
University of Passau
Faculty of Computer Science and Mathematics

Lehrstuhl für Mathematik mit Schwerpunkt
Digitale Bildverarbeitung

Prof. Dr. Tomas Sauer

Bachelor Thesis
Design and Evaluation of a Simple Chord

Detection Algorithm
Christoph Hausner

Date: 08/18/2014
Supervisor : Prof. Dr. Tomas Sauer

tomas.sauer@uni-passau.de

http://www.fim.uni-passau.de/?id=443

Contents

1. Introduction 5

2. Fourier analysis 7
2.1. Fourier transform . 7
2.2. Discrete Fourier transform . 8
2.3. Short-time Fourier transform . 10
2.4. Magnitude and power spectrum . 11

3. Music theory 13
3.1. Notation . 13
3.2. Equal temperament . 13
3.3. Harmonics . 14
3.4. Chords . 15

4. The algorithm 17
4.1. Overview . 17
4.2. Spectrogram calculation . 19
4.3. Harmonic content extraction . 19
4.4. Tuning estimation . 21
4.5. Chromagram calculation . 23
4.6. Chordgram calculation . 26
4.7. Chord sequence estimation . 30

5. Evaluation 33
5.1. Measuring detection quality . 33
5.2. MIREX dataset results . 36
5.3. Typical detection issues and possible approaches 39
5.4. Impact of various stages on detection accuracy 41
5.5. Parameter optimization . 43

6. Conclusion 47

A. CD content & Implementation 49

3

1. Introduction

Chord detection (also referred to as chord recognition or chord estimation) is the
automated process of assigning musical chords to segments of a music piece. It finds
application in a wide range of domains: as a tool for transcribing music to lead sheets,
as an automated way to populate databases of music metadata which can then be
searched by users, for building audio visualizations that react to harmony changes,
or as part of other music information retrieval tasks such as song identification, cover
identification, genre/mood classification or score following (the determination of the
current position in a given sheet of music).

Most research work targets mainstream rock/pop songs because of their popularity
and since they are usually based on a very clear sequence of relatively simple chords.
On the other hand, highly polyphonic baroque music, for example, may not have
an underlying chord progression at all, and jazz pieces can be composed of a wide
variety of complex jazz chords whose detection is deemed to be not possible yet with
current methods.

Still, much progress has been made in automatic chord recognition over the last
decade. While newer and more sophisticated algorithms perform increasingly better
at the task, the proposed algorithms also start to get considerably complex and
computationally expensive. Even with improved algorithms there hasn’t been a key
breakthrough in recent years and the estimation quality of today’s best performing
algorithms still heavily depends on the type of input.

There are different reasons why recognizing chords is everything but trivial. The
human brain processes sounds in complex ways that can be difficult to model in
algorithms (the field of psychoacoustics). For instance, the perceived pitch of a
single tone may not be represented in the frequency spectrum at all but result from
the interference of multiple other frequencies (partials). [Loy, 2006, p. 157] Different
subjects may also hear different chords in the same audio sample. [Burgoyne et al.,
2011] The fact that multiple chords must be considered correct poses questions on
how to train and evaluate algorithms.

This thesis aims to illustrate how mathematics, signal processing and music theory
can all be leveraged and applied together to tackle the chord recognition problem.
To that end, we will expand on the theory of Fourier analysis, how it can be used to
extract important frequency information from audio signals, how frequency relates
to pitch in music, and lastly how to infer chords from pitch information.

5

1. Introduction

For the latter, a simple yet reasonably accurate chord detection algorithm is pro-
posed, implemented and evaluated. The focus for the algorithm was put on a simple
design that does not build on sophisticated machine-learning techniques or statisti-
cal processing and therefore does not require a separate learning phase.1 Still, an
effort was made to improve detection quality as far as possible while keeping the
complexity of the algorithm low.

The rest of this work is structured as follows. In Chapter 2, an introduction to the
Fourier transform, the Discrete Fourier Transform (DFT), the Short-Time Fourier
Transform (STFT) and their applications in spectral analysis is given. Chapter 3
provides an overview of relevant music theory whose comprehension is beneficial for
understanding the rest of this work. Chapter 4 contains an in-depth description
of the various steps involved in our algorithm. In Chapter 5, details on how our
algorithm fares against competing algorithms on a popular test set of songs are
given, common detection issues are examined and the influence of different parameter
choices on detection quality is analyzed. Lastly, Chapter 6 provides a summary of
the methods and findings presented in this work. Appendix A contains additional
information on our algorithm implementation and the contents of the supplied CD-
ROM.

1While our algorithm does have a set of parameters that can be tuned to a specific training set,
we provide default values that already yield good results in most cases.

6

2. Fourier analysis

Subject of this chapter is the mathematical background of the time-frequency trans-
form that we employ in our algorithm and its application in spectrogram calculation.

The Fourier transform is named in honor of Jean Baptiste Joseph Fourier (1768–
1830) who originally studied the related concept of Fourier series to describe heat
transfer in solid objects. [Howard and Angus, 2009, p. 437] The Fourier transform
decomposes a function into an infinite sum of sine and cosine waves, each with a
specific amplitude, phase and frequency. The expression “time-frequency transform”
originates from the fact that the transformed function no longer represents a signal
that changes over time but encodes how energy is distributed in frequency space
over the entire signal’s length.1 Today, Fourier analysis and its applications play a
fundamental role in a wide range of disciplines, above else in signal processing, data
compression, solving of partial differential equations and number theory. For this
work, we will solely focus on the aspect of (audio) signal processing.

The remaining of this chapter is in large parts based on [Roads et al., 1997, pp. 35–
53]. We begin with the Fourier transform defined for absolutely integrable functions
and then cover discrete variants and applications thereof.

2.1. Fourier transform

Let f be an absolutely integrable real-valued signal2, i.e. f : R→ R with
∫
R |f(t)| dt <

∞. The Fourier transform of f is defined as:

f̂(ξ) :=

∫
R
f(t) · e−iξtdt ∈ C, ξ ∈ R

In layman’s terms, f̂(ξ) can be interpreted as the amount of a particular frequency ξ
in the signal (see Figures 2.1 and 2.2). This is well illustrated when considering the
inverse Fourier transform which maps a frequency spectrum back to a time-variant
signal:

f(t) =
1

2π
·
∫
R
f̂(ξ) · eiξtdt, t ∈ R

1Apart from the Fourier transform, there exist many other time-frequency transforms with dif-
ferent properties and application areas. Most notably, wavelets.

2While the transform can be defined for complex functions it is usually not needed in audio
processing as the input signal is real-valued.

7

2. Fourier analysis

Since eiξt = cos ξ + i sin ξ it is easily seen that f̂(ξ) act as weights or intensities3 of
sine and cosine waves with frequency ξ.

Assuming the unit of t is seconds (s), ξ corresponds to ξ
2π

Hertz (s−1). For ξ < 0 it

can be shown that f̂(ξ) = f̂(−ξ), provided that f is real-valued.

It has to be noted that the Fourier transform is only invertible under certain con-
ditions. For a large set of practically relevant functions (e.g. continuous L1 func-
tions whose Fourier transform is in L1), however, the Fourier transform can be
inverted. [Benson, 2006, p. 76]

While the continuous Fourier transform is powerful and convenient from a mathe-
matical point of view, it is hard to be applied in practice since real-world signals
have a finite length and are usually sampled at discrete points. A variant better
suited in this regard is the discrete Fourier transform.

2.2. Discrete Fourier transform

The discrete Fourier transform (DFT) is a discrete variant of the Fourier transform
that handles periodic time-discrete signals.

Let c be the sequence of an N -periodic signal in R. The DFT of c is defined as:

ĉ(m) :=
N−1∑
k=0

c(k) · e
−2πikm

N , m ∈ {0, ..., N − 1}

Unlike the continuous Fourier transform, the DFT yields a discrete frequency spec-
trum of finite size. The frequencies from 0 up to the sampling rate of the input are
discretized into a set of N equally spaced points (also called frequency bins).4 If σ
is the input sampling rate, ĉ(m) corresponds to frequency m

N
· σ.5

Just like the continuous Fourier transform, the DFT can be inverted by the inverse
discrete Fourier transform (IDFT):

c(m) =
1

N
·
N−1∑
k=0

ĉ(k) · e
2πikm
N , m ∈ {0, ..., N − 1}

In contrast to the continuous case, the inversion of the DFT is always possible and
not dependent on any further conditions.

3Strictly speaking, amplitudes and phase shifts.
4ĉ(0) corresponds to frequency zero, the component in the signal that does not vary over time,
sometimes called DC component. It is equivalent to the mean of the signal.

5For real-valued signals, half of the DFT coefficients contain redundant information (ĉ(m) =
ĉ(N −m)) and N

2 − 1 (corresponding to almost the Nyquist frequency) is therefore the highest
coefficient of interest in practice.

8

2.2. Discrete Fourier transform

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−6

−4

−2

0

2

4

6

Figure 2.1.: Plot of f(t) = (4 sin(2πt) + 3 sin(3 · 2πt + π
4
) + sin(7 · 2πt)) · e−|t|. In

this example, the sine terms are multiplied by an exponentially falling
window function to obtain an absolutely integrable function.

−80 −60 −40 −20 0 20 40 60 80
−2

0

2

4

Figure 2.2.: Plot of magnitude (blue) and angle (green) of the complex f̂(ξ). Note
the magnitude peaks at ξ = 2 · 2π, 5 · 2π, 11 · 2π and the angular change
near ξ = 5 · 2π. The reason for the gradual increase and decline in
magnitude around the three frequencies is the consequence of an effect
called spectral leakage caused by the multiplication with e−|t| in f .

9

2. Fourier analysis

The DFT can be efficiently computed with complexity O(N logN) using the Fast
Fourier Transform (FFT) as opposed to a naive implementation requiring O(N2).
[Benson, 2006, p. 264] In 2000, the FFT made it on a list of the top ten most
influential algorithms of the 21th century. [Dongarra and Sullivan, 2000]

2.3. Short-time Fourier transform

The Fourier transform only provides information on the frequency distribution over
the entire signal’s length. In practice, one is often interested in how the frequency
distribution changes over time. One way to overcome this limitation is to not trans-
form the entire signal at once but instead compute the transform for short consecu-
tive time frames independently by means of a sliding window (see Figure 2.3). This
approach is called the short-time Fourier transform (STFT).

