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Abstract
Visualization of bipartite graphs in easy-to-read drawings is a challenging task.
Consider a network graph of international companies and all the countries they
operate in. A large number of nodes affects legibility, so a good-looking drawing is
required. We consider drawings in which the nodes of the two partitions are drawn
on two separate curves; either two horizontal lines or two concentric circles. There
are several factors that affect readability. One such factor is the length of the edges
in the drawing.

Another factor is the window size, where the window of a node is the smallest interval,
either x-interval or angular interval, whose image on the two curves contains both
the position of the node and the position of its neighbors.

In this thesis, we use two techniques to improve these factors: From a given drawing
of a bipartite graph, we either move the nodes of one partition to the positions where
the window size or edge length is minimal while keeping the other partition fixed or
move the nodes in both partitions. The former technique is, in most cases, feasible,
while the latter is NP-complete.

After that, we introduce an unconventional way of visualizing bipartite graphs by
placing the partitions on the boundaries of an annulus. We present an algorithm
that computes the best inner-to-outer-radius ratio of the two circles to draw straight
edges without intersecting the inner circle.

Deutsche Zusammenfassung
Die Darstellung bipartiter Graphen in leicht lesbarer Form ist nicht immer einfach.
Betrachtet man beispielsweise einen Netzwerkgrafen, der die Verbindung darstellt
von internationalen Unternehmen zu den Ländern, in denen sie operieren. Eine hohe
Zahl an Knoten beeinträchtigt die Lesbarkeit, sodass eine möglichst übersichtliche
Visualisierung vonnöten ist. Wir betrachten Zeichnungen, in denen die zwei disjunk-
ten Mengen auf zwei separaten Kurven dargestellt wird; entweder auf parallelen,
horizontalen Linien oder auf konzentrischen Kreisen. Es gibt verschiedene Faktoren,
um gute Lesbarkeit zu gewährleisten und diverse Wege, um zu diesem Ziel zu gelangen.
Einer dieser Faktoren ist die Länge der Kanten in dieser Zeichnung.

Einen weiteren Faktor stellt die Fenstergröße dar. Ein Fenster eines Knotens ist
das kleinstmögliche, entweder horizontale oder gekrümmte, Intervall dar, dessen
Projektion auf die Darstellungskurven sowohl die den Knoten selbst, als auch seine
benachbarten Knoten beinhaltet.

In dieser Arbeit verwenden wir zwei Methoden, um diese Faktoren zu verbessern.
Entweder nehmen wir die Zeichnung eines bipartiten Graphen und suchen für Knoten
aus einer der Partitionen die bestmöglichen Positionen während die Knoten der
anderen Partition auf ihren Platzierungen verbleiben oder wir suchen bewegen
alle Knoten. Die erste Methode ist in den meisten Fällen lösbar, die zweite NP-
vollständig.

Anschließend führen wir eine unkonventionelle Methode der Visualisierung bipartite
Graphen ein. Dafür platzieren wir die beiden disjunkten Mengen auf zwei konzen-
trischen Kreisen. Wir präsentieren einen Algorithmus, um das beste Verhältnis der
beiden Radien zu berechnen. Dabei soll es noch möglich sein, die Kanten der Knoten
geradlinig und ohne den inneren Kreis zu schneiden, zu zeichnen.
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1. Introduction

Bipartite graphs are used in many ways to display relationships between two disjoint
sets. Computer scientists use them to connect users’ access to items on a computer,
journalists display actors and the movies they appear in, and biologists model proteins and
genes [HGKW16, PKP+18, WS98].

Most bipartite graphs are visualized on two parallel lines, one for each partition, and the
edges are drawn with straight lines between their adjacent nodes like in Figure 1.1 [PFH+18].
The visualization should be easy to read for extracting information as quickly as possible.
However, quantifying readability criteria is non-trivial: What makes Figure 1.1(a) easier to
read than Figure 1.1(b). Is it the lower number of crossings or the shorter edges? Of course,
it is a mixture of both, and there are additional factors, too, like the angles in which the
edges cross each other or enter and leave nodes or even the graph symmetry [HEH14, Pur02].

Battista et al. [DBETT94] call the main aesthetics:

• avoid edge crossing

• avoid bends in edges

• keep edge lengths uniform

• distribute vertices uniformly

Improvements in one metric likely have a positive effect on the other. In Figure 1.1(b), the
graph results from reducing the number of the crossing of Figure 1.1(a) or Figure 1.1(c),
yet at the same time, the average edge length improved, which means, decreased, too.
Sometimes, the optimum for one solution is also an optimum for the other, but that is not
always true.

A graph with fewer edges (and nodes) is also easier to read, but we want to draw the same
graph in a different way with improved readability without losing information. For that
reason, in this thesis, we focus on rearranging the nodes of a graph to improve its window
sizes and edge lengths. The window is defined by the maximum distance between a parent
and one of its adjacent children or between two children, whether larger. We calculate edge
length by projecting one layer to the other and measuring the horizontal distance of the
edge’s adjacent nodes.

Especially in digital reading, the graphs do not have to fit on a sheet of paper; they can
have many nodes and edges [BFK+23]. One example is the ASCT+B Reporter1. It uses

1https://hubmapconsortium.github.io/ccf-asct-reporter/
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1. Introduction

D A C B

a b c d

(a)

A B C D

a b c d

(b)

A B C D

d a c b

(c)

Figure 1.1: The same bipartite graph in three drawings where the number of crossings, the
edge length, and the window size differ

a particular way to improve the readability of this complex graph: Clicking on a specific
node highlights it and all adjacent nodes, while the other nodes and edges become greyed
out. This way, it is easy to follow a path from one node to another or look at all of a node’s
connections.

However, this does not help much if it is impossible to display a node with all its connections
simultaneously. There may be a screen or paper size that is too small. Hence one target
may be the minimization of the window size of a node, i.e., the part of the graph necessary
to display the node and its adjacent vertices. In a bipartite graph with two parallel lines,
we call one partition parent and the other children. The smaller a window is, the larger
the graph can be visualized while still showing the parent and all their children at once. In
the ASCT+B Reporter, small windows allow zooming in, thereby improving readability.

1.1 Related work
One well-examined legibility factor is the number of crossing edges in a drawing of a graph.
A common task for minimizing this number for bipartite graphs is finding a drawing on
parallel lines for both partitions of nodes with the smallest number of crossings [EW94]. A
related method is to fix the positions of one set of nodes in a given drawing and rearrange
only the other with the same goal [ÇEKS09]. Unfortunately, both have been proven to be
NP-hard [EW94, GJ83]. In this thesis, we look at several problems in minimizing window
sizes and edge lengths using the same technique.

Avoiding large windows and improving the window sizes of a graph can be done in two
ways: The first method is achieved by making the broadest window as thin as possible. The
second method is computing the minimal sum of window sizes, i.e., the minimal average
window size. Though closely related, both methods can lead to different optimal solutions.
An example where the drawings minimizing the window sum and the maximum window
differ is shown in Figure 1.2.

Trying to minimize window sizes has been examined by Bekos et al. [BFK+23]. They
wanted to calculate the smallest upper bound for windows, so they focused on minimizing
the largest window. This improvement helps if one wants to guarantee that any node
with its neighbors fits on a graph clip with a fixed size. They discovered that it makes a
difference whether we fix the children and move the parents to the best possible positions
or keep them in their positions while changing the children’s locations.

The former is solvable in polynomial time, while the latter is NP-complete. So for minimiz-
ing the sum of the window sizes, it is reasonable to conjecture that the same relationship
holds. Two slightly different problems support this conjecture, the BandwidthProblem
and the SimpleLinearArrangement where the same relationship holds. These problems,
described in Section 2.2, ask for a placement of nodes of a graph on a straight line at integer
coordinates. In both problems, it is desired to reduce the edge lengths, i.e., the difference in
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1.1. Related work

A B C D E F

a b c d e

(a) A graph in a drawing with a good window
size sum of 0 + 0 + 0 + 0 + 0 + 5, but a larger
maximum window size of wF = 5

A B C D E F

a b c d e

(b) A graph in a drawing with a worse window
size sum of 1 + 1 + 1 + 1 + 1 + 4, but smaller
maximum windows size of wF = 4

D F E A C B

a b c d e

(c) A graph in a drawing with minimum largest
window of wF = 4 but much larger window
size sum of 4 + 4 + 3 + 2 + 1 + 3 = 17

Figure 1.2: A graph in three different drawings, the first has a minimal sum of window sizes,
the second and the third have a minimal largest window. The way these values
get calculated is described closer in Chapter 2. A window is the horizontal
distance needed to see a node of the top layer and all its neighbors in the
bottom layer.

the coordinates, to a minimum. In the BandwidthProblem, the longest edge is tried to be as
small as possible, while the minimal sum is minimized in the SimpleLinearArrangement.
Both are NP-complete [GJS76, Pap76].

However, there can be reasons for not focusing on the maximum window but searching for
the minimal sum of the window sizes, i.e., the minimal average window size. Consider a
graph as shown in Figure 1.2, which contains many parents (nodes in the top layer) with a
low number of children (nodes in the bottom layer). This graph is easy to display and read
when placing the parents opposite the children, as shown in Figure 1.2(a). Nevertheless,
this graph has parent F with a large window which gets smaller by shifting the parents to
the left, as shown in Figure 1.2(b). The more of the latter kind of parents exist, the more
the former kind will be shifted away from their children. Hence though it would be easy to
display these nodes in a simple format, minimizing the maximum window can sometimes
make a graph less legible. So if one puts up with a few large windows, the overall window
size can be decreased, and the average parent is close to its neighbors. Additionally, the
graph has a parent with a large window, so the parents with smaller window sizes can be
placed without optimization. An example is illustrated in Figure 1.2(c): For algorithms
that compute the minimal largest window, this drawing with the largest window size of 4
is equally minimized as the drawing in Figure 1.2(b).

So if finding the smallest maximal window size in this problem is hard, why should
it be different from minimizing the sum of all the window sizes? They reduced the
problem of finding a minimum maximal window size from BandwidthProblem as the
longest-edge-minimizing problem. Thus it is plausible to reduce the sum-of-the-window-size
minimizing from SimpleLinearArrangement as the sum-of-the-edge-length minimizing
problem. However, both BandwidthProblem and SimpleLinearArrangement are NP-
complete when taking arbitrary graphs as input. When restricting the input to trees, the
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1. Introduction

longest-edge minimization problem stays hard, but the sum-of-edge-length minimization
problem becomes feasible [Shi79, HM97]. Trees can be separated into two partitions: the
layers with even and odd depths. So they are a particular kind of bipartite graph. It is
plausible that the same difference in complexity applies to minimizing the largest window
vs. minimizing the sum of the window size [ADH98].

Though drawing bipartite graphs on two parallel lines may be the most common way,
it is not the only way. A generalization of parallel lines is the drawing of bipartite
graphs on convex curves. Giacomo et al. [DGGL07, DGGL08] stated “that the class of
bipartite graphs that admit a planar straight line drawing on two horizontal lines is entirely
restricted”, which motivates this visualization method. Using radial visualization to display
information is, for instance, used to display intrusion detection by the approach of VisAlert
[FAL+06, DLR09]. Foresti et al. used radial visualization to simultaneously show the
location, time, and nature of many detected attacks. In AlertWheel, a similar system,
Dumas et al. [DMRW12, DRM12] used the same technique and came up with different
ways to improve this way of displaying the mass of information by clustering edges.

Before we go deeper into this topic, let us look at how we want to accomplish easiness-to-read
in this thesis.

1.2 Problem statement
We have to answer four questions to define a problem considering the easiness-to-read of a
bipartite graph.

1. Is the graph drawn on parallel lines or concentric circles?

2. Do we focus on window sizes or edge lengths?

3. Is our goal the minimum sum of windows/edge lengths, or do we want to achieve the
minimal longest edge/largest window?

4. Do we move the parents with fixed children? Or move the children and fix the
parents? Or do we move both sets?

Each combination of how to answer these questions creates a problem. However, not each
of the 2 · 2 · 2 · 3 = 24 combinations leads to a different problem, and not all variations
relate to real issues. The difference between parents and children only exists in window
minimizing problems. So for improving edge lengths, question five can be changed to “Do
we fix one side or move both sides?”.

So the actual number of distinct questions is 20. In the end, we know the answer to 13
combinations, eleven newly answered in this thesis. Eight problems are in P, and five are
NP-hard. A quick overview gives Table 7.1 at the end of this thesis.

Additionally, some questions do not fit in this question pattern. We look at similar
problems not generated by these questions, which give us a more detailed impression of
the modifiability of bipartite graphs.

1.3 Outline
In Chapter 2, we define terms used in this thesis. Furthermore, we give an overview of
some solved NP-complete problems and known algorithms, which we use in the proofs
later.

Chapter 3 introduces the topic of rearranging nodes to improve easiness-to-read. We begin
by looking only at children first. In that regard, we show that even when neglecting the
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1.3. Outline

parents, finding a drawing for a graph with a minimal span, i.e., the distribution of the
children, is already complex.

Chapter 4 is the core of the thesis. It focuses on minimizing the windows of bipartite graphs
in several ways. First, in Section 4.1, we provide a greedy algorithm to determine whether
it is possible to move the parents so that all of them are opposite the children. If this is
possible, the window sum and maximum window get as small as possible. Otherwise, we
can use the algorithm in Section 4.2 to find the arrangement for the parents with minimal
window sizes in both window sum and maximum window. The result in Section 4.3 is
NP-hardness for minimizing the window sum when we allow both parents and children to
move.

In Chapter 5, we ask almost the same questions again, but we do not minimize windows but
the edge lengths this time. The answers to the questions are nearly identical, but reusing
the algorithms and proofs from the last chapter one by one is not possible. However, in
Section 5.1, we modify our algorithm to find the best arrangement for edge lengths when
moving one side before we adjust our hardness proof in Section 5.2 for the version where
both sides move.

After that, in Chapter 6, we draw a bipartite graph not on parallel lines but on concentric
circles. In Section 6.1, we adapt the algorithms again to the new circumstances in this
kind of drawing. The circular version of graph drawing leaves the minimizing problem
NP-complete when permuting both sides. However, the proof needs to be adapted, given
in Section 6.2. Furthermore, the concentric drawing asks a different question; “What is the
minimum ratio between the inner circle and outer circle with keeping edges straight?” An
algorithm for this calculation is provided in Section 6.3.

Chapter 7 recapitulates our results and highlights open problems and unproved presump-
tions.
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2. Preliminaries

Before we dive deeper into the problems and introduce new concepts, we have to define
several terms and techniques used in this thesis. To prove hardness, we need some
already known NP-complete problems that we can reduce to ours. These will be the
SimpleLinearArrangement and the BandwidthProblem. Additionally, we give an overview
of three algorithms that will prove helpful in devising our ones.

2.1 General Terms and Techniques
Let G = (P ∪· C, E) be a bipartite graph with the nodes partitioned into two disjoint sets P
and C. We call P the parents and C the children. Every edge in E ⊆ P ×C connects a node
in P with a node in C. Hence G has no multi-edges. For p ∈ P let Cp = {c | (p, c) ∈ E},
called the set of its (adjacent) children.

We consider drawings of G with parents placed at distinct integer coordinates on a horizontal
line and children placed the same way on a second parallel line below. We draw G by
placing each parent p at (x(p), 1) and each child c at (x(c), 0) where x : P ∪· C → Z. So we
call x a drawing of G.

Definition 2.1 (semi-injective). A drawing x : P ∪· C → Z is called semi-injective, if x
maps P and C injectively to Z, respectively. Then the following holds:

∀a, b ∈ P ∪· C : x(a) = x(b)⇒ (a ∈ P ∧ b ∈ C) ∨ (a ∈ C ∧ b ∈ P ) ∨ a = b.

In this thesis, each drawing is semi-injective, meaning there are not multiple parents or
children in a particular position. However, it is allowed for a parent and a child to have
the same position.

Definition 2.2 (Span and window). For a given drawing x and parent p, let

• fp = arg minc∈Cp x(c) be the first child of p,

• lp = arg maxc∈Cp x(c) be the last child of p,

• Sp = {x(fp), . . . , x(lp)} be the span of p with span size sp = x(lp)− x(fp) = |Sp| − 1,

• Wp = {min{x(fp), x(p)}, . . . , max{x(lp), x(p)}} be the window of p with window size
wp = max{sp, x(lp)− x(p), x(p)− x(fp)} = |Wp| − 1.

7



2. Preliminaries

A B C D

a b c d e

Wc

Sc

lcfc

Figure 2.1: A drawing x of a graph G with parents P = {A, B, C, D} and children C =
{a, b, c, d, e}, where the span size sC is 1 and the window size wC is 2.

For an illustration, see Figure 2.1. So we get to the following proposition:

Proposition 2.3. For a parent p in a drawing x the following holds:

wp =
{

sp, if x(p) ∈ Sp.

sp + min{x(p)− x(fp), x(lp)− x(p)} if x(p) ̸∈ Sp.

So the window size takes minimal values when the parent is placed in its span, i.e.,
x(fp) ≤ x(p) ≤ x(lp).

In words, the window size equals the span and potentially the distance to it if placed
outside.

To allow easier reading, from now on, we write for a node a in a drawing x its coordinate a
instead of x(a) whenever we do not have to distinguish between multiple drawings. If we
want to compare two nodes a, b, then a < b :⇔ x(a) < x(b). So fp describes not only the
child itself but also its coordinate in a drawing x. We call fp and lp, marginal children and
fp and its position beginning of the span as well as lp and its position end of the span.

Definition 2.4 (Partial and completing drawing). Suppose we are given a bipartite graph
G = (A ∪· B, E). For a subset A∗ ⊆ A we call x : B∗ → Z a partial drawing. We call
y : B → Z a completing drawing.

It is impossible to draw the whole graph with a given partial drawing, so it may be
considered a function to fix the position of nodes of the graph. In short, a partial drawing
of a bipartite graph only applies to a subset of one partition while a completing drawing
applies to a whole partition of a bipartite graph.

In this thesis, we want to show several algorithms to improve the legibility of a given
drawing x of a bipartite graph. For that reason, we search for a different y drawing of the
same graph. Drawing y may inherit some properties of the given drawing x. For instance,
we look for the best positions for partition B of the nodes in the graph while we inherit
the positions A∗ of the other partition from x. So we do not need to know the positions of
partition B. It is enough to have information about A∗ in a partial drawing x : A∗ → Z.

That is why we only need partial drawings for some of the problems in the following
chapters. The algorithms to solve these problems are working with these partial drawings

8



2.1. General Terms and Techniques

A B C D E F

a b c d ee′

e

A B C D E F

a b c d ee′

e

Figure 2.2: Two drawings of the same graph, where the projected edge length sum is smaller
in the drawing above and the euclidean length sum is smaller in the drawing
below.

and computing the completing drawings. However, since it is feasible to transform a
non-partial drawing into a partial drawing, all algorithms can also be modified to work
with non-partial drawings. Depending on the implementation of the drawing extracting the
node on a given position or the position of a given node may not be accessible in constant
time. Thus these modified algorithms may have a slower running time.

