
Shuffle code for small permutation
sizes

Bachelor Thesis of

Pascal Reichinger

At the Department of Informatics and Mathematics
Chair of Theoretical Computer Science

Reviewers: Prof. Dr. Ignaz Rutter
Advisors: Prof. Dr. Ignaz Rutter

Time Period: 28 December 2018 – 28 March 2018

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Passau, March 28, 2019

iii

Abstract

This thesis deals with the shuffle code generation problem. This problem is a
algorithmic graph optimization problem. The graph represents registers of a computer
and edges represents that the value should be transferred from the source of the
register to another target. If this graph contains cycles, these transfers can by handled
by a cyclic shift of the registers and extra copy operations for those registers, that are
not contained in cycles. This theses focuses on the development of an algorithm that
can permute either at most four, six or seven registers. The main topic of the thesis
is to proof, that the constructed algorithm computes a minimal set of permutation
instructions for a graph where each node has at most one outgoing edge.

Deutsche Zusammenfassung

Diese Arbeit befasst sich mit dem Shuffle code generation problem. Dieses Problem
ist ein Problem aus der algorithmischen Graphentheorie. Die Knoten eines Graphs
repräsentieren hierbei register eines Computers und die Kanten zeigen an, dass
der Wert eines Registers in ein anderes übertragen werden muss. Wenn ein Graph
Zyklen enthält, bedeutet das, dass man die Zyklen mit Permutationen anstatt
Kopieranweisungen auflösen kann. In dieser Arbeit werden optimale Algorithmen
vorgestellt, die eine Permutatoin von entweder maximal vier, sechs oder sieben
Elementen in einem Schritt durchführen können. Der Hauptfokus liegt dabei, Graphen
zu behandeln, welche nur maximal eine ausgehende Kanten haben.

v

Contents

1 Introduction 1
1.1 Short description . 1

1.1.1 Related Work . 1
1.1.2 Contribution . 1
1.1.3 Outline . 1

2 Preliminaries 3

3 Content 7
3.1 Algorithm definitions for permutations with fixed maximum permutation

size of four . 7
3.1.1 Maximum permutation for four elements 7
3.1.2 Evalutation of Greedy4 . 7

3.2 Algorithm definitions for permutations with fixed maximum permutation
size of six . 9
3.2.1 Algorithm for permutation of size 6 9
3.2.2 Evaluation of Greedy6 . 10

3.3 Algorithm for permutation size 7 . 15
3.3.0.1 Evaluation of Greedy7 . 17

4 Conclusion 23

Bibliography 25

vii

1. Introduction

1.1 Short description
The topic of the thesis is the shuffle code generation problem. This problem has its origin
in the process of register allocation. We want to model parallel copies, that are done during
register coalescing problem, in a graph problem. Hereby we define a RTG(Register Transfer
Graph). To implement parallel copies efficiently we need an algorithm that can handle
parallel copies in one step and minimizes the resulting copy operations simultaneously. We
can model such a parallel copy as a permutation instruction. The shuffle code generation
problem asks for a minimal permutation and copy sequence such that each register has its
intended value after the execution of the sequence. Since copies are in general expensive,
it is desired to have as much permutation instructions and as less copy instructions as
possible. In the thesis we will see that the algorithm gets more complex with the number
of its permutation size.

1.1.1 Related Work

The shuffle code generation problem has been studied in [BMR15]. A general optimal
algorithm for a fixed maximal permutation size of five has been developed.

1.1.2 Contribution

This theses introduces optimal polynomial time algorithms for a fixed permutation size
of four and six. Furthermore an optimal algorithm that can handle up to seven parallel
copies at once is presented, if the input graph has certain attributes. Namely, in the input
graph there must not exist more cycles of size 5 than cycles of size 2.

1.1.3 Outline

Section 2 deals with the formalization of the shuffle code generation problem. Also some
techniques that are needed to proof that the algorithm is optimal are presented.
Section 3.1. introduces an optimal algorithm for a maximal permutation size 4. In section
3.2. an algorithm with a maximal permutation size up to 6 is presented. Section 3.3.
provides an algorithm that handles up to seven parallel copies once, if we the problem
instance has a certain attribute. It also contains a conjectured optimal algorithm for
any input instance. Finally, Section 4 concludes the thesis and summarizes the gained
knowledge.

1

2. Preliminaries

We start with some basic definitions.

Definition 2.1. A Graph G = (V,E) with V = {1, ..., n} and E = {(u, v)|u, v ∈ V } is a
RTG, if each node v ∈ V represents exactly one register and a edge (u, v) ∈ E represents
that the value of u should be transferred into the register v.

Since a register can contain only one value, each node in G has at most one incoming edge,
that is all v ∈ V satisfy deg−(v) = max(1, 0), where deg−(v) = n, if v has n incoming
edges. We write analogous degr+(v) = n, if v ∈ V has n outgoing edges.

Definition 2.2. A RTG G is a outdegree-1 RTG, if each node has at most one outgoing
edge, that is for all v ∈ V , there is outdegree(v) = max(1, 0)

We will restrict the properties further, such that each node has exactly one outgoing and
one incoming edge.

Definition 2.3. A RTG G is a PRTG, if for each node v ∈ V , there is deg+(v) = 1 =
deg−(v). A node v has a self loop, if additional the one edge e that touches v has the form
(v, v). A RTG that has only self loops is called trivial.

We will see now that we can use permutations to resolve the cycles or paths, that can
be completed into cycles and by that transform that cycle into vertices that only contain
self loops. Paths, that cannot complete into a directed cycle need to be resolved by copy
instructions (c1, ..ck).

Definition 2.4. Let π be a permutation of length at most k and c a copy instruction.
The k-Shuffle code generation problem asks for the shortest instruction sequence
((π1, .., πp), (c1, ..., ck)) that makes a given RTG G trivial.

We define now the effect of a permutation of k elements on a RTG G.

Definition 2.5. A permutation π of k on a set S = {1, .., n} is a bijective relation on
π : S− > S, where π(x) 6= x for exactly k elements in S. By that, for the other n − k
elements in S, there is π(x) = x.

We can now write a cycle of G = (V,E) as a permutation.

3

2. Preliminaries

Definition 2.6. A cycle K ⊆ E has size k, if and only if K has the form
(v1, v2), (v2, v3), ..., (vk−1, vk), (vk, v1). We write G has a k − Cycle. Instead of writing the
cycle as a set of edges, we can also express the cycle as a sequence of nodes (v1, v2, ..., vk),
where the edges between those nodes have the form stated above.

Then, we can express the affect of applying a permutation π on G as the following.
We define πG = (V, πE), where π is a arbitrary permutation applied to the nodes of G,
which represent the registers and πE = {(π(u), v)|(u, v) ∈ E}.

Definition 2.7. A permutation π has length k, if it permutes exactly k edges in G. A
permutation that has length two is called a transposition.

So far, we can express a k − cycle in G as a permutation sequence of k elements because a
cycle K with length k is a path that contains exactly k edges.
For example, if we have a cycle K = (0, 1, 2, 3) with edges {(0, 1), (1, 2), (2, 3), (3, 0)} of
length four, this is equivalent to the permutation sequence (π(0) = 1, π(1) = 2, π(2) =
3, π(3) = 0). We see that a cycle of length k can be represented as a permutation sequence
that permutes k elements. After applying this permutation instruction to the cycle, all
nodes in the cycles have only self loops. We say, that π has resolved this cycle. If G only
contains this cycle K and no other nodes or edges, πG has made this RTG G trivial.
We have seen that we can resolve a k − cycle with a permutation instruction that as at
least length k. If the permutation has length n and n > k, we can apply the remaining
n− k permutation instructions to another disjoint cycle in G. We still have to discover the
effect, if a permutation with smaller length then the size of a cycle is applied.