The short-time Fourier transform can be defined as follows6:

STFT(r,m) :=
N−1∑
k=0

c(r · I − N

2
+ k) · w(2k

N
− 1) · e

−2πikm
N

The STFT is a function of time step r and frequency bin m. The step size I denotes
the distance between two consecutive time steps and is chosen smaller than the
window size (= DFT size) N . It can also be specified in terms of an overlap factor
O relative to the window size by I = N

O
. w is a window function w : R → R that

slides over the signal and selects and weights the data before the DFT is calculated.

In the simplest case, w is a rectangular pulse χ[−1,1]. But more sophisticated window
functions exist that can provide better results, reducing the severity of artifacts
caused by computing the DFT on segments from a non-periodic signal. On the other
side, however, windowing itself introduces artifacts. The application of a window
function is a simple multiplication of two signals and the Fourier transform of the
product of two signals is equivalent to the convolution of the two signal’s Fourier
transforms. Hence, applying a window to a signal amounts to a convolution of the
signal’s spectrum with the spectrum of the window function and the artifacts that
a window function introduces are a function of the window’s frequency response.

Some of the more common types of window functions are rectangular, triangle,
Hamming7, Hann7, Blackman7 and Kaiser8 windows.

Apart from choosing a suitable window function, there is a tradeoff to be made
between time and frequency resolution when choosing a window size. Larger win-
dows (and thereby DFT sizes) increase the frequency sampling density but, at the

6Analogously, one can define a short-time Fourier transform based on the continuous Fourier
transform.

7constructions of one or more cosine terms
8constructed using Bessel functions

10

2.4. Magnitude and power spectrum

input signal

sliding window

signal with
window applied

DFT

m
ultiply

signaland
w
indow

com
pute

D
F
T

x x+ I

t

f(t)

0

t

w(t)

0

1

window size N

step size I

t

(f · w)(t)

0

Figure 2.3.: Schematic illustration of the short-time Fourier transform evaluated for
two points in time, x (blue) and x+ I (gray).

same time, entail a sparser sampling in the time-domain. Conversely, smaller win-
dow sizes can give good temporal accuracy but may have poor resolution in the
frequency-domain. It bears resemblance to the Heisenberg uncertainty relation in
this regard. [Benson, 2006, p. 73] In practice, one has to find a good balance between
time and frequency resolution, depending on the specific task.

2.4. Magnitude and power spectrum

The spectrum calculated by the Fourier transform, DFT or STFT consists of com-
plex numbers which, when written in polar coordinates f̂(ξ) =

∣∣∣f̂(ξ)∣∣∣ ·ei·arg(f̂(ξ)), can
11

2. Fourier analysis

0 1 2 3 4 5 6 7 8 9 10 11 12
0

2 000

4 000

6 000

time [s]

fr
eq
ue
nc
y
[H

z]

Figure 2.4.: Spectrogram using a linear frequency axis and logarithmic coloring. Au-
dio sample is an excerpt of “You Have a Friend” – Carole King.

be interpreted as magnitude
∣∣∣f̂(ξ)∣∣∣ and phase arg(f̂(ξ)) of the sinusoids. For many

applications the phase information is considered irrelevant. This may be related to
the fact that the human ear is largely insensitive to phase as the perception of a
tone does not considerably change when altering the phases of its frequency com-
ponents. [Howard and Angus, 2009, p. 62] Consequently, one defines the magnitude
spectrum to be

∣∣∣f̂(ξ)∣∣∣ which no longer contains phase.

Related to the magnitude spectrum is the power spectrum which is expressed by the

square of the magnitude:
∣∣∣f̂(ξ)∣∣∣2. “Power” here refers to the power in physics that is

required to play a sound by making the air vibrate and which is proportional to the
square of the amplitude. For our algorithm we will employ the magnitude spectrum
only and will refer to it as “spectrum”.

Magnitude and power spectra are usually visualized as two-dimensional diagrams
called spectrograms that have a linear x-axis corresponding to time and a linear or
logarithmic y-axis corresponding to frequency. Each point in the image is colored
according to the amplitude at the respective frequency and time, often employing
a logarithmic scale (such as decibels). Figure 2.4 shows an example of what a
spectrogram typically looks like.

12

3. Music theory

What follows is a short dive into music theory that will be needed to fully under-
stand the ideas in the next chapter. The reader is assumed to have a certain prior
knowledge of concepts such as notes and intervals.

3.1. Notation

When speaking of notes we will use scientific pitch notation which consists of the
single letter name of the note, followed by an octave number, e.g. C3, B4, F]2. For
modeling notes in algorithms and formulas a more suitable pitch representation is
needed. For the purpose of this work, we use the corresponding MIDI1 number to
describe pitch. The MIDI number of A4 is defined to be 69 and for each half tone
higher/lower the number increases/decreases by one. The pitch range of a piano in
scientific pitch notation A0...C8 is therefore represented by MIDI notes 21...108.

3.2. Equal temperament

The theory of chords is best described in terms of notes and intervals but a chord
estimation algorithm will work on frequencies. The mapping between notes and
frequencies can happen in different ways, one of them is a system known as equal
temperament. Practically all modern music uses equal temperament today and con-
sidering that it is also probably the simplest to model mathematically make it a
good choice to use in chord recognition. “Equal” here refers to the fact that the fre-
quency of every note and the half tone above it have a fixed ratio. The advantage of
this is that music can then be played in different keys without sounding differently,
a major disadvantage of earlier tuning systems. [Howard and Angus, 2009, p. 163]

Since 12 half tones make a full octave and an octave is characterized by a doubling in
frequency, the fixed ratio follows to be: 12

√
2 ≈ 1.06. We can calculate the frequency

of any (MIDI) note n as follows:

freqfA4
(n) :=

12
√
2
n−69
· fA4 = 2

n−69
12 · fA4

1Musical Instrument Digital Interface, a technical standard for music accessories.

13

3. Music theory

1
2

1
3

2
3

1
4

1
2

3
4

Figure 3.1.: From top to bottom: fundamental, 2nd, 3rd and 4th harmonic standing
waves in a plucked string.

where fA4 denotes the frequency of A4 (also called concert pitch). Standard values
for fA4 have changed over time and are currently around 440Hz.

3.3. Harmonics

Blowing air through a wind instrument or plucking the string of a guitar produces
a vibration that is perceived as sound. The pitch we hear depends on the frequency
of the vibration which in turn is determined by the air volume in the instrument or
the length of the string. The notion that the string vibrates at only one frequency,
the fundamental, is a simplified model, however. In fact, there exist oscillations at
integer multiples of the fundamental called harmonics or partials (see Figure 3.1).
The n-th harmonic is a sine wave with a frequency of n times the fundamental.
[Benson, 2006, p. 144] The fundamental matches in most cases the perceived pitch
of a tone and is often the partial with the strongest intensity. [Loy, 2006, p. 29]

In general, the intensities of harmonics drop the higher the harmonic. The exact
distribution over the harmonics, however, varies greatly between instruments and
is, in fact, a substantial part of what defines the timbre of a sound. [Howard and
Angus, 2009, p. 247]

Most natural instruments like woodwinds or stringed instruments only have partials
at or close to integer multiples of the fundamental but some instruments like bells,
drums and brass instruments can exhibit frequencies that are not a multiple of
the fundamental. [Benson, 2006, p. 144] The sound they produce is said to be
inharmonic. [Loy, 2006, p. 29]

14

3.4. Chords

3.4. Chords

Simply put, chords are multiple notes played at the same time by the same in-
strument. They can be characterized by the notes that are part of it, e.g. C-E-G
denoting notes C, E and G played together. Alternatively, chords can be defined by
a root note and the intervals (in half tones) from this root note to all other notes
that make up the chord, e.g. C:1,4,7 specifying a C-E-G chord with C being the
root note.

The majority of chords consist of three (triads) or four notes (tetrads) although
there is no upper limit to the number of notes. If the root note is not the lowest
note in a chord, the chord is called inverted. Inverted chords generally sound similar
to their non-inverted counterparts since they are built out of the same notes, just in
a different order.

By far the most common chords are simple major and minor chords. A major chord
consists of the root note, the major third (4 half tones) above it and the perfect
fifth (7 half tones) above it. Likewise, a minor chord consists of the root note, the
minor third (3 half tones) above it and the perfect fifth above it. Major chords are
often written out as a single capital letter indicating the root note of the chord,
minor chords have an additional “m” appended. For example, C, Fm, A[m express
C major, F minor and A[minor chords, respectively. Chord notation sometimes
includes a suffix indicating the note the bass plays, which may or may not be a note
belonging to the chord, e.g. C/E or G/A.

Apart from the above definition of “chord”, the term can also refer to a higher-level
concept, namely that of harmonies or changes. In this sense, a chord is no longer
understood as a single set of notes played at once but acts as a general guideline as
to which notes should be played by an ensemble of instruments, valid for a specific
number of beats or bars, until it is exchanged for another chord that is the new
guideline. According to this guideline, the instruments that are responsible for
harmonies play some or all of the notes that are part of the current chord. This is
of course a very simplified model but should suffice here.

Segments in a music piece that cannot be attributed any chords are sometimes
marked by N.C., an abbreviation for “no chord”.

When talking of detecting or estimating chords, it is this second definition that we
are referring to, i.e. we aim to recognize the underlying chord structure that all
played notes are based on.

15

4. The algorithm

4.1. Overview

Work on this algorithm was initially started without any prior knowledge of existing
concepts and research works on the topic of chord recognition. It later turned out
that many of the developed techniques already existed in similar form. This means
that, even though we will refer to the concepts in our algorithm by established
terms and with references to related work, they were to a large part developed
independently.

At the core of the algorithm lies the concept of chord templates, first proposed
by [Fujishima, 1999], to derive chord probabilities from pitch salience. We do not
employ machine-learning techniques or statistical models like hidden Markov mod-
els, Bayesian inference or artificial neural networks that form the basis of many
alternative proposals. This has the advantage that no separate learning phases are
required, the algorithm is less susceptible to overfitting, easier to implement and
computationally cheaper. The drawback of a simple design is that there are fewer
opportunities to optimize and train the algorithm, which in general translates to
poorer detection accuracy compared to more advanced techniques.

Our system is designed to be primarily used in non-real-time scenarios, i.e. the
algorithm first reads in the data of an entire song and then outputs all chords. Real-
time chord detection is considered challenging since the chords have to be estimated
on the fly without information on the near-future. [Cho and Bello, 2009] have shown
that accuracy greatly improves when providing algorithms a look-ahead of the data
to come.