The image x(B) of a set B in a drawing x is defined conventionally: x(B) :=
⋃

b∈B x(b).
Additionally, we call a drawing x gap-free, if the following condition holds:

∀a, b ∈ x(P ∪· C) : {a, . . . , b} \ x(P ∪· C) = ∅.

Gaps are positions within the graph with neither a parent nor a child node.

In this thesis, besides minimizing windows, we also focus on improving the lengths of edges.

Definition 2.5 (Projected edge length). Suppose we are given a drawing x of a bipartite
graph G = (P ∪· C, E). Ror an edge (p, c) ∈ E its projected edge length λ is defined as

λ((p, c)) = |x(p)− x(c)|

This definition of edge length can be considered as the distance of the projected point of
p onto the layer of c. In Figure 2.1 the edges have projected edge lengths of λ((C, a)) =
|c− a| = 2 and λ((C, b)) = |c− b| = 1. Just like window sizes, edge lengths only assume
natural numbers. This definition of edge length is related to the edge lengths as euclidean
distance since converting can be done with the distance between the two parallel lines.

However, these metrics are unequal, and minimizing the edge length in the different
definitions does not necessarily lead to the same result. In Figure 2.2, we present the same
graph in two drawings. The projected edge length sum is smaller in the drawing in the
figure above. The red edge (A, b) has a projected edge length of e = 3 while the euclidean

9



2. Preliminaries

a b c d e f

(a)

a b c d f e

(b)

Figure 2.3: A graph in two drawings, one with smaller edge lengths sum, the other with a
smaller longest edge.

distance is e′ =
√

32 + 12 =
√

10 ≈ 3.16 (With a distance of the parallel lines of 1). The
total projected edge length is 2 · 3 + 4 · 0 + 1 = 7 while the euclidean edge length sum is
about 2 ·

√
10 + 4 · 1 +

√
2 ≈ 11.74. Meanwhile, the euclidean sum is smaller in the figure

below. The projected edge sum is 2 · 2 + 4 · 1 + 0 = 8 while the euclidean edge lengths are
2 ·
√

5 + 4 ·
√

2 + 1 = 11.29.

However, this definition of edge length is independent of the distance of the parallel lines.
Additionally, it helps us convert parallel drawings into radial drawings in Chapter 6. This
is why we use this metric to compute edge lengths in this thesis.

2.2 Known NP-complete problems

In this thesis, we use two NP-complete problems to reduce to our problems. The problems
are similar and take the same input. The goal to be achieved is, however, different.

Definition 2.6 (SimpleLinearArrangement (LAP)). Suppose we are given a graph
G = (V, E) and an integer W ∈ N. Is there an injective function f : V → Z such that the
following holds? ∑

(u,v)∈E

|f(u)− f(v)| ≤W.

Definition 2.7 (BandwidthProblem (Bandwidth)). Suppose we are given a graph
G = (V, E) and an integer W ∈ N. Is there an injective function f : V → Z such that the
following holds?

∀(u, v) ∈ E : |f(u)− f(v)| ≤W.

Both LAP and Bandwidth are NP-complete [GJS76, Pap76]. A different description of the
problems is: Suppose we are given a graph. Can we place its nodes on a line with integer
coordinates, such that the sum of the edge length (LAP) or the maximum edge length
(Bandwidth) is upper-bounded by a particular value? At first view, they may seem the
same, and though they are correlated, there are instances where the optimum of one is
not the optimum of the other. In Figure 2.3, the same graph is shown in two drawings.
The drawing in Figure 2.3(a) has a smaller edge length sum of 5 + 2 · 2 + 5 · 1 = 14 versus
4 + 3 + 2 · 2 + 4 · 1 = 15 in Figure 2.3(b). However, the longest edge in Figure 2.3(a) has a
length of 5, while the longest edge in Figure 2.3(b) has a size of 4.

10



2.3. Known algorithms

2.3 Known algorithms
Let G = (A ∪· B, E) be a bipartite graph with n := |A| ≤ |B|. A subset M ⊆ E is called
matching if every node v ∈ A ∪· B is adjacent to at most one edge e ∈ M [Tas12]. A
Matching M is called perfect if every node v′ ∈ A is adjacent to exactly one edge, i.e.,
|M | = n.

Definition 2.8 (PerfectBipartiteMatching (Match)). Suppose we are given a graph
G = (A ∪· B, E), calculate M ⊆ E with M as a perfect matching.

This problem is also known under the names assignment problem and marriage prob-
lem [SSW05]. A useful observation is made by Hall [Hal98]:

Theorem 2.9 (Hall’s marriage theorem). Suppose we are given a bipartite graph
G = (A ∪· B, E). For a subset U ⊆ A let BU =

⋃
u∈U{b | (u, b) ∈ E} the neighborhood in G

of U . Then exists a perfect matching if and only if for every subset U ⊆ A the following is
valid:

|U | ≤ |BU |.

In particular, it follows the weaker corollary:

Corollary 2.10. Suppose we are given a bipartite graph G = (A ∪· B, E). A perfect
matching exists if each node a ∈ A has at least |A| adjacent nodes in B.

For a matching M of a weighted bipartite graph, we call the sum of the weights of its edges,
i.e., ξ(M) :=

∑
e∈M ξ(e) the weight of a matching. A matching bottleneck is defined by the

biggest edge ξmax(M) := maxe∈M ξ(e).

Furthermore, given multiple perfect matchings, we add selection criteria to choose the best
perfect matching. Suppose we are given a bipartite graph G = (A ∪· B, E) and a weight
function ξ : E → N0. We call H = (A ∪· B, E, ξ) a weighted bipartite graph [DP14]. So we
look for the best perfect matching in two ways:

Definition 2.11 (MinimumBipartiteMatching (MinMatch)). Suppose we are given a
weighted bipartite graph H = (A ∪· B, E, ξ). Return M ⊆ E with M as perfect matching
with the lowest weight of the matching.

Definition 2.12 (BottleneckBipartiteMatching (BottMatch)). Given a weighted bipar-
tite graph H = (A∪· B, E, ξ). Return M ⊆ E with M as perfect matching with the smallest
bottleneck.

While the unweighted version is comparably easy to solve, it gets complicated when we add
weights. Solving Match is possible in O(

√
nm) by the algorithm of Peterson et al. [PL88]

where m := |E| is the number of edges. It is also solvable in linear time O(n) with the
algorithm of Uno [Uno97]. However, several algorithms for MinMatch with different running
times on different types of graphs have been published. Due to its many applications in
modern times, MinMatch is even called “one of the fundamental problems in combinatorial
optimization” [San09]. One of the first discovered algorithms is called the “Hungarian
Method” [Kuh55]. The running time of this algorithm can be improved to O(n3) with
the help of Edmonds and Karp [EK72]. A different algorithm originates from Kao et
al. [KLST99]. It uses the parameter of the total weight length W =

∑
e∈E ξ(e) and has
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2. Preliminaries

Description Symbol Definition Extra description or
correlation

Bipartite graph G G = (P ∪· C, E)
Weighted G = (A ∪· B, E, ξ)

Weight function ξ ξ : E → N0
Drawing x, y x : V → Z

x : P ∪· C → Z For bipartite graphs
Partial x : V1 → Z V1 ⊆ V of nodes V
Completing y : V2 → Z V2 := V \ V1

For a parent p ∈ P of a bipartite graph with drawing x

Children of p Cp {c ∈ C | (p, c) ∈ E}
First child /

Beginning of span
fp arg minc∈Cp x(c) Marginal children

Last child /
End of span

lp arg maxc∈Cp x(c)

Span Sp {x(fp), . . . , x(lp)}
Span size sp sp = x(lp)− x(fp) sp = |Sp| − 1
Window Wp {min{x(fp), x(p)}, . . . ,

max{x(lp), x(p)}}
wp = |Wp| − 1

Window size wp max{sp, x(lp)− x(p),
x(p)− x(fp)}

wp = sp+ distance to
span, if not within it

Edge length λ λ((p, c)) = |x(p)− x(c)| projected,
not euclidean

For a bipartite graph G = (A ∪· B, E) with |A| ≤ |B|
Matching M M ⊆ E v ∈ A ∪· B is adjacent

to any e ∈M
perfect |M | = |A|

Weight of a match. ξ(M)
∑

e∈M ξ(e)
Bottleneck of a m. ξmax(M) maxe∈M ξ(e)

Table 2.1: An overview of the terms defined in this section.

a running time of O(
√

nW ). The weight sum can grow too fast for dense graphs with
high weights to more than O(n3). However, one of the most recent discoveries shows the
solvability of the problem in almost linear time O(m1+o(1)) [CKL+22]. Since in simple
graphs, m ≤ n2, this leads to a maximum running time of O(n2+o(1)).

Finding the best algorithm to solve the BottMatch for our application is more manageable.
There are fewer published algorithms since the focus lies on the other variant. Nevertheless,
an algorithm has been discovered that succeeds in finding an optimal solution for this
problem in O(n ·

√
mn) [PN94].

Table 2.1 provides an overview of all definitions in this section for a fast lookup.
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3. Minimizing the span size

Before we think about how to improve the windows of the parents, let us look at the span,
i.e., the window without the parent node itself. Proposition 2.3 shows that the span marks
a lower bound for the window. So minimizing the span size is the first step to improving
window sizes. Unfortunately, we prove in this section that finding a drawing with minimal
span sizes is NP-hard.

For calculating the span, the parent’s position does not play any role. In the later
Chapters 4, 5 and 6, there are several methods for rearranging a drawing to improve
windows or edge lengths. However, for span minimization, only one of them is applicable:
So, given a drawing of a graph, how can we rearrange the children with fixed parents’
locations for a placement with minimal spans? The other variant, fixing the children and
moving the parents for the same goal, does not change the span. Combining both and
allowing the parents and the children to move is the same as freezing the parents.

First, let us define the problem:

Definition 3.1 (MinimumSpanSum (SpanSum)). Suppose we are given a bipartite graph
G = (P ∪· C, E) and an integer W ∈ N. Is there a partial drawing x : C → Z, such that the
following holds? ∑

p∈P

sp =
∑
p∈P

(lp − fp) ≤W.

We prove that this problem is NP-complete by reducing LAP (Definition 2.6) to it. For
that reason, we transform an instance of this problem into our problem in the following
way:

Definition 3.2 (Edge graph). Suppose we are given a graph G = (V, E). Consider

P := {puv | (u, v) ∈ E} and
E′ := {(puv, u), (puv, v) | (u, v) ∈ E}.

We call H = (P ∪· V, E′) edge graph of G.

Each edge of an origin graph has a representative parent in its edge graph. This parent is
connected to both adjacent nodes of the edge. Hence, the length of an edge in graph G

13



3. Minimizing the span size

a b c d e

(a) A graph G in an arbitrary drawing,
and the integer W = 10 as an instance
of the LAP. In this drawing, G has an
edge length sum of 12 > 10.

A B C D E F

a b c d e

(b) The construction of H, the edge graph of G.
H, W with W = 10 is an instance of SpanSum.
This ordering is the same as the drawing of G
in the left graph, so the span sum 12 > 10.

c b d a e

(c) The edge length sum minimizing
drawing G. This ordering has a total
edge length of 8 < 10, so G, W is a
solvable instance of LAP.

A B C D E F

c b d a e

(d) The span sum minimizing drawing of H
with a span sum of 8 < 10. So H, 10 as an
instance of SpanSum is solvable, too.

Figure 3.1: An instance of the LAP and its edge graph in random ordering (a) and (b) and
in optimal ordering (c) and (d). The colors indicate the correlation of the edges
to the parents.

equals the span size of its representative in the edge graph. So edge-length-sum minimizing
in the original graph is the same problem as span-sum-minimizing for the edge graph.

Example: Suppose we are given an arbitrary graph G as an instance of LAP as shown in
Figure 3.1(a). If we transform the graph as described into an edge graph, we get an instance
of the SpanSum problem. Figure 3.1(b) shows the edge graph H of G. It is easy to see that
the lengths of the colored edges equal the size of the span in H. These particular drawings
of G and H have edge length or else span sum of 4 + 3 + 2 + 1 + 1 + 1 = 12. The optimal
ordering of G, as shown in Figure 3.1(c), has edge length sum 2+2+1+1+1+1 = 8, which
is the same as the span size in the optimal ordering of the children in H in Figure 3.1(d).
This observation leads us to our first result:

Theorem 3.3. MinimumSpanSum is NP-complete.

Proof. We first show that SpanSum is in NP. Suppose we are given an instance H, W of
SpanSum and a drawing x; we can check that the sum of the spans in the drawing x is at
most W in time polynomial in the number of edges of H.

We show that we can reduce LAP to SpanSum in polynomial time. With a given instance
G = (V, E), W of LAP, we construct an instance H, W of SpanSum where H = (P ∪· V, E′)
is the edge graph of G (Definition 3.2). Any drawing y of H corresponds to a drawing
x of G where x(u) = y(u) for all u ∈ V and where the length |x(u) − x(v)| of the edge
(u, v) ∈ G is the same as the length |y(u)− y(v)| of the span of parent puv ∈ P . Thus there
exists a drawing x of G with the sum of its edge lengths less than W if and only if there
exists a drawing y of H with the sum of its parent-span sizes less than W .

14



Creating an edge graph runs in time polynomial to the number of nodes and edges. In
conclusion, SpanSum is NP-hard and with that NP-complete.

Variant: It is challenging to minimize the sum of the span sizes. However, minimizing the
largest span is NP-complete, too.

Definition 3.4 (MinimumMaxSum (MaxSpan)). Suppose we are given a bipartite graph
G = (P ∪· C, E) and an integer W ∈ N. Is there a partial drawing x : C → Z, such that the
following holds?

∀p ∈ P : sp = lp − fp ≤W.

In Definition 2.7, we introduced Bandwidth, a problem similar to LAP. Both problems try
finding an alignment for a graph on a line, with the edges as small as possible. While LAP
searches for a sum-of-edge minimization, Bandwidth minimizes the longest edge. So we use
the same steps to create with a given instance G, W of Bandwidth a corresponding edge
graph H, that forms together with W an instance of MaxSpan. We already know that the
span size of a parent in H equals the edge length of the edge in G it represents. Hence, a
longest-edge-minimizing drawing for G corresponds to a largest-span-minimizing drawing
in H.

Corollary 3.5. MinimumMaxSum is NP-complete.
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4. Minimizing the window size

Let us proceed with the core of this thesis. Unfortunately, in Chapter 3, the span
minimization problem turned out to be hard in both variants, with minimizing span sum
and maximum span. In this chapter, we examine if it is also hard to find drawings with
minimum window sum or minimum largest window.

This target now has different approach methods we will talk about: Nevertheless, first, we
provide a fast algorithm for one method. If we take an existing drawing for the children,
this algorithm gives us the locations for the parents, such that their window sum is minimal.
The second method, taking a bipartite graph and finding a drawing for both sets of nodes
with minimal window sum, is NP-hard.

In this chapter, we assume degree one for each node. Nodes without adjacent edges can be
placed arbitrarily, and if they are parents and thereby the window is defined, its size is
zero.

4.1 Placing parents within their span
One first observation follows from Proposition 2.3: When the children are fixed, so is the
span, too. So the span marks a lower bound of a window. We ask if finding a drawing for
the parents where they are placed in distinct positions, each within its span, is feasible. If
there is such a drawing, this has the minimum window sum we can get with frozen children
and moving parents. We provide a fast algorithm to find a drawing where all parents are
within their span, if there is one.

Definition 4.1 (ParentsInSpan (PinS)). Suppose we are given a set of parents P and
the set of their marginal children S = {(fp, lp) | p ∈ P} in a partial drawing x : S → Z.,
is there a completing drawing x : P → Z in which every parent p ∈ P is placed inside its
span?

In each step, the algorithm greedily chooses the next parent and tries to place it. For
that purpose, the algorithm starts iterating over the positions F, F + 1, . . . , L− 1, L, while
F = min{fp | p ∈ P} and L = max{lp | p ∈ P} are the positions of the smallest and largest
child node (Table 2.1). In the iteration, at position t, the algorithm adds all parents p ∈ P
to a priority queue ordered by the start of their span fp = t. Thereby the parent gets
marked as active, i.e., we can place this parent from this position onward as long as we
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4. Minimizing the window size

do not step outside its span. So after adding all parents, we look at the queue of active
parents and decide which to place at the current positions. We choose the one where the
risk of exceeding is most likely; that is the one with the closest end of the span. If it is
already too late and the span is exceeded, it is impossible to place all parents in their span.

There is no drawing because, in the previous positions, placing a parent with an even
nearer end was more urgent. However, if the algorithm successfully places all parents, it
returns a correct drawing.

Furthermore, since the parents and the children can be distributed sparsely on a wide
range of integers, the number of iterations can be very high and increase our running time
considerably. For that reason, we add a component that reduces the number of iterations to
at most |P |: If, after one iteration, the queue of parents to place is empty in the following
iterations, as long as we do not mark a parent as active, we will not be able to place a
parent. So we must wait until the next parent gets marked as active again. So if no parent
is active, we do not continue with the next iteration on the following position but jump to
the next start of a span instead. This way, we guarantee that we place exactly one parent
in each iteration.

Algorithm: For an algorithm in pseudo-code, see Algorithm 4.1. Take two priority queues,
Q and R, storing the parents p ordered by fp and lp, respectively. The first queue stores not
active and not yet placed parents (with the start of their span to the right of the current
position), while the second one stores the active parents. So initially, add all parents to Q.

Start with counter i at the smallest child min{c | c ∈ C}. Repeat the following two steps
until one of the two termination cases occurs: As long as i marks the start of the span fp

for the next parent p in Q, remove the parent p from Q and move it to R to mark it as
active. When the next parent on Q has the start of its span right of i, we remove the next
active parent p from R and place p at i, if i ∈ Sp, otherwise return false and stop the
algorithm.

Increment the counter i in one of the following ways: If there are parents on R left,
increment i by one and continue with the next step. Otherwise, look at the next parent p
on Q and set i to fp. If both queues are empty, stop the algorithm and return the drawing.

Example: Suppose we are given an arbitrary bipartite graph G and a drawing x (Fig-
ure 4.1(a)). Since it is not possible to visualize a partial drawing, we are given, in this
example, a non-partial drawing.

We determine the spans and add all parents to Q. Therefore we order them by the start of
the span and get A, B, D, E, C.

So we start on position 1, where we mark A and B as active by adding them to R since
both have their start of span at this point (Figure 4.1(b)). On R, B gets prioritized before
A because of the earlier span end. So we place B at the first position and remove it from
Q (Figure 4.1(c)).

With R not empty, we continue on the following location 2 (Figure 4.1(d)). We have no
span start, so there is nothing to push on R. However, A gets pulled and placed in this
position.

