
The Min-Cost Flow Algorithm by Chen
et al.

Bachelor Thesis of

Höfer Simon

At the Department of Informatics and Mathematics
Chair of Theoretical Computer Science

Reviewer: Prof. Dr. Ignaz Rutter

Time Period: 16th Mai 2023 – 21st August 2023

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Passau, November 13, 2023

iii

Abstract

The minimum-cost flow problem is a classic optimization problem in graph/network
theory. It describes a directed graph G where each vertex has a supply/demand that
needs to be fulfilled by routing units of flow over the edges between them. Each edge
has capacity constraints and associated costs. The goal is to find a flow on these
edges that lies within the capacity constraint, satisfies all supply/demands of the
vertices, and has a minimal cost.

In 2022, Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst
Gutenberg, and Sushant Sachdeva proposed an algorithm that solves a minimum-cost
flow problem by finding min-ratio cycles in m1+o(m) time. In theory, this is the fastest
algorithm for solving min-cost flow problems.

In this thesis, we first motivate parts of the algorithm described by Chen et al. by
examining the minimum-mean cycle canceling algorithm. Then, we will provide an
overview of the algorithm by Chen et al. and look into certain aspects more detailed.
Finally, we describe an algorithm partly implementing the algorithm by Chen et
al. The core IPM will remain similar, but min-ratio cycles are found via classical
algorithm. We then analyze the problems with this algorithm.

v

Deutsche Zusammenfassung

Das Min-Cost Flow Problem ist ein klassisches Optimierungsproblem der Graphen-
theorie . Hierbei ist auf einem gerichtetem Graphen G jeder Knoten mit einem
Angebot oder Bedarf eines abstrakten Gutes assoziiert. Das Ziel ist einen Fluss über
die Kanten zu finden, der Überschuss und Mangel ausgleicht. Die Kanten haben
hierbei Kosten pro Einheit, deren Summe es gilt zu minimieren, während der Fluss
gewisse Kapazitätsgrenzen nicht überschreiten darf.

In 2022 haben Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian
Probst Gutenberg and Sushant Sachdeva eine Arbeit veröffentlicht, in der sie einen
Algorithmus vorstellen, der dieses Problem in m1+o(m) Zeit lösen. Damit ist dieser
Algorithmus der schnellste, um Min-Cost Flow Probleme zu lösen.

In dieser Arbeit motivieren wir zuerst ein paar der Gedanken des Algorithmus von
Chen et al. indem wir den klassischen Min-Mean Cycle Canceling Algorithmus
erklären. Danach geben wir einen Überblick über die Kernaspekte des Algorithmus
von Chen et al. und beschreiben ausgewählte Aspekte im Detail.

Am Ende bieten wir eine partielle Implementierung des Algorithmus an, in der wir
das Finden von Min-Ratio Cycles durch klassische Algorithmen ersetzten haben.
Anschließend analysieren welche Probleme dieser algorithmus in der Praxis hat.

vi

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Notation and definitions . 3
2.2 Landau notation . 4
2.3 Networks and Flows . 4

2.3.1 Minimum Cost Flow . 5
2.3.1.1 Assumptions . 5
2.3.1.2 Compact definition . 6

2.4 Linear Programming . 6
2.4.1 Geometry of the feasibility region . 7
2.4.2 Min-cost flow as an LP-Problem . 8
2.4.3 Simplex Algorithm . 9

3 Classical Min-Cost Flow Algorithms 11
3.1 Cycles and Circulations . 11
3.2 Minimum-Mean Cost Canceling Algorithm 13

4 The Min-Cost Flow Algorithm by Li Chen et al. 17
4.1 Interior Point Methods . 17
4.2 Reductions . 18
4.3 Overview . 18

4.3.1 Reducing the potential . 19
4.3.1.1 Dynamic trees . 20

4.3.2 How to find min-ratio cycles . 20
4.3.2.1 HSFC data structure as a black box 20
4.3.2.2 Tree-chain motivation . 21
4.3.2.3 Definitions . 22
4.3.2.4 Low stretch decomposition 24
4.3.2.5 Algorithm stack . 25

4.4 Initial Point . 26
4.5 Interpreting gradients and lengths . 28
4.6 Updates in the HSFC data structure . 29
4.7 Min-ratio cycles in the branching tree-chain 30

4.7.1 Finding min-ratio cycles . 30
4.7.2 Limiting the min-ratio cycles via the width 33

4.8 The Rebuilding Game . 36

5 A partial Implementation 39
5.0.1 The IPM . 39

5.1 Finding minimum ratio cycles . 39
5.2 Theoretical approximation value . 42

vii

Contents

5.3 Bellman Ford Algorithm . 42
5.4 Finding min-weight cycles . 43
5.5 Analysis . 44

5.5.1 Practical analysis . 44
5.5.2 Theoretical analysis . 44

6 Conclusion 47

Bibliography 49

viii

1. Introduction

Imagine a company with n factories that either produce or need some product. In total,
there are m direct paths that run from one factory to another. The company wants to find
ways to transport this product from the factories that have a surplus to the ones that do
not. However, on these direct paths, there are capacities that limit how many units can
be transported or even force the minimum amount that needs to be transported. Most
importantly, these paths have associated costs. Therefore, the company wants to find a
way to deliver the product in the cheapest way possible. This is the essence of the min-cost
flow problem. We model the factories on a network G = (V, E) with n nodes and m edges.
Because this problem is very generic, it can be used to solve different practical problems.
Therefore, finding a fast algorithm to solve these problems is interesting.

The cost scaling algorithm is currently one of the most effective algorithms for solving
min-cost flow problems. It runs in O(n2m) ([KK12, p. 86, 113]). In 2022, Chen Li et
al. constructed an algorithm that finds a min-cost flow with high probability in m1+o(1).
It is worth mentioning that around the same time Aaron Bernstein, Maximilian Probst
Gutenberg, and Thatchaphol Saranurak found a deterministic algorithm for finding an
(1 − ε) approximate flow in m1+o(1) ([BGS21]).

This thesis is composed of three parts. In chapter 3 we describe the minimum mean cycle
canceling algorithm. Even though it is a classical algorithm, it contains important concepts
used by Chen et al. Thus, we can familiarize ourselves with these concepts and compare
them with the newly proposed algorithm. Chapter 4 contains an overview of this algorithm
followed by a more detailed explanation of the main data structure. In Chapter 5 we
describe a C++ implementation of the algorithm of Chen et al., where we mainly replaced
the data structure in charge of finding min-ratio cycles with a classical algorithm. This
implementation fails rather quickly. We analyze why this is the case and whether this has
any implications for the practicality of Chen et al. ’s algorithm.

1

2. Preliminaries

It is assumed that definitions such as graphs, cycles, and spanning trees are known.

2.1 Notation and definitions

Definition 2.1 (Contraction). Given the graph G and a spanning forest F ⊆ G, then G/F
is the graph created by contracting the vertices in V (G) that belong to the same component
in F .

Most of the time G/F is a multigraph, with self-loops. In practice we can remove these
self-loops.

Definition 2.2 (Concatenating paths). Given a graph G with e1 = (u, v), e2 = (v, w) ∈
E(G), then

e1 ⊕ e2

is the walk traversing u, v, w via e1 and e2.

Definition 2.3 (Edge-Vertex Incidence Matrix). Given a directed graph G = (V, E), we
define the edge-vertex incidence matrix B ∈ {−1, 0, 1}E×V as

Be,v =


1 ∃u ∈ V : e = (v, u)

−1 ∃u ∈ V : e = (u, v)
0 v /∈ e

Often we will refer to it as the incidence matrix.

General notation

As done by Chen et al., we denote vectors and matrices by boldface letters. For the vectors
x and y, we define x ◦ y to be the pairwise product and |x| to be the absolute value .

3

2. Preliminaries

2.2 Landau notation

Often, we use notation extending the standard O notation. In particular in chapter 4 we
use two more. Õ is the soft-O notation, which is like big-O suppresses but also suppresses
logarithmic factors. The other notation is more commonly used.

Definition 2.4 (small-O). Given g : N → R, f : N → R, then f = o(g) if and only if

lim
n→∞

f(n)
g(n) = 0

We mainly use o(1). In chapter 4, we regularly use the following interactions.

Lemma 2.5. For n ∈ R :

1. log(n) = no(1)

2. no(1)no(1) = no(1)

Proof.

1. We can prove this by taking the logarithm of both sides and dividing by log(n) to
get log(log(n))/ log(n) ≤ o(1). This is true (and can be proven using l’hopital rule).

2. We know no(1)no(1) = n2o(1). Now using 2o(1) = o(1), we prove that no(1)no(1) = no(1).

Similar to how we proved that no(1) suppresses logarithms, we can show that it also
suppresses constants. The second point of the lemma allows us to loop over an operation
taking no(1) without the loop having an asymptotically higher runtime than the operation
itself, as long as we iterate no(1) times.

2.3 Networks and Flows

Ahuja et al. defined a directed network as directed graph G whose nodes[vertices] and/or
arcs[edges] have associated numerical values ([AMO93, p. 24-25]). We can think about this
association in two ways. The first, by defining a function, e.g. h : E(G) → R. The second
one is by using vectors that we index with the edges/vertices. For the example above, we
define the vector h by setting he = h(e) for all e ∈ E(G). The order in which we index
these edges is arbitrary, as long, as it is the same for all vectors and later on matrices. We
use the second representation more commonly, especially in the implementation. Although
sometimes we also apply standard function operations such as limiting the domain, e.g.,
for G′ ⊆ G we can define h′ = h|E(G′).

Examples of these associated vectors are capacities in computer networks, different outputs
of factories (for node associated vectors), or simply distances between locations. We
can model different problems like this. We will mainly look at the Minimum Cost Flow
Problem/min-cost flow problem/MCF problem. However, we will also touch on some other
problems along the way.

4

2.3. Networks and Flows

2.3.1 Minimum Cost Flow

Depending on the problem, a flow is defined differently. In this thesis, we define flow very
liberally.

Definition 2.6. Let G be a graph with the incidence matrix B. A flow f ∈ RE(G) are
edge - associated values that generate some demand d = BT f .

Definition 2.7 (Circulation). On a graph G with edge-vertex incidence matrix B, a
∆ ∈ RE(G) is a circulation, if BT ∆ = 0.

Thus, a circulation is equivalent to a flow that does not generate any demand. The simplest
circulation is 0. Another example is a cycle in G where we route the same amount of flow
over every edge.

Definition 2.8 (Minimum cost flow problem). An instance of the minimum-cost flow
is a tuple (G = (V, E), c, u+, u−, d, U) with c, u+, u− ∈ ZE and d ∈ ZV and all integers
bounded by U .

In the introduction we motivated the min-cost flow as a network of factories n. For this
example, we can interpret d as the demand/supply of the abstract good. Although we
will use the two words interchangeably, the correct way to interpret dv = 1 for a v ∈ V
is to say that v has demand 1. c will be the transport cost of the edges and u+, u− the
capacities of how much we can/need to transport over an edge. Ignoring the cost for now,
a flow that satisfies the demands and is within the constraints, is called a feasible flow.

Definition 2.9 (Feasible flow). Given an instance (G = (V, E), c, u+, u−, d, U) of the
min-cost flow problem, then f ∈ RE is a feasible flow on this instance, if:

1. u− ≤ f ≤ u+,

2. BT f = d where B is the edge-vertex incidence matrix

Flows that are not feasible are called pseudo flows.

Definition 2.10 (Min-cost flow). Given an instance (G = (V, E), c, u+, u−, d, U) of the
min-cost flow problem, then f∗ ∈ RE is a minimum cost flow on this instance, if:

1. f is a feasible flow,

2. cT f∗ ≤ cT f for all feasible flows f .

2.3.1.1 Assumptions

For all MCF problem instance (G = (V, E), c, u+, u−, d, U) in this thesis, we assume the
following:

No parallel edges in G

In practice, parallel edges are not a problem. In theory, they pose notational challenges
because we cannot differentiate e = (u, v), e′ = (u, v) ∈ E(G) by using only their vertices.
We can reduce any problem with parallel edges e, e′ as defined before, in the following
manner: We replace e′ by a new vertex u′ and the edges e′

1 = (u, u′) and e′
2 = (u′, v). We

set the u+
e′

1
= u+

e′
2

= u+
e′ and ce′

1
= 0, ce′

2
= ce′ . In this way we can remove parallel edges

by adding at most m − 1 edges and vertices, so we can find a min-cost flow in the same
amount of time.

5

2. Preliminaries

No self loops in G

Assuming G containsa self-loops, we know that routing any amount of flow over these loops
does not change the generated demands. Therefore, we can simply solve the min-cost flow
problem on G without the self-loops and then simply route the amount of flow over the
self-loops, which reduces the cost the most. Thus, we can assume that G has no self-loops
without loss of generality.

Integrality
As implicitly stated in the definitions, we only concern ourselves with problems where
c, u+, u−, d only contain integers. If they were rational numbers we could simply scale
up the values. Therefore, we can conveniently assume that the min-cost flow (assuming a
min-cost flow exists) is an integer flow ([AMO93, p 318]).

2.3.1.2 Compact definition
We will look at a different representation of the min-cost flow that forms the bridge to
linear programming.
For an instance of the MCF problem (G = (V, E), c, u+, u−, d, U), Ahuja et al. ([AMO93,
p. 296]) describe the min-cost flow as the flow f∗ satisfying the following properties:

minimize c(f) =
∑
e∈E

cefe

subject to
∑

u∈V :
(v,u)∈E

f(v,u) −
∑

u∈V :
(u,v)∈E

f(u,v) = dv for all v ∈ V

u−
e ≤ fe ≤ u+

e for all e ∈ E

We can see how the first and the last line correspond to the second point of definition 2.10
and the first point of definition 2.9. A bit less straight forward is the part that captures
the notion of this flow generating the correct demand . For this, let us focus on the line
beginning with “subject to”. For ever v ∈ V , we can interpret ∑ u∈V :

(v,u)∈E
f(v,u) as all the

units of flow coming into v while ∑ u∈V :
(u,v)∈E

f(u,v) as all the flow leaving it. We also now

see that (BT f)v = ∑
e∈E BT (v, e)fe. If we split this sum into the edges where BT

v,e = 0,
BT

v,e = −1 and BT
v,e = 1, it is equivalent to the amount of flow coming into v minus the

flow going out of v. In this way, the line beginning with “subject to” corresponds to the
second point in the definition of a feasible flow.
With all this in mind, we can compactly define the min-cost flow to be

f∗ = arg min
BT f=d

u−≤f≤u+

cT f .

2.4 Linear Programming
A linear programming(LP) problem is an optimization problem in which the goal is to
maximize or minimize a linear objective function under some linear constraints. These
constraints are given as a collection of equalities and inequalities. Every LP problem can
be transformed into the so called standard form ([PAN23, p. 14-17])

min f = c1x1 +c2x2 + . . . +cmxm

subject to a11x1 a12x2 + . . . a1mxm = b1
a21x1 a22x2 + . . . a2mxm = b2

...
...

...
an1x1 an2x2 + . . . anmxm = bn

x1, x2, . . . xm ≥ 0

6

2.4. Linear Programming

or
min f = cT x

s.t. Ax = b
x ≥ 0

,

with A ∈ Rn×m, c, x ∈ Rm, b ∈ Rn. The goal of this section is to establish, that the MCF
problem can be represented as an LP, so that we can use the geometric properties of LPs
to visualize what different MCF algorithms do.

