both connections also mitigate gradient flow

problems leading to easier and faster training.

4. We utilize our network architectures and the SR task to determine whether its

better to train a GAN model in a supervised or unsupervised fashion by comparing

6

1 Introduction

the performance of our unsupervised Cycle-GAN version with other supervised

versions of the model on the task of super resolution.

To demonstrate the capabilities of our models, we perform experiments on two different

datasets (one made up of MRI scans and the other CT scans) and compare their per-

formance with that of traditional interpolation methods. The results indicate that our

models are superior and that they can be used to upscale both MRI and CT scans.

1.3 Outline

In chapter 2, we provide our literature review on the subject of single image super res-

olution with focus on research that inspired and guided our own work. We describe in

intricate details the super-resolution problem, our models, architectures, loss functions

and other important methodologies in chapter 3. Chapter 4 contains a description of

the datasets that we used in our training and a description of the experiments that we

performed as well as the preprocessing techniques that were used to obtain training data

and the evaluation metrics that were utilized. In chapter 5, we present both the quanti-

tative and visual results of our experiments and we provide our analysis on the results

in chapter 6. Lastly, we provide our conclusions and future work recommendations in

chapter 7.

7

2 Literature Review

In this chapter, we present our literature review where we discuss similar research work

that is related to the field of super-resolution.

The authors of [12] produced a study that compares the most popular image quality

assessment techniques; a subject that is of extreme importance for the super resolution

field as it is through such assessments that we could evaluate the performance of any

model that achieves upscaling. Initially, most image processing research utilized Mean

Squared Error (MSE) or Mean Absolute Error (MAE) in addition to Peak Signal to Noise

Ratio (PSNR) which all focused on pixel to pixel comparisons. However the popular

work in [13] encouraged more research to rely on the structural similarity index measure

(SSIM) that better evaluates human related perception loss. In addition, [14] proposed

a technique that relies on information fidelity criterion (IFC) which is based on natural

scene statistics. As of the time of writing this, academia is still undecided on whether it

is error methods such as MAE/MSE/PSNR or human perception based methods such

as SSIM that perform better image assessment. Most super resolution research utilizes

both PSNR and SSIM in measuring the accuracy of any HR image obtained through

super resolution.

Before the onset of deep learning as a popular method for single image super-resolution,

most algorithms that were used focused on obtaining strong image prior information to

8

2 Literature Review

help in upscaling. The algorithms were categorized into 4 groups: prediction models,

edge based methods, image statistical methods and patch (example) based methods with

the latter achieving the greatest performance [15].

Example-based techniques produced sharper and more detailed results and one of its

techniques sparse coding was considered to be the state of the art for super-resolution.

Its process begins by extracting overlapping patches of images from the input low reso-

lution image; they are then pre-processed and encoded using a low resolution dictionary.

The low resolution dictionary is mapped into an equivalent high resolution dictionary

which returns the equivalent high resolution of each patch which are then aggregated to

construct the final high resolution image. The most important and challenging part is

optimizing both the low and high resolution dictionaries that, through efficient mapping,

allow up- or down-scaling the patches that make up an image.

2.1 2D Super Resolution

The work of [10] was significantly responsible for popularizing deep learning as a means

of achieving super resolution. Prior to that, deep learning was mostly used for denoising

as part of the post-processing of the image. However their work aimed at showing that

deep learning can be used for the entire super resolution process.

They demonstrated that a Convolutional Neural Network (CNN) architecture consti-

tutes three parts that are equivalent to the three operations performed in sparse coding

which are patch extraction and representation, non-linear mapping and reconstruction.

Their proposed model, aptly named Super Resolution Convolutional Neural Network

(SRCNN), had a simple architecture of a not too deep CNN with 5 hidden layers as

9

2 Literature Review

properly training deeper networks was still extremely challenging around the time of

their paper release.

Nevertheless, even that limited layered model was able to surpass all the state of the

art super-resolution methods at the time. Moreover, since the model doesn’t need any

optimization after finishing training and is fully feed-forward, it can perform the super-

resolution faster than the concurrent state of the art methods making it not only better

but also more practical to use. Lastly, it could count on using more data to easily

improve its performance which is an upstep from the normal sparse coding process that

gets more complicated the more input data is used. Critical drawbacks of the model

included is its incapability to perform different upscaling factors and requiring retraining

from the beginning to achieve new super resolution factors.

The authors of [16] built their work on the foundation provided by the previous authors

and managed to produce a new model architecture Fast Super Resolution by CNN (FS-

RCNN) that significantly improved on SRCNN and avoided many of its shortcomings.

The model takes the low resolution image input as it is without relying on doing bicu-

bic interpolation, to get the low resolution image to the desired size first, as a form of

pre-processing which is the case with SRCNN. Instead, a transpose convolutional layer

is appended at the end of the model to replace the bicubic interpolation which has two

positive implications. One is that the computational complexity of upscaling and its

effect on consecutive computations is delayed until the very last layer making the model

overall less computationally complex. The other tremendously positive implication is

that now only the last layer has to worry about upscaling meaning we need only fine

tune it through retraining while freezing the other layers so that we can utilize the model

for performing different upscaling factors as opposed to retraining the entire layers for

SRCNN.

10

2 Literature Review

The model of [17] had 20 layers and was among the first ones to implement residual

learning for the purpose of super resolution. Despite having a much deeper network

than SRCNN, VDSR was able to achieve faster convergence thanks to residual learning

as well as the utilization of a higher initial learning rate with gradient clipping during

training. The authors managed to make the model capable of performing multi-scaling

by using training datasets containing different scales which forced the model to learn

super resolution with all of the different scaling factors represented in the datatset. Their

results indicate that a single model can perform multi-scaling without even needing

upscaling layers or fine-tuning such as the case with FSRCNN.

[11] was among first papers to utilize a Generative Adversarial Network (GAN) for

super resolution. Their main aim was to differentiate their work by shifting away from

the tradition of using mean squared reconstruction error as the objective function of the

training. In addition to adversarial loss, they also utilized a perception based content loss

for the generator’s output. The content loss is determined using another network through

which feature representations for the generator’s output are obtained and compared

with those of the expected output instead of comparing their equivalent pixels as in all

previous work. The SRGAN model was the first of its kind capable of properly upscaling

natural images with an upscaling factor of 4 and it had higher accuracy when compared

with its contemporaries.

2.2 Super Resolution on 3D Voxel Images

[18] is one of the most recent publications in the field of super resolution for CT scans with

deep learning. The authors proposed model named GAN-CIRCLE utilized a Cycle-GAN

architecture for upscaling CT scans. In addition, to the Cycle-GAN loss components they

11

2 Literature Review

also added the joint sparsifying transform loss function which helped in maintaining the

image sparsity while also minimizing noise or artifacts. However despite working with 3D

images, their architecture was 2D based and their model operated individually on every

slice from the CT scan. As a result, it ignored information from the axis perpendicular

to the image slices.

In [19], the authors aimed at designing an architecture that uses deep learning with

the main focus of performing 3D super resolution rather than just use deep learning

to achieve 2D super resolution on slices of a 3D model before aggregating them back

together. However, they applied upscaling on only two axes with the third one assumed

to be already upscaled. The other significant aspect of the architecture is the utilization

of dense-block layers. Another interesting change made was with the pre-processing

done to obtain LR training data from the original HR data. Almost all of the related

research obtained the LR data by applying Gaussian blurring on the HR data followed

by shrinking the resulting output while the authors decided on instead applying Fast

Fourier Transform (FFT) on the HR data followed by degrading it in the frequency

domain before reverting back again using inverse FFT which produces LR data that

more closely resembles real life LR data obtained through CT or MRI scans. The model

developed, named Densely Connected Super Resolution Network (DCSRN), was able to

outperform the FSRCNN and also took less than half the needed time to perform super

resolution.

The work in [9] was also among the first to extend the usage of super-resolution with

deep learning from 2D images to the 3D realm. The model proposed is called 3DSRCNN

and is a neural network made up of 12 layers with a residual connection from the input

to the last layer. Training such a deep network is quite difficult due to the increased

likelihood of gradient explosion as well as slow convergence. In addition, 3D data is

12

2 Literature Review

significantly more challenging to work with as it requires more computational intensity

and also takes up significantly more memory which could slow the training process

in best case scenario or crash it in the worst. The residual connection of the model

helps mitigate the explosive gradient problem and slow convergence and on top of that

the authors also used an adjustable learning rate, gradient clipping and momentum

stochastic gradient descent (SGD) to further optimize the training process. To handle

the memory problem, the authors split the training data into smaller blocks to help

facilitate the training process. However, their model relied only on MSE in its objective

loss function and did not include any perception based loss components.

As can be seen from our literature view, as of this writing, we have not found any

research work which designed a model for super-resolution that operates purely on 3D

images using 3D convolutions while at the same time integrating a perception based loss

(such as GAN adversarial loss) into its objective function. We designed our models to

fit such requirements and determine how they affect the performance of the models on

the task of super-resolution.

13

3 Methods

In this chapter, we first provide a theoretical explanation of the super resolution problem

in section 3.1. In section 3.2, we provide an overview of convolutional layers. Sections

3.3 and 3.4 contain detailed descriptions of important design choices we made for our

models to optimize them for the SISR task. In section 3.5, we explain various state of

the art GAN architectures which we integrated with our models. Section 3.6 contains a

description of two skip connection types that were integral in the design of our neural

networks while in section 3.7, we showcase the architecture of all networks utilized in

our models. Finally we provide a detailed description of the objective loss functions of

our models in section 3.8.

3.1 Super Resolution Problem Statement

Given a LR image X, the task of super resolution aims to find the equivalent HR image

Y that relates to X through the following equation:

X = f(Y) (3.1)

14

3 Methods

where f is a continuous function that represents the downgrading of the image quality

that results from CT/MRI scanning for only a relatively brief period of time.

Accordingly, the super resolution process requires finding g which is the inverse function

of f and using it to obtain HR images:

Y = g(X) = f−1(X) (3.2)

Since no true inverse function g exists, due to the fact that multiple LR images could

be obtained from the same HR source and vice versa, super resolution is considered an

ill-posed inverse problem.

Other factors that further compound the problem of super resolution on LR CT/MRI

scans, include the fact that such medical scans usually have more complex spatial varia-

tion and statistical properties than natural images and the fact that the scanning noise

is introduced to data during the reconstruction process which results in unique noise as

well as artifact patterns [18]. This all makes the task more challenging and limits the

upscaling achieved using traditional super resolution methods.

Despite the presence of such challenges, modern super resolution methods can overcome

them thanks to the fact that both X and Y share low dimensional information. In

accordance with the sparse coding method which produces best results, a super resolution

system has to extract patches from X and utilize a feature mapping to obtain equivalent

patches that are used to reconstruct Y .

[10] has shown that CNNs naturally embed the sparse coding process and proven that

deep learning is ideal for the super resolution task since the 3 sparse coding processes fea-

ture extraction, mapping and reconstruction are trained simultaneously. On top of that,

15

3 Methods

once trained, deep learning models can perform the computations for performing upscal-

ing significantly faster than a traditional sparse coding process. Thanks to advancement

in deep learning research, CNN based models achieve state of the art performance in

the task of super resolution.

In our work, we utilize an advanced deep learning CNN architecture to perform single

image super resolution. The network is composed of multiple non-linear concatenated

blocks that learn high frequency details and which are combined with a residual module

to produce the final output.

3.2 Convolutional Layers

Convolutional Neural Networks (CNNs) are one of the most powerful and widely uti-

lized network architectures in the computer vision field and convolutional layers are the

fundamental building blocks that make up their architectures.

In traditional fully connected networks (FCNs) each node in a layer is connected to all

of the nodes in both the previous and next layers. Combining the nodes with activation

functions that introduce non-linearity (such as RELU) is what makes the entire network

capable of approximating complex non-linear functions through training. Such a network

will utilize all of the features from the input and learn to identify patterns in them which

is greatly useful in various machine learning tasks such as classification and regression.

This approach however, is extremely difficult to utilize on large images as the input layer

will need to have nodes for each pixel of the image and it is non-feasible to build a neural

network with such a large input layer.

16

3 Methods

The CNN solution is to utilize kernel convolutions where a small matrix of numbers

(kernel or filter) is passed over the entire image and used to transform it based on the

values inside the filter. Such filters can therefore be used to detect local patterns in

the image rather search the entirety of the image for patterns. Key to the success of

convolutional layers is this translation invariance property as it significantly reduces the

number of required parameters in a network since a collection of trained filters can be

used to determine if certain patterns appear at any location in the image rather than

only be trained to identify the patterns at specific locations.

Figure 3.1: An illustration [20] that demonstrates how a filter creates an output feature
map from its input.

