
Universität Passau
Fakultät für Informatik und Mathematik

Bachelor’s thesis

Optical Character Recognition on
supermarket receipts

Marco Ziegaus

July 19, 2016

Bachelorarbeit
am Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverarbeitung
der Fakultät für Informatik und Mathematik
der Universität Passau

Erstgutachter: Prof. Dr. Tomas Sauer



Abstract

The objective of this thesis was the development of a proof of concept system that
can recognize text on supermarket receipts and extract the information printed on
the receipts. This information can be used to offer consumer orientied applications,
for example for automatic budgeting and categorizing everyday expenses. Various
challenges to OCR that are specific to receipts and do not occur on ordinary doc-
uments are identified, discussed and solutions are proposed. These challenges arise
from the low printing quality of receipts, e.g. faded printing, small printing and
joint characters and lines. The solutions include techniques for all steps of an typ-
ical OCR system and have been implemented for an evaluation. Both the pure
character recognition as an isolated step and the whole system from preprocessing
to data extraction have been evaluated with promising results. The pure character
recognition, despite using a relatively simple template matching technique, reaches
a recogniton rate of 97,36 %, the data extraction rate is 76,37 % due to subsequent
errors from the character recognition. Several improvements to the system are pos-
sible, the most promising of them in the areas of intelligent autocorrection and data
extraction.



Kurzzusammenfassung

Ziel dieser Arbeit war es, den Prototypen eines Systems zu entwickeln, welches Text
auf Supermarkt-Kassenzetteln erkennen und die abgedruckten Informationen ex-
trahieren kann. Diese Informationen können dazu verwendet werden, Endkundenap-
plikationen für den privaten Gebrauch zu entwerfen, zum Beispiel für das automa-
tische Führen eines Haushaltsbuches und die Kategorisierung alltäglicher Ausgaben.
Verschiedene Herausforderungen, die spezifisch für Kassenzettel sind und bei reg-
ulären Dokumenten nicht auftreten, werden identifiziert, beschrieben und Lösungen
zu diesen Problemen werden vorgestellt. Diese Herausforderungen entstehen durch
die geringe Druckqualität von Kassenzetteln, wie z.B. verblasste Schrift, kleiner
Druck und miteinander verbundene Buchstaben und Zeilen. Die vorgestellten Lö-
sungen zu diesen Problemen beinhalten alle Schritte eines typischen OCR-Systems
und wurden für eine Evaluierung implementiert. Sowohl die reine Erkennung einzel-
ner Buchstaben als isolierter Schritt als auch das ganze System vom Preprocessing
bis hin zur Datenextraktion wurden mit vielversprechenden Ergebnissen evaluiert.
Die reine Buchstabenerkennung erreicht trotz eines simplen Template-Matching-
Verfahrens eine Erkennungsrate von 97,36 %, der Anteil der korrekt extrahierten
Informationen ist aufgrund von Folgefehlern aus der Buchstabenerkennung 76,37 %.
Das System bietet die Möglichkeit zu weitereichenden Verbesserungen, insbesondere
im Bereich der intelligenten Autokorrektur und der Datenextraktion.



Contents

1 Motivation 1

2 Introduction 2
2.1 Limitations and assumptions . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Introduction to OCR . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Challenges of supermarket receipts 5
3.1 Printing quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Missing pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 White flow marks . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.3 Dark spots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.4 Faded printing . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Small printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Advantages of supermarket receipts 9
4.1 Monospaced font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Machine readable layout . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Proposed solutions & implementation 11
5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1.1 Binarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1.2 Black edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Line segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.1 White row strategy . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Relative pixel count strategy . . . . . . . . . . . . . . . . . . . 18
5.2.3 Median pixel count strategy . . . . . . . . . . . . . . . . . . . 19
5.2.4 Pixel count gain strategy . . . . . . . . . . . . . . . . . . . . . 20

5.3 Character segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.1 Monospace strategy . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 Other strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Character recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.2 Generation of templates . . . . . . . . . . . . . . . . . . . . . 25
5.4.3 Template matching . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4.4 Reliability prediction . . . . . . . . . . . . . . . . . . . . . . . 29
5.4.5 Proposed improvements . . . . . . . . . . . . . . . . . . . . . 30

5.5 Simple autocorrection . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5.1 Corrected errors . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5.2 Proposed improvements . . . . . . . . . . . . . . . . . . . . . 36

5.6 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.6.1 Desired information . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6.2 Text processing . . . . . . . . . . . . . . . . . . . . . . . . . . 38



Contents v

6 Evaluation 42
6.1 Evaluation of character recognition . . . . . . . . . . . . . . . . . . . 42

6.1.1 Evaluation of reliability classes . . . . . . . . . . . . . . . . . 43
6.2 Evaluation of data extraction . . . . . . . . . . . . . . . . . . . . . . 44

7 Future work 48

8 Conclusion 49

List of Tables 51

List of Figures 53

Source code listing 54

Bibliography 55



1 Motivation

Optical Character Recognition (OCR) is the technology of automatic reading of
printed text, just as humans do. First attempts to recognize text were made in the
19th century with optical and mechanical template matching. In the 1950’s, the first
OCR machines became commercially available that were based on digital computer
technology. Since then, OCR was more and more improved and especially used in
industrial and office environment which they have been optimized for, e.g. reading
addresses on mail, parcel ids on packaging and assistance for manual data entry. [1]
[2] In recent years, OCR has been widely used to digitize books.

All these applications have in common that they are used in a commercial environ-
ment. There are few consumer orientied products that utilize OCR technology. This
may be due to the fact that the cost of OCR is easier covered in commerical appli-
cations. However, consumer orientied OCR applications have quite some potential
to improve everyday life and increase the individual productivity.

In this thesis, a proof of concept for such an application is presented. Supermarket
receipts are widely used for documentation purposes in everyday life. Most people
don’t bother to even look at receipts at all, but a growing number uses budgeting
apps to track their expenses and incomes. The data from supermarket receipts can
be used to automate and refine the process of tracking expenses. As the data is only
available in printed format, users would have to manually type in the values from
the receipt. This is where OCR can be used to offer a fast and easy to use solution
to automatically budget small expenses with high accuracy.



2 Introduction

In this thesis, first a short introduction to OCR in general is given before taking
deeper look on the challenges that recognizing text on supermarket receipts has.
Subsequently the details of the proposed solutions to these challenges and their
implementation are discussed. Finally, the evaluation and proposed improvements
will be considered.

2.1 Limitations and assumptions

In this thesis, only receipt images from a flatbed scanner (DR-7080C) are used and
processed during development and evaluation. These scans are more straight and
do not suffer from distortions as camera pictures would do.

Furthermore, only receipt images from a single store with cash payments are used.
This simplifies the process due to the consistent font and layout structure.

2.2 Introduction to OCR

Figure 2.1: A typical workflow of an OCR system

OCR systems usually consist of several steps to be performed as depicted in fig-
ure 2.1. After scanning a piece of typed or handwritten text with a photo camera
or an document scanner, the resulting digital image is preprocessed to enhance the
input quality. This often includes binarization (see figure 2.2) of the image and
filtering artifacts from poor printing or scanning of the document.



2.2. Introduction to OCR 3

Figure 2.2: The original scanned image (grayscale) and the binarized counterpart

During the text area segmentation, areas with figures and blank space are sepa-
rated from areas of actual text. After that, the individual characters are separated
from each other. This task is crucial for the actual character recognition in the
next step as usually only one character can be reconized at a time. The charac-
ter recognition itself can be performed by a simple template-based approach or via
an feature-based method. In the template-based approach, the difference between
the optically scanned character image and a set of template images is calculated.
Such a template image is depicted in figure 2.3 for an example. Usually, the char-
acter with the smallest difference is considered as the best match. For more details
about a template-based approach, see sections 5.4 and 5.4.3. For a feature-based
approach, a feature set is extracted from the scanned character. Possible features
may include the ratio of black to white pixels or the number of times the black pixels
are crossed by predefined vectors. After recognizing the individual characters, they
need to compiled to a coherent text. Postprocessing can include correcting errors by
using context information, dictionaries and frequency statistics as well as extracting
information from the recgonized text.



2.2. Introduction to OCR 4

Figure 2.3: A single extracted character and the associated template image (see sec-
tion 5.4.2 for details). The extracted character is the first occurrence of
an lowercase “a” in the receipt from figure 2.2 (in “Nibelungenplatz”)



3 Challenges of supermarket receipts

Performing OCR on supermarket receipts has specific challenges that must be met.
As receipts are designed to be produced with lowest possible cost, most of these
challenges result from poor printing quality.

3.1 Printing quality

Printing quality is a major issue when recognizing text on supermarket receipts.
Usually thermal printing is used to keep printing and maintenance costs low. How-
ever, thermal printing often causes artifacts such as missing pixels, white flow marks
or dark spots.

3.1.1 Missing pixels

In many cases, characters of the same type share only some parts of their shape
because individual pixels or even blocks of pixels are missing due to low printing
quality. This makes recognizing them correctly more difficult than on regular doc-
uments. In figure 3.1 the first six occurrences of an lowercase “a” from a receipt
and the first six occurences from an ordinary document (printed by an regular laser
printer) are shown. While the characters from the ordinary document are rather
similar to each other, the letters from the receipt look quite different. As a mat-
ter of fact, the receipt images from figure 3.1 have 63 % of their pixels in common
while the document images have 86.5 % of their pixels in common. This similarity
of the images has been calculated by counting the number of pixels that are the
same (black or white) on all 6 images of the receipt respectively the document. This
includes both white and black pixels.

