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Abstract

Training neural networks becomes more difficult when more than just a few layers
are used. It can even be shown that these deep neural networks do not only perform
any better but actually do worse compared to networks with less layers. After an
overview of classical and convolutional neural networks is given, a solution to allow
more layers by learning a residual function is presented. Through this approach,
it was possible to train a network with 34 layers that achieves better results than
a shallower version with 18 layers on a dataset with multiple classes. The trained
network assigns road traffic images from the view of a car’s dashboard to one of nine
different categories. Subsequently, experiments mapping more than one category to
a single image are also presented and evaluated.
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Kurzzusammenfassung

Das Training neuronaler Netze wird umso schwieriger, je mehr Schichten (Layer)
beim Aufbau des Netzes verwendet werden. Beim Vergleich von diesen tieferen Net-
zen (Deep Neural Networks) mit Ausführungen, die weniger Layer verwenden, kann
sogar festgestellt werden, dass sie nicht nur nicht besser, sondern meistens sogar
schlechter abschneiden. Nach einem Überblick über herkömmliche Neuronale Netze
und Convolutional Neural Networks, wird eine Lösung vorgestellt, die es durch das
Lernen einer Restwert-Funktion (Residual Function) erlaubt eine größere Anzahl an
Layern zu verwenden. Durch diesen Ansatz war es möglich – auf Basis eines Daten-
satzes mit mehreren Zielklassen – ein Netz mit 34 Layern zu trainieren, das bessere
Ergebnisse erzielt als eine flachere Version mit lediglich 18 Layern. Das trainierte
Netz ordnet Bilder aus dem Straßenverkehr, gefilmt aus der Sicht des Armaturen-
bretts eines Autos, einer von neun verschiedenen Kategorien zu. Im Anschluss daran
werden Experimente vorgestellt und ausgewertet, bei denen einem Bild statt einer
sogar mehrere Klassen zugeordnet werden.
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Chapter 1

Motivation

Theoretically, even a small neural network with only one layer, any number of units
and a non-polynomial activation function can reach a high accuracy score. Much
more, they are even capable of approximating any given multivariate function [1, 2].

However, in order to achieve more accurate approximations, the number of pa-
rameters grows exponentially and thus reaching a point where single-layer neural
networks are no longer usable in practice. For a large class of functions it can even
be shown that the number of parameters needed by a shallow network are exponen-
tially larger than the number of parameters needed by a deeper version with more
layers for the same degree of approximation [3].

In modern implementations, multiple layers are used in most cases. This allows
each layer to learn features of a dataset at different levels of abstraction, thus gener-
alizing the core problem and finding a pattern in data rather than memorizing the
whole set.

As with most concepts in machine learning and artificial neural networks, there
exists a vague inspiration in biology. So-called receptive fields process visual stimuli
in a hierarchical way as well. ”Neurons in early visual areas have small receptive
fields and are sensitive to basic visual features, e.g. edges and bars.”, whereas ”neu-
rons in deeper layers of the hierarchy capture basic shapes, and even deeper neurons
respond to full objects” [4]. This idea of how parts of the human brain process
visual information at different stages with a different degree of abstraction can also
be observed in neural networks with multiple layers. Simply put, early layers for
example, are more likely to process colors and simple structures such as individual
facial features or their skin color, whereas layers at the end of the network can relate
found structures and recognize entire faces.

However, it seems that a higher number of layers incorporated in a neural network
can lead to optimization problems and performs even worse in approximating certain
functions in comparison to shallower ones.
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Chapter 2

Fundamental Terms

In this chapter, fundamental concepts and terms in the area of neural networks are
explained and illustrated with examples.

2.1 Classical Feed-forward Neural Networks

Basically, artificial neural networks, which will be simply referred to as neural net-
works in this thesis, are collections of linear equations, wrapped by a non-linear
activation function and connected to a number of other equations. Input informa-
tion is fed forward through the network by each equation’s output (except the last
layer) being the input of its successor.

2.1.1 Units

The most important building blocks of modern neural networks are so-called units
– again name-inspired by the biological term for neurons in human brains. These
units are usually grouped into layers of any size and connected to every unit in the
layer before and after itself (dense layers).

Each of these units takes an input – either from the input vector or from the
prior layer – and applies a linear transformation. This is followed by a non-linear
activation function g responsible for the impact this unit creates. Simply put, de-
pending on the linear transformation itself, the choice of this function is responsible
whether its triggering the next unit or not. (As mentioned earlier, single layer neural
networks with an arbitrary number of artificial neurons can be universal approxima-
tors for functions [2], which has been generalized by [1] for two-layer neural networks
under the precondition that the activation functions are non-linear).

The input x gets transformed by a weight w and a chosen bias b, each of them
initialized at the beginning (cf. Section 3.1.2) and then changed accordingly during
the training process.

z = wx+ b

a = g(z)
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Figure 2.1: Plain feed-forward neural network with l densely connected layers and
m units in each layer with k being any layer in the network. Dense connections have
been simplified.

2.1.2 Notation

In order to encourage a consistent style, we agree on the following notation, when
talking about feed-forward neural networks in general.

Concerning dense layers, the result of the linear equation wx+b each unit outputs
will usually be denoted by z

(k)
i , i ∈ {1, . . . ,m}, k ∈ {1, . . . , l} which is then trans-

formed by a non-linearity, e.g. the Rectified Linear Unit (ReLU) g(x) = max(0, x),

referred to as a
(k)
i = g(z

(k)
i ). Hereby, l usually represents the number of layers, k

being any layer in the network, and m the number of units used in layer k. Therefore

a
(k)
i = g(z

(k)
i ) = g(w

(k)
i a

(k−1)
i + b

(k)
i )

as weights and biases are thought of stored in the unit itself. A hat over some
letter will mean that this is not a single-value but a tensor or a matrix.

