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Abstract

A PC-tree is a data structure that represents certain circular permutations of elements
of a set. It allows restrictions on these permutations, i.e., constraints where specific
elements have to be consecutive. In this thesis, we explain the structure and
functionality of PC-trees. We describe and implement an algorithm in C++ that
allows applying restrictions to a PC-tree in linear time. This algorithm turns out
to be significantly faster than the PQ-tree, a similar data structure that represents
non-circular permutations with restrictions. Additionally, we adapt an existing
linear-time algorithm for the intersection of two PQ-trees and implement it for our
PC-tree.

Deutsche Zusammenfassung

Ein PC-Baum ist eine Datenstruktur, die bestimmte zirkuläre Ordnungen von Ele-
menten einer Menge repräsentiert. PC-Bäume ermöglichen Restriktionen auf diesen
Ordnungen, d.h., Beschränkungen, die erzwingen, dass bestimmte Elemente benach-
bart sein müssen. In dieser Arbeit beschreiben wir den Aufbau und die Funktionsweise
von PC-Bäumen. Wir implementieren einen Algorithmus in C++, der es ermöglicht,
Restriktionen in Linearzeit auf einen PC-Baum anzuwenden. Dieser Algorithmus
erweist sich als deutlich schneller als der PQ-Baum, eine ähnliche Datenstruktur, die
gewöhnliche Permutationen mit Restriktionen darstellt. Außerdem passen wir einen
existierenden Linearzeit-Algorithmus für den Schnitt von zwei PQ-Bäumen an und
implementieren ihn für unseren PC-Baum.
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1. Introduction

A restriction on the permutations of a set is a constraint that requires specific elements
to be consecutive. For example, given set V = {1, 2, 3, 4}, there exist 4! = 24 different
permutations of the elements in V without any restrictions. With the restrictions {2, 3}
and {3, 1}, the only remaining valid permutations are (1, 3, 2, 4), (2, 3, 1, 4), (4, 1, 3, 2), and
(4, 2, 3, 1).
To solve problems related to permutations with restrictions, Booth and Lueker [BL76]
introduced the PQ-tree data structure, a rooted tree that represents all possible permuta-
tions of a set V with certain restrictions. Every leaf of the tree corresponds to an element
in V , the inner nodes represent the restrictions. Booth and Lueker gave an algorithm
that applies restrictions to a PQ-tree in linear time by updating the tree accordingly. The
algorithm applies nine different templates to multiple nodes of the tree, depending on their
position in the PQ-tree. These templates make the algorithm very bulky and complicated,
implementing PQ-trees and algorithms depending on them can be very difficult.
In order to eliminate the flaws of PQ-trees, Shih and Hsu [SH99] introduced the PC-tree, a
generalization of PQ-trees. PC-trees represent circular permutations with restrictions, i.e.,
distinct arrangements of elements around a circle. Hsu and McConnell [HM03, HM04] gave
a linear-time algorithm for applying restrictions to PC-trees and proved that computing
the PQ-tree reduces in linear time to computing the PC-tree. The PC-tree is unrooted and
completely omits the complex template matching, making the algorithm much simpler.
Although PC-trees eliminate most of the disadvantages of the PQ-tree, there is currently
no linear-time implementation of PC-trees publicly available. Hsu and McConnell’s de-
scription of the algorithm is rather short and superficial. The main goal of this thesis is
to develop the details of the algorithm and to implement the PC-tree data structure in C++.

Historically, Booth and Lueker’s [BL76] initial application of PQ-trees was to determine
the consecutive-ones property of a (0, 1)-matrix in linear time, i.e., detecting whether the
columns of the matrix can be rearranged so that, in every row, the ones are consecutive.
Figure 1.1 gives an example of a matrix with the consecutive-ones property and shows
how its columns can be rearranged to make all ones consecutive. Every row of the matrix
defines a restriction on the permutations of its columns. Booth and Lueker’s algorithm
starts with a PQ-tree that represents all permutations of the columns. For every row,
the algorithm applies the corresponding restriction to the PQ-tree. If all restrictions are
compatible, the matrix has the consecutive-ones property.
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1. Introduction

a b c d e


0 1 0 1 1
0 0 0 1 1
1 0 1 1 1
1 0 0 1 0
1 0 1 0 0

b e d a c


1 1 1 0 0
0 1 1 0 0
0 1 1 1 1
0 0 1 1 0
0 0 0 1 1

Restrictions:
{b, d, e}
{d, e}
{a, c, d, e}
{a, d}
{a, c}

Figure 1.1.: A matrix with the consecutive-ones property.

This problem is also closely related to interval graph recognition. For a set I of intervals,
the interval graph is a graph with a node for every interval in I. If two intervals in I
intersect, their corresponding nodes are adjacent in the interval graph, as illustrated in
Figure 1.2. Booth and Lueker [BL76] gave a linear-time algorithm that recognizes whether
a graph is an interval graph using their PQ-tree algorithm.
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Figure 1.2.: A set of intervals and their corresponding interval graph.

Another application of PQ-trees are planarity tests. A graph is planar if it can be drawn on
the plane without any edges intersecting, except for their endpoints. Such a representation
of the graph is called a planar embedding. Figure 1.3 shows an example of a planar graph
and one of its planar embeddings. Booth and Lueker [BL76] introduced a linear-time
planarity test using PQ-trees as a modification of the planarity test by Lempel, Even and
Cederbaum [LEC67].
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A

E

Figure 1.3.: A planar embedding of a graph.

The linear-time level planarity test by Jünger et al. [JLM98] also uses PQ-trees as the
underlying data structure. The linear-time radial level planarity test by Bachmaier et
al. [BBF05] uses PQR-trees, a modification of PQ-trees. The Simultaneous PQ-Ordering
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problem introduced by Bläsius and Rutter [BR13] takes a set of PQ-trees as its input.
Shih and Hsu [SH99] introduced a planarity test specifically designed for PC-trees. In
contrast to the planarity test by Booth and Lueker, the structure of the PC-tree corresponds
to the structure of the original graph. This makes finding a planar embedding of the graph
much easier.

Hsu and McConnell [HM03, HM04] gave a brief description of how the PC-tree could
be implemented and introduced an algorithm that applies restrictions on a PC-tree in linear
time. We build on their algorithm and implement the PC-tree in C++, giving an extensive
description of the implementation details. In particular, we expand their algorithm for
finding the path of nodes that need to be altered when updating the tree and show that our
approach handles all possible cases. Our algorithm is also able to detect that a restriction
is impossible before any modifications are made to the structure of the tree.
In order to evaluate the performance of our data structure, we implement the planarity
test by Booth and Lueker [BL76] twice, once using PC-trees and once using PQ-trees.
Our benchmarks show that our implementation of the PC-tree is significantly faster at
applying restrictions than the implementation of the PQ-tree in the Open Graph Drawing
Framework (OGDF) [CGJ+14]. Since computing the PQ-tree reduces in linear time to
computing the PC-tree, some of the algorithms using PQ-trees mentioned above could
therefore benefit from the performance advantage of PC-trees.
Additionally, we implement the first known linear-time intersection algorithm for PC-trees.
Booth briefly described in his PhD-thesis [Boo75] how such an algorithm could be imple-
mented for PQ-trees. We adapt his algorithm for PC-trees, describe its functionality in
detail and prove its linear time bound.

