
miriam marx

N U M E R I C A L M E T H O D S F O R D E F L E C T O M E T RY

N U M E R I C A L M E T H O D S F O R
D E F L E C T O M E T RY

miriam marx

Master Thesis

Chair of Digital Image Processing
Computer Science

University of Passau

Professor: Prof. Dr. Tomas Sauer
October 2017

Miriam Marx: Numerical Methods for Deflectometry, © October 2017

A B S T R A C T

Deflectometry is attracting increasing interest during the fabrication
of cars. In the course of this, it is used to detect automatically if there
is any kind of error on a reflexive surface, e.g., in the car finish or on
glass. To improve the accuracy, it is important to solve the problem
of backside reflection. The backside reflection occurs on glass, when
only parts of the incoming rays are reflected right on top of the sur-
face. The remaining rays can enter the surface and are reflected on
it’s back side. The camera, which monitors the reflected rays, can not
differentiate between the different kinds of reflection, because they
overlay each other. To provide a precise result of the deflectometry it
is crucial to determine which part belongs to the front- or backside
reflection.

This master thesis focuses on solving the problem of backside re-
flection and provides two different approaches. The first approach
creates a system of equations using exactly three measurements.

As opposed to this, the second approach is based on Prony’s method
and allows an arbitrary number of samples, but at least four samples
are required. This arbitrary number of samples is especially a big ad-
vantage if the data contains noise. In this case, the number of samples
is increased to provide a more accurate result.

In summary, we were able to solve the problem of backside reflec-
tion using Prony’s method. If no noise is present both approaches per-
form almost the same and are able to decompose the measurements
sufficiently. However, if the measurements contain noise the second
approach outperforms the first one and provides a much more ac-
curate decomposition. The first approach is not able to handle noise
sufficiently.

v

A C K N O W L E D G M E N T S

I would like to thank my friends, family and especially my boyfriend
for supporting me during the whole time of my master thesis and
for reading the thesis. Furthermore, I would like to thank Prof. Dr.
Tomas Sauer, Dr. Alexander Zimmermann and Florian Waschbichler
for their professional advises.

vii

C O N T E N T S

i overview 1

1 introduction 2

1.1 Task of this Master Thesis 2

1.2 Structure of this Master Thesis 3

2 theoretical background 4

2.1 Deflectometry . 4

2.2 Phase Measuring Deflectometry 4

ii first approach using a system of equations 7

3 mathematical background 8

3.1 Information from the Recording 8

3.2 Calculation of a,b and ξ 9

3.3 Determination of α and β 10

3.3.1 Determining a formula for γ 10

3.3.2 Calculation of possible αs and βs 12

3.3.3 Choosing the correct αs and βs 12

4 implementation 14

4.1 Generation of test images 14

4.2 Further functionality . 15

4.2.1 The class of safe mathematical functions 15

4.2.2 The class of error exports 16

4.2.3 The class of image handling 18

4.3 Backside Reflection by using test images 18

4.4 Modifications to handle noise 22

4.5 Modifications to handle quadratic functions 24

4.6 Evaluation . 25

iii prony’s method 26

5 theortical background of prony’s method 27

5.1 Classical Prony Method 28

5.1.1 Eigenvalue Problem 29

5.2 ESPRIT Method . 30

5.3 Matrix Pencil Method 31

6 implementation of prony’s method 33

6.1 Generation of Test-Data 33

6.1.1 Equispaced Sampling 33

6.1.2 Randomly-spaced Sampling 34

6.1.3 Equispaced-Sampling with two Points converging 34

6.1.4 Sampling with convergent distances 35

6.1.5 Sampling by randomly determining µ and f . . 36

6.2 Implementation of Prony Algorithms 37

6.2.1 Classical Prony Algorithm 37

ix

x contents

6.2.2 Estimation of Signal Parameters via rotation in-
variance Techniques (ESPRIT) Method 38

6.2.3 Matrix Pencil Method 39

6.2.4 Reducing of the resulting coefficients 40

6.2.5 Classical Prony Algorithm with a stepwise Re-
duction of the Hankel Matrix 41

6.3 Evaluation . 42

6.3.1 Accuracy depending on Sampling 42

7 denoising 45

7.1 Denoising by Averaging the Prony Polynomial 45

7.2 Denoising by Stacking Hankel Sub-Matrices 47

7.3 Comparison . 48

8 solving the backside reflection by using prony’s
method 50

8.0.1 Switching order of f and µ and setting β to zero
using the left Neighbor 52

8.0.2 Using the TV-norm for Replacing 53

8.1 Handling Noise . 54

8.2 Evaluation . 55

8.2.1 Evaluation of generated basic Images 55

8.2.2 Evaluation of generated Images containing dif-
ferent Kinds of Reflection 57

8.2.3 Evaluation of real Images 60

iv conclusions 62

9 conclusion 63

10 future work 64

v appendix 65

a appendix 66

bibliography 67

L I S T O F F I G U R E S

Figure 1 Scheme of Deflectometry[6]. 4

Figure 2 Scheme of PMD [2]. 5

Figure 3 Reconstructed images of α (left side) and β

(right side). The lower images are reconstructed
from noisy input data. 25

Figure 4 This figure shows the two samplings of the
classical stepwise approach, which do not have
a perfect reconstruction of the original func-
tion. The red line is the original function and
the blue line is the calculated approximation.
The left image shows the sampling with two
converging points and the right image sam-
pling with an overall convergence. 43

Figure 5 This figure shows the two samplings of the
matrix pencil method, which do not have a
perfect reconstruction of the original function.
The left image shows random sampling and
the right image shows sampling with two point
converging. 43

Figure 6 This figure contains three graphs. In general,
the red line is the original function and the
blue line is the calculated reconstructed. The
first graph shows the classical Prony algorithm
without handling noise explicitly. The second
graph shows the denoising by determining the
average Prony polynomial and the third graph
shows the denoising by stacking the sub-Hankel
matrices on top of each other. 49

Figure 7 Reconstructed images of α (left side) and β

(right side) with maximal wavelength and 4

samples (without noise). 56

Figure 8 Reconstructed images of 4, 6, 8 or 10 samples
(4 samples are in the first row until 10 sam-
ples are in the last row) containing noise. On
the left side the reconstruction of α and on the
right side the reconstruction of β is displayed. 57

Figure 9 Reconstructed images of α (left side) and β

(right side) with maximal wavelength and 4

samples (without noise). 58

xi

Figure 10 Reconstructed images of 4, 6, 8 or 10 samples
(4 samples are in the first row until 10 sam-
ples are in the last row) containing noise. On
the left side the reconstruction of α and on the
right side the reconstruction of β is displayed. 59

Figure 11 Reconstructed images of 4, 6, 8 or 10 samples
(4 samples are in the first row until 10 samples
are in the last row) of real data. On the left
side the reconstruction of α and on the right
side the reconstruction of β is displayed. . . . 61

L I S T O F TA B L E S

Table 1 Comparison of the different algorithms and sam-
pling of functions 44

Table 2 Comparison of the reduced Prony method with
samples generated from random µ and f . . . 44

Table 3 Number of errors in reconstruction (400× 300
pixels) . 56

Table 4 Number of errors in reconstruction (containing
areas without reflection and with only frontside
reflection on an image with 400× 300 pixels) . 58

Table 5 Comparison of the error in Algorithm 7.1.1 and
7.2.1 . 66

L I S T I N G S

Listing 1 Constructor of the example function. 14

Listing 2 Constructor with phases and amplitudes as only
parameters. 17

Listing 3 Constructor with all backup images as param-
eters. 17

Listing 4 Type signatur of the method for adding errors
to the error export. 18

Listing 5 Matlab function to generate equispaced samples. 33

Listing 6 Matlab function to generate randomly-spaced
samples. 34

Listing 7 Matlab function to generate samples with two
point converging to each other. 34

xii

Listing 8 Matlab function to generate samples with a
stepsize converging to zero. 35

Listing 9 Matlab function to generate samples with a
stepsize by randomly chosen µ and f. 36

Listing 10 Matlab function using the classical Prony method. 37

Listing 11 Matlab function to calculate the companion ma-
trix. 38

Listing 12 Matlab function to calculate the Vandermonde
matrix. 38

Listing 13 Matlab function using the ESPRIT method. . . . 39

Listing 14 Matlab function using the matrix pencil method. 39

Listing 15 Matlab function to reduce f and µ. 40

Listing 16 Matlab function to use a stepwise reduction of
the Hankel matrix during the classical Prony
method. 41

Listing 17 Matlab function to minimize the Hankel matrix. 42

Listing 18 Matlab function to determine the avery p over
all sub-Hankel matrices. 46

Listing 19 Matlab function to determine the rank and the
Prony polynomial p by minimizing the Hankel
matrix for input data containing noise. 46

Listing 20 Matlab function to determine p and r by stack-
ing the sub-Hankel matrices. 48

Listing 21 Matlab function to stack sub-matrices on top
of each other. 48

A C R O N Y M S

PMD Phase Measuring Deflectometry

ESPRIT Estimation of Signal Parameters via rotation invariance
Techniques

SVD Singular Value Decomposition

TV Total Variation

GPU Graphical Processing Unit

xiii

Part I

O V E RV I E W

1
I N T R O D U C T I O N

When we purchase a brand-new car we expect it to be delivered with-
out any defects. Beside functional abilities, this also applies for its
appearance. For example, there should not be a scratch in the finish
or glass, which is used for the windows or spotlights. However, dur-
ing the fabrication of cars many steps are automated using different
machines, but even those can make mistakes. To determine if a ma-
chine made a mistake regarding the appearance of a car specialized
employees have been used to inspect the car for any optical error up
to now. However, humans are not able to provide a constant high
standard of error detection, because their performance differs due to
personal factors like concentration. Hence, it is necessary to provide
an error detection system which can guarantee an overall high accu-
racy.

A commonly used method for automated detection of geometrical
errors on reflexive surfaces is deflectometry. Here, a visual signal is
emitted from a screen and reflected from the surface. Those reflec-
tions are recorded by cameras and used to locate the error [6]. Hence,
this method attracts increasing interest for the fabrication of cars.

However, glass mostly consists of a reflexive surface, but is also
permeable for light rays. Usually, if a light ray is reflected on a re-
flexive surface, the reflection only occurs directly on top of a surface.
Hence, we call this kind of reflection frontside reflection. However,
this is not the only type of reflection which can occur on glass. It
is also possible for rays to enter the surface and be reflected on its
backside. In this case, it is not possible to differentiate between the
different reflections because the rays, which are emitted with differ-
ent angles, overlay each other. That problem is known as backside
reflection. This overlay of multiple angles can compromise the result
of deflectometry. Hence, it is crucial for a productive usage to develop
a method for splitting up these two different kinds of reflections.

1.1 task of this master thesis

Until now, it is not possible to differentiate between the different re-
flections from the front- and backside. Hence, this master thesis aims
to find a solution for backside reflection by splitting up the overlap-
ping reflections algorithmically into its front- and backside. In order
to do so, it is crucial to apply the developed algorithms to different

2

1.2 structure of this master thesis 3

kinds of input data to simulate real-world conditions, e.g., by adding
different levels of noise.

Finally, we want to determine, whether it is possible to use our pro-
posed procedure for productive usage during the fabrication of cars.

1.2 structure of this master thesis

This master thesis is divided into four main parts. The first part
gives an overview on the topic and introduces some theoretical back-
ground regarding deflectometry. The second part consists of the first
approach which was applied to solve the backside reflection. Its the-
ory was mainly developed by Alexander Zimmermann from FOR-
WISS [10]. The approach is based on the idea to create a system of
equations for a fixed set of three measurements. This system provides
a solution for our problem. However, exactly three measurements lim-
its the accuracy, because we believe more measurements provide bet-
ter results especially when the data is noisy. This leads to part three
describing the second approach. The second approach takes usage of
an arbitrary number of measurements to improve the accuracy explic-
itly if noise is contained. This approach is based on Prony’s method
and aims to reconstruct the front- and backside reflection from the
overlapping measurements. The last part evaluates the different re-
sults and provides a final statement regarding improvements.

2
T H E O R E T I C A L B A C K G R O U N D

This chapter will introduce some theoretical background regarding
deflectometry.

2.1 deflectometry

Deflectometry is a common method to determine geometrical errors
on reflecting surfaces. It basically determines the gradient of the sur-
face which is to be inspected. In doing so, the monitor in Figure 1

shows a predefined pattern. This pattern will be reflected at the sur-
face and the distorted pattern will be recorded by the camera. With
different decoding mechanisms it is possible to create a mapping Î
between a certain pixel on the monitor and the camera. This informa-
tion can be used to describe the reflecting surface [6].

Figure 1: Scheme of Deflectometry[6].

2.2 phase measuring deflectometry

In the following, we will have a look at the Phase Measuring Deflec-
tometry (PMD) which is a specialization of the deflectometry. Here, a
screen emits sinusoidal fringe pattern which will be reflected by the
surface. If there is any variation in the gradient of the surface, the pat-
tern, which will be monitored by the camera, will be distorted. These
distortions can be determined using different phase-shift algorithms.
Figure 2 shows a scheme of this method [2].

4

2.2 phase measuring deflectometry 5

The PMD is also applied in our special use case. Hence, we will only
talk about the PMD in the following.

Figure 2: Scheme of PMD [2].