There is no parent on R left, so we can jump over position three and get immediately to
the start of the next span, i.e., position four. With both starts of the span fE and fD at
4, we push them on R (Figure 4.1(e)) before we place E at the current pointer position
(Figure 4.1(f)).

Again, we go to the next position, 5, and push the last parent C on R (Figure 4.2(g)) and
place it immediately (Figure 4.2(h)). When we continue, we see that by trying to place D
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4.1. Placing parents within their span

Algorithm 4.1: Placing parents in their span
Input: A set of parents P and the set of their spans S = {(fp, lp) | p ∈ P} in a

partial drawing x : S→ Z
Data: Priority Queues Q, R of parents, ordered by their first child’s and last

child’s coordinate, respectively
Output: Completing drawing of parents p ∈ P in their spans, if possible, false

otherwise
// Initialization of S, Q

1 Q.add(P);
2 i = fQ.extract();
3 while true do

// Pushing all active parents on R
4 while fQ.extract() = i do
5 R.add(Q.remove());

// Placing the next parent
6 p = R.remove();
7 if lp < i then
8 return false;
9 else

10 place p at i;
// Incrementing i either by one or set it to the start of the

next span
11 if R.notEmpty() then
12 i← i + 1;
13 else if Q.notEmpty() then
14 i = fQ.extract();
15 else
16 return placement;

on position 6 (Figure 4.2(i)), we are already outside of the span SD, and with that, we
stop the algorithm and return false. It is easy to see that there is no way to place A, B,
and C in their spans, i.e., the positions 4 and 5.

This algorithm leads to our next result.

Theorem 4.2. ParentsInSpan is solvable in O(|P | log |P |) time.

Proof. To prove correctness, we show these two statements:

(S1) A drawing returned by the algorithm is a correct solution of PinS.

(S2) If there is a solution, the algorithm will find one.

Statement: (S1): The algorithm places each parent one by one, and as it does this, it checks
if this parent is set in its span. So each parent is placed in its span. Additionally, the
algorithm continues until all parents are placed, so the returned drawing has positions for
all parents, which makes the solution correct.

Statement: (S2): Suppose we are given a solution x for an instance of PinS. We want to
prove that our algorithm returns a drawing, too. For that reason, we show that there
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4. Minimizing the window size

A B C D E

A
B
C
D
E Q R

C

E

D

B

A

(a) A bipartite graph G in an arbitrary drawing with the
span of the parents (orange) and the queues Q and R

A
B
C
D
E Q R

C

E

D

A

B

(b) A, B have their start at this point and so they become
marked as active by moving it onto R.

B

A

C
D
E Q R

C

E

D

A

(c) The algorithm places now the active parent with the closer
end of span, B, at this position.

B A

C
D
E Q R

C

E

D

(d) At the next position, there is no new active parent, so A
gets placed next.

B A

C
D
E Q R

C D

E

(e) The list of active parents is empty, so the counter jumps to
the next start of a span, 4.

B A E

C
D

Q R

C D

(f) Since both D and E have the same end of span, the order of
placement does not matter, so E gets placed at position 4.

Figure 4.1: An example for the algorithm to place all parents inside their span with graph
G. The successive steps are shown in Figure 4.2.
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4.1. Placing parents within their span

B A E

C
D

Q R

D

C

(g) C is marked as active by adding it to the queue.

B A E C

D

Q R

D

(h) C is placed at position 5.

B A E C

D

Q R

D

(i) The algorithm fails to place D at position 6 since this is
already outside of SD and thus returns false.

Figure 4.2: The second part of the example from Figure 4.1.

exists a greedy solution. Our algorithm only fails to provide a solution if stopped at any
point when it is not possible to place the next parent. Let y be the drawing our algorithm
creates up to a particular position i during the algorithm’s run time. However, we show
that if the optimal solution deviates from x at i, the greedy choice is valid.

We write x−1(a), to get the parent at position a ∈ x(P ) in drawing x. Let us take the first
deviation at position i = min{i ∈ x(P ) | y−1(i) ̸= x−1(i)}. By choosing the first deviation,
we make sure that for j < i the drawings x and y are identical, i.e., y−1(j) = x−1(j) holds.
The following deviations are possible:

Greedy algorithm chooses different parent Drawing x has parent B := x−1(i). Mean-
while, the greedy choice of the algorithm is A := y−1(i) as shown in Figure 4.3(a). B
is placed at i on the solution x and A is chosen by our algorithm. So both A and
B are active at i, so i ∈ SA and i ∈ SB. With x and y being identical, x(A) > i
and y(B) > i. Our algorithm chose A while A and B are active, thus lA ≤ lB. So
x(A) ∈ SB and thereby x(A) is a valid solution for B, too.

Greedy algorithm places parent, where x does not At i, the greedy algorithm would
have placed A := y−1(i), but x has a gap at i as shown in Figure 4.3(b). So A is
active on i. Moving A to i in the drawing x leads to a more similar version to the
greedy solution.
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4. Minimizing the window size

A B

B A
x

y

A
B

(a) The greedy algorithm chooses
a different parent than the optimal
solution.

A

A
x

y

A

(b) The greedy algorithm chooses
a parent where x does not.

A

A
x

y

A

(c) The greedy algorithm chooses
no parent where x has.

Figure 4.3: The three possible deviations of the greedy choice y to solution x

Greedy algorithm places no parent, where x does The optimal solution x has par-
ent B := x−1(i), while the algorithm would not place any node at i as shown in
Figure 4.3(c). Since x and y equal at position j < i, y(B) > i. However, i ∈ SB , and
since B is active at i, the algorithm would not have chosen to keep i unoccupied.

No matter where the first position is, where x deviates from the greedy solution, it is always
possible to swap parents appropriately to resolve the deviation. Each swap assimilates the
solution up to position i. Thus after a limited number of swaps, it is possible to remove
them. Hence if there is a solution for an instance, there is always a greedy one, too. So the
algorithm finds a solution if there is one.

Suppose we are given a parent set P and a span set S as instance of PinS, then

The graph ParentsInSpan is solvable.⇔ The algorithm finds a valid solution.

The implication “⇒” is shown by Statement (S2), while “⇐” follows from Statement (S1).

Running time: To complete the proof, we need to calculate the running time for this
algorithm. Notably, this algorithm does not require the input graph to be gap-free. The
way the counter i is incremented guarantees jumps over too large gaps between the children.

The running time is computed in the following way: Let n := |P |. Pushing n parents
onto our priority queue needs O(log n) time each so in total O(n log n) We place a parent
from the queue R in each loop iteration. Each of the parents will once be added to and
removed from R. So the loop will be repeated precisely n times if not aborted earlier due
to unsatisfiability. In each iteration, the most time intense operation is adding the nodes
to R, i.e., the push operation, which runs in O(log n). Hence we have a total running time
of O(n log n) = O(|P | log |P |), which completes our proof.

4.2 Moving parents with fixed children
The span marks a lower bound for a window. It cannot get smaller. In this section, we
provide an algorithm that calculates the sum-of-the-window-minimizing drawing even if it
is not possible to place all parents in their span.

At first glance, the variant where we move the parents with frozen children looks the same
as the variant with moving children and fixed parents. However, a significant difference
makes one easily solvable while the question for the other variant stays unanswered. This
difference is the number of parameters necessary to compute the minimum window size.
If we search for an optimal location for a parent p ∈ P , we can calculate the window size
wp at a specific point upfront by looking at the frozen span and computing its distance to
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4.2. Moving parents with fixed children

the furthest child. Contrary to this, it seems impossible to determine the cost of placing
a child in a particular position by knowing only the parents’ positions. It is necessary to
have the positions of other children, too.

Like in the last problem, the frozen interior children do not influence the window size of
the parents, so we need only the parents and their marginal children alias span once again.

However, we can compute the window size at every location candidate for each parent when
the children are fixed, so we only need to create a weighted matching from the parents
to these locations. Like the LAP, we define this problem as a decision question. Suppose
we are given a bipartite graph. Can we find a drawing with a window sum smaller than a
particular number? However, the algorithm we provide calculates the minimal window size
and simultaneously answers the related optimization question: What is the drawing with a
minimum sum of window sizes?

Definition 4.3 (MinimumWindowSumParents (WinSumP)). Suppose we are given a set of
parents P , the set of their marginal children S = {(fp, lp) | p ∈ P} (Table 2.1) in a partial
drawing x : S → Z, and an integer W ∈ N. Is there a completing drawing x : P → Z such
that the following holds? ∑

p∈P

wp ≤W.

The possibility of determining the cost of placing a parent at a particular point allows
us to create a MinMatch (Definition 2.11) of the parents to their possible positions. For
that reason, we create a weighted bipartite graph with the parents as one partition and all
possible positions for the parents as the second. We connect all parents with the positions,
and the weight of the edge equals the window sum this parent has at this position. When
we then calculate the MinMatch with one of the known algorithms, we have a matching
where every parent has exactly one matched position. At the same time, the total weight
of these matched positions, i.e., the total window size, is minimal. So if this matching is
perfect, we get one position for each parent with a minimum sum of the window sizes.

We need a preprocessing mechanism to avoid connecting the parents with too many positions
and increasing the running time. With Corollary 2.10, we know that if we have n := |P |
edges for every parent, we make sure that there is a perfect matching. We only need to
know where these positions are. Proposition 2.3 shows that if a parent is placed within
its span, the window size equals the span size, while outside, it grows linearly with the
distance to it. Since the window size takes minimal values in the span, we take the first
positions from there. If the span is too small and we do not have enough positions, we
continue to the left and the right of the span until we have n positions. Thus we need
n−|Sp|

2 = n−(sp+1)
2 additional positions from both sides.

With these positions, we create the weighted bipartite graph and use a known algorithm
for MinMatch to solve it. The returned perfect matching connects each parent with one
position. Meanwhile, this matching has minimal weight, so the window size sum of the
original graph is minimal.

Algorithm: Take an instance of WinSumP with graph parent set P , span set S, and an
integer W ∈ Z. Create a weighted bipartite graph H = (P ∪· T, E′, ξ) where T is the set of
possible positions and E′ are the edges of the parents to the positions with weight ξ.

For each parent p ∈ P , execute the following steps: If the span size is larger or equal to
n− 1, begin at the span’s start k = fp. Otherwise begin

⌈
n−(sp+1)

2

⌉
earlier. Starting at k,

add the n successive positions to the list T with an edge to p. If the position is inside the
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4. Minimizing the window size

Algorithm 4.2: Minimizing window by moving parents.
Input: A set of parents P of a graph, the span set S = {(fp, lp) | p ∈ P} in a

partial drawing x : S→ Z
Data: Weighted bipartite graph H = (P ∪· T, E’, ξ)
Output: Completing drawing x : P→ Z of parents p ∈ P with minimal window

sum
// Initialization

1 T← ∅
2 E’← ∅
3 n← |P|

// Adding the weighted edges
4 for p ∈ P do
5 if sp < n− 1 then
6 k← fp −

⌈
n−(sp+1)

2

⌉
7 else
8 k← fp

9 for t← k to k + n− 1 do
10 if t ̸∈ T then
11 T.add(t)
12 e← (p, t)
13 E’.add(e)
14 if t < fp then
15 ξ(e)← lp − t
16 else if t ≤ lp then
17 ξ(e)← sp

18 else
19 ξ(e)← t− fp

// Calculating the minimal weight perfect matching and creating the
placing

20 H← (P ∪ T, E’, ξ)
21 M← MinMatch {H}
22 for (p, t) ∈ M do
23 x(p)← t
24 return x

parent’s span Sp, then the weight of the edge is sp. Otherwise, it equals the distance to
the closer marginal children plus sp.

After adding all positions and the edges for the parents, create a weighted bipartite graph
H to calculate a MinMatch. The result of the matching is a set where each parent is
adjacent to exactly one position. Place the parents in these positions in a completing
drawing x : P → Z.

Optionally, compute the window size WP to determine if WP ≤ W . An algorithm in
pseudo-code is shown in Algorithm 4.2.

24



4.2. Moving parents with fixed children

Example: We are given an instance graph G in a drawing x as shown in 4.4(a). Once
again, we take a non-partial instead of a partial drawing for visualization purposes while
the positions for the first and last child are already enough.

Since we have seven parents, we also want to match seven locations for each of them. For
a parent p ∈ P , we do the following, which we show exemplarily for node C. The span size
is sC = 3. Thus the first node k = fC −

⌈
n−(sC+1)

2

⌉
= b− 2. We match seven consecutive

positions to C, beginning two before b (Figure 4.4(b)). For each edge, we have weight
sC = 3 plus the distance to the span. The figures above the positions indicate the window
size at this position.

The red edges in Figure 4.4(c) illustrate a minimum weight bipartite matching, where
each parent is connected to the optimal position. Since D, G, and F have c as shared
only-child, only one can be placed optimally per se, but the sum is nevertheless optimal.
The minimizing drawing is shown in Figure 4.4(d).

Theorem 4.4. MinimumWindowSumParents is solvable in O(|P |2+o(1)).

Proof. Suppose we are given a parent set P, |P | =: n with span set S and W ∈ N as an
instance of WinSumP.

We have to show that the algorithm returns a drawing, and this drawing has a minimal
window sum. For that reason, we show that the following statements are true.

(K1) The matching part finds a perfect matching.

(K2) The sum of the weights in the matching is equal to the window sum with parents at
the matched positions.

(K3) For each parent, the graph matches the n positions where the window is as small as
possible.

(K4) The provided drawing has minimal window sum.

Statement (K1): The algorithm matches each of the n parents with n possible positions.
So no matter where the other n − 1 parents are located, there is at least one position
unoccupied. With Corollary 2.10 of Hall’s marriage theorem follows that there exists a
perfect matching. Hence, it is possible to place every parent.

Statement (K2): Suppose we are given a perfect matching M . We define the drawing xM

such that for (p, t) ∈M , xM (p) = t. Let ep ∈M be the edge to which p ∈ P is adjacent.
For the window sum function ω(xM ), the following yields:

ω(xM ) =
∑
p∈P

wp
G↔H=

∑
p∈P

ξ(ep) =
∑
e∈M

ξ(e) = ξ(M).

Hence, the weighted sum equals the window sum.

Statement (K3): Consider x as a drawing provided by the algorithm with matching M and
window sum Ωx. Assume there is a drawing y matching M ′ with a smaller window sum
Ωy < Ωx. The matching algorithm always returns the minimum matching, so M ′ ̸⊆ E′. So
there is a parent p ∈ P that is matched with a lower window in M ′, so (y(p), p)) ∈M ′ \E′

with ω′
p := ξ(p, (y(p))) < ξ(p, (x(p))) =: ωp. Consider dp := ωp − sp and d′

p := ω′
p − sp > dp

as distances to the span. With dp > 0, the algorithm takes not only span locations and
hence sp < n− 1.
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4. Minimizing the window size

A B C D E F G

a b c d e f

(a) A drawing of a graph G. For visualization purposes we focus on
parent C.

5 4 3 3 3 3 4

⌈
n−(sC+1)

2

⌉

n

sC

(b) The matching of C to seven possible positions. The figures above the positions indicate
the window size if we place node C on this position. This matching happens for all the other
nodes, too.

A B C D E F G

3 1 0 1 3 2 3

(c) The red edges define a solution of the MinMatch. The figures above show the weight, i.e.,
the window size of the parent connected to it.

B D G F C A E

a b c d e f

(d) The final solution of WinSumP as window sum minimizing drawing
of the parents.

Figure 4.4: A graph G as example of the algorithm to find a sum-of-the-window-minimizing
drawing.
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4.2. Moving parents with fixed children

Thus
⌈

n−(sp+1)
2

⌉
≥ dp < d′

p. This algorithms adds n locations from fp −
⌈

n−(sp+1)
2

⌉
. So

the last step takes place at

fp −
⌈

n− (sp + 1)
2

⌉
+ n− 1

= lp − sp −
⌈

n− (sp + 1)
2

⌉
+ n− 1

= lp + (n− (sp + 1)) −
⌈

n− (sp + 1)
2

⌉
= lp +

⌊
n− (sp + 1)

2

⌋
+

⌈
n− (sp + 1)

2

⌉
−

⌈
n− (sp + 1)

2

⌉
= lp +

⌊
n− (sp + 1)

2

⌋

Hence, the algorithm iterates over the whole span, so if y(p) ∈ Sp, (p, y(p)) ∈ E′. Otherwise,
d′

p ≤
⌊

n−(sp+1)
2

⌋
, so y(p) ∈

[
fp −

⌈
n−(sp+1)

2

⌉
, lp +

⌊
n−(sp+1)

2

⌋]
, and (p, y(p)) ∈ E′, too.

Statement (K4): This statement follows from the others. We know that the algorithm
connects a parent with the positions where the window is as small as possible. The matching
algorithm returns the locations for these parents with minimal weight sum. Since the
weight sum equals the window sum, this is minimal too. So the algorithm is correct.

Running Time: The algorithm consists of two major parts: creating the weighted bipartite
graph and solving the MinMatch. The former part connects each of the n parents to n
positions, which leads to a running time of O(n2). The more complicated part is the
matching algorithm in the latter part. As mentioned after Definition 2.11, several attempts
exist to create a fast running time. Since we have a minimum weight matching problem,
we cannot use the simple linear time algorithm. With the Hungarian Method, we can at
least guarantee an upper bound of O(n3) [Kuh55].

We consider the algorithm by Kao et al. [KLST99] to improve the bound. It uses the
parameter W =

∑
e∈E ξ(e), which describes the sum over all weights. With Proposition 2.3,

we showed that the span sizes are costs we always have to pay. Outside the span, the
window size equals the span size plus the distance to the span. So we can subtract the
span costs and start with 0 within the span and with 1, 2, . . . to the left and right. Indeed,
this provides us with the lowest possible weights. Nevertheless, in the worst case, i.e., a
one-degree parent, the weights are n

2 , . . . 1, 0, 1, . . . , n
2 ∈ O(n2). Thus, at this point, the

sum equals:

W =
∑
e∈E

ξ(e) =
∑
p∈P

n

2 + · · ·+ 1 + 0 + 1 + · · ·+ n

2 = n · (n, n− 2, . . . , 0) ∈ O(n3).

Hence the running time by using Kao’s algorithm would be O(
√

nW ) = O(n3.5), which is
even slower than the Hungarian Method.

The only way to find a matching faster is by the recently published algorithm by Chen
et al. [CKL+22]. Since our weighted graph has exactly m = n2 edges, n for each of the n
parents, that gives us a running time of O(m1+o(1)) = O(n2+o(1)) for the matching part.
Moreover, since the former part runs faster, this also marks the running time for the entire
algorithm.
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4. Minimizing the window size

A B C

a b c d e f g h i

Figure 4.5: This drawing is not sum-of-the-window minimizing, but here the parents are
placed opposite a triple of children.