Chapter 2 introduces the PC-tree and provides the foundation necessary for the im-
plementation. Chapter 3 describes the details of the data structure and its implementation,
starting with its general structure and the initialization. Afterwards, we show how to
implement the different steps of the linear-time algorithm for applying restrictions. We
also describe and implement an algorithm that allows the intersection of two PC-trees
in linear time, based on the algorithm for PQ-trees by Booth [Boo75]. In Chapter 4 we
evaluate the performance of our implementation. We compare the running time of our
restriction algorithm to PQ-trees in Chapter 4.1 and we compare the performance of
our intersection algorithm to a similar, more naive intersection algorithm in Chapter 4.2.
Chapter 5 summarizes the results of this thesis.
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2. The PC-tree data structure

In this chapter, we introduce PC-trees using circular permutations and illustrate the
structure and functionality of PC-trees. We also explain the fundamentals of our algorithm
that are necessary for the implementation.

2.1. Circular permutations and restrictions
Given a ground set V with n elements, there are (n− 1)! distinct circular permutations
of V . Figure 2.1 shows all six circular permutations of V = {1, 2, 3, 4} as an example.

1

3

2

4

1

3

4

2

1

4

2

3

1

2

4

3

1

4

3

2

1

2

3

4

V = {1, 2, 3, 4} R = ∅

Figure 2.1.: Distinct circular permutations with no restrictions.

Let R ⊆ P(V ) be a family of subsets of V . Every Ri ∈ R represents a restriction on V ,
i.e., the elements of Ri have to be consecutive in the resulting permutations. Set R is
the set of restrictions on V . Figure 2.2 shows the previous example, but extended with
restrictions R1 = {1, 2} and R2 = {2, 4}. In this case, only two valid permutations satisfying
all restrictions in R remain.

1
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1

2

4

3

V = {1, 2, 3, 4} R = {{1, 2}, {2, 4}}

Figure 2.2.: Distinct circular permutations with two restrictions.

Adding restriction R3 = {1, 4} in this example would result in zero circular permutations, as
no permutation could satisfy all four restrictions. Therefore, R3 is an impossible restriction
on V with restrictions R.
Adding restriction R3 = {1, 2, 4} would result in the same valid circular permutations,
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2. The PC-tree data structure

because R3 is implied by R1 and R2. Therefore, R3 is a trivial restriction on V with
restrictions R. Any restriction Ri with |Ri| ∈ {0, 1, n− 1, n} is also trivial.

2.2. The PC-tree
Shih and Hsu [SH99] introduced the PC-tree, a data structure that represents all circular
permutations of V with restrictions R. PC-trees are similar to the PQ-trees introduced by
Booth and Lueker [BL76], which represent all non-circular permutations. In contrast to
PQ-trees, PC-trees are unrooted, which makes modifications on PC-trees much simpler,
because there is no need to track the position of the root node.
A PC-tree consists of P-nodes, C-nodes and leaves. Edges incident to C-nodes have a
specific circular order, which can be reversed. Therefore, a C-node represents exactly
two circular permutations of its neighbors. Edges incident to P-nodes can be rearranged
arbitrarily, a P-node therefore represents all circular permutations of its neighbors. Every
leaf of the tree represents one element of V . Embedding the leaves in a circle while taking
into account the constraints of the P-nodes and C-nodes yields one possible permutation of
the elements of V .
Figure 2.3 illustrates the structure of a PC-tree and the role of C-nodes. The C-nodes
are represented by big double circles and the P-nodes are represented by small circles.
Figure 2.3 (b) shows the same PC-tree as (a), but the order of edges incident to a C-node
is reversed. Both trees represent a valid permutation of V .
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(a) (b)

Figure 2.3.: Reversing the order of edges at C-nodes results in a valid permutation.

Similar to the previous example, Figure 2.4 illustrates the role of P-nodes in the PC-tree.
Figure 2.4 (b) shows the same PC-tree as (a), but incident edges are rearranged at multiple
P-nodes. Both trees represent a valid permutation of V .
The structure of the PC-tree for the permutations in the example in Figure 2.1 and
Figure 2.2 is simple, as shown in Figure 2.5. Initially, the PC-tree contains a P-node that
represents all permutations of V . For R1 = {1, 2}, a new P-node is created in order to
ensure that 1 and 2 remain adjacent. With R2 = {2, 4}, the order of the elements in V is
unambiguous and can only be reversed. Therefore, the resulting tree contains a C-node
adjacent to all leaves.

2.3. Updating the PC-tree
Because a PC-tree T represents all permutations of a set V with restrictions R = {R1, ..., Ri},
a new restriction Ri+1 is possible if and only if edges incident to P-nodes can be rearranged
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2.3. Updating the PC-tree
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Figure 2.4.: Arbitrarily rearranging edges incident to P-nodes results in a valid permutation.
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V = {1, 2, 3, 4}
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1

R = ∅ R = {{1, 2}}

1
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4

3

R = {{1, 2}, {2, 4}}

Figure 2.5.: Resulting PC-trees after applying restrictions on V = {1, 2, 3, 4}.

and orders of edges incident to C-nodes can be reversed in a way so that all leaves of T
that represent the elements in Ri+1 are consecutive.
Let a leaf x be full if x ∈ Ri+1 and empty otherwise. Let an inner node be partial if
at least one of its neighbors is full and full if all its neighbors except one are full. Hsu
and McConnell [HM03] showed that, if Ri+1 is possible, T has a path that contains all
nodes and edges that must be modified when applying Ri+1 to T . This path is called the
terminal path, the nodes at the ends of the terminal path are the terminal nodes. Figure 2.6
illustrates the terminal path. The white nodes represent empty nodes, the black nodes
represent full nodes and the gray nodes represent partial nodes. The thick edges represent
the terminal path with terminal nodes t1 and t2.
Every edge e on the terminal path connects two subtrees with both full and empty leaves.
After rearranging T so that all leaves in Ri+1 are consecutive, reversing the order of edges
at one of the two nodes incident to e always means that the leaves in the restriction are no
longer consecutive. Since such an operation is no longer valid after applying the restriction,
all edges on the terminal path become defunct, i.e., they allow invalid modifications on the
tree and must therefore be deleted when updating the tree.
The terminal path contains all partial nodes in T and both terminal nodes are partial. Note
that the terminal path may contain empty nodes, but cannot contain full nodes, because
no full node can be on a path between partial nodes.
If the defunct edges do not form a path, because one node is incident to more than two
defunct edges, the full leaves cannot be made consecutive, since there will always be a
subtree with empty leaves between them. In this case, the restriction is impossible.
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2. The PC-tree data structure
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Figure 2.6.: Given a possible restriction, all full leaves can be made consecutive and all
nodes that must be modified lie on a path.

When updating T in order to apply the restriction, all defunct edges on the terminal
path are deleted as the first step. After that, every node on the terminal path is split into
two nodes, one of which holds all edges to full neighbors of the original node, the other holds
all edges to empty neighbors. A new central C-node c is created that is adjacent to all the
split nodes. This C-node will maintain the order of nodes on the terminal path, but does
no longer allow the invalid modifications at defunct edges mentioned above. Contracting all
edges to the split C-nodes incident to c and contracting all nodes with degree two results
in the updated tree that represents the new restriction.
Figure 2.7 shows the updated tree for the restriction illustrated in Figure 2.6.
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Figure 2.7.: Updated PC-tree with new central C-node c.

Theorem 2.1. Let T be a PC-tree over ground set V . Let R = {R1, ..., Ri} be a set of

restrictions and m =
i∑

j=1
|Rj |. Let pj be the length of the terminal path for restriction Rj.

If every restriction Rj takes O(pj + |Rj |) time, applying all restrictions in R takes Θ(m)
time.