Lemma 2.8. Let G = (V,E) be a RTG and let C ⊆ E be a n − cycle and let π be a
permutation of length k. Then πC will result into a cycle L with size n− k + 1.

Proof. Let ((v0, v1), ..., (vk−1, vk), (vk, vk+1), ...(vn, v0) be the cycle C. Permuting the path
(v0, ..., vk) will result in self loops for the vertexes {v1, ..., vk}. The vertex v0 contains
the value of the vertex vk, so vk+1 can get the value from v1. This leads to the cycle
(v, vk+1, ..., vn, v) which has size n− k + 1.

However, we cannot express a copy operation in G directly via a permutation instruction.
A copy instruction a− > b, represented by the edge (a, b) in G indicates that we have to
copy the value from register a into register b and let the content of register a unchanged.
A transposition τ however would also change the value of register a, namely after applying
this transposition to the edge (a, b), register a would contain the value of register b and
not its original value anymore.
However, we can shift the copy operations at the end of the instruction sequence. This
leads to the following two lemmata, stated and proofed by [BMR15].

Theorem 2.9. Every instance of the shuffle code generation problem for a RTG G = (V,E)
has an optimal shuffle code S = ((π1, ..., πp), (c1, ..., ck)) and a set C ⊆ E which are
associated with the copies in S such that

1. No register occurs a source and a target of a single copy operation

2. Every register is the target of at most one copy operation.

3. There is a bijection between the copy operations and the edges of πG that are not
loops and π = πp ◦ πp−1 ◦ ... ◦ π1

4. If u is the source of a copy operation then u is incident to a loop in πG.

4

5. The number of copies is
∑
v∈V max{deg+

G(v)− 1, 0}

6. Every vertex v has max {deg+
G(v)− 1, 0} outgoing edges in C.

7. G− C is an outdegree-1 RTG.

8. π1, ..., πp is an optimal shuffle code.

With that theorem, we have to find an optimal shuffle code for the outdegree-1 RTG
C −G. By that, we need a general approach how to find a sequence permutation for any
outdegree-1 RTG and we need a mechanism to proof that this sequence is minimal. To do
that, we have to introduce the concept of merges and splits.

Definition 2.10. Let G be a PRTG and letτ be a transpostion on two vertexes u, v in G.
We say

1. τ is a merge, if u and v lay in are different connected component in G.

2. τ is a merge, if u and v lay in the same connected component in G.

Since G is a PRTG, the only connected components that occur in G are cycles.

Now we can define the necessary conditions for generating a minimal sequence of per-
mutation instructions. In the remaining chapter we write k for the maximum allowed
permutation size.

Lemma 2.11. Let Greedyk be the algorithm that generates the permutation sequence
Greedyk(G) in linear time for a given outdegree-1 RTG G, τ be a merge and π be a
permutation instruction with length at most k. Then, Greedyk(G) is optimal, if

1. Greedyk(G) ≤ Greedyk(τG) and

2. Greedyk(G) ≤ Greedyk(πG) + 1.

Proof. If second condition is true, then the proof of optimality for PRTGs is given in
[BMR15, Theorem 1]. With the first condition, we know that merges do not decrease the
length of the instruction sequence produced by Greedyk. So, we can obtain a PRTG G′

from G by completing each directed path, that is not a cycle, into a directed cycle by
applying a transposition from the end of the path to its beginning. The formal proof is
given in [BMR15, Lemma 7].

At least we need to introduce a method how we can ensure that the both conditions above
are satisfied by our algorithms. We will investigate the properties of the outdegree-1 RTG
G, which is the input of the algorithms. Since we create algorithms that allow different
maximal permutation sizes, they behave different in handling cycles of s specific size. To
claim the optimality of the algorithms we define different signatures for the input graph.

Definition 2.12. Let G be a an outdegree-1 RTG and let Q denote the set of directed
paths or cycles in G. We define X =

∑
σ∈Q bsize(σ)/(k − 1)c and ai = |{σ ∈ Q|size(σ) =

imod(k − 1)}. This leads us to the following signatures for G.

sig(G) = (X, a2) if k=4 (2.1)
sig(G) = (X, a4, a3, a2) if k = 6 (2.2)
sig(G) = (X, a5, a4, a3, a2) if k = 7 (2.3)

5

2. Preliminaries

The signature in equation ?? of G, will be used for the algorithm Greedy4, the one in
equation ?? for Greedy6 and the last equation ?? for Greedy7.

We now introduce two mechanisms to keep track of the signature that changes, if a merge
or a split is applied to the PRTG. For merges we define a signature change table with
{0, ..., k − 1} rows and columns. Each entry in row i and columns j shows the signature
change of G, if two cycles which have size i and j modulo k − 1 are merged. The table
contains only two values for i ≤ j, because the other cases are symmetric. It makes no
difference if a 3− Cycle and a 4− Cycle are merged or vice versa, the resulting cycle has
always the same size, namely i+ j mod (k − 1).

To investigate the effect of a split on the signature, we introduce the concept of a transition
graph. Since a split can clearly decrease the signature of G (for example splitting a 2-Cyle
into two self loops), we need to keep track, how often and by which value the signature is
decreased by a split. Let S = {0, 1, ..., k − 1} be the vertex set. In the graph there is a
edge with weight w, if splitting a component that has size i mod (k − 1) into one with
size j mod (k − 1) decreases the number of permutation instructions by w. If a edge has
no weight, we define it has weight 1.

After we have now introduced the theoretical background for the evaluation of our algo-
rithms, we will look how they work and how many permutation instructions they generate.

6

3. Content

3.1 Algorithm definitions for permutations with fixed maxi-
mum permutation size of four

3.1.1 Maximum permutation for four elements

We start with the smallest permutation size 4. This algorithm is pretty straightforward
because we only have to deal with cycles that have size 2 to resolve them without loss.
This algorithm will be called GREEDY4.

Let G be an outdegree 1 RTG as an input for the algorithm.

1. Complete each directed path of G into a directed cycle to obtain a PRTG

2. While a cycle K of at least size 3 exists, apply permi4 to resolve this cycle or reduce
the size of the cycle by 4.

3. While there exists a pair of disjoint Cycles K and L with size 2 respectively, use
permi4 to resolve these cycles

4. Resolve the last remaining cycle K (if exists) of size 2 with a permi4.

3.1.2 Evalutation of Greedy4

Definition 3.1. Let G be the graph on which the algorithm works. Define Q the set of all
path and cycles of G and for all σ ∈ Q write size(σ) for the length of the path or cycle.
Define X =

∑
σ∈Q bsize(σ)/3c, and let a2 denote the remaining number of cycles with size

two G. Denote (X, a2) as the signature of G.

Lemma 3.2. Let G be an outdegree 1-RTG with signature (X, a2). Greedy4 will compute
an shuffle code with X + d(a2)/2e operations.

Proof. After Step 1 Greedy4 transforms G into a PRTG with the exact same signature.
After Step 2 Greedy4 has resolved all cycles with size at least 3 with X operations. So
only a2 cycles of size 2 are resolved by da2/2e operations in steps 3 and 4.
In total, these are X + d(a2)/2e operations.

7

3. Content

Lemma 3.3. Let G,G′ be PRTGs with sig(G) = (X, a2), sig(G′) = (X ′, a′2) and Greedy4(G)−
Greedy4(G′) ≥ c and let (∆X ,∆2) = sig(G)− sig(G′). Then 2∆X + ∆2 ≤ −2c+ 1.