Variant 1: The algorithm provided in this section places the parents in any position.
However, is it still feasible if we only want to permute the parents’ positions from a
given drawing? Or consider a graph G = (P ∪· C, E) with 3|P | = |C|: For creating a
good-looking drawing, with children on positions 1, . . . , |C|, we may want to place parents
on 2, 5, 8, . . . , |C| − 1. An example is shown in Figure 4.5 where the drawing places each
parent opposite of three children. This solution may not be optimal, but better looking in
this case. So we modify our algorithm to make this work.

So let us define a variation of the problem:

Definition 4.5 (MinWinSumParentsWithLocations (WinSumLoc)). Suppose we are given
a set of parents P , the set of their marginal children S = {(fp, lp) | p ∈ P} in a partial
drawing x : S → Z, an integer W ∈ N and for each parent p ∈ P a set of possible locations
Lp. Consider L =

⋃
p∈P Lp. Is there a completing drawing x : P → L that the following

holds? ∑
p∈P

wp ≤W

∧ ∀p ∈ P : x(p) ∈ Lp.

The modification takes only place in the creation of the weighted bipartite graph. Instead of
adding the positions in and around the span, we add for each parent p ∈ P their locations
Lp. In this variant, we do not have n2, but |L| edges, so the running time depends on the
sum of possible locations of all parents.

If |Lp| < n for a p ∈ P , finding a solution is not guaranteed anymore. Furthermore, this
algorithm can determine if there is a placing for the parents in these positions while
neglecting the window sum. These observations lead to the following conclusion:

Corollary 4.6. MinWinSumParentsWithLocations is solvable in O(|L|1+o(1)).

Variant 2: In this algorithm, we used the MinMatch (Definition 2.11). However, we get a
different result if we use a BottMatch (Definition 2.12) instead of the matching part. This
problem is specified to find the lowest maximum weight instead of the minimum weight
sum. We showed that the weights equal the window sizes, which minimizes the maximum
window. Thus lets us define another variant:

Definition 4.7 (MimimumMaxWindowParents (MaxWinP)). Suppose we are given a set of
parents P , the set of their marginal children S = {(fp, lp) | p ∈ P} (Table 2.1) in a partial
drawing x : S → Z, and an integer W ∈ N. Is there a completing drawing x : P → Z such
that the following holds:

∀p ∈ P : wp ≤W.
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4.3. Moving both parents and children

The answer to this problem is a known result discovered by Beckos et al. [BFK+23]. With
a greedy algorithm, they have a faster running time than our matching, but it is still worth
mentioning. It may be a goal to simultaneously find drawings for WinSumP (Definition 4.3)
and MaxWinP, i.e., with minimum sum-of-the-window-sizes and minimum longest edge,
respectively, to compare the solutions and choose by hand the better drawing. Since the
weighted bipartite graph is the same for both problems, we only have to apply MinMatch
and BottMatch and get the two drawings.

The current fastest algorithm for this problem runs in O(n ·
√

mn) and with m = |E′| = n2,
this equals O(n2.5) [PL88]. In summary, we achieve this result:

Corollary 4.8. MimimumMaxWindowParents is solvable (with our matching technique) in
O(|P |2.5).

4.3 Moving both parents and children
The last result showed that minimizing the window sum is feasible if we rearrange the
parents with fixed children. However, we do not necessarily make any restrictions on what
to move. The next question is if we can compute a sum-of-the-window minimizing drawing
with moving both partitions. We show NP-completeness for this problem via reduction
from LAP (Definition 2.6).

Definition 4.9 (MinimumWindowSumBoth (WinSumB)). Suppose we are given a bipartite
graph G = (P ∪· C, E) and an integer W ∈ N. Is there a drawing x : P ∪· C → Z (Table 2.1)
that the following holds? ∑

p∈P

wp ≤W.

For the reduction, we need to transform an instance of LAP in polynomial time into an
input graph for WinSumB. This transformation is achieved by the following method:

Definition 4.10 (Block graph). Suppose we are given a graph G = (V, E). For a fixed
k ∈ N , consider

Bv = {v1, . . . vk} for v ∈ V,

B =
⋃

v∈V

Bv,

P =
⋃

(u,v)∈E

puv, and

E′ =
⋃

v∈V

⋃
vi∈Bv

{(vi, v)} ∪
⋃

(u,v)∈E

{(puv, u), (puv, v)}.

We call v1, . . . vk the block-parents of child v ∈ V , and we call Bv the block of the child v.
We call puv edge-parent of edge (u, v) ∈ E.

Each block-parent, vi ∈ B, has v as its only child. Each edge-parent puv ∈ P is adjacent to
both children u, v ∈ V . We call H = ((P ∪B) ∪· V, E′) a block graph.

Examples of block graph drawings are shown in Figures 4.6(c) and 4.6(d).

We will show that the drawing of a block graph, where the window sum is minimal, has a
special form:
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4. Minimizing the window size

Definition 4.11 (Tight realization). A drawing x of a block graph H = ((P ∪B) ∪· V, E′)
is a tight realization, if for a child v ∈ V and an edge-parent puv ∈ P

(P1) edge-parent puv is placed in its span, i.e., u ≤ puv ≤ v,

(P2) the block-parents of block Bv are ordered consecutively without other nodes in between,
i.e., |x(Bv)| = k, and

(P3) child v is placed strictly within its outermost block-parents, i.e., there are block-parents
vi, vj ∈ Bv with vi < v < vj.

(P4) If there exists a gap in the parents, i.e., a position g ̸∈ x(P ∪B) with p1, p2 ∈ P ∪B,
where p1 < g < p2, then L(g) := {v ∈ V | v < g} and R(g) := {v ∈ V | v > g} as
children left and right of g form two disconnected subgraphs of V .

Suppose we are given a graph as an instance of LAP. We construct a block graph that
consists of two parts. The nodes are placed as children; opposite them, there are k parent
nodes adjacent to the block. The edges, which we have to minimize, are represented like in
the edge graph from Definition 3.2 by two-degree edge-parents.

The sum-of-the-window-size minimizing drawing is a tight realization. In this ordering,
the blocks are placed consecutively opposite their shared child. Between the blocks are
the edge-parents. If we want to minimize the window sum of a block, we put the block-
parents close together and their shared child in the middle. In a tight realization, this is
quasi-achieved, so their window sum is close to the minimum. However, the edge-parents
have large spans.

We assume we have placed the blocks strung together in this way. If we place one of the
edge-parents in their best position, preferably inside their span, but between the blocks, it
pushes the left and right, one away from each other. This position does not change the
windows of the block-parents but the windows of the other edge-parents, with adjacent
edges in both halves. So we could position the parent outside its span to avoid this effect.
However, to the left and the right outside the span, there is about a half block of their
adjacent children. They block the edge-parent from being placed there and the first position
outside at least k

2 distant to the span, which extends the window by the same value. So we
make k large enough to prevent this from happening. If that is achieved, the only way to
reduce the window sum significantly is by finding the proper order of the children.

Example: Figure 4.6(a) presents an arbitrary instance of the LAP. The gadget ordering is
constructed by connecting the vertices with k block-parents each, represented by the gray
nodes. Additionally, the edges in the monoline graph are transformed into the edge-parents
between the blocks with connections to their adjacent vertices. Three edges are colored for
visualization in the tight realization of this ordering shown in Figure 4.6(c).

Consider k being large, e.g., 103. We compute the window size in this format, where the
children are opposite their middle block-parent. The gray block-parents are already as
close as possible to their shared child, and the windows are not improvable. However, let
us calculate the window sum of the edge-parents. With no edge-parent between two blocks,
like between Ba and Bb, the distance between their children is k. With a child in between,
the window size wF is k + 1. Nonetheless, wE = k + 2, since between c and d are two
edge-parents. In the same way wA = k + 3, wB = 2k + 5, wC = 3k + 5 and wD = 4k + 6.
So the total window sum ωP = 12k + 21 = 12 · 103 + 21. Hence, it is easy to see that with
a large k, the number and position of edge-parents between the parents play a minor role.
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4.3. Moving both parents and children

a b c d e

(a) A graph G in an arbitrary drawing
which forms with W = 10 an instance
of the LAP

c b d a e

(b) The optimal ordering of G in the
LAP

A B C D E F

a b c d e

k Be

k k + 1
(c) The tight realization of the block graph originating from G with the same order of child nodes as the
drawing in (a)

E A B C F D

c b d a e

(d) A tight realization with smaller and quasi-minimal window sum, originating from the optimal ordering of
G in (b)

Figure 4.6: A graph G in two different drawings and their corresponding block graphs

Suppose we are given an optimal drawing in LAP as displayed in Figure 4.6(b). The related
tight realization in Figure 4.6(d) gets significantly smaller:

ωP = wA + wB + wC + wD + wE + wF

= (k + 2) + (k + 1) + (k + 2) + (k + 1) + (2k + 3) + (2k + 3)
= 8k + 12.

While moving c one step rightwards would improve the window sum; the difference stays
small compared to k. With improvements in moving the children or the edge-parents, the
costs for the blocks stay similar so that we can omit this in our calculation. So for an
instance with k = 1000, if we know that the tight realization has a minimal window sum
(of the edge-parents) of 22032, there may be a realization of LAP with edge sum 22.

At first, we will exhibit that with large k, every minimizing solution is a tight realization.
After that, we will prove that we can construct a block graph and an integer W ′, such that
the window sum is smaller than W ′ if there is a solution for LAP with W .
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4. Minimizing the window size

Lemma 4.12. For every block graph with k > max{|P |, |E| + 2|P |} a realization that
minimizes the sum of the window sizes is a tight realization.

Proof. Suppose we are given a drawing x of a gadget graph H = ((P ∪ B) ∪ V, E′) with
minimum window sum. Let n := |P |. We show the validity of all four properties.

Property (P3): Assume w.l.o.g. all block-parents of a child v ∈ V are located on positions
greater or equal to v. Hence, v has at least k − 1 adjacent parents to the right and, at
most, |E| to the left. Moving v one step right would tighten at least k − 1 windows and
broaden |E| edge-parents’ windows left and possibly the one of the block-parent opposite
v. With k − 1 > |E|+ 1, this leads to a smaller window sum, contradicting minimality. If
this position is occupied by another child, moving v two steps right would reduce at least
k − 2 windows and broaden at most |E|+ 2 windows. Since |C| = n, after at most n steps
v finds a place and even k − n > |E|+ n holds. So no matter where the other parents are
located, there is a guaranteed better place unoccupied for v.

Property (P1): Assuming without any loss of generality, we have parent puv ∈ P with
u < v < puv. Using Property (P3) which we have already proven, there exists v1 ∈ V with
v1 < v. Consider the new drawing y we get by swapping v1 and puv. With this, consider
the new windows w′

v1 and w′
puv

in y are as visualized in Figure 4.7.

Case x(v1) ≤ x(u) (Figure 4.7(a)):

wpuv + wv1 = (x(puv)− u) + (v − x(v1))
= (x(puv)− v) + (v − u) + (v − x(v1))
> (y(v1)− v) + (v − y(puv))
= w′

v1 + w′
puv

Case x(v1) > x(u) (Figure 4.7(b)):

wpuv + wv1 = (x(puv)− u) + (v − x(v1))
= (x(puv)− v) + (v − u) + (v − x(v1))
> (y(v1)− v) + (v − u))
= w′

v1 + w′
puv

Property (P2): Consider pab ∈ P and u, v, a, b ∈ V with a < b. We aim to prove that two
blocks do not intersect and that there is no edge-parent inside a block.

Suppose without loss of generality that u < v. Let v1 = min Bv be the smallest block-parent
of v and u1 = max Bu be the largest of u. The proven Property (P3) gives us v1 < v and
u1 > u. If u < v1 < u1 < v, swapping u1 with v1 leads to an improvement in both window
sizes wv1 , wu1 , contradicting minimality, so v1 > u1. With that, for all vi ∈ Bv, uj ∈ Bu,
vi > uj . So no two blocks intersect.

If exists a parent pab ∈ x(Bv) in block v1 < pab < v2: We proved that blocks a, b, v do not
intersect, so a < v1 < v2 < b. So swapping pab with v1 or v2 would leave pab in its span. If
v ≤ pab, swapping with v2 decreases v2’s window. Otherwise, the same happens with v1,
and both ways contradict minimality.

Property (P4): Let t ̸∈ x(P ∪ B) be a gap in the drawing where no parent is located.
Assume a node v ∈ V with x(v) = t. However, moving any v1 ∈ Bv to t would set
its window to zero. So there is no child at t, either. If L(t), R(t) are not disconnected
subgraphs, there exist a ∈ L(t), b ∈ R(t), (a, b) ∈ E. Thus pab ∈ P . So x ∈ Spab

and
with that, moving all parents and children right of x one down improves spab

= wpab
but

broadens no window.

Hence we proved all four properties and, thereby, the lemma.
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4.3. Moving both parents and children

v1 puv

puv v1u v

wpuv

wv1

w′
puv

w′
v1

(a) Swapping puv with a block-parent left of u before
the swap (above) and after the swap (below)

v1 puv

puv v1u v

wpuv

wv1

w′
puv

w′
v1

(b) Swapping puv with a block-parent between u and
v before the swap (above) and after the swap (below)

Figure 4.7: These are two swaps that would improve the window sum to show that all
parents are placed in their span.

Using this lemma, we can now prove the main theorem of this section:

Theorem 4.13. MinimumWindowSumBoth is NP-complete.

Proof. For NP-completeness, we reduce LAP to WinSumB, show that this reduction is
polynomial and prove membership in NP.

Suppose we are given an instance of the LAP with G = (V, E) and an integer W ∈ N. Let
k > max{n, |E|+ 2n, 3|E|2 − |E|} be odd. We create a block graph H = ((P ∪B) ∪· V, E′)
and calculate the minimal window sum W ′ to show the equality of the following statements.

(S1) G, W as instance of LAP is solvable.

(S2) H, W ′ as instance of WinSumB is solvable.

We achieve this by proving (S1)⇒ (S2) and ¬ (S1)⇒ ¬ (S2). However, first, we need to
calculate W ′:

Since k meets the conditions of Lemma 4.12, the minimal solution is a tight realization.
We compute the minimal window sum function ω under the assumption that all children
are placed opposite of their middle child before we calculate the improvement we will get
from moving them to other positions.

Let us begin with the block gadgets. Consider E′
B as the edges of E′ adjacent to block-

parents and E′
P as the edges to edge-parents, so E′ = E′

B ∪· E′
P . The n block gadgets with

k nodes each have a total window sum of

ωB = n · (t + t− 1 + · · ·+ 1, 0, 1 + · · ·+ t− 1 + t) = n · 2
t∑

i=0
i = nt(t + 1),

while t := k−1
2 .

For nodes v ∈ V , let y(v)∗ = |{u ∈ V | u ≤ v}| denote the position among the children in
a drawing y. Let N(u, v) be the number of edge-parents between u and v. The distance
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4. Minimizing the window size

between two neighbored children u, v ∈ V equals k plus the number of edge-parents between
their blocks. Thus for a parent p in drawing y the window size

wp =
∑

f,l∈Cp

|y(l)− y(f)| =
∑

f,l∈Cp

|y(l)∗ + y(f)∗| · k + N(f, l).

So if drawing y has the same order of the blocks of graph H as drawing x has for G, the
window sum for the edge-parents

ωP =
∑
p∈P

wp

=
∑
p∈P

∑
f,l∈Cp

|y(l)− y(f)|

=
∑

puv∈P

|y(u)∗ − y(v)∗| · k + N(u, v)

Let us look at the dimensions of N(u, v) for an edge-parent puv ∈ P . The upper bound
is the number of edge-parents |E|, while the lower bound is 1, the parent itself. So
N(u, v) = 1 + N∗(u, v), with N∗(u, v) ∈ {0, . . . , |E| − 1}. Thus,∑

puv∈P

N(u, v) =
∑

(u,v)∈E

1 + N∗(u, v) = |E|+
∑

(u,v)∈E

N∗(u, v) := N∗

with N∗ ∈ {|E|, . . . , |E|2}.

Next, we compare this drawing to one where the children are not strictly placed in the
middle of their block gadgets. We know the children are placed in their block, but they
can move left and right within it. Consider a child node v ∈ V and d as the difference
between the number of adjacent parents placed right to it, and the number of parents left.
To improve the window sum by moving a child one position to the right, d must be at
least 2. This is so because the right parents’ windows shrink with this move, and the left
parents’ windows, including the parent on position v, increase. Since this realization is
tight, there is always a parent at position v, too. Now we have a block-parent more left
and one block-parent fewer right, and for an additional move, the difference between the
number of parents to the right and the left again has to be at least two. Thus for two
steps, d has to be four or more. Hence with difference d, the child steps

⌊
d
2

⌋
times. The

first step improves d− 1 windows, the second d− 2, so with d < |E| the improvement made
by moving one child is at most d2 However, the total difference of all children is 2|E|, with
every edge-parent adding a difference of at most two to distinct children. So moving the
children improves the total window sum by µ∗ ∈ {0, . . . , 2|E|2}.

This information makes it possible to compute the total window size sum Ω. Consider
Wmin := nt(t+1)−2|E|2+|E| and W ∗ := N∗−µ∗+2|E|2−|E|, so W ∗ ∈ {0, . . . , 3|E|2−|E|}.
So

Ω = ωB + ωP − µ∗

= nt(t + 1) + N∗ − µ∗ + k ·
∑

puv∈P

|y(u)∗ − y(v)∗|

= Wmin + W ∗ + k ·
∑

puv∈P

|y(u)∗ − y(v)∗|.

Finally, we can prove the equivalence of the statements (S1) and (S2). Suppose we are
given G = (V, E), W as an instance of LAP. We create a block graph H = ((P ∪B)∪· V, E′).
Consider W ′ := Wmin + 3|E|2 − |E|+ k ·W .
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4.3. Moving both parents and children

(S1)⇒ (S2) So there is a drawing x of the nodes of G, where
∑

(u,v)∈E |x(u)− x(v)| ≤W .
We create a tight realization y of H with the blocks in the same order, such that∑

puv∈P |y(u)∗ − y(v)∗| ≤W yields. So for H in drawing y the window sum Ω is

Ω = Wmin + W ∗ + k ·
∑

puv∈P

|y(u)∗ − y(v)∗|

≤Wmin + 3|E|2 − |E|+ k ·W
= W ′.

¬(S1)⇒ ¬(S2) There is no realization x, where
∑

(u,v)∈E |x(u) − x(v)| ≤ W . Thus for
every drawing y of H,

∑
puv∈P |y(u)∗ − y(v)∗| > W . Since k > 3|E|2 − |E|, the

following is valid for the window minimizing solution:

Ω = Wmin + W ∗ + k ·
∑

puv∈P

|y(u)∗ − y(v)∗|

≥Wmin + W ∗ + k · (W + 1)
≥Wmin + k ·W + k

> Wmin + k ·W + 3|E|2 − |E|
= W ′.