Due to the fact that this thesis deals with image classification problems in most
cases, convolutional layers (cf. Section 2.2) are mainly used. In contrast to fully-
connected dense layers, convolutional layers combine the idea of filters used in classi-
cal computer vision and modern neural networks. Since the convolutional operation
is still a (specialized) linear operation [5], ”convolving” over the image with a certain
stride and size and performing the dot product, the operation itself will be denoted
with an asterisk

z
(k)
i = w

(k)
i ? a

(k−1)
i + b

(k)
i

with w
(k)
i being the tensor containing the filters.

2.1.3 Activation Functions

Choosing the activation function is crucial for the learning process and also relevant
for the problem statement since it is basically setting the threshold for deciding
whether a unit is activated or not.

In early neural networks the sigmoid function sig(x) or tanh(x) has been used
in most cases, but it has been shown that these tend to let units die more easily
(Section 3.1.1) during the learning process. Therefore, the Rectified Linear Unit
(ReLU) function is used in most modern implementations [6].
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Sigmoid

The Sigmoid function (Figure 2.2) ”squashes” its input values into a range of (0, 1),
modeling concepts where units either fire or not fire due to its steep slope at x = 0.

Figure 2.2: The Sigmoid function sig(x) = 1
1+e−x and its derivative d

dx
( 1
1+e−x ) =

e−x

(1+e−x)2

Hyperbolic Tangens

In contrast to the Sigmoid function the Hyperbolic Tangens (Figure 2.3) is centered
around zero with values in (−1, 1). It is defined as g(x) = ex−e−x

ex+e−x .

Figure 2.3: The Hyperbolic Tangens

Rectified Linear Unit (ReLU)

Defined as ReLU(x) = max(0, x), ReLU (Figure 2.4) is basically the identity func-
tion for values bigger than zero and cuts off all information lower by setting them
to zero.

Softmax

Unlike the other activation functions, Softmax accepts multiple inputs x̂ and maps
them to (0, 1] so that the output vector sums up to one – representing a probability
distribution. This is often used in classification problems with n different classes

4



Figure 2.4: The ReLU activation function

where the last layer in the network uses Softmax in order to assign probabilities to
each class. [5]

softmax(x̂)i =
ex̂i∑n
j=1 e

xj
for i ∈ {1, . . . , n}

2.1.4 Training

After setting up and initializing the network (weights, biases) with parameters ac-
cording to Section 3.1.2, the input values get fed forward through the network and
the output is produced. In order to measure the quality of the output and how much
it differs from the expected values (according to the training dataset), a certain met-
ric is needed (often called error or loss function). This procedure is mostly referred
to as learning, namely learning how to tweak parameters in order to achieve better
results. An improvement in approximating the target function should directly affect
the output of the error, so that minimizing the error function also leads to better
results in the network.

Error functions

The chosen error function typically depends on the underlying problem. When
dealing with regression problems, the most often used loss function is the Mean
Square Error (MSE) [6]

MSE =

∑n
i=1(yi − y′i)2

n

with n being the number of training examples, yi a single labeled data point in
the training set and y′i the networks prediction for this point. Despite the high pop-
ularity, MSE is prone to amplifying bad predictions where results are far away from
the actual labels due to the squared distance. In comparison, the Mean Absolute
Error (MAE) is a small variant, which – as the name suggests – uses the absolute
distance between prediction and the actual label.

MAE =

∑n
i=1 |yi − y′i|

n

When dealing with classification problems (compare Section 2.1.3), and binary
classification problems in particular, a often used error function is the Binary-Cross-
Entropy Loss (BCEL). It is based on the idea of cross-entropy describing the dif-
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ference between the true underlying probability distribution Pdata – or at least the
empirical distribution based on the training samples – and the results P , predicted
by the network. Having two classes with yi either being one or zero, the Binary-
Cross-Entropy is defined as

BCEL = − 1

N

N∑
i=1

yi ˙log(y′i) + (1− yi) ˙log(1− y′i).

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is the most used gradient-based algorithm for
optimizing a network in order to minimize the chosen loss function described in
Section 2.1.4 [5]. As the name suggests, changes on weights and biases in the net-
work are made based on the gradients of the loss function in respect to each single
parameter.

The idea of SGD is based on a simple way of interpreting the gradient of a
function. Consider a network with one single input and output. Then y = L(x)
models the loss function of this small network. L′ or dy

dx
is called the derivative of L

and describes the slope of L at the point x. This gives an indication on how much
impact small changes of x have on the output y. However, as the networks grows
and possibly makes use of multiple inputs, partial derivatives must be used in order
to estimate this impact. In analogy to the single input example, ∂

∂xi
L(x) measures

how L changes at point x when tweaking the parameter xi. The gradient ∇L(x)
at point x in this example is – by definition – a vector whose components are the
partial derivatives of L in respect to the parameters at this point x.

∇L =


∂L
∂x1

(x)
...

∂L
∂xn

(x)


The gradient vector and its components are generally interpreted as the ”di-

rection and rate of fastest increase” [7, 5]. Therefore the negative gradient of an
inspected parameter points at the direction of fastest decrease, which means that
adding the negative gradient vector at x ultimately minimizes the loss function L.

At some points it makes sense to scale the gradient vector with some scalar ε,
called the learning rate, determining the size of the step L makes at point x [5].
This can help in learning faster, but also bears the risk of running over a possible
minimum if ε is chosen too big. The choice of a very small ε on the other hand, can
slow down training, because steps towards a minimum are becoming small as well.