Part II

F I R S T A P P R O A C H U S I N G A S Y S T E M O F
E Q U AT I O N S

3
M AT H E M AT I C A L B A C K G R O U N D

This chapter will introduce the mathematical background, which is
used to solve the problem of backside reflection by creating a sys-
tem of equations. The proposed procedure was mainly developed by
Alexander Zimmermann from FORWISS [10].

All angles, which are handled in the following, are elements of the
torus T = R/2πZ.

3.1 information from the recording

During deflectometry a sinusoidal fringe pattern is displayed on a
monitor. This monitor is moved over the reflecting car finish to mon-
itor the reflection by a camera. The monitoring contains only the am-
plitudes cj and phases γj for j ∈ {1, 2, 3}. j was chosen to be in {1, 2, 3},
because three measurements allow to create a system of equations
of degree 2

1, which is relatively easy to solve. One measurement con-
sists of one phase and one amplitude coming from one specific wave-
length. In order to provide multiple measurements the wavelengths
are altered.

In general, for n ∈ N measurements of the same spot with exactly
one backside reflection, the following relation holds:

cj · sin(x+ γj) = a · sin(x+αj) + b · sin(x+βj) (1)

with

cj =
√
a2 + b2 + 2 · a · b · cos(αj −βj) (2)

and a,b, cj,αj,βj,γj ∈ R.

Hence, it is required to

1. calculate a,b and ξj = αj −βj from formula (2) and

2. to calculate the values of αj and βj from formula (1).

The sinusoidal functions, which will be used for our measurements,
only differ in their wavelengths λj by

λ1
λj

= j for j = 2, 3. (3)

1 see formula (11)

8

3.2 calculation of a , b and ξ 9

These wavelengths are used to calculate

αj =
2πjfx

λ1
or αj =

2πfx

λj
(4)

and

βj =
2πjfy

λ1
or βj =

2πfy

λj
(5)

with fx and fy are function values in the x or y coordinate. The
calculation of these function values is explained in section 4.1.

Moreover, formula (4) and (5) fulfill

αj ≡ j ·α1 mod 2π and βj ≡ j ·β1 mod 2π (6)

with j = 2, 3.

From this, a relation for ξj = αj −βj can be derived:

ξj ≡ i · ξ1 mod 2π with j = 2, 3. (7)

Using formula (7) and the double/triple angle formulae, we get:

cos(2ξ) = 2 · cos2(ξ) − 1 (8)

and

cos(3ξ) = 4 · cos3(ξ) − 3 · cos(ξ). (9)

3.2 calculation of a , b and ξ

Before we can determine α and β, we have to determine a, b and ξ
first.

Therefore, we will use

cos(ξj) = tj (10)

and create the system of equations with formula (2), (8) and (9):

c21 = a2 + b2 + 2 a b t1

c22 = a2 + b2 + 2 a b (2 t21 − 1) (11)

c23 = a2 + b2 + 2 a b (4 t31 − 3 t1)

to determine the three unknowns a , b and t1 .

If c21 6= c22 and t1 6= − 12 and t1 6= 1 then the difference of the
third and second equation can be divided by the difference of the

10 mathematical background

second and first equation. In this case, we get a quadratic equation of
the unknown t1 :

c23 − c
2
2

c22 − c
2
1

=
4t31 − 2t

2
1 + 3t1 + 1

2t21 − t1 − 1

⇔
c23 − c

2
2

c22 − c
2
1

=
(4 t21 + 2 t1 − 1) · (t1 − 1)

(2 t1 + 1) · (t − 1)

⇔
c23 − c

2
2

c22 − c
2
1

(2 t1 + 1) = 4 t21 + 2 t1 − 1 (12)

c̃=
c2
3
−c2
2

c2
2
−c2
1⇔ 2 · c̃ · t1 + c̃ = 4 t21 + 2 t1 − 1

4t21 + 2t1(1 − c̃) − (1 + c̃) = 0 . (13)

Solving this quadratic equation leads to two possible solutions for
t1, depending on a and b. If

a > b > 0 (14)

then the correct t1 is found.

If c21 = c
2
2 then 2 ab (2 t21− t1− 1) = 0. This leads to b = 0 or t1 = 1

or t1 = −12 . If b = 0 or t1 = 1 then c21 = c23, which means there is no
backside reflection or the front- and backside reflections are identical.

If t1 = −12 then there is a reduced quadratic equation:

c21 = a
2 + b2 − ab c23 = a

2 + b2 + 2 ab = (a+ b)2, (15)

which can be again solved by condition (14).

In general, it is only possible to determine the cosine t1 = cos(ξ1).
Hence, the solution is not unique, which means beside (a,b, ξ1) (the
solution of the original deflectometric problem) also (a,b,−ξ1),
(b,a,±ξ1), (−a,−b,±ξ1) and (−b,−a,±ξ1) are possible solutions.

It is not possible to erase this ambiguousness by an increasing num-
ber of measurements, because the equations will always depend on
cos(ξ1).

3.3 determination of α and β

Until now, we determined t1 = cos(ξ1), a and b using the am-
plitudes c1 , c2 and c3 . The next step, consists of using the phases
γ1 , γ2 and γ3 to calculate possible solutions for α and β.

3.3.1 Determining a formula for γ

Now, we want to directly link the provided γ to α and β to derive a
formula which determines α and β.

3.3 determination of α and β 11

The theorem of addition for the sine function

sin(x + y) = sin(x) cos(y) + cos(x) sin(y) (16)

and the representation in polar-coordinates

(uv) =
√
u2 + v2 ·

(
cos(arctan(vu))
sin(arctan(vu))

)
(17)

leads to

u · sin(x) + v · cos(x)
(17)
=

√
u2 + v2 · cos

(
arctan

(v
u

))
· sin(x)

+
√
u2 + v2 · sin

(
arctan

(v
u

))
· cos(x)

=
√
u2 + v2(cos

(
arctan

(v
u

))
· sin(x)

+ sin
(

arctan
(v
u

))
· cos(x))

=
√
u2 + v2 · sin

(
x+ arctan

(v
u

))
.

With this, we get

a · sin(x+α) + b · sin(x+β) =

(16)
= a · (sin(x) · cos(α) + cos(x) · sin(α))

+b (sin(x) · cos(β) + cos(x) · sin(β))

= (a · cos(α) + b · cos(β)) · sin(x)

+ (a · sin(α) + b · sin(β)) · cos(x)
(17)
=

√
(a · cos(α) + b · cos(β))2 + (a · sin(α) + b · sin(β))2

· sin
(
x+ arctan

(
a · sin(α) + b · sin(β)
a · cos(α) + b · cos(β)

))
=

√
a2 + b2 + 2 · a · b · cos(α−β)

· sin
(
x+ arctan

(
a · sin(α) + b · sin(β)
a · cos(α) + b · cos(β)

))
(18)

Formula (1) and (2) make it now possible to conclude

γj = arctan
(
a · sin(αj) + b · sin(βj)
a · cos(αj) + b · cos(βj)

)
(19)

⇔ tan(γj) =
a · sin(αj) + b · sin(βj)
a · cos(αj) + b · cos(βj)

⇔
sin(γj)
cos(γj)

=
a · sin(αj) + b · sin(βj)
a · cos(αj) + b · cos(βj)

. (20)

Now, we have derived a direct correlation between γ and α and β,
which will be used in the following.

12 mathematical background

3.3.2 Calculation of possible αs and βs

With the previously determined formula (19) for γ and its reformula-
tion (20) it is possible to create the following system of equations

fj · sin(γj) = a · sin(αj) + b · sin(βj)

fj · cos(γj) = a · cos(αj) + b · cos(βj) (21)

ξj = αj −βj.

This system consists of the three unknowns αj,βj and a factor fj. To
solve this system the addition theorems of sine and cosine are used
in the first step.

fj · cos(γj)
βj=αj−ξj

= (a+ b · cos(ξj)) · cos(αj)

+b · sin(ξj) · sin(αj)

fj · sin(γj)
βj=αj−ξj

= −b · sin(ξj) · cos(αj)

+(a+ b · cos(ξj)) · sin(αj)

⇐⇒
fj ·
(

cos(γj)
sin(γj)

)
=

(
a+b cos(ξj) b sin(ξj)
−b sin(ξj) a+b cos(ξj)

)(
cos(αj)
sin(αj)

)
tj=cos(ξj)⇐⇒

fj ·
(

cos(γj)
sin(γj)

)
=

(
a+btj ±b

√
1−t2j

∓b
√
1−t2j a+btj

)
︸ ︷︷ ︸

Mtj

(
cos(αj)
sin(βj)

)
(22)

⇐⇒
1

fj
·
(

cos(αj)
sin(αj)

)
= M−1

tj

(
cos(γj)
sin(γj)

)
=

1

det(Mtj)
·MT

tj
·
(

cos(γj)
sin(γj)

)
︸ ︷︷ ︸

z
⇐⇒

αj = arctan

(
z2
z1

)
(23)

with M−1
tj

=
MT
tj

det(Mtj)
and MT

tj
=M−tj .

Now, this formula gives an explicit definition of α depending on γ, a,
b and ξ.

3.3.3 Choosing the correct αs and βs

Until now, we determined a formula for α, which only depends on
t = cos(ξ). However, it has to be taken into account that cosine is
an even function, which means cos(ξ) = cos(−ξ). Hence there are
always two possible solutions for every ξ:

3.3 determination of α and β 13

a) ξ1 = ± arccos(t1) with t1 = t
(

cos(ξ1)
sin(ξ1)

)
=
(

t1

±
√
1−t21

)
b) ξ2 = ± arccos(t2) with t2 = 2 t2 − 1

(
cos(ξ2)
sin(ξ2)

)
=
(

t2

±
√
1−t22

)
c) ξ3 = ± arccos(t3) with t3 = 4 t3 − 3 t

(
cos(ξ3)
sin(ξ3)

)
=
(

t3

±
√
1−t23

)
.

We choose

Mtj =

(
a+btj b

√
1−t2j

−b
√
1−t2j a+btj

)
for i = 1, 2, 3. (24)

The ambiguity in the sign of b
√
1− t21 in formula (22) is covered by

Mtj in formula (27) and by its transposition in formula (25).
Now, it is possible to calculate two candidates for each α and β

using

α
(1)
j = arctan(z2, z1) with z =MT

tj

(
cos(γj)
sin(γj)

)
(25)

β
(1)
j = α

(1)
j − arctan

(√
1− t2j , tj

)
(26)

α
(2)
j = arctan(z2, z1) with z =Mtj

(
cos(γj)
sin(γj)

)
(27)

β
(2)
j = α

(2)
j + arctan

(√
1− t2j , tj

)
. (28)

This leads to 8 possible solutions for α and β:

1. α = (α11,α12,α13), β = (β11,β12,β13)

2. α = (α11,α12,α23), β = (β11,β12,β23)

3. α = (α11,α22,α13), β = (β11,β22,β13)

4. α = (α11,α22,α23), β = (β11,β22,β23)

5. α = (α21,α12,α13), β = (β21,β12,β13)

6. α = (α21,α12,α23), β = (β21,β12,β23)

7. α = (α21,α22,α13), β = (β21,β22,β13)

8. α = (α21,α22,α23), β = (β21,β22,β23).

To determine which of these solutions is the correct one, formula
(6) will be used. The correct solution fulfills the relation in formula
(6) best.

4
I M P L E M E N TAT I O N

The following sections describe the C++ code which is used to im-
plement the theory of the previous chapter. In doing so, also special
libraries provided by FORWISS have been used.

4.1 generation of test images

In the beginning, we wanted to test our algorithm on perfect test im-
ages to verify the correctness of the algorithm. Hence, this chapter
describes the generation of these images.

Right now, we provide two kinds of test-images - linear and quadratic
ones, which means that images are computed using functions of de-
gree one or two. The source code of this procedure can be found in
CExampleFuncQuadratic.h and CExampleFuncQuadratic.cpp. The linear
functions are used to simulate use cases, where no error appears on
the surface. The quadratic functions are used to simulate errors in the
surface. These functions are used the following way:

• Every generation requires two functions (one function handles
the x-part and the other the y-part). The constructor of these
function is shown in Listing 1 and requires:

– A constant value a, which will not be modified.

– Three values coeff00,coeff01 and coeff02 as coefficients to
calculate the function values

f = v2 · x2 + v1 · x+ v0

• The type of the two functions is defined using template param-
eters. Thereby, it is easier to enhance the image generation by
additional functions.

Listing 1: Constructor of the example function.

CExampleFuncQuadratic(double a,double coeff02, double coeff01,

double coeff00);

Now, the entire image-generation looks like the following and is
implemented in CImageGenerator.h and CImageGenerator.cpp:

• Input: an image size, a maximum wavelength ωmax, and noise
values for the phase and amplitude (but they can be zero as
well, if the noise is not wanted)

14

4.2 further functionality 15

• In general, three different images will be computed (for the max-
imum wavelength ωmax, ωmax/2 and ωmax/3).

• For each pixel the following values are calculated:

– a = constant input value of the example functions depend-
ing on x

– b = constant input value of the example functions depend-
ing on y

– α = 2·π
ω · exampleFuncX (using the linear or quadratic func-

tion)

– β = 2·π
ω · exampleFuncY (using the linear or quadratic func-

tion)

– Temporary values for further calculations:

tmpX = a · cos(α) + b · cos(β)

tmpY = a · sin(α) + b · sin(β)

tmpAmplitude = hypot(tmpX, tmpY)

With hypot(a,b) =
√
a2 + b2.