Proof. Assume that Greedy4(G)−Greedy4(G′) ≥ c. With Lemma 3.2 there is

Greedy4(G) = X + da2/2e
≤ X + (a2 + 1)/2

Greedy4(G′) = X ′ +
⌈
a′2/2

⌉
≥ X ′ + (a′2/2)

= X ′ + ∆X + a2 + ∆2
2

Therefore the difference computes as

Greedy4(G)−Greedy4(G′) ≤ X + (a2 + 1)/2− (X + ∆X + (a2 + ∆2)/2)

= −∆X + a2 + 1− (a2 + ∆2)
2

= −∆X + 1−∆2
2

= −(2∆X + ∆2 − 1)
2

With our assumption −(2∆X+∆2−1)
2 ≥ c this is equivalent to 2∆x + ∆2 ≤ −2c+ 1.

For simplicity, we write Ψ(∆X ,∆2) = 2∆X + ∆2 to determine the effect of splits or merges
on the signature difference of G and G′. We start with merges and compute the signature
change table which we introcuded in Chapter 2

Let G = (V,E) PRTG with signature sig(G) = (X, a2). Let K,L by the cycle which are
merged. Denote s1 and s2 the size of the cycles. Merging will create a cycle C with size
s = s1 + s2. A merge can change the signature only in the following cases:

If s1 mod 3 + s2 mod 3 ≥ 3 this will result in an increased value of X by one and a
decreased value of a2 by 2. Another combination of signature change is due to the
condition not possible.

0 1 2
0 (0,0) (0,0) (0,0)
1 (0,1) (1,-1)
2 (1,-2)

Table 3.1: greedy-4 signature change

0 1 2
0 0 0 0
1 1 1
2 0

Table 3.2: Values of Ψ

Lemma 3.4. Let G be a PRTG with sig(G) = (X, a2) and let τ be a merge. Then
Greedy4(G) ≤ Greedy4(τG).

Proof. Assume Greedy4(τG) < Greedy4(G). Then Greedy4(G) − Greedy4(τG) ≥ 1 and
by Lemma 3.2 Ψ ≥ 0. However, Table 3.1.2 shows, that this is not possible.

This shows, that merges never decrease the cost of the greedy algorithm. Now, analysis for
splits:

8

3.2. Algorithm definitions for permutations with fixed maximum permutation size of six

Let C be a cylce with size s split into two disjoint cycles K,L with size s1 and s2. For the
affect on the signature consider all cycle sizes modulo 3.
If merging two cycles of size i, j mod 3 into one cycle with size i + j mod 3, resulting
in a signature change of (∆X ,∆2), then splitting as inverse operation will result into the
signature change (−∆X ,−∆2). Since Ψ is linear, negating the signature will result into
negating Ψ. So, Table 3.1.2 can be reused with negated values for each entry.

Lemma 3.5. Let G = (V,E) be a PRTG an let π be a cyclic shift of c vertices in V . Let
further (∆X , Delta2) be the signature affected by π. Then Ψ ≥ −

⌈
2c−2

3

⌉
.

Proof. Write π as τc−1◦ ...◦τ1 as a product of c−1 operations such that any two consecutive
operations τi and τi+1 affect a common element for i = 1, ..., c− 1.
Each transposition decreases Ψ by at most one, but since for consecutive splits, a second
following split has to split one resulting component created by the previous split, not all
transpositions can decrease Ψ. Use a transition graph to show, what the longest sequence
of a decrease of Ψ can be.
Define the transition Graph T for the vertex set S = {0, 1, 2}. In the Graph T there is
an edge from i to j if there is a split of size i mod 3 such that the resulting component
has size j mod 3 and this split decreases Ψ by one. The longest path in T has length 2,
so Ψ can be reduced at most by two consecutive transpositions. It follows that at least
b(c− 1)/3c operations do not decrease Ψ and thus at most

⌈
2c−2

3

⌉
do decrease Ψ by one.

Thus, Ψ(∆X ,∆2) ≥
⌈

2c−2
3

⌉
.

Corollary 3.6. Let G be a PRTG and let π be a permi4 operation. Then Greedy4(G) ≤
Greedy4(πG) + 1.

Proof. Assume for a contradiction that Greedy4(G) ≥ Greedy4(πG)− 1. By Lemma 3.2
we have Ψ(∆X ,∆2) ≤ 3. However if pi is a permi4 with a c-cycle with c ≤ 4 Lemma 3.5
shows Ψ(∆X ,∆2) ≥ 3. A contradiction.

This leads to our main theorem for this section.

Theorem 3.7. Let G be a outdegree-1 RTG. Greedy4 computes a optimal shuffle code in
linear time for the graph G′ that is constructed by G by completing each directed path into
a directed cycle.

Proof. We have shown that merges and splits does not decrease Greedy(G). So, Greedy(G)
is optimal. It computes clearly a shuffle code for G.

3.2 Algorithm definitions for permutations with fixed maxi-
mum permutation size of six

3.2.1 Algorithm for permutation of size 6

The algorithm for larger permutation sizes is much more complex. We cannot distinguish...
This algorithm will be called GREEDY6.

Let G be an outdegree 1 RTG as an input for the algorithm.

1. Complete each directed path of G into a directed cycle to obtain a PRTG

9

3. Content

2. While a cycle K of at least size 5 exists, apply permi6 to resolve this cycle or reduce
the size of the cycle by 5.

3. Let n2 and n4 the number of cycles with size 2 and 4.
If n4 > n2:

a) Resolve pairs of cycles with size 4 and 2 with permi6

b) While at least two disjoint cycles K,L of size 4 exist: Resolve cycle K and the
size of the other cycle L by one.

c) Resolve the last remaining cycle of size 4, if existent.

d) Resolve pairs of cycles of size 3, if possible

e) Resolve the last cycle of size 3, if existent

If n4 ≤ n2:

a) Resolve pairs of cycles K,L with size 4 and 2 with permi6

b) Resolve pairs of cycles with size 3, if possible

c) Resolve triples of cycles with size 2, if possible

d) If only at most one cycle of size two and one of size 3 are remaining, resolve
both once. Otherwise resolve two cycles with size 2 first and the cycle with size
3 with another permutation instruction.

3.2.2 Evaluation of Greedy6

Definition 3.8. Let G be the graph on which the algorithm works. Define Q the set of all
path and cycles of G and for all σ ∈ Q write size(σ) for the length of the path or cycle.
Define X =

∑
σ∈Q bsize(σ)/5c, and let ai denote the remaining number of cycles with size

i for i = {2, 3, 4} in G. Denote (X, a2, a3, a3) as the signature of G.

Now, we start the analysis of the outcome of Greedy6 with the case that there are less
cycles of size 2 than such with size 4 in G after step 1 of the algorithm.

Theorem 3.9. Greedy6(G) produces exact X+a2 +
⌈a4−a2

2
⌉

+
⌈
a3+b(a4−a2)/2c

2

⌉
, if a4 ≥ a2.