The set of chords our system estimates is restricted to the 24 major and minor
chords (C, Cm, D[, D[m, ..., B, Bm) and the N.C. symbol (if no chord is deemed
to be present). There are several reasons for this rather limited set. Firstly, these
are by far the most common chords present in popular music (about 75% of all,
see Section 5.2 for more details). Secondly, detection accuracy drops significantly
the larger the set of chords to estimate is. Besides, it is often possible to describe
more complex chords meaningfully by a simple major or minor chord, the one that
shares root note and most of the intervals (e.g. Gm7 by Gm, Dmaj7 by D, etc.).
The detection of passages where no chords are present is primarily there to allow
meaningful comparisons with other algorithms that support these.

17

4. The algorithm

input audio

spectrogram

filtered spectrogram

chromagram
C, D[, D, E[, E, F,

F], G, A[, A, B[, B

chordgram
C, Cm, D[, D[m, D,

Dm, E[, E[m, F, Fm, ...

fA4

chord sequence
Dm, F, C, B[, ...

STFT

harmonic content
extraction

octave summation

chord templates

chord selection
& smoothing

tuning
estimation

Figure 4.1.: Architecture of the proposed chord recognition system

The algorithm takes uncompressed mono PCM audio data as input and outputs
estimated chords and their durations. The raw input data is highly redundant
considering that we are only interested in the chords and there is no way of extracting
that information directly from the PCM data. Instead, the idea is to transform the
input data in a series of steps into progressively lower-dimensional representations,
better suited for extracting chord information and discarding data irrelevant to the
task.

Figure 4.1 illustrates the architecture of our chord recognition system. In the fol-
lowing, each of the steps will be described in detail.

18

4.2. Spectrogram calculation

4.2. Spectrogram calculation

This first step is practically self-explanatory. For simplicity we assume that the in-
put audio data is sampled at σ = 48 000Hz. For other sample rates the input could
be resampled to 48 000Hz before being processed or the parameters of the algorithm
that depend on the sample rate (e.g. FFT window size) could be adjusted accord-
ingly. The short-time Fourier transform of the input data is computed with window
size N = 16384 and overlap factor O = 8 using the Blackman-Harris window:

S(r,m) := STFT(r,m),

r ∈ {0, ..., L− 1} ,m ∈ {0, ..., B − 1}
Here, L denotes the number of samples on the time axis of S and B denotes the
frequency bin corresponding to the Nyquist frequency.

4.3. Harmonic content extraction

In order to detect chords in the input audio it is essential to determine which notes
are played. The spectrogram is already a good starting point for this task as it
provides us access to the frequency distribution in the signal. To quantify the
presence of a note at a time step r one may be inclined to take S(r,m) as indicator
where m is the bin that corresponds best to the note’s frequency. This approach
ignores the fact though, that instruments usually do not produce pure sine waves but
exhibit several partials at multiples of the fundamental frequency that also appear
as such in the spectrogram.

As an example, suppose a single piano note A4 is played and the tuning frequency
is 440Hz. The spectrogram will not only show a high magnitude at 440Hz, the
fundamental of the tone, but also peaks at 880Hz and 1320Hz, the 2nd and 3rd
harmonic. Having the 2nd harmonic in the spectrogram might be acceptable from
a chord detection point of view since it corresponds to the same tone as the fun-
damental, just one octave higher. The 3rd harmonic, however, is more problematic
because it coincides very closely with the perfect fifth E6. As a result, chances are
that the above method would see at least three notes A4, A5, E6 played even though
it was really a single note.

Another issue that arises with the simple approach above is that a peak in the
spectrogram may not necessarily be part of a played tone at all. Consider inharmonic
sounds like clapping, drums or sound effects. These usually have a broad spectrum
and may happen to have a frequency component at the frequency of a note that
gets erroneously detected.

One way to circumvent these problems is to perform some kind of filtering on the
spectrogram before interpreting its peaks as fundamentals. The method proposed

19

4. The algorithm

1st 2nd 3rd 4th 5th 6th
harmonic

am
pl
it
ud

e

Harmonic tone

1st 2nd 3rd 4th 5th 6th
harmonic

am
pl
it
ud

e

Inharmonic tone

Figure 4.2.: Illustration of the principal behind the extraction of harmonic content.
For two example spectrograms, the height of the bars indicate the am-
plitudes at multiples of some fundamental f . To find the harmonic
content at frequency f , an exponentially falling curve is determined
that has maximum height but still lies at or below the amplitudes. The
value of this curve at the 1st harmonic is then taken as harmonic con-
tent.
Left: All frequencies of the first six harmonics are present. The har-
monic content at f is not significantly lower than the unfiltered value.
Right: The spectrogram shows a high peak at frequency f but has lit-
tle energy at the 2nd to 6th harmonics. The harmonic content at f is
determined to be very low in amplitude.

here was designed to distinguish fundamentals from higher harmonics as well as to
filter out inharmonic noise.

For modeling harmonics we adopt the model proposed by [Gómez, 2006], albeit
with different parameters. The harmonics’ amplitudes of every harmonic sound are
assumed to all drop exponentially with the same decay rate ε:

An = A1 · εn−1, n ≥ 2

where An is the amplitude of the n-th harmonic. For ε we suggest a value of 0.4.

The harmonic content extraction works by determining the maximum possible am-
plitude of an harmonic signal with the properties mentioned above, that could pos-
sibly be present in the spectrogram at a specific time and frequency (see Figure 4.2).
In every case is the filtered value lower or equal to the unfiltered value.

The filtered spectrogram F (r,m) is calculated as follows, checking the first 10 har-
monics:

F (r,m) := min

{
S(r, h ·m) ·

(
1

ε

)h−1
|h ∈ {1, ..., 10}

}

20

4.4. Tuning estimation

0 1 2 3 4 5 6 7 8 9 10 11 12
0

2 000

4 000

6 000

time [s]

fr
eq
ue
nc
y
[H

z]

Figure 4.3.: Filtered version of the spectrogram from Figure 2.4. The filtering is
by no means perfect as can be seen at around 7 seconds where upper
harmonics are still visible.

An equivalent definition that better conveys the idea could be:
F (r,m) is defined to be the maximum value X so that

∀h ∈ {1, ..., 10} : X · εh−1︸ ︷︷ ︸
amplitudes

according to model

≤ S(r, h ·m)︸ ︷︷ ︸
observed amplitudes

The reason why this method filters out inharmonic content is simple. If a peak in
the spectrogram does not belong to the fundamental of an harmonic tone it is likely
that at least one of the multiples of its frequency has a small amplitude. According
to the definition of the filter this then leads to a reduction of the peak. Higher
harmonics are filtered out due to the very same reason.

4.4. Tuning estimation

In order to map frequencies in the spectrogram to the pitch of musical notes we
assume instruments are tempered according to equal temperament. We still need
to know the concert pitch, i.e. the frequency of A4, denoted by fA4. If the concert
pitch is not an external input to the algorithm (e.g. set by the user in advance) it
has to be estimated.1

1Practically, one could of course skip this step and just assume a standard tuning of 440Hz for
any song and still get reasonably good results in the majority of cases.

21

4. The algorithm

We are employing a very simple and efficient method to get a good approximation of
fA4 which is accurate enough for our purpose. The main idea is the fact that we can
expect significantly more energy in the spectrogram at frequencies that correspond
to musical notes than at frequencies in-between (see Figure 4.4). This is particularly
the case when the audio sample is comprised of mostly harmonic instruments and
few inharmonic sounds. Locating these peaks in the frequency spectrum allows us
to gain information about the tuning frequency simply by determining the distance
that the peaks are shifted from the 440Hz mark.

There is one caveat though, in that fA4 can theoretically be arbitrarily far off from
today’s standard 440Hz. For instance, the traditional tuning for baroque music is
located at around 415Hz [Boyd and Butt, 2003] which corresponds to A[4 when a
tuning of 440Hz is assumed. There is no way of deciding if a played tone is an A4
with fA4 = 415Hz or an A[4 with fA4 = 440Hz. In order to evade this ambiguity
our algorithm always chooses the concert pitch that is closest to 440Hz. For a very
large percentage of test cases this is the right choice as the majority of songs today
are tuned reasonably close to 440Hz.

As a first step we build an average spectrum over all time steps from the (filtered)
spectrogram:

F̃ (m) :=
1

L
·
L−1∑
r=0

F (r,m)

There are two reasons for this. Firstly, it is fair to assume that the tuning stays
during the whole song constant, so we can confidently ignore temporal changes in
the spectrum. Secondly, there may be parts in the song that contain no harmonic
content (e.g. a drum solo) and thus can’t be used for tuning estimation. By taking
the average spectrum we can be sure to have all useful information included.

Next, we define a scoring function for quantifying how likely a possible tuning fre-
quency f is. We take all notes between a lower bound Nl and an upper bound Nh,
get their corresponding frequency bins under the assumption that f is the concert
pitch, look up the amplitudes in F̃ and sum the results.

score(f) :=

Nh∑
n=Nl

F̃ (binf (n))

binf (n) maps a MIDI note n to the nearest frequency bin in the spectrogram that
corresponds to the note’s frequency when taking f as tuning frequency. It can be
defined as:2

binf (n) := round

(
freqf (n)

σ
2

·B
)

2Instead of rounding to the nearest frequency bin we use a slightly more sophisticated conversion
using linear interpolation in our implementation.

22

4.5. Chromagram calculation

We then estimate the tuning frequency to be the one in the range [fA4,l, fA4,h] that
yields the highest score:

fA4 := argmax
f∈[fA4,l,fA4,h]

score(f)

fA4,l and fA4,h are set so that they span an interval of one half tone with fA4,l lying
exactly between A[4 and A4, and fA4,h between A4 and B[4, assuming a concert
pitch of 440Hz:3

fA4,l := 440 · 12
√
2
(− 1

2) ≈ 427.5 [Hz]

fA4,h := 440 · 12
√
2

1
2 ≈ 453 [Hz]

In case the concert pitch lies below fA4,l or above fA4,h it will be falsely detected as
the one frequency in the range that is a whole number of half tones higher or lower.
Ultimately, this will lead to the root notes of all estimated chords being shifted one
or more half tones up or down (e.g. Fm will be estimated as Em, B as B[, etc.).

Implementations are expected to evaluate the scoring function for a discrete set
of points in [fA4,l, fA4,h], for example in uniform steps of 0.5Hz, depending on the
desired accuracy. For Nl and Nh we suggest the values 36 and 95, corresponding to
notes C2 and B6, respectively. Figure 4.5 shows typical plots of the scoring function
for different tunings.