The following equation demonstrates how the filter interacts with input (image or feature

maps from the previous layer) to create the feature maps of the next layer:

O[m,n] = (I ∗ F)[m,n] =
J∑

j=0

K∑
k=0

F [j, k] ∗ I[fj, fk] (3.3)

where O, F and I represent the output feature map, filter (or kernel) and input image (or

input feature map) respectively. m and n are the dimensions of the output feature map

17

3 Methods

while J and K are the dimensions of the filter. fj and fk are the values from the input

which coincide with the filter as it passes over the input. Essentially the filter passes

over the entire input and the dot products of the filter’s values with their equivalent ones

from the input are added to form a value that is part of the output feature map which

is also a matrix. Figure 3.1 shows an example of the convolutional computing process.

3.3 3D versus 2D models

Plenty of research on the task of CT/MRI super resolution actually utilizes 2D models

for 3D super resolution by slicing the 3D voxel image into multiple 2D ones which are

then processed individually before being combined back into a 3D image output such as

the case with [18].

Such 2D models however ignore structural information in the axis perpendicular to the

slices as a source of prior which limits their capabilities. Furthermore, some information

will be harder to acquire from only a 2D image and might be completely lost; for instance

if a blood vessel runs perpendicular to the 2D image slices, it would appear as a small

dot in all of them and the model would have to decide when processing each 2D slice

whether the dot is noise that should be eliminated or whether it is part of the image

that has to be upscaled.

Utilizing a fully 3D model with 3D convolutions would mitigate that problem as the

entirety of the image is used at the same time as a source of information when processing

it. [19] and [21] have performed experiments where a 3D model was compared to a 2D

one using the same training conditions and their results clearly indicate the superiority

of the 3D models.

18

3 Methods

Using 3D models however, brings up a new set of challenges especially with regards

to training. First of all, 3D data takes up much more space in memory than 2D data

which puts a limit on the batch size used during training. Moreover, a 3D model would

have significantly more parameters than a 2D one as a result of having 3 dimensional

filters for its convolutional layers. Besides resulting in more computational as well as

time costs, this also means that more data is needed to properly train the 3D model to

an acceptable performance when compared to a 2D one. Furthermore, having a huge

number of parameters could force the model to overfit the training data and fail to

generalize well when handling unseen data.

In our work we utilize 3D models and to handle the memory issue we use, as training

data, 3D patches from the CT/MRI scans rather than utilize the entire voxel image. The

data is split into uniform blocks of voxels that consume significantly smaller space in the

memory. Another nice additional benefit gained is that we also end up with substantially

more data for training the model. This is especially so when we also combine this with

data augmentation methods for the 3D patches to help minimize overfitting. To minimize

the number of model parameters we utilize multiple levels of DenseNet connections in

our model which force it to efficiently utilize learned features to the utmost and require

significantly smaller number of filters for each convolutional layer.

Some research work such as [22] performs 3D super resolution but eases the task by

doing the upscaling for only two of the three axes with the third axis assumed to have

the correct HR resolution. Our work however, does the upscaling on 3D models for the

entire three axes.

19

3 Methods

3.4 Super Resolution Implementation Design

In this section, we discuss two possible high level design choices for a network architec-

ture to achieve super resolution and explain the reasons for our choice of one of them.

Naturally a LR image will have lower dimensions than its equivalent HR version and

there are multiple ways to deal with that when performing upscaling using deep learning.

The first design choice would be to utilize the LR image with its default small dimensions

as input to the deep neural network. Such a network would have to, therefore, incor-

porate interpolation during learning to increase the dimensions of the output image.

Fortunately transpose convolutional layers (sometimes incorrectly termed deconvolu-

tional layers) are capable of doing just that and can be considered to be the ’upscaling’

layers in a neural network.

The advantages of using such a system is that all computations before the upscaling

layers will be done in the LR domain with its smaller dimensions which will be signif-

icantly faster. The time and computational costs could be even further minimized by

utilizing valid padding which will further shrink the resultant feature maps of each con-

volutional layers. Ideally the upscaling layers would be placed near the end to minimize

the computations that are done in the HR domain with its bigger upscaled dimensions.

[11] and [16] are examples of research work that utilized this concept in the design of

their super-resolution models.

There are however, downsides in using such an architecture to perform super resolution.

First of all, the trained network will only be capable of performing upscaling with a

specific scale factor which is the ratio of the network output dimensions to its input

dimensions. Furthermore, interpolation will have to be learned which will increase the

20

3 Methods

training time and result in the model having more parameters which increases the likeli-

hood of the model overfitting if not handled appropriately such as by using more training

data .

On the other hand, another design approach would be to introduce interpolation (such as

bicubic) into the pre-processing stage of the LR input data. The interpolation will make

the LR and HR images have the same dimensions although naturally the LR images

will have less clarity and sharpness since its information will be spread over more pixels

(or voxels in the 3D case). [22] and [9] are examples of research work that utilized this

architectural design.

Although the network will have to operate from the beginning with the larger dimensions

of the HR domain, it will be capable of performing different scaling factors for the

super resolution process as any LR input could first be upscaled from any dimension

using interpolation before being used as input to the model. Not only could the same

architecture be used for different upscaling factors, but as the research of [16] has shown,

even the same model can be used to perform super resolution with different scaling

factors if it’s training data had a diverse distribution of different scaling ratios between

the LR and HR images.

In our architecture, we decided to go with the second design approach as it is very

beneficial to have a model capable of performing upscaling with different scaling factors

when dealing with data from CT/MRI scans that might not necessarily have uniform

LR dimensions.

More importantly is the fact that the second design also simplifies the task of integrating

the Cycle-GAN architecture with our models which requires four networks: two (gen-

erator plus discriminator) for upscaling and two others for downscaling. With the first

21

3 Methods

design, the two generators will have to have different architectures as one will have to

have upscaling layers while the other will have to have downscaling layers. The two dis-

criminators will also have input layers with different sizes which makes comparing their

output not as reliable. With the second design however, both of the two generators

and two discriminators can share the same architecture which simplifies designing and

training them and also minimizes the hyperparameters of the entire architecture.

In addition, since our data and models are 3D, we already have plenty of incentive

to split the input into patches before using them for training which means that our

model does not operate in the full HR domain with its larger dimensions but with the

smaller dimensions of the split patches. Therefore, the major disadvantage of using the

second design approach in which time and computational costs are increased is somewhat

mitigated. Since we are dealing with input that has patch dimensions rather than HR

dimensions, we also do not employ valid padding as this could cause too much loss of

information during forward propagation and therefore we employ instead same padding

to maintain the same dimensions of the patches from the input till the output layers.

3.5 Generative Adversarial Networks

As previously mentioned in section 3.1, performing super resolution using deep learning

requires training a network to approximate a function g that achieves upscaling on its

input. A core concept of deep learning is utilizing an objective loss function to guide the

training of the network until it is sufficiently capable of performing the desired task.

The simplest and most common loss function for guiding a computer vision task such as

super resolution would be either the Mean Squared Error (MSE) or the Mean Absolute

Error (MAE) and this was the case with most of the initial SISR research. Networks that

22

3 Methods

are trained using such objective functions produce results that have high peak signal to

noise ratios (PSNR) which is a widely used metric for evaluation in computer vision

tasks. However, these results are sometimes unfortunately not very satisfying from a

human perception point of view.

The problem arises from the fact that PSNR and by extension MAE and MSE are

incapable of capturing high texture perceptual differences between images since they

only operate on a pixel to pixel or in our case voxel to voxel basis. Therefore a network

might achieve a very small error and yet produce an upscaled image that is not very

sharp or lacking in some details.

The reason is due to the ill-posed nature of the super resolution problem which we

discussed in section 3.1; namely that a single LR image might be the downscaled result

of multiple HR images. This under-constrained nature of the problem with its multiple

solutions leads the MAE or MSE loss functions to simply averaging over all the possible

HR solutions and thus obtaining a result that is overly smoothed and lacking in high

texture information details as pointed out in the work of [11].

It is thus imperative to integrate into the objective loss function a metric that can better

represent the perceptual quality of the images in order to be obtain more appealing

results from a human perception point of view. One such loss component could be

obtained by utilizing Generative Adversarial Networks (GANs).

3.5.1 Standard GAN

GANs are one of the most popular generative neural network models that are used to

achieve state of the art performance in many deep learning applications such as computer

vision. The main premise is that 2 networks, a generator and a discriminator, are trained

23

3 Methods

simultaneously in an adversarial manner. The generator tries to produce realistic output

such as well upscaled images in our case while the discriminator tries to identify whether

its input was obtained from the generator or whether it was genuine true (ground truth)

data. This min-max game ideally forces the generator to produce data (images) that

are visually similar to its training data which will allow it to fool the discriminator.

This training process when handled properly will in ideal situations result in a network

(the generator) capable of producing images that are more natural looking and with high

perceptual quality that is often lacking when just utilizing MAE or MSE for training.

Essentially rather than average over all of the possible HR image solutions, it will force

the network to produce output that is as close as possible to the true HR image in the

image search space thanks to the adversarial training.

The following equation demonstrates the min-max game that the generator G and dis-

criminator D play to enhance both of their respective capabilities:

min
G

max
D

E[log(D(IHR))] + E[log(1−D(G(ILR)))] (3.4)

where IHR and ILR are respectively high resolution and low resolution images from a

training set and E is the expected value over all data instances. D(IHR) represents

the discriminator’s probability estimation that real data input is real and D(G(ILR))

represents its probability estimation that the output of the generator data is real.

By maximizing the two components in the equation, the discriminator tries to enhance its

performance in correctly identifying HR images from images produced by the generator.

The generator on the other hand improves its performance by increasing the probability

that the discriminator will think that its output was a true HR image which, if the

discriminator has decent capabilities, means that its images are perceptually getting

24

3 Methods

better.

Training such a model is challenging however, as there are certain states that could be

reached by the networks during training that lead the generator to producing undesirable

output. One of the most common problems is mode collapse where the generator learns a

specific way that is always capable of fooling the discriminator without having to produce

a realistic or visually appealing output as intended. Another common problem is that

the discriminator converges significantly faster than the generator without giving it a

chance to learn how to deceive it which leads to the generator not learning anything. The

reason is that a perfect discriminator will make the loss function produce zero output

which makes it impossible to train the generator as there will be no loss gradient to

update its weights. Therefore, a careful balance has to be maintained while training

both of them so that they both get a chance at improving their capabilities.

One interesting way to look at the entire GAN training process, is that images whether

they are of low or high resolutions come from a certain probability distribution and that

the discriminator is learning how to differentiate between them while the generator is

learning how to produce images that are from a probability distribution that is as close

as possible to that of the ground truth or real HR images.

3.5.2 Comparing probability distributions

One of the classical methods to encourage a model to produce data with a desired

probability distribution is by using the maximum likelihood function demonstrated in

the following equation:

max
θ∈Rd

1

m

m∑
i=1

logPθ(x
(i)) (3.5)

25

3 Methods

where Pθ is a parametric family of probability densities from which we find the pa-

rameters (modified by the model) that maximize its likelihood on data x(i) which comes

from the desired probability distribution. This is equivalent to minimizing the Kullback-

Leibler divergence KL(Pr||Pm) between the probability distributions of real data Pr and

the model output Pm.

The following equation demonstrates the KL divergence:

KL(P ||Q) =

∫
x

P (x) log P (x)

Q(x)
dx (3.6)

The KL divergence as a metric suffers from various problems that limit its capability

when comparing any probability distributions. First of all, as a divergence measurement

it is not symmetric i.e. KL(Pr||Pg) 6= KL(Pg||Pr). Moreover, a probability density

might not even exist which is the case with distributions with low dimensional manifold

making training impossible. Furthermore, even if we found a good probability density,

it might be computationally expensive to sample from if it is highly dimensional.

More importantly however, as can be seen from the KL equation, if there is any x where

P (x) > 0 and Q(x) = 0 then the entire KL divergence will reach a value of infinity.

This is the case at points x where there is no overlap between the distribution P and Q.

This is a significantly huge problem since it is not uncommon to deal with probability

distributions that have low dimensional manifold which means that most likely the two

distributions will have negligible overlap or in other words there will be plenty of x

values where Q(x) = 0. At such values the KL divergence will be infinite. Variational

Auto-Encoders utilize the KL divergence and as a result suffer from its limitations.

A better metric than KL for comparing probability distributions is the Jensen-Shannon

JS divergence:

26

3 Methods

JS(P,Q) =
1

2
KL(P ||Pm) +

1

2
KL(Q||Pm) (3.7)

where Pm represents a mixture distribution made from a combination of P and Q.

Unlike KL, the JS divergence is symmetric and additionally it does not explode to

infinity if there is no overlap between the compared probability distributions but will

instead produce a diversion with the value log 2.

It however, still suffers from some problems such as the fact that its divergence mea-

surements are not continuous and more importantly, although it produces a divergence

of log 2 rather than infinity when there is no overlap, it is still not a useful value for

training any model as it is not differentiable meaning the gradient used for training any

model using the backpropagation method will be zero.