– amplitude = tmpAmplitude+ noiseForAmplitude (the
noise can be 0)

– phase = shiftAngleToPi(atan2(tmpY, tmpX)
+noiseForPhase) (the noise can be 0 and for shiftAngleToPi
compare chapter 4.2.1)

• Output:

– Backup values for α1,α2,α3,β1,β2,β3.

– Phase and amplitude for each wavelength.

The phases and amplitudes represent the measured data and
are used as only input to the algorithm, which reconstructs the
two angles α and β. The Backup values for α1−3 and β1−3 rep-
resent the ground truth and are only used to verify the accuracy
of the proposed reconstruction algorithm.

4.2 further functionality

This chapter summarizes further functionality that is used for basic
calculations or to validate the calculation results.

4.2.1 The class of safe mathematical functions

During the calculations, we had to handle numerical inaccuracies.
Therefore, some own implementations of common mathematical func-
tions have been provided to handle these edge cases:

16 implementation

• safeAcos(x): Problems occur, if x is slightly bigger than 1 or
slightly smaller than −1. In these cases we return acos(1) or
acos(−1).

• safeSqrt(x): Problems occur, if x is pretty close to zero, but
slightly negative. In these cases we return 0.

• shiftAngleToPi(x): This method shifts an input angle x to the
torus [−π,π).

• modulo2Pi(x): In general it calculates the minimum of {r, 2π−
r} with r is the rest of x divided by 2π.

• moduloPi(x): It does the same asmodulo2Pi(x), but instead 2π
it uses just π.

The source code of this functionality is provided in CSafeMathFunc-
tions.h and CSafeMathFunctions.cpp.

4.2.2 The class of error exports

To validate the source code, regarding functionality and correctness,
we have created the class CErrorExport to compare images which have
been calculated during the backside reflection against the previously
generated images. If the images differ in some points, the class adds
this error-case to a csv-file, containing every possible intermediate
result to track the source of the error. Therefore, the instance requires
knowledge about the backup images, which can be provided by three
different constructors:

• The empty constructor CErrorExport::CErrorExport() disables
an error export.

• The constructor in Listing 2 requires the following parameters:

– std::string path specifies the export path for the finally
generated error file. This path is also used to load the
backup images of the αs and βs automatically.

– double limit specifies an approximate value for zero, e.g.,
if the difference of two values is smaller than this limit

these two values will be considered as equal.

– All images of the phase and amplitude to provide all inter-
mediate values.

• The constructor in Listing 3 uses the same parameters as the
previous constructor. Additionally, it uses all images of the αs
and βs directly, which is required if they are not stored in the
same directory defined by path.

4.2 further functionality 17

Listing 2: Constructor with phases and amplitudes as only parameters.

CErrorExport::CErrorExport(std::string path, double limit,

gray_image_c<double>* phase1,

gray_image_c<double>* phase2,

gray_image_c<double>* phase3,

gray_image_c<double>* amplitude1,

gray_image_c<double>* amplitude2,

gray_image_c<double>* amplitude3)

Listing 3: Constructor with all backup images as parameters.

CErrorExport::CErrorExport(std::string path, double limit,

gray_image_c<double>* alpha1,

gray_image_c<double>* alpha2,

gray_image_c<double>* alpha3,

gray_image_c<double>* beta1,

gray_image_c<double>* beta2,

gray_image_c<double>* beta3,

gray_image_c<double>* phase1,

gray_image_c<double>* phase2,

gray_image_c<double>* phase3,

gray_image_c<double>* amplitude1,

gray_image_c<double>* amplitude2,

gray_image_c<double>* amplitude3)

Afterwards, in every iteration over the pixels, the error file is filled
by calling the method addError(...) from Listing 4. This method
checks if an error occurs and in this case adds the error to the out-
put. The method requires the following parameters:

• An enum ErrorType to specify the type of errors, which will be
examined. The following error types are currently available:

– ALL_ERRORS: every error (all errors in αs, βs and ts)

– ALL_ERRORS_A_B: all errors in αs, βs

– ALL_ERRORS_A: all errors in αs

– ALL_ERRORS_B: all errors in βs

– ALL_ERRORS_A1_B1: all errors in α1 and β1

– ALL_ERRORS_A2_B2: all errors in α2 and β2

– ALL_ERRORS_A3_B3: all errors in α3 and β3

– ALL_ERRORS_T: all errors in ts

– EVERYLINE: every pixel (no matter if there is an error or not)

• A bool furtherCondition to specify further conditions, which
have to be fulfilled. Otherwise the error will not be exported.
This can be handy if only special pixel ranges in the image are
of further interest.

18 implementation

• int i,int j to specify the current pixel.

• double a,double b to specify the values of a and b.

• All possible values of α1 double alpha11,double alpha12 and the
chosen α1 double alpha1. The same applies to all remaining val-
ues of α and β.

• All values of t and ξ.

Listing 4: Type signatur of the method for adding errors to the error export.

void CErrorExport::addError(ErrorType errorType, bool

furtherCondition,

int i,int j,double a, double b,

double alpha11,double alpha12,double alpha1,

double alpha21,double alpha22,double alpha2,

double alpha31,double alpha32,double alpha3,

double beta11,double beta12,double beta1,

double beta21,double beta22,double beta2,

double beta31,double beta32,double beta3,

double t,double t2,double t3,

double ksi2,double ksi3)

4.2.3 The class of image handling

The class CImageHandling was created to provide general methods to
import and export ".big" image files.

4.3 backside reflection by using test images

This chapter describes the applied algorithm to split up the measured
angle ξ into the two angles α and β. The source code can be found in
backside.h and backside.cpp.

The following calculations are done for every pixel and take the
amplitudes c1, c2, c3 and phases γ1,γ2,γ3 as input parameters. There
are three versions of the amplitude and phase, because of the three
different wavelength from the image generation process.

Right now only calculations for linear example functions are taken
into account.

The calculations rely on the following relations and requirements:
For every j = 2, 3:

ξj ≡ j · ξ1 mod 2 π (29)

and

cos(ξ1) = t1. (30)

4.3 backside reflection by using test images 19

Based on the calculation of the amplitudes

c2 = hypot(tmpX, tmpY)

= (a · cos(α) + b · cos(β))2 + (a · sin(α) + b · sin(β))2

= a2 · cos2(α) + 2ab · cos(α) · cos(β) + b2 · cos(β)

+a2 · sin2(α) + 2ab · sin(α) · sin(β) + b2 · sin(β)

= a2 + b2 + 2ab · cos(α−β)

= a2 + b2 + 2ab · cos(ξ)

= a2 + b2 + 2ab · t

and the behaviour of the tis (compare formula (40) and (41)), the
following system of equations has to be solved:

c21 = a2 + b2 + 2 ab t1

c22 = a2 + b2 + 2 ab (2 t21 − 1) (31)

c23 = a2 + b2 + 2 ab (4 t31 − 3 t1).

Where a,b are the constant values in the example functions.

The first step is to solve system (31). Therefore we set

c :=
c23 − c

2
2

c22 − c
2
1

(32)

and want to solve the quadratic equation

4t21 + 2t1(1− c) − (1+ c) = 0

from formula (13). In general, it is possible to solve this equation
using the abc-formula. However, this can be numerical unstable, e.g.,
if we are subtracting two floating point numbers which are almost
equal. Hence, we use Vieta’s theorem, which leads us to the relation

ax2 + bx+ c = x2 +
b

a
x+

c

a

⇔ (x− x1)(x− x2) = x2 − (x1 + x2)x+ x1x2

⇒ x1 + x2 =
b

a
and x1x2 =

c

a
[1]. (33)

If 2(1− c) > 0 we calculate

tTmp2 = −
2(1− c) +

√
(2(1− c))2 + 16(1+ c)

8
(34)

tTmp1 =
c

4 · tTmp2
. (35)

Otherwise, we calculate

tTmp1 = −
2(1− c) −

√
(2(1− c))2 + 16(1+ c)

8
(36)

tTmp2 =
c

4 · tTmp1
. (37)

20 implementation

Using those formulas, we can determine possibilities for ab using

abTmp1 =
c22 − c

2
1

2(2 · tTmp21 − tTmp1 − 1)
(38)

abTmp2 =
c22 − c

2
1

2(2 · tTmp22 − tTmp2 − 1)
. (39)

Now there are two possibilities for both t and ab. Hence it is re-
quired to select the suitable ones by the following rule:

1. if !((c21 − c
2
2)→ 0)

if (abTmp1 > 0 and abTmp2 > 0) then t1 = tTmp2;ab =

abTmp2;

else if (abTmp1 > 0) then t1 = tTmp1;ab = abTmp1;

else if (abTmp2 > 0) then t1 = tTmp2;ab = abTmp2;

2. else

if ((c21 − c
2
3)→ 0) then t1 = 1;ab = 0;

else t1 = −0.5;ab =
c23−c

2
1

3 ;

The rule was evaluated during testing and provides a minimal error
rate.

For t2, t3, ξ2 and ξ3 the following rules apply:

t2 = 2 · t21 − 1 (40)

t3 = 4 · t31 − 3 · t1 (41)

ξ2 = shiftAngleToPi(acos(t2)) (42)

ξ3 = shiftAngleToPi(acos(t3)). (43)

After the determination of t1 and ab, it is possible to calculate two
candidates for a and b using the first formula of (31):

a2 + b2 + 2abt1 = c21

⇔ a2 + b2 + 2abt1 − c
2
1 = 0

⇔ a2 +
(ab)2

a2
+ 2abt1 − c

2
1 = 0

⇔ a4 + (2abt1 − c
2
1)a

2 + (ab)2 = 0

z:=a2⇔ z2 + (2abt1 − c
2
1)z+ (ab)2 = 0. (44)

Now, we have to solve formula (44) and extract the square root to get
all possibilities for a.

This time, we use again formula (33) to provide more stability to
the calculations. However, (2abt1 − c21) is always smaller or equal to
zero, because of

2abt1 − c
2
1

(2)
= 2abt1 − (a2 + b2 + 2abt1) = −a2 − b2 6 0.

4.3 backside reflection by using test images 21

Additionally, we do not have to consider the negative results of a,
because a has to be positive. This leads to the following:

aTmp1 =

√√√√
−
2abt1 − c

2
1 −

√
(2abt1 − c

2
1)
2 − 4(ab)2

2
(45)

aTmp2 =

√
(ab)2

aTmp1
(46)

bTmp1 =
ab

aTmp1
(47)

bTmp2 =
ab

aTmp2
. (48)

Considering the restriction from formula (14), a and b have to fulfill
a > b > 0.

During testing we figured out that if the first candidates of a and
b fit the condition from formula (14) they also have to be bigger than
their second candidate. This leads to the following rules to select the
suitable a and b:

1. if ((aTmp1 > bTmp1) and (bTmp1 > 0) and (aTmp1 >
aTmp2) and (bTmp1 6 bTmp2)) then a = aTmp1;b =

bTmp1;

2. else a = aTmp2;b = bTmp2;

The rules were evaluated during testing and provide a minimal error
rate.

Afterwards it is possible to calculate two candidates for each α and
β by using the following formulas:

α
(1)
i = arctan(z2, z1) with z =MT

ti

(
cos(γi)
sin(γi)

)
(49)

β
(1)
i = α

(1)
i − arctan

(√
1− t2i , ti

)
(50)

α
(2)
i = arctan(z2, z1) with z =Mti

(
cos(γi)
sin(γi)

)
(51)

β
(2)
i = α

(2)
i + arctan

(√
1− t2i , ti

)
(52)

with

Mti =

(
a+bti b

√
1−t2i

−b
√
1−t2i a+bti

)
for i = 1, 2, 3. (53)

The notation means that candidate one of αi is α(1)
i and candidate

two of αi is α(2)
i .

Now we have got 8 possible solutions for α and β:

22 implementation

1. α = (α11,α12,α13), β = (β11,β12,β13)

2. α = (α11,α12,α23), β = (β11,β12,β23)

3. α = (α11,α22,α13), β = (β11,β22,β13)

4. α = (α11,α22,α23), β = (β11,β22,β23)

5. α = (α21,α12,α13), β = (β21,β12,β13)

6. α = (α21,α12,α23), β = (β21,β12,β23)

7. α = (α21,α22,α13), β = (β21,β22,β13)

8. α = (α21,α22,α23), β = (β21,β22,β23)

The correct solution has to fulfill the following requirements:

αk ≡ k ·α1 mod 2 π βk ≡ k ·β1 mod 2 π with k = 2, 3. (54)

It can occur that some congruences are not fulfilled at all or that
some congruences are fulfilled by multiple solutions. Hence it is re-
quired to determine the solution which is closest to the congruences
(54). Therefore the following error function e has been developed:

e = (modulo2Pi(α
(q)
2 − 2 ·α(p)

1)) + (modulo2Pi(α
(r)
3 − 3 ·α(p)

1))

+(modulo2Pi(β
(q)
2 − 2 ·β(p)

1)) + (modulo2Pi(β
(r)
3 − 3 ·β(p)

1)) (55)

with p = 1, 2, q = 1, 2, r = 1, 2.

It is required to minimize e by choosing one of the possible 8 solution
sets which provides the smallest value for e.