Proof. See the proof by Hsu and McConnell [HM03].
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2.3. Updating the PC-tree

Therefore, if the implementation in the following chapter ensures that every restriction Rj

takes O(pj + |Rj |) time, Theorem 2.1 shows that applying multiple restrictions takes linear
time in the combined size of all restrictions.
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3. Implementation

In this chapter we implement a data structure that represents PC-trees, as well as linear-time
algorithms for applying restrictions and for intersections of PC-trees. The implementation
is realized in C++. Additionally, we use the Open Graph Drawing Framework (OGDF)
[CGJ+14] for visualizing the resulting graphs and for general graph-related utilities.

3.1. The data structure for representing the PC-tree
For the implementation, we declare an arbitrary node of the tree as the root node. This
node has no special function, its sole purpose is to establish a parent function among the
nodes, which will help us traversing the tree during the algorithm.
Each undirected edge xy between nodes x and y is represented by two oppositely directed
twin arcs (x, y) and (y, x). Every arc stores a pointer to its twin arc and to its two
neighboring arcs oriented in the same direction. An arc (x, y) also contains a flag specifying
whether y is the parent of x and, if y is a P-node, a pointer to y. Some arcs also require a
pointer to the arc at the other end of their block, which will be explained in Section 3.3.1
as part of the labeling algorithm.
Every node stores its own label, which is either empty, partial, or full, a pointer to its
parent arc and pointers to up to two predecessors on the terminal path.
Additionally, a P-node stores its own degree and a list of pointers to all of its incident arcs
to full neighbors.
In contrast to P-nodes, we do not permanently store C-node objects, as maintaining the
pointers to the C-node in the neighboring arcs over several iterations of the algorithm
would be too time-consuming. However, we may keep temporary C-node objects within
one iteration of the algorithm in order to simplify the implementation.
Therefore, the C-node is only specified by the order of the edges in the doubly linked
circular list given by the edges to its neighbors. Whenever a traversal of this list is necessary,
we need to keep track of both the previous and the current arc in every step, picking
the neighbor that is different from the previous as the next arc (Algorithm 3.1). This is
necessary, because we cannot guarantee a specific order in the list after updating the tree
in the last step of the algorithm.

We keep a global timestamp, a counter indicating the number of iterations the algorithm
has already passed. Whenever we need to store information in a node or an arc that is
only valid for one iteration (e.g., labels), we store this information using tuples. The first
index is the actual value, the second index is the current timestamp. This way, we can
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3. Implementation

Algorithm 3.1: Finding the next arc
Input: Previous arc p, current arc c
Output: Next arc in the list of neighbors

1 if p = c.neighbor1 then
2 return c.neighbor2
3 else
4 return c.neighbor1

immediately determine whether a given variable is updated by comparing the timestamp
in the tuple with the global timestamp and we do not have to manually clean the tree from
obsolete records.

Whenever we delete an edge in the update step of the algorithm, we delete both twin arcs
that represent it. For a node x, all arcs that store a pointer to x share ownership of x.
Therefore, if we delete all arcs with a pointer to x and we no longer need the information
stored in x, we can delete x.

3.2. Initializing the PC-tree
Given the ground set V , we initialize the tree as follows. First, we create a P-node r and
declare it as the root of the tree. For every element in V , we construct a leaf x with an
edge represented by two twin arcs and establish r as the parent of x by setting the pointers
and parent labels in the respective arcs. Leaf x stores the element of V it represents.
Additionally, the children of r are ordered circularly around r by setting the neighbor
pointers in every edge.

r

11

10

9

8

7
6

5

4

3

2

1
12

Figure 3.1.: Initial PC-tree for V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Figure 3.1 shows the structure of the initial PC-tree. Note that the green arcs form a
circular list, while every other arc forms a new list on its own.
This initial tree now represents all permutations of V , as no restrictions are currently
represented.

3.3. Applying restrictions
Using the data structure defined in Section 3.1, we now give a detailed description of
the implementation of a linear-time algorithm for applying restrictions on PC-trees. The
implementation is based on the algorithm by Hsu and McConnell [HM03, HM04].
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3.3. Applying restrictions

3.3.1. Assigning labels
When a new restriction is given as a set Ri, the nodes of the tree need to be labeled in
order to find the terminal path. Initially, we start by labeling every leaf that is present
in Ri as full. We declare a node as partial, when at least one of its neighbors is full. We
declare a node as full, when all of its neighbors except one are full. Every node that is not
labeled full or partial is considered empty.
Whenever a node x becomes full, we inform its non-full neighbor y and x keeps a pointer
to arc (x, y) to simplify finding the informed neighbor y, when we traverse the tree a
second time. The following algorithm ensures that, if x is a C-node, it is represented by a
temporary object where we can store this information.
If y is a P-node, we add (x, y) to y’s list of arcs to full neighbors. Once the size of this list
is greater than 0, y is labeled partial. Once it becomes one less than the degree of y, y is
labeled full and we inform y’s non-full neighbor z. We find z by traversing the list of arcs
incident to y.
If y is a C-node, there is no explicit counter for its full neighbors. Instead, we combine
consecutive edges of full neighbors into blocks. The first and the last edge in every block
stores a pointer to each other, thus creating another doubly linked circular list within the
list of all neighbors. Additionally, each block holds a pointer to a temporary C-node object,
stored in both ends of the block. Once a block is adjacent to the parent arc, its C-node
keeps a pointer to the parent arc.
When an adjacent node x of y becomes full, there are three different cases that need to be
considered, depending on whether the two neighbors u and v of x are full or not.

y y

xx

u u

v v

Figure 3.2.: Creating a new block.

Case 1: If the two adjacent arcs (u, y) and (v, y) both contain no block pointer, u and v
are both not full and therefore, they are not part of a block. In this case, we create a new
block consisting only of arc (x, y) and it stores a newly created C-node object, as well as a
block pointer to itself, as shown in Figure 3.2. If arc (x, y) is adjacent to the parent edge,
the C-node object stores a pointer to the parent edge.
Case 2: If only one neighboring arc (v, y) has a full child, we append (x, y) to its block, as
shown in Figure 3.3. We do this by following the block pointer of (v, y) to the arc (w, y)
at the other end of the block, removing (v, y)’s block pointer and updating (w, y)’s block
pointer to (x, y). After that, we give (x, y) a block pointer to (w, y) and the pointer to the
C-node object previously stored in (v, y). If the other neighbor u is the parent of y, the
C-node object stores a pointer to the parent arc (y, u). In case (w, y) and (x, y) are both
adjacent to the same, non-full neighbor (u, y), we can label y full and inform u.
Case 3: If both (u, y) and (v, y) have full children, we combine both blocks to one, as
shown in Figure 3.4. We follow the two block pointers of (u, y) and (v, y) to the ends of
both blocks (m, y) and (n, y), remove the block pointers to them and then update the
block pointers in (m, y) and (n, y) to point to each other. If the C-node object C(a) of a

13



3. Implementation

y y

w

v

x

w

v

x

u u

Figure 3.3.: Extending a block.

y y

x x

m n m n

u uv v

Figure 3.4.: Combining two blocks.

block a already knows its parent arc, the end of the other block b adopts a’s pointer to
C(a). Otherwise, we choose the block that adopts the C-node object arbitrarily. We also
need to check whether (m, y) and (n, y) are both adjacent to the same, non-full neighbor
(z, y). In this case, we label y full and inform z.
Assuming the current restriction is possible, all full neighbors of a C-node y have to form a
single, consecutive block after the labeling algorithm finishes. This one block might not
be adjacent to the parent edge, as shown in Figure 3.5. If this is the case, y has to be
the apex, because flipping only the full nodes to one side of the terminal path would be
impossible otherwise.

y

Figure 3.5.: Resulting C-node after the labeling algorithm, where the block of full nodes is
not adjacent to the parent edge.