2.4.1 Geometry of the feasibility region

In this section, we discuss some of geometric properties of the space of solutions satisfying
the constraints of an LP. To visualize this, we also discuss how we can transform LPs into
different representations.

Definition 2.11 (Feasibility region). The feasibility region of a linear program

min f = cT x
s.t. Ax ≤ b

x ≥ 0
,

is the set {x ∈ Rm|Ax ≤ b ∧ x ≥ 0} of points that satisfy the constraints.

Note that the linear program here is not in the standard form because we have Ax ≤ b
instead of Ax = b. This is an LP problem’s canonical form ([NP17, p. 17]) and we can
transform every LP problem in standard form into its canonical form and the other way
around. To demonstrate this, let ai1x1 + · · · + aimxm = bi be some constraint of a LP
problem in standard form. Then we can transform it into the two equivalent inequations
ai1x1 + · · · + aimxm ≤ bi and −ai1x1 − · · · − aimxm ≤ −bi. On the other hand let
ai1x1 + · · ·+aimxm ≤ bi be some constraint of an LP problem in its canonical form, then it
is equivalent to the equation ai1x1 + · · · + aimxm + xm+1 = bi if we add the non-negativity
constraint xm+1 ≥ 0. Also cm+1 = 0 so that this new variable called a slack variable, does
not contribute to the cost. The reason why we use two different forms is that the standard
form is closer to the definition of the MCF problem and the canonical form makes it easier
to motivate the shape of the feasibility region.

Let us first geometrically interpret the x ∈ Rm solving aT x = b for x ∈ Rm where a, ∈ Rm

and b ∈ R. If there is no solution, then this is an empty set, therefore, let us assume
that there is at least one solution x0 = (x1, x2, . . . , xm). Then, for every other solution
x̂ = (x̂1, x̂2, . . . , x̂m) we know that aT x̂ = b = aT x0. This is equivalent to aT (x̂ − x0) = 0
This can be interpreted as the hyperplane orthogonal to a in Rn, translated by −x0. Then
aT x ≤ b is just the half-space on one side of this hyperplane. In this way, the solution to
Ax ≤ b is just the intersection of n half spaces. The solutions for x ≥ 0 can be expressed
as the intersection of the half-spaces ⋂ i ∈ [m]{x ∈ Rm|xT ei ≥ 0} where ei are the unit
vectors. Therefore, overall the feasibility region is the intersection of half-spaces.
We will not prove the further characteristics of the feasibility region. An in-depth discussion
can be found in the work of Robert J. Vanderbei [Van, chapter 2]. In summary, the feasibility
region is a convex polytope with vertices(extreme points), edges and polygonal faces. All
points not on a face are called interior points. Solutions in the feasibility set are called
feasible. Since in our case these points will be flows, this will match our definition of feasible
flows (as soon as we see that a MCF problem is a LP). It is important to note that in
practice, there might not be any feasible solutions.

7

2. Preliminaries

−4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−3

−2

−1

1

2

3

4

5

6

7

Figure 2.1: Two dimensional feasibility region

Figure 2.1 shows a 2 dimensional example an LP in canonical from where c = (−0.5, −1),
d = (6, 4, 7) and

A =

 1 0
0 1

−1 1


The blue lines correspond to the constraints. The arrow on the green line indicates the
direction we must minimize. We now demonstrate why we can always find a vertex that is
an optimal solution (if there is an optimal solution). We want to find a point x ∈ Rn that
minimizes the ⟨c, x⟩. For this, we can simply look at the orthogonal projection of x onto c.
In this way, we can decompose x = βc + r, with β ∈ R and r ∈ Rn and ⟨r, c⟩ = 0. Thus,
we can simply imagine slowly decreasing the β while always looking at the line orthogonal
to c in which we would find r. Visually speaking ,this pushes this line across the feasibility
region. The red lines represent examples of these lines. One where β is too small, one too
big and one correct. If the feasibility region were to continue infinitely in this direction,
there would not be a minimal solution. If it does not, then we can find a optimal solution,
where in the last point of the polytope intersects this line. This will either be a vertex or a
line (wit two vertices). This is the idea behind the argument, why we can always find an
optimal solution in a vertex of the polytope.

2.4.2 Min-cost flow as an LP-Problem
We now want to see how we can represent a MCF problem as an LP problem. For this,
consider an instance of the min-cost flow problem as defined before.

f∗ = arg min
BT f=d

u−≤f≤u+

cT f

8

2.4. Linear Programming

The only difference to the standard form are the capacity constraints u− ≤ f ≤ u+. We
can split this into two constraints f ≤ u+ and f ≥ u−. When it comes to f ≤ u+, we can
use the same idea as used when transforming an LP-Problem from the canonical form to
the standard form. We can do the same with f ≥ u− after changing the constraint to the
equivalent −f ≤ −u−.
We now need to ensure that f ≥ 0. We do this by replacing fe by fe1 and fe2 for every
e ∈ E(G). Now we can add the constraint fe1 , fe2 ≥ 0, to achieve the standard form.
Therefore, we can visualize a MCF algorithm using the feasibility region. The algorithm
we use, always satisfies the demands. Therefore, these algorithm leave the feasibility region
when violating the capacity constraints.

2.4.3 Simplex Algorithm

There are multiple ways of solving an LP problem. The most well known is the simplex
algorithm by George B. Dantzig in 1947 [PAN23, p. 57]. We will use the simplex as an
example of how an algorithm traverses the feasibility region, without going into detail
about its correctness or runtime. We assume the existence of an optimal solution of the
LP/MCF problem. We also assume that we have found some vertex of the polytope, to
use as an initial point. The canonical representation of an LP is helpfull while visualizing
the simplex algorithm. When we are on a face of the polytope, there is some inequality
ai1x1+· · ·+ainxn ≤ bi in the LP problem that is at its maximum, so ai1x1+· · ·+ainxn = bi.
When we describe a point on an edge of the polytope, this is the case for two constraints.
For a vertex, three or more inequations become equations. To traverse from one vertex
to another, we must loosen one constraint and tighten another. The simplex algorithm
decides which direction decreases the objective function and then traverses to the next
vertex. This is repeated until a vertex is reached where the objective function can no longer
be decreased by traversing. As we will see later, a classical min-cost flow algorithm uses a
similar strategy.

9

3. Classical Min-Cost Flow Algorithms

In this chapter, we examine some basic ideas of MCF algorithms and motivate the ideas
behind the minimum-mean cycle canceling/(MMCC) algorithm. Most proofs can be found
in a different form in the work of Ahuja et al. ([AMO93, p. 306-382]). We specifically chose
the MMCC algorithm because it uses the idea of minimum-mean cycles to iteratively get
closer to an optimal solution. In chapter 4 we will see that Chen et al. use minimum-ratio
cycles for this purpose, which is a generalized version of this concept.

For the rest of this chapter, we are working on an instance (G = (V, E), c, u+, u−, d, U)
with c, u+, u− ∈ ZE of the min-cost flow problem as defined in definition 2.8. In this
chapter only, we add the following three assumptions, which do not lead to a loss of
generality: u− = 0 ([AMO93, p. 39]) , c ≥ 0 ([AMO93, p. 297]) and f.a. two vertices
v, u ∈ V there never both edges (v, u) ∈ E and (u, v) ∈ E at the same time([AMO93, p.
45]). This last assumption is once again only to avoid notational issues later on and can be
ignored in practice.

3.1 Cycles and Circulations
All MCF algorithms mentioned in this thesis, do essentially the same thing. They find some
flow on the polytope, and then continuously augment this flow to navigate the polytope
while getting closer to the optimal solution. To stay inside the polytope, the flows always
need to stay within the capacity constraints. The algorithms we look at achieve this in
a fundamentally different ways. To be feasible, the flows must also always satisfy the
demands. In this section we explain, why finding cycles is integral to augmenting flows in
a way that keeps them feasible.

Lemma 3.1. Given a graph G with incidence matrix B. Let ∆ be a circulation and f a
flow with BT f = d for the demands d, then:

• BT (f + ∆) = BT (f) = d

• cT (f + ∆) = cT f + cT ∆.

Proof. Since matrix multiplication is distributive and definition 2.7, we know that

BT (f + ∆) = BT (f) + BT (∆) = BT (f).

The second points directly follows the linearity of scalar products.

11

3. Classical Min-Cost Flow Algorithms

0 1

2

−1

1
1

Figure 3.1: Augmentation cycle

Next is the important relationship between cycles and circulations. Here we introduce the
definition of an augmentation cycle.

Definition 3.2 (Augmentation cycle). Given a graph G. Let C ⊆ G by an undirected
(ignoring edge directions) cycle. Then C is an augmentation cycle, if there is a corresponding
circulation ∆ ̸= 0 ∈ RE only routing flow over edges in C.

We will sometimes refer to this corresponding circulation without specifically mentioning
the augmentation cycle, when we refer to an augmentation cycle vector.

Lemma 3.3. Given a graph G with incidence matrix B and flow f on G then,

1. Every directed cycle C is also an augmentation cycle.

2. Not every augmentation cycle is a directed cycle.

3. For every augmentation cycle C with the corresponding augmentation vector ∆ there
is a µ ∈ R \ {0} with |∆e| = µ for all e ∈ C.

The third point can be interpreted as augmentation circulation routing the same amount
of flow in one direction along the augmentation cycle. Because these edges are sometimes
directed in the opposite direction of the flow, the flow is negated on these edges.

Proof.

1. Let ∆ be the vector that routes 1 over every edge in C. Because every vertex v ∈ V (G)
in C receives one unit of flow and then passes it on, we know that (BT ∆)v = 0. For
vertices that are not in the cycle, there is no flow routed in or out of them. Therefore
BT ∆ = 0 with ∆ only using edges of C. Therefore C is an augmentation cycle.

2. Figure 3.1 shows a graph not containing a directed cycle but an augmentation cycle.
3. We first show that |∆e| is the same for all edges e ∈ E(C). Here, let v be a vertex

in V (C), where e1, e2 ∈ C are the two edges incident to v. We know that these are
the only edges going in and/or out of v that route a value different from 0. Now,
since ∆ is a circulation, we know that (BT ∆) = 0. So Be1,v∆e1 + Be2,v∆e2 = 0.
Because e1, e2 are incident to v, we can conclude Be1,v, Be2,v ∈ {−1, 1}. Therefore
|∆e1 | = |∆e2 |. Now we know that the value ∆e of some edge e ∈ E(C) determines
the absolute value of all other edges in C. We can now conclude that this value
∆e ̸= 0 because otherwise ∆ = 0, which would be a contradiction to the definition of
the augmentation cycle.

12

3.2. Minimum-Mean Cost Canceling Algorithm

By definition, we know that all augmentation cycle vectors are circulations. We now show
that we can decompose all circulations into augmentation cycle vectors.

Lemma 3.4. We can decompose any circulation ∆ with ∆ ̸= 0 into augmentation cycle
vectors ∆1, . . . , ∆b so that

∑b
i=1 ∆i = ∆.

Proof. We prove this inductively by finding an augmentation cycle that is part of the
circulation and then a corresponding augmentation vector. Subtracting this vector will
reduce the number of edges in the circulation with non-zero flow, showing that this can
only be done a finite amount of times.
We first show that there is an augmentation cycle C1 ⊆ G on the edges that c is routing
flow over. To show this, assume that there is no such cycle. Since ∆ ̸= 0 , there are edges
that route some flow. These edges would not contain a cycle and would therefore be a
forest with leaf vertices. Let v be such a leaf vertex with e being the only incident edge
with ∆e ̸= 0. Then |(BT ∆)v| = |∆e| ̸= 0 and thus BT ∆ ̸= 0. This is a contradiction
to the definition of a circulation. If we take some edge e ∈ C1 we can create the first
augmentation circulation ∆1 by setting (∆1)e = ∆e. From the third point of lemma 3.3 we
know that this determines the values for the rest of the augmentation circulation. With this
construction, it follows that (∆ − ∆1)e = 0. And since ∆1 is a circulation itself, we know
that that BT (∆ − ∆1) = BT ∆ + BT ∆1 = 0 and is therefore once again a circulation.
Note that this new circulation no longer routes any flow over edge e, and only edges that the
original circulation used were changed. We have decreased the edges in the circulation with
a non-zero value. We can inductively apply this step to the newly generated circulation
until we have reach the circulation 0.

Because the current flow and the optimal solution generate the same demand, there is
always circulation changing the current flow into the optimal solution.

Definition 3.5 (Witness Circulation). Given an instance of the MCF problem with demand
vector d and vertex incidence matrix B. Let f∗ be a optimal solution to this MCF problem.
Given a feasible flow f , then

∆(f) = f∗ − f

is the witness circulation.

With this, we now know that as long as we can find a circulation with negative cost that
does not push the current flow outside the capacity bounds, we can decrease the cost of
the flow. From a different perspective: we can build the witness circulation by adding up
certain negative cost augmenting cycles.

3.2 Minimum-Mean Cost Canceling Algorithm
We now want to motivate the idea behind the MMCC algorithm. We first assume that
for some instance of the MCF problem on the graph G, we have found a feasible flow
f corresponding with some vertex of the feasibility region. Now, we want to find an
augmenting cycle that takes us from the current vertex in the polytope to another while
decreasing the cost of the flow, just as we did in the simplex algorithm 2.4.3. To ensure
that, we do not leave the capacity constraints, we create a special network whose directed
cycles correspond with augmentation cycles in G, which have this property. We can create
such a network by looking at the possible changes or, in other words, the residual capacities.

13

3. Classical Min-Cost Flow Algorithms

We can either add u+
e − fe more flow with the cost of ce or remove fe − ue = fe flow

by changing the cost by −ce per unit. If we split the edge e into an edge that encodes
the addition of flow and a reversed edge encoding the subtraction of flow, then the direct
cycles will describe all augmentations inside the polytope. This network is called a residual
network and is used by many different MCF algorithms.

Definition 3.6 (Residual network). Given an instance (G = (V, E), c, u+, u−, d, U) of the
min-cost flow problem and a flow f ∈ ZE. We define the residual network R(f) = {Gr =
(V, Er), r, cr}. We set Er = E(G) ∪ {(i, j) | (j, i) ∈ E(G)}, r(i,j) = u+

(i,j) − f(i,j), r(j,i) =
f(i,j), cr

(i,j) = c(i,j), cr
(j,i) = −c(i,j) for every edge (i, j) ∈ E(G).

Note that this definition is notionally challenging, when we cannot have both an edge (i, j)
and (j, i) in G. Because of this, we have removed these cases at the beginning of the section
3.

There is a direct relationship between flows in G and in R(f). We will only examine the
relationship between feasible directed cycles in R(f) and augmentation cycles in G. We do
not have capacity constraints or demands in R(f), so we define a cycle vector ∆ to be
feasible if ∆ ≤ r.

Lemma 3.7. Let (G = (V, E), c, u+, u−, d, U) be an instance of the min-cost flow problem
with some feasible flow f ∈ ZE and the residual network R(f). We can map any directed
cycle vector ∆ of a cycle with length ≥ 3 in R(f) to an augmentation cycle vector Λ in G
by setting

Λ(i,j)G =


µ if ∆(i,j) ̸= 0

−µ if ∆(j,i) ̸= 0
0 otherwise

for all (i, j)G ∈ E(G). Furthermore if ∆ is feasible, then f + Λ is feasible and (cr)T ∆ =
cT Λ.