Figure 3.1: Left: Six lowercase “a” characters from the receipt in figure 2.2
Right: Six lowercase “a” characters from an ordinary printed document



3.1. Printing quality 6

3.1.2 White flow marks

White flow marks as depicted in figure 3.2 can cause character shapes to be discon-
nected. This results not only in large missing parts of the character but also makes
it hard to distinguish characters in a character sequence. For example, the character
“n” from figure 3.2 may also be two characters, an “r” and an “i”.

These disconnected characters are especially a concern during the character seg-
mentation. Many character segmentation strategies rely on a character’s parts to be
connected, or at least be overlapping horizontally. These characteristics are often
destroyed by flow marks that are produced by receipt printers.

Figure 3.2: A receipt with white vertical flow marks (visible on the top logo) and
characters extracted from this receipt

3.1.3 Dark spots

Due to dirt on the receipt paper and low quality of thermal printing dark spots are
found within normally white areas, as depicted in figure 3.3. These spots will be
extracted during character segmentation and be detected as characters that look
alike, e.g. dots or asterisks.



3.1. Printing quality 7

Figure 3.3: A segment of a receipt with dark spots on blank areas (grayscale scan).

3.1.4 Faded printing

Thermal printing products tend to fade with time, especially when exposed to light
or heat. This leads to pale characters with thin lines. Often these characters are
hard to recognize even for humans when looked at without context (see figure 3.4).

Figure 3.4: Faded characters: “E”, “H”, “R”, “b”, “M”, “n”

Faded characters, even though they might not be as faded as in figure 3.4, cause
difficulties during character recognition since many of the pixels that are dark on
the template are white on the actual character. In figure 3.5 such an example is
shown.

Figure 3.5: A faded uppercase “E” and the associated template image.



3.2. Small printing 8

3.2 Small printing

Receipts are usually printed with small font and little line and character spacing. For
bold fonts, this results in characters being connected to each other, as illustrated in
figure 3.6. Connected letters are difficult to process during character segmentation.
Often a sharp separating line cannot be determined as both characters merge on
their edges. This leaves excessive black pixels on the extracted characters which
decrease the recognition accuracy.

Figure 3.6: Small printing, little character spacing and bold font leads to horizontally
connected characters. In this example, the letters B and A are connected
in the word “BAR”.

In some cases, characters are connected or overlapping vertically due to small line
spacing. This increases the difficulty to separate two lines from each other, which
can effect the character recognition for all letters on both lines.



4 Advantages of supermarket
receipts

Apart from having challenges, performing OCR on receipts has a couple of advan-
tages over ordinary documents, too. They result mostly from the simplicity of the
printing procedure.

4.1 Monospaced font

Receipts usually have a monospaced font. That means that each character will take
up the same horizontal space regardless of their actual width. Thin characters, such
as “i”, “l” or “1” have a larger padding on the left and right than wide characters
like a “T”.

Figure 4.1: A short sequence from a receipt in monospaced font and from an ordinary
document in proportional font.

A monospaced typeface is a great advantage for character segmentation. Given a
single line of printed text, the individual characters can be separated from each other
by slicing the line in constant intervals with the width of one character. Details on
this technique can be found in section 5.3.1.

4.2 Machine readable layout

Receipts are usually structured in a table-like layout which makes it easy to interpret
the chracters written on them. Technically, this is not a part of OCR; nevertheless
it can be used to intelligently correct the output from optical character recognition.

For example, the prices are always printed on the right side of an receipt. This means
that common errors, such as mistakenly recognizing a zero (“0”) as an uppercase



4.2. Machine readable layout 10

“O” or a one (“1”) as an lowercase “l”, can easily be corrected. If any uppercase “O”
appears on the right side of receipt, it can be changed to a zero during postprocessing.

Besides, a tabular layout makes it easy to extract the desired information, such as
the bought products and their quantity and prices, the date and time or the total
sum, as explained in section 5.6.



5 Proposed solutions &
implementation

To provide a showcase and proof of concept for the proposed solutions to the chal-
lenges described in chapter 3, an implementation of an OCR system for supermarket
receipts has been developed in the course of this thesis, called OCRAM 1. After a
short review of existing open source implementations of OCR sytems, especially
Java OCR [3] it was clear that regular OCR systems are developed and optimized
for other purposes2 than recognizing text on supermarket receipts with their special
challenges and advantages shown in chapters 3 and 4. For example, running Java
OCR on supermarket receipts resulted in inaccurate line and character segmentation
which often leads to several lines and characters recognized as one, as depicted in
figure 5.1.

Figure 5.1: Top: Two lines are segmented as one by Java OCR.
Bottom: Four characters, as they have been segmented by Java OCR.

As stated in chapter 1 of this thesis, the implementation is supposed to be a proof-of-
concept for a consumer oriented application. As scanning a supermarket receipt on a
stationary computer or laptop would be too laborious for a end user, the application
targets mobile devices. Users could easily take a picture of the receipt with their
smartphone and have the contents be recognized automatically.
Android 3 is currently the world’s most used operating system for smartphones4.
Its apps run in a Java Virtual Machine and are developed in Java. The proposed
implementation is written in Java to keep the possibility open to extend it to con-
sumer applications. Moreover, Java is a well known and widely used programming
language5 among software developers. Therefore OCRAM can easily be adapted,
forked and maintained for future development.

1OCRAM has been choosen as a name as it is the reversed first name of the author of this thesis.
2For example digitalization of books.
3http://www.android.com
4http://www.statista.com/statistics/266136/global-market-share-held-by-

smartphone-operating-systems
5See e.g. TIOBE index: http://www.tiobe.com/tiobe_index

http://www.android.com
http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
http://www.tiobe.com/tiobe_index


5.1. Preprocessing 12

This chapter is structured in the same way the processing of a receipt image is
performed. Each section describes one step in the system and relies on the output
of the previous step respectively section.

5.1 Preprocessing

Before text can be recognized on any kind of printed document, it usually needs to
be prepared in some kind of way. This preprocessing usually includes binarisation
and often contains further steps such as applying filters. During development of
OCRAM it was found that apart from binarisation it was necessary to remove dark
areas on the edges of the scanned image which were converted to a black block
during binarisation.

5.1.1 Binarisation

After scanning, the receipt is available as a color or grayscale image. To recognize
characters however, each pixel needs to be identified as a black or a white pixel.
To simplify further processing, the scanned image is converted to a binary image
with black and white pixels only. This accelerates the process, as the discrimination
between a black and a white pixel has to be done only once and not several times
during different steps of the OCR system (e.g. character segmentation, character
recognition, etc.).

The basic idea of binarisation is to decide for each pixel of an image whether it should
be treated as white or black. This can be achieved by a fixed, hardcoded threshold
or a dynamically calculated threshold using Otsu’s method. OCRAM supports both
methods, which will be introduced in the following sections.

5.1.1.1 Fixed threshold

A fixed threshold is simple to implement but will suffer from calibration issues.
Given a grayscale image with gray values ranging from 0 (black) to 255 (white), a
fixed threshold means all pixels that have a grayscale value below or equal to the
threshold will be considered black while all pixels with a grayscale value greater
that the threshold will be considered white. The challenge is to find a threshold
that detects all black pixels of characters as black while leaving blank areas white.

In figure 5.6 the core of the problem is depicted. A coherent choice for a fixed
threshold would be 127, as it would set the threshold in the middle of the gray scale.
However, a threshold as low as 127 leads to thin printing in the resulting binarized
pixels as the pixels on the edge of single characters are usually lighter that the core
pixels. When using a higher threshold like 200, the character’s shapes are correctly
binarized, but black spots are scattered among the characters and blank areas.



5.1. Preprocessing 13

Figure 5.2: A typical receipt image. If not stated otherwise, all examples and figures
in this chapter were generated from this receipt.



5.1. Preprocessing 14

Figure 5.3: A piece of a receipt in grayscale (top), binarized with a threshold of
127 (center) and 200 (bottom). The first threshold leaves black pixels
from the script white while the second causes black spots among the
characters.

The challenge of finding a good threshold gets even more difficult when processing
different receipts which can have different levels of grayscale values for the script
and white areas. When using different scanners or cameras with various brightness
environment, no predefined threshold will be sufficient for all images. For this reason,
a dynamic threshold is required that is calculated for each image.

5.1.1.2 Dynamic threshold with Otsu’s method

A dynamic treshold which is caluclated separately for each image can be used when
a fixed threshold is not applicable due to a high variance in the brightness of the
image set. For the implementation of OCRAM, a method proposed by Nobuyuki
Otsu in 1979 [4] [5] is used. It relies on optimizing for a minimum variance within
the classes (here: black and white pixels) and a maximum variance between the
classes.

To achieve this, a histogram of the grayscale values of the document’s pixels as
in figure 5.4 is generated. Then, a threshold t is sought-after that maximizes the
variance between the pixels below and above this threshold.

When comparing figure 5.4 and figure 5.5, it can be seen that receipts are more
“fuzzy” in their gray scale values. In figure 5.5, the rising edge for the majority of
white (or very light) pixels is steeper and starts on higher (brighter) levels. This
means that, where pixels can be separated into black and white quite sharply on
ordinary documents, they are rather gray-in-gray for supermarket receipts.