Hence, our block graph has a drawing where the sum of the window sizes Ω ≤ W ′, if
and only if the monoline version has an arrangement with an edge sum smaller or equal
to W . The block graph has vk + |E| parents, v children and vk + 2|E| edges. With
k ≤ max{n, |E|+ 4, 3|E|2 − |E|}+ 2, the reduction is polynomial and WinSumB NP-hard.

Nothing else remains to be done except to prove membership in NP . Suppose we are given
an instance of WinSumB with graph G = (P ∪· C, E), calculating the window size sum can
be done in O(|P | · |C|).
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5. Minimizing the edge length

Minimizing window sizes on drawings of bipartite graphs is one thing, but sometimes
considering the number of edges displayed in the window makes sense, too. Thus let
us talk about reducing the edge lengths where similar to the window size minimization,
sum-of-the-edge-length, and longest-edge minimization is possible.

The problem can also be described as ink minimization since the amount of ink used to print
a bipartite graph depends on three things. We cannot reduce the number of vertices and
edges without losing information, so the only modifiable factor is the lengths of the edges
(To be exact, that is true for the euclidean edge length, but as mentioned in Definition 2.5
we use projected edge lengths). Graphical factors like the size, shape, and distance of
vertices and the stroke width of edges shall be neglected and considered separately.

However, window and edge length minimizing is correlated. A window of a parent is
always lower-bounded by the longest edge, so minimizing window sizes has a similar effect
on edge lengths, too. Nonetheless, a window depends only on the marginal children, so
sum-of-the-edge-length minimization is not the same as sum-of-the-window minimization.

If we minimize the edge lengths, the difference between parents and children is lost, but
we keep the naming for consistency. That gives us two different methods for pursuing
our goal: Either we fix one side and allow the other to move freely (w.l.o.g. we freeze
the children and change the parents’ places), or we change the positions of both sets. We
will first provide an algorithm for the half-frozen variant before we continue with proving
NP-completeness for the second problem. In this chapter, we also assume at least degree
one for parents and children. Nodes without an adjacent edge can be placed arbitrarily.

5.1 Moving one side with fixed other side
The reason why the problem is not NP-hard if we allow only one side to move is made by
a slight difference that helped us at the WinSumP problem, too: When placing a parent in a
particular position, the length of the adjacent edges only depends on the connected children.
Since they are fixed, this is independent of the other parents. So we can again create a
cost function and match the parents to their possible positions as we did in WinSumP.

However, it is not possible to use the algorithm of WinSumP without any changes. There
are differences in the weight function. When looking at windows inside the span, the
window size attains minimal values, i.e., the span size. Outside the span, the window equals
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5. Minimizing the edge length

the span size plus the distance to the span. The weight calculation is more challenging
when looking at edge length sums instead of window sizes. For instance, for a parent with
connected children in positions 2, 3, 4, 5, 100, it would make more sense to put the parent in
1 outside its span than in position 100 inside. So without good preprocessing, we need to
iterate for each parent over its whole span and compute the edge length to every adjacent
child.

See Table 2.1 for the used terms. So let us define our problem:

Definition 5.1 (MinimumEdgeSumOneSide (EdgeSumOne)). Suppose we are given a bipartite
graph G = (P ∪· C, E), a partial drawing x : C → Z, and an integer W ∈ N. Let
SP := maxp∈P sp. Is there a radial drawing x : P → Z (Table 2.1), such that the following
holds? ∑

e∈E

λ(e) ≤W.

We have to examine, which is the best position for a parent, so we introduce new terms:

Definition 5.2 (Edge minimum, minimizing position, left and right children, relative edge
length). Suppose we are given a bipartite graph G = (P ∪· C, E) and a drawing x : C → Z.
Let p ∈ P be a parent and i a position.

• ωp(i) :=
∑

c∈Cp
λ((i, c)) is called the edge length sum of p at position i.

• µp := minj∈Z ωp(j) is called the edge minimum of p.

• Xp := {j ∈ Z|ωp(j) = µp} are the minimizing positions of p.

• ω̂p(i) := ωp(i)− µp is the relative edge length sum.

• To achieve a position-based partitioning of the children Cp = Lp(i) ∪· Mp(i) ∪· Rp(i)
we define

Lp(j) := {c ∈ Cp | c < j}
Mp(j) := {c ∈ Cp | c = j}
Rp(j) := {c ∈ Cp | c > j}

as left, opposite and right child(ren) of p, respectively.

Note that a parent’s relative edge length sum is always 0 at its minimizing position(s) and
positive on the other positions. Additionally, Mp(i) contains a single child at position i or
is empty.

We need n := |P | possible locations for the matching again, so we want to find their
locations. Let us take a parent p with degree np. We first have to be aware of the
extraordinary form of our weight function. Outside of its span, at the position, fp − k or
lp + k with a large-scale k, this position has considerable weight. However, with every step
towards the span, the weight sum gets exactly np lower, one for each edge. So the best n
positions are somewhere in and around the span. We demonstrate that this cost function
has a minimum, an interval with not necessarily different bounds. From this minimum, the
function monotonically increases to the left and the right.

So we can search for the minimum in the span and keep adding the positions with the
lower cost from left and right up to n. Then we have our MinMatch and can compute the
matching like in the window variant.
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5.1. Moving one side with fixed other side

The cost function has this particular form for the following reason: Let us assume we have
a parent p ∈ P and a position j with costs ωp(j) =

∑
c∈Cp

λ((p, c)). We calculate the cost
change if we increment j. The lengths of the edges from p to children right to j, i.e., Rp(j),
decrease by one, while the other edges Lp(j) ∪Mp(j) will get longer. So for j far to the
left of the span, the edge length is considerable. With each step we get closer to the first
child, the weight gets reduced by |Rp| = |Cp| and increased by |Lp| = 0.

When we enter the span, nodes shift from Rp to Lp, and the cardinality difference between
these two sets decreases. At some point, when |Rp| = |Lp|, this function will attain its
minimum. The function will rise again as soon as more children are in Lp than are in Rp.
So we start at the position where |Rp| = |Lp| and add as many locations as needed to the
matching.

One observation we make is that there is no use in calculating the actual edge sum. The
relative edge sum is the only thing that matters for the matching part. The edge minimum
is the cost we always pay, so we can use the algorithm by continuing with ω̂p(i). With that,
we start at the one or two middle children with cost zero without calculating the actual
value. Then we can compute step by step the weight increase left and right.

Algorithm: Create a weighted bipartite graph H = (P ∪· T, E′, ξ) following these steps for
each parent p ∈ P . Initiate a Boolean array B for the positions of the children. Iterate
over all children c ∈ Cp and set B(c) to true. Meanwhile, link the lowest child and count
the number of children np. From the first child, get to the middle child t by iterating over
the array and counting the number of passed children.

If the number of children is odd, add t to the positions and edge (p, t) with weight zero
to the weighted graph. Otherwise, iterate with t from the left middle child to the right
middle child and do the same each step. Count the number of added positions and if at
any point this reaches n, stop this iteration and continue with the next parent. Add the
minimal positions with costs of 0. Start with pointers i and j at the one below the left and
one above the right middle children, respectively. Initiate counters l, r, ωi, and ωj with the
number of middle children, 1 or 2. The variable l stores the number of children right of i
minus the number of children left of and in i. The variable r stores the number of children
left of j minus the number of children right of and in j. The relative edge length sum ω̂p(i)
and ω̂p(j) are saved in ωi and ωj .

Until reaching the required amount of positions to match, choose the next with this
algorithm: If ωi ≤ ωj : Add i to the positions and (p, i) to the edges with weight ωi. If a
child is at position i marked in B(i), increment l by two. Add l to ωi and decrement i by
one.

Otherwise, if ωi > ωj , add position j to T and edge (p, j) to E′ with weight ξ((p, j)) = ωj .
If B(j) increment r by two. Add r to ωj and increment j by one.

When this is done for all parents, solve a MinMatch with this graph to receive matching M
with minimal weight, i.e., minimal window sum. Like in WinSumP, extract the positions in
this matching and place the parents on these positions in a new drawing x : P → Z.

Optionally, compute the edge sum WP to determine if WP ≤W . A pseudo-code algorithm
is shown in Algorithm 5.1.
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5. Minimizing the edge length

Algorithm 5.1: Minimizing edge length with one side fixed. Part 1/2 5.2
Input: A bipartite graph G = (P ∪· C, E), a partial drawing x : C → Z
Data: Boolean array B, weighted bipartite graph H = (P ∪· T, E’, ξ)
Output: Completing drawing x : P→ Z with minimal edge length sum
// Initialization

1 T← ∅
2 E’← ∅
3 n← |P|
4 For p ∈ P
5 np ← 0
6 i
7 for c ∈ Cp do

// Calculating the number and the positions of the children
together with the smallest child i

8 np ← np + 1
9 B(c)←true

10 if c < i then
11 i← c

// Getting the middle children
12 k←

⌈np
2 − 1

⌉
13 while true do
14 if B(i) then
15 k← k− 1
16 if k == 0 then
17 break

18 i← i + 1
19 j← i
20 if np even then
21 do
22 j← j + 1
23 while ¬B(j)

// Adding the minimal positions to the graph
24 N← n
25 for t← i to min{j, i + n− 1} do
26 if t ̸∈ T then
27 T.add(t)
28 e← (p, t)
29 E’.add(e)
30 ξ(e)← 0
31 N← N− 1

. . .
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5.1. Moving one side with fixed other side

Algorithm 5.2: Minimizing edge length with one side fixed. Part 2/2 5.1

. . .

// Adding the remaining positions
31 i← i + 1
32 i← j− 1
33 if np even then
34 l, r← 2
35 else
36 l, r← 1
37 ωi, ωj ← l
38 for k← 1 to N do
39 if ωi ≤ ωj then
40 t← i
41 ωt ← ωi
42 if B(i) then
43 l← l + 2
44 i← i− 1
45 ωi ← ωi + l
46 else
47 t← j
48 ωt ← ωj
49 if B(j) then
50 r← r + 2
51 j← j + 1
52 ωj ← ωj + r
53 if t ̸∈ T then
54 T.add(t)
55 e← (p, t)
56 E’.add(e)
57 ξ(e)← ωt

// Calculating the minimal weight perfect matching and creating the
drawing

58 H← (P ∪· T, E’, ξ)
59 M←MinMatch{H}
60 for (p, t) ∈ M do
61 x(p)← t
62 return x
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5. Minimizing the edge length

Example: Suppose we are given a graph with an integer W as shown in Figure 5.1(a) as
an instance of EdgeSumOne. We have n = 7 parents, so we need seven position candidates
for the matching. The following steps are shown by C as an example but repeated for all
parents.

We begin the initialization process to determine the degree nC , the lowest child i, and the
located children in B. The order in which our children are stored, e.g., in an adjacency
list, is d, e, c, f, b, and in this order, we iterate over this list as shown in Figure 5.1. In each
step, we take the next child, increment the degree counter nC , and set the Boolean array
B to true on this position. Additionally, we keep track of the first child.

After adding all nodes, we have b as the lowest child and want to get to d as the middle
child. For that reason, we have to jump

⌈nC
2 − 1

⌉
= 2 times to get to the middle node d.

So we increment i and look at B where the positions of the children are until we get to the
third node.

We calculate the minor weight positions as shown in Figure 5.2. Since we have an odd
number of adjacent children, we have only one minimizing position at the middle child.
Thus, we add this with relative edge sum 0 to the new graph, in this figure visualized by Ω
before we start the counter one left and right of this middle child.

We initialize the variables l, r, and ωi, ωj with 1. So the difference between the number
of nodes left of i minus the nodes right of i and in i equals l = 1. The same yields for j,
where |L(j)| − (n− |L(j)|) = r. Let us double-check the values of ωi and ωj . We compare
i and j with the middle position. At i, the edges to the first and second child shrink by
one, while the other three children move one further, so placing the parent at i costs one
more than the middle position. The same is valid symmetrically for j.

We check this with the actual edge lengths. At the middle position, we have edge distances
from left to right of 3+1+0+2+3 = 9. The positions i and j have costs 2+0+1+3+4 =
10 = 9 + 1 and 4 + 2 + 1 + 1 + 2 = 10 = 9 + 1. So in this position, the counters are correct.

Since we have one out of seven positions, we repeat the adding procedure six times: We
compare the weight at both counter positions stored in ωi and ωj , respectively. They are
now equal, so we add position i with the weight 1. Before shifting i one to the left, we look
for a child in the old position. If there is one, we increment the counter l by two because
the number of positions to the right of i increases while the number of nodes left decreases,
so the difference grows by 2. Furthermore, ωi grows by the new l. Let us calculate the
edge sum: We have at the new position i edge lengths 1 + 1 + 2 + 4 + 5 = 13 = 9 + 4.

At the next step, the left pointer indicates a location with a smaller weight, so this time,
we choose j. Starting by adding an edge to this new position, we do not increment r,
since B(j) = false. We add r to ωj and move j. The next position comes again from j
before we switch back to i. We take another location from i and j and have our seven
best positions. Let us recheck the last two weights to see if the weight difference is still
correct. The left and right locations have edge sum 0 + 2 + 3 + 5 + 6 = 16 = 9 + 7 and
6 + 4 + 3 + 1 + 0 = 14 = 9 + 5.

Figure 5.3(a) shows C with its seven best positions as part of the weighted graph. With
the matching algorithms as described in Definition 2.11, we get a solution with minimal
weight sum (see Figure 5.3(b)). In this way, we achieve the positions with the minimal
edge length sum and our solution to EdgeSumOne, see Figure 5.3(c).
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5.1. Moving one side with fixed other side

A B C D E F G

a b c d e f

(a) A graph in an arbitrary drawing. It forms with an integer W an
instance of EdgeSumOne.

b c d e f

B

Nodes: d, e, c, f, b nC : 0 i :

b c d e f

B T

Nodes: d, e, c, f, b nC : 1 i : d

b c d e f

B T T

Nodes: e, c, f, b nC : 2 i : d

b c d e f

B T TT

Nodes: c, f, b nC : 3 i : c

b c d e f

B T TT T

Nodes: f, b nC : 4 i : c

b c d e f

B T TT TT

Nodes: b nC : 5 i : b

Figure 5.1: The initialization process of parent C for the child number nC , the first child i
and the Boolean array B. This is the first step of the algorithm to compute a
minimizing drawing for an instance of EdgeSumOne.

43



5. Minimizing the edge length

B

Ω

l : ωi : r : ωj :

T TT TT
0

i j

B

Ω

l : 1 ωi : 1 r : 1 ωj : 1

T TT TT
0

i j

B

Ω

l : 3 ωi : 4 r : 1 ωj : 1

T TT TT
01

i j

B

Ω

l : 3 ωi : 4 r : 1 ωj : 2

T TT TT
01 1

i j

B

Ω

l : 3 ωi : 4 r : 3 ωj : 5

T TT TT
01 1 2

i j

B

Ω

l : 3 ωi : 7 r : 3 ωj : 5

T TT TT
01 1 24

i j

B

Ω

l : 3 ωi : 7 r : 5 ωj : 10

T TT TT
01 1 24 5

i j

B

Ω
T TT TT
01 1 24 57

Figure 5.2: Starting at the middle child, the algorithm computes the relative edge lengths
sum indicated by Ω.
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5.1. Moving one side with fixed other side

7 4 1 0 1 2 5

n

(a) The matching of C to the seven best positions. The figures over the positions
indicate the relative edge sum if we place node C on this position. This calculation
happens for all the other nodes, too.

A B C D E F G

3 1 0 1 0 2 3

(b) The red edges define a solution of the EdgeSumOne. The figures show the weight,
i.e., the relative edge sum of the adjacent parent.

B F G D C A E

a b c d e f

(c) The window sum minimizing drawing of G, W as EdgeSumOne in-
stance

Figure 5.3: The matching part of this algorithm to find a solution of EdgeSumOne
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5. Minimizing the edge length

Lemma 5.3. Suppose we are given a bipartite graph G = (P ∪· C, E), for each parent
p ∈ P the following statements hold:

(S1) For a position i ∈ N,

ωp(i− 1) = ωp(i) + np − 2|Lp(i)|, and
ωp(i + 1) = ωp(i) + np − 2|Rp(i)|.

(S2) For a minimizing position m ∈ Xp, the weight function ωp is monotonously decreasing
on the (discrete) interval ]−∞, m] and increasing on [m,∞[.

(S3) If |Cp| is odd, the location of the middle child c, i.e., where |Lp(c)| = |Rp(c)|, is the
only minimizing position Xp = {c}.

(S4) If |Cp| is even, and c < d are the middle children, i.e., where |Rp(c)| = np

2 and
|Lp(d)| = np

2 , the minimizing positions are Xp = {c, . . . , d}.

Proof. We show the validity of each of the statements. Assume we are given a parent p ∈ P .
For easier readability, we omit the index p where not necessary.

Statement (S1): Suppose we are given a position i with weight ω(i). We prove the second
equation, the proof for the first is analog.

ω(i + 1)
=

∑
c∈Cp

|c− (i + 1)|

=
∑

l∈L(i+1)
((i + 1)− l) + 1i+1∈M(i+1)|(i + 1)− (i + 1)|+

∑
r∈R(i+1)

(r − (i + 1))

=
∑

l∈L(i)∪M(i)
((i + 1)− l) +

∑
r∈M(i+1)

(r − (i + 1)) +
∑

r∈R(i)\M(i+1)
(r − (i + 1))

=
∑

l∈L(i)
((i + 1)− l) +

∑
l∈M(i)

((i + 1)− l) +
∑

r∈R(i)
(r − (i + 1))

=
∑

l∈L(i)
(i− l) + |L(i)|+

∑
l∈M(i)

(l − i)− |M(i)|+
∑

r∈R(i)
(r − i)− |R(i)|

=
∑

l∈L(i)
(i− l) + 1i∈M(i)|i− i|+

∑
r∈R(i)

(r − i)− |R(i)|+ (|L(i)| − |M(i)|)

=
∑

c∈Cp

|c− i| − |R(i)|+ (|Cp| − |R(i)|)

=ω(i) + np − 2|R(i)|

Statement (S2): We only have to show that the derivative ∆(i) = ω(i + 1) − ω(i) is
monotonously increasing and has a negative and positive function value. This property
will prove that ω(i) is a function that starts high and gets lower before it increases again.

∆(i) =ω(i + 1)− ω(i)
=ω(i) + np − 2|R(i)| − ω(i)
=np − 2|R(i)|.

So with i < fp, R(i) = Cp and ∆(i) = n− 2|R(i)| = n− 2n = −n and with i > lp, R(i) = ∅
and ∆(i) = n. Furthermore, ∆ is monotonously decreasing with |R(i)| increasing. Bearing
in mind that R(i + 1) ⊂ R(i), |R(i + 1)| ≤ |R(i)|, this is also proven.
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5.1. Moving one side with fixed other side

Statement (S3): Let m be the position of the middle child, where |L(m)| = |R(m)|. Then
M(m) = {m} and

np = |Cp| = |L(m) ∪M(m) ∪R(m)| > 2|R(m)| = 2|L(m)|.