Proof. Let C ⊆ R(f) be the cycle of ∆ We first prove that the mapping is well defined.
For this, we must show that every for edge (i, j)G ∈ E(G) at most only one of (i, j), (j, i) ∈
E(R(f)) has a non-zero flow in ∆. If we assume that both have flow, then (i, j), (j, i) ∈
E(C). This is only possible if these are the only two edges, which would result in a cycle
of length 2, which is not allowed. Therefore Λ is well defined.
Let us now show that Λ is a circulation. For this let B be the incident matrix for G. We
need to show that for all v ∈ V (G) (BT Λ)v = 0. Since V (R(f)) = V (G) we will use v ∈ G
to refer to the vertex in both networks.
If v /∈ V (C) then for all edges e ∈ E(R(f) incident to v, their flow is ∆e = 0. Using the
definition of the mapping, we know that for all edges eG ∈ E(G) incident to v Λe = 0.
If v ∈ V (C) then there are exactly two edges (i, v), (v, j) ∈ E(R(f)) so that µ := ∆(i,v) =
∆(v,j) ≠ 0. Looking at the edges in G, there are two edges ei, ej that are incident to v
and correspond with (i, v) and (v, j), which are the only edges with a non zero value, so
(BT Λ)v = Bei,vΛei + Bej ,vΛej . If ei = (i, v)G ∈ E(G), then Λei = µ and Bei,v = −1
and therefore Bei,vΛei = −µ. If ei = (v, i)G ∈ E(G), then Λei = −µ and Bei,v = 1 and
therefore Bei,vΛei = −µ. So in any case Bei,vΛei = −µ. The same argument can be made
for ej with Bej ,vΛej = µ. So together (BT Λ)v = Bei,vΛei + Bej ,vΛej = 0. Therefore Λ
is a circulation. And if C is a directed circle, the corresponding edges in G are also an
(undirected) circle.
Now, we show that if ∆ ≤ r then f + Λ is feasible. Since Λ is a circulation and
f is feasible, then f + Λ must also satisfy the demands because of lemma 3.1. We

14

3.2. Minimum-Mean Cost Canceling Algorithm

now only need to show that for each (i, j)G = e ∈ E(G) : 0 ≤ (f + Λ)e ≤ u+
e . If

∆(i,j) = ∆(j,i) = 0, then (f + Λ)e = fe, is inside the capacity constraints since f . If
µ := ∆(i,j) ̸= 0 then re ≥ µ > 0 since ∆ is feasible. Therefore Λ(i,j)G = µ ≤ re = u+

e − fe,
so 0 ≤ Λ(i,j)G + f(i,j)G ≤ u+

(i,j). If µ := ∆(j,i) ̸= 0 then r(j,i) ≥ µ > 0 since ∆ is feasible.
Therefore 0 > Λ(i,j)G = −µ ≥ −r(j,i) = f(i,j), so u+

(i,j)G ≥ Λ(i,j)G + f(i,j)G ≥ 0.
The last thing to show is that (cr)T ∆ = cT Λ. For this let (i, j)G be an edge, in E(G). If
∆(i,j) = ∆(j,i) = 0 then Λ(i,j)G = 0. Thus the cost of the flow on these edges in both graphs
is 0. If µ := ∆(i,j) ̸= 0 then ∆(j,i) = 0 and Λ(i,j)G = µ so ∆(i,j)c

r
(i,j) + ∆(j,i)(−cr

(i,j)) =
µcr

(i,j) = c(i,j)GΛ(i,j)G . And if µ := ∆(j,i) ̸= 0 then ∆(i,j) = 0 and Λ(i,j)G = −µ so
∆(i,j)c

r
(i,j) + ∆(j,i)(−cr

(i,j)) = −µ(−c(i,j)G) = c(i,j)GΛ(i,j)G .

Now we can formalize the idea that we can also reduce the cost of a flow if we find the
right negative cost augmentation cycle.

Lemma 3.8 (Negative cycle optimality condition). A feasible flow f is a min-cost flow if
and only if R(f) does not contain a cycle with negative cost.

Proof. First assume that f is a feasible flow and R(f) contains a cycle with negative cost.
With lemma 3.7 we can find a augmentation cycle vector ∆ ⊆ G with a negative cost.
With Lemma 3.1 we conclude that cT (f + ∆) < cT f . Therefore f is not a min-cost flow.
Now let us assume f is a feasible flow and that there is another feasible flow f∗ with
cT f∗ < cT f . Then cT (f∗ − f) < 0. As shown after the definition 3.5, Λ := f∗ − f is
a circulation. With lemma 3.4 we can decompose Λ in augmentation circulation vectors.
At least one of these augmentation cycles must have a negative cost, otherwise we can
prove that the witness circulation has a positive cost using lemma 3.1. We can map this
augmentation cycle back into the residual network as a directed cycle with negative cost
using the reversed mapping of the one used in lemma 3.7. We do not prove that the reverse
of this mapping works as we claim, but it is commonly used by Ahuja et al.

We now have a simple way of finding a min-cost flow. By searching for negative cycles
in the residual network of the current flow and adding the corresponding augmentation
cycles to the current flow, we can decrease the cost of the flow until we can no longer find
a negative cycle. In theory, we could find a min-cost flow faster by using cycles that give
us the largest improvement. For this, we do not only want a negative cycle, but also one
with a large residual capacity, so that we can scale the augmentation cycle before adding it.
Therefore, we need to find a cycle C that minimizes∑

(i,j)∈C

cr
(i,j) min

(i,j)∈C
r(i,j).

This is an NP-complete problem ([AMO93, p. 319]). By instead looking for cycles that
still effectively reduce cost, but are faster to find, it is possible to create an algorithm that
runs in polynomial time.
One way of finding good negative cycles, is by looking for minimum mean cycles.

Definition 3.9. Given a network with associated edge costs c, then the minimum mean
cycle C is the cycle that minimizes ∑

(i,j)∈C c(i,j)

|C|
.

15

3. Classical Min-Cost Flow Algorithms

It is possible to identify a min-mean cost cycle in O(nm) [Kar78, p. 311]. In chapter 5 we
also describe an algorithm for finding min-ratio cycles, which are generalized min-mean
cycles. The MMCC algorithm searches for these cycles in the residual network. Every
time a min-mean cycle is found, the corresponding augmentation cycle is scaled to its
maximum so that some edge will reach its capacity constraints. With this, we can see,
that this algorithm functions somewhat like the simplex algorithm 2.4.3, in the sense that
it traverses the edges of the polytope until no edge/circulation can further decrease the
cost. The algorithm runs in O(n2m2 log(mC) time. A full proof of this can be found in
the work of Ahuja et al. ([AMO93, p 377-381]).

16

4. The Min-Cost Flow Algorithm by Li
Chen et al.

Chen et al. describe the main parts of their algorithm in more than 45 pages ([AMO93,
p.24-71]. Therefore, we cannot look at all of those parts in the same detail. Going a step
further, the primary goal of this chapter is to give an overview of the different ideas and
moving parts used in this algorithm. For this, we often leave out details or push it back to
later sections where they might be easier to motivate.
For this, we first look at the general class of algorithms under which we can categorize the
algorithm by Chen et al. In the second part of this chapter, we present the main ideas of
their work. In the third part, we will go deeper into the details of a few select aspects of
the algorithm to prove why the main concepts work.

Even so, it is important to highlight that practically all the ideas of this chapter and most
of the proofs were originally done by Chen Li and his colleagues. We simply reorder and
motivate these ideas, thereby trading the complete proof given by Chen et al. to hopefully
make it more comprehensive. At some points, we also look at some extra lemmas that we
use to explore the ideas in more detail or add some more detail to the proofs by Chen et al.

4.1 Interior Point Methods
With the simplex algorithm (2.4.3, we have already looked at a concept for solving an LP.
The interior point methods (IPM) represent an entirely different approach. They are an
umbrella term used for algorithms that share the same concept. Instead of traversing the
edges and vertices of the polytope, they traverse the interior points of the feasibility region.
The most well-known algorithm of this type is the Karmarkar Algorithm([Kar84]). This
algorithm and the algorithm given by Chen et al. are both potential function algorithms.
This means that there is a potential function Φ on which we perform some form of gradient
decent. For this to be effective, the function must satisfy the two properties:

1. At the minimum of the function there must be an optimal solution. The further
the input of the function is a way from this optimum, the higher the value of the
function.

2. The function must punish extreme points close to violating some constraint. Visually
speaking, it wants to keep the gradient descent away from the faces of the polytope
as this might limit the step size in certain directions. Therefore, the function must
return higher values when the input is close to a constraint.

17

4. The Min-Cost Flow Algorithm by Li Chen et al.

We assume that the LP has a solution. Then, we can find an optimal point on a vertex.
Keeping this in mind, the two properties seemingly work against each other. To ensure
that this does not cause an issue during the gradient decent, the term corresponding to the
second property is scaled by an α value.
The algorithm by Chen et al. uses the potential function

Φ(f) def= 20m log(cT f − F ∗) +
∑
e∈E

((u+
e − fe)−α + (fe − u−

e)−α)), (4.1)

with α = 1
1000 log mU and F ∗ being the cost of a minimum flow. Of course, we do not know

the value of F ∗. To solve this, we simply use the algorithm in a binary search, where we
guess the value of F ∗. The first summand of this function (20m log(cT f − F ∗)) returns a
large value, if the current flow f has a large cost. This corresponds to property 1. The
second summand ∑e∈E((u+

e − fe)−a + (fe − u−
e)−α)) returns a large value if the flow is

near edge capacities. This is what achieves property 2. So intuitively it makes sense that
we can find a min-cost flow by using gradient decent on this function.

4.2 Reductions
The interior point method described by Chen et al. makes a few assumptions.

Initial Flow

We have explained that in the IPM, we want to decrease the value of the potential function.
To do this, we first need to find an initial flow f (init) to use as a starting point. This
starting point must be within the capacity constraints, satisfy the demands and not be too
far from the optimal solution. We go in depth into this in section 4.4. The idea behind
it is, that we use the IPM on a modified instance of the min-cost flow. We obtain this
modified version by adding a vertex, and edges from every other vertex to this vertex.
In this way, we can take an arbitrary flow within the capacity constraints and fix the
unfulfilled demands by routing flow over these added edges.

Minimum cost

To create the potential function (4.1), we need the cost F ∗ of a min-cost flow. The way
we find this is by simply guessing it and running the IPM with that guess. Depending on
the results, we guess smaller or bigger and run the IPM again. In this way, we perform
a binary search for a value that the IPM needs with the IPM itself. The search range
is [− mU2, mU2] since U is the limit for cost and capacity and we have m edges. And
because the min-cost flow is an integer flow and all costs are integers, F ∗ is an integer.
Therefore the binary search takes log(2mU2)m1+o(1) under the assumption, that the IPM
runs in m1+o(1) the overall algorithm runs in the same asymptotical time because of lemma
2.5, log(2mU2)m1+o(1) = m1+o(1).

Rounding Flow

Chen et al. also assumed that the flow found by the IPM can be rounded to the correct
integer flow. They prove the reason for this in Lemma 4.11 [CKL+22, Lemma 4.11].

4.3 Overview
The algorithm given by Chen et al. can be separated into two parts. One is the main IPM
reducing the potential via min-ratio cycles. The other part explains, how these min-ratio
cycles are found. This section serves as an overview of the algorithm by Chen et al.,
establishing the different ideas and lemmas used without going into to much detail why
they work. Selected aspects will be discussed in more detail in the other sections.

18

4.3. Overview

4.3.1 Reducing the potential

Definition 4.1. Let (G, d, c, u+, u−, U) be an instance of the mcf-problem as usual as
well as a flow f ∈ RE, then

g(f)e = (∇Φ(f))e = 20m(cT f − F ∗)−1ce + α(u+
e − fe)−1−α − α(fe − u−

e)−1−α

and is the gradient of the f on the edge e ∈ E(G) and

l(f)e = (u+
e − fe)−1−α + (fe − u−

e)−1−α

is the length.

If there is only one flow in question, we often only use g for g(f) and l for l(f). To augment
the current flow without changing the generated supply, we need to use circulations, as
shown in Lemma 3.1. The algorithm uses the gradients and lengths to determine a good
augmentation cycle.

Definition 4.2. Given G = (V, E) be a graph with the edge-vertex incidence matrix B
as well as lengths l ∈ RE

>0, and costs g ∈ RE \ {0}. The minimum ratio cycle is the
augmentation cycle ∆ ∈ RE(G) \ {0} which minimizes the ratio of the gradient gT ∆ in
relationship to the length lT ∆ ([AMO93, 150]). Or formally

min
BT ∆=0

gT ∆
||L∆||1

,

where L = diag(l).

In the literature a name that is commonly used for this concept, is minimum cost-to-time
ratio cycle. One important thing to note here is that the direction of the edges of the
augmentation cycle only interacts with the gradients, like in a residual network where we
used the gradients instead of the costs. A result of this is the following lemma.

Lemma 4.3. Given a graph G with the gradients g ∈ RE(G)\ and lengths l ∈ RE(G)
>0 and

the min ratio cycle ∆ ∈ RE(G), then

gT ∆
||L∆||1

≤ 0.

Proof. Assume the ∆ has a positive ratio. Then

gT ∆
||L∆||1

> − gT ∆
||L∆||1

= gT (−∆)
||L(−∆)||1

.

This is a contradiction since ∆ has the smallest ratio

An interesting parallel to the MMCC algorithm is that the concept of min-ratio cycles is a
generalization of the minimum-mean cycle. If we solve a min-ratio cycle problem where for
all edges e ∈ E(G) le = 1, it is the same as looking for a min-mean cycle with c = g (3.9).

19

4. The Min-Cost Flow Algorithm by Li Chen et al.

Visual representation

Compared to the MMCC algorithm we no longer traverse the edges of the polytope but
stay inside the interior. We can visualize this idea by extending the polytope by another
dimension, which we can imagine as a height, given by the value of the potential function
for each point/flow. We can interpret circulations as pointing in some kind of direction in
the polytope. We can now ask if we see a decrease in height by moving the flow in one of
these directions. By using the gradient, we can determine the directions in which we the
height decreases the fastest. We might imagine this by finding a way down into a valley
by going down the steepest slopes. When looking at the runtime and correctness, this
of course depends on both the shape of the mountains around the value (are there any
plateaus, or false minima?) and the size of the steps we take (we want to make sure to not
step outside the polytope). The second part is partially achieved by scaling the min-ratio
cycles depending on their lengths. A full proof that this works in mo(1) iterations can be
found in [CKL+22, Lemma 4.4].

4.3.1.1 Dynamic trees

The current flow of the IPM is stored in dynamic trees. In section 4.3.2.2 we see the
motivation behind using multiple dynamic trees. This data structure is used in other parts
of the algorithm, as well and we will not explain the operations of these trees, because
they are the standard implementation as described by Daniel D. Sleator and Robert Endre
Trajan [SE83] with one extra functionality. In summary, almost all operations that the
algorithm by Chen et al. performs on the dynamic trees, run in an amortized Õ(1). These
operations include edge insertions/deletions and updates to gradients, lengths and flow. The
only operation that differs, is the added functionality called DETECT(). The Motivation
behind the function is that the values of that gradients and lengths will only change slowly
over the course of the algorithm. In this way, they only need to be recalculated periodically.
Detect returns a subset S of edges of the dynamic tree, whose flow has changed significantly,
since the last time it was returned in Õ(s) time, where [CKL+22, Lemma 3.3].