Therefore, determining a good threshold is even more important. Otherwise the
next steps (line segmentation, character segmentation and character detection) will
be more prone to errors.



5.1. Preprocessing 15

Figure 5.4: Histogram of a receipt’s pixels’ grayscale values.

Figure 5.5: Histogram of an ordinary document’s pixels’ grayscale values.



5.1. Preprocessing 16

Figure 5.6: A piece of a receipt in grayscale (top), binarized with a threshold of 127
(center-top), 200 (center-bottom) and 161 (bottom). The threshold of
161 has been calculated by using Otsu’s method.

5.1.1.3 Colored images

For colored images, the binarisation is similar to grayscale images. However, instead
of reading the luminosity of a pixel directly off the grayscale value, it needs to be
calculated based on the color channels. This can be done by weighting all color
channels equally or by weighting them differently to simulate human perception or
extract particular image features.

5.1.1.4 Further improvements

Further improvements for binarisation include using better thresholding techniques
[5] and using local thresholds instead of a global threshold. Different regions on a
document may have different distributions of background brightness. This applies
especially to thermal printed documents, such as supermarket receipts. Different
thresholds could be calculated and applied separately for these regions, for example
by extracting the characters first and then calculating a threshold for each character.

In addition a second run of binarisation could be performed. In this second run, all
white pixels in a perimeter of e.g. 2 pixel around an black pixel are scanned. If such
a pixel is sufficiently dark, it can be considered black, too. This way, the character’s
shapes are not that faded anymore while keeping dark spots in white areas black.



5.2. Line segmentation 17

5.1.2 Black edges

As shown in figure 5.7, scanning can cause dark edges which are converted to black
edges during binarization. This leads to problems during line and character segmen-
tation. To avoid these problems, the edges of the input images are overwritten with
white pixels. This can be done safely because the receipts are printed with margins.

Figure 5.7: Dark/black edges resulting from a scan (left: original grayscale, right:
binarized).

5.2 Line segmentation

In OCRAM, the workflow differs from the workflow shown in section 2.2 and fig-
ure 2.1. As receipts typically do not contain any graphics apart from the market’s
logo, text area segmentation is skipped. Instead, the step of character segmentation
is divided into line segmentation and character segmentation.

During line segmentation, a given document is divided into several lines. The result
is displayed in figure 5.8. The separated lines can then be extracted and saved as
image files or are further processed for character segmentation.

Figure 5.8: A part of a binarized receipt and the individual, separated lines of text.

5.2.1 White row strategy

A simple strategy to detect lines in a printed image is separating them by white pixel
rows. A pixel row is the set of all pixels with the same y-coordinate. If and only
if such a row consists only of white pixels it is viewed as whitespace and therefore
separates two lines. This approach is utilized by Java OCR.

Unfortunately, it shows poor performance when two text lines are connected in one
or more places, as depicted in figure 5.9. In this case, no all-white pixel row can be
found that separates the lines and they will be recognized as one line. As explained



5.2. Line segmentation 18

Figure 5.9: The “g” and the “2” are connected via one black pixel. This results in
both lines being detected as one when using the white row strategy.

in section 3.2, receipts often have small line spacing. Therefore, connected lines are
a major issue.

In addition, this technique would face problems when confronted with a line that
consists solely of x-height characters (such as a, c, e, m, . . . ) and characters with a
dot above (such as i, j, ä, ö, ü, . . . ). In this case, the dots would be cropped out of
the line due to the whitespace between the character and the dot.

On account of the issues mentioned above, OCRAM does not implement this strat-
egy. There are better choices, which will be introduced in the following sections.

5.2.2 Relative pixel count strategy

Other than the white row stratgey, the relative pixel count strategy relies not on
completley white pixel rows, but on predominantly white pixel rows. A fraction
parameter tolerancePortion can be specified that will act as a threshold to treat a
pixel row as mostly white (and therefore whitespace between text lines) or as part of
a text line. That is, if the portion of black pixels in a pixel row is below the specified
threshold tolerancePortion, this pixel row will be considered white.



5.2. Line segmentation 19

All pixel rows between two predominatly white rows will be combined to one text
line if the resulting line’s height is at least 90 % of the typical x-height in the given
font (specified via a paramter). For this reason, the horizontal dividers in figure 5.8
between “SUMME” and “Geg. BAR” are not recognized as lines.

In contrast to the white row strategy, this strategy would correctly separate the two
text lines in figure 5.9. However, the paramter tolerancePortion has to be choosen
correctly. If it is too low, lines as in figure 5.9 will not be handled correctly. If
tolerancePortion is too high, lines might be cropped at the top or the bottom, e.g.
when a line consists of mostly x-height characters (such as a, c, e, m, . . . ) and a few
ascender characters (such as b, d, f, h, k, . . . ). These ascenders would represent a
small portion of black pixels on the top of the line. If this portion is smaller than
tolerancePortion, the characters would only be recognized at their x-height and the
ascenders would be cropped.

Furthermore, the appropiate tolerancePortion depends on the typical number of
black pixels that are contained in a pixel row within a text line. This number
increases for bold font lines and for lines with many characters while it decreases for
faded script and for lines with few characters, e.g. the line with the text “EUR” in
figure 5.10.

Figure 5.10: The line “EUR” has less black pixels per row than the other lines. This
can cause problems for an inaccurate threshold in relative pixel count
strategy.

5.2.3 Median pixel count strategy

Similar to relative pixel count strategy, this relies on a threshold to determine
whether a pixel row is predominantly white or black. But in contrast, this threshold
is not configured by a tolerancePortion parameter, but it is calculated based on the
overall black pixel density on the current receipt.

For this, the number of black pixels is counted for each pixel row. Subsequently, the
median is calculated. This median m, together with a factor f, 0 < f ≤ 1 will
serve as the threshold t:

t = f ·m

In contrast to the relative pixel count strategy, this respects different font weights
which can occur due to faded printing. However, again a factor f needs to be choosen
to determine the threshold. Furthermore, it has similar flaws in matters of lines with
few characters.



5.2. Line segmentation 20

5.2.4 Pixel count gain strategy

Figure 5.11: The distribution of black pixels per row. The lines of text are easily
recognizable. E.g., the thin heights around row index 1600 are the
line separators between the lines “FRUCHTQUARK”, “SUMME” and
“Geg. BAR” in figure 5.2.

Other than the previous techniques, the pixel count gain strategy does not rely on
single pixel rows. Instead, it first calculates the number of black pixels for each row
(cf. figure 5.11) and detects rising and falling edges.

If the cumulative gain of an edge exceeds a parameterized minimum, this edge is
used as the begin or end of a text line. For rising edges, the start of the edge is
considered the begin of the text line. For falling edges, the end of the edge is used
as the end of the text line. For an illustration view figure 5.12.

To distinguish the rising and falling edges that indicate the begin and end of a text
line from the edges in between the lines, a parameter minGain is used. Experience
has shown that a value of 3 ≤ minGain ≤ 5 delievers good results. Edges are only
recognized if their cumulative gain exceeds this minimum.

The gain g(y) of a pixel row y in comparison to the previous row is calculated as
follows:

g(y) = b(y)
b(y − 1)

with b(y) being the number of black pixels in row y.



5.2. Line segmentation 21

Figure 5.12: A snippet of a receipt and the distribution of black pixels per row. This
is bascially a zoom of figures 5.2 and 5.11. The edges on the start and
end of lines are easily recognizable.

The cumulative gain gcum of an edge that starts on pixel row ystart and ends on row
yend is then calculated as follows:

gcum = g(ystart) · g(ystart + 1) · g(ystart + 2) · · · g(yend − 1) · g(yend)

=
yend∏

y=ystart

g(y)

Practice has shown that the pixel count gain strategy works best without critical
flaws. It can reliably handle lines that cross over and does not crop top parts of
ascenders or bottom parts of descender characters (characters that extend below the
baseline, such as y, g, j or p). Improvements can be made by optimizing minGain
with a large set of test documents and by applying various filters to enhance the
differentiation between edges at start and end of a line and edges that occur within
a line.



5.3. Character segmentation 22

5.3 Character segmentation

Before text can be recognized, the individual characters have to be separated from
each other, as depicted in figure 5.13. As for line segmentation, several techniques
can be applied, some of them share the basic idea with their line segmentation
counterparts.

Figure 5.13: A line and the individual extracted characters from this line after char-
acter segmentation. The borders around the characters are for visuali-
sation purposes only and are normally omitted.

5.3.1 Monospace strategy

As mentioned in section 4.1, receipts usually have a simple, monospaced font. If the
width of a character and the character spacing is known, this can be used by slicing
the line in regular intervals.

For the receipts that were used in this thesis (see section 2.1 for details), the font
specifications have been investigated manually on 600 dpi scaned images. The exact
specifications can be found in table 5.1.

Plain font Bold font
Character width 34 37
Character spacing 6 3
Character slot width 40 40
X-height 47 47
Ascender height 20 20
Descender height 7 7
Line height 74 74
Cap height 67 67
Line spacing/leading 3 3
Total line height 77 77

Table 5.1: Font specifications for the examined receipts. All values are in pixels on
a 600 dpi scan. Fat values are derived from other values in this table.

The monospace strategy utilizes these font specifications. The general idea is to find
the start of the first character in a line (i.e. the leftmost black pixel of a character)
and then slice the line into regular parts with a length of characterSlotWidth. The
result are individual character images as in figure 5.13.