The described method of calculating partial derivatives for each parameter of a neu-
ral network – which can easily be multiple millions – is a computationally expensive
task. Therefore, the real gradient is replaced by a stochastic approximation, calcu-
lated from a randomly selected subset of the dataset in most applications (SGD) [8].
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2.2 Convolutional Neural Networks

As for now, the described networks only handled one-dimensional input data. Two-
dimensional data like images for example would have been flattened by stacking
each column of pixels on top of each other, obtaining only one dimension. However,
with this approach valuable spatial information gets lost because neighboring pixels
have typically a higher probability of being related than pixels that are far away
from each other.

Besides that, processing images with multiple dimensions (including the depth
for colors) using only dense layers as described in Section 2.1 lets the number of
parameters in the network grow fast, making training this type of network unfeasi-
ble [6].

2.2.1 Filters and the Convolutional Operation

Similar to classical computer vision tasks, filter kernels are used in order to highlight
and detect certain features like edges. The difference here is that kernels do not have
to be defined by hand, but will be learned during training as parameters. By using
the process of convolution, a filter can be applied to a given image.

In its most general form, the convolution is a mathematical operation (cross-
correlation) on two functions f, g : Rn 7→ R, producing a third one, which measures
the overlap between them, when one function is ”flipped” and shifted by x [6].

(f ? g)(x) =

∫
Rn

f(z)g(x− z)dz.

In discrete terms this can be written as

(f ? g)(x) =
∑
n

f(n)g(x− n).

By adding indices for the second dimension, this operation can be used to apply
filters to input images. The idea behind this is that it is assumed that areas close to
each other are more likely to be related than areas far away from each other. Hence,
what happens is that the filter is applied to an area (convolutional window) of the
image and then slides to the next part of the image. This procedure is repeated
until the whole image has been scanned.

Let f ∈ Rx×y be a two-dimensional greyscale image with dimensions x × y and
ω a filter of finite size. We also suppose that ω consists of an odd number of 2N + 1
elements (typically much smaller than the actual image), indexed from −N to N .
Therefore, ω ∈ R(2N+1)×(2N+1) and

g(x, y) = w ? f(x, y) =
N∑

i=−N

N∑
j=−N

ω(j, i)f(x− j, y − i) (2.1)

is the image after the filter has been applied using the convolution [5]. As seen
in Figure 2.5, the filter size is not limited to an odd number of elements though.
Figure 2.5 also shows that the output size is inevitably smaller than its input.
Since the filter moves within the edges of the input image, the output shape can be
determined by
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(x− x′ + 1)× (y − y′ + 1)

assuming that ω ∈ Rx′×y′ .

Figure 2.5: Example of a convolution with a filter size of 2 × 2 and a stride of 1
with valid padding, meaning that the filter only slides over areas that are entirely
within the input image. This halves the size of the output in comparison to the
input image.

2.2.2 Padding and Stride

However, it is not always desirable to reduce the size of the input data through con-
volution. Although input data is only reduced in small steps because filter sizes are
generally not bigger than 7, there is a risk that information is compressed too much
– especially in deep neural networks with many convolutional layers. One solution
to solve this issue is to add extra columns and rows around the actual input, filled
with zeros. This adds no extra information to the input but extends the data before
the convolution so that the shape of the output is not smaller than the actual input
shape (valid padding). If the output shape should be the same as the input shape
(same padding).

In some cases, however, down-sampling data may be desired nonetheless and can
be achieved by increasing the stride. Until now, the convolutional window has been
moved across the input with one element a time for each row and column. If this
step size is increased, the sliding window skips some overlapping values and the out-
put shape decreases. This is a common practice for reducing the resolution of the
output either for computational efficiency or because down-sampling is desired [6].
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2.2.3 Pooling Layer

Another way of reducing resolution and aggregating information is using a pooling
layer. Similar to the convolution, a pooling window slides over the input data as
well. This time, however, it is not a filter which is applied but a function, ”typically
calculating either the maximum or the average value of the elements in the pooling
window” [6]. It can be said that pooling works similar to what is shown in Figure 2.5
except that pooling does not have any parameters. Instead, all values in the current
pooling window are aggregated to a single value by maximum pooling or average
pooling.

This is helpful because neural networks are ultimately drawing information from
raw data. This could be detecting edges in images for example. Imagine an image
A and another image B shifted to the right by one pixel. In this use-case, the raw
data is vastly different but the representation (edges in the image) is mostly the
same. By using pooling layers, these differences can be balanced. Information in a
certain area of the image is aggregated so that the a pixel’s actual location does not
matter that much on a small scale [6].

9



Chapter 3

Deep Neural Networks

As described in Chapter 1, deep neural networks with more layers are generally more
efficient than shallow ones in terms of parameters and therefore the time needed for
learning. This is, among other reasons specific for visual learning described up to
this point, the main motivation for experimenting with deeper models.

3.1 Limitations and Arising Problems

In contrast to our expectations, even with allowing to scale units horizontally across
multiple layers with bounded space, deep neural networks are encountering opti-
mizations problems [9, 10].

3.1.1 Vanishing Gradients

As more layers are added to a network, gradients in early layers are vanishing and be-
coming arbitrarily small [11, 10]. This results in the networks loss function converg-
ing much slower and even having gradients near to zero and therefore contributing
no change towards a local minimum.

One reason for this can be the use of the Sigmoid function as activation for
layers [12], which makes the ”logistic sigmoid activation (...) unsuited for deep
networks with random initialization because of its mean value, which can drive
especially the top hidden layer into saturation.” [13].

The Sigmoid function 2.1.3 by its nature squeezes its input in a range of (0, 1),
asymptotically approaching both ends with a very steep slope. This means there
is only a very small range where inputs get projected to values between zero and
one and the rest of R having values very close to them. This becomes clearer
when we take a look at the derivative of the Sigmoid function at x = 0. Then
d
dx

1
1+e−x (0) = e−x

(1+e−x)2
(0) = 1

4
. Therefore, the following applies to the output of units

using the sigmoid function as its activation: a(k) ∈ (0, 1
4
].