4.5. Chromagram calculation

The next step in our system involves the computation of a so-called chromagram.
These are, just like spectrograms, two-dimensional structures where one dimension
represents time. While the columns of a spectrogram describe a frequency spec-
trum they are in the case of chromagrams 12-dimensional vectors called chroma
vectors (first proposed by [Fujishima, 1999] as Pitch Class Profiles) whose elements
correspond to the 12 pitch classes:4

PITCHES := {C,D[,D,E[, E, F, F],G,A[, A,B[,B}

Each detected note is assigned to one of these pitch classes (the one that describes
its relative pitch ignoring octave position, e.g. F]3→ F]) and the elemens of chroma

3In other words, fA4,l is one half of a half tone lower than A4 and fA4,h one half of a half tone
higher.

4There is no deeper meaning behind the choosing of D[over C], E[over D], etc. Since a
twelve-tone equal temperament is assumed the different notations are enharmonically equiva-
lent. Fujishima labels the pitch classes C, C], D, D], E, F, F], G, G], A, A], B while we prefer
to use the spellings from the circle of fifths centered on C.

23

4. The algorithm

280 360 440 520 600

B3

C4

D[4

D4

E[4

E4

F4

F]4

G4

A[4

A4

B[4

B4

C5

D[5

D5

E[5

∑
=: score(f)

f [Hz]

F̃
[f
]

Figure 4.4.: Plot of the averaged spectrum F̃ of “You’ve Got a Friend” – Carole King.
The dashed lines indicate the frequencies whose amplitudes are summed
up by the scoring function when assuming fA4 = 438Hz. They coincide
very closely with the peaks in the averaged spectrum, leading to the
scoring function reaching its maximum and suggesting that 438Hz is
the correct tuning.

428 430 432 434 436 438 440 442 444 446 448 450 452

f [Hz]

sc
or
e(
f
)

Figure 4.5.: Plot of the tuning estimation scoring function for three representative
songs, “You’ve Got a Friend” – Carole King (blue), “California Dreamin’”
– The Mamas & The Papas (red) and “Das Boot” – Klaus Doldinger
(green). The three curves have been normalized to a common min-
imum and maximum for easier comparison. The vertical lines mark
the estimated tunings which correspond to the maximum of the scoring
function.

24

4.5. Chromagram calculation

vectors can be interpreted as indicators of how strongly each of the 12 pitch classes
is present in the input at a given time.

More formally, we can define the chromagram C(r, a) as follows:

C(r, a) :=
1

|Ma|
·
∑

m∈Ma

F (r, binfA4
(n)),

Ma = {Nl, ..., Nh} ∩ (a+ 12Z), a ∈ {0, ..., 11}

For convenience, we introduce a notation for the chroma vector at time step r:

C[r] = (C(r, 0), C(r, 1), ..., C(r, 11))

The chromagram computation can be thought of happening in two steps. First, all
frequencies that correspond to a note between Nl and Nh are picked out from the
filtered spectrogram (e.g. frequencies of C2, D[2, D2, ..., B6). Then, their respective
amplitudes are determined and averaged over all octaves (average of C2, C3, ..., C6,
average of D[2, D[3, ..., D[6, etc.). The result is a chroma vector with 12 elements
for each time step r.

The motivation behind this is the following. The spectrogram samples a broad
frequency range (0 up to the Nyquist frequency) relatively densely. This was required
for determining the exact tuning frequency. Now that fA4 is known our focus shifts
to only those frequencies that correspond to a note in some range Nl...Nh because
notes are the building blocks for chords that we aim to detect later.

Discarding the octave information by taking the average of the amplitudes over
all octaves is used as a convenient way to reduce the dimensionality of the data
without loosing meaningful features that could be helpful for the classification of
chords. It turns out that the absolute octave position that a tone is played at is
relatively unimportant (provided that the bounds Nl and Nh are set reasonably).
Still, it is worth noting that for more advanced chord estimation systems keeping
octave information and actually using it to support chord detection has proven to
be a good way to improve recognition quality and to expand the set of detectable
chords.5

As with spectrograms, chromagrams are best visualized as two-dimensional images
with the horizontal axis representing time, the vertical axis comprising the 12 pitch
classes and the values of the chroma vector elements being color-coded. See Fig-
ure 4.6 for an example.

5One conceivable approach could be the detection of chord inversions by leveraging octave infor-
mation. Another possibility would be to interpret notes in very low octaves as bass notes and
enable the detection of chords with bass annotation (see Section 3.4)

25

4. The algorithm

A[D[A[Gm7 C7 Fm C

0 2 4 6 8 10 12 14 16
C
D[
D
E[
E
F
F]
G
A[
A
B[
B

time [s]

pi
tc
h
cl
as
s

Figure 4.6.: Chromagram of the intro of “You Have a Friend” – Carole King. For
better illustration, the individual chroma vectors have been normalized
(green =̂ 0, red =̂maximum value in the vector). Note that the strongest
pitch classes match the annotated chords (blue) very well, e.g. for the
duration of the first A[chord the pitch classes C, E[and A[are clearly
the most prominent.

4.6. Chordgram calculation

Having reduced the input to a series of chroma vectors, the next step is to derive
chord probabilities from them.6 First, we define the set of chords that our algorithm
can detect, all 24 major and minor chords and a symbol for “no chord”:

CHORDS := {C, D[, D, E[, E, F, F], G, A[, A, B[, B,

Cm, D[m, Dm, E[m, Em, Fm, F]m, Gm, A[m, Am, B[m, Bm,

N.C.}

For each chroma vector in the chromagram and for each of these detectable chords
a score is computed that expresses how likely it is that the chord is correct.

In order to compute this score we will make use of the concept of chord templates
first described by [Fujishima, 1999]. The general idea behind chord templates is
that, assuming a specific chord is played, the chroma vectors point into a distinct
direction that can be captured in a chord template which in turn can then be used
for recognizing this specific chord. In other words, the distribution of the energy in
the chroma vectors over their 12 elements is indicative of the chord being played and
by comparing it with the typical distributions of all supported chords, the correct
chord can be estimated.

6“Probability” is not to be understood in a strict mathematical sense but is meant as a general
numeric score indicating the likelihood of a chord.

26

4.6. Chordgram calculation

Templates are effectively 12-dimensional vectors, just like chroma vectors, and they
also refer to the same 12 pitch classes. It is not necessary to define a separate
template for each detectable chord. Defining it once for both chord types (major
and minor) and one root (e.g. C) suffices, the template for all other roots can then be
obtained by simply rotating the elements in the vector (e.g. to get the template for
F]m the template for Cm is rotated right by 6 elements). We will denote templates
by τc where c ∈ CHORDS is one of the detectable chords.

The most basic templates are those that have been proposed in [Fujishima, 1999].
They are binary templates consisting of entries 1 and 0, depending on whether the
corresponding note is part of the chord or not:

τC = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0)
C D[D E[E F F] G A[A B[B

τCm = (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)
C D[D E[E F F] G A[A B[B

The ones refer to the notes C, E, G and C, E[, G, respectively, the pitches that
make up C major and C minor chords.

For our algorithm we are proposing the following weights which give us significantly
better results than the binary templates (see Section 5.4 for more details):

τC = (1, 0, 0.3, 0, 1, 0, 0, 1, 0, 0, 0.3, 0.1)
C D[D E[E F F] G A[A B[B

τCm = (1, 0, 0.3, 1, 0, 0, 0, 1, 0, 0, 0.3, 0)
C D[D E[E F F] G A[A B[B

The idea is to improve detection in cases where not only simple major or minor triads
are played but more complex chords. Of these, most common are chords having an
additional minor seventh (e.g. C7 or Cm7) and/or ninth present. In the case of the
root C these are the notes B[and D. The corresponding elements in the template are
set to 0.3, indicating that these notes may be present but are of lower importance
than the main triad with weighting 1. In addition to this adjustment, the template
for the major chords has the entry corresponding to the major seventh set to 0.1.
This slight change aims to model the fact that major sevenths appear far more
frequently in major chords (e.g. Cmaj7) than in minor chords (e.g. Cminmaj7).

It took admittedly several attempts to obtain a template that performs significantly
better than the binary one, and the necessary adjustments were found to a large
extent through trial-and-error.7

For the detection of passages with no chords (N.C.) a template is employed that
weights all pitch classes equally:

7One early attempt was to add non-zero weights for all notes of the diatonic major/minor scale
in the templates, although with only mediocre results.

27

4. The algorithm

τN.C. = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
C D[D E[E F F] G A[A B[B

The absence of any harmonic structure is expected to lead to a uniform energy
distribution over the 12 pitch classes and the above template mirrors this idea.

In order to assess how well a chroma vector matches a chord template, we determine
the cosine similarity between the two. The cosine similarity is equivalent to the
cosine of the angle between two vectors and is defined as follows:

cossim(u, v) :=
〈u, v〉

||u||2 · ||v||2
where u, v ∈ Rn, u, v 6= 0

For non-negative u and v the cosine similarity takes on values in [0, 1], one indicating
an identical direction of u and v and zero indicating orthogonality.

Note that the cosine similarity is undefined if u or v are zero. Chord templates are
guaranteed to be non-zero but chroma vectors could be zero in the case of complete
silence in the input audio. To accommodate, we can just fallback to the value zero
as similarity index in that case.

For more control on the sensitivity of the templates an additional weighting mecha-
nism is introduced where each chord class (major, minor and N.C.) can be assigned
different weights. This has proven to be necessary especially for the N.C. template.

ωc =

1 if c is major chord
ωminor if c is minor chord
ωN.C. if c = N.C.

With ωminor < 1 minor chords are penalized and with ωminor > 1 they are given
preference. The same applies to the ωN.C. weighting. As default values ωminor = 1
and ωN.C. = 0.7 are suggested.

Putting all together and computing the likelihood of all chords for all chroma vec-
tors gives us what we will call a chordgram. The term has been adopted from [Pa-
padopoulos and Peeters, 2009] and is supposed to hint at its close resemblance to
the chromagram, the difference being that energy is no longer distributed over a set
of pitch classes but a set of chords. The chordgram is defined as follows:

H(r, c) =

{
cossim(C[r], τc) · ωc if C[r] 6= 0

0 if C[r] = 0
,

c ∈ CHORDS

Chordgrams can be visualized analogously to chromagrams, see Figure 4.7 for an
example.