The original GAN which utilizes the JS divergence can overcome the divergence’s limi-

tations by introducing random noise into its output probability distribution which will

make the distribution defined everywhere and ensure that there will always be overlap

between it and the real data distribution. Such noise however, is completely undesirable

as it degrades the quality of the generated output and makes any resultant images from

the generator blurry.

3.5.3 Wasserstein GAN with gradient penalty

The research work of [23] aimed specifically at handling all of the aforementioned prob-

lems when using either KL or JS for measuring the divergence between two probability

distributions.

27

3 Methods

Fundamentally rather than training the generator to learn a probability density func-

tion from which a sample is obtained for divergence measurement, they proposed instead

training the generator to learn a function that transforms an existing probability distri-

bution (either uniform or normal) into the desired real data probability distribution.

Another important key point is the method they proposed for comparing the probability

distributions which is the Earth Mover (EM) or Wasserstein distance:

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ[||x− y||] (3.8)

where Π(Pr, Pg) represents the set of all joint distributions γ(x, y) with real data distri-

bution Pr and generator output distribution Pg as marginals.

The easiest way to conceptualize the EM distance is to think of the first probability

distribution as a collection of specific masses at certain points/locations with the target

probability distribution being the same collection of masses but at different points/lo-

cations. In such a scenario, moving a specific mass m across a distance d would require

effort which would cost m ∗ d. Accordingly, the EM or Wasserstein distance would be

the cost of the minimum effort required to move masses across distances so that the first

probability distribution is transformed into the target distribution.

From the equation, Π(Pr, Pg) represents all the possible mass transport plans that could

transform Pr to Pg with γ representing the masses and x− y representing the distances

across which the masses will be moved. The infimum or the smallest effort of all these

possible transport plans would then be the EM or Wasserstein distance between the

probability distributions Pr and Pg.

A nice example that demonstrates the superiority of measuring the Wasserstein distance

as opposed to the KL or JS divergences was introduced by the authors which uses the

28

3 Methods

three metrics to measure the distance/divergence between two disjoint probability dis-

tributions P0 and Pθ (shown in figure 3.2) defined over R2. Given a uniform distribution

U [0, 1] from which we sample y, if we assume P0 = (0, y) and Pθ = (θ, y) then we have

two distributions that have the same height with a distance θ between them (across the

x axis).

Figure 3.2: A plot showing the two probability distributions (P0 and Pθ) that do not
intersect (i.e. are disjoint) when θ 6= 0 .

The following results are obtained from measuring the distance between them using

either KL or JS:

KL(P0||Pθ) =

+∞ if θ 6= 0

0 if θ = 0

JS(P0, Pθ) =

log 2 if θ 6= 0

0 if θ = 0

As can be seen, the KL divergence is zero when the distributions are identical however it

29

3 Methods

is infinity when there is no overlap between them. JS is slightly better by not reaching

infinity when there is no overlap however log 2 is not useful for guiding a network training

since it is not differentiable and thus effectively is just as useless in identifying a distance

between distributions.

The following simple equation illustrates the EM or Wasserstein distance between the

two distributions:

W (P0, Pθ) = |θ| (3.9)

As demonstrated by the equation, EM is capable of properly measuring the distance be-

tween the distributions and its measurement is a function of θ which is variable meaning

that it is differentiable and can allow gradient descent.

It is clear that EM is more useful for training a generator network to transform a

probability distribution into another desired one however, one major problem faced

when using it is the intractability of computing the infimum of all possible efforts or

transport plans required to transform the probability distribution. The authors overcame

this problem by transforming the EM distance measurement using the Kantorovich-

Rubinstein duality which transforms the original equation into the following:

W (Pr, Pg) = sup
||f ||L≤1

Ex∼Pr [f(x)]− Ex∼Pg [f(x)] (3.10)

The transformed equation shifts to finding the supremum among all the 1-Lipschitz

functions f : X → R. A neural network (in our case the discriminator) can be trained

to approximate a 1-Lipschitz function fww∈W (w represents all its possible weights) to

measure the EM or Wasserstein distance:

W (Pr, Pg) = max
w∈W

Ex∼Pr [fw(x)]− Ez∼Pr(z)[fw(gθ(z))] (3.11)

30

3 Methods

where g represents the generator and z is its input which could be noise or structured

input such as LR images in our case. The discriminator tries to maximize this approxima-

tion function which means its maximizing the difference between real data distribution

x and generator output distribution gθ(z) while the generator will train to minimize

the function which will shrink the distance between the two distributions and since it

can only affect the second component the result will be that its output distribution will

shift closer to that of the real data. Thanks to the fact that the Wasserstein distance is

continuous, no matter what state the two networks reach there will always be feedback

to help the generator to produce better output.

It is worth pointing out that the discriminator in this case is no longer identifying

whether an input is real or produced by the generator. Instead it is now trained to

measure the distance between the real data probability distribution and the generator’s

output distribution which is why it is more accurate to call it the ’critic’. This new

generative setup is what the authors termed Wasserstein GAN (WGAN).

Another important point is that the above equation only applies if fw is 1-Lipschitz

which the authors achieved by using weight clipping for the discriminator/critic after

every update. This is the biggest weakness of WGANs as clipping the weights properly

is difficult to achieve without jeopardizing the Lipschitz constraint and even if done

properly could lead to slow convergence.

Fortunately, another research work [24] produced a modified version of WGAN that

rather than use weight clipping to guarantee the 1-Lipschitz constraint, utilizes instead

a gradient penalty for the critic. Since a differentiable function is only 1-Lipschitz if it

has gradients with norm at most 1 everywhere, the authors proposed to penalize the

critic if its gradient norm moves away from the target norm of value 1. This new model

31

3 Methods

is widely known as WGAN with gradient penalty (WGAN-GP) and overcomes the

clipping problems of the normal WGAN.

In our work we utilize a WGAN-GP setup for our second model (3DRDN-WGAN)

since it is the state of the art architecture for generative networks to produce output

that matches real data the most while mitigating the challenges normally encountered

when training a normal GAN architecture such as mode collapse and having to carefully

balance the capabilities of either the generator or the discriminator with respect to the

other.

3.5.4 Cycle GAN

One of the latest developments in the research field of GANs is the work of [25] which

focuses on ’image to image translation’ a popular computer vision task where the aim

is to transform an image from a specific source domain to a different target domain.

Examples of such tasks include style transfer where the aim is transforming a realistic

photo into a painted image with the style of a specific painter such as Van Gogh, object

transfiguration where for example the task is transforming pictures of horses into ones

where the horses are replaced with zebras or season transfer which could switch the

season displayed on an image from summer to winter or vice versa.

The architecture developed by the authors called Cycle-GAN takes a different approach

to solving its computer vision task as the authors were aiming to handle a specific

problem namely the lack of paired data for image to image translation tasks. For instance

in order to utilize most GANs for learning the mapping required to transform a realistic

photo to one painted by Monet, we would require training data composed of pairs of

images with one being in the realistic domain and the other being the same image but

32

3 Methods

Figure 3.3: A demonstration [25] of some of the possible image to image translations
performed using Cycle GANs.

in Monet’s painting style. Naturally large quantities of such data would usually be hard

to acquire and in many cases almost impossible.

Therefore the authors aimed at designing Cycle-GAN such that it can utilize unpaired

data which is more easily obtainable. To solve the previously mentioned example the

model would simply need a collection of Monet’s paintings and unrelated realistic photos

to learn the mapping required to transform an image from one of the two domains to

the other one.

In order to achieve that, the model would have to utilize an algorithm that learns an

underlying connecting relationship between the two domains. Since it will have to be

learnt without paired data, rather than learning the mapping from a specific image from

a domain to its counterpart in the other domain, it tries instead to learn the mapping

from the probability distribution of an entire set to that of the target set. A standard

GAN uses adversarial loss to guarantee that the output of the generator matches the

distribution of the target domain thanks to feedback from the discriminator. However

33

3 Methods

this is not enough to obtain visually acceptable results due to the under-constrained na-

ture of the problem as infinitely many mappings can lead to the same output probability

distribution and most of them do not lead to outputs that are paired to their inputs in

a meaningful way.

Key to the success of the Cycle-GAN is its integration of the cycle consistency concept

in its training. Cycle consistency can be easily explained through a linguistic example:

If we have language translation system that can for example translate sentences between

English and German then the system is cycle consistent if it translates an English sen-

tence to German and after translating the resulting German sentence back to English

it produces the same initial English sentence. The authors demonstrated that utilizing

a cycle consistency based loss helps in regularizing the mappings and providing useful

constrains when learning them.

Intuitively cycle consistency can only be achieved by learning two mappings that are

inverse of each other and linking them during the training to obtain 2 models with

each capable of performing transformations from one of the two domains to the other.

Therefore Cycle-GAN employs two generators for learning each of the two mappings

and in addition to training each of them in an adversarial manner using a discriminator,

they are both linked using the cycle consistency loss in their objective loss function.

To learn an image to image translation task between two domains X and Y using

Cycle-GAN, two generators G and F are trained to learn the mappings G : X → Y

and F : Y → X respectively. In addition two discriminators DY and DX are used to

adversarially train G and F respectively with DY forcing G to produces output that is

as close as possible to the probability distribution of domain Y and likewise for DX with

F with regards to domain X.

34

3 Methods

In this scenario, cycle consistency is composed of two components: (a) Forward cycle

consistency that makes the generators transform an image from domain Y to X and then

transform the result back to domain Y and forces them to produce a result that is as

close to the initial image as possible x → G(x) → F (G(x)) ≈ x. The other component

is (b) Backward cycle consistency which is essentially the same concept but in reverse

y → F (y) → G(F (y)) ≈ y.

Figure 3.4: An illustration [25] of the cycle consistency loss framework with the left part
showing the forward cycle consistency loss and the right part showing the backward
version.

Both components are added to the objective loss function during training through the

cycle consistency loss function:

LCY C = Ey∼PY
[||G(F (y))− y||] + Ex∼PX

[||F (G(x))− x||] (3.12)

where PY and PX are the probability distributions of Y and X respectively.

Another important component of Cycle-GAN objective function is the identity loss com-

ponent which forces each of the generators to not modify parts of their input that are

already part of the target domain meaning that G(x) = x and F (y) = y. The following

35

3 Methods

demonstrates the identity loss function:

LIDT = Ex∼PX
[||F (x)− x||] + Ey∼PY

[||G(y)− y||] (3.13)

In our work we utilize the Cycle-GAN architecture for our third model (3DRDN-CGAN)

since super resolution could be viewed as an image to image translation problem with the

HR space being assumed as the Y domain and the LR space as the X domain. However,

we modify the objective loss function by replacing the normal adversarial loss used in the

original Cycle-GAN with the WGAN-GP adversarial version in our implementation. We

also combine it with a supervised loss component since we have paired data for training.

We did however train a version of the model (3DRDN-UCGAN) without supervised

learning and with data that is unpaired to compare the performance of unsupervised

learning models with supervised ones in our experiments. The unsupervised version of

the model is more in line with the original Cycle-GAN implementation as it is trained

with collections of LR and HR images that are unrelated with each other leading to it

solving a more complex image to image translation problem where we transform any

image between 2 (HR and LR) domains.

3.6 Skip Connections

CNNs have established themselves as the dominant neural network models in the field

of computer vision due to their superior performance. Although their concept was

developed over 20 years ago, it is only since a relatively recent period that it became

feasible to train deep versions of them thanks to improvement in computing technology

[26].

36

3 Methods

However despite the hardware improvement, challenging problems emerged when train-

ing substantially deep CNNs such as the vanishing gradient problem where gradient in-

formation gets squashed to zero during the computations before reaching the beginning

of the network during gradient back-propagation. Another problem with deep CNNs is

performance degradation where the networks perform badly despite being deeper and

not overfitting.

Plenty of research work has been done to help mitigate such problems and one result

from them is the concept of skip connections which aims at shortening the paths between

layers in a way that eases the information/gradient flow. We utilize two types of skip

connections which are the DenseNet and Residual connections.

3.6.1 DenseNet Connections

The authors of [26] proposed the Dense Convolutional Network (DenseNet) where they

introduced their suggested method of implementing skip connections. In their archi-

tecture, every layer in a dense block receives input from all the preceding layers and

projects its input into every consecutive layer. The connections are further distinct from

other skip connections in that the output features of the layers are combined through

concatenation rather than summation. As a result, given a block with L as the number

of layers, a densenet version of the block would have L(L+1)
2

connections as opposed to a

traditional architecture which would have just L.

The following equation shows the output of the lth layer in a DenseNet block:

xl = Hl([x0, x1, ..., xl−1]) (3.14)

37

3 Methods

where Hl represents the non-linear transformation done by a layer and [x0, x1, ..., xl−1]

represents the concatenation of the output from all previous layers.