A pointer to the temporary C-node object is only stored in both ends of the block. Spread-
ing this pointer to other arcs is unnecessary, because we will only pass edges adjacent to

14



3.3. Applying restrictions

the full block while searching the terminal path.
We traverse the tree an additional time, starting at the full leaves. We mark every node x
we process to ensure we will not pass the same path multiple times. If x is full, x has a
pointer to arc (x, y) it informed when x became full. If (x, y) has a pointer to y and y
is not marked, we advance to y, which is either full or partial. We do this until we find
the first node that is not labeled full and add it to a list that keeps track of all partial nodes.

A node with degree n is only labeled full if n− 1 of its neighbors are labeled full. Since
every node has a degree of at least 3, the total number of full nodes is in O(k), where k is
the number of full leaves. Every partial node has at least one full neighbor, thus there are
at most as many partial nodes as full nodes. For this reason, the total number of processed
nodes during the labeling algorithm is in O(k). Since we only process edges incident to full
nodes and we only process every edge a constant number of times, both traversals of the
tree take O(k) time during the labeling algorithm.
Figure 3.6 gives an example of a fully labeled PC-tree. The black nodes represent full
nodes and the gray nodes represent partial nodes.
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Figure 3.6.: A fully labeled PC-tree with root node r.

3.3.2. Finding the terminal path

Let the apex be the highest node on the terminal path, i.e., the node that is an ancestor
of all other nodes on the terminal path. After the labeling algorithm finishes, there are
two possible structures for the terminal path, assuming the restriction is possible. The
structure depends on the position of the apex, which in turn depends on the position of
the root node.
Case 1: If the apex lies on one of the ends of the terminal path and is therefore a terminal
node at the same time, the terminal path extends in a single path towards the root node,
as shown in Figure 3.7. In this case, every node on the terminal path has exactly one child
on the terminal path, except for the terminal node t1.
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Figure 3.7.: A terminal path where t2 is both apex and terminal node.

Case 2: If the apex does not lie on one of the ends of the terminal path, two paths join in
the apex, as shown in Figure 3.8. In this case, the apex a has two children on the terminal
path, while the terminal nodes t1 and t2 have none.
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Figure 3.8.: A terminal path where two paths join in the apex a.

In order to find the terminal path efficiently, we conduct parallel searches, starting at
every partial node and extending paths through their ancestors at the same rate. For this
purpose, we use a queue Q, where we store the nodes we still need to process. Initially,
Q contains all partial nodes found by the labeling algorithm. We track the number of
paths that are currently being processed, which is the size of Q initially. Every node keeps
pointers to its direct predecessors on the terminal path and a flag indicating whether it
has already been processed. Whenever the current node x has already been processed,
we stop extending that path and decrease the path counter. Otherwise, we add x to the
predecessors of its parent y and enqueue y. In case y has two predecessors, we know the
terminal path has the structure shown in Figure 3.8 and y is the apex node. We keep a
pointer to y as the apex candidate. If a node has more than two predecessors or we find
multiple apex candidates, the restriction is impossible.
Finding the parent y of the current node x during the search is always an O(1) operation,
as shown in the following cases. Given a pointer to the parent arc (x, y), there are four
cases for finding y, depending on the type and label of y.
Case 1: If y is full, it cannot be on the terminal path, because no full node can be on a
path between two partial nodes. Therefore, we stop extending that path.
Case 2: If y is a P-node, it is represented by a permanent record and (x, y) stores a pointer
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3.3. Applying restrictions

to y.
Case 3: If y is a partial C-node, (x, y) does not know y, since x cannot be full. However,
(x, y) has to be adjacent to the full block for the restriction to be correct, because otherwise,
flipping all non-full children to one side of the terminal path would be impossible. We
obtain a pointer to y from the full block and also store it in (x, y). Figure 3.9 gives an
example for this case. The green arcs represent the terminal path.

y

x

Figure 3.9.: Terminal path at a partial C-node with non-full child x.

Case 4: If y is a C-node and it is not full or partial, we did not create a temporary object
for it during the labeling step. As shown in Figure 3.10, arc (x, y) has to be adjacent to the
other arc on the terminal path, because otherwise, flipping all non-full children to one side
of the terminal path would be impossible. If neither of the two edges on the terminal path
is the parent edge, y has to be the apex. To detect this, we examine both arcs adjacent
to (x, y). If neither of them contains a pointer to a C-node object, we create a new one.
Otherwise, we obtain the pointer from the adjacent arc and store it in (x, y). If (x, y) is
adjacent to the parent arc, the C-node object stores a pointer to it, otherwise we stop
extending this path. Therefore, if y is the apex, the first path entering y will create a new
C-node object for y, the second path will obtain the object from its neighbor and detect y
as the apex when setting the second predecessor of y.

y

x

Figure 3.10.: Terminal path at an empty C-node with non-full child x.

Case 4 ensures that every node x encountered during the parallel searches is represented
by an object. Therefore, finding the parent arc (x, y) of x is trivial, because x stores a
pointer to it. If x does not store a pointer to (x, y), we stop extending that path, thus
we do not need to find the parent edge. Additionally, if x is a partial C-node without a
pointer to its parent arc, we store x as the apex candidate.
Whenever we stop extending a path in case 1 or because the current node x has no pointer
to its parent arc, we keep a pointer to x as he highest node in the subtree, but we do
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not decrease the path counter. This way, if the path counter ever hits 1, we know we are
currently extending above the apex and stop, storing the current node as the highest node.
After the parallel searches finish when the path counter hits 1 or the queue is empty, we
found an apex candidate if a node has two predecessors or a partial C-node does not know
its parent arc. If this is not the case, the terminal path must have the structure shown in
Figure 3.7 and we have to manually search for the apex node. In this case, we stored a
pointer to the highest node of the subtree, which is located somewhere between the apex
and the root node. Starting from this node, we iterate top-down through its predecessors
until we find the first partial node, which has to be the apex.
We follow the path of predecessors starting from the apex, adding every node on the way
to a list. We do this until we reach a terminal node, which has no predecessor. If the apex
has two predecessors, we do the same for the path starting at its second predecessor. The
resulting list contains all nodes on the terminal path.

The algorithm above is capable of finding the terminal path if the terminal path has
one of the two structures shown in Figure 3.7 and Figure 3.8. However, if the restriction is
not possible, there are four additional possibilities for the resulting path and we need to
provide extra measures to detect that the restriction is not possible.
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Figure 3.11.: An impossible restriction where three paths join in root r.

Case 1: If more than two paths join in a node, the result cannot be a single path, as shown
in Figure 3.11. Therefore, the restriction is impossible. We can easily detect this when we
add a third predecessor to a node and stop the parallel searches.
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Figure 3.12.: An impossible restriction with multiple apex candidates a1 and a2.
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Case 2: Similar to the previous case, the algorithm may detect multiple apex candidates,
as shown in Figure 3.12. In this example, a1 and a2 both have two predecessors and are
therefore both considered apex candidates. In this case, we can terminate the search when
we find a second apex candidate and consider the restriction impossible.
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Figure 3.13.: An impossible restriction where the terminal path is incoherent.