5.3. Character segmentation 23

To determine the start of the first character, all pixel columns (cf. pixel rows in
section 5.2.1) within the line are analyzed and evaluated based on their portion of
black pixels. If a sufficient portion of the pixels in such a column is black, the column
is considered a black column, otherwise it is considered a white column. The current
implementation uses a 10 % threshold.

However, if the start of the first character is taken as start for the slicing process, the
characters are often not horizontally centered and parts of characters are in wrong
slices, as depicted in figure 5.14. This behavior induces problems in later steps,
especially during character recognition, as equal characters differ from each other
due to position shifting and artifacts from neighboring characters.

Figure 5.14: A set of characters, sliced in regular intervals, starting at the first char-
acter’s leftmost pixel. The characters are not horizontally centered and
some include parts from other characters, e.g. the image for the char-
acter “9” has a piece of the character “4”.

To avoid these problems, the character spacing to the left of the first character (left
padding) must be considered. This padding can be viewed as half of the spacing
between two characters, i.e. 3 pixels on a 600 dpi scan with plain font (cf. table 5.1).
Because the exact padding depends on the font, the printing quality of the first letter
and other variables, OCRAM slices the line in variants with different paddings on
the left of the first character and then determines which padding worked best. To
do so, the total number of black pixels in the padding areas of each character –
the three leftmost and three rightmost pixel columns – is counted for every variant.
The variant with the fewest black pixels in the padding areas is then considered
the best attempt and its slices are used for further processing. See listing 5.1 for a
pseudocode explanation of the process.

5.3.2 Other strategies

Apart from the monospace stratgey, several other strateies have been implemented
and evaluated. These represent the vertical counterparts to strategies presented in
section 5.2. Relative pixel count strategy and median pixel count strategy show poor
performance due to characters that are crossed over in large parts of their height.
For example, the characters “B” and “A” in figure 5.15 are horizontally connected
in 18 vertical pixels at the smallest connection. Considering a character height of
64 pixels and a total line height of 77 pixels (cf. table 5.1), this is a portion of 28 %
respectively 23 %. On the other hand, the character “U”, though being in bold font,
only has 5 vertical pixels at the smallest connection. With such circumstances, it
is impossible to find a threshold of vertical black pixels that reliably separates two
characters. Similar issues arise when using the pixel count gain strategy. Because
the portion of a connection between two characters can be relatively high while and



5.4. Character recognition 24

1 public List detectCharacters ( OCRLine line) {
2

3 List [] sliceVariants = new List[ maxLeftPadding ];
4 int [] blackPixelsInPaddingAreas = new int[ maxLeftPadding ];
5

6 for(int i = 0; i <= maxLeftPadding ; i++) {
7 int leftPadding = i;
8 List variant = sliceLineWithLeftPadding (line , leftPadding );
9 int blackPixels = countBlackPixelsInPaddingAreas ( variant );

10 sliceVariants [i] = variant ;
11 blackPixelsInPaddingAreas [i] = blackPixels ;
12 }
13

14 int bestVariantIndex = findIndexWithLowestValue (
blackPixelsInPaddingAreas );

15 List bestVariant = variants [ bestVariantIndex ];
16

17 return bestVariant ;
18 }

Listing 5.1: Java-style pseudocode to determine the best variant for slicing characters

the portion of a thin horizontal connection inside one character can be low, there is
no possibility to distinguish between steep edges between two characters and inside
a character. This issue becomes even more critical when considering the flowmarks
shown in figure 3.2.

Figure 5.15: The characters “BA” are connected in 18 vertical pixels at the narrow-
est column. The character “U” is only connected in 5 pixels at the
narrowest column.

5.4 Character recognition

5.4.1 Preprocessing

Preprocessing of the entire receipt image has already been discussed in section 5.1.
Now, the individual character images are again prepared and enhanced for the char-
acter recognition.



5.4. Character recognition 25

At the current state of development, this preprocessing includes only the centering
of the character in the image. The center of mass (COM ) is used as center of the
character. The COM is calculated by the algorithm displayed in listing 5.2. Once
the COM has been calculated, the image is shifted so that the COM is centered in
the image, as shown in figure 5.16.

Figure 5.16: Top: Original position of the characters.
Bottom: Centered on center of mass.
The red dots indicate position of the center of mass.

This centering increases the robustness against small shifts due to an imperfect line
and character segmentation. These small shifts would cause differences between
two otherwise similar characters. However, in some cases information is partly lost
when centering the character, e.g. for the character “L” in figure 5.16. Furthermore,
centering causes small dark spots (which are usually caused by printing defects or
dirt on the paper) on the receipt to be centered the same as dots and commas. This
sometimes leads to the dark spots being recognized as dots or commas, as both are
basically a set of black pixels in the middle of the character image. Despite these
drawbacks centering the images has a significant impact on the recognition quality.

Possible improvements during proprocessing are various filters that correct printing
defects such as missing pixels or dark spots. First experiments with a median filter
and mean filters showed promising results. Since mean filters blur the images, the
characters would also gain resemblance to their templates (see section 5.4.2).

5.4.2 Generation of templates

For each character that may occur within the given text, a template image is needed.
While processing the receipts that were used for this thesis, a total of 73 unique
characters (cf. table 5.2) were found. For each of these characters, appropiate
templates need to be found.

A good template image is one that has a high similarity to all images of the same
character, while maintaining a low correlation to all images of different characters.
In OCRAM, the template for a character is generated by computing the average
across all known images of that character (training images). As the quality of single
character images is rather bad (see section 3.1), no individual image can be used as



5.4. Character recognition 26

1 public static float [] calculateCenterOfBlackMass ( IOCRImage image) {
2 int sumX = 0;
3 int sumY = 0;
4 float blackPixels = 0;
5

6 for (int y = 0; y < image . getHeight (); y++) {
7 for (int x = 0; x < image . getWidth (); x++) {
8 if (image . isPixelBlack (x, y)) {
9 sumX = sumX + x;

10 sumY = sumY + y;
11 blackPixels ++;
12 }
13 }
14 }
15

16 float weightX ;
17 float weightY ;
18

19 if ( blackPixels == 0) {
20 //if there were no black pixels at all , use the middle of the

image
21 weightX = image . getWidth () / 2f;
22 weightY = image . getHeight () / 2f;
23 } else {
24 weightX = sumX / blackPixels ;
25 weightY = sumY / blackPixels ;
26 }
27

28 return new float []{ weightX , weightY };
29 }

Listing 5.2: Calculation of the center of mass.

a character prototype. In addition, the exact prototypes (as used by the printer) are
not available and OCRAM has to deal with different font variations (e.g. plain and
bold) Therefore, the average across all training images of a character is a reasonable
choice and an approximation of the exact character prototype.

Examples for the resulting template images are depicted in figure 5.17. Most tem-
plate images look like blurred versions of an exact prototype. For some templates,
however, the individual images that were combined in that template are still visible
due to a small number of training images. The percent sign in figure 5.17 is a good
example for this. In all receipts that were processed in the context of this thesis,
only 6 percent signs occured, while a common character such as an lowercase “e”
occured 1467 times (see table 5.3 for details).

5.4.3 Template matching

Matching unknown character images with template images is the core of OCRAM. In
this step, the unknown image is compared with all templates (in total 73 templates,
see table 5.2). For each comparison, the distance respectively the error between
image and template is calculated. For each pixel px,y at position (x, y) ∈ P in the



5.4. Character recognition 27

Count Comment
Lowercase letters 26 including ä, ü, without ö, ß, j, q
Uppercase letters 26 only standard Latin letters
Numberals 10
Special characters 11 * BLANK ; , - . ! % + ? /
Sum 73

Table 5.2: Characters in the receipts used for this thesis. See table 5.3 for details.

Figure 5.17: Templates for e, A, 5 and %. Due to different frequencies of occurence
the templates have varying blur.

set of pixels P , the difference e(px,y) between the grayscale value of the template
image gt(px,y) and the unknown image gu(px,y) is calculated.

e(px,y) = gt(px,y)− gu(px,y) (x, y) ∈ P

Based on these distance values, the Root Squared Mean Error ( RMSE) is calculated.

RMSE =

√
P∑
e(px,y)2

Finally, the RMSE is normalized to a value between 0 and 1, which is the Normalized
Root Mean Squared Error (NRMSE), by dividing it by 255, the maximum grayscale
value.

NRMSE = RMSE
255

The NRMSE is then used as measure of distance between a template image and an
unknown image. A value of 0 means total correlation between both images; basically,
the compared images are identical. A value of 1 will be calculated for two images
that are exactly inverse, i.e. each black pixel from image1 is black in image2 and
vice versa. If one or both of the images has grayscale values other than 0 and 255
(i.e. other than absolute black and absolute white), a NRMSE of 1 is not possible.



5.4. Character recognition 28

A 694 a 730 0 890 * 3130
B 557 b 241 1 566 BLANK 11156
C 126 c 181 2 526 : 366
D 127 d 333 3 313 , 597
E 944 e 1467 4 298 - 121
F 201 f 79 5 341 . 450
G 201 g 322 6 190 ! 58
H 128 h 283 7 193 % 6
I 193 i 521 8 205 + 3
J 56 j 0 9 459 ? 73
K 216 k 539 / 106
L 158 l 248
M 320 m 161
N 371 n 717
O 208 o 185
P 310 p 89
Q 11 q 0
R 691 r 742
S 423 s 285
T 203 t 641
U 436 u 305
V 12 v 45
W 135 w 345
X 1 x 114
Y 73 y 38
Z 28 z 49
Ä 0 ä 31
Ö 0 ö 0
Ü 0 ü 108

Table 5.3: Frequency of occurence in the processed receipts.