Let L be the function measuring the loss using SGD. Then

∂L
∂ŵ(k)

=
∂L
∂â(l)

· ∂â
(l)

∂ẑ(l)
· ∂ẑ(l)

∂â(l−1)
· ∂â

(l−1)

∂ẑ(l−1)
· · · · · ∂ẑ

(k)

∂ŵ(k)

is the derivative of L with respect to the weight matrix in layer k applying the
chain rule. Together with any i ∈ {1, . . . n} and
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â(i) = sigmoid(ẑ(i))

ẑ(i) = â(i−1) · ŵ(i) + b̂(i)

it can be easily seen that each derivative contains the derivative of the sigmoid
function as well, which leads to values in (0, 1

4
] being multiplied together and result-

ing in values closer to zero.

∂â(i)

∂ẑ(i)
· ∂ẑ(i)

∂â(i−1)
=
∂sigmoid(â(i−1) · ŵ(i) + b̂(i))

∂â(i−1) · ŵ(i) + b̂(i)
· ∂â(i−1) · ŵ(i) + b̂(i)

∂sigmoid(â(i−2) · ŵ(i−1) + b̂(i−1))

Another common practice that vanishes gradients as well is using the Gaussian
distribution with µ = 0 and σ2 = 1 for weight initialization (cf. Section 3.1.2). This
also results in weights near to zero.

So even with only a few layers in a deep neural network, the gradient can become
very small using SGD with sigmoidal units and a Gaussian weight initialization. The
more layers the network uses, the smaller the gradients become and results in not
finding a proper minimum of the loss function due to exponentially small steps of
the gradient towards a local minimum.

3.1.2 Troubleshooting

However, as the main problem training deep neural networks is based on the defini-
tion of the Sigmoid function and its derivative, using a different activation function
together with clever weight initialization [13] as well as intermediate normalization
layers [11] can help address these issues.

ReLU

The Rectified Linear Unit (described in 3.1.2) is a piece-wise defined function, ze-
roing all inputs smaller than or equal to zero and returning the identity else. The
derivative – in contrast to the Sigmoid function – is therefore

d

dx
ReLU(x) =

{
0 x ≤ 0

1 x > 0.

This means gradients will not vanish in most cases, because the chain of multi-
plications does not strictly consist of values < 1. One might argue that there is a
possible risk of units ”dying” out when the weight in combination with the bias is
negative. Then the ReLU’s output is zero and might hurt optimization by block-
ing gradient back-propagation. There are, however, experimental results suggesting
that these zero activations can actually help supervised training as long as there is
at least one path allowing the gradient propagating through [14].

Batch Normalization

Despite the fact, that using ReLU as the activation function g, initializing the pa-
rameters (weight matrices, etc.) carefully and choosing small learning rates helps to
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reduce the chance of vanishing or exploding gradients [11], another method proved
success by stabilizing the distribution of non-linearity inputs.

Furthermore, it has been shown that networks converge much faster if the input
data of layers is normalized to zero mean and a variance of one (unit-variance) [11].
As the name suggests, normalization is not applied to a whole layer at once but for
mini-batches. A certain size m is set for a single batch with values B = {x1, . . . , xm},
where mean µB and variance σ2

B are calculated and each input xi ∈ B is normalized
to x̂i [11].

µB =
1

m

m∑
i=1

xi (mean)

σ2
B =

1

m

m∑
i=1

(xi − µB)2 (variance)

x̂i =
xi − µB√√√√σ2
B + ε︸︷︷︸

added for
numerical
stability

(normalization)

However, just normalizing each input might ”change what the layer can rep-
resent” [11]. When just normalizing inputs and for example applying the sigmoid
function as its activation, the linear essence of the input is preserved, which somehow
contradicts the application of such a non-linearity. Therefore, γ and β are intro-
duced as learnable parameters, responsible for scaling and shifting the normalized
input to

yi = γx̂i + β

Using Batch Normalization as a step before the non-linearity, it ultimately com-
putes the following function

yi = BNγ,β(xi) = γ
xi − µB√
σ2
B + ε

+ β

and ensures zero mean and unit variance, thereby mostly eliminating the van-
ishing gradient problem.

Weight Initialization

Another crucial part of a network’s architecture is how units of the network are
initialized at setup. This can possibly be a cause of whether units die early in
the learning process (become arbitrarily small or big and therefore ineffective, cf.
Section 3.1.1) or perform well over the whole training phase [13].

One simple method for weight initialization that comes to mind is to initialize
weights with some random distribution. However, if the random values are either too
small or too big, gradients can easily vanish again, depending on the used activation
function. When using differentiable activation functions like sigmoid for example,
the gradient’s slope easily becomes too small if randomly produced values are very
big or very small due to high variance. If variance is lower on the other hand,
gradients will move in a very narrow range and training will be slowed.
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This does not happen for networks using ReLU activations 3.1.2 because the
derivative can only be zero or one. Hence, the variance of the probability distribution
is not quite important because there will always be positive and negative samples
and therefore gradients with value zero or one.

But how is it possible to ensure that randomly chosen initialization values are in
a somewhat ”perfect” range in all cases?

Xavier Initialization. For activation functions differentiable at x = 0 (es-
pecially tanh 2.1.3), Kumar et al. [15] suggests to use a distribution with output
variance of one in order to ensure faster convergence. From that they derive the
Xavier Initialization [13] for tanh with

ρ2 =
1

dk

where dk is the number of input neurons in layer k. This can for example be
achieved by multiplying standard normal distribution with√

1

dk

He Initialization. When using the ReLU activation function, which is non-
differentiable at x = 0, the variance of the distribution used for random initialization
should be

ρ2 =
2

dk

with √
2

dk

as a factor [16].