4.4 modifications to handle noise

In chapter 4.1 it was already described that it is possible to add noise
to the input. If noise is added, the algorithm does not know this and
especially does not know which data contains noise. Besides, it is not
sufficient to apply some kind of filters to the input data. If this algo-
rithm is used to detect errors on glass, this filter might also erase this
error. Therefore, we enhanced the algorithm to detect noise and to
erase it, if possible.

The effect of the two kinds of noises (on amplitude or phase) are a
little different, but in general one big problem occurs: the wrong op-
timal solution is selected, because noise influences the minimization
of the error function. Take for example a case were noise influences
the third channel (measurement) containing the values of α3 and β3
and the actual optimal solution would be:

α = (α
(1)
1 ,α(1)

2 ,α(1)
3), β = (β

(1)
1 ,β(1)

2 ,β(1)
3).

4.4 modifications to handle noise 23

During the minimization of the error function it is likely that an-
other solution is selected, because the error on α3 and β3 might be
bigger than the overall error of another solution set – selecting

α = (α
(2)
1 ,α(2)

2 ,α(2)
3), β = (β

(2)
1 ,β(2)

2 ,β(2)
3).

In fact, the noise on α3 and β3 might cause the selection of a total
different solution. Hence, the noise influences other αs and βs. In
the worst case, every of the selected αs and βs is different from the
optimal solution. This has a much higher impact on the final result
than only wrong values in one channel.

This leads to our main question: How can we handle noise without
influencing the noiseless use-cases? Because when we only adjust the
error function, the cases without noise are highly influenced.

For this case we propose to apply the following procedure:

Algorithm 4.4.1 (Handling noise)
Input: All possibilities for α and β.

1. Start with determining the solution with the lowest error function.

2. Check if each congruence is fulfilled:

(α
(qq)
2 − 2 ·α(pp)

1)→ 0

(α
(rr)
3 − 3 ·α(pp)

1)→ 0

(β
(qq)
2 − 2 ·β(pp)

1)→ 0

(β
(rr)
3 − 3 ·β(pp)

1)→ 0

with pp,qq, rr are the αs and βs, selected by the error function.

3. If one of these congruences is not fulfilled correctly, we assume that the
error function has given the wrong result, because at least one channel of
the αs and βs contains noise. Hence we apply a modified error function to
all values and determine if we can make the error smaller by only taking
two α and β values into account and by recalculating the third values
out of the two others.

4. In doing so, it is very important to determine if the new error function
did really improve the previous result. Only comparing the two function
results is not sufficient, because the second error function contains less
congruence calculations. Hence it is easier to get a second error function
which is smaller than the first one. Instead we have chosen to determine
if every congruence has improved since the new calculations and only in
this case, we take the new values.

Output: α and β.

24 implementation

The following example shows this approach containing noise on
channel three:

e = ((α
(q)
2 − 2 ·α(p)

1) mod 2π)

+((β
(q)
2 − 2 ·β(p)

1) mod 2π)

with p = 1, 2, q = 1, 2.

⇒ α
(rr)
3 = shiftAngleToPi(3 ·α(pp)

1)

β
(rr)
3 = shiftAngleToPi(3 ·β(pp)

1)

with pp,qq are the αs and βs, selected by the new error function.

4.5 modifications to handle quadratic functions

Basically the same calculation which have been already applied to the
images generated by the linear functions will be applied in this case
as well. But it has to be considered that the following complications
might occur:

1. The value of the calculated t1 can be wrong and the correct
value would be −t1. Surprisingly, the incorrect t1s provide bet-
ter results regarding the pixels in the final α and β images than
calculating with the correct t1s.

2. Analysing the "correct" results shows that the following can be
true:

t1 = −1, ξ1 = −π

t2 = +1, ξ2 = −π

t3 = −1, ξ3 = −π

or

t1 = −1, ξ1 = −π

t2 = +1, ξ2 = −π

t3 = −1, ξ3 = 0

This shows that

cos(ξi) = ti

is not longer valid.

3. The αs and βs do not entirely behave like in the previous chap-
ters. This time it can occur, that α1 = π,α2 = π,α3 = π or
α1 = −π,α2 = −π,α3 = −π or α1 = 0,α2 = π,α3 = π. The
same applies for β as well. Thereby the congruences from for-
mula (54) are not entirely fulfilled any more.

Especially the second behavior causes much more errors when the
input data contains a noise.

4.6 evaluation 25

4.6 evaluation

This sections shows the reconstructed results, which have been achieved
by the proposed algorithm. Figure 3 shows two the reconstructed α
in the left column and β in the right column. The first row shows an
execution using perfect input data. Here, we can see that the result
is absolutely accurate without any error. The second row shows the
image perturbed by a random noise in the range of [−14 , 14]. It can be
observed that nearly every pixel is falsified and especially β is almost
destroyed.

Hence, we can conclude this approach provides a good accuracy for
perfect input data. However, due to the fact that real life applications
never provide perfect data, this approach can be considered as not
sufficient. A proper reconstruction of noisy input data is not possible.

Figure 3: Reconstructed images of α (left side) and β (right side). The lower
images are reconstructed from noisy input data.

Part III

P R O N Y ’ S M E T H O D

5
T H E O RT I C A L B A C K G R O U N D O F P R O N Y ’ S
M E T H O D

Gaspard Clair Francois Marie Riche de Prony developed 1795 a method
to solve a recovery problem, which arises from an application in phys-
ical chemistry. Nowadays, this method is also used in signal process-
ing. [8]

The recovery problem is represented by a function f of samples f(x)
with x ∈ X. X is a finite set of points, where the function values are
known.

Right now, the recovery problem has infinitely many solutions, e.g.,
there are infinitely many possibilities to connect two points. Hence, it
is crucial to provide assumptions for f to get a unique or well-defined
solution.

At first, we assume that f can be represented as a linear combina-
tion of know basis functions fj and coefficients aj

f =

n∑
j=1

ajfj, aj ∈ R. (56)

In this case, only the coefficients aj have to be computed. The compu-
tation can be done by solving a linear system of equations. [8]

Particularly Prony considered the so-called Prony functions

z = f(x) =

n∑
j=1

µjν
x
j , (57)

which depend on coefficients µj ∈ R and νj ∈ R+. Compared to for-
mula (56), solving the Prony function (57) requires to find the correct
basis functions

fj(x) = ν
x
j ,

which fulfill the measurements zk. [8]

For equidistant sampling this results in

zk = f(hk) =

n∑
j=1

µjν
hk
j =

n∑
j=1

µjν̂
k
j , (58)

with ν̂ := νh and k ∈N+.

[8]

27

28 theortical background of prony’s method

5.1 classical prony method

Prony started calculating numbers pj with j = 0, ...,n based on the
measurements zk with k = 0, 1, 2, ..., satisfying:

0 = z0 · p0 + ... + zn · pn
0 = z1 · p0 + ... + zn+1 · pn

...

0 = zk · p0 + ... + zn+k · pn, with k = 0, 1, 2, ... (59)

This correlation can also be written as

(z ? p)k :=

n∑
j=0

zk+j · pj, with k = 0, 1, 2, ... (60)

Hence, the requirement is

z ? p = 0, (61)

which basically describes finding a filter p to erase the values of z. [5,
8]

Now, we apply formula (57) on (61) and get

0 = (z ? p)k =

n∑
j=0

zk+j · pj

(57)
=

n∑
j=0

pj

n∑
l=0

µlν
h(k+j)
l

(58)
=

n∑
j=0

pj

n∑
l=0

µlν̂
k+j
l

=

n∑
l=0

µlν̂
k
l

n∑
j=0

pjν̂
j
l

p(x)=
∑n
j=0 pjx

j

=

n∑
l=0

µlν̂
k
l p(ν̂l). (62)

[8]
This leads to the so-called Prony polynomials

p(x) = (x− ν̂1) · ... · (x− ν̂n) =
n∑
j=0

pjx
j, (63)

which are a solution of (62) with pn = 1. Additionally, any solution
of (62) is an coefficient vector, which is a multiple of the Prony poly-
nomial (63). Hence, if it is possible to find the smallest filter p so that
(61) is fulfilled, then the zeros of the corresponding polynomial are
exactly the ν̂j from formula (63). [4, 8]

For calculating these ν̂j, it is required to solve the linear system
(59). Therefore, different approaches are provided and covered in the
following sub-sections.

5.1 classical prony method 29

5.1.1 Eigenvalue Problem

Plonka and Tasche considered the exponential sum

z = f(x) =

n∑
j=1

µje
fjx, x > 0 (64)

with fj ∈ [−α, 0] + i[−π,π) unique complex numbers, α > 0 and µj ∈
C\{0}.

The fjs are damping the exponential efjx because of the fact that
the real part of the fjs is smaller or equal to zero. Hence the sum (64)
consists of non-increasing |efjx| for x > 0.

It is possible to recover all parameters of such an exponential sum
(64) if

zk :=

n∑
j=1

µje
fjk =

n∑
j=1

µjν
k
j ∈ C, k = 0, ..., 2n− 1, (65)

with νj = efj distinct values, given noiseless sample data. This kind
of problem is called frequency analysis problem and again leads to
the so-called the Prony polynomial

p(x) =

n∏
j=1

(x− νj) = (

n−1∑
j=0

pjx
j) + xn, (66)

with pn = 1. [3, 4]
Plonka and Tasche described solving the problem by using an eigen-

value problem. Therefore, they define the companion matrix Cn(p) ∈
Cn×n of the Prony polynomial (66) by

Cn(p) =


0 0 ··· 0 −p0
1 0 ··· 0 −p1
0 1 ··· 0 −p2
...

...
...

...
0 0 ··· 1 −pn−1

 , (67)

which fulfills

det(xIn −Cn(p)) = p(x), x ∈ C.

Hence, the zeros in the Prony polynomial (66) corresponds to the
eigenvalues in the companion matrix (67). [3]

Besides, the relation (62) from section (5.1) is fulfilled as well, which
leads to

n−1∑
j=0

pjzj+k = −zn+k, with pn = 1. (68)

This can be reformulated as the linear system

Hn,n(pj)
n−1
j=0 = −(zn+k)

n−1
k=0 (69)

30 theortical background of prony’s method

with the square Hankel matrix

Hn,n :=

 z0 z1 ··· zn−1
z1 z2 ··· zn
...

...
...

zn−1 zn ··· z2n−2

 = (zj+k)
n−1
j,k=0. (70)

This matrix is invertible and can again be reformulated using the
Vandermonde matrix

Vn(ν) := (νj−1k)n,n
j,k=1 =

 1 1 1 ··· 1
ν1 ν2 ν3 ··· νn
...

...
...

...
νn−11 νn−12 νn−13 ··· νn−1n


to

Hn,n = Vn(ν) · diag(µ) · Vn(ν)T , (71)

with diag(µ) is the diagonal matrix of the coefficients µ = (µj)
n
j=1 of

the exponential sum (64). [3]

These steps can now be summarized the following algorithm.

Algorithm 5.1.1 (Classical Prony method)
Input: n ∈N, sampled values zk, with k = 0, · · · , 2n− 1 of the exponential
sum (64).

1. Solve the linear system (69).

2. Computation of all zeros νj of the Prony polynomial (66), by determining
the eigenvalues of the corresponding companion matrix (67) and form the
complex logarithm fj := log(νj) for all j = 1, · · · ,n.

3. Solving of the Vandermonde system

Vn(ν)(µj)
n
j=1 = (zk)

n−1
k=0 .

Output: fj ∈ [−α, 0] + i[−π,π), α > 0, µj ∈ C\{0}, j = 1, ...,n. [3]

5.2 esprit method

The ESPRIT method requires an additional upper bound L ∈ N with
M 6 L 6 n to form the rectangular Hankel matrix

H2n−L,L+1 := (zl+m)2n−L−1,L
l,m=0 ∈ C(2n−L)×(L+1). (72)

If the sampled data does not contain noise, the Hankel matrix is
rank deficient with rank n, because of (62). [3]

In the following, we will describe the algorithm of the ESPRIT-method,
which basically applies a Singular Value Decomposition (SVD) to the
Hankel matrix H2N−L,L+1. The detailed mathematical derivation of
this algorithm is explained by Plonka and Tasche. [3]

5.3 matrix pencil method 31

Algorithm 5.2.1 (ESPRIT method for equispaced sampling)
Input: 2n ∈ N number of samples, 3 6 L 6 n window length and samples
zk with k = 0, ..., 2n− 1.

1. Computation of the SVD H2n−L,L+1 = U2n−LD2n−L,L+1W
H
L+1 of the

Hankel matrix (72). The singular values σl(l = 1, ..., min{L,n− L+ 1})

are ordered decreasingly. Determination of the rank M of (72), such that
σM > εσ1 with 0 < ε� 1. This leads to

WM,L(s) :=WL+1(1 :M, 1+ s : L+ s) (with s = 0, 1).

2. Calculation of the matrix

FM := (WM,L(0)
H)†WM,L(1)

H,

where (WM,L(0)
H)† denotes the Moore-Penrose pseudoinverse of

WM,L(0)
H.

3. Determination of all eigenvalues νj(j = 1, ...,M) of FM. And calculate
all fj := log(νj) for j = 1, ...,M.

4. Computation of the coefficient vector µ := (µj)
M
j=1 ∈ Cn, which is a

solution of the overdetermined Vandermonde-like system:

V2n,M(ν)(µj)
M
j=1 = (zk)

2n−1
k=0

with the rectangular Vandermonde matrix V2n,M(ν) := (νk−1j)2n,M
k,j=1 .