28

4.6. Chordgram calculation

A[D[A[Gm7 C7 Fm C

0 2 4 6 8 10 12 14 16
C
Cm
D[
D[m
D
Dm
E[
E[m
E
Em
F
Fm
F]
F]m
G
Gm
A[
A[m
A
Am
B[
B[m
B
Bm
N.C.

time [s]

ch
or
d

Figure 4.7.: Chordgram of the intro of “You Have a Friend” – Carole King. For bet-
ter illustration, the individual probability vectors have been normalized
(green =̂ 0, red =̂ maximum value in the vector). For the most part, the
chords with the highest probability match the annotated correct chords
(blue), the exception being the Gm7 chord where Gm and B[received
nearly identical scores. Gm is the preferred estimation here because it
retains the root of Gm7.

29

4. The algorithm

4.7. Chord sequence estimation

The remaining step in our system is to estimate a chord sequence (chords and their
durations) from the chordgram. For this, for each time step the chord with the
highest probability in the chordgram is determined:

R(r) = argmax
c∈CHORDS

H(r, c)

The chord sequence obtained by this method is very fragmented because of noise
in the chord scoring function (see Figure 4.8). This makes the chord sequence R
inappropriate for many use cases and some form of smoothing is needed if a less
noisy output is required. Smoothing not only makes the algorithm output better
suited for further processing or presenting to a user, it also significantly improves
the detection quality (in terms of the quality metric defined later in Section 5.1).

For smoothing, we apply a mode filter, a non-linear filter similar to the median filter.
The mode filter works by computing the mode of all values in a neighborhood to
determine the filtered value. The mode of a sequence of values is defined to be the
value that appears most frequently in it.8 Thus, the smoothed chord sequence R′
can be written as:

R′(r) = mode
{
R(r − w

2
), ..., R(r +

w

2
)
}

Here, w denotes the filter size, i.e. the width of the window used for computing the
mode. Larger filter sizes translate to stronger smoothing and are to be preferred
when the input song only contains slow-changing chords. Likewise, shorter filters
preserve more details in the chord estimations and are appropriate for music with
quickly-changing chords. We have found a value of w = 30 to be a good compromise
that works well for most songs.

Applying the filter once may not eliminate all fluctuations in the estimated chord
sequence. We obtained good results by performing the smoothing repeatedly a
number of times (e.g. up to 10 times). While this still does not guarantee all chord
changes to be some number of time steps apart, we consider it sufficient for most
use cases. If needed, all chords with a duration lower than some threshold could be
removed in a subsequent step.

With the mode filter having been applied a number of times, the resulting chord
sequence is the final output of the algorithm. Figure 4.9 shows an example for the
algorithm output.

8Note that the mode is not necessarily unique since two or more values may appear with the
same counts in the sequence. In our case this has little practical consequence, though, and
implementations are free to choose any of the candidates arbitrarily.

30

4.7. Chord sequence estimation

0 2 4 6 8 10 12 14 16
C
Cm
D[
D[m
D
Dm
E[
E[m
E
Em
F
Fm
F]
F]m
G
Gm
A[
A[m
A
Am
B[
B[m
B
Bm
N.C.

time [s]

ch
or
d

Figure 4.8.: Chordgram of the intro of “You Have a Friend” – Carole King. The
chords with the highest probability have been marked in blue. Note
that the resulting chord sequence is in some places heavily fragmented.
The ground truth is indicated by two black lines.

31

4. The algorithm

0 2 4 6 8 10 12 14 16
C
Cm
D[
D[m
D
Dm
E[
E[m
E
Em
F
Fm
F]
F]m
G
Gm
A[
A[m
A
Am
B[
B[m
B
Bm
N.C.

time [s]

ch
or
d

Figure 4.9.: Chordgram of the intro of “You Have a Friend” – Carole King. Overlaid
in blue is the final estimated chord sequence. The ground truth is
indicated by two black lines.

32

5. Evaluation

MIREX (Music Information Retrieval Evaluation eXchange)1 is a yearly event run
by the University of Illinois at Urbana-Champaign (UIUC) since 2005 that performs
large-scale evaluations of community submissions in a number of disciplines, all in
the field of audio and music processing (among others: genre/mood classification,
beat tracking, melody extraction, structure segmentation, cover song identification
and query-by-singing/tapping). Of special interest for us is the Audio Chord Esti-
mation task which has been part of MIREX since 2008. Since its inception, MIREX
has quickly turned into the de-facto standard framework for benchmarking chord
recognition methods and has seen 10–20 submissions every year from international
research groups.

In order to evaluate the detection performance of our chord recognition system and
compare it to MIREX submissions of recent years, we created an implementation
of it as part of this thesis (see Appendix A for more information). This chapter
shall provide in-depth results of this evaluation, point out limitations and possible
approaches, and examine the significance and influence of most of the parameters
in the algorithm.

5.1. Measuring detection quality

Being able to quantitatively measure how well an algorithm detects chords is essen-
tial when trying to understand the effect of different parameter choices on the final
detection quality. One can then tune the parameters so that the algorithm reaches
the best possible performance in terms of the quality metric and a training set. It
also allows an objective comparison of different algorithms and methods.

For measuring the error in a chord detection it is required to have access to the
correct chords, also called ground truth. Training and evaluation is best performed
on an extensive test set ideally covering a variety of artists and genres in order to
gain a statistically significant result that is universally valid.

Compiling a training set from the ground up can be very time-consuming since the
correct chords for each song have to be determined by someone who has the ability
to recognize them by ear. This may be the reason why the number of publicly

1http://www.music-ir.org/mirex/wiki/MIREX_HOME

33

5. Evaluation

available chord annotation sets is very low, unfortunately. Moreover, the songs they
are based on are often copyrighted, hard to obtain or very specific in their genre.
The transcriptions vary in quality and accuracy, and may obviously contain human
errors.

The following is a list of all public chord annotation datasets we are aware of:

• Beatles dataset2
annotations for 180 songs from all 12 released Beatles albums by Christopher
Harte

• Queen and Zweieck dataset2
annotations for 20 Queen songs and 18 songs of the Zweieck album Zwielicht
by Matthias Mauch

• McGill Billboard dataset3
annotations for more than 1000 songs taken from the Billboard magazine’s
Hot 100 compilations from 1958 to 1991 by Ashley Burgoyne

• Carole King dataset2
annotations for the Tapestry album by Carole King comprising 7 songs

• RWC Music Database: Popular Music dataset4
annotations for 100 royalty-free songs mostly in the style of Japanese pop
music

Chord detection quality is usually measured in terms of overlap ratio (OR), average
overlap ratio (AOR) and weighted average overlap ratio (WAOR):

OR =
duration of correctly identified chords
duration of all identifiable chords

AOR =

∑Nsongs
i=1 ORi

Nsongs

, WAOR =

∑Nsongs
i=1 ORi · Li∑Nsongs

i=1 Li

whereNsongs is the number of songs and Li are the respective song lengths. [Glazyrin,
2012,Glazyrin, 2013,Harte, 2010] OR is a score between 0 and 1 measuring the detec-
tion quality of one single song. It can be thought of as the fraction of song duration
where chords were estimated correctly. AOR and WAOR both are indicators of the
average detection quality over a set of songs. AOR is the average OR over all songs
while the WAOR score is the average OR weighted by the lengths of the songs.
WAOR is considered by many to be a better estimate of the detection performance
because very short songs do not bias the end result too much.

The question when an estimated chord counts as correct or not needs some further
consideration. The main challenge is that chord estimation algorithms generally only

2http://isophonics.net/content/reference-annotations
3http://ddmal.music.mcgill.ca/billboard
4https://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/

34

5.1. Measuring detection quality

support a subset of all the chord types that appear in the ground truth. Chord an-
notation datasets are typically using very detailed and specific chord annotations in
order to be as precise as possible but for chord estimation, algorithms are restricted
deliberately to a small subset of chord types (such as in our case to pure major and
minor triads only) for simplicity and detection quality reasons. It follows that there
has to be some mapping of complex chords to simpler ones that are supported by
the estimation algorithm in order to evaluate the performance of an algorithm on
a test set. Complex chords may also be omitted completely from the evaluation,
particularly when chords cannot be mapped uniquely to one of the simpler chords
in any reasonable way (e.g. Dsus4 consisting of notes D, G and A neither fits into
the major nor minor chord class). [Pauwels and Peeters, 2013]

Since the goal is to compare our algorithm performance with the participants of the
MIREX contest, we chose to use the metric that contestants were ranked with at
MIREX 2009. In 2010 and later years, the metric used in the MIREX competition
was revised and optimized for evaluations on larger chord dictionaries since the
participating algorithms started to support a growing number of different chord
types. With our algorithm only supporting major and minor chords, we think the
MIREX 2009 metric remains the appropriate choice for this evaluation, even if it
makes comparisons with contestants of recent years harder.

The MIREX 2009 scoring works as follows. Chords are mapped to either a major
or minor chord, depending on which one better “fits”. Chords that do not fit well to
either of the two are defined to be included in the major chord group.5 The following
table gives a more precise definition of the mapping used: [Harte, 2010]

mapping annotations

maj maj, aug, maj7, 7, maj6, 9, maj9, sus4, others
min min, min7, minmaj7, min6, min9, dim, dim7, hdim7, sus2

Note that AOR and WAOR may be easy to evaluate metrics but are far from being
without issues, one being that they only measure the average time that chords
were identified correctly but do not give information about the structure of the
estimation. For instance, an algorithm may provide overall good chord predictions
but miss chords for short time periods and thereby produce a highly fragmented
output (as in Figure 4.8). In order to measure how well the segmentation of the
estimated chords matches that of the target chords, alternative metrics have been
proposed. Noteworthy is the segmentation score described by [Mauch and Dixon,
2010] that is based on directional hamming divergence, a concept originating from
the field of image segmentation. [Abdallah et al., 2005] Unfortunately, segmentation

5This rule has been criticized by some as it leads to a bias towards the major chords. A better
solution could have been to exclude chords that don’t fit well into one of the two groups
completely from evaluation.

35

5. Evaluation

submission main features WAOR (%)

our result templates6, harmonics7 72.4
CH8 templates 57.6
DE9 HMM10, beat-detection 69.7
KO111 HMM, language modeling 69.7
KO2 70.8
MD12 DBN13, beat-detection, structural segmentation 71.2
OGF114 templates, harmonics 70.6
OGF2 71.1
PP15 HMM, beat-detection 67.3
PVM116 HMM, harmonics 68.2
PVM2 templates, harmonics 65.4
RRHS117 rule-based, symbolic music 62.9
RRHS2 54.5
RRHS3 53.8
RUSUSL*18 HMM, harmonics 70.1
WEJ1*19 structured SVM20 70.4
WEJ2* 72.3
WEJ3* 72.3
WEJ4* 74.2

Table 5.1.: Results from all groups participating in the MIREX 2009 chord recog-
nition task including the performance of our algorithm on the same test
set. The submission names are the identifiers of the various participating
groups that were assigned by the MIREX organizers, numbered identi-
fiers indicate multiple submissions from the same group. Entries marked
with an asterisk (*) were train-test systems. [MUSIC IR, 2009]

scores have not seen an as wide adoption in algorithm comparisons as would be
desirable.