4.3.2 How to find min-ratio cycles

The part of the algorithm that finds the min-ratio cycle is the HSFC data structure. We
interpret the HSFC data structure as a wrapper around the (B)-branching tree-chain.
They contain most of the complexity of the algorithm by Chen et al. We will first take a
superficial look at this data structure and then break down the components from which it
is composed.

4.3.2.1 HSFC data structure as a black box

Let us first explain the name. HSFC is an abbreviation of hidden stable flow chasing.
This is used to describe updates on the graph, gradients, and lengths that satisfy certain
constraints. These constraints are in place so that we can prove some properties of the
width later on. The HSFC data structure receives these updates but it also generates these
updates in a recursive manner to maintain its internal structure.

The HSFC data structure, as defined by Chen et al., maintains a set of dynamic trees
and supports two operations ([CKL+22, Theorem 6.2]). Both exactly once during every
iteration of the IPM. We assume that the algorithm runs for τ cycles with t as the current
cycle. In our explanation however, we try to remove references to the current time t.
At a point, the defined operations refer to the width w(t) which are an overestimate for
∆∗,(t) ◦ l(t) where ∆∗,(t) is the current witness circulation as defined in 3.5.

20

4.3. Overview

• UPDATE(U (t), g(t), l(t)): Updates gradients and lengths to g(t) and l(t). U (t) only
contains edge insertions/deletions, and together with g(t), l(t) these update must
satisfy the HSFC constraints. It also must be the case, that for α = 1/1000 log(n),

⟨g(t), ∆∗,(t)⟩
||w(t)||1

≤ −α.

• QUERY() : Returns a tree Ti corresponding to one of the dynamic trees and cycle
∆ represented as mo(1) off tree edges. This cycle fulfills the following property for
κ = exp(− O(log7/8 m · log log m)),

⟨g(t), ∆⟩
||L(t)∆||1

≤ −κα.

The runtime of these operations summed up over all cycles is mo(1)(m + Q) with Q =∑
t∈[τ] |U (t)| the overall amount of individual updates applied to the edges. Without going

into too much detail Q = mo(1) so together the run time is m1+o(1) over all iterations.

In the extra condition for the update, the −α puts an upper bound to the ratio of the
witness circulation. In the query we see, that the returned cycle can push this bound up to
a factor of κ. So κ can be somewhat interpreted as an approximation factor.

The tree returned, corresponds with one of the trees we described in section 4.3.1.1.

4.3.2.2 Tree-chain motivation

In the overview, Chen et al. describe a static algorithm that finds an mo(1) approximate
min-ratio cycle [CKL+22, p. 7,8]. They use a probabilistic low stretch spanning tree T
of G. Let us first look at what probabilistic low stretch means for a spanning tree. The
parameter that we stretch is the length l(u,v) of an edge (u, v) ∈ E(G) when routing one
unit of flow from u to v inside T . Thus, the stretch of (u, v) is

strT,l
(u,v) = 1 +

∑
e∈T [u,v] le

l(u,v)
, (4.2)

where T [u, v] is the unique u-v path in a tree. In a probabilistic stretch tree, this stretch is
expected to be Õ(1). We can find such a tree in Õ(m) time [AN19, p. 227]. Next, they
want to find a good approximation of the witness circulation of the fundamental tree cycles.
A fundamental tree cycle is created when combining an edge (u, v) /∈ E(T) with the unique
path T [u, v]. Chen et al. now argue, that with a probability of at least 1/2 that a random
tree like this does not stretch the witness circulation too much. They conclude, that with
a probability greater or equal than 1/2 , we are able to find a cycle that is a Õ(1) = mo(1)

approximation to witness circulation. We can boost this probability by simply sampling
more independent trees. The issue with this algorithm is that the lengths change every
time, a circulation is added to the flow. Therefore, the trees might not be low stretch
anymore and rebuilding even a single tree each iteration would lead to an overall runtime
of Ω(m2).

Chen et al. solved this problem by using so called tree-chains. A tree-chain is a sequence of
graphs G0, . . . , Gd, where a graph Gi recursively constructed by taking a specific spanner
S(Gi−1, F) of C(Gi−1, F) = Gi−1/F where F ⊆ Gi is a spanning forest. Before even
defining the tree-chain formally, we want to establish the relationship between a specific
spanning tree T of G and the sequence of forests F1, . . . , Fd used in a tree-chain. For now,
let us look a tree-chain of length two, with one forest and one tree.

21

4. The Min-Cost Flow Algorithm by Li Chen et al.

Lemma 4.4. Given a graph G = (V, E) with a spanning forest F ⊆ G. Let S(G, F) be
some a spanner on G/F , removing at least all self-loops. Then we can map every spanning
trees on S(G, F) to a unique and the spanning trees of G whose edges are all in F ∪S(G, F).

To make sense of the F ∪S(G, F), it is important to mention, that when needed, we identify
edges in S(G, F) with their preimages in G.

Proof. Let T ⊆ S(G, F) be a spanning tree. Then, we can map it to T = (V, E(F) ∪ E(T)).

First, we show that T is a spanning tree. Assume T is not connected. Then, there must
be two components in F which cannot be connected by adding edges E(T). Since these
components correspond with vertices in G\F , we know T would not be connected and
therefore not a spanning tree, which is not the case. Now lets assume T contains a circle.
We have two different cases. First assume the circle only contains vertex of one component
in F . Since S(G, F) removed all self-loops of G/F , the cycle cannot be inside a single
component of F . Thus the cycle must pass through multiple components each correspond-
ing to a vertex in V (S(G, F). These vertices must form a cycle in T as well. This is a
contradiction. Therefore T must be a tree. Now to show that T is spanning G, let k be the
amount of components in F . Since F is a forest, we can use the basic graph theory result
|E(F)| = |V (F)|−k = |V (G)|−k together with |E(T)| = k−1 and that fact that T is a tree,
to conclude that T spans |E(T)|+1 = |E(F)|+ |E(T)|+1 = |V (G)|−k+k−1+1 = |V (G)|
vertices.

To prove that this mapping is unique, we prove the injectivity of it. Let T 1, T 2 ⊆ S(G, F)
be spanning trees with T 1 ̸= T 2. Then since there must be at least one edge that the trees
do not have in common, T1 = (V, E(F) ∪ E(T 1)) ̸= (V, E(F) ∪ E(T 2)) = T2.

If we now look at a tree-chain of length d, then by applying the lemma above recursively,
we know, that we can identify a spanning tree of G by the unification of the forests used
for the core graph construction (By building a tree from Fd and Fd−1, which we can then
use to build a tree with Fd−2, . . .). This will allows us to maintain the low stretch property
on different levels, where lower levels can be rebuilt without impacting the upper levels.
We will also generalize the concept of fundamental tree cycles to fundamental chain cycles
in section 4.7.1. Of course for this to be possible, the forest and spanners must be selected
and maintained in a very specific way.
As before, we do only guarantee the probabilistic stretch of the witness circulation in these
trees. Instead of using multiple independent tree-chains, we take a singular chain and
branch it at every level. So B = O(log n) forests for every graph in the preceding level.
This way the branching tree-chain itself has once again a tree structure with Bd = s leaf
vertices. And with every one of these leafs we have a corresponding tree, on which the IPM
maintains a part of the current flow.

4.3.2.3 Definitions

In the section we will formally define the branching tree-chain. We also look at how the
gradients and lengths are mapped through the different levels. We also refer to a lot of trees
and rooted forests with an associated stretch in this section. We give a formal definition of
these in section 4.3.2.4 dots as well look at how they are created.

Definition 4.5 (Core Graph). Given a graph G and a rooted spanning forest and tree
F ⊆ T on G, with stretch overestimates s̃tre. The core graph C(G, F) is the contraction

22

4.3. Overview

G/F , with lengths lC(G,F) ∈ RE(C(G,F))
>0 and gradients gC(G,F) ∈ RE(C(G,F)). For every

ê ∈ E(G/F) with preimage (u, v) = e ∈ E(G), the length is l
C(G,F)
ê

def= s̃trele and the
gradient isgC(G,F)

ê

def= ge + ⟨g, p(T [v, u])⟩.

p is the function mapping a sequence of edges to the flow, routing one unit overe these
edges.

We will treat the sparsification process as a block box. For completion sake, we will list the
same definition for the sparsified core graph as given by Chen et al. even though, we have
not defined some of the conecpts and are mostly not using them in this thesis. We will
informally explain them below. Up front one funtion, that is going to come up again is the
embedding ΠC(G,F)→S(G,F) which maps every edge from E(C(G, F)) to a path in S(G, F).
This includes the self-loops, which are mapped to empty paths.

Definition 4.6 (Sparsified core graph). Given a graph G, forest F and a parameter
reduction parameter k ∈ R>0 A subgraph S(G, F) ⊆ C(G, F) is a (γs, γc, γl)-sparsified core
graph with embedding as a subgraph and embedding ΠC(G,F)→S(G,F), if it satisfies

1. For any ê ∈ E(C(G, F)), all edges ê ∈ ΠC(G,F)→S(G,F)(ê′) satisfy l
C(G,F)
ê ≈2 l

C(G,F)
ê′ .

2. length(ΠC(G,F)→S(G,F) ≤ γl and econg(ΠC(G,F)→S(G,F)) ≤ kγc.

3. S(G, F) has at most mγs/k edges.

4. The lengths and gradients of edges in S(G, F) are the same as in C(G, F)

In summary, the sparsified core graph is a spanner of the core graph depending on the
values γs, γc, γl ∈ R>0. γs is self-explanatory part of the of the upper bound mγs/k of the
edge amount. k is the reduction factor which well be used at global level. Here it will
be set to k = m

1/d
0 where m0 is the amount of edges of top level graph and d = O(log n)

being the depth of the branching tree-chain, which we are yet to formally define. γl is an
upper bound for maximum amount of edges in a path that ΠC(G,F)→S(G,F) maps to. γc

together with the reduction factor forms an upper bound for the maximal edge congestion
in S(G, F). The congestion of an edge e ∈ S(G, F) is the amount of edges in C(G, F)
mapped to a path containing e. The other points are straight forward.

Definition 4.7 (Tree-chain). Let G be graph. Then the sequence of graphs G0, . . . , Gd

a tree-chain with the corresponding forests F1, . . . , Fd is a tree-chain if G0 = G and
Gi = S(Gi−1, F) for i ∈ {1, . . . , d}.

Note, that to make sure, we can construct a spanning tree of G out of the spanning forests,
the forest on the lowest level must be a tree.

With this we can now finally define the B-branching tree chain

Definition 4.8 (B-branching tree-chain). For a graph G, parameter k, and branching
factor B a B-branching tree-chain consists of collections of graphs {Gi}0≤i≤d , such that
G0 = {G} and recursive definition of Gi i ∈ {1, . . . , d} inductively as follows.

1. For each Gi ∈ Gi, i < d is a collection of B trees T Gi = {T1, T2, . . . , TB} and a
collection of B forests FG

i = {F1, F2, . . . , FB} such that E(Fj) ⊆ E(Tj) which Fj , Tj

being a LSD of Gi.

23

4. The Min-Cost Flow Algorithm by Li Chen et al.

2. For each Gi ∈ Gi and F ∈ FGi there are γs, γc, γl-sparsified core graphs and embedding
S(Gi, F) and ΠC(Gi,F)→S(Gi,F).

3. Set Gi+1 = {S(Gi, F) : Gi ∈ Gi, F ∈ FGi}.

For every Gd ∈ Gd we maintain a low-stretch tree T .

At this point we have not yet introduced the LSD or low stretch decomposition. This will
be explained in chapter 4.3.2.4.

4.3.2.4 Low stretch decomposition

The algorithm we described to motivate the HSFC data structure used a low stretch tree to
find a good witness circulation approximation. With the HSFC data structure, we are no
longer working with trees but with forests, which will once again have a low stretch. With
forests, we cannot guarantee that there is a path between every two vertices. Therefore, we
must find a different way of thinking about the stretch. Chen et al. do this by introducing
rooted spanning forests.

Definition 4.9 (Rooted Spanning Forrest). Given a graph G, a rooted spanning forest
F ⊆ G is a forest spanning G in which every component of F has a specified vertex called
the root. For v ∈ V (G), rootF

v denotes the root of the component to which v belongs in F .

In other words, a rooted spanning forest is a forest of rooted trees.

Definition 4.10 (Stretch of a forest). Given a rooted spanning forest F of the graph G

with lengths l ∈ RE(G)
>0 . The stretch of an edge e = (u, v) ∈ E(G) is

strF,l
e =

{
1 + ⟨l, |p(F [u, v])|⟩/le if rootF

u = rootF
v

1 +
〈
l, |p(F [u, rootF

u])| + |p(F [v, rootF
v])|

〉
/le if rootF

u ̸= rootF
v

.

If u, v are in the same component of F , this definition coincides with the definition of stretch
for a tree (4.2). The reason why the path to the roots is important becomes clear once we
discuss how the min-ratio cycles found in the lower levels of the branching tree-chain are
brought to the upper levels, in section 4.7.2. The basic idea is that when lifting a cycle,
the preimages of its edges might not form a cycle (their end and starting vertex might
not be the same, when not contracted). Hence, we add a path over the roots to create a
pre-image cycle. We can now consider what this forest stretch of an edge (u, v) is in the
context of the branching tree chain. If (u, v) are not in the same component int F , then e
might reappear in the next level. There it is stretched again. At some point (assuming e is
not deleted by the sparsifier), u and v will be in the same component. Therefore, we can
simply use the tree stretch. If we now lift up the cycle using the mapping described earlier,
then we obtain a path that is in the tree corresponding to the tree-chain, because we only
use edges in F . In this way, the stretch of a forest, can be described as part of the stretch
of edge e, which needs to reconnect cycles from the core graph.

Chen et al. explain the creation and maintenance of forests in two lemmas. Lemma
6.5 describes how a singular spanning forest (as a subgraph of a spanning tree) with
certain properties is created and maintained. Lemma 6.6 expands lemma 6.5 by using a
multiplicative weight update procedure to effectively create a set of spanning forests (and
spanning trees) whose expected stretch is bounded by a certain value. Chen et al. use this
set to sample independent forest, to improve the probability to get a low stretch forest.
Now, let us take a closer look at the properties defined in lemma 6.5.

24

4.3. Overview

Lemma 4.11 (Dynamic low stretch decomposition (incomplete)). There is a deterministic
algorithm with a total runtime of Õ(m) that, on a graph G = (V, E) with lengths l ∈ RE

>0
and reduction factor k, can compute a tree T spanning V and a rooted spanning forest
F ⊆ T with O(m/k) components, and stretch overestimates s̃tr. Furthermore, the algorithm
maintains F decrementally against batches of updates, with s̃tre = 1 for any new edge that
is added by vertex split or edge insertion.