Case 3: In case 4 of finding the parent node, we may detect that an empty C-node x is
not on the terminal path, because its parent edge is not adjacent to the child edge. This
could lead to two separate paths that are not connected after the parallel searches finish,
as shown in Figure 3.13. In this case, our algorithm stores x as the highest point of the
subtree and will later find w as the apex. As a result, the list that represents the terminal
path will not contain the nodes y and r. In order to detect this, we simply count the
number of partial nodes visited, when we iterate top-down from the apex. If the number of
visited partial nodes is less than the total number of partial nodes, we know the terminal
path is incoherent.

y

a b

z

Figure 3.14.: Two incoherent blocks of full neighbors adjacent to the parent edge.

Case 4: The last cause for impossible restrictions is incoherent blocks of full neighbors at
C-nodes, as shown in Figure 3.14. In this example, the blocks a and b are not adjacent,
thus they contain different C-node objects C(a) and C(b). Since both blocks a and b are
adjacent to the parent edge, C(a) and C(b) both have a pointer to the parent arc (y, z).
The terminal path algorithm will set both C(a) and C(b) as the predecessors of z and
declare z as the apex. To prevent this, we compare the parent arcs of both predecessors
whenever we add a second predecessor to a node. If both predecessors have the same parent
arc, we terminate the search.
Any other combination of incoherent blocks of full neighbors at a C-node will result in
multiple apex candidates or incoherent paths, because the algorithm will not detect that
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3. Implementation

the C-node objects created for every block represent the same C-node. Therefore, no
further measures are required to detect that the restriction is impossible.

For pseudo-code illustrating the steps of the terminal path search, see Appendix A.

Since we provided mechanisms to prevent the parallel searches from extending indefi-
nitely above the apex, the number of processed edges in this step is in O(p), where p is the
length of the terminal path. Since finding the parent node is always an O(1) operation,
the parallel searches take O(p) time. Combined with the labeling algorithm, finding the
terminal path takes O(p + k) time.

3.3.3. Updating the terminal path

After finding the terminal path, we use the approach shown in Figure 3.15 to update all
nodes on the terminal path. First, we delete all edges between nodes on the terminal path.
After that, we split every node x on the terminal path into two nodes, one of which holds
all edges to full neighbors of x, the other holds all edges to empty neighbors. We create a
central C-node c that is adjacent to all newly created nodes in order to maintain the order
of nodes on the terminal path. In the last step, we contract all nodes with degree 2 and
contract all edges between c and the split C-nodes.

c c

Figure 3.15.: Performing the update step on the terminal path.

In order to be able to split a node y on the terminal path, we need to identify all of its
incident edges to full neighbors.
If y is a P-node, y stores a list of pointers to all of its incident arcs to full neighbors.
Therefore, no further action is required.
If y is a C-node, all full neighbors form a single, consecutive block on one side of the
terminal path, all empty neighbors form a block on the opposite side. Therefore, we only
have to obtain pointers to the first and last arc in each block. We do this before we delete
the edges on the terminal path. Given arc (x, y) that enters y on the terminal path, we
have to consider three different cases, depending on the position of y on the terminal path
and the neighbors (s, y) and (t, y) of arc (x, y).
Case 1: If y is a terminal node, (x, y) has a full neighbor (s, y) and an empty neighbor
(t, y), as shown in Figure 3.16. We keep pointers to (s, y) as one end of the full block and to
(t, y) as one end of the empty block. We follow the block pointer of (s, y) to (v, y), which
is the other end of the full block. The empty neighbor (u, y) of (v, y) is the other end of
the empty block.
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Figure 3.16.: Identifying blocks on a terminal C-node.

Case 2: If y is not a terminal node and one neighboring arc (t, y) is also a terminal path
arc, there is either a single full block or a single empty block, as shown in Figure 3.17. We
set (s, y) as one end of the block and the neighbor (u, y) of (t, y) as the other end. Note
that we have to distinguish whether the block is full or empty, in order to be able to insert
it at the correct side of the central C-node later on.
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Figure 3.17.: C-nodes with only one block.

Case 3: If y is not a terminal node and none of both neighboring arcs is a terminal path
arc, (x, y) has a full neighbor (s, y) and an empty neighbor (t, y), as shown in Figure 3.18.
We keep pointers to (s, y) as one end of the full block and to (t, y) as one end of the empty
block. We follow the block pointer of (s, y) to (w, y), which is the other end of the full
block. Arc (w, y) has to be adjacent to the other terminal path arc (v, y), which in turn
has an empty neighbor (u, y). We set (u, y) as the other end of the empty block.
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t u
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w

Figure 3.18.: A C-node with a full and an empty block.

After obtaining pointers to the ends of the blocks at C-nodes, we delete all edges between
nodes on the terminal path. We create a new C-node c that will preserve the order of all
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edges incident to nodes on the terminal path. C-node c keeps pointers to its last inserted
full and empty arc to allow inserting new arcs at the correct position. We iterate through
all nodes on the terminal path again, splitting every node x in two separate nodes. The
new node xf holds all edges to full neighbors, xe holds all edges to empty neighbors. We
insert edges to xf and xe at the end of the respective blocks at c.
If x is a C-node, explicitly creating xf and xe is unnecessary, because we will contract the
edges cxf and cxe anyway. Instead, we use the pointers to the arcs at the ends of the full
and the empty block of x obtained in the earlier step and directly add them to the full and
the empty block of c. Note that the direction of the inserted block is important, i.e., the
last arc of the block of c has to be adjacent to the first arc of the block of x.

x c

xe

xf

Figure 3.19.: Splitting a P-node.

If x is a P-node, we iterate through the list of arcs entering x from its full neighbors. We
extract every full arc (y, x) at x and insert it at xf . Node x remains with only empty
neighbors, therefore we rename x to xe. Following this, we create new edges cxe and cxf ,
as shown in Figure 3.19 and we update the degrees of xe and xf . If x was not the apex,
we set c as the parent of xe and xf , because we have deleted the parent edge of x. If x
was the apex, let xp be the node of xf and xe that retains the parent edge and let xo be
the other node. We set c as the parent of xo and xp as the parent of c. This guarantees a
correct parent function after the update step.
In case xf or xe has degree 2, it is redundant. Therefore, we delete that node and add
node y adjacent to it directly to c, as shown in Figure 3.20.
If c only has degree 2 after splitting all nodes, we delete it and make its two neighbors
adjacent. This is only the case if the terminal path consists of a single P-node.

Splitting a C-node takes O(1) time. Splitting a P-node takes time proportional to the
number of its full neighbors. Since the number of full neighbors adjacent to the terminal
path is in O(k), splitting all nodes takes O(p + k) time. Creating all new edges to the new
C-node c takes O(p) time. Therefore, updating the terminal path takes O(p + k) time total.

See Appendix B for pseudo-code illustrating the update step.
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x c

xf

xe

c

xe

Figure 3.20.: Splitting a P-node with only one full neighbor.

3.4. Linear-time intersection of PC-trees
Let T1 be a PC-tree over ground set V with restrictions R1 and let T2 be a PC-tree over
ground set V with restrictions R2. The intersection of T1 and T2 is a PC-tree T1 ∩ T2 over
the same ground set V with restrictions R1 ∪R2. Figure 3.21 gives an example of such an
intersection. In this example, T2 contains most of the restrictions represented by T1. The
only missing restrictions are {6, 7} and {8, 9}. Therefore, set R2 ∪ {{6, 7}, {8, 9}} contains
all restrictions for the intersection T1 ∩ T2.
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Figure 3.21.: Intersection of two PC-trees T1 and T2.