After calculating the NRMSE between an unknown character image and all available
template images, a sorted list of the matches (MatchList) is generated. This list
contains pairs of a character and the NRMSE to the character’s template image. As
a first attempt, the match with the lowest NRMSE will be assigned to the unknown
image. In section 5.5, methods to correct errors that are based on this simple choice
are presented.



5.4. Character recognition 29

Figure 5.18: Top: Characters with the lowest NRMSE when compared to the as-
sociated template. Middle: Template images. Bottom: Characters
with the highest NRMSE when compared to the associated template.
The exact NRSME values can be found in table 5.4.

Character Minimum NRMSE Maximum NRMSE
A 0.1626 0.5021
B 0.1830 0.5899
C 0.1955 0.5048
D 0.1513 0.5892
E 0.1819 0.5316

Table 5.4: Examples for the lowest and highest NRMSE values found among all pro-
cessed receipts for the characters A, B, C, D and E. The values correspond
to the images shown in figure 5.18

5.4.4 Reliability prediction

As discussed in the previous section, for each character image aMatchList of matches
is created and sorted based on the match’s NRMSE. This MatchList can be used to
predict the reliability of a match. For this, three reliability classes are introduced:

• HIGH

• MEDIUM

• LOW

• CORRECTED (used for characters that got reassigned during autocorrection,
see section 5.5 for details)

Each character is assigned to one of the classes HIGH, MEDIUM or LOW after char-
acter recognition. The assignment is based on the NRMSE difference between the



5.4. Character recognition 30

best match (lowest NRMSE) and the second best match (second lowest NRMSE).
Let A be the NRMSE of the best match and B the NRMSE of the second best
match, then the reliability R is

R = B − A
The greater R, the more reliable the recognition.

To prodive thresholds for the reliability classes, the mean µ and standard deviation
σ across all reliability values have been calculated:

µ = 0, 1303696781
σ = 0, 05231867861
σ2 = 0, 002737244132

The reliability class RC is assigned as follows:

RC(R) =


HIGH if R ≥ µ

MEDIUM if µ+ σ ≤ R < µ

LOW otherwise

This reliability class can be used by applications on a higher level. For example, an
application could display the reliability class of a recognized character by providing
a green background for characters with the class HIGH, an orange background for
characters with the class MEDIUM and a red background for the class LOW. Besides
providing the reliability class to higher level applications, the class could also be used
to improve autocorrection (cf. section 5.5) by concentrating on characters with low
reliability and using context to correct them.

5.4.5 Proposed improvements

5.4.5.1 Improving templates

A possible improvement to enhance the quality of character matching is changing
the way templates are generated. Instead of calculating the average across all images
depicting a character, the template could be generating by leaving only such pixels
black that are most characteristic for that character, i.e. pixels that are black in e.g.
99 % of the images. A related idea is to calculate the average across all images (as
described in section 5.4.2) and weight the characteristic pixels higher. Furthermore,
pixels that are unique for this character (i.e. pixels that occur only in this character)
could be weighted higher. Of course, according to the used technique to generate
the templates, the template matching must be adapted.

Apart from different techniques to generate the templates, creating not one but
several templates per character can be considered. As images of a character differ
among themselves, this could decrease the NRMSE between a image and it’s associ-
ated template. For example, a template for bold uppercase “A” and plain uppercase
“A” could be generated rather than averaging over all characters. This would lead
to a higher number of templates and therefore result in higher compution time to
recognize a character, but would probably increase the recognition quality



5.4. Character recognition 31

5.4.5.2 Filters

Besides that, various filters could be applied to the unknown images to remove white
spots within the character strokes and to blur the character’s edges, which would
result in a version that resembles the template better. Although not evaluated
thoroughly, first experiments with median filters, white blot filters, binomial mean
filters and simple mean filter showed promising results.

Median filter A median filter moves a window across the image and determines
the median of the values of this window. This median is then assigned to the pixel
in the middle of the window. In an binary image where black is encoded as 0 and
white is encoded as 255, such a window with a radius of 1 pixel around the window
core (i.e. a 3× 3 window) may look like this (the center fixel is bold):

0 255 255
0 255 255
0 0 0

The values

[0, 255, 255, 0,255, 255, 0, 0, 0]

are sorted, which gives

[0, 0, 0, 0,0, 255, 255, 255, 255]

The median is the item at the middle of the sorted list. This median (here: 0) is
then set as the new value of the pixel in the middle of the windows, resulting in the
following matrix:

0 255 255
0 255 255
0 0 0

−→
0 255 255
0 0 255
0 0 0

As depicted in figure 5.19, this filter removes white spots within the stroke of a
character while leaving the edges sharp; only corners are affected negatively by the
filter. For a binary image with only two classes of pixel values, the median filter
basically sets each pixel to the same value as most of the pixels around it.

Mean filter A mean filter, often referred to as a moving average, works similar
to the median filter. A window is moved across the image while the mean for each
window is calculated. The window’s core is then set to that mean. Using the example
from the median filter :

0 255 255
0 255 255
0 0 0



5.4. Character recognition 32

Figure 5.19: A character image (left) and the image after applying a median filter
with radius 1 (middle) and radius 2 (right).

The average of the window’s values is calculated

0 + 255 + 255 + 0 + 255 + 255 + 0 + 0 + 0
9 = 113.3 ≈ 113

and set as the new value of the window’s core

0 255 255
0 255 255
0 0 0

−→
0 255 255
0 113 255
0 0 0

Applying a simple mean filter grays out white spots in a character’s stroke, but it
also blurs the edges (see figure 5.20. This blur can be useful to some extent, as it
makes the character resemble the blurred template (cf. figure 5.18). Too much blur,
however, will result in an unrecognizable character.

Figure 5.20: A character image (left) and the image after applying a simple mean
filter with radius 1 (middle) and radius 2 (right).



5.4. Character recognition 33

Binomial mean filter In contrast to a simple mean filter where each pixel in
the moving window has the same weight (i.e. the pixels are unweighted), differ-
ent weights can be applied to the pixels in the window. A common way is to use
the binomial coefficients as weights [6]. The weights on a 3 × 3 window could look
like this:

1 2 1
2 4 2
1 2 1

The weighted average of the window

0 255 255
0 255 255
0 0 0

is then calculated as

1 · 0 + 2 · 255 + 1 · 255 + 2 · 0 + 4 · 255 + 2 · 255 + 1 · 0 + 2 · 0 + 1 · 0
16 = 143.4375 ≈ 143

A binomial mean filter weights the inner pixel of a windows more than then outer
windows. This can lead to a reduced blur on the edges, as shown in figure 5.21

Figure 5.21: A character image (left) and the image after applying a binomial mean
filter with radius 1 (middle) and radius 2 (right).

5.4.5.3 Remove white blots

Apart from applying convential filters, a more complex option is to find small blots
of white pixels within black areas and remove them by setting them black. Though
computationally complex, this method can repair character shapes to some extent
without destroying information like most filters do. However, a limit of the maximum
size of such a white blot needs to be set to avoid removal of normal white areas. In
figure 5.22, the results of such a processing are shown.



5.5. Simple autocorrection 34

Figure 5.22: A character image (left) and the image after removing white blots up
to 5 pixels (middle) and blots up to 20 pixels (right).

5.4.5.4 Grayscale character images

After character segmentation, the characters could be extracted from the original
grayscale image instead of the binarized image. The grayscale character images
contain more information, since their edges are darker, even though not dark enough
be identified as black pixels.

5.5 Simple autocorrection

After recognizing all characters on a receipt, the raw text of the receipt (with recog-
nition errors) is available as depicted in figure 5.23. Many recognition errors can be
corrected by using context information, e.g. characters that are recognized as let-
ters where numerals are expected. In the following, such errors and their correction
mechanism are presented.

5.5.1 Corrected errors

Due to optical similarity, some characters are mistakenly recognized as different
characters at times. Some of these errors can be corrected by searching for the
errors with regular expressions and replacing them with the correct character:

• mistakenly recognized uppercase O instead of numeral 0

• mistakenly recognized uppercase B instead of numeral 8

• mistakenly recognized lowercase L (l) instead of numeral 1

• mistakenly recognized numeral 0 instead of

– uppercase O

– uppercase D

• mistakenly recognized numeral 8 instead of uppercase B



5.5. Simple autocorrection 35

Figure 5.23: A binarized receipt image and the text recognized by OCRAM.

• mistakenly recognized numeral 3 instead of

– uppercase B

– uppercase S

– uppercase R

• mistakenly recognized dot instead of

– blank/whitespace

– comma

• mistakenly recognized comma instead of dot

• mistakenly recognized lowercase letter instead of uppercase letters (e.g. p
instead of P)

In the following, details about the autocorrection are explained with the example of
a mistakenly recognized uppercase O instead of the numeral 0. The simple autocor-
rection for the other errors works similar.