Despite having more connections, DenseNets require less parameters than traditional

networks due to the effect of the dense connections. The reason is that networks in gen-

eral pass information through the layers with each one ideally extracting useful features

and then passing them on. In traditional networks with normal sequential layers, features

might need to be relearned or fail to get passed on at each layer. DenseNets however

directly pass the extracted features from each layer to all the next layers meaning that

no features will have to be relearned. This solid preserving of learned features allows the

DenseNet to have convoluted layers with significantly smaller number of needed filters

to extract features when compared with the convoluted layers of a normal network.

In addition to needing less filters and parameters, DenseNet connections allow easier

flow of information which makes training the network easier as every layer has a direct

connection to the last layer from which the gradient back propagates during training.

Furthermore, the authors observed that the connections also produce a regularizing effect

that helps in minimizing overfitting.

An important hyperparameter that emerges from the DenseNet architecture is the

growth rate k which represents the number of filters that each layer adds to the con-

catenated output at the end of the Dense block. Given l layers with k growth rate in

a Dense block, the number of output feature maps of the block will be k0 + k ∗ l where

k0 is the number of feature maps of the input to the block which is also concatenated

to the final output. Thanks to the re-usability of feature maps due to the layer wise

dense connections, state of the art results could be achieved with a relatively small k

when compared with other non-DenseNet based connections [26]. Another important

38

3 Methods

hyper parameter is the number of units or layers in each Dense block and naturally the

number of dense blocks utilized in the network.

Figure 3.5: An illustration [26] of a dense block example with 5 layers or units.

We performed multiple experiments to determine the most suitable growth rate, number

of dense blocks and number of dense units per block for our models. In addition as per

the author’s suggestion, we also use compression and bottleneck layers (achieved by 1x1

convolutions) between the dense blocks to help control the growth of the concatenated

output feature maps which could overwhelm the memory during training.

3.6.2 Residual Connection

Another skip connection that we utilized is the residual one which was popularized by

[27] in their widely known network ResNet. Developed also for the purpose of training

deeper networks, ResNets were among the first of their kind to be properly trained with

39

3 Methods

more than 100 layers with state of the art performance on various computer vision tasks

such as image classification. The key to ResNet success was the utilization of identity

mapping for their shortcut/skip connections which neither added more parameters nor

increased the computational complexity.

The following equation shows the output of the lth layer in a ResNet block:

xl = Hl(xl−1) + xl−1 (3.15)

During training, layers are normally modified through their parameters to approximate

a desired function Hl(), however the authors hypothesize that it is better to have them

instead approximate the residual function Hl() + r where the second value is obtained

through identity mapping. Their argument is that in some cases the identity mapping

itself will be part of the required function in which case it would be extremely difficult

to approximate it using just sequential non-linear layers. In cases where the identity

mapping path is more optimal for approximating the function, the training will force

the network to ignore the non-linear layers that cause the degradation problem by driving

their weights towards zero resulting in overall better performance.

In our network design, we utilize a residual connection from the input to the output

which we feel is an intuitive addition to any network designed for performing super

resolution as the input and output images of the process are largely similar. This means

that our model will be trained to predict the residual which has smaller values and thus

smaller features will need to be extracted from the input allowing us to utilize a smaller

and more concise model which is faster and also easier to train.

40

3 Methods

3.7 Network Architecture

In this section we describe the architecture of each of the 3 models implemented and

explain our design choices.

3.7.1 3DRDN

The basic 3DRDN model is made up of a single deep 3D convolutional network. DenseNet

connections which are described in details in section 3.6.1 are the integral building blocks

that make up the model.

The input of the model is made up of 3D image patches with the dimensions 40x40x40

instead of the entire images. We explain in section 4.2 the various ways in which this

facilitates the training process.

First the input passes through a 3D convolutional layer which has 2 · k as the number

of filters where k is the growth rate hyper-parameter of DenseNets. The output of this

layer is then propagated into a series of b DenseNet blocks with each being made up

of u Dense units. A Dense unit is made up of a batch normalization layer followed by

a Leaky RELU based activation layer before a convolutional layer which has k as the

number of filters. Figure 3.7 demonstrates the inner architecture of a dense block with

u as 4.

Inspired by [22], we also utilize a compressor layer (essentially a 1x1x1 convolutional

layer) before each DenseNet block to force each block to only have 2 · k feature maps

as its input. This also means that each DenseNet block produces an output that has

2 · k + u · k feature maps since there are u units in each block. Moreover, we also insert

a bottleneck layer (also essentially a 1x1x1 convolutional layer) with 4 · k filters before

41

3 Methods

Figure 3.6: Architecture of the 3DRDN model with 3 dense blocks (b). In addition to the
layer dense connections between the first convolutional layer and each dense block, we
also utilize a residual connection from the input image to the output of the reconstruction
layer. Figure 3.7 illustrates the architecture of a dense block.

any dense unit that gets an input with more than 4 · k feature maps as recommended

by the authors of the DenseNet paper [26].

Furthermore, the output of all of the dense blocks are also connected in a DenseNet

fashion with each other as well as with the output of the first convolutional layer. Since

we have b Dense blocks with each having u dense units, the final concatenated dense

output output will have 2 · k + b · u · k feature maps. Unlike [22], we insert this output

into another compression layer with 2 ·k filters, which significantly improved our model’s

performance, followed by a reconstruction layer that is made up of a 1x1x1 convolutional

layer which produces a single feature map representing the residual output of the model.

This residual output is then summed with the 3D image patch input using a residual

connection to produce the final output of the model. Figure 3.6 illustrates a high-level

overview of the architecture.

For all of the convolutional layers across the entire model, with the obvious exception

of compressor, bottleneck and reconstruction layers, we utilize 3x3x3 as the size of the

filter (kernel) and utilize same padding for all of the convolutional layers to minimize

loss of information through the continuous shrinkage of the feature maps size.

42

3 Methods

Figure 3.7: Detailed visualization of a dense block from the 3DRDN model with 4 dense
units (u). As illustrated, the output of each layer (including the input layer) is concate-
nated into the input of all the layers following its next layer.

We performed multiple experiments to identify the optimum values for the DenseNet

hyperparameters of the model which are k the growth rate, b the number of dense blocks

and u the number of dense units per dense block. Designing a deeper and wider (with

more filters) model almost always guarantees superior performance, however this comes

at a cost of having significantly more computation time which could limit the utilization

of such a model for real life applications such as super resolution and furthermore it

would require more data to be properly trained. Accordingly, we aimed at striking a

balance between designing the model to be deep enough to successfully perform super

resolution while also being lightweight enough to realistically be usable in upscaling large

3D models. We noticed early during the experiments that 12 is the lowest value for k

with which we can effectively perform super resolution and since increasing this hyper-

parameter contributed heavily to slowing down training, we ended up simply choosing

12 in our final design. b and u were more flexible to work with and after experimenting

we selected the values of 3 and 4 for them respectively.

43

3 Methods

To induce non-linearity in the model, an activation function was needed and accordingly

we also performed experiments to identify the most suitable one among the most popular

functions: RELU, ELU, Swish and Leaky RELU. We achieved good results with both

RELU and Leaky RELU but ended up choosing the latter since it doesn’t suffer from the

’dead RELU’ problem where a node that receives negative input gets stuck outputting

zero with little chance of recovery since the function gradient at zero is also zero. Leaky

RELU however, overcomes this problem by adding a small positive gradient to negative

inputs which provides a better chance for recovery. The following equation demonstrates

the Leaky RELU function:

f(x) ≡

x, if x > 0

α ∗ x, if x ≤ 0

where α is the constant variable that induces the gradient for negative input values. We

compared our model’s performance with different values and in the end we utilized a

value of 0.2 for α in our implementation.

Lastly we also performed experiments to determine the most suitable initializer for the

weights of the model. We performed experiments with the following initialization tech-

niques: HeUniform, HeNormal, XavierUniform and XavierNormal. Since we obtained

faster convergence with HeUniform, we ended up selecting it for our model. The bias

parameters of the model, on the other hand, were simply initialized with zero values.

3.7.2 3DRDN-WGAN

The 3DRDN-WGAN is made up of 2 networks that implement a WGAN-GP model: a

generator which has the architecture of 3DRDN and a critic which is another network

44

3 Methods

trained to measure the Wasserstein distance between the real data probability distribu-

tion and the generator’s output distribution.

The critic that we implemented was inspired mainly by the discriminator from the work

[11] with 3 important modifications. First of all, we modified our version so that it

can handle 3D images rather than 2D ones by replacing its 2D convolutions with 3D

ones. The second modification is that we removed, from its final layer, the sigmoid cross

entropy activation function since our version is a WGAN-GP rather than a normal GAN.

Thus our critic network outputs a scalar estimation of the Wasserstein distance instead

of a binary output that determines whether its input is true data or from the generator

as the case with normal GANs. The third and last modification is replacing its batch

normalization layers with layer normalization layers as recommended by the authors

of WGAN-GP [24] in order to not mess up the gradient penalty design. Unlike the

generator, the critic does not have any skip connections and is a normal convolutional

feed forward network.

The input of the critic are also 3D image patches with dimensions 40x40x40 which go

through a convolutional layer with k = 64 filters followed by a Leaky RELU layer. As

suggested by [11], we do not utilize valid padding to compress the feature space but utilize

instead strides. We implement a sequence of blocks that are made up of a convolutional

layer followed by layer normalization and then by a Leaky RELU layer. For each block

we alternate between utilizing a stride of 1 and stride of 2 for its convolutional layer until

we shrink the feature images to a size of 3x3. Furthermore, every 2 blocks we double

the filters utilized for the convolutional layers until we reach 512 filters.

The 512 feature images are flattened and then followed by a dense layer of size 1024

which is followed by another Leaky RELU layer before a final dense layer that produces

45

3 Methods

Figure 3.8: Architecture of the critic of the 3DRDN-WGAN model. The convolutions
from the hidden layers alternate between doubling the number of input filters and de-
creasing the size of the feature map by using a value of 2 for strides.

a single non-activated output which represents the Wasserstein distance that the network

will be trained to measure. Figure 3.8 shows an overview of the architecture of the critic.

Just like with the generator, for all of the convolutional layers of the critic we utilize

filters with the size 3x3 and all of its Leaky RELU layers use a value of 0.2 for alpha.

Its weights are also initialized using HeUniform while the biases are zero initialized.

3.7.3 3DRDN-CGAN

Inline with the Cycle-GAN architecture, the 3DRDN-CGAN model is composed of two

generators and two critics. Fortunately in our design the HR and LR images have

the same resolution thanks to the fact that interpolation is implemented in the data

pre-processing step as described in section 3.4.

This allows us to utilize the same architecture for the generator G which performs

upscaling as well as the generator F which performs downscaling and the same applies

for the two critics as well. The two generators utilize the architecture of the 3DRDN

46

3 Methods

model while the two critics use the same architecture of the critic from the 3DRDN-

WGAN model.

3.8 Objective Loss Function

To force our networks to learn the non-linear mapping between the HR and LR domain

we utilize training data from which we can input LR 3D image patches to a model and

compare its output ŷ with ground truth y which is the original HR version of the 3D

image patch. We utilize an objective loss function L to calculate the error of the output

of the model which is minimized by modifying the parameters θ (weights and biases)

of the model using the Adam optimizer and backpropagation. The following equation

summarises the overall training process:

θ̂ = argmin
θ

N∑
i

L(ŷi, yi) (3.16)

where N is the number of LR & HR image pairs used in the training.

Each model has its objective function with each one incorporating the previous model’s

function and adding new components to it.

3.8.1 3DRDN

We begin with the simplest model 3DRDN which has the following objective loss func-

tion:

L3DRDN = LSUP (I
HR
x,y,z, I

SR
x,y,z) (3.17)

47

3 Methods

where LSUP represents the supervised loss component, IHR
x,y,z represents the HR 3D image

patches which are the ground truth and ISRx,y,z represents the upscaled patches which are

the output of the model.

LSUP forces the model to produce 3D images which are as close as possible to their HR

counterparts. We utilize the MAE or L1 loss for the supervised training as it performed

better in our experiments compared with the MSE or L2 loss:

LSUP (I
HR
x,y,z, I

SR
x,y,z) = E[|IHR

x,y,z − ISRx,y,z|] (3.18)

where E() denotes the expectation operator or the mean value for each the 3 dimensions.

3.8.2 3DRDN-WGAN

The next model is the 3DRDN-WGAN which integrates the previous basic model in a

GAN architecture where a generator and a critic are trained together in an adversarial

manner to simultaneously enhance their performance. The following equation demon-

strates the relationship between the critic and the generator:

min
G

max
D

LWGAN(I
HR
x,y,z, I

SR
x,y,z) = −E[D(IHR

x,y,z)] +E[D(ISRx,y,z)] + λE[(||∆D(˜IHR
x,y,z)||2 − 1)2]

(3.19)

The first two components are for the Wasserstein distance estimation; the estimation

is based on the function shown in equation 3.11 which is an approximation of the

Kantorovich-Rubinstein duality transformation of Wasserstein/EM distance. The signs

48

3 Methods

are reversed by multiplying the approximation function by -1 which however does not

change the behavior of either the critic or the generator.