In order to compute the intersection of T1 and T2, we examine T2 to find all restrictions R2
it represents and apply every restriction in R2 to T1. Note that making all leaves of multiple
subtrees in T1 consecutive is too expensive, because every restriction may contain Θ(|V |)
leaves and there can be Θ(|V |) restrictions in R2. According to Theorem 2.1, applying all
restrictions in R2 to T1 would therefore take Θ(|V |2) time.
To avoid this, we use the linear-time intersection algorithm for PQ-trees by Booth [Boo75]
and adapt it for PC-trees. After applying a restriction from T2 to T1, we merge the leaves
we just made consecutive to a single leaf ai in both T1 and T2. Leaf ai represents the whole
consecutive subtree. Further restrictions will only contain ai instead of the whole subtree,
which helps us keep the running time within the linear time bound. After applying all
restrictions to T1, we can simply replace all merged leaves with the subtree they represent.
The result is the intersection T1 ∩ T2.
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In every step of the algorithm, when we search for the next restriction in T2, we need to
find an inner node in T2 that has at most one non-leaf neighbor. There are two options to
achieve this.
The first is to implement the algorithm recursively, starting at an arbitrary node and
merging all non-leaf neighbors recursively. Thus, the recursion finds the inner nodes with
at most one non-leaf neighbor implicitly.
The second option is using iteration and determining the processing order of nodes in
advance. This can be done using a labeling algorithm similar to the one in Section 3.3.1.
We start by labeling every leaf in T2 full and inform non-full neighbors using a breadth-first
search. Whenever a node becomes full, we push its non-full neighbor into a queue and
inform it once it is the first node in the queue. This way, all inner nodes become full in the
exact order we want to process them for the intersection algorithm.
Both options produce the same result in the same asymptotic execution time. While the
recursive option is much simpler to implement, it may lead to an overflow in the call stack
for big inputs, because a recursive call occurs for every inner node in T2.
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Figure 3.22.: Applying the restriction represented by a P-node in T2 to T1 and merging
the leaves.

Given an inner node x of T2 with at most one non-leaf neighbor, x represents different
restrictions, depending on the type of x.
If x is a P-node, it simply represents that all its adjacent leaves have to be consecutive.
Therefore, we make all leaves adjacent to x consecutive in T1. After that, we merge these
leaves in both T1 and T2, as shown in Figure 3.22. Since we will restore the merged subtrees
in T1 later, we store the entry point of the subtree in the merged leaf in T1. This entry
point is either a single edge incident to a P-node or it constitutes a consecutive block at
the central C-node created in the update step when applying the restriction. In both cases,
we can easily obtain pointers to the entry point during the update step.
If x is a C-node, it represents a specific order of its incident leaves. Therefore, we cycle
through the edges incident to x and make the successive leaves pairwise consecutive in T1,
as shown in Figure 3.23. After this, we merge all leaves adjacent to x in both T1 and T2,
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Figure 3.23.: Applying the restriction represented by a C-node in T2 to T1 and merging
the leaves.

like in the previous case.

We stop merging leaves, once T2 only contains a single inner node with all leaves ad-
jacent to it. If this last node is a C-node, we make the successive leaves pairwise consecutive
in T1. If applying a restriction fails in any step of the algorithm, the intersection is not
possible.
After applying all restrictions to T1, we need to restore the merged subtrees. We traverse T1
and whenever we find a merged leaf, we replace it with the subtree it represents, as shown
in Figure 3.24. Note that this subtree may also contain merged leaves, i.e., we also need to
traverse all restored subtrees. The resulting tree is T1 ∩ T2.
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Figure 3.24.: Restoring the merged subtrees in T1 yields the intersection T1 ∩ T2.

Theorem 3.1. Computing the intersection of two PC-trees T1 and T2 takes O(|V |) time,
where V is the ground set of both trees.
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Proof. When applying the restrictions of T2 to T1, every leaf in V is part of one restriction,
if it is adjacent to a P-node or two restrictions, if it is adjacent to a C-node. Since we
merge the leaves after applying the restriction, they cannot be part of any other restriction.
If T2 has n inner nodes, we create exactly n− 1 new leaves when merging subtrees. Each
one of these new leaves is also part of only up to two restrictions. Due to the structure
of a PC-tree, n has to be in O(|V |). Thus, the combined number of leaves in all applied
restrictions is also in O(|V |). According to Theorem 2.1, applying all restrictions to T1
therefore takes O(|V |) time.
Merging leaves after applying a restriction takes O(1) time. Replacing a merged leave with
its respective subtree also takes O(1) time. Restoring the whole tree therefore takes time
proportional to the size of the whole tree, which is also in O(|V |). This means computing
the intersection of T1 and T2 takes O(|V |) time.
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To ensure the linear time bound of our implementation of the algorithms for applying
restrictions and for intersections, we utilize two similar planarity tests that use our PC-tree
implementation.
For the evaluation, we use the following platform to run the planarity tests:

• Cluster Chimaira at the University of Passau

• Linux Kernel Version 4.19

• CPU: Intel Xeon E5-2690v2 @ 3.00 GHz, 10 Cores, 20 Hyperthreads

• 64 GiB RAM

• OGDF Version 2020.02 (Catalpa)

4.1. Applying restrictions
In order to evaluate the performance of the algorithm for applying restrictions on PC-trees,
we use the planarity test by Booth and Lueker [BL76]. An implementation of this algorithm
using PQ-trees as the underlying data structure is available in OGDF. We implement the
same test using our PC-tree as the underlying data structure and measure the time it takes
to apply restrictions on our PC-trees compared to PQ-trees.

4.1.1. The planarity test

For simplicity, the test assumes that the graph G to be tested for planarity is biconnected,
i.e., removing an arbitrary node from the graph does not disconnect the graph. As the
first step, we use OGDF to compute an st-numbering for G. If G has n nodes, the source
node s is assigned number 1 and the sink node t is assigned number n. Every other node
in G has both neighbors with a smaller number and neighbors with a higher number. The
source and sink of the st-numbering can be chosen arbitrarily. For every node x, we call
edges to nodes with a lower number than x incoming edges and edges to nodes with a
higher number outgoing edges. Figure 4.1 shows an example of a biconnected graph with
an st-numbering. The labels of the nodes represent their position in the st-numbering.

The planarity test works as follows. We iterate through all nodes in G in the order defined
by the st-numbering. For the first node x1, we create a new PC-tree T with a single P-node
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Figure 4.1.: A biconnected planar graph G with five nodes.

and create a leaf for every edge incident to x1. For every other node x, we inspect all
its incident edges and separate the incoming edges from the outgoing edges. For every
incoming edge, there already exists a leaf in T that represents it. We make the leaves in
T that represent the incoming edges consecutive. After that, we merge these consecutive
leaves to a single leaf, i.e., we extract the whole subtree of the consecutive leaves from the
tree and replace it with a single leaf. We replace this merged leaf with a new P-node and
add a leaf to it for every outgoing edge of x.
If at any point of the algorithm a set of leaves cannot be made consecutive, graph G is not
planar, as shown by Booth and Lueker [BL76]. If applying the restriction to T succeeds
for the penultimate node in G, we know that G is planar.
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Figure 4.2.: The state of the PC-tree after every step of the planarity test.