5.2. MIREX dataset results

For parameter optimization, evaluation and comparison of our algorithm we use the
exact same dataset that came to use in MIREX 2009: a combination of parts of the
Beatles, Queen and Zweieck datasets making up a total of 206 songs.

6matching of chord templates/pitch class profiles as main mechanism
7any form of filtering/special treatment of harmonics
8 [Harte and Sandler, 2009]
9 [Ellis, 2009]

10hidden Markov model, probabilistic model

36

5.2. MIREX dataset results

Table 5.1 lists the results of all participants in the MIREX 2009 contest in terms of
WAOR including the result we obtained with our algorithm. Entries in the table
marked by an asterisk (*) are systems that were explicitly trained and then tested on
the dataset as part of the evaluation. All other submissions were pre-trained systems,
i.e. any training necessary was performed in advance on an independent training
set as the evaluation test set was not publicly available at that point. Consequently,
direct comparisons between pre-trained and train-test systems should be drawn with
care as train-test algorithms are expected to have a certain advantage here.

Since our algorithm has been optimized using the evaluation test set it would rather
belong to the train-test group. However, considering that the number of parame-
ters that were optimized is rather low and assuming that their optimal values are
relatively independent from the training set, we think that a comparison with pre-
trained systems is fair.

In terms of WAOR, our algorithm performs very competitively among the contenders
on this specific test set, with only one submission reaching a higher score than us.
Although the complexity of the various systems varies it is hard to see any correlation
thereof in the scores. In particular, our proposal and the submissions by Oudre et
al. (OGF1 and OGF2) use a relatively simple approach and yet reach very good
scores. We conclude that some of the other systems either did not unleash the full
potential of their models or are generally harder to train and optimize.

Figure 5.1 provides a more detailed view of our algorithm’s performance on indi-
vidual songs. Almost all songs get scores between 50% and 90% with only 8 songs
getting scores lower than 50% and 4 songs achieving scores higher than 90%. The
top score achieved is 91.3%, the lowest score being 14.5%.

Reaching scores close to 100% is very hard as some of the missing percentage points
always stem from inaccuracies in the ground truth or not completely identical chord
transition times. This is why scores above 80% may already be considered as very
good and probably suffice for most applications. On the other hand, estimations with
overlap ratios below 50% are relatively useless as these scores are already reached
by very rudimentary estimations (e.g. a piece following the classical Blues form in
C21 may be detected as one single C chord and have an overlap ratio of 50%).

11 [Khadkevich and Omologo, 2009]
12 [Mauch et al., 2009]
13dynamic Bayesian network, probabilistic model
14 [Oudre et al., 2009]
15 [Papadopoulos and Peeters, 2011]
16 [Pauwels et al., 2009]
17 [Rocher et al., 2009]
18 [Reed et al., 2009]
19 [Weller et al., 2009]
20support vector machine, supervised learning model
21four bars C, two bars F, two bars C, two bars G, two bars C

37

5. Evaluation

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

chord overlap ratio [%]

co
un

t

Figure 5.1.: Histogram showing how the individual scores of all songs in the MIREX
2009 dataset are distributed.

When looking at the songs that receive very low scores, the reasons for the bad
performance on them are in most cases clearly evident even though they differ from
case to case. These are primarily songs that do not have any instruments that
consistently play chords, contain lots of noise, or have extensive sections of no-
chords (N.C.). The remarkably low score of 14.5% of one song (The End – Beatles),
however, turns out to be due to a failed tuning estimation. With the correct tuning,
an overlap ratio of 73.9% would be obtained for this particular song.

A breakdown of the detection ratio depending on different chord types is given in
Table 5.2. It can give insights into which chord classes are most problematic and
may provide clues on how to further optimize detection rates. It has to be noted
that the scores of some of the more infrequent chords are be based on a very limited
number of songs in the test set and should therefore be seen as less reliable.

Interestingly, minor chords are significantly less often correctly recognized than ma-
jor chords. This appears to hold for seventh chords as well, when comparing the
score of min7 with that of 7 and 9 chords.

Seventh and ninth chords get considerably worse scores than simple major chords,
the same can be observed with minor seventh chords compared to simple minor
chords. This is to be expected because of the increased complexity of the chords.

N.C. detection is revealed to perform rather poorly. We see this as a consequence
of how ωN.C. is set by default. The ωN.C. parameter determines the aggressiveness
in detecting N.C. As the relative amount of N.C. in the ground truth is relatively
low (3.9%), it makes sense to decrease ωN.C. and detect N.C. only in cases of very
high confidence. As a consequence though, the detection ratio of N.C. suffers in this
statistic.

38

5.3. Typical detection issues and possible approaches

chord frequency (%) WAOR (%)

maj 58.6 78.9
min 16.8 67.6
7 7.0 72.2
N.C. 3.9 38.5
min7 3.0 59.1
9 1.2 64.7
maj7 1.0 58.8
other 8.5 60.2

Table 5.2.: Relative amount of various types of chords in the ground truth and our
algorithm’s respective detection rates. Frequencies are calculated by tak-
ing the total duration of all instances of the chord type divided by the
total duration of the dataset. For the WAOR only segments are taken
into account where the ground truth is of the respective chord type.

5.3. Typical detection issues and possible
approaches

In the following, some of the types of detection issues we most often encountered
in the MIREX dataset and with other songs are discussed. In fact, the majority of
cases where detection fails can be attributed to one or more of the following issues.

Incorrect root selected

The estimated chord may share notes with the correct chord but has the wrong root
(see Figure 5.2a).

For example, a Gm7 chord (G-B[-D-F) is recognized as a B[chord instead of Gm,
a Dmaj7 chord (D-F]-A-C]) is recognized as F]m instead of D, or a A/E chord is
recognized as E or Em instead of A. Occurs particularly often with complex chords.

The octave-summation into a small set of 12 pitch classes and the subsequent simple
template-based scoring are to be blamed for these errors. The 12 pitch classes no
longer carry any information about the original absolute octave positions. These
could be used for determining the bass note of the chord (which in turn likely
matches the root of the chord). One way to gain more information on the bass part
is the introduction of a separate bass chromagram that covers low notes as proposed
in [Mauch and Dixon, 2010]. A more sophisticated template scoring is another way
to further increase chances of correct detection here.

39

5. Evaluation

Chord changes in quick succession get lost

Chords lasting only for short periods of time22 are not recognized, instead the pre-
ceding and following chord are extended so they span the gap of the undetected
chord (see Figure 5.2b).

For one part, this is an inevitable consequence of the smoothing step. Lowering
the filter size w does help here but it in turn leads to a more fragmented result.
A second reason is the fact that it is generally easier to detect longer chords than
very short ones, simply because more data on the chord is available and eventual
transients during the attack phase of instruments play a less important role.

Ways to provide better detection rates in this regard could be alternative techniques
for smoothing or beat tracking. We did experiment with an idea from [Lyon, 1987]
where chord boundaries are found by magnitude peaks of the chroma vector gradient,
and while it indeed showed promising improvements in the detection of short chords,
it fared significantly worse when evaluated on WAOR.

Incorrect mode

The root of a chord was correctly identified but the wrong mode is selected (major
instead of minor and vice versa, see Figure 5.2c).

This issue is frequently encountered in a form where the estimated mode switches
one or several times during a time frame where an actually constant chord is present.
It occurs when the respective major and minor chords get scores very close to one
another and due to fluctuations the top scoring chord changes multiple times.

We prototyped a simple heuristic approach that replaces chord transitions matching
X → Xm → X or Xm → X → Xm by one single X or Xm but ultimately decided
against any special handling of these cases for simplicity reasons and due to negligible
improvements in WAOR.

Difficulties with loud lead vocals/instruments

Chord recognition is mislead when vocal or instrumental melody lines are signifi-
cantly more present than the accompaniment.

While accompanying instruments are usually intended to establish harmonies and
are thereby restricted to notes from the current chord, melody lines have often
greater freedom in this regard and may contain notes that are not strictly part of
the chord. Since our method does not differentiate between lead vocals/instruments
and backing their respective volumes determine how much they influence chroma
22typically durations of 1 beat and less

40

5.4. Impact of various stages on detection accuracy

vectors. Hence, if melody lines are significantly louder than the backing this can
lead to false chords being estimated.

We explored the idea of leveraging methods for vocal removal23 aiming at reducing
the influence that vocals have on the chroma features. An external tool24 had been
utilized to perform the filtering. Unfortunately, detection ratios did not improve
consistently. We assume that this is because in addition to vocals other instruments
that would have been beneficial may have been canceled out, or because in many
songs the vocals actually contribute to a correct recognition of chords.

Difficulties when harmonies are only hinted at and not explicitly played

Chord recognition fails when chords are not explicitly played by any instrument but
are only recognizable in the melody line or in very slow arpeggios25,26.

By contrast, songs containing many layers of instruments (especially synth pads, or-
gans and string sections holding harmonies in the background of a song) may appear
more complex and thereby more difficult to handle but they turn out to be much
more amenable to chord recognition. This is also the reason why estimation perfor-
mance during choruses is noticeably superior to that during verses where typically
fewer instruments play.

5.4. Impact of various stages on detection
accuracy

Table 5.3 lists WAOR measurements of different algorithm variants where for each
variant one of the algorithm stages is skipped. In this way, the effect that the various
steps have on the final detection quality can be measured.

Improvements by tuning estimation are higher the farther song tunings are away
from 440Hz. While improvements are for some songs higher than 40 percentage
points, the overall improvement due to tuning estimation is much lower as the ma-
jority of songs have tunings close to 440Hz.

Filtering inharmonic content has an extensive effect on detection quality as well and
because of this we see it (or any comparable method) as an essential component of

23The principal behind all vocal removers is that vocals are usually mixed into the center of a stereo
recording. Simple removal methods involve subtracting one channel from the other obtaining
one mono channel with the vocals removed.