5.5. Simple autocorrection 36

Instead of recognizing the numeral 0 an uppercase O may be recognized, if the
character is deformed due to faded print, missing pixels, etc. Fortunately, numer-
als usually occur in groups with other numerals, dots and commas, e.g. 0,99 or
30.03.2015. Therefore the following regular expression can be used to find such
errors:

((,|\.|\d)O)|(O(,|\.|\d))

This regular expression finds all occurrences of an uppercase O that are preceded
or followed by a comma, an dot or a numeral. If the original recognition results
indicate that a character found by such a regular expression might as well be the
numeral zero instead of an uppercase O (e.g. if the NRMSE values are similar), it
is replaced by a zero.

5.5.2 Proposed improvements

Apart from these simple autocorrections, more sophisticated corrections are possible.

5.5.2.1 Keyword dictionary

A dictionary of known keywords can correct recognition errors, if there is a limited
number of errors in a word. This dictionary may contain keywords such as “EUR”,
“Rückgeld”, or “BAR” as well as common receipt words, that are not contained
in the product list, such as “Passau”, “Nibelungenplatz” or “Einkauf”. To correct
errors in the product list, a similar yet different approach is described in the next
section. To create such a dictionary, the structure of all possible receipts needs to
be known. Alternatively, this dictionary can be designed to grow dynamically upon
human confirmation of a new entry.

After creating such a dictionary of known words, each recognized word can be tested
whether it occurs in the dictionary. If it does not, suggestions for a correction are
retrieved, e.g. if the word “Rühkgeld” is recognized, the known word “Rückgeld”
could be suggested. Providing such suggestions can work similar to commonly known
autocorrect systems.

For example, the known words can first be filtered by the number of characters in the
word, then by the most reliably recognized character (based on the NRMSE values
and the distance to the next best guess). Assuming a database with the following
entries, the first filter (number of characters in the word) would leave “anmelden”,
“Rückgeld” and “erhalten” in the search scope. If the lowercase e at index 5 of the
recognized word “Rühkgeld” is the most reliably recognized character, the second
filter would only leave “Rückgeld” as an possible correction.

• Einkauf

• heute

• anmelden

• Rückgeld

• keine



5.6. Data extraction 37

• leider

• erhalten

The more entries such a dictionary contains, the more difficult and computationally
expensive this dictionary based correction becomes. In supermarket receipts, how-
ever, only a limited set of words occurs in contrast to dictionaries that power the
spell checkers of text processors.

5.5.2.2 Product database

Similar to a dictionary, a database of known products (including their prices per
piece respectively per weight unit) can be created to correct misrecognized product
labels and prices. Other than a regular dictionary, this database needs to know the
name and the price of a product. As prices and sometimes even product names may
change and new products appear in the stores, the database needs to be able to
reflect these changes.

For example, when a product is recognized that can not be found in the database,
this product is added to the database if either

• the product has been recognized with high reliability (e.g. low NRMSE values
or high difference to the second best match)

• a human user confirmed the correctness of the products spelling and price

Moreover, the database may contain a reliability score for each dynamically added
or changed entry. This score could increase every time the product is recognized
again with high reliablity or confirmed again, eventually leading to an entry that
can be considered safe.

5.5.2.3 Plausibility validation

Errors among the prices can often be corrected by validating the plausibility of
the bill. This inlcudes checking whether the price per piece respectively the price
per weight unit multiplied by the amount equals the total price of a product item.
Furthermore, the total sum of the bill must equal the sum of all product entries.
Additionally, date and time can be checked for plausibility 6 and the store address
can be queried in an online map service.

5.6 Data extraction

After recognizing all characters on a receipt and correcting errors, the raw text of
the receipt is available as in the following excerpt:

6e.g. 89.71.1919 seems rather unrealistic for a date



5.6. Data extraction 38

EUR
BANANE
1,086 kg x 1,69 EUR/kg 1,84 B
KOPFSALAT 0,99 B
FRUCHTQUARK 1,89 B
SUMME EUR 4,72
Geg. BAR FUR 13,00
Rückgeld BAh EUR 5,28
sumer , kvnr sume rvvnr
4mm*HdE m 1 H lE!l ! !
30.03.2015 13:00 Bon Nr.:7460
Marki:0550 K sse 4 Bed.:282828

This raw text, however, is not of particular interest. The desired information needs
to be extracted by processing the text. In OCRAM, a simple keyword and reg-
ular expression based text processing is implemented, which will be described in
section 5.6.2.

5.6.1 Desired information

Not all characters on a receipt are important in all usecase szenarios. For example,
many receipts contain promotional parts or tax information. For an application as
mentioned in chapter 1, only the following information is relevant:

• the sum of all bought products

• the given amount of money

• the drawback

• a list of all bought products, including

– the product name

– the quantity

– the price per piece

– the total price for this product

• the date and time of the receipt

• optional: the address of the store

• optional: the store’s sales tax ID

5.6.2 Text processing

OCRAM uses keyword based and regular expression based data extraction.



5.6. Data extraction 39

5.6.2.1 Keyword based text processing

Each line of the raw text is first tested for keywords which usually occurr at the
start of a line. These keywords are:

• SUMME (sum)

• Geg. BAR (total given in cash)

• Rückgeld BAR (drawback in cash)

If such as keyword is detected, the rest of the line is processed accordingly, e.g. when
“SUMME” is detected at the start of a line, the characters at the end of the line are
converted to a number, which is set as the receipts total sum.

Due to recognition errors, the keyword detection is prone to recognition errors. For
example, if a single character is not recognized correctly, leading to “Rückgeld BAh”
instead of “Rückgeld BAR”, the line would not be detected as the drawback line,
even though the desired data (the drawback amount) may be recognized correctly.
To reduce the number of missing data extractions, OCRAM does not only detect
absolute keyword matches, but checks for fuzzy matches, too.

To recognize such a fuzzy match, the Levensthein distance [7] is used. The Leven-
sthein distance is the minimum number of insert, delete or replace actions that is
necessary to convert a string to another string. For example, “Rückgeld BAR” and
“Rückgeld BAh” have a Levensthein distance of 1, as one replacement is sufficient
to convert the latter.

To detect keywords, the Levensthein distance between a recognized line and the
keyword is calculated. If the distance is smaller or equal to 2 the keyword is detected.
This allows up to two recognition errors in a keyword. A higher threshold would
likely work, too, but it was not necessary in the course of this thesis.

5.6.2.2 Regular expression based text processing

Product data as well as date and time cannot be extraced by relying on keywords,
as these values are not labeled like the total sum, the drawback and the total given
are. They do, however, follow a certain structure which makes it easy to detect the
values using regular expressions. For example, the date and time is extracted by
searching for the following regular expression:

^\s*\d{2}\.\d{2}.\d{4}\s*\d{2}:\d{2}

This regular expression matches strings such as “30.03.2015 13:00” (see the excerpt
in section 5.6).

Furthermore, product lines need to be detected. Because the name of a product
does not have any structure 7, the detection relies on the right part of a product line
only. There are three kinds of products, simple products, multi piece products and
weight products.

7One might believe that all product names are all caps, but unfortunately the are not. There is,
for example, a product with the name “Holland”, which are tomatoes from the Netherlands.



5.6. Data extraction 40

Simple products Simple products consist of a single line on a receipt, e.g.

FRUCHTQUARK 1,89 B

They can be recognized rather simply by detecting the price at the end of the line.
The letter after the price (“A” or “B”) indicates whether this product is taxed with
7 % VAT (“B”) or 19 % VAT (“A”). Furthermore, there might be an asterisk after the
tax indication letter. This asterisk marks products that are not viable for discounts.
The regular expression to detect the price at the end of a product line therefore is
as follows:

(\s|-)\d{1,3},\d{2}\s(A|B)(\s\*)?

Multi piece products Multi piece products consist of two lines. In the first line,
the product name and the total price for all pieces is printed. In the second line,
the number of pieces and the price per piece is written.

SALATGURKE 1,78 B
2 Stk x 0,89

These products can be detected by recognizing the total price on the right side first
and then analyzing the next line.

Weight products Similar to multi piece products, weight products have the name
of the product on the first line and information about the quantity on a second line.
On the other hand, the total price of the product is not on the first line, but on the
second line.

BANANE
1,086 kg x 1,69 EUR/kg 1,84 B

Therefore, if a line without a price at the end is found, the next line is analysed for
weight and price details with appropiate regular expressions.

The detection with regular expressions is prone to fail if a line contains errors
from character recognition. In section 5.6.2.1 this issue was handled by using fuzzy
matches with the Levensthein distance. A similar approach would be great for the
regular expression based text processing, but it is much more complex to implement
und computationally costly. This fuzzy regular expression would need to match all
strings that would normally match the regular expression as well as such strings that
meet all conditions of the regular expression except for one or two.

To some extent, this robustness against common errors can be implemented with
normal regular expressions, too. A common error during character recognition is
recognizing the numeral 8 instead of the letter B (cf. section 5.5.1). A possible
resulting recognized line might be:

FRUCHTQUARK 1,89 8



5.6. Data extraction 41

The following regular expression which detects the price of a product would not
work on a line with such an error:

(\s|-)\d{1,3},\d{2}\s(A|B)(\s\*)?

But if the regular expression is changed and accepts not only “A” and “B” but also
“8” as a tax indicator, the regular expression would match.

(\s|-)\d{1,3},\d{2}\s(A|B|8)(\s\*)?

Similar modifications to the regular expressions can be found for most common
recognition errors. This does, however, only work to some extent.