This is only the first part of lemma 6.5 ([CKL+22, lemma 6.4]. We now informally describe
more properties of the algorithm at the center of the lemma. The stretch overestimates will
always be greater or equal than the real stretch for each edge. At the same time, they are
bounded by a global constant. At the initialization of the LSD, F has O(m/k) components.
With every update, the number of components increases by Õ(1). This is because we want
to keep the stretch below some constant, and we can simply do this by deleting the edges
of F . In an empty tree, the stretch of every edge would be 1. Of course, this does not
help us, but it helps us to think about how deleting edges reduces the stretch by handing
it to the lower levels of the tree-chain. Chen et al. describe how this is achieved in their
appendix [CKL+22, p. 94-98].

4.3.2.5 Algorithm stack

This section links the different parts of the HSFC data structure to the lemmas by Chen
et al., describing how they are maintained. Every paragraph in this section describes a
different level of maintenance, where the lower paragraphs are part of the maintenance
process of the upper paragraphs.

Maintaining the HSFC data structure

We have already discussed the interface of the HSFC data structure in section 4.3.2.1.
Internally, updates to the gradients and lengths are simply passed to the branching tree-
chain. After updating, the branching tree-chain returns its best guess for the min-ratio
cycle. It might be the case, that the ratio of this cycle is too large. The result of this, is
that parts of the branching tree-chain need to be rebuilt, until the cycle found has a small
enough ratio and is returned in the QUERY function of the HSFC data structure. We
describe parts of this process in section 4.8. Updating, rebuilding and finding the min-ratio
cycle takes cumulative time m1+o(1) during the IPM.

Maintain the branching tree-chain

The branching tree-chain can be updated, queried for a min-ratio cycle, and prompted to
rebuild all levels below some level i. The update recursively generates and applies HSFC
updates throughout the levels. The min-ratio cycle is found by continuously maintaining a
maximizer that maximizes the ratio of the gradient and a length overestimate for cycles
corresponding to off-tree edges of the trees corresponding to the s tree-chains. More on
this in section 4.7.1. The rebuilding functionality simply takes the level i of the branching
tree-chain to rebuilds by reinitializing all forest, trees, and core graphs and sparsified
core graphs in and below. This rebuild are made in done in m1+o(1)/ki and are not only
triggered at initialization and through the rebuilding game but also periodically after a
certain amount of updates, because the forests have deleted to many edges. Most of these
ideas can be found in Lemma 7.9, algorithm 5, and Theorem 7.1 of Chen et al. [CKL+22].
The cumulative time for updates, queries, and rebuilds is m1+o(1) during the IPM.

25

4. The Min-Cost Flow Algorithm by Li Chen et al.

Maintain a set of sparsified core graphs

This process maintains a set of sparsified core graphs. Here, we examine some graph G
inside the branching tree-chain. When the branching tree-chain is initialized or rebuilt, this
process creates the sparsified core graphs S(G, F1), . . . , S(G, FB) (and their embeddings)
with the forest described in section 4.3.2.4. It also describes what handles updates to
G. This process then generates the corresponding updates that need to be applied to
S(G, F1), . . . , S(G, FB) and their embedding. As mentioned, we will not analyze the
sparsified core graphs. The detailed algorithm can be found in Lemma 7.8 in the work of
Chen et al. ([CKL+22, Lemma 7.8]) and has a run time of Õ(mk).

Maintain a set of core graphs

As with the above process, the core graphs C(G, F1), . . . , C(G, FB) are generated from some
graph G in the branching tree-chain. It handles updates by interfacing with the algorithm
described in the lemma 4.11. For example, whenever an edge is updated, it is deleted in
the forests F1, . . . FB. To maintain the corresponding core graphs as contractions, they
undergo vertex splits. The detailed algorithm can be found in Lemma 7.5 in the work of
Chen et al. ([CKL+22]) and has a runtime of Õ(mk)

4.4 Initial Point
For the gradient decent, we need some initial point/flow f

(init)
e ∈ RE(G). We also want to

ensure that this initial point is not potentially in the polytope vertex that is the furthest
away from the optimal solution. An initial idea might be to place the initial flow in the
center of the polytope. For this, we set f

(init)
e = u+

e +u−
e

2 for every edge e ∈ E(G). This, of
course, does not guarantee that the demands are met. We can circumvent this by solving
the MCF problem on a modified version of the network M̃ , in which there is a new vertex v∗

as well as new edges between v∗ and all of the vertices with an incorrect supply. In this way,
we can fix the supply by routing surplus/deficiency over v∗ and create an initial feasible
flow on the modified network. If we set the costs on the added edges sufficiently high, an
MCF algorithm will avoid routing over these added edges. If the calculated min-cost flow
f̃ on M̃ does not route flow over any edges not found in G, it is easy to reconstruct a
minimum cost flow f in the original network. We now give a more formal construction of
M̃ :

Given an instance M = (G, c, u+, u−, d, U) of the MCF problem with G = (V, E), we can
construct M̃ = (G̃, c̃, ũ+, ũ−, d̃, Ũ) and the initial flow f (init) in the following manner:

1. We first define the pseudo-flow f ′ on M , by setting f ′
e = u+

e +u−
e

2 for all e ∈ G.

2. Next we compute the supply d generated by the pseudo-flow d = BT f ′
|E(G) as well

as the difference to the original demands d̂ = d − d.

3. We create G̃ by setting V (G̃) = V ∪ {v∗} and E(G̃) = E ∪ Enew where Enew =
{(v, v∗) | v ∈ V ∧ d̂v > 0} ∪ {(v∗, v) | v ∈ V ∧ d̂v < 0}.

4. Now we set ũ−
e = 0, ũ+

e = 2|d̂e|, c̃e = 4mU2 for every e ∈ Enew as well as d̃v∗ = 0. For
all edges e ∈ E(G) we keep the values by setting ũ−

e = u−
e , ũ+

e = u+
e , d̃e = de, c̃e = ce.

5. We create the initial

f
(init)
(u,w) =


|d̂u| if w = v∗

|d̂w| if u = v∗

f ′
(u,v) otherwise

for all e ∈ E(G̃.

26

4.4. Initial Point

Lemma 4.12. In reference to the construction above, the following is true:

1. f (init) is a feasible flow on M̃ .

2. Let f∗ be a MCF on M̃ then f∗
|E(G) is a MCF on M if and only if, f∗

e = 0 for all
e ∈ Enew.

3. Φ(f (init)) ≤ 200m log(mU).

Proof:

1. If we assume that f∗ is a min-cost flow on M̃ and f∗
e = 0 for all e ∈ Enew, then f∗

|E(G)
is also feasible on M . The reason for this is that we did not change any capacities
from E(G) so f∗

|E(G) must be inside the capacity constraints. We also did not change
the demands of the vertices V (G), and if there is no flow on any edge e ∈ Enew, then
for every vertex v ∈ V (G) : (B̃T f∗)v = (BT f∗

|E(G))v = dv. We now show that f∗
|E(G)

is also minimal. Assume that there is a flow f ′ on M with a cost less than f∗
|E(G).

Then, the flow is defined by

f(u,w) =
{

0 if v∗ ∈ (u, w)
f ′

(u,v) otherwise ,

is feasible on M̃ with a cost equal to f ′ , which is lower than the cost of f∗. This is
a contradiction.

Conversely let f∗
|E(G) be a minimum cost flow on M . Then, the total costs are

bounded by mU2 since there are m edges with capacity and cost both being bound by
U . We know that setting fe = 0 for all e ∈ Enew results in a feasible flow with costs
smaller or equal to mU2. We now only need to show that setting fe ̸= 0 for these
edges results in a flow of higher cost. For this, note that the lower constraints force
fe ≥ 0. As mentioned, there exists an integer min-cost flow for our given problem.
Therefore, any potential min-cost flow using e ∈ Enew would need to route at least
one whole unit of flow over e, thereby adding 4mU2 to the cost. This is higher than
setting all fe = 0 for the new edges.

A direct consequence of this is, that given a min-cost flow f∗ on M̃ with at least one
edge e ∈ Enew with f∗

(init) > 0, we can conclude that there is no minimum or feasible
flow on M .

2. We know |E(G̃)| ≤ 2m as well as that the maximum cost of an edge is 4mU2. The
maximum amount of flow routed over an edge is bounded by mU . So we can conclude
that cT f (init) ≥ 2m · 4mU2 · mU . We also know that F ∗ ≥ −mU2. Therefore, we
can say the following about the first summand of the potential (4.1):

20m log(cT f (init) − F ∗) ≤ 20m log(8m3U3 + mU2)
≤ 20m log(9m3U3)
= 20m(log(9) + 3 log(mU))
≤ 80 log(mU)

For the second summand of the potential, we know that α > 0. Therefore, we can
set an upper bound for

(
1
2

)−α
by using the minimum value that (u+

e − fe) is going

27

4. The Min-Cost Flow Algorithm by Li Chen et al.

to be, as an upper bound. Since fe is half-integer and u+
e > u−

e , we know that
(u+

e − fe) = (fe − u−
e) ≤

(
1
2

)
and therefore (u+

e − fe)−α = (fe − u−
e)−α ≤

(
1
2

)−α
.

Now, we can now conclude the following:

∑
e∈E

((u+
e − f (init)

e)−α + (f (init)
e − u−

e)−α) ≤ 2m(
(1

2

)−α

+
(1

2

)−α

)

≤ 4m2α

≤ 8mU ≤ log(8mU)

Together, it follows that

Φ(f (init)) = 20m log(cT f (init) − F ∗) +
∑
e∈E

((u+
e − f (init)

e)−α + (f (init)
e − u−

e)−α)

≤ 88 log(mU) ≤ 100 log(mU).

4.5 Interpreting gradients and lengths
In section 4.3.1 we have introduced the gradients and lengths of a flow f on an instance of
the MCF problem (G, c, u+, u−, d, U). We have seen that the gradient of an edge can be
used to determine whether the flow on an edge must increase or decrease. We show that
we need more than the gradients to effectively reduce the potential and explain why the
lengths fill this role. As a reminder, the gradient of and edge e ∈ E(G) is

ge = 20m(cT f − F ∗)−1ce + α(u+
e − fe)−1−α − α(fe − u−

e)−1−α.

We have introduced the potential function with two properties: 1. A minimum at the
optimal solution. 2. Punishing flows coming close to the capacity constraints. Assume
that fe is coming close to u+

e , then limfe→u+
e

(u+
e − fe)−1−α = ∞. The same is the case if

fe is coming close to u−
e . Assuming that cT f is also close to F ∗ this is not a problem. If

this is not the case, we cannot guarantee to not get a very large gradient. If we search for
cycles with large absolute gradients, the flow of the edge might be increase even though it
is already close to the edge. Of course, this is a hypothetical scenario, but it motivates
the need for a variable representing the distance to the capacity constraints. Consider the
length of an edge as a function

le : (u−
e , u+

e) → R>0, fe 7→ (u+
e − fe)−1−α + (fe − u−

e)−1−α.

We can see that compared to the second summand of the gradient, the length does not
contain subtractions. We always have positive values. In the gradient, this is important
because if an edge has a positive cost, subtraction makes sense to regulate it. If it has a
negative cost, an addition is needed to counteract moving closer to the constraints. The
lengths, in this sense do note differentiate between upper and lower bounds. We now
differentiate the length to gain more insight into how it behaves:

l′e : (u−
e , u+

e) → R, fe 7→ (−1 − α)((u+
e − fe)−2−α − (fe − u−

e)−2−α).

For fe = (u+
e +u−

e)/2 we get l′e(fe) = (−1−α)(((u+
e +u−

e)/2)−2−α−((u+
e +u−

e)/2)−2−α) = 0.
For fe < (u+

e + u−
e)/2 we find l′e(fe) < 0 and for fe > (u+

e + u−
e)/2 , l′e(fe) > 0. The length

is at its minimum at the middle of the polytope and increases towards capacity constraints.
Using the same argument used to explore the asymptotic behavior of the gradients, we can

28

4.6. Updates in the HSFC data structure

see that the length of e goes towards infinity at the capacity constraints. Therefore, we can
somewhat interpret the inverse of the length as the distance from the edge. Chen et al. use
this fact once the HSFC data structure found a min-ratio cycle ∆. Before adding ∆ to the
current flow, they scale it by η = −κ2α2/(800⟨g, ∆⟩, and therefore remove the gradients
and make progress toward the capacity constraint entirely dependent on the lengths.

4.6 Updates in the HSFC data structure
In this section, we go into more detail as to how updates are handled and what problems
come with them.
At the top level, we do not need to update the gradients and lengths in every iteration.
Chen et al. show in lemma 4.9 and 4.10 [CKL+22], that gradients and lengths are relatively
stable when the residual capacity does not change much. They even go a step further
and show that we can use an old value of cT f∗ − F ∗ to calculate the gradients, provided
that it does not change more than a certain ε factor. Thus, only mo(1) edges need to be
updated per iteration of the IPM. We have seen that the core graphs and sparsified core
graphs both have properties that need to be maintained during updates. For instance,
if the length of e increases, then we need to ensure that in every branching tree chain
G0, . . . , Gd, with forest F0, . . . , Fd, these forests do not stretch the length le too much.
This is done by deleting e from F0 this intern triggers a vertex split in C(G, F0), which
propagates to S(G, F0) and so on. Thus, a singular update triggers multiple updates inside
the branching tree-chain. Chen et al. showed that on every level, these updates have a
low recourse , so they trigger at most γr = mo(1) additional updates ([CKL+22, Lemma
7.5, Lemma 7.8]). Thus, the total number of updates per singular update on the top-level
graph is O(Bγr)d = mo(1). Because we have mo(1) top level updates at every iteration, this
results in mo(1) total updates in the branching tree-chain. However, these updates change
the forests used in the branching tree-chain. This is a problem because these forests were
sampled independently 4.3.2.4 to ensure that with high probability the witness circulation
is mapped through the core graphs. Because of the updates, the forests are not longer
independent. Therefore, the branching tree-chain is no longer guaranteed to find a good
min-ratio cycle. A simple fix would be to rebuild the entire branching tree-chain. This
takes too much time. Therefore, we need a strategy that only rebuilds parts of the data
structure. We explain this strategy in section 4.8. To prove that this strategy works, we
need to introduce a new concept called the width.

Definition 4.13 (Width). Given an instance of the min-cost flow problem on graph G,
with current lengths l and witness circulation ∆,

the width w ≥ |c ◦ l| is as an upper bound of the witness circulation times the length.

In practice, they are set to we = 50 + |le, ∆e| for every e ∈ E(G).

In the branching tree-chain w(previ) is the width at level i at the time it was last rebuilt.

This is a good time to revisit the HSFC updates. Every updated given and generated
inside the branching tree chain is an HSFC update and G (and every other tree in the
branching tree-chain) satisfy the following properties after every update:

1. The witness circulation ∆∗ is always a circulation.

2. The width w are always an upper bound for the length of the witness circulation:
|l ◦ ∆| ≤ w .

29

4. The Min-Cost Flow Algorithm by Li Chen et al.

3. The current width of an edge is upper bounded by two times the width of the edge,
after it was last updated.

4. Both widths and lengths are quasipolynomially lower and upper-bounded.

This is an informal description of some properties of the HSFC updates ([CKL+22, Defintion
6.1]). With our definitions so far, the first two points are self-explanatory. The second two
points are essential for the rebuilding strategy. With the third point, we link the current
width to the time width when a layer of the branching tree-chain is rebuilt.