With (S1) we know:

ω(m− 1) = ω(m)− np − 2|L(m)| > ω(m).
ω(m + 1) = ω(m)− np − 2|R(m)| > ω(m).

Following from (S2), there is only one global minimum, so Xp = {m}.

Statement (S4): Let c < d be the middle children. For i ∈ {c, . . . , d− 1}, j ∈ {c + 1, . . . , d},
2|R(i)| = np = 2|L(j)|, while 2|L(c)| < np > 2|R(d)|, so with (S1) we know:

ω(i) = ω(i) + np − 2|R(i)| = ω(i + 1).
ω(j) = ω(j) + np − 2|L(j)| = ω(j − 1).

ω(c− 1) = ω(c) + np − 2|L(c)| > ω(j).
ω(d + 1) = ω(d) + np − 2|R(d)| > ω(j).

Putting this together, we get:

ω(c− 1) > ω(c) = ω(c + 1) = · · · = ω(d− 1) = ω(d) < ω(d + 1).

Following from (S2), that is enough to show that Xp = {c, . . . , d}.

With the help of this lemma, it is now possible to prove our next result:

Theorem 5.4. MinimumEdgeSumOneSide is solvable in O(|P |2+o(1) + |P | · SP ) time.

Proof. We show the following statements, similar to the proof of Theorem 4.4 of WinSumP.

(P1) The matching part finds a perfect matching.

(P2) The sum of the weights in the matching is equal to the relative edge sum with parents
at the matched positions.

(P3) For each parent, the graph matches the n positions with minimal edge length sum.

(P4) The provided drawing is sum-of-the-edge-lengths minimizing.

Suppose we are given a bipartite graph G = (P ∪· C, E), a drawing x : C → Z, and an
integer W ∈ N as an instance of EdgeSumOne.

Statement (P1): In this algorithm, we match n := |P | parents again to n locations, so
a perfect matching exists regarding Corollary 2.10 of Hall’s marriage theorem. So this
statement is similar to (K1) of Theorem 4.4.

Statement (P2): Consider p ∈ P . We prove the correctness of the inner loop using these
invariants for iterations with counter i, j:

r = |L(j − 1)|+ |M(j − 1)| − |R(j − 1)|
l = |R(i + 1)|+ |M(i + 1)| − |L(i + 1)|

ωj = ω̂p(j)
ωi = ω̂p(i)
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5. Minimizing the edge length

We prove only the first and third invariants, numbers two and four are analogous.

If np is odd, let c be the middle child, and we start at j = c + 1. Per definition is
|L(c)| = |R(c)| and M(c) = {c}. So r is initialized correctly with

r = |L(j − 1)|+ |M(j − 1)| − |R(j − 1)| = |L(c)|+ |M(c)| − |R(c)| = 1.

If np is even, let c < d be the middle children, so |L(d)| = np

2 and we start with j = d + 1.

r = 2
= np + 2− np

= 2|L(d)|+ 2|M(d)| − np

= |L(d)|+ |M(d)| − |R(d)|
= |L(j − 1)|+ |M(j − 1)| − |R(j − 1)|

Both ways, with (S3) or (S4) we know ω̂p(j − 1) = 0. So with use of (S1),

ωj = r

= |L(j − 1)|+ |M(j − 1)| − |R(j − 1)|
= ω̂p(j − 1) + np − 2|Rp(j − 1)|
= ω̂p(j)

is initialized correctly, too.

So both variables hold the equation at the beginning of the first iteration. In the case
ωi ≤ ωj , the variables j, r, and ωj do not change, so consider the other case. The variable
r is set to r + 1j∈M(j) · 2. Here, the updated variables are r′ and ω′

j .

r′ = r + 1j∈M(j) · 2
= (|L(j − 1)|+ |M(j − 1)|)− |R(j − 1)|+ 2|M(j)|
= |L(j)| − (|R(j)|+ |M(j)|) + 2|M(j)|
= |L(j)|+ |M(j)| − |R(j)|
= |L((j + 1)− 1)|+ |M((j + 1)− 1)| − |R((j + 1)− 1)|.

ω′
j = ωj + r′

= ω̂p(j) + |L(j)|+ |M(j)| − |R(j)|
= ω̂p(j) + np − 2|Rp(j)|
= ω̂p(j + 1).

So both variables get updated correctly.

Together with the invariant, we proved that the algorithm calculates the correct relative
edge sum for all values of i and j. However, some values neither i nor j reach. These values
are all minimizing positions, but with (S2) and (S3), we prove that these are at the middle
child or from the first to the second middle child, respectively.

This proves (P2).

Statement (P3): The lemma of this section shows us with (S2) the particular form of ωp.
So we can start at the calculated minimum and choose from left and right greedily the
successive positions. This proof is analogous to (K3).
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5.1. Moving one side with fixed other side

Statement (P4): This statement follows from the others. We know that the algorithm
matches the parents to the positions with the smallest relative weights. The matching
algorithm returns the best locations for these parents with minimal weight sum. Since the
weight sum equals the relative edge length sum, this is minimal, too, and the relative edge
length sum is only a constant away from the actual weight sum. So the provided drawing
has a minimal edge length sum.

Running Time: Once again, the algorithm has two parts: creating the weighted graph
and calculating the MinMatch. The latter is not different from the one from WinSumP, so it
still runs in O(|P |2+o(1)) just as the running time of Proof 4.4. The former part has an
all-embracing loop with |P | iterations. Each iteration calculates the children’s locations
with |Cp| ≤ SP + 1 iterations. Additionally, the next part jumps from the start of the span
to the middle child, which needs less than Sp time. The following two loops together add
in each iteration exactly one edge to the graph up to |P | in total. So the former part runs
in O(|P | · (|P |+ SP + 1 + SP + |P |)) = O(|P | · (|P |+ SP )) time, which shows our total
running time of O(|P |2+o(1) + |P | · SP ).

Variant 1: We adopted the sum-of-the-window minimizing algorithm of Section 4.2 in
Variant 1 to the problem WinSumLoc (Definition 4.6). This modified algorithm takes a set
of possible positions as input for each parent. The same modification is possible with the
problem in this section, too.

Definition 5.5 (MinimumEdgeSumOneSideLocations (EdgeSumOneLoc)). Suppose we are
given a bipartite graph G = (P ∪· C, E), a partial drawing x : C → Z, an integer W ∈ N
and for each parent p ∈ P a set of possible locations Lp. Consider L =

⋃
p∈P Lp and

dmax = maxp∈P |Cp| as the maximum degree of any parent. Is there a completing drawing
x : P → L such that the following holds?∑

(p,c)∈E

λ((p, c)) ≤W

∧ ∀p ∈ P : x(p) ∈ Lp.

The modification for this problem is similar to the one for the window sum variant. However,
if the locations are dispersed, using the same method to calculate the relative edge length
would require iterating at least from the first to the last possible position. After n steps
with this algorithm, we only calculated n best positions around the minimum. Thus for
each position, we have to calculate the edge sum manually with the distance to all children.
This part takes O(dmax|L|) time.

Nevertheless, the matching part is again solvable in O(|L|1+o(1)) time, so we get the result
of the first variant:

Corollary 5.6. MinimumEdgeSumOneSideLocations is solvable in O(|L|1+o(1) + dmax|L|).

Variant 2: Now we examine if we can calculate a drawing for the parents such that not
the edge length sum but the longest edge gets minimal. The longest edge is always to
one of two marginal children, so we only need these children as input, like in the window
minimizing variant.

Definition 5.7 (MinimumMaxEdgeOneSide (MaxEdgeOne)). Suppose we are given a set of
parents P , the set of their marginal children S = {(fp, lp) | p ∈ P} in a partial drawing
x : S → Z, and an integer W ∈ N. Is there a completing drawing x : P → Z, such that the
following holds?

∀(p, c) ∈ E : λ((p, c)) ≤W.
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5. Minimizing the edge length

Calculating the longest edge is more straightforward than calculating the sum. The minimal
value is the center of the span. Hence, our possible positions are at this point and equally
distributed to the remaining locations left and right.

Furthermore, we have to adapt our matching algorithm, in this case, because otherwise, it
would find the best solution for the sum of all the longest edges of the parents, which is
not what we want to achieve. Using again BottMatch (Definition 2.12) finds the solution
with the longest edge of all parents as small as possible.

For each parent, calculating the span’s center runs in constant time and adding the nodes
to the left and the right runs in linear time. Thus the running time of the first part of our
algorithm would stay the same, just the different matching algorithm provided by Peterson
et al. [PL88] has a running time of O(n

√
mn) = O(n2.5). So we can conclusively get the

following result:

Corollary 5.8. MinimumMaxEdgeOneSide is solvable in O(|P |2.5).

5.2 Moving both parents and children
Our last result indicates that finding a drawing with a minimum edge length sum with one
side fixed is doable in polynomial time. This result follows from the similar problem when
minimizing the total window size. Since minimizing window sum gets NP-complete with
no fixed size, we likewise suspect that this relationship holds for the edge length sum, too.
Even the proof is similar and can be reused.

Definition 5.9 (MinimumEdgeSumBoth (EdgeSumBoth)). Suppose we are given a bipartite
graph G = (P ∪· C, E) and an integer W ∈ N, is there a drawing x : C ∪· P → Z (Table 2.1)
such that the following holds?∑

e∈E

λ(e) =
∑

(p,c)∈E

|x(p)− x(c)| ≤W.

The concept behind this proof is the same as in Section 4.3. We reduce LAP (Definition 2.6)
to this problem. For that reason, we reuse the block graph (Definition 4.10) and the tight
realization (Definition 4.11). Each block-parent in a block graph is of degree one, so its
window size equals its edge length. Furthermore, the total edge length of an edge-parent
placed within its span equals its window size, too. For d being the distance of an edge-parent
p ∈ P to the span, the sum of the two edge lengths is equal to the span size plus 2d while
its window size is its span size plus d. In Section 4.3, we showed that with a large k, all
edge-parents in a sum-of-the-window minimizing drawing are placed within their span.
With the cost difference for edge lengths of an edge-parent being even larger when placed
outside, it is easy to prove that edge-parents in sum-of-the-edge-length minimizing drawings
are placed within their span, too.

Example: We use the same example as in Section 4.3 shown in Figure 5.4. Consider a
graph G as shown in a drawing in Figure 5.4(a). Let G with W = 10 be an instance of LAP.
In this drawing, the edge length sum is 4 + 3 + 2 + 3 · 1 = 12 > W . In Figure 5.4(c), this
drawing is transformed to a block graph H and visualized in a tight realization. The edge
length sum of the edge-parents is k + 3 for A, 2k + 5 for B, 3k + 5 for C, 4k + 6 for D, k + 2
for E and k for F . So the total edge length (for edge-parents) is 12k + 21 > W · k. Since all
edge-parents are within their span, this is the same value as the sum of the window sizes.

Moving C between the blocks Ba and Bb would decrease the edge length sums of A and
B while the edge length sums of C and D stay the same. So there is a drawing with an
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5.2. Moving both parents and children

a b c d e

(a) An arbitrary graph G as instance
of the LAP

c b d a e

(b) The optimal ordering of G in the
LAP

A B C D E F

a b c d e

k Be

k k + 1
(c) The tight realization of the block graph originating from G.

E A B C F D

c b d a e

(d) A tight realization with smaller and quasi-minimal edge length sum, originating from the optimal ordering
of G in (b)

Figure 5.4: A tight realization of a sample of LAP two versions with different window sum.

edge length sum of at least two lower than the one in this drawing. However, moving B
between Ba and Bb instead would increase the length of both edges of B by k

2 . Hence it is
better to keep all edge-parents in their span.

Figure 5.4(b) shows the optimal ordering of G with an edge length sum of 2·2+4·1 = 8 < W .
So this instance of LAP is solvable. In Figure 5.4(d), the block graph is still a tight realization,
but the order of the children is the same as the nodes in the optimal ordering in the monoline
problem. The edge length sum in this drawing is 8k + 12 < W · k (for large k). This value
equals the window sum again.

Before we can reduce LAP to EdgeSumBoth, we show that if k is large enough, the edge
length sum equals the window size sum, and with that, the minimizing drawing by one
metric is a minimizing drawing of the other metric, too.

Lemma 5.10. If k > max{n, |E|+ 4}, for every block graph H = ((P ∪B) ∪· V, E′) and
realization x the two statements are equivalent:

(T1) H has minimum edge lengths sum W ′ in realization x.

(T2) H has minimum window size sum W ′ in realization x.
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5. Minimizing the edge length

Proof. Suppose we are given a drawing x of a block graph H = ((P ∪ B) ∪ V, E′) with
minimum edge length sum. We prove the validity of these statements:

(K1) Child v is placed strictly within its outermost block parents, i.e., there are block
parents vi, vj ∈ Bv with vi < v < vj .

(K2) Each edge-parent is placed in its span.

(K3) (T1) ⇐⇒ (T2).

Statement (K1): This proof is an adaption of the proof of the first property in Lemma 4.12,
where we proved this third property of a tight realization (Definition 4.11) for the window
version, too. Assume w.l.o.g. all block parents of a child v ∈ V are located on positions
greater or equal to v. Hence, v has at least k− 1 adjacent parents to the right and, at most,
|E| to the left. Moving v one step right would tighten at least k− 1 edges and broaden |E|
edges to the edge-parents’ left and possibly the one from the block parent at position v.
With k − 1 > |E|+ 1, this leads to a smaller edge length sum, contradicting minimality. If
this position is occupied by another child, moving v two steps right would reduce at least
k− 2 edges and broaden at most |E|+ 2 edges. Since |C| = n, after at most n steps v finds
a place and even k − n > |E|+ n holds. So no matter where the other parents are located,
there is a guaranteed better place free for v. Thus we know there is always an adjacent
block-parent left and right of each child.

Statement (K2): This proof is also an adaption of the proof in Lemma 4.12 of Property (P1).
Assuming without loss of generality, we have parent puv ∈ P with u < v < puv. Using
Statement (K1) which we have already proven, there exists v1 ∈ Bv with v1 < v. Consider
the new drawing y′ we get by swapping v1 and puv. Let us call the edge lengths epu, epv

for the edges of puv and ev for the edge of v1 in drawing x and e′
pu, e′

pv, e′
v for the edges in

drawing y′. So the following is valid, if u ≤ v1 < v (Figure 5.5(a)):

epu + epv + ev = (x(puv)− u) + (x(puv)− v) + (v − x(v1))
= (x(puv)− x(v1)) + (x(v1)− u) + (x(puv)− v) + (v − x(v1))
= (x(puv)− x(v1)) + (y′(puv)− u) + (y′(v1)− v) + (v − y′(puv))
= (x(puv)− x(v1)) + e′

pu + e′
v + e′

pv

> e′
pu + e′

v + e′
pv

So this swap leads to an improvement, contradicting minimality, so v1 < u. With Prop-
erty (K1), we know there is a u1 ∈ Bu with u < u1, too. Let us call the edge length eu for
the edge of u1 in drawing x and e′

u for the edge in drawing y′. If u1 ≤ v (Figure 5.5(b)):

ev + eu = (v − x(v1)) + (x(u1)− u)
= (v − x(u1)) + (x(u1)− u) + (u− x(v1)) + (x(v1)− u)
= (v − y′(v1)) + 2(x(u1)− u) + (u− y′(u1))
= e′

v + 2(x(u1)− u) + eu

> e′
v + e′

u

The second case, if u1 > v, is analogous. The swap would be an improvement since v1 is
closer to u than v, and u1 is closer to v than u. So this contradicts minimality, too, which
proves all edge-parents are placed inside their span.

Statement (K3): Consider an edge-parent puv ∈ P . W.l.o.g. u ≤ puv ≤ v. So the window
of puv is v − u. Additionally, the edge sum of puv is v − puv + puv − u = v − u. Thus for
the edge-parent, the window and the edge sum are the same. The block-parents have one
edge each, so the window equals its length, too.
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5.2. Moving both parents and children

v1 puv

puv v1u v

epu

epv

ev

e′
pu

e′
pv

e′
v

(a) The changes made by swapping puv with a block-
parent between u and v before the swap (above) and
after the swap (below)

v1 u1

u1 v1u v

eu

ev

e′
u

e′
v

(b) The changes made by swapping v1 with u1 before
the swap (above) and after the swap (below)

Figure 5.5: These are two swaps that would improve the edge sum to show that all parents
are placed in their span.

Suppose we are given a drawing with minimum edge lengths W . We know that the window
sum and the edge length sum are the same, so the window sum is minimal, too. Given a
drawing with minimum window sum W , we know from Lemma 4.12 that this is a tight
realization. So in this drawing, all parents are placed inside their span. Hence the window
sum equals the edge sum. Thus, this minimizes the edge length sum, too.

Using this lemma, we can prove our next result:

Theorem 5.11. MinimumEdgeSumBoth is NP-complete.

Proof. For proving NP-completeness, we have to show membership in NP and reduce in
polynomial time an instance of LAP to EdgeSumBoth.

We start with the first property. Suppose we are given with G = (P ∪· C, E) and W ∈ N
an instance of EdgeSumBoth. Calculating the edge sum is possible in a time polynomial to
the number of edges, which shows EdgeSumBoth ∈ NP.

This proof uses the results of the proof of Theorem 4.13. Suppose we are given with
G = (V, E) and W ∈ N as an instance of the LAP. Let k > max{n, |E|+ 2n, 3|E|2 − |E|}
be odd. We create a block graph H = ((P ∪B) ∪· V, E′). Thus we use W ′ as we calculated
it in the proof of Theorem 4.13. We show the equality of the following statements.

(J1) G, W as an instance of LAP is solvable.

(J2) H, W ′ as an instance of WinSumB is solvable.

(J3) H, W ′ as an instance of EdgeSumBoth is solvable.

(J1) ⇐⇒ (J2): This equality is proven in Theorem 4.13.

(J2) =⇒ (J3): Suppose H, W ′ as an instance of WinSumB is solvable, so there exists a
window minimizing realization with a window sum of at most W ′. With Lemma 5.10, in
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5. Minimizing the edge length

this realization, the edge length is at most W ′, too. So H, W ′ is also solvable as an instance
of EdgeSumBoth.

(J3) =⇒ (J2): Suppose H, W ′ as an instance of EdgeSumBoth is solvable, so there exists
an edge minimizing realization with edge length sum of at most W ′. With Lemma 5.10,
in this realization, the window sum is at most W ′, too. So H, W ′ is also solvable as an
instance of WinSumB.

The polynomiality of the reduction is derived from the WinSumB variant. There we proved
that creating a block graph runs in time polynomial to the number of edges and nodes
since the number of nodes and edges are v(k + 1) + |E| and vk + 2|E| with k polynomial,
too.