If a4 < a2 then

Greedy6(G) = X + a4 + a3/2 + d(a2 − a4)/3e if a3 = 0 mod 2
Greedy6(G) = X + a4 + (a3 − 1)/2 + d(a2 − a4)/3e

if a3 mod 2 = 1 and (a2 − a4) ∈ {0, 1} mod 3
Greedy6(G) = X + a4 + d(a3)/2e+ d(a2 − a4)/3e

if a3 = 1 mod 2 and (a2 − a2) = 2 mod = 3

Proof. After Step 1 Greedy6 transforms G into a PRTG with the exact same signature.
After Step 2 Greedy4 has resolved all cycles with size at least 5 with X operations.
Let now a4a2:
Then, Greedy6 has resolves all cycles with size 2 with a2 operations and in the same step
resolved a4 − a2 cycles of size 4, so a4 − a2 cycles of size 4 remain. Further those cycles of
size 4 were either completely resolved or their size has been reduced by one within

⌈a4−a2
2
⌉

operations. So, we have in total a3 +
⌈a4−a2

2
⌉
cycles of size 3 remaining, all other cycles

of different sizes were resolved. These pairs of 3-cycles are resolved by
⌈
a3+b(a4−a2)/2c

2

⌉
operations.

10

3.2. Algorithm definitions for permutations with fixed maximum permutation size of six

In total, these are X + a2 +
⌈a4−a2

2
⌉

+
⌈
a3+b(a4−a2)/2c

2

⌉
operations.

Let now a4 ≤ a2.
We have then resolved all cycles of size 4 within a4 operations and resolved a4 cycles of size
2, so a2 − a4 cycles of size 2 remain. After that, we resolved all cycles of size 3 within a3/2
operations, if a3 is even. Resolving the remaining a2 − a4 2-cycles need

⌈a2−a4
3
⌉
operations.

In total, these are X + a4 + a3/2 + d(a2 − a4)/3e operations.
If a3 is odd, then a3 − 1 3-cycles are resolved within (a3 − 1)/2 operations. After that, we
resolve triples of the remaining 2-Cycles with b(a2 − a4)/3c operations. In the last step, we
resolve the last 3-cycle and at most one possible 2-cycle with one last additional operation.
In total, these are X + a4 + (a3 − 1)/2 + d(a2 − a4)/3e operations.
If two 2-cycles remain, we need one more operation because we cannot resolve a 3-cycle and
those two 2-cycles in one step anymore. So, we have in totalX+a4+d(a3)/2e+d(a2 − a4)/3e
operations.

Lemma 3.10. Let G,G′ be PRTGs with sig(G) = (X, a4, a3, a2), sig(G′) = (X ′, a′4, a′3, a′2)
and Greedy6(G)−Greedy6(G′) ≥ c and let (∆X ,∆4∆3,∆2) = sig(G)− sig(G′). Then

4∆X + 3∆4 + 2∆3 + ∆2 ≤ −4c+ 2 if a4 ≥ a2 and a4 − a2 is even
4∆X + 3∆4 + 2∆3 + ∆2 ≤ −4c+ 3 if a4 ≥ a2 and a4 − a2 is odd

For the case a4 < a2 we have

6∆X + 4∆4 + 3∆3 + 2∆2 ≤ −6c+ 4if a3 = 0 mod 2 (3.1)

6∆X + 4∆4 + 3∆3 + 2∆2 ≤ −6c+ 4
if a3 = 1 mod 2 and (a2 − a4) 6= 2 mod 3

(3.2)

6∆X + 4∆4 + 3∆3 + 2∆2 ≤ −6c+ 5
if a3 = 1 mod 2 and (a2 − a4) = 2 mod 3

(3.3)

Proof. We assume Greedy6(G) − Greedy6(G′) ≤ c and start with the case a4 > a2. If
a4 − a2 is even we have

Greedy6(G) = X + a2 + a4 − a2
2 +

⌈
a3 + (a4 − a2)/2

2

⌉
≤ X + a2 + a4 − a2

2 + a3 + 1 + (a4 − a2)/2
2

= (4X + 3a4 + 2a3 + a2 + 2)/4

Greedy6(G′) = X ′ + a2 + a′4 − a′2
2 +

⌈
a′3 + (a′4 − a′2)/2

2

⌉
≥ (4X ′ + 4a′2 + 2a′4 − 2a′2′ + 2 + 2a′3 + a′4 − a2)
= (4X + 4∆X + 3a4 + 3∆4 + 2a3 + 2∆3 + a2 + ∆2)/4

Therefore the difference computes as

Greedy6(G)−Greedy6(G′) ≥ 4X + 3a4 + 2a3 + a2 + 2
4

− (4X + 4∆X + 3a4 + 3∆4 + 2a3 + 2∆3 + a2 + ∆2)/4
= −(4∆X + 3∆4 + 2∆3 + ∆2 − 2)/4

With the assumption Greedy6(G)−Greedy6(G′) ≥ c this leads to

Greedy6(G)−Greedy6(G′) ≥ c

11

3. Content

⇐⇒ −(4∆X + 3∆4 + 2∆3 + ∆2 − 2)
4 ≥ c

⇐⇒ 4∆X + 3∆4 + 2∆3 + ∆2 ≤ −4c+ 2

Similar if a4 − a2 and a′4− a′2 are odd we have

Greedy6(G) ≤ X + a2 + (a4 − a2 + 1)/2 + (a3 + (a4 − a2 − 1)/2) + 1)/2
Greedy6(G′) ≥ X + ∆X + a2 + ∆2 + (a4 + ∆4 − a2 −∆2 + 1)/2

+ a3 + ∆3 + (a4 + ∆4 − a2 −∆2 − 1)/2
2

Greedy6(G)−Greedy6(G′) = −(4∆X + 3∆4 + 2∆3 + ∆2 − 3)/4

This leads to

Greedy6(G)−Greedy6(G′) ≥ c
⇐⇒ 4∆X + 3∆4 + 2∆3 + ∆2&leq − 4c+ 3

The cases that a4 − a2 is odd and a′4 − a′2 and vice versa leads also to Ψ1 ≤ −4c+ 3

Similar with the case a4 < a2 we have for the first subcase the following.

Greedy6(G) = X + a4 + a3/2 +
⌈
a2 − a4

3

⌉
≤ X + a4 + a3/2 + a2 − a4 + 2

3

= 6X
6 + 6a4

6 + 3a3
6 + 2a2 − 2a4 + 4

6

= 6X + 4a4 + 3a3 + 2a2 + 4
6

Greedy6(G′) = X ′ + a′4 + a′3/2 +
⌈
a′2 − a′4

3

⌉
≥ X ′ + a′4 + a′3/2 + a′2 − a′4

3

= 6X ′ + 4a′4 + 3a′3 + 2a′2
6

= 6X + 4a4 + 3a3 + 2a2 + 6∆X + 4∆4 + 3∆3 + 2∆2
6

Therefore the difference computes as

Greedy6(G)−Greedy6(G′) ≥ −(6∆X + 4∆4 + 3∆3 + 2∆2 + 4
6)

With the assumption Greedy6(G)−Greedy6(G′) ≥ c this leads to

Greedy6(G)−Greedy6(G′) ≥ c

⇐⇒ −(6∆X + 4∆4 + 3∆3 + 2∆2 − 4
6) ≥ c

⇐⇒ 6∆X + 4∆4 + 2∆3 + 2∆2 ≤ −6c+ 4

For the second subcase we have

Greedy6(G) = X + a4 + (a3 − 1)/2 + d(a2 − a4)/3e

12

3.2. Algorithm definitions for permutations with fixed maximum permutation size of six

≤ X + a4 + (a3 − 1)/2 + (a2 − a4 + 2)/3
= (6X + a4 + 3a3 + 2a2 + 1)/6

Greedy6(G′) = X ′ + a′4 + (a′3 − 1)/2 + d(a2 − a4)/3e
≥ X ′ + a′4 + (a′3 − 1) + (a2 − a4/3)
= (6X + 6∆X + 4a4 + 4∆4 + 3a3 + 3∆3 + 2a2 + 2∆2 − 3)/6

Greedy6(G)−Greedy6(G′) ≥ −(6∆X + 4∆4 + 3∆3 + 2∆2 − 4
6)

and by that we have analogously 6∆X + 4∆4 + 3∆3 + 2∆2 ≤ −6c+ 4. For the last subcase
we have

Greedy6(G) = X + a4 + da3/2e+ d(a2 − a4)/3e
≤ X + a4 + (a3 + 1/2) + (a2 − a4 + 2)/3

Greedy6(G′) ≥ X ′ + a′4 + (a′3/2) + (a′2 − a′4)/3
Greedy6(G)−Greedy6(G′) ≥ −(6∆x + 4∆4 + 3∆3 + 2∆2 − 5)/6

This leads to

Greedy6(G)−Greedy6(G′) ≥ −(6∆x + 4∆4 + 3∆3 + 2∆2 − 5)/6 ≥ c
⇐⇒ 6∆x + 4∆4 + 3∆3 + 2∆2 ≤ −6c+ 5

which proofs the claim.