The critic tries to maximize its output score on input from the generator while minimiz-

ing its score on real data input. That way it learns to identify the probability distribution

of the two possible input data and measure the distance between them in an unsuper-

vised learning way. The generator on the other hand tries to minimize the output score

of the critic on its input leading to the generator’s output distribution moving closer

to that of the real data which will make it more visually similar. In machine learning

terms, we can say that the critic learns to find the embedding or latent representation

for its input image patches, separate them into 2 clusters and maximize the distance

between them while the generator tries to minimize it.

The third component is an addition that allows training the modified WGAN (WGAN-

GP) without having to resort to gradient clipping which was a requirement in the original

WGAN. The component is added instead to penalize deviation of the gradient norm of

the critic from one which forces the Lipschitz constraint as we discussed in section

3.5.3. ˜IHR
x,y,z is a uniform sampling from pairs of IHR

x,y,z and ISRx,y,z and λ is a regularization

parameter.

Only the second term is affected by the generator (since ISRx,y,z is its output) which is why

its the only part incorporated into its objective loss function while the critic incorporates

all three.

The following is the objective loss function of the generator:

L3DRDN−WGAN = LSUP (I
HR
x,y,z, I

SR
x,y,z) + λ1LADV (I

SR
x,y,z) (3.20)

49

3 Methods

where λ1 is a weighting parameter for which we use the value 0.01 based on experimen-

tation. LADV (I
SR
x,y,z) is the adversarial loss:

LADV (I
SR
x,y,z) = −E[D(ISRx,y,z)] (3.21)

The following is the objective loss function of the discriminator:

LDiscriminator = E[D(ISRx,y,z)]− E[D(IHR
x,y,z)] + λE[(||∆D(˜IHR

x,y,z)||2 − 1)2] (3.22)

We utilize a value of 10 for λ which is the convention in most of the WGAN-GP imple-

mentations.

3.8.3 3DRDN-CGAN

The final model is the 3DRDN-CGAN which integrates two of the previous 3DRDN-

WGAN model in an architecture where one pair is trained to perform super resolution

and the other pair is trained to perform the inverse which is downscaling.

The following equation demonstrates the objective loss function of the generator G which

is responsible for super resolution:

LG = LSUP (I
HR
x,y,z, I

SR
x,y,z) + λ1LADV (I

SR
x,y,z) + λ2LCY C(I

HR
x,y,z, I

LR
x,y,z) + λ3LIDT (I

HR
x,y,z)

(3.23)

with the two new additions being the cycle consistency loss LCY C and the identity

loss LIDT which are the integral components of the CycleGAN architecture which we

described in section 3.5.4. Each λ is a hyperparameter responsible for the weighting

of its accompanying loss component. The variable ILRx,y,z represents the LR 3D image

50

3 Methods

patches that are used to train the other generator F in its supervised loss function and

which are also utilized in the cycle consistency loss of the generator G.

The other generator F , which performs downscaling, has a mostly similar objective loss

function but with different inputs for the components:

LF = LSUP (I
LR
x,y,z, I

DS
x,y,z) + λ1LADV (I

DS
x,y,z) + λ2LCY C(I

HR
x,y,z, I

LR
x,y,z) + λ3LIDT (I

LR
x,y,z)

(3.24)

where IDS
x,y,z represents the output images of the generator F which are the downscaled

output of their original HR versions.

After performing various experiments we ended up utilizing the values 0.01, 0.01 and

0.005 for λ1, λ2 and λ3 respectively in the loss function of both generators.

The following equation demonstrates the cycle consistency loss LCY C which links the

generator G, responsible for SR, with the generator F which is responsible for down-

scaling:

LCY C = E[||G(F (IHR
x,y,z))− IHR

x,y,z||] + E[||F (G(ILRx,y,z))− ILRx,y,z||] (3.25)

The loss encourages the resultant value of G(F (IHR
x,y,z)) to be as close as possible to

IHR
x,y,z and likewise F (G(ILRx,y,z)) to ILRx,y,z which embeds forward cycle consistency and

backward cycle consistency respectively for each part of the equation. This forces the

two generators to use the same latent space for feature mapping which helps prevent

degeneracy during their learning by adding more constraints.

The other integral loss component of a CycleGAN system is the identity loss LIDT :

LIDT = E[||F (ILRx,y,z)− ILRx,y,z||] + E[||G(IHR
x,y,z)− IHR

x,y,z||] (3.26)

51

3 Methods

which forces the generator G to not modify any input which is already in the HR domain

and likewise for the generator F with regards to the LR domain. While its an integral

component in the original Cycle-GAN design especially for object transfiguration tasks,

we feel that it is not integral for super resolution as we expect all parts of the LR

image to be upscaled rather than just a specific part. For that reason we decreased its

contribution to the objective function by giving its weighting parameter a very small

value.

The objective loss functions of the two critics are the same as that of the critic from

the 3DRDN-WGAN model. Figure 3.9 provides a visual representation of the training

framework of the 3DRDN-CGAN model.

Lastly we show the objective function of a modified version (3DRDN-UCGAN) of the

third model that relies completely on unsupervised training.

The following is the objective loss function of its generator G:

LG = λ1LADV (I
SR
x,y,z) + λ2LCY C(I

HR
x,y,z, I

LR
x,y,z) + λ3LIDT (I

HR
x,y,z) (3.27)

As can be seen, it does not have the supervised loss component and can therefore be

trained without paired data which is also the case for generator F . For the 3DRDN-

UCGAN model We utilize the values 0.1, 0.1 and 0.05 for λ1, λ2 and λ3 respectively in

the loss function of both generators.

52

3 Methods

(a) Supervised and Adversarial Loss

(b) Cycle Consistency Loss (c) Identity Loss

Figure 3.9: Overview of the framework for the training of the 3DRDN-CGAN model.
IHR, ILR, ISR and IDS are respectively the high-resolution, low-resolution, upscaled and
downscaled images. G, F are generator models and CG and CF are their respective critic
models. SUP , ADV , CY C and IDT are respectively the supervised, adversarial, cycle
consistency and identity losses.

53

4 Experiments

In this section, we describe in detail the experiments that we performed. First we

introduce the datasets that were used for training our models and evaluating their per-

formance. Then we describe the pre-processing that was done to obtain downscaled LR

images from the original HR ones as well as the pre-processing performed to fit all input

imagess into the architecture of our models. We then explain the settings that were

utilized for training the models in terms of their hyperparameters and other training

details. Lastly, we introduce the metrics that we utilized for evaluating the results.

4.1 Datasets

Since our models operate exclusively on 3D images, we required data with such dimen-

sions to train them and for that we obtained two datasets.

The first dataset is from the MGH-USC Human Connectome Project which aggregates

a collection of publicly available diffusion and anatomical neuroimaging data that is

collected from various projects and studies from all over the neuroimaging community.

Our data was particularly provided by the ABIDE project from which we obtained MRI

scans of 1087 subjects and all of the scans were 3D T1W images of exclusively human

54

4 Experiments

brains. The scans do not have a uniform resolution but the average value of their

dimensions is approximately 256x261x184 voxels for each scan. We refer to this dataset

as the ABIDE dataset.

The other dataset that we utilized is composed of a single CT scan of a Peruvian mummy

which was provided by the Chair of Digital Image Processing from Passau University.

We refer to this dataset as the Mummy dataset. Aside from being a CT scan rather

than MRI, two other significant aspects differentiate this dataset from the ABIDE one.

Firstly, the scan covers the entire body of the mummy and even includes non-human

items such as corn meaning that it has more visual variety despite being a single scan.

The other difference is the substantially larger size of the scan as it has a dimension of

2304x1896x1896 voxels which makes it require extra pre-processing before being utilized

in training our models. We crop large quantities of voxels from the scan that contain

zero values to avoid having them in our training samples. Additionally, we also chop it

into 24 smaller scans so that we can later split its data between training, validation and

testing sets.

4.2 Preprocessing

Before our models can process any of the images from the datasets, we first have to

perform some preprocessing on them which allows our models to operate on them and

that also provides us with HR and LR paired data for training.

Firstly, to have paired data for training we use the HR (ground truth) scans to obtain LR

counterpart versions of them. We follow the convention of most superresolution research

work in trying to simulate the CT/MRI scanning process by first adding Gaussian noise

55

4 Experiments

with a standard deviation of 0.25 to the HR images and then lowering their 3 dimen-

sional resolution by the desired upscaling factor using bicubic interpolation to get the

LR counterparts. Before inserting the LR images to the models, we use again bicubic

interpolation to increase their resolution back to the HR version size before processing

them using our models as explained in section 3.4.

We then normalize all of the images to a range between 0 to 1 so that our models can

more easily operate on them and converge faster while training.

Rather than operate on an entire scan, our models are designed to only process a 3D

image patch of size 40x40x40 which provides two benefits. The first is that all of the 3D

images from our datasets (or any CT/MRI dataset for that matter) are large enough

that performing computations on them using normal computing resources is practically

impossible due to the limited memory resources available.

This problem can easily be circumnavigated by simply splitting any of the images into

patches with the size 40x40x40 which are significantly easier to process and perform

computations on. The other benefit is that splitting an image into patches provides

more data for training and helps in minimizing overfitting while training our models.

One minor disadvantage that should be pointed is that this minimizes the information

that a model has access to when upscaling as rather than working on the entire image

it only operates on patches of it one at a time.

However, as our experiments indicate, even with such limited information, the models

can still produce perceptually good looking upscaled versions of each patch which can

then be aggregated together to obtain the upscaled version of the entire image. The size

of 40x40x40 was chosen for the patches as it was small enough to easily insert multiple

56

4 Experiments

instances of it into the GPU memory for computations while also being large enough to

contain enough information for the models to perform upscaling with acceptable results.

For only the training data, after extracting the patches we additionally perform data

augmentation on them by randomly flipping the image around any of the 3 axes. Fur-

thermore, during training at each epoch we extract the patch from a random location

from each image which acts as another form of data augmentation that helps in min-

imizing overfitting. Figure 4.1 summarises all of the preprocessing performed in our

experiments.

Figure 4.1: An illustration of the preprocessing steps performed before training.

57

4 Experiments

4.3 Training Settings

For training, we implemented a dataset pipeline using tensorflow that extracts the images

from the disk and performs all of the preprocessing steps while utilizing prefetching and

caching to speed up the training process.

The 1087 images from the ABIDE dataset were split into 760 for training, 163 for

validation and 164 for testing. The Mummy dataset, which has only 24 images, was

split into 16, 4 and 4 for training, validation and testing respectively. The models rely

only on the training data for optimizing their parameters with the validation data being

used only for evaluation after every epoch to checkout for overfitting while the testing

data is only used for evaluation at the end after the training is complete.

When training the 3DRDN model we utilized a batch size of 8 3D images patches and

trained the model for 400 epochs with a learning rate of 1× 10−4 which took around 14

hours of training time.

For the 3DRDN-WGAN model, we first fully train a 3DRDN model and carry its weights

into the generator of the 3DRDN-WGAN model. Then we only train the critic for 30

epochs without updating the generator to help the critic catch up to the generator in

terms of performance capabilities. Afterwards, we start training both of them for 300

epochs however, as recommended by the WGAN designers [23], for each iteration of

training the generator, we train the critic for 3 iterations to make sure the critic can

more accurately estimate the Wasserstein distance before the generator attempts to

minimize it. We use a learning rate of 5× 10−6 and a batch size of 6 with the training

taking around 3 days and 6 hours to complete.

For the 3DRDN-CGAN (as well as 3DRDN-UCGAN) model, we likewise train the two

58

4 Experiments

generators fully first before transferring their weights. Afterwards, we also only train

the two critics for 30 epochs before training all 4 networks with the same cycle of 3

critic training iterations followed by 1 for the generators for 300 epochs. The learning

rate utilized was also 5× 10−6 while the batch size was only 2 to avoid encountering out

of memory (OOM) errors. Training either of the 3DRDN-CGAN or 3DRDN-UCGAN

models took the longest time which was approximately 10 days with our computing

resources.

All the of the training was done using the Adam optimizer with values of 0.9 and 0.999

for β1 and β2 respectively for minimizing our objective loss functions. The models were

developed using the Tensorflow version 2 library and the training was done using an

Nvidia Geforce RTX 3090 GPU with a RAM memory of 24 Gigabytes.

4.4 Evaluation

In our work we utilize, in addition to MAE, two popular techniques for performing

image quality assessment in accordance with most contemporary research. We describe

the techniques, which are the Peak Signal to Noise Ratio (PSNR) and the Structural

Similarity Index Measure (SSIM), in this section:

4.4.1 PSNR

PSNR is an image quality mathematical measurement that operates on voxel to voxel

(or pixel) basis, allowing us to estimate how close each voxel of the upscaled image is

to the original image. It represents the ratio of the maximum possible power of a signal

59

4 Experiments

to the power of noise that corrupts its representation or fidelity. The following is its

equation:

PSNR = 10 · log10

s2

MSE
(4.1)

where s is the maximum value obtained with the bit representation of the image and

MSE is the mean squared error between the voxels.