24GoldWave (http://goldwave.com)
25chords decomposed into single notes played in succession
26faster arpeggios do not pose a problem if the STFT window size is large enough since individual

notes of the arpeggio are not discernible then

41

5. Evaluation

2 4 6
C
Cm
D[
D[m
D
Dm
E[
E[m
E
Em
F
Fm
F]
F]m
G
Gm
A[
A[m
A
Am
B[
B[m
B
Bm
N.C.

time [s]

ch
or
d

(a) Beginning of “The Fool on
the Hill” – The Beatles. The
correct chord is D6 (D-F]-
A-B) but the root is incor-
rectly determined to be B
(as part of a Bm7 chord with
the same pitches B-D-F]-A).

32 34 36
C
Cm
D[
D[m
D
Dm
E[
E[m
E
Em
F
Fm
F]
F]m
G
Gm
A[
A[m
A
Am
B[
B[m
B
Bm
N.C.

time [s]

ch
or
d

(b) Excerpt of “Moon River” –
Henry Mancini. Two very
short chords fail to be recog-
nized. Note that the chords
do get assigned the highest
scores (red) but are ignored
during smoothing.

122 124 126
C
Cm
D[
D[m
D
Dm
E[
E[m
E
Em
F
Fm
F]
F]m
G
Gm
A[
A[m
A
Am
B[
B[m
B
Bm
N.C.

time [s]

ch
or
d

(c) Excerpt of “Please Mr. Post-
man” – The Beatles. F] and
F]m get comparable scores
leading to a characteristic
pattern in the detection.

Figure 5.2.

42

5.5. Parameter optimization

variant WAOR (%)

no tuning estimation27 69.7 (-2.7)
no harmonic content extraction 67.4 (-5.0)
binary templates 67.4 (-5.0)
no smoothing 51.9 (-20.5)

Table 5.3.: Effect of skipping certain stages in the algorithm on final detection qual-
ity (as measured on the MIREX 2009 test set). Included in parentheses
is the relative change compared to the original score of 72.4%.

any serious chord recognition system.

Simple binary templates clearly perform far worse than our proposal. We see more
sophisticated templates as a great way to improve detection without increasing com-
plexity in the algorithm.

Smoothing not only enhances algorithm output in regard to reducing fragmenta-
tion, it also leads to a huge increase in terms of overlap ratio. Therefore, even if
a fragmented output was acceptable for some use cases a smoothing step is still
advisable.

5.5. Parameter optimization

Our algorithm incorporates a set of parameters that can be tuned to reach optimal
detection performance. The default values that we propose have been determined
by evaluations on the MIREX 2009 dataset and were already listed in Chapter 4.
To give a better idea of the effect that the various parameters have on detection
quality, this section provides evaluations and plots for different settings. For each
plotted parameter, the values of all other parameters are kept fixed at their default
values.28 Note that all evaluations are conducted as averages over the entire dataset
and plots of overlap scores (OR) of individual songs may look different.

FFT window size N , overlap factor O

Prior experiments indicated that, independently from the FFT window size, an FFT
overlap factor of O = 8 or higher is required for optimal results. This finding seems
to be in accordance with a rule-of-thumb in [Roads et al., 1997], stating that a

27a fixed tuning of 440Hz is assumed
28It is assumed that the optimum value of any of the parameters is largely independent of all other

parameters. A fully global optimization was unfeasible due to the large search space but we
are confident that our results are very close to the global optimum.

43

5. Evaluation

FFT window size N WAOR (%)

4096 50.2
8192 71.5
16384 72.4
32768 67.3
65536 54.4

Table 5.4.: WAOR performance on the MIREX 2009 test set for different FFT win-
dow sizes.

minimum of four-fold overlapping is needed for proper sampling of the input audio
data. We see this as a confirmation that a value of O = 8 is a good choice and set
this parameter fixed for the FFT window size evaluations.

Table 5.4 lists WAOR performance numbers on the MIREX 2009 test set for five
different FFT window sizes. Only sizes that are powers of two are considered here
due to limitations in the FFT implementation we are using. For these measurements
the smoothing filter size w has been adjusted to always amount to the same timespan
(measured in seconds).

A drop in detection quality for very low or very high window sizes is to be expected
as these lead to poor resolution in frequency or time. It is harder to reason though,
why exactly a window size of 16384 performs optimal here. The optimum value is
obviously a function of the sampling rate, the frequency range of interest, and the
required temporal resolution which in turn is in some way defined by the typical
timespan between chord transitions. When taking differences in the sampling rate
into account, 16384 is in line with what other groups suggest for their algorithms as
reported in [Mauch, 2010].

Pitch range [Nl, Nh]

The lower and upper bound Nl and Nh are both explored in steps of one octave.
Apart from a reduction in the search space, this also guarantees that Nl and Nh

always span a whole number of octaves. The latter is important since it ensures
that for all pitch classes an equal number of notes are mapped to the pitch class in
the chromagram stage. Otherwise a bias would be introduced towards certain pitch
classes.29

Table 5.5 lists the results of these measurements. Among ranges spanning only one
or two octaves, [C4,B4] and [C3,B4] perform best by a large margin, suggesting
that this is where most relevant information for chord recognition lies. Conversely,

29The division by the number of notes that contribute to a pitch class in the chromagram definition
(see Section 4.5) turns out not to be sufficient in this regard.

44

5.5. Parameter optimization

Nh

Nl C0 C1 C2 C3 C4 C5 C6 C7

B0 2.8
B1 3.8 2.7
B2 24.5 23.7 25.9
B3 55.7 55.6 56.5 58.4
B4 70.7 70.7 71.0 70.1 65.7
B5 72.1 72.2 72.3 70.4 62.8 44.6
B6 72.1 72.1 72.4 70.2 61.2 40.1 19.4
B7 72.2 72.1 72.4 70.3 61.2 40.0 18.7 2.1

Table 5.5.: WAOR performance (%) on the MIREX 2009 test set for different pitch
ranges [Nl, Nh]. Values for Nl and Nh are specified here in scientific pitch
notation and results are color-coded from red (0%) to green (100%) for
better illustration.

ranges that do not include [C4,B4] (i.e. Nh ≤ B3 or Nl ≥ C5) score, as expected,
very poorly.

Highest detection quality is achieved with intervals [C2,B6] and [C2,B7]. There is
a larger set of ranges, though, that performs only marginally worse (less than 0.5
percentage points), those that include at least interval [C2,B5]. We conclude that,
as long as the pitch range is set large enough to cover certain essential octaves, the
end result is close to optimal. The inclusion of additional, potentially unneeded
octaves at the very low or high end appears to have little influence on detection
quality.

Harmonics decay rate ε

Figure 5.3 shows a plot of detection quality as a function of harmonics decay rate ε.

For values of ε close to zero, harmonics are assumed to fall off very fast and harmonic
content extraction thus approaches to having no effect at all. For large values of
ε (i.e. closer to 1), harmonics are required to be present with little decay and
as a result frequencies are more likely to be filtered out. If ε is chosen too large
(ε > 0.6), sounds that are actually harmonic get filtered out and detection quality
drops quickly.

Best results are obtained with values around 0.4, a value differing slightly from what
is proposed in [Gómez, 2006] and was later adopted by [Papadopoulos and Peeters,
2011,Papadopoulos and Peeters, 2007]. In these works a decay rate of 0.6 is used
and only the first six harmonics are considered. It remains unclear why exactly these
parameters were chosen and Gómez admits that further experiments are needed to
study these. But assuming they were determined by a similar evaluation as was

45

5. Evaluation

0 0.2 0.4 0.6 0.8
55

60

65

70

Harmonics decay rate ε

W
A
O
R

[%
]

Figure 5.3.: WAOR performance on the
MIREX 2009 test set for dif-
ferent harmonics decay rates
ε.

20 40 60
50

55

60

65

70

Smoothing filter size w

W
A
O
R

[%
]

Figure 5.4.: WAOR performance on the
MIREX 2009 test set for
different smoothing window
sizes.

done here, the discrepancy could be due to different datasets used30 or differences in
how harmonics are handled in the algorithm31. Generally, it has to be kept in mind
that the optimal value determined as part of our evaluations remains the value for
which our algorithm performs best. It may or may not be indicative of the actual
decay behavior of harmonics.

Smoothing window size w

Figure 5.4 shows evaluations for different smoothing window sizes. Unsurprisingly,
too light or too heavy smoothing has a negative effect on detection ratio. WAOR
performance stays almost identical for sizes between 25 and 40, but what is not
immediately obvious is that estimations actually vary there between being more
fine-grained or coarser.

30Ultimately, the best choice for ε depends on which instruments are present in the audio as
different instruments show different decay behavior of their harmonics.

31Gómez handles harmonics as part of his Harmonic Pitch Class Profile, mapping a frequency to
multiple pitch classes simultaneously (one for each harmonic), and Papadopoulos incorporates
harmonics directly into chord template design.

46

6. Conclusion

This work was aimed at providing an introduction to the task of automatic chord
recognition and relevant concepts in the field of signal processing and music the-
ory. For this, a simple chord detection algorithm was designed and its detection
performance evaluated.

We began by introducing a number of mathematical tools required. This included
continuous and discrete variants of the Fourier transform as well as the short-time
Fourier transform for time-frequency analysis. The magnitude spectrum of a signal
was then presented as a suitable form for further analysis of audio data.

We continued with a description of the equal temperament tuning system that pro-
vided us a mapping of musical notes to frequencies. The phenomenon of harmonics
in the sound of natural instruments was outlined which amounted to a composition
of sine waves of multiples of a fundamental frequency. Lastly, we finished on the
topic of music theory by providing a basic introduction to the structure and meaning
of chords in Western tonal music.

The proposed chord recognition algorithm was introduced, elaborating on a number
of design decisions that were made such as the focus on a system that requires no
training and a restriction to 24 major/minor chords. We then detailed the over-
all detection process which involved the calculation of a spectrogram, the filtering
of higher harmonics and inharmonic noise, a tuning estimation, the computation
of feature vectors in a chromagram through octave summation, the derivation of
chord probabilities from it through chord templates, and a final chord selection and
smoothing step.

Next, the typical process of evaluating a chord detection system was outlined which
requires a test set of songs with corresponding ground truth annotations and a
quality metric such as the weighted average overlap ratio (WAOR). We evaluated
our algorithm on the MIREX 2009 test set and provided in-depth interpretations
of the results. In terms of WAOR the algorithm fared very competitively among
MIREX 2009 contenders although direct comparisons have to be drawn with care
because of differences in how the systems were trained. Major issues proved to be
the correct detection of chord roots for complex chords, the retaining of quick chord
changes, as well as the differentiation between major and minor modes. Lastly, the
effect of different algorithm parameter choices on detection accuracy was examined,
demonstrating how suggested default values were determined.