Now we start to analyze the affected signature changes of Greedy6 for merges and splits.
We define

Ψ1(∆X ,∆4,∆3,∆2) = 4∆X + 3∆4 + 2∆3 + ∆2

Ψ2(∆X ,∆4,∆3,∆2) = 6∆X + 4∆4 + 3∆3 + 2∆2

to see the effected signature change. We see that the signature difference of all equations is
equal. So, we have to consider only this two functions that model this difference.
Now we take a look how the signature changes and construct the signature change table.
Table 3.3 shows the signature change by Greedy6. Each entry in row r and column c shows
the difference when merging two cycles with sizes c mod 5 and r mod 5 to one cycle with
size c+ r mod 5. Tables 3.4 and 3.5 shows the corresponding values of Ψ1 and Ψ2.

0 1 2 3 4
0 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
1 (0,0,0,1) (0,0,1,-1) (0,1,-1,0) (1,-1,0,0)
2 (0,1,0,-2) (1,0,-1,-1) (1,-1,0,-1)
3 (1,0,-2,0) (1,-1,-1,1)
4 (1,-2,1,0)

Table 3.3: signature change table of (∆X ,∆4,∆3,∆2)

13

3. Content

0 1 2 3 4
0 0 0 0 0 0
1 1 1 1 1
2 1 1 0
3 0 0
4 0

Table 3.4: Values of Ψ1

0 1 2 3 4
0 0 0 0 0 0
1 2 1 1 2
2 0 1 0
3 0 1
4 1

Table 3.5: Values of Ψ2

Lemma 3.11. Let G be a PRTG with sig(G) = (X, a4, a3, a2) and let τ be a merge. Then
Greedy6(G) ≤ Greedy6(τG).

Proof. We assume Greedy6(τG) < Greedy6(G). Then Greedy6(G) − Greedy6(τG) ≥ 1.
We start to proof this for the condition a4 ≥ a2. By Lemma 3.10 there is Ψ1 ≤ −2 or
Ψ1 ≤ −1 for odd a4 − a2. Table 3.4 shows, that all values are greater or equal zero. This
contradicts the boundaries above. For the case a4 < a2 we use Ψ2. By Lemma 3.10 we
have either Ψ2 ≤ −2orΨ2 ≤ −1. However by Table 3.5 Psi2 ≥ 0. This contradicts our
assumption.

The following graphics show the transition graphs by Ψ1 and Ψ2. We have already defined
the notation on transition graphs in Chapter 2.

Figure 3.1: Transition graph for Ψ1

Figure 3.2: Transition graph for Ψ2

Lemma 3.12. Let G = (V,E) be a PRTG an let π be a cyclic shift of c vertices in V .
Let further (∆X ,∆4,∆3,∆2) be the signature affected by π. Then Ψ1 ≥ −

⌈
4c−4

5

⌉
and

Ψ1 ≥ −
⌈

4c−4
5

⌉
.

Proof. Again we write π as τc−1 ◦ ... ◦ τ1 as a product of c − 1 operations such that any
two consecutive operations τi and τi+1 affect a common element for i = 1, ..., c− 1.
The transition graphs can be seen in tables 3.1 and 3.2.
For Ψ1 the longest path has length 4 and the sum of all weights in that path is 4. Thus,
Psi1 can be reduced at most with four consecutive transpositions by 4 and Ψ1 ≥ −

⌈
4c−4

5

⌉
.

For Ψ2 the longest path that contains no cycle (we cannot split a component into itself
twice, (if we have only at most six transpositions) has length 3 and the sum of all weights
in that path is 8. This path is given by (0, 3, 2, 4, 1) Thus, Psi2 can be reduced at most
with four consecutive transpositions by 5 and Ψ1 ≥ −

⌈
4c−4

6

⌉
.

Corollary 3.13. Let G be a PRTG and let π be a operation. Then Greedy6(G) ≤
Greedy6(πG).

14

3.3. Algorithm for permutation size 7

Proof. Assume Greedy6(G) > Greedy(πG) − 1. By Lemma 3.12. Then by Lemma 3.10
there is

Greddy6(πG)−Greedy6(G) < 1
⇐⇒ Greedy6(πG)−Greedy6(G) ≤ 2

Ψ1 ≤ −5or Ψ1 ≤ −6
Ψ2 ≤ (−6 ∗ 2 + 4) = −8orΨ2 ≤ (−6 ∗ 2 + 5) = −7

By Lemma 3.12 we have for a cycle with size 6

Ψ1 ≥ −
⌈4 ∗ 6− 4

5

⌉
= −4Ψ2 ≥ −

⌈4 ∗ 6− 4
5

⌉
= −4

This is a contradiction.

This leads to our main theorem for this section.

Theorem 3.14. Let G be a outdegree-1 RTG. Greedy6 computes a optimal shuffle code in
linear time for the graph G′ that is constructed by G by completing each directed path into
a directed cycle.

Proof. We have shown that merges and splits does not decrease Greedy(G). So, Greedy(G)
is optimal. It computes clearly a shuffle code for G.

3.3 Algorithm for permutation size 7
This algorithm is much more complicated, since it is not hard to see, that there exist
different perfect subsets of the problem Instance I = {X, a5, a4, a3, a2}. Namely those are
S1 = {2, 5}, S2 = {4, 3} and S3 = {2, 2, 3}. In the chapters before there were only two
({2, 4}, {3, 3}) and even one ({2, 2}) respectively. So, we have to distinguish how often we
can apply resolving a 2-cycle and a 5-cycle or resolving two 2-Cycles and one 3-cycle or
resolving a 4-cycle and a 3-cycle within one permutation instruction. We call this algorithm
Greedy7. Let nx denote the number of paths are cycles with length or size x of the input
outdegree-1 RTG.