4.4.2 SSIM

SSIM is designed to compare aspects of the images that have the most effect on human

visual perception. It achieves that by comparing the luminance, contrast and structure

of the original image with the upscaled one in a combinatorial manner. For it to be

calculated, we need to first obtain the mean, standard deviation and covariance values

from the two compared images x and y by using an 11x11 filter kernel:

µx =
1

T

T∑
i=1

xi µy =
1

T

T∑
i=1

yi

σ2
x =

1

T − 1

T∑
i=1

(xi − x)2 σ2
y =

1

T − 1

T∑
i=1

(yi − y)2

σ2
xy =

1

T − 1

T∑
i=1

(xi − x)(yi − y)

SSIM is then calculated using the following equation:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4.2)

where c1 and c2 are two variables added to stabilize the division based on the dynamic

range of the voxel values.

60

5 Results

In this section, we show the results of various experiments that we performed to demon-

strate the capabilities of our models both quantitatively in terms of evaluation metric

scores as well as qualitatively by showcasing visual results of their super-resolution out-

put.

As baseline, we utilize the following upscaling methods: Nearest Neighbour, Bilinear,

Bicubic interpolation and Lanczos resampling methods. For quantitative evaluation, we

utilize the 3 metrics PSNR, SSIM and MAE to measure how similar is the upscaling

output of each method (with LR images as input) to the HR (ground truth) images.

We also demonstrate a sample of the visual super-resolution output of all interpolation

methods and our models on the same input to allow comparing the quality of their

super-resolution. We should point out that all of the scans are 3D and that the 2D

images illustrated in this thesis are 2D slices from the 3D scans; we also demonstrate

3D snippets of upscaled scans of all of the methods and models.

To make the comparison fair, we only operate on the unseen testing data from both

datasets. Therefore, the experiments on the ABIDE dataset were performed on the 164

testing MRI scans while the experiments on the Mummy dataset were performed on the

4 testing CT scans.

61

5 Results

5.1 ABIDE Dataset

Table 5.1 demonstrates the performance of each interpolation method as well as our

models on the ABIDE datatset for super-resolution with an upscaling factor of 2. As

can be seen, the 3DRDN model obtains the best performance in terms of all 3 evaluation

metrics with the 3DRDN-CGAN model obtaining the second best performance.

Quantitative Evaluation on the ABIDE Dataset (x2 Scaling Factor)
Method PSNR † SSIM † MAE ‡

Nearest Neighbour 22.876± 2.567 0.767± 0.121 0.069± 0.020

Bicubic 19.487± 2.015 0.752± 0.138 0.106± 0.024

Bilinear 19.780± 2.648 0.764± 0.109 0.103± 0.031

Lanczos 18.515± 1.939 0.731± 0.143 0.119± 0.025

3DRDN 31.781 ± 3.069 0.887 ± 0.058 0.021 ± 0.019
3DRDN-WGAN 30.703± 2.872 0.850± 0.060 0.024± 0.022

3DRDN-UCGAN 28.982± 3.499 0.848± 0.091 0.032± 0.026

3DRDN-CGAN 31.033± 2.977 0.872± 0.055 0.023± 0.021

Table 5.1: Quantitative evaluation on x2 upscaling with the testing data from the ABIDE
dataset. † indicates that the higher the score the better while ‡ indicates that the lower
the score the better. Bold indicates the best value while underline indicates the second
best value.

Figure 5.1 demonstrates the x2 upscaling performed by each method on an image scan

from the ABIDE dataset. For further easier visual comparison, in figure 5.2, two patches

are extracted from the same position from all of the images to allow visually comparing

their minute details as well. We also showcase 3D comparison of snippets of x2 upscaled

images in figure 5.3. Furthermore, additional visual upscaled sample results from the

ABIDE dataset are added in appendix A.1.

62

5 Results

In addition we performed another experiment to evaluate the performance of our models

on super-resolution with a scaling factor of 4. Table 5.2 demonstrates the metric results

of each interpolation method and our models on upscaling testing data from the ABIDE

dataset with factor of 4. Once again, the 3DRDN model obtains the best metric scores

with this time the 3DRDN-WGAN model coming second.

Quantitative Evaluation on the ABIDE Dataset (x4 Scaling Factor)
Method PSNR † SSIM † MAE ‡

Nearest Neighbour 20.059± 2.670 0.529± 0.133 0.091± 0.029

Bicubic 18.359± 2.275 0.606± 0.140 0.118± 0.031

Bilinear 17.256± 2.931 0.599± 0.127 0.138± 0.046

Lanczos 15.913± 1.658 0.544± 0.139 0.157± 0.031

3DRDN 30.687 ± 6.312 0.763 ± 0.090 0.025 ± 0.030
3DRDN-WGAN 29.575± 7.204 0.712± 0.128 0.028± 0.037

3DRDN-UCGAN 27.988± 4.597 0.542± 0.250 0.034± 0.034

3DRDN-CGAN 29.299± 5.918 0.673± 0.115 0.029± 0.035

Table 5.2: Quantitative evaluation on x4 upscaling with the testing data from the ABIDE
dataset. † indicates that the higher the score the better while ‡ indicates that the lower
the score the better. Bold indicates the best value while underline indicates the second
best value.

We also showcase visual results of the upscaling achieved by all methods and our models

with a factor of 4 in figure 5.4 while figure 5.5 also shows more detailed results by

illustrating patches from the x4 upscaled images.

63

5 Results

(a) Original HR Image
PSNR/SSIM

(b) Nearest Neighbour (NN)
26.911/0.362

(c) Bicubic
19.883/0.281

(d) Bilinear
23.945/0.362

(e) Lanczos
17.533/0.262

(f) 3DRDN
34.763/0.929

(g) 3DRDN-WGAN
33.457/0.758

(h) 3DRDN-UCGAN
32.450/0.750

(i) 3DRDN-CGAN
34.149/0.921

Figure 5.1: Visual comparison of the (x2) upscaling performed on an entire MRI scan
from the ABIDE dataset using the baseline interpolation methods and our models. Below
each upscaled image are its metric scores that compare how close it is to the original HR
image. The red and blue patches are further highlighted in figure 5.2 for more detailed
comparison.

64

5 Results

(a) Noisy LR Patch

(b) HR Patch

(c) NN (d) Bicubic (e) Bilinear (f) Lanczos

(g) 3DRDN (h) 3DRDN
WGAN

(i) 3DRDN
UCGAN

(j) 3DRDN
CGAN

(k) Noisy LR Patch

(l) HR Patch

(m) NN (n) Bicubic (o) Bilinear (p) Lanczos

(q) 3DRDN (r) 3DRDN
WGAN

(s) 3DRDN
UCGAN

(t) 3DRDN
CGAN

Figure 5.2: Detailed visual comparison of the red and blue patches from the x2 upscaled
MRI scans in figure 5.1.

65

5 Results

(a) Noisy LR Patch

(b) HR Patch

(c) NN (d) Bicubic (e) Bilinear (f) Lanczos

(g) 3DRDN (h) 3DRDN
WGAN

(i) 3DRDN
UCGAN

(j) 3DRDN
CGAN

Figure 5.3: 3D visual representation of x2 upscaled patches from an MRI scan from the
ABIDE dataset.

66

5 Results

(a) Original HR Image
PSNR/SSIM

(b) Nearest Neighbour (NN)
17.824/0.156

(c) Bicubic
17.438/0.186

(d) Bilinear
17.035/0.182

(e) Lanczos
14.026/0.156

(f) 3DRDN
26.380/0.746

(g) 3DRDN-WGAN
24.742/0.775

(h) 3DRDN-UCGAN
23.686/0.625

(i) 3DRDN-CGAN
25.654/0.710

Figure 5.4: Visual comparison of the (x4) upscaling performed on an entire MRI scan
from the ABIDE dataset using the baseline interpolation methods and our models. Below
each upscaled image are its metric scores that compare how close it is to the original HR
image. The red and blue patches are further highlighted in figure 5.5 for more detailed
comparison.

67

5 Results

(a) Noisy LR Patch

(b) HR Patch

(c) NN (d) Bicubic (e) Bilinear (f) Lanczos

(g) 3DRDN (h) 3DRDN
WGAN

(i) 3DRDN
UCGAN

(j) 3DRDN
CGAN

(k) Noisy LR Patch

(l) HR Patch

(m) NN (n) Bicubic (o) Bilinear (p) Lanczos

(q) 3DRDN (r) 3DRDN
WGAN

(s) 3DRDN
UCGAN

(t) 3DRDN
CGAN

Figure 5.5: Detailed visual comparison of the red and blue patches from the x4 upscaled
MRI scans in figure 5.4.

68

5 Results

5.2 Mummy Dataset

For the mummy dataset, table 5.3 shows the evaluation of the x2 upscaling performed

on its testing dataset by each method and model. As opposed to the previous dataset, it

is the 3DRDN-CGAN model that performs best with the 3DRDN model coming second.

Quantitative Evaluation on the Mummy Dataset (x2 Scaling Factor)
Method PSNR † SSIM † MAE ‡

Nearest Neighbour 23.268± 3.744 0.160± 0.226 0.073± 0.030

Bicubic 19.517± 2.796 0.300± 0.291 0.110± 0.033

Bilinear 27.227± 6.035 0.323± 0.220 0.053± 0.041

Lanczos 15.347± 1.95 0.178± 0.216 0.174± 0.034

3DRDN 40.505± 5.669 0.784± 0.123 0.008± 0.004

3DRDN-WGAN 36.587± 4.597 0.743± 0.075 0.011± 0.005

3DRDN-UCGAN 37.415± 4.755 0.570± 0.262 0.013± 0.007

3DRDN-CGAN 40.809 ± 3.388 0.891 ± 0.049 0.006 ± 0.002

Table 5.3: Quantitative evaluation on x2 upscaling with the testing data from the
Mummy dataset. † indicates that the higher the score the better while ‡ indicates that
the lower the score the better. Bold indicates the best value while underline indicates
the second best value.

In a similar manner, we demonstrate the visual results of the different upscaling meth-

ods on a CT scan sample from the Mummy dataset in figure 5.6. Two patches are also

extracted from the upscaled images and shown in figure 5.7 for a more detailed compar-

ison. Moreover, we showcase 3D comparison of snippets of x2 super-resolved images in

figure 5.8. We also demonstrate more upscaled sample results from the Mummy dataset

in appendix A.2.

In one of our experiments, we trained the basic 3DRDN model only on the ABIDE

dataset and then evaluated its performance on the Mummy dataset. Our model was able

to generalize nicely on the entirety of the completely unseen Mummy dataset achieving

69

5 Results

a score of 33.649, 0.859 and 0.0172 for the PSNR, SSIM and MAE metrics respectively

which surpassed all of the baseline interpolation methods.

(a) Original HR Image
PSNR/SSIM

(b) Nearest Neighbour (NN)
25.992/0.277

(c) Bicubic
19.579/0.207

(d) Bilinear
29.818/0.379

(e) Lanczos
16.807/0.183

(f) 3DRDN
33.768/0.734

(g) 3DRDN-WGAN
33.050/0.820

(h) 3DRDN-UCGAN
31.304/0.417

(i) 3DRDN-CGAN
33.854/0.884

Figure 5.6: Visual comparison of the (x2) upscaling performed on part of the CT scan
from the Mummy dataset using the baseline interpolation methods and our models.
Below each upscaled image are its metric scores that compare how close it is to the
original HR image. The red and blue patches are further highlighted in figure 5.2 for
more detailed comparison.

70

5 Results

(a) Noisy LR Patch

(b) HR Patch

(c) NN (d) Bicubic (e) Bilinear (f) Lanczos

(g) 3DRDN (h) 3DRDN
WGAN

(i) 3DRDN
UCGAN

(j) 3DRDN
CGAN

(k) Noisy LR Patch

(l) HR Patch

(m) NN (n) Bicubic (o) Bilinear (p) Lanczos

(q) 3DRDN (r) 3DRDN
WGAN

(s) 3DRDN
UCGAN

(t) 3DRDN
CGAN

Figure 5.7: Detailed visual comparison of the red and blue patches from the x2 upscaled
CT scans in figure 5.1.

71

5 Results

(a) Noisy LR Patch

(b) HR Patch

(c) NN (d) Bicubic (e) Bilinear (f) Lanczos

(g) 3DRDN (h) 3DRDN
WGAN

(i) 3DRDN
UCGAN

(j) 3DRDN
CGAN

Figure 5.8: 3D visual representation of x2 upscaled patches from a CT scan from the
Mummy dataset.