3.1.3 Degradation Problem

Even though above methods helped to allow neural networks with a higher number
of layers it seems as if accuracy saturates at first but then degrades rapidly with
increasing depth of a network [10] (Figure 3.1), remaining at a higher training error
than less complex networks.

This seems counter-intuitive at first, because one would expect a model with
more parameters (due to more layers) to perform at least as good as if these extra
layers would not have been added. Consider a shallow neural network with n layers
and another more complex one with m layers where m > n. In order to learn the
same function on both we could simply replace the first n layers of the deeper NN
with the exact same layers of the shallower one and make the residual m− n layers
learn the identity function.

These m− n layers should not add further complexity to the network as well as
not increase the training error, since they will just compute the identity. If the now
deeper network finds a more complex function to learn, it can be expected that the
additional layers would be able to find this solution. However, when comparing the
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Figure 3.1: Training error (left) and test error (right) on CIFAR-10 with 20-layer
and 56-layer “plain” networks. The deeper network has higher training error, and
thus test error [10]

.

training error of this constructed network to shallower ones it seems that this is not
the case (Figure 3.1).

In addition to that, Batch Normalization (BN, cf. 3.1.2) has been used in the
experiments made by He et al. [10] and by monitoring the gradients, it could be
argued that these observations are unlikely a result of vanishing gradients. The
authors conclude that it is somehow hard for deeper networks to learn the identity
function and that it is possibly easier approaching a zero mapping (f(x) = 0 instead
of f(x) = x). In addition to that they ”...conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the reducing of the training
error.” [10].

3.2 Residual Neural Networks

In order to address this problem described in Section 3.1.3 and allow deeper layers
to be added to the network, He et al. [10] introduce skip- (sometimes referred to as
shortcut-) connections to the network.

An analogy for this idea roughly exists in biology [17] where layers in the cere-
bral cortex in the brain of mammals receive input from prior layers, skipping the
intermediate ones.

3.2.1 Identity Block

These shortcut connections in Residual Networks (ResNets) simply take the output
of some layer, skip one or more layers (the residual block) and add the output
unchanged – as an identity mapping – to the linear output of the desired layer before
the activation function is applied. This passes information from early layers much
deeper into the network and allows the network to easily learn the identity function
by setting F (x) = 0, thus driving all weights and biases in the stacked residual layers
between the shortcut connection to zero and leaving x as the identity. If, however,
the identity mapping is not the optimal solution for this block, weights and biases
are learned to adjust the value of the residual F (x).

Additionally, because shortcut connections neither add extra parameter nor com-
putational complexity, the network can still be trained end-to-end by Stochastic
Gradient Descent (SGD) using backpropagation [10]. Furthermore, gradients are
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Figure 3.2: Detail from a larger Residual Network with a shortcut connection reach-
ing from x = a(k−1) of layer k to the linear output of layer k+ 1 producing F (x) +x,
where F (x) = z(k+1) (comp. Notation in Section 2.1.2)

much less likely to vanish, because shortcut connections can be used to preserve
gradient, due to the identity.

Let L be the loss function and x the input to a residual block as shown in
Figure 3.2. When finding the partial derivative for the gradient in respect to x, the
identity shortcut resolves to one, thus not decreasing the gradient any further.

∂L
∂x

=
∂L
∂H

∂H

∂x
=
∂L
∂H

(
∂F

∂x
+ 1︸︷︷︸

derivative of x

) =
∂L
∂H

∂F

∂x
+
∂L
∂H

3.2.2 Convolutional Block

Due to the addition of the identity, both x and F (x) must have the same dimen-
sions, which cannot always be guaranteed, especially in computer vision when using
convolutional or pooling layers in between. Either only convolutions preserving the
dimension are applied in the residual block or methods are used to adjust dimen-
sionality if it increases in the residual block.

Padding

The simplest method to achieve the same dimension is to fill the required number
of entries with zeros until the dimension is properly adjusted. This introduces no
extra parameters [10].

Linear transformation

Another way of adjusting dimensions is introducing a matrix Ws that will be learned
during backpropagation along with the other parameters [10]. The residual block
then turns into
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Figure 3.3: ResNet blocks with identity and convolutional type of skip connection [6].

H(x) = F (x) +Wsx

where

Ws ∈ Rm×n for x ∈ Rn×q and F (x) ∈ Rm×p, m,n, p, q ∈ N

3.2.3 Architecture

In order to make ResNets comparable to plain networks regarding their performance,
He et al. [10] utilize the exact same architecture, despite the use of shortcut con-
nections in ResNets. They consist of stacked convolutional layers with mostly 3x3
sized filters. They apply two simple design rules [10]

• For the same output feature map size, the layers have the same number of
filters

• If the feature map size is halved, the number of filters is doubled so as to
preserve the time complexity per layer

After the last convolutional layer (or the end of an identity block), global aver-
age pooling is applied and the input runs through a 1000-way fully connected
layer. Because ResNets performance has been originally measured with the Ima-
geNet dataset [18], softmax has been used as this dataset is typically being used
on classification problems. Downsampling is performed by using a stride of two in
convolutional layers [10].