1. Complete each directed path of G into a directed cycle to obtain a PRTG

2. While a cycle K of at least size 5 exists, apply permi6 to resolve this cycle or reduce
the size of the cycle by 5. Let nx denote the number of cycles with size x. If
n5 ≥ n2: Generate the permutations instructions with the Greedyn5≥n2

7 algorithm
Else: Generate the permutations instructions with the Greedyn2>n5

7 algorithm

We define now the Greedyn5≥n2
7 algorithm:

1. While a cycle K with size 2 and a cycle L with size 5 exist, resolve both with one
permi7 instruction. If n4 > n3:

2. While a cycle K with size 4 and a cycle L with size 3 exist, resolve both with one
permi7 instruction.

a) while two cycles K,L with size 5 exist resolve K and reduce to size of L by one
with one permi7 instruction.

b) Resolve the last possible cycle with size 5

15

3. Content

c) While two cycles K,L with size 4 exist resolve K and reduce to size of L by two
with one permi7 instruction.

d) While another cycle K with size 4 exist resolve K and L′ by two with one permi7
instruction. Repeat the last two steps as long as two cycles with size 4 exist.

e) Resolve the last cycles (either one 4-cycle and one 2-cycle or any other cycle
with size lower or equal 4

Else:

3. While two cycles K,L with size 5 exist resolve K and reduce to size of L by one with
one permi7 instruction.

4. Resolve the last remaining cycle with size 5 if possible.

5. While a cycle with size 4 and another cycle with size 3 exist, resolve both.

6. If no more cycles of size 4 exist, resolve two remaining cycles of size 3.

7. Resolve the last cycle of size 3 if possible

8. If only cycles with size 4 remain, resolve a cycle of size 4 and reduce another cycle of
size 4 to a 2-cycle, while this is possible

9. Resolve the last possible cycle of size 4 or 2.

So far we have seen an algorithm that handles graphs that contain only cycles with size 5,
4 or 3. We need consequently the other algorithm that handles the case, that only cycles of
size 4,3 or 2 exist in the graph. We call this algorithm Greedyn5<n2

7 . We see that Greedy7
uses both algorithms depending, if there a more cycles of size 2 or respectively size 5 in the
input graph.

We define now the Greedyn5<n2
7 algorithm:

1. While a cycle K with size 2 and a cycle L with size 5 exist, resolve both with one
permi7 instruction. If n4 > n3:

2. While a cycle K with size 4 and a cycle L with size 3 exist, resolve both with one
permi7 instruction.

a) while two cycles K,L with size 4 and size 2 exist resolve K and L. Now, all
remaining cycles have size 4 or 2.

b) While two cycles K,L with size 4 exist resolve K and reduce to size of L by two
with one permi7 instruction.

c) Resolve the last cycle of size 4 and another cycle of size 2 within the same step
if possible.

d) Resolve triples of the remaining cycles of size 3.

e) Resolve the last cycles of size 2 (at most two can exist) with a last step.

Else n4 < n3:

3. while two cycles K,L with size 4 and size 2 exist resolve K and L. Now, all remaining
cycles have size 3 or 2.

4. While a cycle with size 3 and two other cycles with size 2 exist, resolve them with
one operation.

5. If no more cycles of size 3 exist resolve triples of the remaining cycles of size 2, as long
as this is possible. After that, resolve the last remaining cycles of size 2, ix existing.

16

3.3. Algorithm for permutation size 7

6. If only at most one cycle K of size 2 exist, resolve K and another cycle of size 3 if
possible.

7. Resolve pairs of the remaining cycles of size 3, while this is possible

8. Resolve the last potential cycle of size 3 with one last step.

After we have defined the algorithm we will evaluate it and show that it computes a optimal
shuffle code.

3.3.0.1 Evaluation of Greedy7

Since Greedy7 uses its subalgorithm depending on the number of cycles of size2 or 5 of the
input outdegree-1RTG G this leads to the following outcome. Let G have the signature
(X, a5, a4, a3, a2).

Lemma 3.15. The number Greedy7(G) of operations in the shuffle code by Greedy7 is

Greedy7(G) = max{X + a2 +Greedyn5≥n2
7 , X + a5 +Greedyn5<n2

7 } (3.4)

Proof. After the first step ofGreedy7, G has the exact same signature. After that, the shuffle
code is computed either by Greedyn5≥n2

7 , if a5 ≥ a2 or by Greedyn5<n2
7 if a2 < a5.

We start now the evaluation of Greedy7 to get concrete values.

Lemma 3.16. Let (X, a5, a4, a3, a2) denote the signature of the input graph G. The number
of shuffle code operations is the maximum of the following equations. Greedyn5<n2

7 gives
the following four equations.

X + a5 + a4 +
⌈
a2 − a5 − (a4 − a3)

3

⌉
(3.5)

if a5 < a2, a4 ≥ a3, (a4 − a3) < (a2 − a5)

X + a2 + a3 +
⌈2((a4 − a3)− (a2 − a5))

3

⌉
(3.6)

if a5 < a2, a4 ≥ a3, (a4 − a3) ≥ (a2 − a5)

X + a5 + a4 +
⌈(a2 − a5)− 2(a3 − a4)

3

⌉
(3.7)

if a5 < a2, a4 < a3, (a2 − a5) ≥ 2(a3 − a4)

X + a5 + a4 + d(a2 − a5))/2e+
⌈(a3 − a4)− d(a2 − a5)/2e

2

⌉
(3.8)

if a5 < a2, a4 < a3, (a2 − a5) < 2(a3 − a4)

Greedyn5≥n2
7 gives the following three equations.

X + a2 + a3 +
⌈4(a5 − a2)

5

⌉
+
⌈2(a4 − a3 + b(a5 − a2)/2c

3

⌉
(3.9)

if a5 ≥ a2, a4 ≥ a3

X + a2 + a4 + 2a3 +
⌈4(a5 − a2 − 2(a3 − a4)

5

⌉
(3.10)

17

3. Content

if a5 ≥ a2, (a5 − a2) ≥ 2(a3 − a4), a3 ≥ a4

X + a2 + a4 +
⌈(a5 − a2)

2

⌉ ⌈(a3 − a4 + b(a5 − a2)/3c
3

⌉
(3.11)

if a5 ≥ a2, a3 < a4, (a5 − a2) < 2(a3 − a4)

Proof. We start with the case a5 < a2. For the first equation we need a2 steps to resolve
all 5-cycles. Resolving all 3-cycles needs a3 steps. a2 − a5 cycles of size 2 and a4 − a3
cycles of size 3 remain. Resolving the remaining 4-cycles needs a4 − a3 operations. Since
we demand that there are more remaining cycles of size 2 than of size 4 we need additional⌈
a2−a5−(a4−a3)

3

⌉
operations to resolve the last cycles of size 2.

In total these are X + a5 + a3 +
⌈
a2−a5−(a4−a3)

3

⌉
operations. If we have more remaining

cycles of size 4 then of size 2, we need to resolve a4 − a3 cycles of size 4 in the last step
instead of cycles of size 2. We have resolved the cycles of size 5 and 3 within a5 + a3
operations Since three cycles of size 4 can be resolved within two operations this leads to a
total amount of X + a5 + a3 +

⌈
2(a4−a3)−(a2−a5)

3

⌉
operations.

The third equation is proven analog except for the last sum, here we have to resolve the
remaining a3 − a4 3-cycles and a5 − a2 2-cycles. Since there a twice as much 2- cycles then
3 cycles and for each 3-cycle we resolve two 2-cycles in the same step this leads to a total
amount of X + a5 + a4 +

⌈
(a2−a5)−2(a3−a4)

3

⌉
operations.

For the last possible case in Greedyn5<n2
7 we have resolved all 4-cycles with a4 steps and

of course all 5-cycles with a2 operations. Since there are more remaining 3-cycles then 2-
cycles we first resolved all 2-cycles with

⌈a2−a5
2
⌉
operations and in the same step resolved

one 3 cycle per two 2-cycles. So (a3 − a4)−
⌈a2−a5

2
⌉

3-cycles remain and resolving them
needs

⌈
(a3−a4)−d(a2−a5)/2e

2

⌉
operations. In total, these are X + a5 + a4 + d(a2 − a5))/2e+⌈

(a3−a4)−d(a2−a5)/2e
2

⌉
operations.