72

6 Discussion

The experiments prove that our models are significantly superior to all of the baseline

interpolation methods in terms of quantitative evaluations as well as the visual quality

of the upscaling achieved by them. As can be seen from the comparison figures, the

upscaled output of our models is sharper and better at removing noise thanks to the

better mapping they learned during training.

The first thing that our results indicate is that the evaluation metrics MAE, PSNR and

even SSIM do not necessarily correlate with better visual output as they sometimes fail

to convey human perception similarity. This is shown in various examples such as from

figure 5.4 where the 3DRDN model obtained a higher score than 3DRDN-CGAN while

outputting an image with noticeably less fidelity than the output of the 3DRDN-CGAN

model.

6.1 Dataset Comparison

In our experiments, we aimed at testing our models on diverse data and therefore we

selected two sets with one containing MRI scans (ABIDE) and the other containing

CT scans (Mummy). The evaluation metrics (from tables 5.1 and 5.3) indicate that our

73

6 Discussion

models perform significantly better on the Mummy dataset compared to the ABIDE set.

However, the visual output on samples from the Mummy dataset is not observably better

(closer to ground truth) in our subjective opinion. One reason that could explain the

discrepancy is that the Mummy dataset contains substantially more empty (zero) voxels

when compared to the ABIDE set and such empty voxels are easier to upscale meaning

its easier to obtain high metric scores on scans with more of them. In our opinion, our

models visually perform better on the ABIDE dataset and this was expected since there

is less training data from the Mummy dataset which is made up of only 24 scans as

opposed to 1087 scans for the ABIDE dataset.

6.2 Model Assessments

3DRDN is the simplest and easiest to train model which achieved the best performance

in terms of evaluation scores on the ABIDE dataset. Its visual output, however, is

not necessarily closer to the original HR image when compared to that of the WGAN

or CGAN models. While it is fairly capable of sharpening edges, in some cases it is

not able to accurately replicate the patterns of some areas such as tissue bodies and

produces instead a more smoothed area when compared to the original HR images and

the output of other GAN based models. This is due to its sole reliance on the MAE

loss which results in the perceived smoothness. We believe however, that this is also

what allows it to remove noise better than the other models which could explain why it

achieved the best scores on the ABIDE dataset.

The 3DRDN-WGAN model on the other hand, while having lower metric scores, pro-

duces output that is visually more similar to the ground truth than 3DRDN due to its

integration of the (perception-based) Wasserstein adversarial loss which helps it produce

74

6 Discussion

images that mimic the probability distribution of the trained dataset. Its output looks

more realistic and closer to that of the HR images when compared to the output of the

basic 3DRDN model and it does not suffer from the over-smoothness problem of the

3DRDN model as it manages to reproduce tissue body patterns that are extremely simi-

lar to those of the original HR images. The downside is that it fails to properly suppress

noise when compared to the 3DRDN model and as a result some artifacts sometimes

appear in its upscaled output.

The 3DRDN-CGAN is the most complex of all our models, which integrates supervised,

adversarial losses from the two previous models and also adds the cycle-consistency

and identity loss functions to its objective loss function. This allowed it to perform

significantly better than 3DRDN-WGAN as its optimization during adversarial training

was further simplified thanks to the constraints from the two new loss components.

Aside from having excellent metric evaluations, its visual output is also very similar

to the ground truth like that of the 3DRDN-WGAN but with less noise and artifacts.

Although its output is slightly more over-smoothed than 3DRDN-WGAN, it is not to

the same extent as with the 3DRDN model. Overall in our opinion, 3DRDN-CGAN

produces the best visual results.

3DRDN-UCGAN which relied on unpaired data and unsupervised learning performed

considerably worse than the rest of the models both in terms of metric evaluations and

very noticeably in terms of visual output quality. This can be attributed to its lack

of any supervised loss component as it instead tries to learn the mapping between the

overall probability distribution of the entire LR training set and the distribution of the

entire HR set instead of between two paired images. Since this task is much harder, the

model was harder to train and optimize its parameters and therefore performed poorly

compared to the others.

75

6 Discussion

6.3 Model Generalizability

The experiments also indicate that our models can generalize very well on unseen data

which we guaranteed by using validation data during training to be constantly on the

lookout in case overfitting occurs. Not only do the models generalize well on unseen

data from the same dataset from which it was trained but the experiments show that

even training on one dataset is enough for the models to also perform very well on a

different dataset that has substantial differences in various aspects such as resolution,

structure and quality.

This was demonstrated in one of the experiments where only the ABIDE dataset was

used for training and it allowed the 3DRDN model to also perform almost just as well

on the Mummy dataset. We attribute this to our utilization of very powerful data

augmentation methods thanks to the 3D nature of the data which allowed us to perform

3D rotations and the fact that we operate on randomly extracted patches rather than

the entire image during training which also counts as a form of data augmentation.

6.4 Upscaling with different factors

The experiments also prove that our architecture can be used without any modification

for training the models on different upscaling factors. In one experiment, we trained the

models for an upscaling factor of 4 on the ABIDE dataset. The results from table from

table 5.2 indicate that the performance of our models substantially surpasses that of the

baseline methods. From our models, 3DRDN-WGAN and 3DRDN-CGAN performed

visually the best.

76

6 Discussion

However, while the visual x4 upscaled output results of our models are also better than

those of the baseline methods, the fidelity of the output of our models are not as good as

with their output when upscaling by a factor of 2. This is natural as the LR images for

training the models on x4 upscaling are extremely deteriorated during the preprocessing

stages which makes it significantly more challenging for our models to upscale them back

to be similar to the original HR images. We did not train our models on x4 upscaling for

the Mummy dataset as it does not have enough data to properly optimize our models

for such a challenging task.

6.5 Supervised versus Unsupervised Learning

Another interesting experiment that we were able to perform is that of the compari-

son between training using supervised versus unsupervised learning. In our setup, the

3DRDN, 3DRDN-WGAN, 3DRDN-CGAN represent supervised learning that requires

paired data during training while 3DRDN-UCGAN represents unsupervised learning

that can be trained using unpaired data. The results indicate that for super-resolution,

supervised learning models perform substantially better on the super-resolution task.

Therefore, since obtaining paired training data for the super-resolution task is not un-

feasible, we do not recommend using the Cycle-GAN unsupervised method for super-

resolution tasks.

6.6 Best Model for Super-Resolution

Lastly, we would like to provide our opinion on which of the models we believe to be the

best for super resolution. The experiment results provide no clear cut superior model

77

6 Discussion

as the 3DRDN model has the best metric evaluations on the ABIDE dataset and also

visually minimizes noise the best while the 3DRDN-CGAN model has the best scores

on the Mummy dataset and produces output that is most similar to the ground truth

with minimum over-smoothness.

Accordingly, we believe that the medical or archaeological purpose of the scans, on which

super-resolution is performed, must be taken into account when deciding which model is

more suited. For example, if analyzing the patterns on the tissue bodies in the scan is a

critical part of its medical analysis then the 3DRDN-CGAN or 3DRDN-WGAN models

are more suited due to their accurate replication of the patterns of such tissues. On the

other hand, these patterns might in some cases be noise in the image whose removal

will ease its analysis and in such cases the 3DRDN model will produce the better results

as it can remove noise much better. In our opinion, such decisions are best taken by

domain experts such as doctors or radiologists.

78

7 Conclusion

In this thesis, we demonstrated our work in which we designed, developed and tested

novel neural network models for the task of superresolution on 3D image scans.

Our basic model is unique in that it utilizes both Residual and DenseNet connections in

its 3D based architecture. In our second model, we integrate it in a Wasserstein GAN

architecture to obtain output that is visually more similar to the ground truth. In our

third model, we further integrate it in a Cycle GAN architecture for visually similar

output with even less noise. The source code of our work implementation is released at

https://github.com/omagdy/3DRDN-CycleGAN.

To evaluate the capabilities of our models, we utilized two different datasets: one com-

posed of MRI scans and the other CT scans and used the datatasets for training our

models and comparing their performance with traditional super-resolution methods such

as Bicubic and Bilinear interpolation. Both the quantitative scores and visual compar-

isons demonstrate the superiority of our models in the task of super-resolution on both

MRI and CT scan data with the basic 3DRDN model obtaining the highest metric scores

for the ABIDE dataset and the 3DRDN-CGAN model obtaining the best scores for the

Mummy dataset.

79

https://github.com/omagdy/3DRDN-CycleGAN

7 Conclusion

This shows that our models can be utilized by radiologists, doctors and other medical

workers for enhancing image scans in terms of both upscaling and denoising.

7.1 Future Work Recommendations

Despite the excellent performance of our models, there are various ways in which their

performance could be further enhanced.

7.1.1 Data

First of all, using more CT scan data for training would greatly enhance the general-

izability of our models on upscaling 3D image scans created by CT devices. Moreover,

it would be even better to increase the variety of both MRI and CT data utilized for

training by obtaining images from different scanning machines, with different spatial

resolutions and different scanned body parts.

7.1.2 Preprocessing

In our work, to obtain LR image scans, we performed downscaling on HR images after

adding Gaussian noise to them to simulate the noise and artifacts that can appear during

CT/MRI scanning in real life. As suggested by [28], this might be too strict as in some

cases our models might have to upscale LR images that do not have noise. Thus, it is

preferable to modify the distribution of the Gaussian noise added throughout the training

data such that it resembles a normal distribution. [19] suggested an even superior idea

for MRI data which is performing their downscaling in the frequency domain by using

80

7 Conclusion

FFT to obtain decently looking LR images that better represent those obtained while

MRI scanning.

This is especially important for upscaling 3D images with a factor of 4 as our experiments

have shown that our current preprocessing methods deteriorate the images too much

when obtaining LR versions of them for training.

7.1.3 Objective Loss Function

Another enhancement, that has the potential to greatly improve the performance of our

models, is to replace the MAE loss component of their objective loss functions with the

more perception based loss of the Frechet Inception Distance (FID) which will make the

supervised component of the objective function better at forcing the model to produce

output that is visually even closer to the ground truth.

Lastly, even more experiments need to be performed with our models as they have

an extensive list of hyper-parameters that need to be carefully explored to reach their

optimum capabilities on the task of super-resolution. Also for x4 upscaling, more exper-

iments are needed with deeper versions of our models that have even more dense units,

dense blocks or growth rate k so that they can perform better even it makes them more

challenging to train or require more time for upscaling during operation time on the 3D

images.

81

A Additional Visual Results

A.1 ABIDE Dataset

(a) HR Image
PSNR/SSIM

(b) Nearest Neighbour
25.835/0.850

(c) Bicubic
22.912/0.870

(d) Lanczos
22.808/0.863

(e) 3DRDN
32.150/0.932

(f) 3DRDN-WGAN
31.696/0.905

(g) 3DRDN-UCGAN
31.779/0.916

(h) 3DRDN-CGAN
31.939/0.922

Figure A.1: Visual comparison of patches of an MRI image, from the ABIDE dataset,
that is upscaled with a factor of 2 using the baseline interpolation methods and our
models. Below each upscaled patch are its metric scores that compare how close it is to
the original HR image patch.

82

A Additional Visual Results

(a) Original HR Image
PSNR/SSIM

(b) Nearest Neighbour (NN)
29.419/0.410

(c) Bicubic
25.083/0.313

(d) Bilinear
25.910/0.444

(e) Lanczos
20.185/0.254

(f) 3DRLN
33.421/0.456

(g) 3DRLN-WGAN
34.111/0.653

(h) 3DRLN-UCGAN
29.347/0.305

(i) 3DRLN-CGAN
28.172/0.280

Figure A.2: Visual comparison of the (x2) upscaling performed on an entire MRI scan
from the ABIDE dataset using the baseline interpolation methods and our models. Below
each upscaled image are its metric scores that compare how close it is to the original
HR image. The red and blue patches are further highlighted in figure A.3 for a more
detailed comparison.

83

A Additional Visual Results

(a) Noisy LR Patch

(b) HR Patch

(c) NN (d) Bicubic (e) Bilinear (f) Lanczos

(g) 3DRLN (h) 3DRLN
WGAN

(i) 3DRLN
UCGAN

(j) 3DRLN
CGAN

(k) Noisy LR Patch

(l) HR Patch

(m) NN (n) Bicubic (o) Bilinear (p) Lanczos

(q) 3DRLN (r) 3DRLN
WGAN

(s) 3DRLN
UCGAN

(t) 3DRLN
CGAN

Figure A.3: Detailed visual comparison of the red and blue patches from the x2 upscaled
MRI scans in figure A.2

84

A Additional Visual Results

A.2 Mummy Dataset

(a) Original HR Image
PSNR/SSIM

(b) Nearest Neighbour (NN)
24.375/0.309

(c) Bicubic
20.387/0.250

(d) Bilinear
28.000/0.419

(e) Lanczos
16.647/0.195

(f) 3DRLN
35.773/0.832

(g) 3DRLN-WGAN
33.971/0.773

(h) 3DRLN-UCGAN
33.901/0.694

(i) 3DRLN-CGAN
35.573/0.872

Figure A.4: Visual comparison of the (x2) upscaling performed on part of the CT scan
from the Mummy dataset using the baseline interpolation methods and our models.
Below each upscaled image are its metric scores that compare how close it is to the
original HR image. The red and blue patches are further highlighted in figure A.5 for a
more detailed comparison.