The authors use multiple methods to augment the already existing 14M samples
included in the ImageNet [18] dataset. Firstly, the shorter side is randomly sampled
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in [256, 480] and cropped to a 224x224 image. Then, random images are flipped hor-
izontally and per-pixel mean is subtracted from all images. After each convolution
operation, Batch Normalization (BN) is applied before the activation function (cf.
Figure 3.3). This step is mainly responsible for the absence of vanishing gradients,
as BN ”ensures forward propagated signals to have non-zero variances” [10]. They
also ”verify that the backward propagated gradients exhibit healthy norms”, so that
”neither forward nor backward signals vanish” [10]. Weights are initialized accord-
ing to [16] and the network is trained by SGD (cf. Section 2.1.4) using a batch size
of 256 and a learning rate of 0.1, divided by ten if the loss function plateaus. The
authors train their ResNets with up to 60× 104 iterations. They use a training set
consisting of 1.28 million images. Making use of the mentioned 256 image per batch,
they need around 1280000

256
= 5000 iterations for the network to see the whole dataset.

This means that the network sees the entire dataset a total of 120 times (epochs).
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Chapter 4

Experiments using Residual
Networks

In this chapter a method for assigning multiple labels to an image using Residual
Networks will be examined. The used architectures will be introduced and its per-
formance on this task and dataset will be compared to ”plain networks” as referred
to by He et al. [10].

4.1 The CULane Dataset

Figure 4.1: Example images and distribution of available classes in the CULane
dataset [19]

Originally developed for traffic lane detection, the authors of [19] made the
dataset available for academic purposes. It consists of 133.235 frames, extracted
from more than 55 hours of video material, collected by six different vehicles in
Beijing [20]. The images are shot from the view of a car’s dashboard and should be
annotated with multiple labels from the following nine different categories:

• Normal, 27.7%, 8676 samples,

• Crowded, 23.4%, 7329 samples,

• Night, 20.3%, 6358 samples,

• No line, 11.7%, 3664 samples,

• Shadow, 2.7%, 845 samples,

• Arrow, 2.6%, 814 samples,
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• Dazzle light, 1.4%, 438 samples,

• Curve, 1.2%, 375 samples,

• Crossroad, 9.0%, 2819 samples.

However, only 31.323 images have been labeled with classes distributed unequally
over the dataset (cf. Figure 4.1 for exact distribution).

normal crowd hlight shadow noline arrow curve cross night filename
1. 0. 0. 0. 0. 0. 0. 0. 0. /06051417 0693.MP4/01...
0. 0. 1. 0. 0. 0. 0. 0. 0. /05251426 0416.MP4/04...
0. 0. 0. 0. 0. 0. 0. 0. 1. /05252231 0536.MP4/00...
1. 0. 0. 0. 0. 0. 0. 0. 0. /05250455 0302.MP4/04...
0. 1. 0. 0. 0. 0. 0. 0. 0. /05251502 0428.MP4/04...
...

...
...

...
...

...
...

...
...

...

Table 4.1: Example of the formatted CULane dataset containing nine classes and
the filepath to the image.

4.2 Multi-Label Classification

Due to the fact that the performance of ResNets on predicting multiple labels should
be examined in this thesis, the core problem is a multi-label image classification task.
As opposed to multi-class classification, where each image vector is assigned only
one from a set of multiple classes, the prediction in this case may include more than
one label. However, as the given dataset was originally intended for traffic lane
detection and only their test set (26% of all collected samples) has been divided into
nine categories (Figure 4.1), each image is only assigned to one class.

Nonetheless it is possible to use this dataset for multi-label classification, as
thresholds for considering a prediction as sufficiently good must be set anyway. In
this case, instead of the best prediction (predicted class), the best k predictions are
selected as labels (cf. Section 4.5.3).

4.3 Metrics

In classical binary classification problems, the quality of a solution can be evaluated
by comparing true positive (tp), false positive (fp) and false negative (fn) results.
Specifically precision and recall are two important measures defined as [21]

precision =
tp

tp+ fp

recall =
tp

tp+ fn

and describe how good a model is at predicting the positive class in general
(precision) and how good it is at predicting the positive class if the predicted outcome
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is positive as well (recall). As described in Section 4.1, the labels on the CULane
dataset are quite imbalanced, with some classes accounting for less than 3%. A
common practice for this issue is to use the F1 (harmonic mean of precision and
recall) or the more generalized Fβ score [22] as metrics. The former one is defined
as

F1 =
2× (precision× recall)
precision+ recall

whereas the Fβ score generalizes this ratio by introducing β, as a way to give
either the precision or the recall more importance.

Fβ =
(1 + β2)× (precision× recall)

β2 × precision+ recall

As for this multi-labeling problem β will be set to β = 2 which means that recall
will be valued twice as important as precision. More attention is put on minimizing
false negatives, which is desired for these experiments – assuming that having ”more
information” in the sense of detecting more false negatives as true is better than
having less. The result will be a value in [0, 1].

However, these metrics only make sense when dealing with a binary classifica-
tion problem. Since there exist more than two classes in this case, the Fβ score
is calculated for each label in relation to all other labels and is than averaged (cf.
Listing 4.1).

In order to make the results of these experiments more comparable to He et
al. [10], top-1, top-2 and top-3 rates will be used to measure the performance of the
networks as well. The top-k rate denotes that out of all probabilities for a given
input image, the correct label is within the top-k predictions. Two constraints must
be made:

• Due to the fact that CULane instead of ImageNet is used as a data source,
top-k error rates with k > 3 are not purposeful because only nine classes exist
(ImageNet consists of 1000 classes).

• In addition to that, top-k rates are not evaluated per iteration due to increased
time and technical efforts.

As shown in Figure 4.7, the averaged difference (in %) between the prediction
for top-1 and top-2 and between top-2 and top-3 are marked in parenthesis below
the top-k values as well. This highlights the frequently stark difference between the
two involved ratings and is among others an effect of the only single-class labeled
CULane dataset (more in Section 4.5).