47

6. Conclusion

Given that work on chord recognition only started around 15 years ago and the
tremendous amount of progress that has been made especially in the last few years,
it remains exciting to see how far automatic chord recognition can be taken. Today,
top algorithms already accomplish scores of 83% detection accuracy on the MIREX
2009 test set and up to 73% on completely unseen test data. [McVicar et al., 2014]
We see a huge potential for future research on not only the task of chord estimation,
but also on all the other promising disciplines tested by MIREX, hopefully enabling
exciting new applications and experiences in the future.

48

A. CD content & Implementation

The CD-ROM supplied with this thesis contains:

• this document in digital form (PDF)

• binaries and source code of the implementation of the algorithm presented,
including licensing information and compilation notes

The algorithm was implemented in the C# programming language and is licensed
under the MIT license.

The focus was put on a straightforward implementation with readability and exten-
sibility in mind. The code has been only optimized to a point where performance
is sufficient for typical use cases (around 15 seconds to process a 3–4 minutes long
music file on a 2 year old laptop), we expect there to be a large room for further
optimizations if high-performance was a requirement.

Spectrograms are calculated using FFT routines. In addition, the calculation of
the spectrogram and the harmonic context extraction step are parallelized to the
number of CPU cores available.

The code references two third-party libraries, NAudio1 for the decoding of audio
files and Math.NET2 for the FFT implementation.

Both a graphical and a command-line interface have been implemented for the al-
gorithm. Main features include:

• loading audio files and running the algorithm on them

• loading ground truth data and computing the overlap ratio

• changing various parameters of the algorithm

• displaying/exporting the generated spectrogram, chromagram and chordgram

• exporting the estimated chord sequence

• playing an audio file and displaying the current estimated chord (graphical
interface only)

1http://naudio.codeplex.com/
2https://www.mathdotnet.com//

49

List of Figures

2.1. Plot of f(t) = (4 sin(2πt) + 3 sin(3 · 2πt+ π
4
) + sin(7 · 2πt)) · e−|t| . . . 9

2.2. Plot of magnitude and angle of the complex f̂(ξ) 9
2.3. Schematic illustration of the short-time Fourier transform 11
2.4. Spectrogram of “You Have a Friend” – Carole King 12

3.1. Fundamental, 2nd, 3rd and 4th harmonic standing waves in a plucked
string . 14

4.1. Architecture of the proposed chord recognition system 18
4.2. Illustration of the principal behind harmonic content extraction . . . 20
4.3. Filtered version of the spectrogram from Figure 2.4 21
4.4. Plot of the averaged spectrum F̃ of “You’ve Got a Friend” – Carole

King . 24
4.5. Plot of the tuning estimation scoring function for three songs 24
4.6. Chromagram of “You Have a Friend” – Carole King 26
4.7. Chordgram of “You Have a Friend” – Carole King 29
4.8. Chordgram of “You Have a Friend” – Carole King overlaid with the

unsmoothed estimated chord sequence 31
4.9. Chordgram of “You Have a Friend” – Carole King overlaid with the

smoothed estimated chord sequence 32

5.1. Histogram of individual scores of all songs in the MIREX 2009 dataset 38
5.2. Chordgrams of three example song excerpts with detection issues . . 42
5.3. WAOR performance on the MIREX 2009 test set for different har-

monics decay rates . 46
5.4. WAOR performance on the MIREX 2009 test set for different smooth-

ing window sizes . 46

51

List of Tables

5.1. Results from all groups participating in the MIREX 2009 chord recog-
nition task and our result . 36

5.2. Relative amount of various types of chords in the ground truth and
our algorithm’s respective detection rates 39

5.3. Effect of skipping certain stages in the algorithm on final detection
quality . 43

5.4. WAOR performance on the MIREX 2009 test set for different FFT
window sizes . 44

5.5. WAOR performance on the MIREX 2009 test set for different pitch
ranges . 45

53

Bibliography

[Abdallah et al., 2005] Abdallah, S., Noland, K., Sandler, M., Casey, M., and
Rhodes, C. (2005). Theory and evaluation of a Bayesian music structure ex-
tractor. In Proceedings of the International Conference on Music Information
Retrieval (ISMIR), pages 420–425.

[Benson, 2006] Benson, D. J. (2006). Music: A Mathematical Offering. Cambridge
University Press.

[Boyd and Butt, 2003] Boyd, M. and Butt, J. (2003). J.S. Bach. Oxford Composer
Companions. Oxford University Press.

[Burgoyne et al., 2011] Burgoyne, J. A., Wild, J., and Fujinaga, I. (2011). An expert
ground-truth set for audio chord recognition and music analysis. In Proceedings
of the International Conference on Music Information Retrieval (ISMIR), pages
633–638.

[Cho and Bello, 2009] Cho, T. and Bello, J. P. (2009). Real-time implementation
of HMM-based chord estimation in musical audio. In Proc. Int. Computer Music
Conference, pages 117–120.

[Dongarra and Sullivan, 2000] Dongarra, J. and Sullivan, F. (2000). Guest editors’
introduction: The top 10 algorithms. Computing in Science and Engineering,
2(1):22–23.

[Ellis, 2009] Ellis, D. P. W. (2009). The 2009 LabROSA pretrained audio chord
recognition system. LabROSA, Columbia University, New York.

[Fujishima, 1999] Fujishima, T. (1999). Realtime chord recognition of musical
sound: a system using Common Lisp Music. In Proc. Int. Computer Music Con-
ference, pages 464–467.

[Glazyrin, 2012] Glazyrin, N. (2012). Audio chord estimation using chroma reduced
spectrogram and self-similarity.

[Glazyrin, 2013] Glazyrin, N. (2013). Mid-level features for audio chord estimation
using stacked denoising autoencoders.

[Gómez, 2006] Gómez, E. (2006). Tonal description of polyphonic audio for music
content processing. INFORMS Journal on Computing, 18(3):294–304.

55

Bibliography

[Harte, 2010] Harte, C. (2010). Towards Automatic Extraction of Harmony Infor-
mation from Music Signals. PhD thesis, University of London.

[Harte and Sandler, 2009] Harte, C. and Sandler, M. (2009). Automatic chord
recognition using quantised chroma and harmonic change segmentation. Centre
for Digital Music, Queen Mary University of London.

[Howard and Angus, 2009] Howard, D. M. and Angus, J. A. S. (2009). Acoustics
and Psychoacoustics. Focal Press.

[Khadkevich and Omologo, 2009] Khadkevich, M. and Omologo, M. (2009). Im-
proved automatic chord recognition. Fondazione Bruno Kessler, University of
Trento.

[Loy, 2006] Loy, G. (2006). Musimathics: the mathematical foundations of music.
MIT Press.

[Lyon, 1987] Lyon, R. F. (1987). Speech recognition in scale space. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 12, pages 1265–1268.

[Mauch, 2010] Mauch, M. (2010). Automatic Chord Transcription from Audio Us-
ing Computational Models of Musical Context. PhD thesis, School of Electronic
Engineering and Computer Science, Queen Mary University of London.

[Mauch and Dixon, 2010] Mauch, M. and Dixon, S. (2010). Simultaneous estima-
tion of chords and musical context from audio. IEEE Transactions on Audio,
Speech and Language Processing, 18(6):1280–1289.

[Mauch et al., 2009] Mauch, M., Noland, K., and Dixon, S. (2009). MIREX submis-
sions for audio chord detection (no training) and structural segmentation. Centre
for Digital Music, Queen Mary University of London.

[McVicar et al., 2014] McVicar, M., Santos-Rodríguez, R., Ni, Y., and De Bie, T.
(2014). Automatic chord estimation from audio: A review of the state of the art.
IEEE Transactions on Audio, Speech and Language Processing, 22(2):556–575.

[MUSIC IR, 2009] MUSIC IR (2009). Audio chord detection results. http://www.
music-ir.org/mirex/wiki/2009:Audio_Chord_Detection_Results. Retrieved
08/16/2014.

[Oudre et al., 2009] Oudre, L., Grenier, Y., and Févotte, C. (2009). MIREX chord
recognition system system 1 : major and minor chords. Institut TELECOM,
TELECOM ParisTech, CNRS LTCI.

[Papadopoulos and Peeters, 2007] Papadopoulos, H. and Peeters, G. (2007). Large-
scale study of chord estimation algorithms based on chroma representation and
HMM. In CBMI’07. International Workshop on Content-Based Multimedia In-
dexing, pages 53–60. IEEE.

56

Bibliography

[Papadopoulos and Peeters, 2009] Papadopoulos, H. and Peeters, G. (2009). Local
key estimation based on harmonic and metric structures. In Proceedings of the
International Conference on Digital Audio Effects, pages 408–415.

[Papadopoulos and Peeters, 2011] Papadopoulos, H. and Peeters, G. (2011). Joint
estimation of chords and downbeats from an audio signal. IEEE Transactions on
Audio, Speech and Language Processing, 19(1):138–152.

[Pauwels and Peeters, 2013] Pauwels, J. and Peeters, G. (2013). Evaluating auto-
matically estimated chord sequences. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 749–753.

[Pauwels et al., 2009] Pauwels, J., Varewyck, M., and Martens, J.-P. (2009). Audio
chord extraction using a probabilistic model. Department of Electronics and
Information Systems, Ghent University, Belgium.

[Reed et al., 2009] Reed, J. T., Ueda, Y., Siniscalchi, S., Uchiyama, Y., Sagayama,
S., and Lee, C.-H. (2009). Minimum classification error training to improve iso-
lated chord recognition. In Proceedings of the International Conference on Music
Information Retrieval (ISMIR), pages 609–614.

[Roads et al., 1997] Roads, C., Pope, S. T., Piccialli, A., and De Poli, G. (1997).
Musical Signal Processing. Swets & Zeitlinger Publishers.

[Rocher et al., 2009] Rocher, T., Robine, M., Hanna, P., and Strandh, R. (2009).
Dynamic chord analysis for symbolic music. In Proceedings of the International
Computer Music Conference (ICMC), Montreal, Quebec, Canada.

[Weller et al., 2009] Weller, A. V., Ellis, D. P. W., and Jebara, T. (2009). Structured
prediction models for chord transcription of music audio. In ICMLA, pages 590–
595. IEEE.

57

Declaration of Authorship

I do solemnly declare that I prepared this thesis independently and that the
thoughts taken directly or indirectly from other sources are indicated accordingly.
The work has not been submitted to any other examination authority and also not

yet been published.

......................... ..
(Date) (Signature)

59