Output:M ∈N, fj ∈ [−α, 0] + i[−π,π), α > 0, µj ∈ C\{0}, j = 1, ...,M.
[3]

5.3 matrix pencil method

Another approach is based on the fact, that the Prony method can
be transformed to a matrix pencil method. It is nearly similar to the
ESPRIT method, with the main difference that the Hankel matrix is
not decomposed by a SVD, but by a QR-decomposition. The detailed
mathematical derivation of this algorithm is explained by Potts and
Tasche. [4]

Algorithm 5.3.1 (Matrix pencil method)
Input: 2n ∈ N number of samples, 3 6 L 6 n window length, zk with
k = 0, ..., 2n− 1 samples.

1. Computation of the QR decomposition

H2n−L,L+1ΠL+1 = Q2n−LR2n−L,L+1

of the Hankel matrix (72). Determination of the rankM of (72), such that
R2n−L,L+1(M+ 1,M+ 1) < εR2n−L,L+1(1, 1) with 0 < ε� 1.

32 theortical background of prony’s method

2. Calculation of

TM,L(s) := S2n−L,L(1 :M, 1+ s : L+ s), (s = 0, 1)

with

S2n−L,L+1 := R2n−L,L+1Π
T
L+1

and

S2n−L,L(s) := S2n−L,L+1(1 : 2n− L, 1+ s : L+ s) (s = 0, 1),

3. Calculation of the matrix

F
QR
M := (TM,L(0)

T)†TM,L(1)
T .

4. Determination of all eigenvalues νj(j = 1, ...,M) of FQRM . And calculate
all fj := log(νj) for j = 1, ...,M.

5. Computation of the coefficient vector µ := (µj)
M
j=1 ∈ Cn, which is a

solution of the overdetermined Vandermonde-like system:

V2n,M(ν)(µj)
M
j=1 = (zk)

2n−1
k=0

with the rectangular Vandermonde matrix V2n,M(ν) := (νk−1j)2n,M
k,j=1 .

Output:M ∈N, fj ∈ [−α, 0] + i[−π,π), α > 0, µj ∈ C\{0}, j = 1, ...,M.
[4]

To compare the actual behaviour and performance of the proposed
algorithms, the following chapter describes their implementation.

6
I M P L E M E N TAT I O N O F P R O N Y ’ S M E T H O D

The previous chapter already explained the theoretical background
and different algorithms to apply Prony’s method. This chapter will
give an overview over the implementation using Matlab/Octave to
determine µj and fj for the samples zk =

∑n
j=1 µje

fjk with k =

0, ..., 2n− 1.

6.1 generation of test-data

To test the different Prony algorithms it is required to provide some
testing data to check if a proper reconstruction of functions is pos-
sible. Additionally, it might be interesting to provide different sam-
ple distributions to observe the behaviour of the different algorithms.
Therefore, five different functions for sample generation will be pro-
vided, which basically require the same input parameters.

6.1.1 Equispaced Sampling

This function expects the following parameters:

• n: n is the number which is used to create 2×n sample values.

• stepSize: The step size between two points on the x-axis.

• startPoint: The start point on the x-axis.

• polynomial: A coefficient vector describing the parameters of an
algebraic polynomial, e.g., the vector [1 2 0 3] represents the
polynomial x3 + 2x2 + 3.

Using these parameters, the matlab function creates the vectors x

and z. x contains all 2× n points on the x-axis, beginning with the
given start point. z contains all function evaluations of the given poly-
nomial at the points in x.

Listing 5: Matlab function to generate equispaced samples.

%"/InputProvider/generateSamplesWithGivenStepSize.m"

function [x,z] = generateSamplesWithGivenStepSize(n, stepSize,

startPoint, polynomial)

x = zeros(2*n,1);

z = zeros(2*n,1);

[size1,size2] = size(polynomial);

for i = 1 : 2*n

33

34 implementation of prony’s method

x(i) = startPoint + (i-1)*stepSize;

if(size1 == 1 && size2 == 3 && polynomial == "sin

")

z(i) = sin(x(i));

else

z(i) = polyval(polynomial,x(i));

end

end

end

6.1.2 Randomly-spaced Sampling

This function is used to sample with a random step size. Hence, the
input stepSize is multiplied with a random number in the range [0, 1].
The remaining input parameters are used like in the equispaced func-
tion.

Listing 6: Matlab function to generate randomly-spaced samples.

%"/InputProvider/generateSamplesWithRandomStepsize.m"

function [x,z] = generateSamplesWithRandomStepsize(n, stepSize,

startPoint, polynomial)

x = zeros(2*n,1);

z = zeros(2*n,1);

[size1,size2] = size(polynomial);

for i = 1 : 2*n

if i == 1

x(i) = startPoint + rand()*stepSize;

else

x(i) = x(i-1) + rand()*stepSize;

end

if(size1 == 1 && size2 == 3 && polynomial == "sin

")

z(i) = sin(x(i));

else

z(i) = polyval(polynomial,x(i));

end

end

end

6.1.3 Equispaced-Sampling with two Points converging

This function works basically the same way like the equispaced sam-
pling. But it differs in the last point, because the last point of the x
values is chosen very close to the last but one x value.

Listing 7: Matlab function to generate samples with two point converging
to each other.

6.1 generation of test-data 35

%"/InputProvider/

generateSamplesWithGivenStepSizeTwoPointsConverging.m"

function [x,z] =

generateSamplesWithGivenStepSizeTwoPointsConverging(n,

stepSize, startPoint, polynomial)

x = zeros(2*n,1);

z = zeros(2*n,1);

[size1,size2] = size(polynomial);

for i = 1 : 2*n

if i == 2*n

x(i) = x(i-1) + 0.001;

else

x(i) = startPoint + (i-1)*stepSize;

end

if(size1 == 1 && size2 == 3 && polynomial == "sin

")

z(i) = sin(x(i));

else

z(i) = polyval(polynomial,x(i));

end

end

end

6.1.4 Sampling with convergent distances

This function provides samples which start with the given stepSize,
but afterwards the step size between each x-value convergences to
zero. Right now, the implementation requires a provided stepsize in
the range of [0, 1] to fulfill the convergence.

Listing 8: Matlab function to generate samples with a stepsize converging
to zero.

%"/InputProvider/generateSamplesWithGivenStepSizeAndConvergence.m

"

function [x,z] = generateSamplesWithGivenStepSizeAndConvergence(n

, stepSize, startPoint, polynomial)

x = zeros(2*n,1);

z = zeros(2*n,1);

[size1,size2] = size(polynomial);

for i = 1 : 2*n

if i == 1

x(i) = startPoint + stepSize;

stepSize = stepSize - 0.1;

else

x(i) = x(i-1) + stepSize^i;

end

36 implementation of prony’s method

if(size1 == 1 && size2 == 3 && polynomial == "sin

")

z(i) = sin(x(i));

else

z(i) = polyval(polynomial,x(i));

end

end

end

6.1.5 Sampling by randomly determining µ and f

The following sampling procedure in listing 9 uses a slightly differ-
ent approach. This time, we are going to generate sample values for
randomly chosen parameters µ and f. Hence, instead of providing a
polynomial, a constant M is provided. This M determines the number
of coefficients µ and f. Besides, it has to be ensured, that M 6 n is
fulfilled.

Afterwards, M random, complex-valued numbers are created for
each µ and f, with the restriction to µj ∈ C\{0} and fj ∈ [−α, 0] +
i[−π,π] with α > 0. Using these µ and f it is possible to determine z

by calculating

z(k) =

M∑
j=1

µj · efj·k for k = 0, ..., 2n− 1.

Listing 9: Matlab function to generate samples with a stepsize by randomly
chosen µ and f.

%"/InputProvider/generateSamplesWithGivenStepSizeFromMuAndF.m"

function [x,z,mu,f] = generateSamplesWithGivenStepSizeFromMuAndF(

M, n, stepSize, startPoint)

mu = (rand(M,1) - 1/2) * 10 + i * 2 * pi * (rand(M,1) -

1/2);

f = -rand(M,1) + i * 2 * pi * (rand(M,1) - 1/2);

x = zeros(2*n,1);

z = zeros(2*n,1);

for i = 0 : 2*n-1

x(i+1) = startPoint + i*stepSize;

for j = 1 : M

z(i+1) = z(i+1) + mu(j)*exp(f(j)*i);

end

end

end

6.2 implementation of prony algorithms 37

6.2 implementation of prony algorithms

6.2.1 Classical Prony Algorithm

The implementation of the classical Prony method is adapted from
algorithm 5.1.1. In line 4 of listing 10, we start with generating the
Hankel matrix1

H =

 z1 z2 ··· zn
z2 z3 ··· zn+1
...

...
...

zn zn+1 ··· z2n−1

 ,

which will be used to determine the Prony polynomial p by solving

H · p = −

 zn+1
zn+2

...
z2n

 .

Afterwards, line 7 is used to calculate the zeros of the Prony polyno-
mial ν by determining the eigenvalues of the companion matrix

C =


0 0 ··· 0 −p1
1 0 ··· 0 −p2
0 1 ··· 0 −p3
...

...
...

...
0 0 ··· 1 −pn


of p. The calculation of the companion matrix is described in listing
11.

The Vandermonde matrix

V =

 1 1 1 ··· 1
ν1 ν2 ν3 ··· νn
...

...
...

...
νn−11 νn−12 νn−13 ··· νn−1n


is used to calculate µ out of the previously determined zeros of the
Prony polynomial. The calculation of the Vandermonde matrix is de-
scribed in listing 12.

Listing 10: Matlab function using the classical Prony method.

1 %"/PronyAlgorithms/ClassicalProny.m"

2

3 function [f,mu] = ClassicalProny(n, z)

4 H = hankel(z(1:n),z(n:2*n-1));

5 p = H \ (-z(n+1:2*n))

6

7 nu = eig(calculateCompanionMatrix(n,p));

8 f = log(nu);

9

10 mu = calculateVandermondeMatrix(n/2,nu,n) \ z(1:n);

11 end

1 In the following our indices will always start at 1, because of the matlab notation.

38 implementation of prony’s method

Listing 11: Matlab function to calculate the companion matrix.

%"/MatrixFunctions/calculateCompanionMatrix.m"

function C = calculateCompanionMatrix(n,p)

C = diag(ones(n-1,1),-1);

C(:,n) = -p;

end

Listing 12: Matlab function to calculate the Vandermonde matrix.

%"/MatrixFunctions/calculateVandermondeMatrix.m"

function V = calculateVandermondeMatrix(n,nu,M)

if nargin() == 2

V = calculateMatrix(n,n,nu);

else

V = calculateMatrix(n,M,nu);

end

end

function V = calculateMatrix(n,M,nu)

exponent = (0:1:2*n-1);

V = (ones(2*n,M)*diag(nu)).^(diag(exponent)*ones(2*n,M));

end

6.2.2 ESPRIT Method

The ESPRIT method from algorithm 5.2.1 starts with the calculation of
the rectangular Hankel matrix

H =

 z1 z2 ··· z2n−L
z2 z3 ··· z2n−L+1
...

...
...

zL+1 zL+2 ··· z2n

 ,

depending on the additional boundary 3 6 L 6 n. Afterwards, a SVD

is applied to this Hankel matrix

H = U ·D ·WH

to get the hermite matrix WHermite, which is required for all further
computations. Hence, this time no companion matrix is required, be-
cause the companion matrix is replaced by a matrix FM. This FM can
be determined by solving the following system of linear equations
consisting of parts of WH:

wH(1,1) w
H
(1,2) ··· wH(1,M)

wH(2,1) w
H
(2,1) ··· w

H
(2,M+1)

...
...

...
wH(L,1) w

H
(L,2) ··· w

H
(L,M)

 · FM =


wH(2,1) wH(2,2) ··· wH(3,M)

wH(3,1) wH(3,1) ··· w
H
(3,M+1)

...
...

...
wH(L+1,1) w

H
(L+1,2) ··· w

H
(L+1,M)


with M = rank(H).

6.2 implementation of prony algorithms 39

The remaining algorithm proceeds like the previously discussed algo-
rithm, except that we need M = rank(H) as column dimension during
the calculation of the Vandermonde matrix. Hence, this time our Van-
dermonde matrix looks like

V =

 1 1 ··· 1
ν1 ν2 ··· νM
...

...
...

νn−11 νn−12 ··· ν2n−1M

 .

Listing 13: Matlab function using the ESPRIT method.

%"/PronyAlgorithms/EspritProny.m"

function [f,mu,M] = EspritProny(n, L, z)

H = hankel(z(1:L+1),z(L+1:end));

[U,D,WHermite] = svd(H);

M = rank(H);

W0Hermite = WHermite(1:L,1:M);

W1Hermite = WHermite(2:L+1,1:M);

FM = W0Hermite\W1Hermite;

nu = eig(FM);

f = log(nu);

mu = calculateVandermondeMatrix(n,nu,M)\z;

end

6.2.3 Matrix Pencil Method

The matrix pencil method from algorithm 5.3.1 looks very similar to
the ESPRIT method. The only difference is, that no SVD is applied to
the rectangular Hankel matrix, but the QR-decomposition [Q,R,P] = qr

(H). With these matrices, it is possible to calculate S = R * P’, which
corresponds to the W (not WHermite) in the ESPRIT method. Hence, the
following procedure of the matrix pencil method looks totally the
same like in the ESPRIT method.