6 Evaluation

To evaluate the performance of the proposed solutions and their implementation
OCRAM, an evaluation on two level has been conducted. In the first, the pure
character recognition is evaluated. The second evaluation goes one step further
and evaluates the quality of the whole OCR system, reaching from preprocessing to
error correction and data extraction. It evaluates how much information could be
extracted from the image of a receipt.

6.1 Evaluation of character recognition

To evaluate the performance of the character recognition, all character images from
a set of 39 receipts have been labeled. This results to a set of 35 659 characters,
including 11 156 blanks and 24 503 other, non-whitespace characters. The exact
distribution of characters is listed in table 5.3.

This set of labeled characters is then split into ten parts to conduct a 10-fold cross-
validation. While doing so, each part is provided with the same amount8 of samples
per character.

After splitting the data into ten parts, one part is used as test part while the nine
other parts are used as training data and used to generate templates. The characters
in the test part are then recognized using these templates. Afterwards another part
is picked for the test data and again, the remaining nine (this time including the
test data from the first run) are used to generate template while recognizing the
characters in the test part. This processes is repeated ten times, so that each part
will have served as test part once. Therefore, each character has been recognized
once, but no character has been recognized using this character’s image as training
data.

8With the exception of some parts having one sample more or less



6.1. Evaluation of character recognition 43

The average recognition rate is 97,36 % (34 715 out of 35 658) including 11 156 blanks.
If blanks are not taken into account9 the average recognition rate is 96,21 %. The
recognition rate for each individual character is listed in table 6.1. In the following,
the worst and best recognized characters with more than 100 total samples are
listed10.

• O: 87,99 %

• D: 88,10 %

• 8: 89,76 %

• 0: 90,00 %

• ...

• 4: 99,66 %

• a: 99,73 %

• i: 99,81 %

• BLANK: 99,89 %

6.1.1 Evaluation of reliability classes

As discussed in section 5.4.4, each recognized character is assigned one of the classes
HIGH, MEDIUM or LOW that predicts the recognitions reliability. To evaluate
this prediction, the false recognitions within these classes have been counted. The
results are shown in table 6.2.

Reliability samples errors recognition
class rate
LOW 6388 888 86,10 %

MEDIUM 6716 32 99,52 %
HIGH 22 564 23 99,90 %
Total 35 668 943 97,36 %

Table 6.2: Errors and recognition rate per reliability class.

The table shows that the characters that are predicted to be recognized with high
reliability actually do have a high recognition rate. There are only few errors within
this class although a large portion of all characters falls into this class. That means
that even though OCRAM does not recognize all characters correctly, it has a good
hint about the reliability of the recognitions. This information can be used during
automatic error correction or can be displayed to the user to assist manual editing.

9Blanks are relatively easy to recognize and account for a large part of the character set.
10Characters that occur less than 100 times tend to have a recognition rate of either 0 % or 100 %.



6.2. Evaluation of data extraction 44

A 99,42 % a 99,73 % 0 90 % * 97,38 %
B 95,14 % b 90,46 % 1 97 % BLANK 99,88 %
C 94,44 % c 94,48 % 2 98,29 % : 98,36 %
D 88,10 % d 93,71 % 3 97,44 % , 93,80 %
E 95,97 % e 95,91 % 4 99,66 % - 97,52 %
F 96,02 % f 98,73 % 5 98,24 % . 98,89 %
G 90,05 % g 97,82 % 6 93,68 % ! 100 %
H 93,75 % h 95,76 % 7 98,45 % % 100 %
I 99,48 % i 99,81 % 8 89,76 % + 0 %
J 100 % j N/A 9 95 % ? 100 %
K 95,83 % k 98,33 % / 99,06 %
L 98,10 % l 97,58 %
M 98,13 % m 96,89 %
N 97,04 % n 94,70 %
O 87,98 % o 96,76 %
P 95,48 % p 95,50 %
Q 100 % q N/A %
R 93,92 % r 97,71 %
S 90,07 % s 99,30 %
T 96,55 % t 98,44 %
U 92,20 % u 94,43 %
V 100 % v 97,78 %
W 92.59 % w 97,97 %
X 0 % x 98,25 %
Y 100 % y 100 %
Z 100 % z 100 %
Ä N/A ä 93,55 %
Ö N/A ö N/A
Ü N/A ü 91,67 %

Table 6.1: Recognition rate per individual character.

6.2 Evaluation of data extraction

Other than having a dataset of cropped and centered, manually labelled character
images to train and test on, this evaluation relies only receipt images as input and
extracted receipt data as stated in section 5.6.

This means that all errors that occur during line and character segmentation or char-
acter recognition may propagate and cause following errors during data extraction.
On the other hand, this evaluation also includes error correction, i.e. recognition
errors can be correction by using context information (see section 5.5). This evalu-
ation is more use-oriented, as the system is viewed as a “black box” with a receipt
image as input and extracted information as output.

To measure the performance of the whole system, the information from 39 receipts
has been extracted manually (ground truth). Then, the 39 receipt images were
processed by OCRAM and the extracted information was compared to ground truth.



6.2. Evaluation of data extraction 45

Every information from ground truth that was not correctly extracted (e.g. spelling
error in product name, wrong price or incorrect quantity) or not extracted at all
was counted as an error. The total rate of correctly extracted information fields, as
described in section 5.6, is 76,37 % with 362 out of 474 correct extractions.

When analyzing the extractions per receipt in table 6.3, the distribution of the
extraction rate attracts attention. The extraction rate is not equally distributed
around the mean of 76,37 %, it is rather wide spread (the standard derivation is
26,2 %) and split into two groups. The first group contains receipts with relatively
high extraction rates (> 80 %), while the second group has low extraction rates
(< 70 %). The histogram in figure 6.1 illustrates this by grouping the extraction
rates into ranges of 5 %, i.e. a group with all recognition rates from 28,5 to 32,5 %
(labelled as 30 %), a group with rates from 32,5 to 37,5 % (labelled as 35 %), etc.

Figure 6.1: A histogram of the frequency of recognition rates. The rates are grouped
into 5 % steps, e.g. all rates from 87,5 % to 92,5 % are in the group 90.

The reason for this spread is the varying quality of the receipt images. Some receipts
are faded and some have printing defects, for example the receipt with index 35
in figure 6.2, which has defects on the leftmost character. If only receipts with
comparatively high quality (extraction rate ≥ 80 %) are taken into account, the
data extraction rate reaches an average of 91,3 %. Although this seems like a self-
fulfilling prophecy, depending on the use case and quality of the input images, this
may be a more realistic rate.



6.2. Evaluation of data extraction 46

receipt correct extractable extraction
index extractions data rate

1 5 8 62,5 %
2 11 12 91,7 %
3 11 12 91,7 %
4 4 13 30,8 %
5 5 11 45,5 %
6 7 8 87,5 %
7 3 9 33,3 %
8 10 18 55,6 %
9 9 9 100 %
10 16 17 94,1 %
11 13 14 92,9 %
12 16 16 100 %
13 9 10 90 %
14 9 10 90 %
15 17 17 100 %
16 18 18 100 %
17 18 18 100 %
18 10 10 100 %
19 12 12 100 %
20 18 20 90 %
21 14 14 100 %
22 9 9 100 %
23 8 13 61,5 %
24 3 9 33,3 %
25 10 12 83,3 %
26 4 11 36,4 %
27 8 9 88,9 %
28 8 12 66,7 %
29 4 11 36,4 %
30 4 11 36,4 %
31 8 12 66,7 %
32 13 13 100 %
33 4 8 50 %
34 14 14 100 %
35 5 17 29,4 %
36 12 12 100 %
37 3 8 37,5 %
38 4 7 57,1 %
39 6 10 60 %

Total/mean 362 474 76,4 %
Variance 686,9 %
Standard 26,2 %derivation

Table 6.3: Data extraction rate per receipt.



6.2. Evaluation of data extraction 47

Figure 6.2: Original grayscale and binarized part of the receipt with index 35. The
leftmost characters suffer from printing defects, causing errors on the
product’s names.



7 Future work

To enhance the recognition results, many improvements are possible, some of them
have already been discussed in sections 5.4.5 and 5.5.2. Especially a more elabo-
rated autocorrection, based on an dictionary and a product database, is promising.
Combined with the recognition reliability class, the autocorrection could focus on
the characters with a low reliability and recognize them more from context than
from actual recognition. Apart from these suggestions that are specific to template
matching and autocorrection, different approaches can be developed. For example,
instead of using simple template matching for character recognition, support vector
machines, neural networks or other machine learning techniques can be assesed.

Furthermore, the limitations described in section 2.1 need to be tackled. For a real
world application, scanning the receipts with flat bed scanners is not practicable.
The recognition has to deal with smartphone photographs, which are often distorted
and usually have a lower resolution. Receipts will have to be straightened and the
line and character segmentation need to be adapted to work with slightly distorted
receipt images.

Concentrating on the receipts of a single market is not suitable either, but various
markets’ receipts could be recognized by training on different fonts and developing
individual text processors to extract data from each layout.

Besides these optimizations and improvements, an actual consumer oriented appli-
cation based on the data extractions needs to be developed. This application could
offer a detailed overview of all expenses, categorized in fruits & vegetables, diary
products, househould goods etc. The application coudld also connect with other
services that track expenses and money transactions, such as online bank accounts
and budget applications.