Listing 4.1: Python implemented version of the Fβ score for multi-label problems
using Keras. Epsilon is used for numerical stability.

from keras import backend as b

def f b e ta ( true , pred , beta =2):
pred = b . c l i p ( pred , 0 , 1)
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tp = backend .sum(b . round ( . c l i p ( t rue ∗ pred , 0 , 1 ) ) , a x i s =1)
fp = backend .sum(b . round(b . c l i p ( pred − true , 0 , 1 ) ) , a x i s =1)
fn = backend .sum(b . round(b . c l i p ( t rue − pred , 0 , 1 ) ) , a x i s =1)

p r e c i s i o n = tp / ( tp + fp + b . e p s i l o n ( ) )
r e c a l l = tp / ( tp + fn + b . e p s i l o n ( ) )

return b . mean(
(1 + ( beta ∗∗ 2) ) ∗ ( p r e c i s i o n ∗ r e c a l l ) /
( ( beta ∗∗ 2) ∗ p r e c i s i o n + r e c a l l + b . e p s i l o n ( ) )

)

4.4 Architecture

Figure 4.2: Detail of the VGG-18 network scheme.

At first, a baseline model has been developed by using an architecture similar to
VGG-nets [23] with 18 layers in total (cf. Figure 4.2). Each pair of convolutional
layers with 3x3 filters is succeeded by a max pooling layer. The number of filters
doubles after each of these blocks in order to preserve time complexity per layer [10].
The convolutional layers use the ReLU activation function and same padding in order
to guarantee the same dimensions of the feature maps. The stacks of convolutional
layers are then followed by two fully-connected layers with 4096 units and another
one with nine units and softmax (as described in Section 2.1.3) as its activation
function in order to output predictions for each label.

In order to make the experiments as comparable as possible, the architecture
regarding ResNets described in Section 3.2.3 is mostly maintained. A full overview
can be seen in Table 4.2.

Scale Augmentation (changing scale on images in order to increase the number
of samples) is not utilized since images in the CULane dataset are made using
dashboard-mounted cameras in vehicles, which typically do not change scale during
recording. However, images are horizontally flipped in order to increase the amount

21



layer name plain-18 plain-34 ResNet-18 ResNet-34

conv 1
3x3, 64
3x3, 64

3x3, 64
3x3, 64 (3x)

7x7, 64, stride 2
3x3 max pool, stride 2

conv 2.x
3x3, 128
3x3, 128

3x3, 128
3x3, 128 (4x)

3x3, 64
3x3, 64 (2x)

3x3, 64
3x3, 64 (3x)

conv 3.x
3x3, 256
3x3, 256 (2x)

3x3, 256
3x3, 256 (3x)

3x3, 128
3x3, 128 (2x)

3x3, 128
3x3, 128 (4x)

conv 4.x
3x3, 512
3x3, 512 (2x)

3x3, 256
3x3, 256 (3x)

3x3, 256
3x3, 256 (2x)

3x3, 256
3x3, 256 (6x)

conv 5.x 3x3, 512
3x3, 512 (2x)

3x3, 512
3x3, 512 (3x)

3x3, 512
3x3, 512 (2x)

3x3, 512
3x3, 512 (3x)

average pool

9d fully connected, softmax

Table 4.2: Architecture of the implemented plain and residual Networks.

of available training data, which is in line with the above mentioned statement
because this only changes the semantic meaning of the picture.

Input images are resized from 1640 × 590 Pixels to 328 x 118 Pixels in order to
reduce the amount of data the network needs to process and thereby cutting used
computing power as well. A loss of information by this practice is not expected.

Due to lower hardware capabilities than the authors of He et al. [10] have access
to, mini-batch size is reduced by the factor of eight which minimizes the used mem-
ory of our Graphical Processing Unit (GPU). Although this helps to train faster,
the estimated gradients become more noisy because the network only sees an even
smaller fraction of the whole training set. That is why learning rate is lessened to
1× 10−4 in order to not being pushed out of a ”valley” in the loss function by noisy
gradients.

The CULane dataset contains a total of 31323 labeled samples, which means
that about 313230̇.75

32
≈ 734 iterations are required for the network to perceive the

whole dataset (25% are used for validation). In order to reach the same number
of iterations as in [10], about 817 epochs are necessary. However, the available
hardware with a varying training time between 428s and 2561s per epoch, meaning
a total time of 97h – 581h (24 days), sets limits on how much iterations could be
done.

Depending on the hardware used for training, which ranges from a powerful
server kindly provided by the Institute for Software Systems in Technical Applica-
tions of Computer Science (FORWISS) Passau (NVIDIA TITAN V with approx.
10GB of usable memory GPU memory) to the services made available by Google
Colaboratory and Kaggle (limited to 9 hours of training), only between 1.2 × 104

and 47×104 iterations could be achieved (in comparison with up to 60×104 in [10]).
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4.5 Evaluation and Problem Analysis

4.5.1 Results

Plain Networks

It was possible to show the degradation problem (cf. Section 3.1.3) even with the
mentioned difficulties (less iterations, smaller dataset). The results in Table 4.3
suggest that the deeper 34-layer plain network has a lower Top-1 accuracy rate than
the shallower 18-layer plain network. Figure 4.3 (a) shows the training process over
32 epochs (2.35 × 104 iterations), where it can be seen that the deeper 35-layer
network has a lower Fβ score on the training set throughout the whole training
process despite the fact that the solution space of the 18-layer plain network is a
subspace of that of the 34-layer network [10].

(a) Plain Networks of 18 and 34 lay-
ers.

(b) Residual Networks of 18 and 34
layers.

Figure 4.3: Training on CULane with plain and ResNets measured by the Fβ score.