Hence EdgeSumOne is in NP and NP-hard, so NP-complete.
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6. Radial drawings

Most drawings of bipartite graphs order one partition on one side and the other opposite.
However, in this type of drawing, the distance from the first to the last node is considerable.
So in a different way of drawing, on two concentric circles with different radii, every node
has two neighbors.

Additionally, displaying information in a radial visualization on two concentric circles brings
the resolving figure in a more square-shaped form. Without changing the distance between
the parallel lines, this kind of visualization grows in one dimension when adding nodes.
Though adding nodes on concentric circles makes their radii larger, they grow equally in
two dimensions.

In this chapter, we discretize the two circles into τ equidistant points for a τ ∈ N+. Parallel
drawings map the nodes to Z, but by placing the partitions on the boundaries of an annulus,
the mapped values are these finite sets of points. So we define Zτ = Z/τZ = {0, . . . , τ − 1}
as integer ring modulo τ .

Definition 6.1 (Radial drawing). Let G = (P ∪· C, E) be a bipartite graph and τ ∈ N+.
We call a semi-injective drawing (Definition 2.1) x̊ : P ∪· C → Zτ a radial drawing and τ
fraction rate of the radial drawing.

We draw x̊ : P ∪· C → Zτ on two concentric circles with radius 0 < rp < rc, respectively.
Here, we assign p ∈ P, c ∈ C the coordinates (rp, x̊(p) · 2π

τ ) and (rc, x̊(c) · 2π
τ ).

This way of drawing induces a new definition of spans and windows.

Definition 6.2 (Spans and windows in radial drawings). Consider x̊ as a radial drawing
of graph G = (P ∪· C, E) with fraction τ . For p ∈ P let

• {a, . . . , b} =
{
{a, . . . , b}, if a ≤ b

{a, . . . , τ − 1, 0, . . . b}, if b > a
be an interval in Zτ .

• S̊p = arg min{fp,...,lp}⊆Zτ }{|{fp, . . . , lp}| | c ∈ {fp, . . . , lp},∀c ∈ Cp} the span of p with
marginal children fp, lp and span size s̊p = |S̊p|+ 1.

• W̊p = arg min{f̃p,l̃p}⊆Zτ }{{|f̃p, . . . , l̃p}| | c, p ∈ {f̃p, . . . , l̃p},∀c ∈ Cp} the window of p

with marginal nodes f̃p, l̃p and window size ẘp = |W̊p|+ 1.
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6. Radial drawings
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W̊E

Figure 6.1: A simple graph in a radial drawing.

A visualization is shown in Figure 6.1. In this chapter, when talking about a node’s window
size, span size, or edge length, we will stay in Zτ . Only for the sum of window sizes and
edge lengths, we use N instead.

However, in this kind of visualization, there are disadvantages, too. As shown in the
drawing of Figure 6.1, straight edges without intersections to the inner circle are not
guaranteed anymore. So let us introduce a new concept:

Definition 6.3 (Frame placement). Suppose we are given a bipartite graph G = (P ∪· C, E),
a radial drawing x̊ yields a frame placement of size φ ∈ N with 0 < φ ≤ τ

4 if the distance
from each parent to its adjacent children is at most φ, i.e., the following holds:

∀p ∈ P : ∀c ∈ Cp : |̊x(p)− x̊(c)| ≤ φ.

This frame placement can be considered in the following way: First, take a parent on the
inner circle and its line to the center. Then, the two sectors of the circle of size φ

τ on both
sides of the line shape the frame. So the frame size corresponds to the angle of the sector,
and a drawing yields this frame size if all children are inside these sectors. A visualization
is given in Figure 6.2.

Since in this thesis, we use projected edge lengths (Definition 2.5), a radial drawing yields
a frame placement of size φ if and only if all edge lengths are smaller than or equal to φ.

6.1 Moving parents with fixed children and frame size

In a radial drawing, there are two differences from a parallel drawing; We limit the distance
from parent to child via frames and place the first and last nodes next to each other. We
want to examine if our algorithm for sum-of-the-window-size minimizing also works in this
drawing method.
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6.1. Moving parents with fixed children and frame size
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Figure 6.2: A graph in a radial drawing with frame size 3

Definition 6.4 (MinimumWindowSumParentsRadial (WinSumPR)). Suppose we are given a
set of parents P , the set of their marginal children S = {(fp, lp) | p ∈ P} in a partial radial
drawing x̊ : S → Zτ , an integer W ∈ N and a frame size φ ≤ τ

4 . Is there a completing
drawing x̊ : P → Zτ holding the frame size φ such that the following holds?∑

p∈P

ẘp ≤W.

We can reuse the matching algorithm. We only have to find a different solution to find
the n possible positions for the matching graph and calculate their weight. For that
reason, we only need to know where the positions are. Consider a parent p ∈ P . We
have to find the interval, where each child has at most distance φ, i.e., the intersection⋂

c∈Cp
{c− φ, . . . , c + φ}. The lowest position, which is in the range of the end of the span,

is lp − φ. At the same time, the highest position in the range of the start of the span is
fp + φ. If a position is larger than the lp − φ, for each child c ∈ Cp, it is also higher than
c− φ. Symmetrically the same is valid for fp, which shows the next proposition:

Proposition 6.5. For each parent p ∈ P , Ip := {lp − φ, . . . , fp + φ} contains the possible
positions to place p without breaking the frame placement. There is no position for this
parent with frame size φ, if Ip = ∅, i.e., the span size s̊p > 2φ.

If there is a possible position for each parent, we can reuse our technique to add the span
to the number of possible positions and then take positions left and right until we have
enough. In addition, we have to check if these positions are in this interval. Otherwise, we
start not at fp but at fp − (φ− s̊p).

Algorithm: Given an instance of WinSumPR with graph G = (P ∪· C, E), partial drawing
x̊ : S → Zτ , frame size φ and W ∈ N, create a weighted bipartite graph H = (P ∪· T, E′, ξ):

For each parent p ∈ P execute the following steps: If the span size is larger than 2φ,
stop and return false. The start point k is either if the span is smaller than n := |P |,⌈

n−(̊sp+1)
2

⌉
before, or otherwise right at the start of the span. Both ways, if this start point

has more than distance φ to lp, set the start k at lp − φ. We continue to add points at
positions t← k and repeat this either n times or until we reach fp + φ + 1.

With the created graph, calculate a MinMatch. If that is not possible, return false, else
place each parent on the matched position in the result set M .

57



6. Radial drawings

Algorithm 6.1: Minimizing window by moving parents with frame size
Input: A set of parents P of a graph, the span set S = {(fp, lp) | p ∈ P} in a

partial radial drawing x̊ : S→ Zτ

Data: Weighted bipartite graph H = (P ∪ T, E’, ξ)
Output: Drawing P̊→ Zτ x of parents p ∈ P with minimal window sum, or

false, if it is not placeable
// Initialization

1 E’← ∅
2 n← |P|

// Adding the weighted edges
3 for p ∈ P do
4 if s̊p > 2φ then
5 return false

6 else if s̊p < n− 1 then
7 k← max{fp −

⌈
n−(sp+1)

2

⌉
, lp − φ}mod τ

8 else
9 k← max{fp, lp − φ} mod τ

10 for t← k to min{k + n− 1, fp + φ} do
11 e← (p, t mod τ)
12 E’.add(e)
13 if t mod τ < fp then
14 ξ(e)← lp − t mod τ

15 else if t ≤ lp then
16 ξ(e)← s̊p

17 else
18 ξ(e)← t− fp mod τ

// Calculating the minimal weight perfect matching and creating the
placing

19 H← (P ∪· Zτ , E’, ξ)
20 M←MinMatch{H}
21 if |M| ≠ n then
22 return false

23 else
24 for (p, t) ∈ M do
25 x̊(p)← t

26 return x̊

An algorithm in pseudo-code is presented in Algorithm 6.1. All necessary “mod τ” opera-
tions are listed in the algorithm.

Example: Suppose we are given an arbitrary graph G = (P ∪· C, E) as shown in Figure 6.3.
Here, n = |P | = 9 and τ = 10. Consider φ = 4. Like always, we focus on node C, which we
can see with its children in Figure 6.3(a). The span S̊C = {b, . . . , g}, so s̊C = 5. We start
at max{fp −

⌈
n−(sp+1)

2

⌉
, lp − φ} = max{b − 2, g − 4} = c. Since c ∈ S̊C , the edge (C, c)

has weight s̊C . We continue with positions d, e, and f as shown in Figure 6.3(b). Since
g − b > 4 = φ, this position gets discarded, and we stop.
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(a) A graph G with an integer W as instance of WinSumPR
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(c) The minimal weight matching for all parents
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(d) The final solution as window minimizing arrange-
ment of the parents

Figure 6.3: An example of the algorithm of WinSumPR.

Similarly, we create a matching for all parents, which we solve with a MinMatch. The
minimal matching is displayed in Figure 6.3(c), while Figure 6.3(d) shows the realization
with minimal window sum.

59



6. Radial drawings

These observations lead to the successive result:

Theorem 6.6. MinimumWindowSumParentsRadial is solvable in O(|P |2+o(1)).

Proof. Suppose, we are given a parent set P, |P | =: n with span set S in a radial drawing
x̊ : S → Zτ , W ∈ N and φ < τ

2 as an instance of WinSumPR. Unlike in the proof of
Theorem 4.4, where the algorithm always returned a drawing, we have to show now that
the algorithm returns a drawing with minimal window sum if there is one, and otherwise,
it returns false. Similar to the last algorithms, this returns a window size minimizing
drawing instead of the answer to the question if P, S, W, φ, τ is solvable.

We start proving that the algorithm returns a minimal solution, so suppose there is a
solution. Let us prove the following statements.

(E1) The algorithm adds all correct positions to the matching graph but, at most, the n
where this parent has the smallest window.

(E2) The algorithm detects if there is no placement with this frame size.

(E3) The provided drawing has minimal window sum.

Statement (E1): Let p ∈ P be a parent. We know from Proposition 6.5 that the interval
with the possible position is Ip = {lp − φ, . . . , fp + φ}. If the span is at least n − 1, the
algorithm adds the first n positions in the span, but only positions in Ip, to the list. Since
the window of p equals the span, if placed within it, these are minimal positions. Otherwise,
if the span is smaller, the algorithm starts at k = fp −

⌈
n−(̊sp+1)

2

⌉
and adds the conclusive

n positions to the graph, but still only if they are inside Ip.

The correctness of this start point follows (K3) from Theorem 4.4 in the parallel drawing.
This way, it adds the same number of points left and right to the list.

Statement (E2): Two issues can be the cause for there being no placement. With Propo-
sition 6.5 we know, that if for a parent p ∈ P , Ip = {lp − φ, . . . , fp + φ} = ∅, there is no
valid position for p. This situation occurs when s̊p > 2φ, and in this case, the algorithm
stops and returns false.

If each parent has position candidates, but it is not possible to place all parents in one of
them, there is no proper drawing, either. In this case, the matching algorithm could not
assign each parent a distinct position, so the matching is not perfect, and the algorithm
would also stop.

Statement (E3): With the use of (E1) and (E2), we know that if there is no possible
drawing, the algorithm detects it. Otherwise, it finds a perfect matching where the weight
of the edges, i.e., the window sizes of the parents, are minimal. Hence the resulting drawing
has a minimal window sum.

Running time: The running time is similar to the familiar algorithm of Section 4. The
outer loop runs n := |P | times. In each iteration, the maximum running time is from k to
k + n− 1, so there are n iterations, too. Thus this part runs in O(n2).

The weighted input graph is also similar. The number of edges in the weighted graph is at
most n2, so we achieve again a running time of O(|P |2+o(1)) with the algorithm by Chen
et al. [CKL+22].

Variant 1: Once again, we ask the related question, what happens, if we do not minimize
the window but the edge sum? Like we altered the algorithm of WinSumP (Section 4.2) to
an algorithm of EdgeSumOne in Section 5.1, we can also modify this version for the radial
drawings.
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6.1. Moving parents with fixed children and frame size

Definition 6.7 (MinimumEdgeSumOneSideRadial (EdgeSumOneR)). Suppose we are given
a bipartite graph G = (P ∪· C, E), a partial radial drawing x̊ : C → Zτ , an integer W ∈ N,
and a frame size φ ≤ τ

4 . Is there a completing radial drawing x̊ : P → Zτ , holding the
frame size φ with valid statement: ∑

e∈E

λ̊(e) ≤W.

Putting together the way the costs for the parents get calculated in EdgeSumOne and
the limitations to the possible positions described in this section, we can quickly see
how the algorithm works. As with parallel drawing, we start at the middle child and
continue going left and right. The slight difference is that possible positions are limited to
{lp − φ, . . . , fp + φ}, so we stop comparing the costs as soon as one pointer reaches an end
of the interval. In this case, we add positions from the other pointer until this reaches the
other end, or we have n positions.

A possible scenario is that the middle child, where we put our start, is too far away
from the center of the span and, therefore, not in this interval. For instance, with
children at positions 1, 2, 3, 4, 10 and frame size 6, the algorithm would start at 3. With
{lp − φ, . . . , fp + φ} = {4, . . . , 7}, we keep incrementing the appropriate pointer until it
reaches the interval. Without comparing, we add positions up to the other end. So we get
to the following result:

Corollary 6.8. MinimumEdgeSumOneSideRadial is also solvable in O(|P |2+o(1) + |P | ·SP ).

Variant 2: In both Sections 4.2 and 5.1 for parallel drawing, we transformed the
problems from sum-of-the-window-sizes/sum-of-the-edge-lengths minimizing to largest
window/longest edge minimizing and got the problems MaxWinP (Definition 4.7) and
MaxEdgeOne 5.7. In the radial drawing, these modifications are also possible.

Definition 6.9 (MimimumMaxWindowParentsRadial (MaxWinPR)). Suppose we are given a
set of parents P , the set of their marginal children S = {(fp, lp) | p ∈ P} in a partial radial
drawing x̊ : S → Zτ , an integer W ∈ N and a frame size φ ≤ τ

4 . Is there a completing
radial drawing x̊ : P → Zτ holding the frame size φ such that the following holds?

∀p ∈ P : ẘp ≤W.

Definition 6.10 (MinimumMaxEdgeOneSideRadial (MaxEdgeOneR)). Suppose we are given
a set of parents P , the set of their marginal children S = {(fp, lp) | p ∈ P} (Table 2.1) in
a partial radial drawing x̊ : S → Zτ , an integer W ∈ N and a frame size φ ≤ τ

4 . Is there
a completing radial drawing x̊ : P → Zτ holding the frame size φ such that the following
holds?

∀(p, c) ∈ E : λ̊((p, c)) ≤W.

We can apply the same algorithm modification on both the window and the edge variant
of this section to solve the longest-edge minimization (Definition 5.7) and largest-window
minimization (Definition 4.7).

Corollary 6.11. MimimumMaxWindowParentsRadial is solvable in O(|P |2.5) and
MinimumMaxEdgeOneSideRadial, too.
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6. Radial drawings

6.2 Moving both parents and children with frame size
In the parallel drawing, the results looked the same when we tried minimizing the window
or edge sum. When moving the parents, the problem is easily feasible using matching, while
it has been proven to be NP-complete as soon as both layers are movable. The last section
showed that the polynomial problems stay solvable in a radial drawing. Now we show that
if we move parents and children, the problem is NP-complete for radial drawings, too.

Definition 6.12 (MinimumWindowSumBothRadial (WinSumBR)). Suppose we are given a
bipartite graph G = (P ∪· C, E), an integer W ∈ N and a frame size φ ≤ τ

4 for a fraction τ .
Is there a radial drawing x̊ : P ∪· C → Zτ holding the frame size φ such that the following
holds? ∑

p∈P

ẘp ≤W.

In this case, we do not need to adapt the proof of Section 4.3 and reduce LAP to it.
To prove the NP-completeness for the radial drawing, we can reduce the problem in a
parallel drawing to this problem. The difference is made by wrapping around, which
makes the edges from the first to the last node shorter. Suppose we are given an instance
G = (P ∪· C, |E|), W of WinSumB (Definition 4.3). Let ϑ = |P |+ |C|. We know that we can
transform any drawing x of G into a drawing y where the distance between the first and
last node is at most ϑ without increasing the size of any window. If the maximal distance
is larger, there has to be a gap in the graph, i.e., a position without a parent or a child.
When we move both parts of the graph to the left and the right of the gap closer together
to close this gap, window sizes do not increase.

So with φ ≥ ϑ, we guarantee that every sum-of-the-window-size minimizing drawing of G, W
as an instance WinSumB is a sum-of-the-window-size minimizing drawing of G, W, φ, τ = 4φ
as an instance of WinSumBR and vice versa.

Example: Figure 6.4(a) shows a graph G in an arbitrary drawing x. Together with
W = 10 is G, W an instance of WinSumB (Definition 4.9). With ϑ = |P | + |C| = 9, let
φ = 9 ≥ ϑ and τ = 4φ = 36. In Figure 6.4(b), we see the same graph in a radial drawing x̊
where x̊(v) = x(v) for all nodes v ∈ P ∪· C. The frame of parent D is marked orange. It is
easy to see that all gap-free drawings yield the frame size, i.e., all neighbored children are
placed in this orange area. The drawing of G in Figure 6.4(c) has a minimal sum of the
window sizes, which equals the same in the radial drawing in Figure 6.4(d).

With this information, we can reduce WinSumB to WinSumBR to show NP-hardness.

Theorem 6.13. MinimumWindowSumBothRadial is NP-complete.

Proof. Suppose we are given a bipartite graph G = (P ∪· C, E) and a number W ∈ N as an
instance of WinSumB. Consider ϑ := |P |+ |C|, φ := ϑ and τ := 4φ.

For the reduction, we show the equivalence of the following statements:

(X1) G, W as instance of WinSumB is solvable.

(X2) G, W, φ, τ as instance of WinSumBR is solvable.

We achieve this by showing (X1) =⇒ (X2) and (X2) =⇒ (X1).

(X1) =⇒ (X2) There is a parallel drawing x of G with a window sum at most W . We
assume w.l.o.g., that x maps to 0, . . . , ϑ− 1. Otherwise, with φ = |P |+ |C|, the drawing is
not gap-free and can be pushed into a closer drawing without increasing the window sum.
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6.2. Moving both parents and children with frame size

A B C D

a c d e f

(a) A graph G in an arbitrary parallel drawing
x

A B C D

a
c d e f

(b) The graph G in a radial ordering x̊ with
large φ with the same positions for the nodes

B C D A

a c f e d

(c) G in a sum-of-the-window-sizes optimizing
parallel drawing

B C D A

a c f e d

(d) G in a radial drawing with the same po-
sitions for the nodes

Consider the radial drawing x̊ : P ∪· C → Zτ , v 7→ x(v). So for each parent p ∈ P , window
sizes wp in x and ẘp in x̊ equal. So the window sizes in the drawings are the same. Hence
the window size sum in x̊ is at most W . The maximum distance between two nodes is
ϑ− 1 < φ, so x̊ holds frame size φ.