Now we evaluate the case a5 ≥ a2. If we have a4 ≥ a3 we have resolved all cycles with
size 3 and 2 within a2+ a3 operations. Reducing the remaining a5 − a2 cycles needs
with our construction d(a5 − a2)/2e operations Hereby we get b(a5 − a4)/2c cycles of size
4. Resolving the last cycles of size 4 needs

⌈
2(a4−a3+b(a5−a2)/2c

3

⌉
operations. The same

argument holds for resolving the remaining 3-cycles and 5-cycles. If we have more 3 and
−4-cycles than 5 cycles, we have produced ba5 − a2c extra 4-cycles within d(a5 − a2)/e
operations. If no cycles of size 5 exist anymore we can directly resolve pairs of 3-cycles
and 4 − cycles and after that resolve the remaining 4-cycles. This leads in total to
X + a2 + a4 +

⌈
(a5−a2)

2

⌉ ⌈
(a3−a4+b(a5−a2)/3c

3

⌉
operations.

We show now that Greedyn5<n2
7 produces an optimal shuffle code. We will write Greedy

instead of Greedyn5<n2
7 now.

Lemma 3.17. Let G,G′ be PRTGs with sig(G) = (X, a5, a4, a3, a2), sig(G) = (X ′, a′5, a′4, a′3, a′2),
Greedy(G)−Greedy(G′) ≥ c and let (∆X ,∆5,∆4,∆3,∆2) = sig(G)− sig(G′). Then we
have the following equations.

3∆X + 2∆5 + 2∆4 + ∆3 + ∆2 ≤ −3c+ 2
if a5 < a2, a4 ≥ a3, (a4 − a3) < (a2 − a5)

3∆X + 2∆5 + 2∆4 + ∆3 + ∆2 ≤ −3c+ 2
if a5 < a2, a4 ≥ a3, (a4 − a3) ≥ (a2 − a5)

3∆X + 2∆5 + 5∆4 − 2∆3 + ∆2 ≤ −3c+ 2

18

3.3. Algorithm for permutation size 7

if a5 < a2, a4 ≥ a3, (a4 − a3) < (a2 − a5)
3∆X + 2∆5 + 2∆4 + ∆3 + ∆2 ≤ −3c+ 2

if a5 < a2, a4 ≥ a3, (a4 − a3) < (a2 − a5)
4∆X + 3∆5 + 2∆4 + 2∆3 + ∆2 ≤ −4c+ 3

if a5 < a2, a4 ≥ a3, (a4 − a3) < (a2 − a5) and a2 − a5 is even
4∆X + 3∆5 + 2∆4 + 2∆3 + ∆2 ≤ −4c+ 3

if a5 < a2, a4 ≥ a3, (a4 − a3) < (a2 − a5) and a2 − a5 is odd

Proof. For the first equation we will give the proof. The other equations can be computed
similar because all have the same structure.

Greedy(G) = X + a5 + a4 +
⌈
a2 − a5 − (a4 − a3)

3

⌉
≥ X + a5 + a4 + a2 − a5 − a4 + a3 + 2

3
= (3X + 2a5 + 2a4 + a3 + a2 + 2)/3

Greedy(G′) = X ′ + a′5 + a′4 +
⌈
a′2 − a′5 − (a′4 − a′3)

3

⌉
≤ X ′ + a′5 + a′4 + a′2 − a′5 − a′4 + a′3

3
= (3X + 3∆X + 2a5 + 2∆5 + 2a4 + 2∆4 + a3 + ∆3 + a2 + ∆2)/3

Therefore the difference computes as

Greedy(G)−Greedy(G′) = (3X + 2a5 + 2a4 + a3 + a2 + 2)/3
− ((3X + 3∆X + 2a5 + 2∆5 + 2a4 + 2∆4 + a3 + ∆3 + a2 + ∆2)/3)
= (3∆X + 2∆5 + 2∆4 + 3∆3 + 2∆2 + 2)/3

With our assumption Greedy(G)−Greedy(G′) ≥ c this leads to

Greedy(G)−Greedy(G′) ≥ c
⇐⇒ (3∆X + 2∆5 + 2∆4 + ∆3 + ∆2 + 2)/3 ≥ c
⇐⇒ (3∆X + 2∆5 + 2∆4 + ∆3 + ∆2)/3 ≤ −3c+ 2

For the last two equations we distinguish if a5 − a2 is even or odd. If a5 − a2 is even this
leads to

Greedy(G) = X + a5 + a4 + (a2 − a5)/2 +
⌈(a3 − a4)− (a2 − a5)/2

2

⌉
Greedy(G′) = X ′ + a′5 + a′4 + (a′2 − a′5)/2 +

⌈(a′3 − a′4)− (a′2 − a′5)/2
2

⌉

If a5 − a2 is odd, this leads to

Greedy(G) = X + a5 + a4 + (a2 − a5 + 1)/2 +
⌈(a3 − a4)− (a2 − a5 + 1)/2

2

⌉
Greedy(G′) = X ′ + a′5 + a′4 + (a′2 − a′5 + 1)/2 +

⌈(a′3 − a′4)− (a′2 − a′5 + 1)/2
2

⌉

19

3. Content

Therefore the difference can be computed as above.

Now we start to analyze the affected signature changes of Greedy6 for merges and splits
again. We define

Ψ1(∆X ,∆5,∆4,∆3,∆2) = 3∆X + 2∆5 + 2∆4 + ∆3 + ∆2

Ψ2(∆X ,∆5,∆4,∆3,∆2) = 3∆X + 2∆5 + 5∆4 − 2∆3 + ∆2

Ψ2(∆X ,∆5,∆4,∆3,∆2) = 4∆X + 3∆5 + 2∆4 + 2∆3 + ∆2

and construct our signature change table.

0 1 2 3 4 5
0 (0,0,0,0,0) (0,0,0,0,0) (0,0,0,0,0) (0,0,0,0,0) (0,0,0,0,0) (0,0,0,0,0)
1 (0,0,0,0,1) (0,0,0,1,-1) (0,0,1,-1,0) (0,1,-1,0,0) (1,-1,0,0,0)
2 (0,0,1,0,-2) (0,1,0,-1,-1) (1,0,-1,0,-1) (1,-1,0,0,-1)
3 (1,0,0,-2,0) (1,0,-1,-1,0) (1,-1,0,-1,1)
4 (1,0,-2,0,1) (1,-1,-1,1,0)
5 (1,-2,1,0,0)

Table 3.6: signature change table of (∆X ,∆5,∆4,∆3,∆2)

Furthermore we calculate the corresponding values for Ψ1,Ψ2 and Ψ3.
0 1 2 3 4 5

0 0 0 0 0 0 0
1 1 0 1 0 1
2 0 0 0 0
3 1 0 1
4 0 0
5 1

Table 3.7: Values of Ψ1

0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 4 7 -3 1
2 3 3 -3 0
3 9 0 4
4 -6 -6
5 4

Table 3.8: Values of Ψ2
0 1 2 3 4 5

0 0 0 0 0 0 0
1 1 1 0 1 1
2 0 0 1 0
3 0 0 0
4 1 1
5 0

Table 3.9: Values of Ψ3

Lemma 3.18.

Lemma 3.19. Let G be a PRTG with sig(G) = (X, a5, a4, a3, a2) and let τ be a merge.
Then Greedy(G) ≤ Greedy(τG).