Figure 4.2 shows the state of T after every step of the algorithm for the graph in Figure 4.1,
the labels of the leaves refer to their respective edge in G. In step (a), we create T with
a single P-node and a leaf for every of the three outgoing edges of node 1 in G. In step
(b), making the leaves that represent the incoming edges of node 2 consecutive is trivial,
since it is only edge (1, 2). We replace the leaf with a new P-node and add a leaf for every
outgoing edge of node 2. In step (c), we make the leaves that represent edges (2, 3) and
(1, 3) consecutive, we merge them and replace them with a P-node with leaves for edges
(3, 4) and (3, 5). In step (d), we make the leaves (2, 4) and (3, 4) consecutive. Since node 4
only has one outgoing edge, we replace the merged leave directly with leaf (4, 5). Since a
restriction that contains all leaves of T is trivial, there is no need to process node 5. By
the results of the test, graph G is planar.

4.1.2. Evaluation results

We run the planarity test on different graphs and measure the time it takes to apply the
restrictions on the PC-tree compared to the PQ-tree.
As the first test, we use OGDF to generate multiple random planar graphs with different
node and edge counts and measure the combined time of all restrictions of the planarity
test. We create graphs with node count n ∈ {100, 500, 1000, 5000, 10000, 50000, 100000,
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200000, 250000, 300000, 400000, 500000, 600000, 700000, 750000, 800000, 900000, 1000000}
and edge count m ∈ {n, 2n, 3n− 6}. For every graph size, we generate ten different graphs
in order to minimize variations while measuring. Note that it may be necessary to manually
increase the stack size of the program for large graphs, because the st-numbering in OGDF
is implemented recursively.
Figure 4.3 shows the results for edge count m = 3n− 6, the maximum edge count for a
planar graph. As the plot shows, the PC-tree is over 20% faster at applying all restrictions
for big graphs compared to the PQ-tree.
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Figure 4.3.: Combined time of all restrictions for m = 3n− 6.

Figure 4.4 shows the results for m = 2n. In this case, the PC-tree is over 30% faster for
graphs with a high node count.
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Figure 4.4.: Combined time of all restrictions for m = 2n.

Figure 4.5 shows the results for m = n. The PC-tree is about 95% faster at applying
all restrictions compared to the PQ-tree. Note that for m = n the planarity test only
applies restrictions of size 1 in every step. This means that Figure 4.5 only indicates that
the PC-tree is significantly faster at applying trivial restrictions of size 1. Therefore, the
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4. Evaluation

previous tests are more suitable for comparing the overall performance, since they also
apply restrictions of much bigger size.
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Figure 4.5.: Combined time of all restrictions for m = n.

As the second test, we consider random non-planar graphs of different sizes. This time, we
create graphs with node count n ∈ {1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000,
10000} and edge count m ∈ {10n, 20n, 30n}. We generate ten different graphs for every
graph size. Figure 4.6 shows the results for all graphs. Since the planarity test stops once
it detects that the graph is not planar, we only consider the number of processed nodes in
the plot. Although the results are not as consistent as in the previous test, the plot clearly
indicates that the PC-tree is significantly faster at applying all restrictions. On average for
all processed non-planar graphs, the PC-tree is 70% faster than the PQ-tree.
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Figure 4.6.: Combined time of all restrictions for non-planar graphs.

As the last test, we measure the time for every individual restriction. Again, we use the
random planar graphs from the first test with m = 3n − 6, because they create a wide
range of restriction sizes. Figure 4.7 shows the required time for every restriction with a
size over 25 and below 3000, which results in a total of 985992 samples. Figure 4.8 shows
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4.1. Applying restrictions

the speedup of these PC-tree restrictions compared to their related PQ-tree restrictions.
The restriction size is grouped into intervals of size 100 and the plot shows the distribution
for every interval, with outliers being ignored. For small restriction sizes, the performance
advantage of the PC-tree is rather low, but increases with rising restriction sizes until
it hits a local peak of almost 50% at around 400. Restrictions with size around 1000
result in about 40% performance increase. Restriction sizes higher than that approach a
performance advantage of almost 50%. Restrictions of size smaller than 25 follow the trend
visible in the graph, the minimum performance increase is about 15% for restrictions of
size 2.

Figure 4.7.: Individual time for restrictions with size between 25 and 3000.
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Figure 4.8.: Performance increase of restrictions on the PC-tree compared to the restrictions
on the PQ-tree by restriction size.

Figure 4.9 uses the same data as Figure 4.8, but the restrictions are ordered by their
terminal path length instead of their size. The restrictions are grouped by their terminal
path length in intervals of size 5. The PC-tree is about 35% faster for small terminal
path lengths, but the performance advantage increases to over 50% with rising terminal
path lengths. A possible reason for this could be the template matching in the PQ-tree
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implementation. For every node on the terminal path, the PQ-tree checks up to nine
different templates for the position of the node in the tree before updating the node.
Since our implementation simply splits every node on the terminal path without much
preparation, this could explain the increasing performance difference for rising terminal
path lengths.
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Figure 4.9.: Performance increase of restrictions on the PC-tree compared to the restrictions
on the PQ-tree by terminal path length.

4.2. Intersection
In order to evaluate the running time of our implementation of the intersection algorithm
from Section 3.4, we additionally implement the naive intersection algorithm that does
not merge leaves after applying a restriction. We use a planarity test similar to the one
from Section 4.1 that makes use of the intersection and compare the running time of our
intersection algorithm to the naive intersection algorithm.

4.2.1. The planarity test

Given a biconnected graph G, we use OGDF to compute an st-numbering of G and cut
G along the middle of the resulting ordering. For both of the resulting sets of nodes,
we conduct the planarity test from Section 4.1, starting at the source and sink of the
st-numbering. If one of the two tests fails, the graph is not planar. Otherwise, the two
resulting PC-trees T1 and T2 both have the same number of leaves representing the edges
of G that cross the cut. If the intersection of T1 and T2 is possible, graph G is planar.

4.2.2. Evaluation results

As the input for the planarity test, we use planar graphs with node count n ∈ {100, 500,
1000, 5000, 10000, 50000, 100000, 200000, 250000, 300000, 400000, 500000, 600000, 700000,
750000, 800000, 900000, 1000000} and edge count m = 3n − 6. Again, we generate ten
different graphs for every graph size.
Figure 4.10 shows the required time for the merge intersection and the naive intersection,
depending on the number of leaves of the intersected trees. The running time of the merge
intersection is clearly linear in the number of leaves. Figure 4.11 shows the performance
increase of the merge intersection compared to the naive intersection. The samples are
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4.2. Intersection

grouped in intervals of size 1000. For small trees, the speedup is negligible, but it rapidly
increases with rising tree sizes, because the naive intersection is asymptotically slower than
the merge intersection. As pointed out in Section 3.4, the naive intersection takes quadratic
time in the number of leaves.
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Figure 4.10.: Required time for intersections by number of leaves.
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Figure 4.11.: Performance increase of the merge intersection compared to the naive imple-
mentation.
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5. Conclusion

In this thesis we introduced PC-trees and characterized their functionality. We gave a
detailed description of the implementation of an algorithm for applying restrictions on
PC-trees in linear time, based on the algorithm by Hsu and McConnell [HM03, HM04].
This implementation is much shorter and simpler, compared to the implementation of the
PQ-tree by Booth and Lueker [BL76] in OGDF, because the lack of a distinguished root
node in our implementation renders the numerous templates in the PQ-tree implementation
unnecessary. We implemented the planarity test by Booth and Lueker using PQ-trees
and PC-trees in order to compare their performance and to test the correctness of our
implementation. Our benchmarks showed that our implementation is significantly faster at
applying restrictions compared to the PQ-tree, while still producing the same results.
We also implemented the first known linear-time algorithm for the intersection of two
PC-trees, where we ensure the linear-time bound by merging the applied restrictions to a
single leaf. Replacing these leaves with the original subtree gives us the intersection. This
approach is based on the intersection algorithm for PQ-trees by Booth [Boo75]. We also
validated the correctness and the linear time bound of our intersection implementation by
comparing it to the naive implementation, which does not merge leaves and takes quadratic
time.
Overall, our resulting PC-tree implementation in C++ allows applying restrictions and the
intersection of two PC-trees in linear time. The data structure is sufficiently generic to
enable assembling custom PC-trees and to store information at its nodes. The implementa-
tion also includes a linear-time planarity test.