4.7 Min-ratio cycles in the branching tree-chain
In this section, we focus on the min-ratio cycles returned by the branching tree chain.
Note that when we refer to min-ratio cycles, they are at best a mo(1) approximation to the
min-ratio cycle. This would suffice, since Chen et al. have shown that the ratio simply
needs to be smaller than some κ ∈ (0, 1) 1 during the whole IPM, for the runtime to be
m1+o(1) [CKL+22, Theorem 4.3]. As we have seen, this is not necessarily the case because
the branching tree-chain is not guaranteed to return a good approximation as soon as
updates are applied. For this, Chen et al. prove in Theorem 7.1 that during every iteration
(t) of the IPM, the branching tree-chain returns a cycle ∆ with

⟨g(t), ∆⟩
||l(t) ◦ ∆||1

≤ κ
⟨g(t), ∆∗,(t)⟩∑d

i=0 ||w(prev(t)
i)||1

. (4.3)

This is the key idea that will be leveraged to prove that the rebuilding strategy works. For
the rest of this chapter, we explore how to find these min-ratio cycles in the branching tree
chain and on they full fill (4.3).

In this section, we often use the same symbols on different levels of the branching tree
chain. We avoid conflicting notation by adding the associated graph to the symbol. For
example, the gradients become gG if it is not clear whether they belong to G.

In (4.3) we also used X(t) to denote a variable X at iteration t. We often include this
because Chen et al. use it to formally argue, especially about the width at rebuild times.
For simplicity we sometimes remove this from our proofs motivations.

4.7.1 Finding min-ratio cycles

To motivate the HSFC data structure, we have described a short algorithm that finds a
min-ratio cycle by creating a probabilistic low-stretch spanning tree and then looking at
the fundamental tree cycles to find the best solution. In the sections 4.3.2.2 and 4.3.2.3,
we have that the branching tree-chain corresponds to s spanning trees. In this section, we
explore how to find a minimum-ratio cycle on these trees using a similar concept.

When returning, the min-ratio cycle is represented as mo(1) off-tree edges on some tree
Ti i ∈ [s]. So for the off-tree edges e1 = (u1, v1), . . . , eL = (uL, vL) ∈ E(G) \ E(T1) the
min-ratio cycle is

e1 ⊕ Ti[v1, u2] ⊕ · · · ⊕ eL ⊕ T [vL, u1].

This cycle is found by looking and maintaining the ratio of cycles, created by the off-tree
edges of all the trees T1, . . . , Ts corresponding to the branching tree chain. Every one of
these edges has a lowest level, where it is removed by the in the sparsified core graph.

1in practice this is κ = ακ′/8, where κ′ = exp(− O(log7/8 m log log m)) ([CKL+22, Lemma 9.3]).

30

4.7. Min-ratio cycles in the branching tree-chain

Definition 4.14 (Level of an edge in a tree-chain). Given a tree-chain G0 = G, . . . , Gd,
then edge eG ∈ E(G) is at level leveleG = i if its image e is in E(C(Gi, Fi) \ E(S(Gi, Fi)).

It is important to note that when contracting Gi to C(Gi, Fi), we retain the self-loops.
However, for a self-loop e ∈ C(Gi, Fi), the embedding ΠC(Gi,Fi)→S(Gi,Fi)(e) maps e to an
empty path. Therefore, all edges in Gi that connect two vertices inside the same component
of Fi have level i. At level d, we maintain the forest Fd, which is a tree, as discussed in
section 4.3.2.3. Even though we create neither a core graph nor a sparsified core graph, all
edges left would become self-loops. Therefore, we can define their level as d.

If we have an edge e at level i, we know that, as described in paragraph 4.3.2.5, that we
maintain an embedding ΠC(Gi,Fi)→S(Gi,Fi), embedding e into some path in S(Gi, Fi). With
this, we define the sparsifier cycle.

Definition 4.15 (Sparsifier cycle). Given a tree-chain G0 = G, . . . , Gd, the sparsifier
cycle a(e) of such an edge e = e0 ∈ C(Gi, Fi) with level i is the cycle a(e) = e0 ⊕
rev(ΠC(Gi,Fi)→S(Gi,Fi)(e0)) = e0 ⊕ e1 ⊕ · · · ⊕ eL, where ref revers the path. a(e) is the
corresponding circulation routing one unit of flow over a(e).

With the we can now define the equivalent to a fundamental tree cycle for a tree-chain.

Definition 4.16 (Fundamental chain cycle). Given a tree-chain G0 = G, . . . , Gd and an
edge e ∈ C(Gi, Fi) at level i, then the fundamental chain cycle aG(eG) is the preimage in G
of the sparsifier cycle a(e) = e ⊕ e1 ⊕ · · · ⊕ eL with ej = (uj , vj) for j ∈ [L] and uL+1 = u0

aG(eG) = eG
0 ⊕ T [vG

0 , uG
1] ⊕ eG

1 ⊕ T [vG
1 , uG

2 ,] ⊕ · · · ⊕ eG
L ⊕ T [vG

L , uG
L+1],

aG(eG) is the corresponding circulation routing one unit of flow over aG(eG).

Definition 4.17 (Lifted cycle). Given the cycle C ⊆ C(Gi, Fi) with the edges e
C(G1,Fi)
1 ⊕

· · · ⊕ e
C(G1,Fi)
L with eGi

j = (uj , vj), then the lift of C into Gi is

eGi
1 ⊕ Fi[v1, u2] ⊕ · · · ⊕ eG1

L ⊕ Fi[vL, u1].

Lemma 4.18. Let CGi ⊆ Gi be a lifted cycle of the cycle C ⊆ C(Gi, Fi). C = e1 ⊕ · · · ⊕ eL

where eGi
j = (uj , vj), then

1. CGi is also a cycle.

2.
∑

j=1 p(Ti[vj , uj]) = ∑
j=1 p(Fi[vj , uj+1]) where Ti was the tree that together with Fi

was generated by the LSD in lemma 4.11.

Proof. 1. The way CGi is defined, it is a walk starting and ending at the same vertex
and is therefore a circulation. We now only need to show that every vertex in Gi

is incident to at most two edges. To prove this, let v ∈ V (CGi) be some vertex of
the circulation. v belongs to a component k ⊆ Fi corresponding to some vertex
vC(Gi,Fi) ∈ C(Gi, Fi). Since vC(Gi,Fi) is part of C, it is incident to two edges of this
cycle. Therefore, there are two edges that connect k to the other components. Let
(uj , vj), (uj+1, vj+1) ∈ E(Gi) be those edges, then vC(Gi,Fi) must be on the path
Fi[vj , uj+1] and is therefore incident to two edges of this circulation. From this, we
can conclude that every vertex in the circulation has exactly one ingoing and one
outgoing edge and that CGi is therefor a circle.

31

4. The Min-Cost Flow Algorithm by Li Chen et al.

2. We show that∑j=1 p(Ti[vj , uj]) = ∑
j=1 p(Fi[vj , uj+1]) by showing that they generate

the same supply of Ti. This uniquely determines the flow because we cannot augment
any flow on Ti by adding circulations (except 0) because there are no cycle in Ti. For
j0 ∈ {1, . . . L} we know from the construction that Ti[vj0 , uj0+1] is completely in one
component of Fi. There for

(BT p(F [vj0 , uj0+1]))v =


−1 if v = vj0

1 if v = uj0+1
0 otherwise

.

We now want to prove something similar for p(T [vj0 , uj0]). Here, we use the fact that
T [vj0 , uj0]⊕(uj0 , vj0) is a cycle in Gi. Note that (uj0 , vj0) exists in Gi because it is one
of the edges lifted from C(Gi, Fi) to Gi. Therefore, we know that BT p(T [vj0 , uj0] ⊕
(uj0 , vj0)) = 0. This is equivalent to BT p(T [vj0 , uj0]) + BT p((uj0 , vj0)) = 0. So

(BT p(T [vj0 , uj0]))v = −BT p((uj0 , vj0)) =


−1 if v = vj0

1 if v = uj0

0 otherwise
.

We can now conclude that

BT
∑
j=1

p(Ti[vj , uj]) = BT
∑
j=1

p(Ti[vj , uj+1])

Because in both iterations, for every j ∈ {1, . . . , L}, let ej = (uj , vj), we set the
supply generated at uj to −1 and the supply generated at vj to 1. And with this∑

j=1 p(Ti[vj , uj]) = BT ∑
j=1 p(Ti[vj , uj+1]).

When we lift a cycle C from C(G, F) to G and then contract G using F , all the forest
edges that intersperse the cycle C are contracted again. Therefore, C is the image of
the contracted cycle. If we apply this fact inductively, it shows that lifted cycles are
fundamental chain cycles.

We have now defined a method by which we can create a cycle from a single off-tree edge.
We now link the ratio of a sparsifier cycle to the ratio of its lifted cycle.

Lemma 4.19 (Lifted cycle ratio). Given a tree chain G0 = G, . . . , Gd and an edge
e ∈ C(Gi, Fi) at level i, then

⟨gG, aG(eG)⟩
||LGaG(eG)||1

≤ ⟨gC(Gi,Fi), a(e)⟩
||LC(Gi,Fi)a(e)||1

,

where gC(Gi,Fi), LC(Gi,Fi) are the gradients mapped to the core graph C(Gi, Fi).

Together with the embedding ΠC(Gi,Fi)→S(Gi,Fi)(e) we can also store the total gradient of
this mapping. Therefore, we can maintain the total gradient of every sparsifier cycle with
a constant overhead. In the next lemma, we see that this gradient is the same as the total
gradient of the lifted cycle.

Lemma 4.20 (Gradient correctness). Let eG ∈ E(G) \ E(T) be an edge, with leveleG = i
and e its image in C(Gi, Fi). Then

⟨gC(Gi,Fi), a(e)⟩ = ⟨gG, aG(eG)⟩.

32

4.7. Min-ratio cycles in the branching tree-chain

Proof. We only prove that lifting the cycle ∆C(Gi,Fi) ∈ RE(C(Gi,Fi) as in definition 4.17,
keeps the gradient the same. Let ∆ be on e

C(Gi,Fi)
1 , . . . , e

C(Gi,Fi)
L , with e

C(Gi,Fi)
j = (uj , vj)

and vL = u1.

⟨gC(Gi,Fi), ∆C(Gi,Fi)⟩ =
L∑

j=1
g

e
C(Gi,Fi)
j

=
L∑

j=1
g

e
Gi
j

+ ⟨gGi , p(Ti[vj , uj])⟩

Lemma 4.18=
L∑

j=1
g

e
Gi
j

+ ⟨gGi , p(Fi[vj , uj+1])⟩ = ⟨gGi , ∆Gi⟩

The rest follows by induction.

Similar to the gradients of an edge e at level i, we can maintain the length of the sparsifier
cycle l̃eneG = ⟨lC(Gi,Fi), |a(e)|⟩ together with the embedding with a constant overhead.
Chen et al. prove that this is an overestimate for the total length of the lifted cycle, so
⟨lG, |aG(eG)|⟩ ≤ l̃eneG ([CKL+22, Lemma 7.14].

Lemma 4.19. Follows directly from lemma 4.20 and lemma 7.14 of Chen et al., when
considering, that the cycle is negative.

Lemma 4.19. This follows directly from lemma 4.20 and lemma 7.14 of Chen et al., when
considering that the cycle is negative.

With this we can now find a cycle with a ratio smaller than some value by finding an
edge whose associated sparsifier cycle has a ratio small enough. In fact, this is done very
effectively by maintaining the maximizer

max
eG∈E(G)\E(Ti)

|⟨g, aG(eG)⟩|
l̃eneG

.

In the proof of theorem 7.1 Chen et al. state that this can be done with an overhead of
Õ(1) for every tree.

4.7.2 Limiting the min-ratio cycles via the width

In this section, we discuss the core aspects required to prove lemma 7.1 of Chen et al. First,
we establish how to map the witness circulation through a tree-chain.

Definition 4.21 (Mapping witness circulation). Given a graph G with the spanning forest
F and the witness circulation ∆∗ ∈ RE(G) then the witness circulation in C(G, F) is

∆∗,C(G,F) = ∆|E(C(G,F)

and in S(G, F)

∆∗,S(G,F) =
∑

ê∈E(C(G,F)
c

C(G,F)
ê (ê)ΠC(G,F)→S(G,F)(ê).

33

4. The Min-Cost Flow Algorithm by Li Chen et al.

Not that |ΠC(G,F)→S(G,F)(ê)| is not the amount of edges in the embedding, but the absolute
flow of routing one unit over this embedding.

With the we can map the witness circulation through a branching tree-chain. We now want
to go a step further and decompose the witness circulation into fundamental chain cycles
using these mappings.

Lemma 4.22 (Decomposition of the witness circulation, Lemma 7.16 [CKL+22]). Given
a tree-chain G = G0, . . . , Gd, with the witness circulation ∆∗ mapped through this chain,
as defined in 4.21 with ∆i as the circulation in Gi. Then

∆∗ =
d∑

i=0

∑
eG:level

eG =i

∆Gi
e aG(eG).

The proof can be found in the work of Chen et al. [CKL+22, p.59f].

As we have established, we will find the min-ratio cycle through these fundamental chain
cycles. To prove that we can find a good enough cycle , we need to first establish a
relationship between the gradient of the witness circulation and the gradients of the
decomposed cycles.

Lemma 4.23. Given a tree-chain G = G0, . . . , Gd, gradients g ∈ RE(G) with ∆∗ the
current witness circulation mapped through this chain as defined in 4.21 to ∆G1 , . . . , ∆Gd ,
then

|⟨g, ∆∗⟩| ≤
d∑

i=0

∑
eG:level

eG =i

|∆Gi
e ||⟨g, aG(eG)⟩|.

Proof. Follows from lemma 4.22 and the triangle inequation.

This is the reason why we do not maintain a minimizer but a maximizer to find the
min-ratio cycle in section 4.7.1. all cycles in which the witness circulation is decomposed
have a negative gradient. We do not prove this here. A way to think about this being
true is that if the witness circulation could be decomposed into a cycle with a positive
gradient, then we could find a circulation that is even smaller than the witness circulation
by subtracting this cycle. Visually speaking, we find a slope on the polytope steeper than
the slope of the witness circulation, which leads us to the optimal solution. Without further
analysis of the potential function this could be the case. Then again, Chen et al. use this
fact without proof.

We now discuss how we can do something similar with the lengths, but instead of showing
that the length total length of the decomposed witness circulation is bounded by the length
of the witness circulation, we use the width.

For this, let us first define how we map the width throughout the branching tree-chain.

Definition 4.24 (Mapping of the width). Given a graph G with a spanning tree F , the
respective stretch overestimate s̃tr as well as the current width w. The width of an edge e
in the core graph is

wC(G,F)
e = s̃trewe.

And the width in the sparsified core graph is

wS(G,F) = 2
∑

ê∈E(C(G,F))
w

C(G,F))
ê |ΠC(G,F)→S(G,F)(ê)|.

34

4.7. Min-ratio cycles in the branching tree-chain

At this point, it is important to note that with the mapping for the widths and witness
circulations defined in definitions 4.24, 4.21, the mapped witness circulations are always
circulations and the mapped widths are upper bound to the lengths of the respective
circulations [CKL+22, Lemma 7.4, 7.7].