Proof. We assume Greedy(τG) < Greedy(G). Then Greedy6(G)−Greedy6(τG) ≥ 1. We
start to proof this for the condition a4 ≥ a2. By Lemma 3.17 there is Ψ1 ≤ −1 Ψ2 ≤ −1
and Ψ3 ≤ −1. Tables 3.7 and 3.9 show, that all values are greater or equal zero. This
contradicts the boundaries above. For Ψ2 the situation is a bit different, since there
exist negative values. However the signature does not decrease for the specific entries.
Considering the different entries leads to the following signature changes

20

3.3. Algorithm for permutation size 7

1. The entry (1, 4) results in a4− 1 and a5 + 1. Thus the sum before the ceiling function
does not decrease and the value in the ceiling function increases by one. So the new
signature value does not decrease.

2. For the entry (2, 4) the argumentation is identical with the entry (1, 4)

3. For the entry (4, 4) the value of the ceiling function increases by one and X increases,
so this lifts the decrease of a4 by two.

4. For the entry (4, 5) there is a3 + 1 − a4 − 1 =a3 + a4. So, the value of the ceiling
function increases by one, if a2 − a5 = 2 mod 3, which must by the case, because we
demand that there are at least two cycles of size 2. Otherwise our merge wold conflict
with the condition and by that it is inadmissible to consider this special signature
change.

For the case a4 < a2 we use Ψ2. By Lemma 3.10 we have either Ψ2 ≤ −2orΨ2 ≤ −1.
However by Table 3.5 Psi2 ≥ 0. This contradicts our assumption.

We take a look at the splits and construct our transition graphs.

Figure 3.3: Transition graph for Ψ1

Figure 3.4: Transition graph for Ψ3

Figure 3.5: Transition graph for Ψ2

Lemma 3.20. Let G = (V,E) be a PRTG an let π be a cyclic shift of c vertices in
V . Let further (∆X ,∆4,∆3,∆2) be the signature affected by π. Then Ψ1 ≥ −

⌈
c−1

2

⌉
,

Ψ2 ≥ −
⌈

4c−12
5

⌉
and Ψ3 ≥ −3c−3

4 .

21

3. Content

Proof. Again we write π as τc−1 ◦ ... ◦ τ1 as a product of c − 1 operations such that any
two consecutive operations τi and τi+1 affect a common element for i = 1, ..., c− 1.
The transition graphs can be seen in tables 3.1 and 3.2.
For Ψ1 the longest path has length 3 and the sum of all weights in that path is 3. Thus,
Psi1 can be reduced at most with three consecutive transpositions by 3 and Ψ1 ≥ −

⌈
4c−4

5

⌉
.

For Ψ2 the longest path that contains no cycle has length 4 and the sum of all weights
in that path is 12. This path is given by (4, 5, 2, 3, 1) Thus, Psi2 can be reduced at most
with five consecutive transpositions by 12 and Ψ1 ≥ −

⌈
4c−12

5

⌉
. For Ψ3 the longest path

has length 3 and reduces Ψ3 by four. So, Ψ3 ≥ −
⌈

3c−3
4

⌉
.

Corollary 3.21. Let G be a PRTG and let π be a operation. Then Greedy(G) ≤
Greedy(πG).

Proof. Assume Greedy6(G) > Greedy(πG) − 1. By Lemma 3.17. Then by Lemma 3.10
there is

Greddy(πG)−Greedy6(G) < 1
⇐⇒ Greedy6(πG)−Greedy6(G) ≤ 2

Ψ1 ≤ −4
Ψ2 ≤ −4
Ψ3 ≤ −5

By Lemma 3.20 we have for a cycle with size 7

Ψ1 ≥ −
⌈7− 1

2

⌉
= −3Ψ2 ≥ −

⌈4 ∗ 7− 12
5

⌉
= −3Ψ3 ≥ −

⌈3 ∗ 7− 3
4

⌉
= −5

This is a contradiction.

This leads to our main theorem for this section.

Theorem 3.22. Let G be a outdegree-1 RTG. Greedyn5<n2
7 computes a optimal shuffle

code in linear time for the graph G′ that is constructed by G by completing each directed
path into a directed cycle.

Proof. We have shown that merges and splits does not decrease Greedy(G). So, Greedy(G)
is optimal. It computes clearly a shuffle code for G.

22

4. Conclusion

We have defined an algorithm for different fixed maximum permutation sizes for outdegree-1
RTGs and proven that the generated instructions are optimal.
We recall the different outcomes. For Greedy4 there are X + d(a2)/2e operations.
For Greedy6 it is more complicated. The outcome is the maximum of the following
equations. X + a2 +

⌈a4−a2
2
⌉

+
⌈
a3+b(a4−a2)/2c

2

⌉
, if a4 ≥ a2. If a4 < a2 then

Greedy6(G) = X + a4 + a3/2 + d(a2 − a4)/3e if a3 = 0 mod 2
Greedy6(G) = X + a4 + (a3 − 1)/2 + d(a2 − a4)/3e

if a3 mod 2 = 1 and (a2 − a4) ∈ {0, 1} mod 3
Greedy6(G) = X + a4 + d(a3)/2e+ d(a2 − a4)/3e

if a3 = 1 mod 2 and (a2 − a2) = 2 mod = 3

For the case k = 7 we have constructed an optimal algorithm that can handle graphs,
which have more 2-cycles then 5-cycles. There the outcome is the maximum of

X + a5 + a4 +
⌈
a2 − a5 − (a4 − a3)

3

⌉
(4.1)

if a5 < a2, a4 ≥ a3, (a4 − a3) < (a2 − a5)

X + a2 + a3 +
⌈2((a4 − a3)− (a2 − a5))

3

⌉
(4.2)

if a5 < a2, a4 ≥ a3, (a4 − a3) ≥ (a2 − a5)

X + a5 + a4 +
⌈(a2 − a5)− 2(a3 − a4)

3

⌉
(4.3)

if a5 < a2, a4 < a3, (a2 − a5) ≥ 2(a3 − a4)

X + a5 + a4 + d(a2 − a5))/2e+
⌈(a3 − a4)− d(a2 − a5)/2e

2

⌉
(4.4)

if a5 < a2, a4 < a3, (a2 − a5) < 2(a3 − a4)

23

4. Conclusion

A shuffle code for any PRTG can be computed with the help of dynamic programming.
Hereby we have to find a minimal copy set, such the outcomes above are minimized. An
exact approach how to construct such a copy set in polynomial time is given in Chapter 4
of [BMR15].

It would be an interesting question if the remaining part of our algorithm also computes an
optimal shuffle code or which steps we further need the optimize it. A general open question
is, if there is a dominating structure that can be reused for even larger permutations. So far,
a common component in the algorithms that we have presented has not been transpired.

24

Bibliography

[BMR15] Sebastian Buchwald, Manuel Mohr, and Ignaz Rutter. Optimal shuffle code with
permutation instructions. In Frank Dehne, Jörg-Rüdiger Sack, and Ulrike Stege,
editors, Algorithms and Data Structures, pages 528–541, Cham, 2015. Springer
International Publishing.

25

	Contents
	1 Introduction
	1.1 Short description
	1.1.1 Related Work
	1.1.2 Contribution
	1.1.3 Outline

	2 Preliminaries
	3 Content
	3.1 Algorithm definitions for permutations with fixed maximum permutation size of four
	3.1.1 Maximum permutation for four elements
	3.1.2 Evalutation of Greedy4

	3.2 Algorithm definitions for permutations with fixed maximum permutation size of six
	3.2.1 Algorithm for permutation of size 6
	3.2.2 Evaluation of Greedy6

	3.3 Algorithm for permutation size 7
	3.3.0.1 Evaluation of Greedy7

	4 Conclusion
	Bibliography