Listing 14: Matlab function using the matrix pencil method.

%"/PronyAlgorithms/MatrixPencilProny.m"

function [f,mu,M] = MatrixPencilProny(n, L, z)

H = hankel(z(1:L+1),z(L+1:end));

[Q,R,P] = qr(H);

M = rank(H);

S = R * P’;

40 implementation of prony’s method

T0 = S(1:M,1:L);

T1 = S(1:M,2:L+1);

FM = T0.’\T1.’;

nu = eig(FM);

f = log(nu);

mu = calculateVandermondeMatrix(n,nu,M) \ z;

end

6.2.4 Reducing of the resulting coefficients

After the coefficients µj and fj have been determined using a previ-
ously described algorithm like the classical method it was possible to
notice a certain pattern in the µjs and fjs. Therefore, we can look at
the following coefficients, which have been calculated to approximate
the sine function using 20 samples on the range [−10, 9] (n = 10) with
equispaced sampling:

f =


−0.15901+0.30266i
−0.15901−0.30266i
0.00000+1.00000i
0.00000−1.00000i
−0.20750+1.68055i
−0.20750−1.68055i
−0.28377+2.85141i
−0.28377−2.85141i
−0.26134+2.26940i
−0.26134−2.26940i

µ =


−1.3380e−15−6.0716e−17i
−1.0736e−15−1.9762e−16i
2.7201e−01+4.1954e−01i
2.7201e−01−4.1954e−01i
4.1823e−16−1.2710e−15i
2.5931e−16+1.0258e−15i
9.4572e−16−3.5264e−16i
9.9128e−16+4.0062e−16i
7.4065e−16−5.3382e−16i
7.5744e−16+7.3574e−16i

 .

Looking at µ shows, that only the real part of µ3 and µ4 is sig-
nificantly bigger than zero. All remaining µj will cause that every
summand

µje
fjk = 0 ∀j ∈ {1, ...n}\{3, 4}.

Hence, it seams that only µ3 and µ4 are required to determine the
result of the sum. To test this hypothesis, also f will be reduced to f3
and f4 (the only real zero parts of f).

The detailed function, which was applied using Matlab, is shown
in Listing 15. In the code, fInput and muInput represent the previously
determined f and µ of length n. The epsilon is a predefined constant
which will be used for comparison, whether a value is zero or not.

Listing 15: Matlab function to reduce f and µ.

%"/PronyAlgorithms/ClassicalPronyReducedFAndMu.m"

function [f,mu] = reduceFAndMu(fInput, muInput, epsilon)

f = [];

mu = [];

for i = 1 : size(fInput)(1)

6.2 implementation of prony algorithms 41

if (abs(real(fInput(i))) < epsilon) && (abs(real(

muInput(i))) > epsilon)

f = [f;fInput(i)];

mu = [mu;muInput(i)];

end

end

end

Finally, it was possible to use this approach for reconstructing func-
tions. But it has to be considered, that it only worked for equis-
paced sampling. All other evaluated sampling distributions failed ab-
solutely.

6.2.5 Classical Prony Algorithm with a stepwise Reduction of the Hankel
Matrix

This algorithm uses basically the idea of the classical Prony method,
with the main difference to find the Prony polynomial with minimal
degree. Therefore, in listing 16 we start again with calculating the
Hankel matrix

H =

 z1 z2 ··· zn
z2 z3 ··· zn+1
...

...
...

zn zn+1 ··· z2n−1

 .

To minimize the degree of the Prony polynomial, it is required to
reduce the columns of the Hankel matrix. Therefore, we take the lin-
ear system (59) and try iteratively to find the smallest number r of
columns in H for which the linear system has a solution p

H(:, 1 : r+ 1) ·
(p
1

)
= 0.

This procedure is described in listing 17. In doing so, the first step is
to determine p by solving

H(:, 1 : r) · p = −H(:, r+ 1).

The minimal number r is found when the following norm

||H(:, 1 : r) · p+H(:, r+ 1)||

becomes small enough. r also represents the rank of the matrix H.
The remaining procedure in listing 16 continues similar to the clas-

sical Prony method, except that every number n is replaced by r and
the reduced Prony polynomial p is used.

Listing 16: Matlab function to use a stepwise reduction of the Hankel matrix
during the classical Prony method.

%"/PronyAlgorithms/ClassicalPronyStepwiseHankel.m"

42 implementation of prony’s method

function [f,mu,r] = ClassicalPronyStepwiseHankel(n, z, epsilon)

H = hankel(z(1:n),z(n:2*n-1));

[r,p] = minimizeHankel(H,z,n,epsilon);

nu = eig(calculateCompanionMatrix(r,p));

f = log(nu);

mu = calculateVandermondeMatrix(r/2,nu,r) \ z(1:r);

end

Listing 17: Matlab function to minimize the Hankel matrix.

%"/PronyAlgorithms/minimizeHankel.m"

function [size,p] = minimizeHankel(H,z,n,epsilon)

size = n-1;

for col = 2 : n - 1

reducedH = H(:,1:col);

p = reducedH \ (-H(:,col+1));

normValue = norm(reducedH * p + H(:,col+1))

if(normValue < epsilon)

size = col;

break;

end

end

end

6.3 evaluation

6.3.1 Accuracy depending on Sampling

Now we are going to evaluate the accuracy of the different algorithms
depending on the chosen sampling method. Therefore, Table 1 gives
a brief overview using the following explanation:

•
√

: Successful approximation.

• (
√

): Nearly everything was approximated successful.

• X: Very few parts of the function have been approximated suc-
cessful. It is also considered as a failure of approximation.

• XXX: Total failure of approximation.

It can be observed that the classical approach had an overall good
accuracy and only failed when two points of the sampling set were
converging to each other.

Compared to that, the classical approach which determined a min-
imal Prony polynomial stepwise performed also very good. In the

6.3 evaluation 43

two cases with convergence it occurred that in the end of the sam-
pling interval the two functions are slightly different. This can also be
observed in Figure 4.

Figure 4: This figure shows the two samplings of the classical stepwise ap-
proach, which do not have a perfect reconstruction of the original
function. The red line is the original function and the blue line is
the calculated approximation. The left image shows the sampling
with two converging points and the right image sampling with an
overall convergence.

The matrix pencil method showed a very similar behavior. Figure 5

also shows a problem when two points are converging to each other
and when the samples have random distances between each other.

Figure 5: This figure shows the two samplings of the matrix pencil method,
which do not have a perfect reconstruction of the original function.
The left image shows random sampling and the right image shows
sampling with two point converging.

The ESPRIT method worked for equispaced samples and for samples
with converging distances. But it failed for randomly-spaced samples
and samples where the last two points are very close.

Like it was already mentioned in the previous section, the approach
which reduces f and the µ in the end only works for equispaced
samples. Otherwise, it fails absolutely.

44 implementation of prony’s method

Table 1: Comparison of the different algorithms and sampling of functions

Equi- Randomly- Convergent Convergence

spaced spaced distances of two points

Classical
√ √ √

X

Reduced-Classical
√

XXX XXX XXX

Stepwise-Classical
√

(
√

)
√ √

ESPRIT
√

X
√

X

Matrix Pencil
√

(
√

)
√

(
√

)

In general, when we have a closer look at the error

||originalFunction(x) − reconstructedFunction(x)||,

we see that the error of the three classical approaches lies in a range
of 10−14, but for ESPRIT and the Matrix Pencil method it only lies in
the range of 10−4.

When we have a closer look at the error range of the approach
using the stepwise reduction, which is applied to different functions
generated from random µ and f in Table 2, we see that this approach
seems to be very robust.

Because of this and the fact, that the stepwise Prony method uses
the Prony polynomial with minimal degree, we are going to use the
approach from chapter 6.2.5 in the following.

Table 2: Comparison of the reduced Prony method with samples generated
from random µ and f

µ, f µ only f only

random µ→ 0 f→ 0 imaginary imaginary

Error of

Reduced-Classical 10−14 10−15 10−7 10−14 10−11

7
D E N O I S I N G

Like it was already mentioned in the last chapter, we will continue
our work with the approach from chapter 6.2.5, which reduces the
Hankel matrix stepwise.

In the following, we are going to describe two approaches to handle
an input signal which contains noise.

7.1 denoising by averaging the prony polynomial

In general, if the input data is not perturbed by noise, it does not
matter which sub-Hankel matrix of the size n× r is used to determine
p:

H(:, i : i+ r) · p = 0 ∀i ∈ {1, ...,n− r+ 1}. (73)

This leads to the main idea behind this denoising: We solve formula
(73) for every i ∈ {1, ...,n− r+ 1} and build the average over all ps.

But it has to be considered that not every sub-Hankel matrix might
have the same rank, which would result in different dimensions of
the ps. Now, there are two possible solutions for this problem:

1. We simply sum up all ps and if the dimensions do not match,
we append the required number of zeros.

2. We only sum up the ps with dimension rank(H)× 1.

Testing the first solution, showed a very noisy result, which can
be explained by the fact that the inserted zeros might falsify the de-
noising process. On the contrary, the second solution showed a very
low error rate. Hence, we will only use the second solution in the
following.

The remaining steps to determine the coefficients f and µ will be
applied like already described in chapter 6.2.5 using the p from solu-
tion 2.

The following algorithm will give a detailed overview over the pro-
cedure of denoising. The sourcecode of this procedure can be found
in listing 18.

Algorithm 7.1.1 (Denoising)
Input: Hankel matrix H of size n×n.

1. Determine the rank r of the Hankel matrix.

2. For every i from 1 to n− r+ 1:

45

46 denoising

a) Determine the rank rSub and the Prony polynomial pSub of the sub-
Hankel matrix H(:,i:n) by calling minimizeHankelWithNoise in list-
ing 19.

minimizeHankelWithNoise works almost the same as
minimizeHankel, which was already described in listing 17. There is
only a difference regarding the termination. Originally, the algorithm
terminates when the norm converges to zero. But this might not hap-
pen, when the matrix contains noise. In this case, the value of the
norm tends to alternate. This means, it does not become smaller in ev-
ery step. Sometimes, it happens that the norm jumps to a higher value
and starts becoming smaller again. But these jumps occur randomly.

Hence, we determine our procedure in the step right before the norm
jumps to a higher value for the first time.

b) If rSub is equal to the rank of the entire Hankel matrix, we sum up
pSub to the already existing sum of ps.

3. Divide p point-wise by the number of ps which have been summed.

Output: Coefficients p of the Prony polynomial.

Listing 18: Matlab function to determine the avery p over all sub-Hankel
matrices.

%"/PronyAlgorithms/determineAverageP.m"

function [r,averageP] = determineAverageP(H,n,epsilon)

[r,p] = minimizeHankelWithNoise(H,epsilon);

averageP = zeros(r,1);

cnt = 0;

for step = 1 : n-r+1

[rSub,pSub] = minimizeHankelWithNoise(H(:,step:n)

,epsilon);

if(r == rSub)

averageP = averageP + pSub;

cnt = cnt + 1;

end

end

averageP = averageP./ cnt;

end

Listing 19: Matlab function to determine the rank and the Prony polynomial
p by minimizing the Hankel matrix for input data containing
noise.

%"/PronyAlgorithms/minimizeHankelWithNoise.m"

7.2 denoising by stacking hankel sub-matrices 47

function [rank,p] = minimizeHankelWithNoise(H,epsilon)

[m,n] = size(H);

rank = n-1;

oldNorm = inf;

oldP = 0;

for col = 2 : n - 1

reducedH = H(:,1:col);

p = reducedH \ (-H(:,col+1));

normValue = norm(reducedH * p + H(:,col+1));

if(oldNorm < normValue)

rank = col - 1;

p = oldP;

break;

elseif(normValue < epsilon)

rank = col;

break;

end

oldNorm = normValue;

oldP = p;

end

end

7.2 denoising by stacking hankel sub-matrices

This time, we want to use every information directly from the Hankel
matrix to minimize the noise. Therefore, we again minimize the Han-
kel matrix, but only to determine the size r of the reduced Hankel
matrix. Afterwards we take every sub-Hankel matrix and stack them
on top of each other to solve formula (75): H(:,1:r+1)

H(:,2:r+2)
...

H(:,end−r:end)

 · [p1] = 0 (74)

⇔

 H(:,1:r)
H(:,2:r)

...
H(:,end−r:end−1)

 · p = −

 H(:,r+1)
H(:,r+2)

...
H(:,end)

 . (75)

Formula (74) shows that we are stacking Hankel matrices of the size
(n× r+ 1). The size r+ 1 is required to determine a Prony polynomial
p with r coefficients in formula (75).

Algorithm 7.2.1 (Denoising by Stacking)
Input: Hankel matrix H of size n×n and an ε > 0.

1. Determine the rank r of the Hankel matrix by using the matlab function
19.

2. If the rank r is smaller than the size n of the Hankel matrix:

a) Determine the matrix which consists of all sub-Hankel matrices of the
size r+ 1 by calling function 21.

48 denoising

b) Calculate p by solving formula (75).

3. If the rank r is not smaller than the size n means that it was not possible
to reduce the Hankel matrix. Hence, the resulting Prony polynomial p
was already determined by function 19.