(X2) =⇒ (X1) There is a radial drawing x̊ of G with a window sum of at most W .
Consider the parallel drawing x : P ∪· C → Z, v 7→ x̊(v). Again, for each parent p ∈ P ,
window sizes wp in x and ẘp in x̊ equal. So the window sizes in the drawings are the same,
too. Thus the window size sum in x is at most W .

This reduction runs in polynomial time since the only thing to calculate is ϑ.

At last, we show WinSumBR ∈ NP. Given an instance G, W, φ, τ and a drawing x̊. Com-
puting the window sum runs in time linear in the number of edges. Checking if x̊ yields
frame placement φ runs simultaneously.

Variant: We now have NP-completeness for the variant where both sides are allowed
to move in three variants: In parallel drawings, we proved it for window minimization
(Definition 4.9) and for minimum edge length sum (Definition 5.9). In this section, we
showed that in radial drawing, window minimization in this way is complex, too. So the
combination left over is if edge length minimization is also NP-complete in radial drawings.
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6. Radial drawings

Definition 6.14 (MinimumEdgeSumBothRadial (EdgeSumBothR)). Suppose we are given a
bipartite graph G = (P ∪· C, E), an integer W ∈ N and a frame size φ ≤ τ

4 for a fraction τ .
Is there a radial drawing x̊ : P ∪· C → Zτ holding the frame size φ such that the following
holds? ∑

e∈E

λ̊(e) ≤W.

Transferring the problem EdgeSumBoth to EdgeSumBothR works one by one the same. The
same techniques can be used for this. We use the same ϑ and create the same large-
radial drawing from parallel drawing and vice versa. In conclusion, this leads to our last
NP-completeness statement:

Corollary 6.15. MinimumEdgeSumBothRadial is NP-complete.

6.3 Minimal frame size

This concept of drawing bipartite graphs on concentric circles also gives us new questions
to ask. In the last section, we focused on minimizing windows and edges with fixed frame
size. However, can we compute a minimal frame size, too? Edge lengths and windows are
correlated with frame size. An edge length can be, at most, as large as the frame, and
no window can become bigger than twice the frame size. So with a reduced frame, the
windows and edges shrink simultaneously.

We no longer care about window sizes and only focus on achieving minimal frame sizes.
That helps us in two aspects of visualizing the bipartite graph. In the concentric drawing,
the frame size corresponds to the angle of the sectors around the parent, including all
adjacent children. This angle is related to the angle the parent forms with their children,
so a smaller frame size also leads to a smaller angle.

Additionally, a reasonable restriction on a drawing is straight edges without intersecting
the inner circle. So if we have a parent in the inner circle and want to know all possible
positions for children with this restriction, we draw a tangent through this point. This
tangent subdivides the outer circle into two parts from which the minor marks all positions
to which this parent can “see”, i.e., can have valid connections (Figure 6.4). The size of this
smaller part is proportional to the ratio between the outer and inner circle radii. Suppose
we are given a children’s circle radius. The upper bound for the parent radius is this radius
itself since it has to be smaller. In this case, the parent can see only the opposite point.
The lower bound for the radius is zero. When the inner circle’s radius tends toward zero,
the cut-off part approaches half a circle. So the most a parent can see is the semicircle
without the first and last node.

Once again, it is not necessary to know information about all children. It is sufficient to
know the marginal children’s location. If the start and the end of a span are inside the
frame of their parent, then the other children between them are, too.

All this motivates the last problem in this thesis:

Definition 6.16 (MinimumFrameSizeParents (MinFP)). Suppose we are given a set of
parents P , the set of their marginal children S = {(fp, lp) | p ∈ P} in a partial drawing
x : S → Z, and an integer W ∈ N. What is the smallest frame size φ, such that there is a
completing drawing x̊ : P → Zτ holding φ?
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6.3. Minimal frame size
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Figure 6.4: An radial drawing of a graph with tangent ΦF of F . At this position, F can
see children a, h, and g.

Suppose we are given G and the partial drawing x̊ for the children. We already have
an algorithm that computes the minimal window sum for G and a fixed frame size in
polynomial time. So we can use this algorithm and guess a frame size. If it is possible to
draw G with this frame, we continue with a smaller frame size; otherwise, we increment it.
Eventually, this will give us the smallest possible frame size. However, this takes for each
step O(|P |2+o(1)) time, so let us find a better algorithm.

When we think about the relation of the frame size to the other problems, we see that the
smallest possible frame size equals the minimal longest edge. In this thesis, we calculate
projected edge length, so a radial drawing yields a frame size φ if and only if all edges
are at most of this length, i.e., the longest edge has lengths of at most φ. In Variant 2 of
Section 6.1, we showed that there is an algorithm that returns a drawing with a minimal
longest edge. So we create this algorithm and modify it to return the minimum frame size,
too.

Per definition is 0 < φ ≤ τ
4 . The span size sets an additional lower bound. If we place a

parent in the center of its span, the maximum distance to its children is minimal, so the
lower bound for φ is s̊∗

2 , where s̊∗ is the largest span of all parents.

So we edit our algorithm so that the weight is equal to the minimal frame size needed to
put a parent at this position instead of the window size. In this case, a placement with any
frame size is not guaranteed. A node can have at most 2φ + 1 neighbors, and since the
frame size can be at most a quarter of the fraction rate, a node can not be adjacent to
all other nodes. If there is a child adjacent to more than τ

2 + 1 parents or a parent has a
span larger than τ

2 , it is not possible to find a frame size. However, when one wants to
draw a bipartite graph with one of these attributes, the radial drawing may not be the
best visualization method to choose.

Algorithm: Suppose we are given a bipartite graph G = (P ∪· C, E) and a partial radial
drawing x̊ : C → Zτ as an instance of MinFP. Set n := max{|P |, τ

2 + 1} to the number of
positions to match. For each parent p ∈ P , repeat the following steps:

If the span is larger than τ
2 , return false and stop the algorithm. If the span is smaller than

n− 1, start k at fp −
⌈

n−(sp+1)
2

⌉
mod τ , otherwise start at fp. For this and the following
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6. Radial drawings

Algorithm 6.2: Minimizing frame size
Input: A bipartite graph G = (P ∪· C, E) with a partial radial drawing x̊ : C→ Zτ

Data: Weighted bipartite graph H = (P ∪ T, E’, ξ)
Output: Minimum frame size and radial drawing with this frame size, if it is

possible to place the parents; otherwise, false.
// Initialization

1 E’← ∅
2 n← max{|P|, τ − 1}

// Adding the weighted edges
3 for p ∈ P do
4 if sp > τ

2 then
5 return false

6 else if sp < n− 1 then
7 k← fp −

⌈
n−(sp+1)

2

⌉
mod τ

8 else
9 k← fp

10 for t← k to k + n− 1 do
11 e← (p, t mod τ)
12 E’.add(e)
13 ξ(e)← max{(lp − t) mod τ, (t− fp) mod τ}

// Calculating the minimal weight bottleneck matching and creating
the placing

14 H← (P ∪· Zτ , E’, ξ)
15 M← MinBottMatch {H}
16 if |M| < n then
17 return false

18 φ for (p, t) ∈ M do
19 x̊(p)← t
20 φ← max{φ, ξ((p, t))}
21 return x̊, φ

n− 1 positions, add an edge to the weighted bipartite graph from p to this position. The
weight of this edge is set equal to the distance to lp or fp, whichever is further away.

With this set of weighted edges, create a weighted bipartite graph as an instance of
BottMatch (See Definition 2.12). This matching returns a drawing with the longest edge
as short as possible. If the matching is not perfect and not every parent is matched, return
false. Return a drawing where all parents are placed at the matched positions. The
minimum frame size equals the heaviest edge. The pseudo-code algorithm is described in
Algorithm 6.2.

Example: Suppose we are given a graph G = (P ∪· C, E) and a radial partial drawing
x̊ : C → Zτ as an instance of MinFP like in Figure 6.5(a). For each parent, we repeat the
following, exemplarily shown by parent C:

Since |P | = 6 and 6 ≤ τ
2 + 1, we have to match 6 positions for each parent. We start

at fp −
⌈

n−(sp+1)
2

⌉
mod τ = c−

⌈
6−(4+1)

2

⌉
mod τ = c− 1 as shown in Figure 6.5(b). The

distance to fp is 1, and the distance to lp is 5, so this position has weight 5. We continue
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6.3. Minimal frame size
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(a) A graph G in an arbitrary drawing as in-
stance of MinFP
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(d) A drawing of G with minimal frame size

Figure 6.5: The algorithm to determine the minimum frame size of a graph G

by adding the following five positions. The first three have lp as their furthest children, so
the weights are 4, 3, 2. Then the distance to fp is higher, so we have frame sizes 3 and 4.

After adding all positions to the weighted graph, we compute a MinMatch (Definition 2.11)
as shown in Figure 6.5(c). This matching gives us the minimum frame size achievable.
Though B and C have the same positions as optimum, one has to be placed one-off. So
the minimum frame size that a drawing can hold is 3.

Figure 6.5(d) shows the radial drawing with this frame size. As mentioned at the beginning
of this section, the minimum frame size can be used to determine the biggest ratio of the
inner to the outer radius. The maximum inner radius to draw all edges straight without
intersecting the inner circle is shown in the figure, too.

Theorem 6.17. MinimumFrameSizeParents is solvable in O(|P |2.5) time.

Proof. Suppose we are given a graph G = (P∪· C, E) and a partial radial drawing x̊ : C → Zτ

as an instance of MinFP. Let φ be the frame size and x̊ the drawing the algorithm returns.
We have to prove the following:

(Z1) The algorithm detects if there is no placement with any frame size.
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6. Radial drawings

(Z2) The weight of an added edge (t, p) equals the frame size, necessary to place a p at t.

(Z3) There is a radial drawing of G holding frame size φ and no drawing holding a smaller
frame size.

Statement (Z1): There are two possible situations where a graph has no placement with
any frame size: There is a parent with a span size of more than τ

2 , but the algorithm would
have stopped in this case. If there is no possible matching, e.g., when a child has a degree
larger than τ

2 + 1, it is impossible to find a perfect matching, and the algorithm stops, too.

Statement (Z2): Whenever adding an edge to the graph, the weight equals the maximum
distance to fp or lp. These are the only candidates to be the furthest children since all the
other children are between them.

Statement (Z3): The matching in the algorithm has no edge with a weight larger than φ,
so the drawing x̊ has maximum edge length φ. So if we place all parents in their matched
positions, the drawing yields the frame size φ. Additionally, there is at least one parent
with weight φ, so it is not possible to place all parents with frame size φ− 1. Hence the
algorithm calculates the minimum frame size.

Running time: Creating the weighted graph needs at most n := |P | position candidates for
every parent, so this part runs in O(n2) time. The BottMatch as described in Definition 2.12
needs O(n ·

√
mn) time with m := |E′| [PL88]. Since we added for each parent at most n

positions, the number of edges equals n2. So O(n ·
√

mn) = O(n2.5).
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7. Conclusion

7.1 Summary
In this thesis, we proved different problems to be NP-complete. Meanwhile, we found
algorithms for several problems solvable in polynomial time. A quick overview of all results
with hardness or running time grouped by chapter is given in Table 7.1. For the problems
in P, a Python Code is provided. 1

The first problem was SpanSum, of which we saw that it is very close to the LAP. This problem
is NP-complete whether we look for a sum-of-the-span or the largest span minimizing.
Furthermore, we went to minimizing windows. If we want to have each window strictly at
its minimum, the span, then we have to iterate over the span, and with greedy choice, we
can solve this decision question. It gets more complicated as soon as we allow parents to
be placed outside their span. Though, with the window size of a parent only depending
on its fixed children and position, it is possible to calculate the cost for each position
upfront. This property allows the matching of each parent to the locations with different
weights. Thus we can use a known algorithm and create the proper input. Knowing that
we only need a limited number of positions to match and not all possible ones, we reduce
the running time by presorting them. This algorithm can even be used to find the best
solution with parents limited to specific locations to look prettier. It is also possible to
compute the minimum widest window with a similar algorithm. Whereas if we allow both
parents and children to move, computing the minimum window sum is NP-complete.

The next chapter looked at a slightly different way to improve readability. With short
edges, a graph looks less overloaded, and additionally, we also save ink to print the graph,
so why not create the minimum possible sum of the edge lengths? By moving both sides,
we realized that it is NP-complete to compute the minimum edge sum, similar to the
window sum. However, if we fix one side, we can use the algorithm we already discovered.
We need a more complex presorting mechanism, but the running time does not get much
worse. We realized that this could also be used for minimizing the longest edge. So there
are multiple ways to pretty up bipartite graphs drawn on parallel lines.

Though this may be the most common way of visualizing bipartite graphs, there are other
ways to draw bipartite graphs. The only restriction we should make is that the two disjoint
sets do not intersect each other in the drawing. Thus we experimented with a different
kind of representing bipartite graphs: By drawing the sets on two concentric circles. This

1https://github.com/DaKassian/window-minimization
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7. Conclusion

Chapter Problem Result Ref
Span Minimization SpanSum NP-complete 3.3

MaxSpan NP-complete 3.5
Window Minimizing PinS O(|P | log |P |) 4.2

WinSumP O(|P |2+o(1)) 4.4
WinSumLoc O(|L|1+o(1)) 4.6
MaxWinP O(|P |2.5) 4.8
WinSumB NP-complete 4.13

Edge Minimization EdgeSumOne O(|P |2+o(1) + |P | · SP ) 5.4
EdgeSumOneLoc O(O(|L|1+o(1) + dmax|L|)) 5.6
MaxEdgeOne O(|P |2.5) 5.8
EdgeSumBoth NP-complete 5.11

Radial Drawing WinSumPR O(|P |2+o(1)) 6.6
EdgeSumOneR O(|P |2+o(1) + |P | · SP ) 6.8
MaxWinPR O(|P |2.5) 6.11
MaxEdgeOneR O(|P |2.5) 6.11
WinSumBR NP-complete 6.13
EdgeSumBothR NP-complete 6.15
MinFP O(|P |2.5) 6.17

Table 7.1: Summary of all solved problems grouped by chapter.

kind of visualization opens up the door to new problems. On the one hand, we made it
possible to connect the first and the last node without crossing the other nodes; on the
other hand, it is now more complicated to draw the edges. An edge from a parent to a
child on the other side of the graph can not be drawn by intersecting the inner circle or
bending the edge.

Firstly we asked the questions about the window sum again, this time in a radial drawing:
If we limit the number of children a parent can see, can we use algorithms based on our
technique to get the best solution? We discovered that with slight modifications, the
algorithms work for radial drawing, too. The most significant difference is that it is not
guaranteed anymore that there is a solution. Even our other algorithms for minimizing
the maximum window and the longest edge and edge length sum can be transformed for
radial drawings. Unfortunately, minimizing the window size sum or the edge length sum
by moving both sides does not get more manageable when we draw bipartite graphs on
concentric circles.

However, we discovered an entirely new question, too. If we want to draw the inner circle as
large as possible, can we do that in polynomial time? We demonstrated that this problem
is closely related to finding the longest edge in a radial drawing.

7.2 Open problems
In the thesis, we discussed and mentioned multiple criteria for improved readability of
bipartite graphs. When we look back at the question we asked in the introduction in
Section 1.2, we can now answer many distinct problems resolving from different answers
to the questions. In Figure 7.1, we present the combinations and the answers we know.
We have 20 combinations to answer these questions. In this thesis, we newly answered the
problems of eleven combinations. Additionally, we have two variants where we already
knew the answer from Bekos et al. [BFK+23]. That leaves seven unanswered combinations.
Let us look at the open problems now.
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7.2. Open problems

The first problem, Drawing parallel × Calculating Window × Minimizing Sum × Children,
is assumed to be NP-hard, similar to the variant with maximal window, as mentioned in
the introduction.

None of the four combinations Max with Both Sides are proven now, but their pendants
with minimizing the sum are proven to be NP-complete. With LAP used in the proofs, the
assumption may be close that BandwidthProblem can be reduced on these problems.

The problem of minimizing the maximum window by moving children is proven to be
NP-hard by Bekos et al. [BFK+23]. It may be easy to transform this problem with radial
drawing.

These are already the open combinations with these questions. Additionally, there are
more possible combinations with minimizing the span and the frame size. The problem
PinS can also be transformed in radial drawing problems.

However, there are more ways to vary the problems. Take the open problem Window
Minimization × Moving Children. It seems to be NP-hard. Is it still hard if we restrict
to permuting the children’s positions instead of moving them freely? Or if we allow only
one-degree children? The last one seems solvable, but when does it break? Does it break
as soon as we add second-degree children? These are some of the open problems worth
pursuing.

Let us look at Window Minimization by Moving Children. We could also allow placing
multiple parents in the same locations and try to minimize the windows by moving children.
This problem seems easy to reduce to the LAP if, for every edge, we create a parent with
the two adjacent children as we did in the problem SpanSum (Definition 3.3). The last
problem MinFP in Section 6.3 can also be transformed into problems where children move
with fixed parents or both partitions move.

When looking again at the ASCT+B Reporter2, there is a desire to generalize this problem
to multiple layers. It can be wished to improve the windows from the lowest layer to the
first one, to minimize the window in this graph, Can this be achieved by ordering clustering
the even and the odd layers? In this case, we have a bipartite graph, too, but the first
layer has the same significance as the third. This graph is not a tree, but would that
improve things if it were? We cannot just swap the children in the lowest two layers and
continue to compare two layers up to the top. With that approach, we would need the
parents in the second last set to block the positions of their children, too. Thus instead of
having positions placed on integer coordinates, let us assign each node a width and sort
the intervals with different lengths. Then we can arrange them on a real-valued line, too,
and do not have to restrict them to integer values anymore.

When looking at window sizes, we looked at one side, the parents, and measured the
distance to their children. What if we want to minimize window sizes for both partitions
such that the sum of the window sizes of the parents plus the sum of the window sizes of
the children is minimal?

When we add these questions to our graph in Figure 7.1 additional layer makes the tree
grow, and more combinations will be possible. Thus the more questions are answered in
this field, the more new questions appear. So we leave these problems to further research.

2https://hubmapconsortium.github.io/ccf-asct-reporter/
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7. Conclusion

Drawing Calcul. Minimizing Moving Result Reference

Parallel

Window

Sum

Parents P 4.4

Children ?

Both Sides NP 4.13

Max

Parents P [BFK+23]

Children NP [BFK+23]

Both Sides ?

Edge

Sum
One Side P 5.4

Both Sides NP 5.11

Max
One Side P 5.8

Both Sides ?

Radial

Window

Sum

Parents P 6.6

Children ?

Both Sides NP 6.13

Max

Parents P 6.11

Children ?

Both Sides ?

Edge

Sum
One Side P 6.8

Both Sides NP 6.15

Max
One Side P 6.11

Both Sides ?

Figure 7.1: The hardness or membership in P depending on the problem specifications.
“?” stands for unknown results.
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