Lemma 4.25. Given a tree-chain G = G0, . . . , Gd with ∆∗ the current witness circulation
mapped through this chain as defined in 4.21 to ∆G1 , . . . , ∆Gd. Then with l̃eneG as the
fundamental chain cycle length overestimate for edge eG ∈ E(G),

d∑
i=0

∑
eG:level

eG =i

|∆Gi
e |l̃eneG ≤ Õ(k)

d∑
i=0

||wGi ||1

Proof. The proof of this is describe in the proof for lemma 7.17 of Chen et al. We comment
its steps to give a better insight.

d∑
i=0

∑
eG:level

eG =i

|∆Gi
e ||l̃eneG

(i)= |
d∑

i=0

∑
eG:level

eG =i

s̃trlGi
e |∆Gi

e | +
∑

e′∈ΠC(Gi,Fi)→S(Gi,Fi)(e)
lGi+1
e |∆Gi

e |


(ii)
≤)

d∑
i=0

∑
eG:level

eG =i

(
Õ(k)wGi

e + wGi
e

)
(iii)
≤ Õ(k)

d∑
i=0

||wGi ||1.

In step (i), they take apart the definition of l̃eneG = ⟨lC(Gi,Fi , |a(e)|⟩ by splitting the sparsi-
fier cycle into the edge e ∈ C(Gi, Fi) and the reverse path in the sparsifier rev(ΠC(Gi,Fi)→S(Gi,Fi)).
Of course, the fact that is reversed does not matter. In step (ii), they substitute s̃tr with
Õ(k) since this is the certain stretch upper bound, we have munitioned in 4.3.1.1. Then
lGi
e |∆Gi

e | ≤ wGi
e is true, because as discussed above, the property of the width being an

upper witness circulation length bound is kept during the mapping through the branching
tree chain. For the second summand representing the length of the path in the sparsifier
embedding, Chen et al. refer to the mapping of the width through the branching tree-chain.
Step (iii) is correct, since ||wGi ||1 sums up the width over every edge in level i. With the
iteration of the witness circulation decomposition, we only hit each of these widths at most
2 times. This constant factor is suppressed by Õ(k).

We can now start putting together the proof of lemma 7.1 of Chen et al. We want to show,
the cycle ∆ maintained in the maximizer of section 4.7.1 fullfills (4.3). For this, we first
show

⟨g(t), ∆⟩
||l(t) ◦ ∆||1

≤ κ
⟨g(t), ∆∗,(t)⟩∑d

i=0 ||w||1
.

as done by Chen et al. ([CKL+22, Lemma 7.17]). This can be achieved by combining
lemma 4.23 with 4.25 of Chen et al. to show

1
Õ(k)

|⟨g, ∆∗⟩|∑d
i=0 ||w||1

≤
∑d

i=0
∑

eG:level
eG =i |∆Gi

e ||⟨g, aG(eG)⟩|∑d
i=0

∑
eG:level

eG =i |∆Gi
e |l̃eneG

(i)
≤ max

e∈E(G)\E(T)

|⟨g, aG(eG)⟩|
l̃eneG

35

4. The Min-Cost Flow Algorithm by Li Chen et al.

Where T is the tree of the tree-chain and (i) uses

max
i∈[n]

xi

yi
≥
∑

i∈[n] xi∑
i∈[n] yi

,

for x, y ∈ Rn
≥0.

We now now, that the maximizer and with lemma 4.19 we can now put a upper bound on
the min-ratio size, using a scaled ratio of the witness circulation. We now only need to
make sure that for some tree-chain,

1
Õ(k)

|⟨g(t), ∆∗⟩|∑d
i=0 ||w||1

≤ κ
⟨g(t), ∆∗,(t)⟩∑d

i=0 ||w(prev(t)
i)||1

(4.4)

to ensure that (4.3) is satisfied. The existence of a tree-chain like this exists, is proven
in lemma 7.9 by Chen et al. [CKL+22]. We can motivate parts of it by looking at the
properties of the HSFC updates 4.6. The third point states that the width of an edge
at most doubles since the last time the edge is updated. We now describe how updates
affect the widths inside the branching tree chain. As always, we focus on the core graphs,
but similar methods are used for the sparsified core graphs. Let G be somewhere in a
tree-chain, with F being the forest used to create C(G, F), and wG be the current witness
circulation in G. If an edge is updated in G, the stretch is set to 1. By definition 4.24 the
w

C(G,F)
e = 1 ·wG

e . If an edge is not updated, then w
C(G,F)
e ≤ 2w

C(G,F),prev
e where w

C(G,F)
e is

the width of C(G, F) when it was (re-)built. Because at that time the forests were used to
construct the core graphs of G, there is with a high probability a forest (which we assume
is our forest F) that does not stretch the witness circulation by too much. With this, it is
possible to bound the core graphs width

||wC(G,F)||1 ≤ γ||wG,prev||1 + ||wG||1,

([CKL+22, Lemma 7.5]). γ is a stand-in for a factor that we do not discuss. With a similar
reason and an inductive approach, Chen et al. show that with high probability, there is
a tree-chain satisfying (4.4) ([CKL+22, Theorem 7.1]. With this , the maximizer finds a
cycle that when lifted produces ∆ satisfying

⟨g(t), ∆⟩
||L(t)∆||1

≤ κ
⟨g(t), ∆∗,(t)⟩∑d

i=0 ||w(prev(t)
i)||1

. (4.5)

4.8 The Rebuilding Game
As we have established, the branching tree-chain is not guaranteed to return a min-ratio
cycle small enough. Since these cycles are returned in the form of off-tree edges of a
dynamic tree, we can simply test, if this is the case. If it is not, we need to rebuild parts of
the branching tree-chain. The strategy behind it, is rather simple. How ever to prove that
this strategy works, Chen et al. abstract the so called rebuilding game [CKL+22, chapter
8]. We now establish the motivation behind this game.
As we have seen, the branching tree-chain find a min-ratio cycle ∆ with

⟨g, ∆⟩
||L∆||1

≤ κ
⟨g(t), ∆∗,(t)⟩∑d

i=0 ||w(prev(t)
i)||1

. (4.6)

for κ = exp(− O(log7/8 m log log m)). If ∆ does not a have a small enough ratio, then
⟨g,∆⟩

||L∆||1 ≥ −κ′α for an κ′ ∈ (0, 1) of our choosing. By setting κ′ = κ/(2d + 2), the following
becomes true:

κ
⟨g(t), ∆∗,(t)⟩∑d

i=0 ||w(prev(t)
i)||1

≥ −κ′α
(i)
≥ κ

2d + 2
⟨g(t), ∆∗,(t)⟩

||w(t)||

36

4.8. The Rebuilding Game

For (i) we used that ⟨g,∆∗,(t)⟩
||w|| ≤ −α as we have already seen in section 4.3.2.1 and is show

to be correct by Chen et al. [CKL+22, theorem 6.2]. With this we can use

d∑
i=0

||wprev(t)
i ||1 ≥ 2(d + 1)||w||1 (4.7)

to abstract the notion that we need to rebuild the branching tree-chain to obtain a better
cycle. At this point, it is important to mention, that when rebuilding a level i of the
branching tree-chain, we also rebuild all levels j > i with j ∈ [d].

The rebuilding game is set up with an adversary and a player. The adversary picks values
simulating a width unknown to the player. If certain conditions are met, the adversary can
force the player to rebuild the branching tree-chain. The first way the adversary can force
the player to rebuild is when a certain number of rounds have passed without a rebuild.
This makes sense because in every update, edges are deleted from the spanning forests.
After m1−o(1)

ki updates a core graph has grown to large [CKL+22, p. 16]. This aspect of
the rebuilding game is rather simple. Here, the strategy is to simply maintain when we
last rebuild every level of the branching tree-chain2. Once a level has not been updated
long enough, we rebuild it together with the levels below. This takes m1+o(1)

ki time and is
effective when amortized over the runtime of the algorithm [CKL+22, p 67]. The second
situation in which the adversary can force the player to update, has to do with the width.
This is where the game aspect really comes into play. Instead of proving that the strategy
works on the widths, Chen et al. show that it works for the adversary picking some values
W substituting ||w||1. They do this by making the second condition for a rebuild essential
(4.7). If we now show that the rebuilding strategy works well for W chosen by an adversary,
then we can conclude that it is also an effective way of rebuilding with the real widths.
And that therefore, we can also effectively resolve situations in which we do not find a
good enough min-ratio cycle.

Rebuilding strategy

The full strategy can be found in the work of Chen et al. [CKL+22, p. 62]. We have
already established that the first condition for the adversary being able to force a rebuild
is circumvented, by us always rebuild when a level of the branching tree chain becomes
too old. For the second condition, every level i maintains a fix counter fixi, that is reset
every time a level is rebuilt because it it self or a level above became too old to fulfill
condition one. If condition two is met, Chen et al. look for the smallest level, where fixi

is smaller than a specific bound. This level is then rebuilt, incrementing fixi + +. If this
solves condition two, the counter is reset and the min-ratio cycle is returned. If not, the
level is rebuilt until fixi + + is no longer smaller than the specific bound. Then, the same
process starts with the level above.

This is a very superficial view of the rebuilding game. However, we can motivate some
of the ideas. Because we have seen that a rebuild of level i takes m1+o(1)

ki , which is, of
course, much faster than for level i − 1. The idea behind the bound of the fix-counter
comes from the fact that the width (and W) are quasipolynomially bound, as described in
the fourth point of 4.6. This allows Chen et al. to show that after we have rebuilt often
enough, without fixing condition two, decreasing W previ does no significantly decrease∑d

j=0 = ||W prevj ||1 ([CKL+22, p.63, correctness condition]). Therefore, rebuilding this
level will not solve condition two, even after we have rebuilt i − 1. In this way, the level

2Outside the rebuilding game this not done via the amount of updates, but the cumulative encoding size
of these updates

37

4. The Min-Cost Flow Algorithm by Li Chen et al.

we are currently fixing starts at d and progressively approaches 0 until condition two is
resolved. Chen et al. show, that a certain upper bound for fix0 is never reached, and
that therefore this process even works ([CKL+22, lemma 8.5]). When amortized over the
runtime of the algorithm, this strategy is fast enough [CKL+22, lemma 8.3].

38

5. A partial Implementation

Given the complexity of the algorithm by Chen et al, a full implementation is beyond the
scope of this thesis. A low effort way of getting initial insights into practical aspects of this
algorithm, is by replacing the HSFC data structure with slower classical min-ratio cycle
algorithms. The implementation of this algorithm is realized in C++ with the addition of
the Eigen library for linear algebra. Also utilized is the Lemon library to check the result
of the algorithm as well as to compare the runtime to that of established min-cost flow
algorithms. As we will have shown by the end of this chapter, a serious analysis of runtime
is not possible, since the implementation of the algorithm fails quickly.

5.0.1 The IPM
The initial point generation 4.4 and the IPM 4.3.1 are the parts we have implemented.
Due to the issues hinted at before, we did not implement the binary search for the cost of
the min-cost flow, since there is not much insight to be gained with the current algorithm.
To the rest of the algorithm given by Chen et al. we have also made some small changes.
First of all, we maintain the current flow in a singular vector since we are not using
multiple spanning trees to find the min-ratio cycle. We also maintain the gradients and
lengths explicitly and recalculate them in every iteration. One major change that we have
made is that we let the IPM terminate once the cost of current flow cT f is smaller than
F ∗ + 1/(12m2U3) where m and U are the edges and upper bounds of the min-cost flow
problem instance we have created to find the initial flow. We do this, to significantly
decrease how precise the IPM must approximate the min-cost flow. Therefore practically
reducing the runtime and and postponing numerical problems. This has the effect, that
when rounding the flow at the end of the algorithm, we using Lemma 8.10 of Jan van
den Brand et al. [vdBLN+21, lemme 8.10] we can only prove to get the correct min cost
flow with a probability of at least 1/2 if we consider our the min-cost flow problem as the
slightly perturbed instance.

5.1 Finding minimum ratio cycles
In this section we will describe a classical way of finding min-ratio cycles. We will reduce
this problem to a series of negative cycle detection problems and one shortest cycle problem.
This in itself is nothing new as a similar approach is used in other works [AMO93],
[BDHK17]. The difference is that these algorithms run on integer gradients and lengths.
In our case we will have to use floating point numbers but can also return an approximated
min-ratio cycle.

39

5. A partial Implementation

Theorem 5.1. Given a graph G with gradients gE(G) and lengths lE(G). There is a
algorithm that finds a ε approximation of the min-ratio cycle ∆∗ in O(log(U)mn + n3).

Before we describe this algorithm we will first define the length.

Definition 5.2. Given a graph G and some edge associated values w ∈ RE the length
lenw of a walk W ⊆ G is lenw(W) = ∑

e∈E(W) w(e).

With this we now use length to describe to different contexts. We will sometimes continue
using length to describe the sum of weights of some walk. Most of the time we will simply
refer to it as the associated values we use, the weight.

Definition 5.3. Given a min-ratio cycle problem G, g, l and the scalar µ ∈ R, the weight
of and edge e ∈ E(G) is we = ge − µle.

This way, when refer the the weight of a cycle we refer to the length of a cycle with the
weight being the associated edge values. A min-weight cycle or min-cycle is therefore a
cycle of minimum weight for some pair G, w and a negative cycle is a cycle of negative
weight. When using words such as “longer” or “shortest”, this does not transver as well.
We can now describe the main idea behind finding a min-ratio cycle.

Lemma 5.4. Given a min-ratio cycle problem G, g, l, with the unknown min-ratio µ0. Let
µ be the scalar assiociated with the weight w, then if:

There is a negative cycle in (G, w) ⇒ µ > µ0

There is no negative cycle in (G, w) ⇒ µ ≤ µ0

There is no negative cycle but a zero weight cycle in (G, w) ⇒ µ = µ0

Proof. First assume there is a negative cycle C in (G, w). Then we know:∑
e∈E(C)

we =
∑

e∈E(C)
(ge − µle) < 0

This is equivalent to

µ >

∑
e∈E(C) ge∑
e∈E(C) le

(i)
≥ µ0

Where (i) is a direct consequence of µ0 being the minimum ratio of a cycle and C being
some cycle.
On the contrary, if we assume that there is no negative cycle, so ∑e∈E(C) we ≥ 0 for every
cycle C, then as above, this is equivalent to∑

e∈E(C ge∑
e∈E(C) le

≥ µ.

And since the min-ratio cycle is among these cycles, we get µ ≤ µ0. If there is now a cycle
C∗ with weight zero, this is equivalent to

∑
e∈E(C∗ ge∑
e∈E(C) le

= µ.