8 Conclusion

The objective of this thesis was the development of a proof of concept system that
can recognize text on supermarket receipts and extract the information printed on
the receipts. This information can be used to offer consumer orientied applications,
for example for automatic budgeting and categorizing everyday expenses.

During development of this system, various challenges that are special to receipts
such as low quality printing have been discovered and solutions to these challenges
have been designed and implemented. The final system, though relatively simple,
is capable of recognizing text with fair recognition rate. Even without exhaustive
error correction, a data extraction rate of 76,37 % is reached despite dealing with
many low quality receipts with printing defects or faded printing.

Many ideas for further development and optimization are yet to be evaluated, but
these have great potential and could increase the data extraction rate to a value near
100 %. Especially in the areas of automatically correcting errors based on context
information and data extraction a large field for optimizations and improvements is
open.

Furthermore, the implementation relies on straight, non distorted scans of the re-
ceips. These high-quality scans are only available when scanning with a flatbed
scanner but not with photographs. To recognize text on receipt photographs, exten-
sive preprocessing must be performed to straighten the receipts and remove shadows
and other artifacts.



Eidesstattliche Erklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig
verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel verwendet habe.

Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt
und auch noch nicht veröffentlicht.

Passau, den 19. Juli 2016

Marco Ziegaus



List of Tables

5.1 Font specifications for the examined receipts. All values are in pixels
on a 600 dpi scan. Fat values are derived from other values in this
table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Characters in the receipts used for this thesis. See table 5.3 for details. 27
5.3 Frequency of occurence in the processed receipts. . . . . . . . . . . . 28
5.4 Examples for the lowest and highest NRMSE values found among all

processed receipts for the characters A, B, C, D and E. The values
correspond to the images shown in figure 5.18 . . . . . . . . . . . . . 29

6.2 Errors and recognition rate per reliability class. . . . . . . . . . . . . 43
6.1 Recognition rate per individual character. . . . . . . . . . . . . . . . 44
6.3 Data extraction rate per receipt. . . . . . . . . . . . . . . . . . . . . . 46



List of Figures

2.1 A typical workflow of an OCR system . . . . . . . . . . . . . . . . . . 2
2.2 The original scanned image (grayscale) and the binarized counterpart 3
2.3 A single extracted character and the associated template image (see

section 5.4.2 for details). The extracted character is the first occur-
rence of an lowercase “a” in the receipt from figure 2.2 (in “Nibelun-
genplatz”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Left: Six lowercase “a” characters from the receipt in figure 2.2
Right: Six lowercase “a” characters from an ordinary printed document 5

3.2 A receipt with white vertical flow marks (visible on the top logo) and
characters extracted from this receipt . . . . . . . . . . . . . . . . . . 6

3.3 A segment of a receipt with dark spots on blank areas (grayscale scan). 7
3.4 Faded characters: “E”, “H”, “R”, “b”, “M”, “n” . . . . . . . . . . . . 7
3.5 A faded uppercase “E” and the associated template image. . . . . . . 7
3.6 Small printing, little character spacing and bold font leads to hori-

zontally connected characters. In this example, the letters B and A
are connected in the word “BAR”. . . . . . . . . . . . . . . . . . . . . 8

4.1 A short sequence from a receipt in monospaced font and from an
ordinary document in proportional font. . . . . . . . . . . . . . . . . 9

5.1 Top: Two lines are segmented as one by Java OCR.
Bottom: Four characters, as they have been segmented by Java OCR. 11

5.2 A typical receipt image. If not stated otherwise, all examples and
figures in this chapter were generated from this receipt. . . . . . . . . 13

5.3 A piece of a receipt in grayscale (top), binarized with a threshold of
127 (center) and 200 (bottom). The first threshold leaves black pixels
from the script white while the second causes black spots among the
characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.4 Histogram of a receipt’s pixels’ grayscale values. . . . . . . . . . . . . 15
5.5 Histogram of an ordinary document’s pixels’ grayscale values. . . . . 15
5.6 A piece of a receipt in grayscale (top), binarized with a threshold of

127 (center-top), 200 (center-bottom) and 161 (bottom). The thresh-
old of 161 has been calculated by using Otsu’s method. . . . . . . . . 16

5.7 Dark/black edges resulting from a scan (left: original grayscale, right:
binarized). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.8 A part of a binarized receipt and the individual, separated lines of text. 17
5.9 The “g” and the “2” are connected via one black pixel. This results

in both lines being detected as one when using the white row strategy. 18
5.10 The line “EUR” has less black pixels per row than the other lines.

This can cause problems for an inaccurate threshold in relative pixel
count strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



List of Figures 53

5.11 The distribution of black pixels per row. The lines of text are eas-
ily recognizable. E.g., the thin heights around row index 1600 are
the line separators between the lines “FRUCHTQUARK”, “SUMME”
and “Geg. BAR” in figure 5.2. . . . . . . . . . . . . . . . . . . . . . . 20

5.12 A snippet of a receipt and the distribution of black pixels per row.
This is bascially a zoom of figures 5.2 and 5.11. The edges on the
start and end of lines are easily recognizable. . . . . . . . . . . . . . . 21

5.13 A line and the individual extracted characters from this line after
character segmentation. The borders around the characters are for
visualisation purposes only and are normally omitted. . . . . . . . . . 22

5.14 A set of characters, sliced in regular intervals, starting at the first
character’s leftmost pixel. The characters are not horizontally cen-
tered and some include parts from other characters, e.g. the image
for the character “9” has a piece of the character “4”. . . . . . . . . . 23

5.15 The characters “BA” are connected in 18 vertical pixels at the nar-
rowest column. The character “U” is only connected in 5 pixels at
the narrowest column. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.16 Top: Original position of the characters. Bottom: Centered on
center of mass. The red dots indicate position of the center of mass. . 25

5.17 Templates for e, A, 5 and %. Due to different frequencies of occurence
the templates have varying blur. . . . . . . . . . . . . . . . . . . . . . 27

5.18 Top: Characters with the lowest NRMSE when compared to the as-
sociated template. Middle: Template images. Bottom: Characters
with the highest NRMSE when compared to the associated template.
The exact NRSME values can be found in table 5.4. . . . . . . . . . 29

5.19 A character image (left) and the image after applying a median filter
with radius 1 (middle) and radius 2 (right). . . . . . . . . . . . . . . 32

5.20 A character image (left) and the image after applying a simple mean
filter with radius 1 (middle) and radius 2 (right). . . . . . . . . . . . 32

5.21 A character image (left) and the image after applying a binomial mean
filter with radius 1 (middle) and radius 2 (right). . . . . . . . . . . . 33

5.22 A character image (left) and the image after removing white blots up
to 5 pixels (middle) and blots up to 20 pixels (right). . . . . . . . . . 34

5.23 A binarized receipt image and the text recognized by OCRAM. . . . . 35

6.1 A histogram of the frequency of recognition rates. The rates are
grouped into 5 % steps, e.g. all rates from 87,5 % to 92,5 % are in
the group 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Original grayscale and binarized part of the receipt with index 35.
The leftmost characters suffer from printing defects, causing errors
on the product’s names. . . . . . . . . . . . . . . . . . . . . . . . . . 47



Source code listing

5.1 Java-style pseudocode to determine the best variant for slicing char-
acters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Calculation of the center of mass. . . . . . . . . . . . . . . . . . . . . 26



Bibliography

[1] S. Mori, C. Suen, and K. Yamamoto, “Historical review of OCR research and
development,” vol. 80, no. 7, pp. 1029–1058.

[2] L. Eikvil, “OCR - Optical Character Recognition.”

[3] R. Cemer, W. Whitney, and K. Pribluda, “Java OCR.”

[4] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” vol. 9,
no. 1, pp. 62–66.

[5] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quan-
titative performance evaluation,” vol. 13, no. 1, p. 146.

[6] T. Sauer, “Einführung in die Signal- und Bildverarbeitung.”

[7] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” pp. 707–710.


	1 Motivation
	2 Introduction
	2.1 Limitations and assumptions
	2.2 Introduction to OCR

	3 Challenges of supermarket receipts
	3.1 Printing quality
	3.1.1 Missing pixels
	3.1.2 White flow marks
	3.1.3 Dark spots
	3.1.4 Faded printing

	3.2 Small printing

	4 Advantages of supermarket receipts
	4.1 Monospaced font
	4.2 Machine readable layout

	5 Proposed solutions & implementation
	5.1 Preprocessing
	5.1.1 Binarisation
	5.1.2 Black edges

	5.2 Line segmentation
	5.2.1 White row strategy
	5.2.2 Relative pixel count strategy
	5.2.3 Median pixel count strategy
	5.2.4 Pixel count gain strategy

	5.3 Character segmentation
	5.3.1 Monospace strategy
	5.3.2 Other strategies

	5.4 Character recognition
	5.4.1 Preprocessing
	5.4.2 Generation of templates
	5.4.3 Template matching
	5.4.4 Reliability prediction
	5.4.5 Proposed improvements

	5.5 Simple autocorrection
	5.5.1 Corrected errors
	5.5.2 Proposed improvements

	5.6 Data extraction
	5.6.1 Desired information
	5.6.2 Text processing


	6 Evaluation
	6.1 Evaluation of character recognition
	6.1.1 Evaluation of reliability classes

	6.2 Evaluation of data extraction

	7 Future work
	8 Conclusion
	List of Tables
	List of Figures
	Source code listing
	Bibliography