Hsu and McConnell [HM03] showed that computing the PQ-tree reduces in linear time to
computing the PC-tree, i.e., the PC-tree could replace the PQ-tree in all of its applications.
Therefore, it may be interesting in the future to reconsider some of the many algorithms
using PQ-trees and examine whether using PC-trees could improve the algorithm’s sim-
plicity and performance. For example, the level planarity test by Jünger et al. [JLM98]
and the radial level planarity test by Bachmaier et al. [BBF05] could possibly benefit from
the performance advantage of PC-trees. Reconsidering embedding problems related to the
Simultaneous PQ-Ordering problem [BR13] may also be interesting.
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Appendix

A. Pseudo-code terminal path
The following pseudo-code illustrates the steps of the terminal path algorithm.
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5. Appendix

Algorithm 5.1: Finding the terminal path
Input: Queue Q containing all partial nodes
Output: List TP containing all nodes on the terminal path
// Initialization

1 originalPartialNodesCount← Q.size()
2 pathCounter ← Q.size()
3 apexCandidate← null
4 highestNode← null
5 invalidRestriction← false

// Main Loop
6 while !invalidRestriction and Q is not empty do
7 currentNode← Q.pop()
8 if currentNode.marked then
9 pathCounter ← pathCounter − 1

10 continue
11 currentNode.marked← true

12 if pathCount = 1 then
13 highestNode← currentNode
14 break
15 parent← findParent(currentNode)
16 if parent = null then
17 highestNode← currentNode
18 continue
19 setPredecessor(parent, currentNode)
20 Q.push(parent)

21 if invalidRestriction then
22 return
23 if apexCandidate = null then
24 apexCandidate← highestNode
25 while apexCandidate is not partial do
26 apexCandidate← apexCandidate.predecessor1

27 partialNodesCount← addAllPredecessors(apexCandidate, TP)
28 if originalPartialNodesCount 6= partialNodesCount then
29 invalidRestriction← true
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A. Pseudo-code terminal path

Algorithm 5.2: Finding the parent of the current node
Input: Node n on the terminal path
Output: The parent of n, or null, if the parent of n cannot be on the terminal

path
1 if n.parentArc = null then
2 if n is partial C-node then
3 setApexCandidate(n)
4 return null

5 parent← n.parentArc.yNode
6 if parent 6= null then
7 if parent is full then
8 return null
9 else

10 return parent

11 parent← null
12 nodeObjectNeighbor1← n.parentArc.neighbor1.yNode
13 nodeObjectNeighbor2← n.parentArc.neighbor2.yNode
14 if nodeObjectNeighbor1 6= null and nodeObjectNeighbor2 6= null then
15 if nodeObjectNeighbor1 6= nodeObjectNeighbor2 then
16 invalidRestriction← true
17 else
18 parent← nodeObjectNeighbor1
19 else if nodeObjectNeighbor1 6= null then
20 if nodeObjectNeighbor1 is partial and n.parentArc.neighbor1 is not an end

of a full block then
21 invalidRestriction← true
22 else
23 parent← nodeObjectNeighbor1

24 else if nodeObjectNeighbor2 6= null then
25 if nodeObjectNeighbor2 is partial and n.parentArc.neighbor2 is not an end

of a full block then
26 invalidRestriction← true
27 else
28 parent← nodeObjectNeighbor2

29 else
30 parent← new C-node
31 n.parentArc.yNode← parent
32 if n.parentArc.neighbor1 is not a parent arc then
33 parent.parentArc← n.parentArc.neighbor1.twin
34 else if n.parentArc.neighbor2 is not a parent arc then
35 parent.parentArc← n.parentArc.neighbor2.twin

36 return parent
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5. Appendix

Algorithm 5.3: Setting a predecessor
Input: Node parent, Node predecessor

1 if parent.predecessor2 6= null then
2 invalidRestriction← true
3 else if parent.predecessor1 6= null then
4 if parent.predecessor1.parentArc = predecessor.parentArc then
5 invalidRestriction← true
6 parent.predecessor2← predecessor
7 setApexCandidate(parent)
8 else
9 parent.predecessor1← predecessor
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B. Pseudo-code update step

B. Pseudo-code update step
The following pseudo-code illustrates the update step of the algorithm.

Algorithm 5.4: Finding the ends of the blocks of a C-node
Input: C-node n on the terminal path, Arc entryArc entering n on the terminal

path, List TP of nodes on the terminal path
Output: Pointers to the arcs at the ends of the full and empty blocks of n

// Initialization
1 fullNeighbor ← null
2 otherNeighbor ← null
3 if entryArc.neighbor1 is full then
4 fullNeighbor ← entryArc.neighbor1
5 otherNeighbor ← entryArc.neighbor2
6 else if entryArc.neighbor2 is full then
7 fullNeighbor ← entryArc.neighbor2
8 otherNeighbor ← entryArc.neighbor1

// Finding the blocks
9 if n is first node in TP then

10 fullBlockLast← fullNeighbor
11 fullBlockF irst← fullNeighbor.blockPointer
12 emptyBlockLast← otherNeighbor
13 emptyBlockF irst← emptyNeighbor(fullBlockFirst)
14 else if n is last node in TP then
15 fullBlockF irst← fullNeighbor
16 fullBlockLast← fullNeighbor.blockPointer
17 emptyBlockF irst← otherNeighbor
18 emptyBlockLast← emptyNeighbor(fullBlockFirst)
19 else
20 if fullNeighbor 6= null then
21 fullBlockF irst← fullNeighbor
22 fullBlockLast← fullNeighbor.blockPointer
23 if otherNeighbor is not terminal path arc then
24 emptyBlockF irst← otherNeighbor
25 emptyBlockLast←

getNextArc(fullBlockLast, emptyNeighbor(fullBlockLast))
26 else if entryArc.neighbor1 is terminal path arc then
27 emptyBlockF irst← entryArc.neighbor2
28 emptyBlockLast← getNextArc(entryArc, entryArc.neighbor1 )
29 else
30 emptyBlockF irst← entryArc.neighbor1
31 emptyBlockLast← getNextArc(entryArc, entryArc.neighbor2 )
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Algorithm 5.5: Splitting a P-node
Input: P-node n on the terminal path, Central C-Node c

1 fullParentArc← false
2 fullPNode← new P-node
3 forall Arc fullArc ∈ n.fullNeighbors do
4 n.extractArc(fullArc)
5 fullPNode.addArc(fullArc)
6 if fullArc is part of parent edge of n then
7 fullParentArc← true

8 fullPNode.degree← n.fullNeighborsCount + 1
9 n.degree← n.degree− n.fullNeighborsCount + 1

10 createNewEdge(c, fullPNode)
11 if fullParentArc and n is apex then
12 c.setParent(fullPNode)
13 else
14 fullPNode.setParent(c)

15 if fullPNode.degree = 2 then
16 condenseNode(fullPNode)
17 createNewEdge(c, n)
18 if not fullParentArc and n is apex then
19 c.setParent(n)
20 else
21 n.setParent(c)

22 if n.degree = 2 then
23 condenseNode(n)
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