Output: Coefficients p of the Prony polynomial.

Listing 20: Matlab function to determine p and r by stacking the sub-Hankel
matrices.

function [r,p] = calcPByStackingH(H,n,epsilon)

[r,p] = minimizeHankelWithNoise(H,epsilon);

if(r < n)

stackedH = stackH(H,n,r+1);

p = stackedH(:,1:r) \ (-stackedH(:,r+1));

end

end

Listing 21: Matlab function to stack sub-matrices on top of each other.

function stackedH = stackH(H, n, r)

stackedH = [];

for(i = 1 : n-r+1)

stackedH = [stackedH; H(:,i:i+r-1)];

end

end

7.3 comparison

Using the previously determined Prony polynomials it is possible to
calculate the coefficients µ and f, which are used to reconstruct the
function.

When we compare the reconstructed functions with the original
function without noise, we use again the two-norm. The setup for
our comparison looks like the following:

• We are using randomly determined functions by using listing 9

with M = 5 and n = 50.

• Our epsilon is chosen ε = 1e− 8.

Applying this setup resulted in an average error of 2.089657 for Al-
gorithm 7.1.1, which determines the average over all ps. Algorithm
7.2.1 resulted in an average error of 1.4728845 using 20 random gen-
erated test functions. The exact error values for every test run can be
examined in the appendix in Table 5.

The difference in the error values shows that the algorithm which
stacks all sub-Hankel matrices on top of each other performs slightly

7.3 comparison 49

better. The same can be observed in Figure 6 were the gaps between
the red and the blue line are smaller in the third graph than in
the second one. However, Figure 6 also shows that Algorithm 7.1.1
does not improve the result at all. The first graph shows the classical
Prony method without any handling of noise. Comparing the first
two graphs shows that there is no difference at all.

Hence we will continue in the following using Algorithm 7.2.1.

Figure 6: This figure contains three graphs. In general, the red line is the
original function and the blue line is the calculated reconstructed.
The first graph shows the classical Prony algorithm without han-
dling noise explicitly. The second graph shows the denoising by
determining the average Prony polynomial and the third graph
shows the denoising by stacking the sub-Hankel matrices on top
of each other.

8
S O LV I N G T H E B A C K S I D E R E F L E C T I O N B Y U S I N G
P R O N Y ’ S M E T H O D

Chapter 3 already gave a definition of a sinusoidal function

cj · sin(x+ γj), (76)

which is displayed on a screen during the deflectometry. This sinu-
soidal function consists of an amplitude cj and a phase γj with j, the
number of sinusoidal functions (i.e., the number of samples). After
the backside reflection formula (1) shows that this sinusoidal func-
tion can be split up into

a · sin(x+αj) + b · sin(x+βj) = ci · sin(x+ γj)
with j = 1, ...,n the number of samples,

with αj, the phases from the front-side reflection and βj the phases
from the back-side reflection. The corresponding amplitudes are a
and b.

Reformulating this formula

a · sin(x+αj) + b · sin(x+βj) = cj · sin(x+ γj)

⇔
(a
2i
· eiαj · eix − a

2i
· e−iαj · e−ix

)
+

(
b

2i
· eiβj · eix − b

2i
· e−iβj · e−ix

)
=

cj

2i
· eiγj · eix

−
cj

2i
· e−iγj · e−ix

⇔
(
a

2i
· eiαj + b

2i
· eiβj

)
· eix

−

(
a

2i
· e−iαj + b

2i
· e−iβj

)
· e−ix =

cj

2i
· eiγj · eix

−
cj

2i
· e−iγj · e−ix

leads to

cj

2i
· eiγj =

a

2i
· eiαj + b

2i
· eiβj (77)

and

−
cj

2i
· e−iγj = −

(
a

2i
· e−iαj + b

2i
· e−iβj

)
, (78)

because of the linear independence of eix and e−ix.

50

solving the backside reflection by using prony’s method 51

When we take a closer look at formula (77), we observe that

cj ·
eiγj

2i
(79)

can be split up into
2∑
k=1

µk · efk , with µ1 =
a

2i
,µ2 =

b

2i
, f1 = iαj and f2 = iβj (80)

using Prony. The real part of fk is always zero for sinusoidal func-
tions.
This leads to the following algorithm to calculate the requested αs
and βs:

Algorithm 8.0.1 (Decomposition into α and β)
Input: All amplitude and phase samples and an ε > 0. The number of sam-
ples has to be an even number N with N >= 4.

1. Determining the number of rows n and number of columns m of the
images.

2. Determining the number of samples N, by counting the number of pro-
vided amplitudes or phases.

3. For each pixel (k, l):

a) Determine gammaj = [Phases{1,1}(k,l); ... ; Phases{1,N}(k,l)]

.

b) Determine cj = [Amplitudes{1,1}(k,l); ... ; Amplitudes{1,N}(k

,l)].

c) Determine cGamma = cj.*[1/(2*i)*exp(i*gammaj)] from formula (79).

d) Apply ClassicalPronyStepwiseHankel from listing (16) to cGamma to
get [f,mu,newDegree].

e) Switch the ordering in f and µ locally if required by using Algorithm
8.0.2.

f) Set β to zero if required using Algorithm 8.0.3.

4. Check again if β should be set to 0, but this time more globally using
Algorithm 8.0.4.

5. When the correct α1 and β1 have been determined, it is possible to calcu-
late the remaining αj, βj for j = 2, ...,N. In doing so, the following has
to hold true:

αj ≡ (j ·α1) mod 2π

βj ≡ (j ·β1) mod 2π.

Hence, to calculate αj, α1 is multiplied with j and the resulting value is
mapped back to the torus.

Output: αs and βs.

52 solving the backside reflection by using prony’s method

8.0.1 Switching order of f and µ and setting β to zero using the left Neigh-
bor

According to formula (80) [f,mu,newDegree] looks like the following:

newDegree = 2

f =
(
0+i·α1
0+i·β1

)
µ =

(a
2i
b
2i

)
.

However, it has to be considered that the summed elements in for-
mula (80) are commutative. Hence, it can happen that f and µ have
switched orders like:

f =
(
0+i·β1
0+i·α1

)
µ =

(
b
2i
a
2i

)
.

To determine whether the components in µ and f are switched, it
is required to look at the values of a and b. We have to always ensure
that a > b. If this is not fulfilled, we have to switch the coefficients.

This leads to the following algorithm:

Algorithm 8.0.2 (Switching order of f and µ)
Input: f and µ.

For each pixel (k, l):

1. Set: α = Im(f1),β = Im(f2),a = |2 · i · µ1| and b = |2 · i · µ2|.

2. If a < b: Switch α with β and a with b.

Output: α and β.

Additionally, we consider the following use case: If α is equal to β
it is also possible that β has to be zero. Because it is not possible to
differentiate between the case that front- and backside reflection have
the same phase or that there is no backside reflection at all. Therefore,
we have to again examine b afterwards the switching. Examining the
values of α, β and b in those cases shows that the absolute values of
α and β are nearly the same and that b is almost zero. Hence, we can
set β to zero when b is small enough. Sometimes, it is not sufficient
to only use an ε > 0 to check if b is small enough. However, we know
that two neighboring pixels are always very similar. We can assume
some kind of continuity between neighboring pixel values. Hence, we
check if b is smaller than a predefined boundary and if the value of
β does not fit in regarding a neighboring pixel.

If it is required to set β to zero afterwards, can be determined using
the following algorithm:

Algorithm 8.0.3 (Setting β to zero)
Input: α and β.

solving the backside reflection by using prony’s method 53

For each pixel (k, l): If

|b| < ε ∧ !(|β(k, l− 1) −β(k, l)| < ε

∨ (|β(k, l− 1)| < −2.9 ∧ |β(k, l)| > 2.9)

∨ (|β(k, l− 1)| > 2.9 ∧ |β(k, l)| < −2.9))

then β(k, l) := 0.
Output: α and β.

8.0.2 Using the TV-norm for Replacing

The previously described procedure always uses the left neighbor of
the current pixel to determine if the current pixel of β fits in a contin-
uous way or if it should be replaced by 0. In case, the left neighbor
was determined wrong all following pixels in that row might be influ-
enced. Hence, it is crucial to add another step to the procedure after
α and β are assigned for every pixel. The next step again loops over
β, but this time a quadratic area around the current pixel is selected.
The size of this quadratic area is provided by an additional parameter.
Inside this area we determine whether the value of β or 0 fits better.
In doing so, we use the TV-norm for this procedure. The TV-norm of
an image I helps finding differences and is determined by

TV(I) =

n,m∑
k=1,l=1

√
gradX(I(k, l))2 + gradY(I(k, l))2, (81)

with gradX(I(k, l)) is the gradient of I at pixel (k, l) in x-direction
and gradY(I(k, l) is the corresponding gradient in y-direction [7]. The
gradient of an image is basically the difference of two neighboring
pixels vertically or horizontally.

This leads to the following procedure which is applied to the first
solution of the reconstruction:

Algorithm 8.0.4 (Using the TV-norm for replacing)
Input: α and β. A size s for the area where the TV-norm will be applied.

For each pixel (k, l):

1. Set

areaBeta1 :=

(
βk−s,l−s ... βk−s,l ... βk−s,l+s

...
βk,l−s ... βk,l ... βk,l+s

...
βk+s,l−s ... βk+s,l ... βk+s,l+s

)

areaBeta2 :=

(
βk−s,l−s ... βk−s,l ... βk−s,l+s

...
βk,l−s ... 0 ... βk,l+s

...
βk+s,l−s ... βk+s,l ... βk+s,l+s

)

areaB :=

(
bk−s,l−s ... bk−s,l ... bk−s,l+s

...
bk,l−s ... bk,l ... bk,l+s

...
bk+s,l−s ... bk+s,l ... bk+s,l+s

)
.

areaBeta2 is zero at position (k, l).

54 solving the backside reflection by using prony’s method

2. Determine ||areaBeta1||TV , ||areaBeta2||TV and ||areaB||TV .

3. If

|bk,l)| < ε1

∧ |αk,l −βk,l| < ε2

∧ ||areaB||TV < ε3

∧ ||areaBeta1||TV > ||areaBeta2||TV

then set βk,l = 0.

Output: α and β.

8.1 handling noise

If the input does not contain noise, exactly four samples of amplitude
and phase are sufficient to reconstruct the two angles α and β. If more
than 4 samples (e.g., 6, 8 or 10 samples) are used, the rank r of the
used Hankel matrix is still 2. Hence, more input samples provide the
same resulting α and β.

This leads us to our main idea behind the denoising. As already
described in the previous chapter, we are going to stack r+ 1 pack-
ages of the Hankel matrix on top of each other. However, previously
r was determined individually for every function, because the func-
tions were generated randomly. In this case, it was possible that not
the smallest possible rank was found, because of noise. This time, we
know that the functions behave very similarly, because they fulfill for-
mula (76). Hence, we know that the rank of every Hankel matrix is 2.
Therefore, each time the Prony polynomial p is calculated out of the
Hankel matrix, we use a fixed rank of 2.

However, when noise is present, sometimes it is not sufficient any
more to only switch α and β regarding their amplitudes. Noise can
influence the amplitudes, so that a > b might not be fulfilled any
more. For this case it is important to move over the final result and
check if α and β should be switched using the TV-norm. This leads to
the following algorithm:

Algorithm 8.1.1 (Using the TV-norm for reordering)
Input: α and β. A size s for the area where the TV-norm will be applied.

For each pixel (k, l):

1. Set

areaAlpha1 :=

(
αk−s,l−s ... αk−s,l ... αk−s,l+s

...
αk,l−s ... αk,l ... αk,l+s

...
αk+s,l−s ... αk+s,l ... αk+s,l+s

)

areaBeta1 :=

(
βk−s,l−s ... βk−s,l ... βk−s,l+s

...
βk,l−s ... βk,l ... βk,l+s

...
βk+s,l−s ... βk+s,l ... βk+s,l+s

)
.

8.2 evaluation 55

2. Set

areaAlpha2 :=

(αk−s,l−s ... αk−s,l ... αk−s,l+s
...

αk,l−s ... βk,l ... αk,l+s
...

αk+s,l−s ... αk+s,l ... αk+s,l+s

)

areaBeta2 :=

(
βk−s,l−s ... βk−s,l ... βk−s,l+s

...
βk,l−s ... αk,l ... βk,l+s

...
βk+s,l−s ... βk+s,l ... βk+s,l+s

)
.

areaAlpha2 and areaBeta2 are almost equal to areaAlpha1 and
areaBeta1, but the pixels at position (k, l) are switched.

3. Determine ||areaAlpha1||TV , ||areaBeta1||TV , ||areaAlpha2||TV and
||areaBeta2||TV .

4. If

||areaAlpha1||TV > ||areaAlpha2||TV

∧ ||areaBeta1||TV > ||areaBeta2||TV

then switch the current pixel of α and β.

Output: α and β.

8.2 evaluation

This section evaluates the proposed procedure by using three differ-
ent kinds of images of the size 300× 400 pixels. For every kind of
image we provide 4, 6, 8 and 10 samples. The first two kinds are gen-
erated with a maximum wavelength of 96. Originally, the generation
does not contain any noise. Hence, after the reconstruction of the per-
fect images, noise is added to test the performance with more realistic
conditions. The noise was calculated by adding a random number be-
tween −14 and 1

4 to the amplitude and phase. The amplitude has a
value range of [0, 0.55] and the phase is represented by the torus. Dur-
ing different test runs, we have evaluated that the switching of α and
β using the TV-norm performs best with s = 1.