Residual Networks

In comparison to the plain networks it seems as if the described behavior changed
in so far as the accuracy rate switched. The deeper 34-layer ResNet proves to
have a higher Fβ validation score over the whole training as its shallower 18-layer
counterpart (cf. Figure 4.3 (b)). This shows that the observation, that adding more
layers to a network possibly leads to optimization problems, does not hold in this
case. In addition to that, the deeper Residual Network seems to have a higher top-1
score than the shallower one as well. It even outperforms the deep 34-layer plain
network whereas the 18-layer plain network still earns the highest rates.

plain ResNet
18 layers 86,78 79,88
34 layers 80,87 82,88

Table 4.3: Accuracy rate (%) showing the percentage of true top-1 predictions on
CULane validation set.

It can be said that the degradation problem (Section 3.1.3) is well addressed in
these experiments, showing less performance on the deep plain network and higher
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performance on the deep ResNet when compared to their shallower reference model.
However, these experiments on this specific CULane dataset also experience the best
performance on the shallow 18-layer plain network.

4.5.2 Generalization Problems

(a) VGG-18 (b) VGG-34

Figure 4.4: Performance measuring using the Fβ score.

(a) ResNet-18 (b) ResNet-34

Figure 4.5: Performance measuring using the Fβ score.

As can be seen in Figures 4.4 and 4.5 the graph of the train and validation
Fβ score clearly head into two different directions, suggesting that both models
experience relatively strong overfitting as early as from the seventh epoch on. Both
plain and residual networks also nearly reach a perfect Fβ score after 30 epochs. This
indicates that they are pretty good on predicting the training set but perform worse
on unseen data. This observation is reinforced by identifying the stark difference
of the Fβ score between the training and validation set. It seems as if both model
types rather memorize the given data than identifying a general pattern in it. This
has several reasons.

dataset size. Although a relatively big part of the training dataset has been
used as test data (25%, shuffled before split) – concerning a total of only 31.323
samples – it would have been better to use a separate validation set as well (despite
this approach is controversial [6]). In this thesis, validation and test dataset are
used synonymously. There has been no separate test set. Therefore, the metrics
incorporating test data used in this thesis are actually using the validation data.
However, there is generally not enough data to support the problem statement in a
way that it is possible to gain meaningful results.
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Imbalanced data. This is only reinforced by the fact that the nine labeled
classes are highly imbalanced (cf. Figure 4.1). It is intuitively clear that a feature
only supported by less than 700 images performs less good than another with sev-
eral thousands. Compare ”Crowded” with 23.% and ”Curve” with only 1.2% in the
whole dataset.

Abstract features. In addition to that, the problem statement (assigning
multiple labels to given images) in combination with the CULane dataset is rather
abstract, which supports the problem of imbalanced data. The labeled classes repre-
sent features that intuitively are rather different in an abstract way as well. ”Curve”
or ”Arrow” both are objects with a defined shape, which can easily be mathemat-
ically modeled, whereas ”Crowd” or ”Dazzle light” are descriptions of a strongly
contrasting type.

4.5.3 Multi-Labeling Threshold

Figure 4.6: Confusion Matrix showing percentage of actual and predicted numbers
per class.

Until now the initial task has been treated as a multi-class labeling problem,
where a given input is assigned one out of n possible classes. In order to assign
multiple labels, the predictions must be examined for their quality. A threshold is
required up to which predictions can be considered sufficiently good. Otherwise all
labels are correct to some extent, because predictions for each label must sum up to
one and are therefore greater than or equal to zero.

As described in Section 4.3, the top-k predictions for k ∈ {1, 2, 3} have been
analyzed. The results of all remaining labels have been combined into a fourth
rating named ”≥ 4”.

Figures 4.7 and 4.8 show the results known from Table 4.3 broken down into the
nine different classes. Similar to the confusion matrix (as an example plotted for the
deep plain network in Figure 4.6), this type of plot shows the percentage of correct
predictions sorted into ranks (more in Section 4.3). The values below these denote
the delta between two consecutive percentages. With this additional information it
can be clearly seen that CULane training data samples are only assigned to single
classes and not multiple ones. The differences arrange around 50% in most cases,
which means that the highest prediction differs from the second highest prediction
by 50%. This makes discussions about the choosing multiple labels obsolete.
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(a) VGG-18

(b) VGG-34

Figure 4.7: Top-1, Top-2 and Top-3 accuracy rate of 18 and 34 layer plain network.
The fourth column denotes that the correct prediction occurred in a place ≥ 4.
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(a) ResNet-18

(b) ResNet-34

Figure 4.8: Top-1, Top-2 and Top-3 accuracy rate of 18 and 34 layer residual network.
The fourth column denotes that the correct prediction occurred in a place ≥ 4.

27



Chapter 5

Conclusion and Future Work

This thesis shows that adding short-cut connections as He et al. [10] use it in their
work, helps reducing the impact of degradation in deeper networks and even in out-
performing shallow networks in some tasks. As mentioned at the beginning, deeper
networks allow each layers to work on a different abstraction level of a feature and
use less units for a certain degree of approximation.

Regarding the application on multi-labeling classification in combination with the
CULane dataset, neither plain nor residual networks performed sufficiently good on
this task. As described in Chapter 4.5.2, this is mainly due to external and non-
influenceable reasons like the number of labeled samples or the labels itself being
on different abstract levels. A conclusion on performance problems of ResNets in
general cannot be drawn from this.

This however suggests that for datasets with a limited number of labeled exam-
ples, it sometimes is better to develop less complex models than used in this thesis.
Even the smaller 18 layer plain network proofs to have too many trainable parame-
ters, than what can be met by the complexity of examples in the CULane dataset.

Another area of artificial neural networks worth investigating for this multi-labeling
problem is transfer learning. Layers at the end of a model, that has already been
trained, are replaced by untrained layers and adapted to learn features of a new
problem. However, it might be difficult to find a suitable dataset that sufficiently
supports the features of CULane in a way that new layers can gain enough advan-
tage.
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