85

A Additional Visual Results

(a) Noisy LR Patch

(b) HR Patch

(c) NN (d) Bicubic (e) Bilinear (f) Lanczos

(g) 3DRLN (h) 3DRLN
WGAN

(i) 3DRLN
UCGAN

(j) 3DRLN
CGAN

(k) Noisy LR Patch

(l) HR Patch

(m) NN (n) Bicubic (o) Bilinear (p) Lanczos

(q) 3DRLN (r) 3DRLN
WGAN

(s) 3DRLN
UCGAN

(t) 3DRLN
CGAN

Figure A.5: Detailed visual comparison of the red and blue patches from the x2 upscaled
CT scans in figure A.4

86

List of Figures

1.1 MRI Device and Scans . 2

1.2 CT Device and Scan . 3

3.1 Convolutional Layer Example . 17

3.2 Disjoint Probability Distributions . 29

3.3 Cycle-GAN Applications . 33

3.4 Cycle Consistency Loss . 35

3.5 Dense Block Example . 39

3.6 3DRDN Model Architecture . 42

3.7 3DRDN Dense Block Architecture . 43

3.8 3DRDN-WGAN Critic Architecture . 46

3.9 3DRDN-CGAN Training Framework . 53

4.1 Preprocessing Steps . 57

5.1 ABIDE Dataset x2 Upscaling . 64

5.2 ABIDE Dataset Patches x2 Upscaling . 65

5.3 ABIDE Dataset x2 Upscaled Volumes . 66

5.4 ABIDE Dataset x4 Upscaling . 67

5.5 ABIDE Dataset Patches x4 Upscaling . 68

87

List of Figures

5.6 Mummy Dataset x2 Upscaling . 70

5.7 Mummy Dataset Patches x2 Upscaling 71

5.8 Mummy Dataset x2 Upscaled Volumes 72

A.1 ABIDE Dataset Patches x2 Upscaling . 82

A.2 ABIDE Dataset x2 Upscaling . 83

A.3 ABIDE Dataset Patches x2 Upscaling . 84

A.4 Mummy Dataset x2 Upscaling . 85

A.5 Mummy Dataset Patches x2 Upscaling 86

88

List of Tables

5.1 ABIDE Data x2 Upscaling Metric Evaluations 62

5.2 ABIDE Data x4 Upscaling Metric Evaluations 63

5.3 Mummy Data x2 Upscaling Metric Evaluations 69

89

Bibliography

[1] Charles Patrick Davis. CT Scan vs. MRI Differences between Machines, Costs,

Uses. 2019. url: https://www.medicinenet.com/ct_scan_vs_mri/article.

htm.

[2] Thomas Angus, Imperial College London. fMRI. 2019. url: https://commons.

wikimedia.org/wiki/File:190603_Functional_magnetic_resonance_imaging_

at_the_Imperial_Centre_for_Psychedelic_Research.jpg.

[3] Nevit Dilmen. NPH MRI 032. 2005. url: https://commons.wikimedia.org/

wiki/File:NPH_MRI_032.png.

[4] Ranveig. MRI head side. 2005. url: https://commons.wikimedia.org/wiki/

File:MRI_head_side.jpg.

[5] Stephen Hughes. “CT scanning in archaeology.” In: Computed Tomography-Special

Applications/Ed. L. Saba. InTech Europe (2011), pp. 57–70.

[6] U.S. Navy photo by Mass Communication Specialist 3rd Class Samantha A. Lewis.

Peruvian child mummy CT scanning. 2011. url: https://commons.wikimedia.

org / wiki / File : US _ Navy _ 110427 - N - 2531L - 135 _ Tori _ Randall , _Ph . D .

_prepares_a_550-year_old_Peruvian_child_mummy_for_a_CT_scan.jpg.

90

https://www.medicinenet.com/ct_scan_vs_mri/article.htm
https://www.medicinenet.com/ct_scan_vs_mri/article.htm
https://commons.wikimedia.org/wiki/File:190603_Functional_magnetic_resonance_imaging_at_the_Imperial_Centre_for_Psychedelic_Research.jpg
https://commons.wikimedia.org/wiki/File:190603_Functional_magnetic_resonance_imaging_at_the_Imperial_Centre_for_Psychedelic_Research.jpg
https://commons.wikimedia.org/wiki/File:190603_Functional_magnetic_resonance_imaging_at_the_Imperial_Centre_for_Psychedelic_Research.jpg
https://commons.wikimedia.org/wiki/File:NPH_MRI_032.png
https://commons.wikimedia.org/wiki/File:NPH_MRI_032.png
https://commons.wikimedia.org/wiki/File:MRI_head_side.jpg
https://commons.wikimedia.org/wiki/File:MRI_head_side.jpg
https://commons.wikimedia.org/wiki/File:US_Navy_110427-N-2531L-135_Tori_Randall,_Ph.D._prepares_a_550-year_old_Peruvian_child_mummy_for_a_CT_scan.jpg
https://commons.wikimedia.org/wiki/File:US_Navy_110427-N-2531L-135_Tori_Randall,_Ph.D._prepares_a_550-year_old_Peruvian_child_mummy_for_a_CT_scan.jpg
https://commons.wikimedia.org/wiki/File:US_Navy_110427-N-2531L-135_Tori_Randall,_Ph.D._prepares_a_550-year_old_Peruvian_child_mummy_for_a_CT_scan.jpg

Bibliography

[7] U.S. Navy photo. Peruvian child mummy CT scan. 2005. url: https://commons.

wikimedia.org/wiki/File:US_Navy_110427-N-YY999-001_A_CT_scan_of_

a_Peruvian_mummy_taken_at_Naval_Medical_Center_San_Diego_provides_

details_of_the_muscular_and_skeletal_stru.jpg.

[8] Yvette Brazier. How does a CT or CAT scan work? 2018. url: https://www.

medicalnewstoday.com/articles/153201.

[9] Yukai Wang et al. “CT-image of rock samples super resolution using 3D convolu-

tional neural network.” In: Computers & Geosciences 133 (2019), p. 104314.

[10] Chao Dong et al. “Image super-resolution using deep convolutional networks.”

In: IEEE transactions on pattern analysis and machine intelligence 38.2 (2015),

pp. 295–307.

[11] Christian Ledig et al. “Photo-realistic single image super-resolution using a gen-

erative adversarial network.” In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2017, pp. 4681–4690.

[12] Umme Sara, Morium Akter, and Mohammad Shorif Uddin. “Image quality assess-

ment through FSIM, SSIM, MSE and PSNR—a comparative study.” In: Journal

of Computer and Communications 7.3 (2019), pp. 8–18.

[13] Zhou Wang et al. “Image quality assessment: from error visibility to structural

similarity.” In: IEEE transactions on image processing 13.4 (2004), pp. 600–612.

[14] Hamid R Sheikh, Alan C Bovik, and Gustavo De Veciana. “An information fidelity

criterion for image quality assessment using natural scene statistics.” In: IEEE

Transactions on image processing 14.12 (2005), pp. 2117–2128.

[15] Chih-Yuan Yang, Chao Ma, and Ming-Hsuan Yang. “Single-image super-resolution:

A benchmark.” In: European conference on computer vision. Springer. 2014, pp. 372–

386.

91

https://commons.wikimedia.org/wiki/File:US_Navy_110427-N-YY999-001_A_CT_scan_of_a_Peruvian_mummy_taken_at_Naval_Medical_Center_San_Diego_provides_details_of_the_muscular_and_skeletal_stru.jpg
https://commons.wikimedia.org/wiki/File:US_Navy_110427-N-YY999-001_A_CT_scan_of_a_Peruvian_mummy_taken_at_Naval_Medical_Center_San_Diego_provides_details_of_the_muscular_and_skeletal_stru.jpg
https://commons.wikimedia.org/wiki/File:US_Navy_110427-N-YY999-001_A_CT_scan_of_a_Peruvian_mummy_taken_at_Naval_Medical_Center_San_Diego_provides_details_of_the_muscular_and_skeletal_stru.jpg
https://commons.wikimedia.org/wiki/File:US_Navy_110427-N-YY999-001_A_CT_scan_of_a_Peruvian_mummy_taken_at_Naval_Medical_Center_San_Diego_provides_details_of_the_muscular_and_skeletal_stru.jpg
https://www.medicalnewstoday.com/articles/153201
https://www.medicalnewstoday.com/articles/153201

Bibliography

[16] Chao Dong, Chen Change Loy, and Xiaoou Tang. “Accelerating the super-resolution

convolutional neural network.” In: European conference on computer vision. Springer.

2016, pp. 391–407.

[17] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. “Accurate image super-resolution

using very deep convolutional networks.” In: Proceedings of the IEEE conference

on computer vision and pattern recognition. 2016, pp. 1646–1654.

[18] Chenyu You et al. “CT Super-resolution GAN Constrained by the Identical, Resid-

ual, and Cycle Learning Ensemble (GAN-CIRCLE).” In: IEEE Transactions on

Medical Imaging PP (June 2019), pp. 1–1. doi: 10.1109/TMI.2019.2922960.

[19] Yuhua Chen et al. “Brain MRI super resolution using 3D deep densely connected

neural networks.” In: 2018 IEEE 15th International Symposium on Biomedical

Imaging (ISBI 2018). IEEE. 2018, pp. 739–742.

[20] Ismail Mebsout. Convolutional Computation Example. 2020. url: https://miro.

medium.com/max/875/1*CKFWAxDyPKjJBzzQTKVqYw.png.

[21] Chi-Hieu Pham et al. “Brain MRI super-resolution using deep 3D convolutional

networks.” In: 2017 IEEE 14th International Symposium on Biomedical Imaging

(ISBI 2017). IEEE. 2017, pp. 197–200.

[22] Yuhua Chen et al. “Efficient and accurate MRI super-resolution using a generative

adversarial network and 3D multi-level densely connected network.” In: Interna-

tional Conference on Medical Image Computing and Computer-Assisted Interven-

tion. Springer. 2018, pp. 91–99.

[23] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein generative

adversarial networks.” In: International conference on machine learning. PMLR.

2017, pp. 214–223.

92

https://doi.org/10.1109/TMI.2019.2922960
https://miro.medium.com/max/875/1*CKFWAxDyPKjJBzzQTKVqYw.png
https://miro.medium.com/max/875/1*CKFWAxDyPKjJBzzQTKVqYw.png

Bibliography

[24] Ishaan Gulrajani et al. “Improved training of wasserstein gans.” In: arXiv preprint

arXiv:1704.00028 (2017).

[25] Jun-Yan Zhu et al. “Unpaired image-to-image translation using cycle-consistent

adversarial networks.” In: Proceedings of the IEEE international conference on

computer vision. 2017, pp. 2223–2232.

[26] Gao Huang et al. “Densely connected convolutional networks.” In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2017, pp. 4700–

4708.

[27] Kaiming He et al. “Deep residual learning for image recognition.” In: Proceedings

of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–

778.

[28] Mariana-Iuliana Georgescu, Radu Tudor Ionescu, and Nicolae Verga. “Convolu-

tional Neural Networks with Intermediate Loss for 3D Super-Resolution of CT

and MRI Scans.” In: IEEE Access 8 (2020), pp. 49112–49124.

93

	Introduction
	Motivation
	Contribution
	Outline

	Literature Review
	2D Super Resolution
	Super Resolution on 3D Voxel Images

	Methods
	Super Resolution Problem Statement
	Convolutional Layers
	3D versus 2D models
	Super Resolution Implementation Design
	Generative Adversarial Networks
	Standard GAN
	Comparing probability distributions
	Wasserstein GAN with gradient penalty
	Cycle GAN

	Skip Connections
	DenseNet Connections
	Residual Connection

	Network Architecture
	3DRDN
	3DRDN-WGAN
	3DRDN-CGAN

	Objective Loss Function
	3DRDN
	3DRDN-WGAN
	3DRDN-CGAN

	Experiments
	Datasets
	Preprocessing
	Training Settings
	Evaluation
	PSNR
	SSIM

	Results
	ABIDE Dataset
	Mummy Dataset

	Discussion
	Dataset Comparison
	Model Assessments
	Model Generalizability
	Upscaling with different factors
	Supervised versus Unsupervised Learning
	Best Model for Super-Resolution

	Conclusion
	Future Work Recommendations
	Data
	Preprocessing
	Objective Loss Function

	Appendix Additional Visual Results
	ABIDE Dataset
	Mummy Dataset

	Bibliography