The only difference between those two kind of images is in the
parts of reflection. In the first image every pixel contains a front- and
backside reflection. However, the second image contains also parts
without any reflection at all and some parts with only a frontside
reflection.

The third kind of image was taken during an experiment from a
lens. Hence, we do not have to add noise, because it already contains
noise.

8.2.1 Evaluation of generated basic Images

The following Table 3 gives an overview over the number of incor-
rectly calculated pixels in α and β. A pixel is incorrectly calculated

56 solving the backside reflection by using prony’s method

if its value differs less than 10−5 from its ground truth. The ground
truth is provided, because right now we use generated data.

If no noise is present, the number of errors is very small. The same
can be observed in Figure 7, which shows the corresponding recon-
struction. Basically, β contains one column which was determined
wrong. Examining this column a little closer, we see that at this col-
umn α and β were almost the same. In that case it is almost impos-
sible to decide absolutely correct whether β is also α or zero. In this
image the procedure sometimes decided incorrectly to set β zero.

Table 3: Number of errors in reconstruction (400× 300 pixels)

No Noise Noise

4 Samples 4 Samples 6 Samples 8 Samples 10 Samples

α1 0 22519 12765 6288 4661

β1 528 47769 31000 14160 8938

Figure 7: Reconstructed images of α (left side) and β (right side) with maxi-
mal wavelength and 4 samples (without noise).

When we have a closer look to the reconstruction of the noisy data
in Table 3, we see that the more samples are provided, the less errors
occur in the reconstruction. This can also be observed in Figure 8,
which shows all reconstructed αs on the left and all reconstructed
βs on the right side. Each row represents a different number of used
samples.

Comparing the left- with the right-hand side of Figure 8, we see es-
pecially at the borders of one color that the noise is bigger, because the
values of α and β are sometimes switched. Hence, the calculated val-
ues itself are very accurate, but they are too inaccurate to be assigned
correctly to the images. This behavior improves with an increasing
number of provided samples. Hence, we assume that this behavior
improves even more when further samples are provided.

However, in the noisy case we have still the problem with one in-
correctly determined column where α and β are equal.

8.2 evaluation 57

Figure 8: Reconstructed images of 4, 6, 8 or 10 samples (4 samples are in
the first row until 10 samples are in the last row) containing noise.
On the left side the reconstruction of α and on the right side the
reconstruction of β is displayed.

8.2.2 Evaluation of generated Images containing different Kinds of Reflec-
tion

The previous sample consisted of images where always a front- and
backside reflection is present. However, it is common that on parts
of the image there is no reflection at all, e.g., when the image also

58 solving the backside reflection by using prony’s method

contains a part of the floor around the glass. Moreover, it is also com-
mon that there is only a frontside but no backside reflection. Hence,
we apply the same algorithm to images which contain areas without
any reflection and areas with only a frontside reflection. The num-
ber of errors in reconstruction can be observed in Table 4. Figure 9

shows the reconstruction of this use case without noise. The left im-
age shows again the reconstruction of α and on the right we can see
the reconstruction of β. We notice that in the left upper corner there
is no reflection at all. Both images show green in this area, which rep-
resents zero. Beside this area we see the area where only a frontside
reflection occurs. Here we observe that β is in this area almost ev-
erywhere zero, except at some points where it was not possible to
determine β correctly. In general, this problem can be caused by the
fact that the algorithm can not differentiate directly if α and β are
equal or if β should be zero in this case. The algorithm is only able
to calculate a value for β which is almost equal to the corresponding
value of α. Afterwards, it is necessary to determine the correct value
for β by evaluating the coefficient b. If b is almost zero β can be set
zero. But this procedure depends on limits, which are sometimes not
entirely sufficient. In this case it was not possible to change the limit
in a way to improve the result.

Table 4: Number of errors in reconstruction (containing areas without reflec-
tion and with only frontside reflection on an image with 400× 300
pixels)

No Noise Noise

4 Samples 4 Samples 6 Samples 8 Samples 10 Samples

α1 0 15718 8288 3998 2832

β1 5140 40437 29971 16767 13871

Figure 9: Reconstructed images of α (left side) and β (right side) with maxi-
mal wavelength and 4 samples (without noise).

Figure 10 shows how this kind of images handles noise. We see
again that noise influences the result less when more samples are

8.2 evaluation 59

used for the reconstruction. But we still see that there are sometimes
points which are assigned incorrectly. The area where β should be
zero is denoised as well so that the most of this area is zero. But
the parts where pixels are determined incorrectly are now more con-
nected.

Figure 10: Reconstructed images of 4, 6, 8 or 10 samples (4 samples are in
the first row until 10 samples are in the last row) containing noise.
On the left side the reconstruction of α and on the right side the
reconstruction of β is displayed.

60 solving the backside reflection by using prony’s method

8.2.3 Evaluation of real Images

Figure 11 shows the reconstruction of real images, that were recorded
during an experiment. Hence, there is no table to evaluate the num-
ber of incorrectly determined pixels, because there is no ground truth.
This time, we also do not have a relation between the different wave-
lengths so that we have one maximum wavelength λmax and λj =
λmax
j . Hence, the resulting images do not show the same image using

a different number of samples. The pattern is shifted. However, we
can see that the reconstructed images look relatively smooth, except
at the area where α switches from −π to π. There, we can still see a
noise in the reconstruction of α.

8.2 evaluation 61

Figure 11: Reconstructed images of 4, 6, 8 or 10 samples (4 samples are in
the first row until 10 samples are in the last row) of real data.
On the left side the reconstruction of α and on the right side the
reconstruction of β is displayed.

Part IV

C O N C L U S I O N S

9
C O N C L U S I O N

The goal of this master thesis was to solve the problem of backside
reflection by splitting up the measured phases into its front- and back-
side. Therefore, we provided two approaches.

The first approach uses three samples to create a system of quadratic
equations. Using those equations it is possible to split up the pro-
vided amplitudes and phases into α and β very accurately when no
noise is present. However, if the samples contain noise a sufficient
reconstruction is not possible. The resulting α and β are almost de-
stroyed.

The second approach uses Prony’s method to solve the problem of
backside reflection. This time the reconstruction of samples without
noise was sufficient and almost as accurate as the first approach. How-
ever, this procedure is much more tolerant regarding noise, because
a proper reconstruction is possible. Hence, this approach outruns the
first one especially under real life conditions.

In general, we can conclude that we found a suitable method to
solve the problem of backside reflection using Prony’s method. How-
ever, this procedure still has potential for improvement. Looking at
reconstructions of noisy input data shows that sometimes our condi-
tions are not fulfilled and pixels of the two phases are switched. Until
now we are not able to do this with our algorithm.

63

10
F U T U R E W O R K

Like already mentioned, we have found a procedure using Prony’s
method to solve the problem of backside reflection. However, some-
times we are facing difficulties when we are assigning the calculated
values to the front- or backside reflection with noisy data. We are
able to calculate those values very accurately, but sometimes we are
not able to assign them to the correct kind of reflection. In future, we
have to focus on a method to assign those calculated values globally
to the correct kind of reflection.

Furthermore, the current implementation of the Prony based ap-
proach uses Matlab as programming language. This results in a run-
time of several minutes to calculate a reconstruction of 400 × 300
pixels per image. Additionally, nothing is run in parallel until now.
Hence, we assume that C++ is in general a better choice regarding
performance. Especially, due to the value calculations of the recon-
struction being independent to each other, we can run these calcula-
tions on GPUs. This should decrease runtime drastically.

64

Part V

A P P E N D I X

A
A P P E N D I X

Table 5: Comparison of the error in Algorithm 7.1.1 and 7.2.1

Test Run Algorithm 7.1.1 Algorithm 7.2.1

1 1.565 1.4339

2 2.6526 1.50307

3 1.4495 1.1627

4 1.0249 1.10751

5 1.2361 1.1260

6 1.1104 1.2075

7 3.6609 2.0344

8 0.69813 0.67921

9 2.3032 1.4580

10 1.4998 1.3359

11 0.80171 1.2763

12 2.5664 1.3686

13 4.8923 2.4177

14 2.1361 1.8085

15 2.2998 1.4197

16 1.7188 1.4196

17 1.4831 1.0650

18 1.9818 1.4359

19 3.2293 2.5332

20 3.4833 1.6650

66

B I B L I O G R A P H Y

[1] Gisela Jordan-Engeln and Fritz Reutter. Numerische Mathematik
für Ingenieure. Bibliographisches Institut Mannheim, 1978.

[2] Markus C Knauer, Jurgen Kaminski, and Gerd Hausler. “Phase
measuring deflectometry: a new approach to measure specular
free-form surfaces.” In: Photonics Europe. International Society
for Optics and Photonics. 2004, pp. 366–376.

[3] Gerlind Plonka and Manfred Tasche. “Prony methods for re-
covery of structured functions.” In: GAMM-Mitteilungen 37.2
(2014), pp. 239–258.

[4] Daniel Potts and Manfred Tasche. “Parameter estimation for
nonincreasing exponential sums by Prony-like methods.” In:
Linear Algebra and its Applications 439.4 (2013), pp. 1024 –1039.

[5] Gaspard C. de Prony. “Essai éxperimental et analytique: sur les
lois de la dilatabilité d fluides élastique et sur celles de la force
expansive de la vapeur de l’alkool, à différentes températures.”
In: Journal de l’École polytechnique Floréal et Plairial 1.22 (1795),
pp. 24–76.

[6] Holger Rapp and Christoph Stiller. “Deflektometrische Metho-
den zur Sichtprüfung und 3D-Vermessung voll reflektierender
Freiformflächen.” In: Forum Bildverarbeitung. Vol. 2010. 2010.

[7] Leonid I Rudin, Stanley Osher, and Emad Fatemi. “Nonlinear
total variation based noise removal algorithms.” In: Physica D:
Nonlinear Phenomena 60.1-4 (1992), pp. 259–268.

[8] Tomas Sauer. “Prony’s method: an old trick for new problems.”
In: 2015.

[9] Ron Synowicki. “Suppression of backside reflections from trans-
parent substrates.” In: physica status solidi (c) 5.5 (2008), pp. 1085–
1088.

[10] Alexander Zimmermann. FORWISS, 2016. url: https://www.
forwiss.uni-passau.de/de/.

67

https://www.forwiss.uni-passau.de/de/
https://www.forwiss.uni-passau.de/de/

D E C L A R AT I O N

Hiermit versichere ich, dass ich diese Masterarbeit selbsständig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmit-
tel angefertigt habe und alle Ausführungen, die wörtlich oder sin-
ngemäß übernommen wurden, als solche gekennzeichnet sind, sowie
dass ich diese Masterarbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegt habe.

Passau, October 2017

Miriam Marx

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Overview
	1 Introduction
	1.1 Task of this Master Thesis
	1.2 Structure of this Master Thesis

	2 Theoretical Background
	2.1 Deflectometry
	2.2 Phase Measuring Deflectometry

	First Approach using a System of Equations
	3 Mathematical Background
	3.1 Information from the Recording
	3.2 Calculation of a,b and
	3.3 Determination of and
	3.3.1 Determining a formula for
	3.3.2 Calculation of possible s and s
	3.3.3 Choosing the correct s and s

	4 Implementation
	4.1 Generation of test images
	4.2 Further functionality
	4.2.1 The class of safe mathematical functions
	4.2.2 The class of error exports
	4.2.3 The class of image handling

	4.3 Backside Reflection by using test images
	4.4 Modifications to handle noise
	4.5 Modifications to handle quadratic functions
	4.6 Evaluation

	Prony's Method
	5 Theortical Background of Prony's Method
	5.1 Classical Prony Method
	5.1.1 Eigenvalue Problem

	5.2 ESPRIT Method
	5.3 Matrix Pencil Method

	6 Implementation of Prony's Method
	6.1 Generation of Test-Data
	6.1.1 Equispaced Sampling
	6.1.2 Randomly-spaced Sampling
	6.1.3 Equispaced-Sampling with two Points converging
	6.1.4 Sampling with convergent distances
	6.1.5 Sampling by randomly determining and f

	6.2 Implementation of Prony Algorithms
	6.2.1 Classical Prony Algorithm
	6.2.2 ESPRIT Method
	6.2.3 Matrix Pencil Method
	6.2.4 Reducing of the resulting coefficients
	6.2.5 Classical Prony Algorithm with a stepwise Reduction of the Hankel Matrix

	6.3 Evaluation
	6.3.1 Accuracy depending on Sampling

	7 Denoising
	7.1 Denoising by Averaging the Prony Polynomial
	7.2 Denoising by Stacking Hankel Sub-Matrices
	7.3 Comparison

	8 Solving the Backside Reflection by using Prony's Method
	8.0.1 Switching order of f and and setting to zero using the left Neighbor
	8.0.2 Using the TV-norm for Replacing

	8.1 Handling Noise
	8.2 Evaluation
	8.2.1 Evaluation of generated basic Images
	8.2.2 Evaluation of generated Images containing different Kinds of Reflection
	8.2.3 Evaluation of real Images

	Conclusions
	9 Conclusion
	10 Future Work

	Appendix
	A Appendix
	Bibliography
	Declaration