40

5.1. Finding minimum ratio cycles

Because we are working with floating point number, we are not using the third point of
this lemma directly. With the first and second point we can run a binary search where
we maintain the bounds µs ≤ µ0 ≤ µb for µ0 being the correct min-ratio. Let ws be the
weights corresponding the µs and wb to µb. In every step we search for a negative cycle
with the weight generated by µ = (µs + µb)/2 if we find a negative cycle, we use lemma
5.4 and set µb := µ or if we did not, then µs = µ. With this we can slowly approximate
the min-ratio, but not yet the cycle itself. An intuitive idea would be to simply take the
minimum weight cycle found in G, ws. Now we the question becomes how close µs and µb

must be so that we find a ε of the min-ratio cycle with µs

Lemma 5.5. Given a graph G with gradients and lengths g, l, where µ0 is the min-ratio.
Let µs ≤ µ0 ≤ µb and Cs ⊆ G be the min-weight cycle found using weights ws. If

µb − µs ≤ δ =
(∑

e∈E(G) le

2 mine∈E(G) le
− 1

)−1
ε then

∑
e∈Cs

ge∑
e∈Cs

le
− µ0 < ε

Proof. We will do this proof in two steps. First we will show that weight a of the min-weight
cycle Cs ⊆ G in G, ws can be made arbitrarily small by scaling δ. Then we will show that
the difference between the ratio of the min-ratio cycle and the ratio of Cs only depends on
a and δ.
For this let Cb ⊆ G be the min-weight cycle of G, wb. Since Cs is the cycle with the
smallest ratio in G, ws,

a =
∑

e∈Cs

ws
e ≤

∑
e∈Cb

ws
e =

∑
e∈Cb

ge − µsle

We know that Cb is a negative cycle, so ∑
e∈Cb

ge − µble < 0 which is equivalent to∑
e∈Cb

ge < µb
∑

e∈Cb
le. With this we can bound

a ≤
∑

e∈Cb

ge − µsle

< µb

∑
e∈Cb

le − µs

∑
e∈Cb

le ≤ δ
∑

e∈Cb

le

With this result we can bound the ratio of Cs to be∑
e∈Cs

ge∑
e∈Cs

le
= a∑

e∈Cs
le

+ µs <
δ
∑

e∈Cb
bmge∑

e∈Cs
le

+ µs

Utilizing the fact that µs > µ0 − δ we can conclude this proof by rearranging the inequation
above:

∑
e∈Cs

ge∑
e∈Cs

le
− µ0 <

δ
∑

e∈Cb∑
e∈Cs

le
− δ

(i)
≤ δ

(∑
e∈E(G) le

2 mine∈E(G) le
− 1

)
= ε.

(i) follows since the cycle Cs uses at least 2 edges which have a length of at least mine∈E(G)
and the lengths of Cb can at maximum be the sum of all lengths, since they are greater
than 0.

In practice, we can even show that ∑e∈Cb
le ≤ 1

2
∑

e∈E(G) since we have added the reverse
of every edge to G. Traversing an edge and the reverse of an egde cancels out the gradient
and therefore increases the length of the min-ratio cycle. So Cb uses at most half of the
edges in E(G). Further more we can imagine, that the closer µs and µb are, the more edges
they might have in common. So in practice this bound could probably be tightened.

41

5. A partial Implementation

5.2 Theoretical approximation value
There is a discrepancy between what we theoretically need for the approximation value δ
and what is feasible. We only need to prove that our algorithm can find an min-ratio cycle
with a ratio −κ for some κ ∈ (0, 1). To make sure this is the case, we use the Theorem
6.2 by Chen et al. [CKL+22, Theorem 6.2] where they state, that their data structure can
find an cycle ∆ with

⟨g, ∆⟩
||L∆||1

≤ −κ′α

for κ′ = exp(− O(log7/8 m · log log m)). Because of this, we know that the min-ratio cycle
has a ratio smaller than −κ′α. We can now set our κ = 0.9κ′α and this way the min-ratio
cycle will always have a ratio small enough to reduce the potential in a sufficient way. We
of course need to make sure that the approximation we find is good enough. We can force
this by setting δ = 0.1κ′α, since the ratio of the cycle must be smaller than 0

A different problem will appear in the implementation of the algorithm described above.
In practice for every edge e = (i, j), w(i,j) ̸= w(j,i). Therefore we construct some sort of
residual network where we double the edges by adding them reversed with the negated
gradient. If we now found a min-weight cycle on this network, it might be the case that
the cycle traverses e and the reverse of e , resulting in the min-ratio cycle found being 0.
We see that the weight of this cycle is ge − µsle + (−ge) − µsle = −2µsłe. So we also need
to set δ in a way, the makes sure we are always δ < 2µsle to make sure 0 is not a valid
approximated min-ratio cycle. Since we have set the approximation value to a very small
value, this is not an issue in practice.

5.3 Bellman Ford Algorithm
To detect negative cycles, we use the Bellman-Ford algorithm. This algorithm is used for
determining the length/weight of the shortest path of each vertex v ∈ V (G) to a specific
source vertex s ∈ V (G) inside a graph G. This includes graphs with negative edges.
The idea behind detecting negative cycles, is that the bellman ford algorithm finds the
shortest path in mn iterations, under the assumption that there is no negative cycle.
If there is a negative cycle, then for some vertex, we can always find shorter walks, by
traversing the negative cycle as often as needed. Therefore the distance between some
vertices will continue to decrease if we continue to apply the core operation behind the
Bellman-Ford Algorithm.

Definition 5.6. Given the graph G and the weights w we define the distance d(v, u) of two
vertices v, u as the sum of the weight of the shortest walk W = (v, v1) = e1⊕· · ·⊕ek = (vk, u)
so that for ever other walk W ′ from v to u,

lenw(W) ≤ lenw(W ′).

The Bellman-Ford algorithm maintains a vector d ∈ RE(G) of upper bounds for these
distances from some edge s ∈ V (G) to all other vertices in G. Each iteration these
upper bounds are reduced by applying the idea of the shortest path optimality condition
[AMO93][p. 136].

Theorem 5.7 (Shortest path optimaltiy condition). Given a graph G with weights w
without negative cycles. Then for an arbitrary source vertex s ∈ V (G),

d(s, v) ≤ d(s, u) + w(u,v),

for all (u, v) ∈ E(G).

42

5.4. Finding min-weight cycles

Algorithm 5.1: Bellmann-Ford
Input: Graph G, weights w

1 d[s] = 0 for v ∈ V (G) do
2 if v ̸= s then
3 d[v] = ∞

4 for i = 0; i < n − 1; i + + do
5 for (u, v): E(G) do
6 if d[v] > d[u] + w(u,v) then
7 d[v] = d[u] + w(u,v)

Proof. Assume for some vertex v ∈ V (G) and for the edge (u, v) ∈ E(G), d(s, v) >
d(s, u) + w(u,v). Then shortest walk from s to u concatenated with (u, v) would be shorter
than the shortest walk from s to v. This is a contradiction.

In our implementation we represent we select the vertex with index 0 as the source s. For
the initialisation we set d[s] = 0 and for all v ∈ V (G) \ {s}, we set d[v] = ∞. The rest of
the Bellmann-Ford algorithm is described in algorithm 5.1.

Lemma 5.8. Given a graph G with weights w. Then G, w has no negative cycle if and
only if after running the Bellman-Ford algorithm

∀(u, v) ∈ E(G) : d[v] ≤ d[u] + w(u,v).

This way it is possible to detect a negative cycle in O(mn).

Proof. If we assume that G, w does not contain a negative cycle, this follows directly from
the proof of the Bellman-ford algorithm [Bel58, p. 87-90]

Let us assume that G, w contains a negative cycle. The runtime of the bellman-ford
algorithm only depends on m and n and therefore terminates after O(mn) even though we
have negative cycles. Now since every vertex is reached in this shortest path algorithm
in our graphs, there is a path from s to a vertex v in the negative cycle. And what ever
value d(v) is, we can find a walk with a smaller weight by adding the negative as often as
needed.

5.4 Finding min-weight cycles
Once we know our µs will give us a ε approximated min-ratio cycle, we only need to find
this minimum weight cycle. In the implementation we have used a modified version of
Floyd-Warshall algorithm running in O(n3). This is once again an algorithm calculating
shortest paths, but this time between every two vertices. For this we extend definition 5.6
by d(i, k) as the shortest distance between i, k ∈ V (G). The Floy-Warshall algorithm is
based on the following optimality condition.

Theorem 5.9 (All-Pairs Shortest Path Optimality Condition). Given a graph G with
weights w without negative cycles, then d[i, j] ≤ d[i, k] + d[k, j] for all i, j, k ∈ V (G).

Proof. See proof [AMO93][p. 146]

43

5. A partial Implementation

While initializing the initial distances, we set the distance from each distance to itself to
∞, thus we shortest paths we find are cycles. For this the graph G, ws cannot contain any
negative cycles, which we have made sure with Bellman-Ford. It is worth mentioning, that
there are faster algorithms for the min-weight cycle such as Orlins algorithm [OSN].

A full description and proof of the Floyd-Warshall algorithm is given by Ahuja et al.
[AMO93, p. 148]

5.5 Analysis
In this section we analyse why this algorithm runs into problems.

5.5.1 Practical analysis

We ran our tests on the following system

• Operating System: Linux Solus 4.4

• CPU: AMD Ryzen 7 3800X 8-Core Processor

• Ram: 16 GiB

We can successfully ran the algorithm on a minimal example consisting of two vertices
and a singular edge in about 26 seconds. In this time we have 85310 IPM iterations. As
soon as we create a slightly bigger graph (4 vertices and 6 edges), the algorithm fails. The
min-cost flow has a ratio of 9 while the flow we found had a cost smaller than 9.00002343
which is still far away from being safely roundable to an integer flow.

The reason for this is, that the Floyd-Warshall receives an graph with a negative cost cycle.
Resulting in the construction of a path using infinite edges. Therefore, the program never
terminates. This is interesting, since the Bellman-Ford algorithm was supposed to ensure
that the weights used in the Floyd-Warshall algorithm do not contain negative cycles, and
it does so correctly on the number representation we have used: double long.

5.5.2 Theoretical analysis

The reason why the Bellman-Ford algorithm does not detect a negative cycle while Floyd-
Warsahll does, is numerical nature. To understand why, we look at how the lengths behave
once the current flow gets close to the capacity constraints.

Lemma 5.10. Let G, c, d, u+, u−, U be an instance of the min-cost flow problem. Let
G̃, c̃, d̃, ũ+, ũ−, Ũ be the moddified version on which we find the initial flow. Then there is
an edge e for which the length le ≥ 128m6U8 a during the execution of the algorithm.

Proof. At the end, we will need to round the current flow f on G̃. For this we have the
condition that ⟨c̃T , f⟩ ≤ F ∗ + 1

12m̃2,Ũ3 . Then at some point t we have a flow for which:
⟨c̃T , f⟩ < F ∗ + 1

8m̃2,Ũ3 = 1/(8m2(4mU2)3 Let e ∈ E(G̃) be an edge added at the initial flow

generation with ũ−
e = 0 and cost 4mU2. Both of this combinde we can bound the amount

of flow rounted of e at t by 1
32m5U6 > fec̃e = fe4mU2. So at some point fe < 1

128m6U8 . We
can now also put a bound on the length of e:

le = (ũ+
e − fe)−1−α + (fe − ũ−

e)−1−α ≥ f−1
e > 128m6U8

44

5.5. Analysis

In the example, that did not terminate we had m = 6 and U = 10. Thus we have an edge
that at some point le > 128 · 66108 = 5, 971968 · 1014. In the floating point representation
we lose some precision because of this. We have defined δ to be very small. We have seen
that this puts an upper limit on the weight of our min-weight cycles in G, ws. In the same
manner it puts a lower bound on the min-weight cycles in G, wb. So we can assume that
G, wb contains a very small negative cycle.

We can now describe what we assume to be the reason, why the Bellman-Ford algorithm
does not detect the negative cycle, while the Floyd-Warshall algorithm does. In Bellman-
Ford, we start with the source vertex s and maintain the weight of paths to other vertices.
These paths depend on the on the choice of the source an can be very big in the worst case.
Once the Bellman-Ford algorithm is done and we see if we can decrease the length of a
path by using a negative cycle. But we have seen that the weights of these cycle is very
small. So when adding the small cycle weights to the big paths, resulting value might be
rounded to the original value of the path. So therefore no negative cycle is detected. In
the Floyd-Warshall, we maintain the shortest cycles for every vertex individually. Thus we
might not run into the same issue, because we do not need the potentially large path of
some source vertex to these cycles. Therefore, Floyd-Warshall detects the negative cycle
and fails.

The way this algorithm fails is mainly depended on the choice of number representation
and the algorithms used for negative cycle detection and min-cycle reconstruction. So we
can not conclude that this problem exists in the algorithm algorithm proposed by Chen et
al. In fact, they show that the lengths are quasipolynomially bounded for 4.6 point 4. The
question remains, if the size representations need to run this algorithm on a bigger graph,
is practically feasible.

45

6. Conclusion

In this thesis, we established the basic concepts of the MCF algorithm. We described the
MMCC algorithm and compared it to the algorithm proposed by Chen et al. We then gave
an overview of this algorithm and motivated how approximated min-ratio cycles are found.
Finally, we describe a min-cost flow algorithm running in C++ that utilizes both parts of
the IPM of Chen et al. and the classical algorithm. We then saw that while this works in
theory, because of the precision needed for finding min-ratio cycles and the large values
the lengths take on during the IPM, we run into numerical problems with our choice of
number representation and min-ratio cycle detection.

47

Bibliography

[AMO93] Ravindra Ahuja, Thomas Magnanti, and James Orlin. NETWORK FLOWS.
PRENTICE HALL, 1993.

[AN19] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low
stretch spanning tree. SIAM Journal on Computing, 48(2):227–248, 2019.

[BDHK17] Karl Bringmann, Thomas Dueholm Hansen, and Sebastian Krinninger. Im-
proved algorithms for computing the cycle of minimum cost-to-time ratio in
directed graphs. 2017.

[Bel58] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics,
16:87–90, 1958.

[BGS21] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak.
Deterministic decremental sssp and approximate min-cost flow in almost-linear
time, 2021.

[CKL+22] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst
Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in
almost-linear time, 2022.

[Kar78] Richard M. Karp. A characterization of the minimum cycle mean in a digraph.
Discret. Math., 23:309–311, 1978.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the Sixteenth Annual ACM Symposium on Theory of Comput-
ing, STOC ’84, page 302–311, New York, NY, USA, 1984. Association for
Computing Machinery.

[KK12] Z. Király and P. Kovács. Efficient implementations of minimum-cost flow
algorithms, 2012.

[NP17] Nikolaos Samaras Nikolaos Ploskas. Linear Programming Using MATLAB,
volume 127 of Springer Optimization and Its Applications. Springer Interna-
tional Publishing AG, 2017.

[OSN] James B. Orlin and Antonio Sedeño-Noda. An O(nm) time algorithm for
finding the min length directed cycle in a graph, pages 1866–1879.

[PAN23] Ping-Qi PAN. Linear Programming Computation. 2023.
[SE83] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic

trees. Journal of Computer and System Sciences, 26(3):362–391, 1983.
[Van] Robert J Vanderbei. Linear Programming Foundations and Extensions. Fifth

edition.
[vdBLN+21] Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng,

Thatchaphol Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite
matching in nearly-linear time on moderately dense graphs, 2021.

49

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Notation and definitions
	2.2 Landau notation
	2.3 Networks and Flows
	2.3.1 Minimum Cost Flow
	2.3.1.1 Assumptions
	2.3.1.2 Compact definition

	2.4 Linear Programming
	2.4.1 Geometry of the feasibility region
	2.4.2 Min-cost flow as an LP-Problem
	2.4.3 Simplex Algorithm

	3 Classical Min-Cost Flow Algorithms
	3.1 Cycles and Circulations
	3.2 Minimum-Mean Cost Canceling Algorithm

	4 The Min-Cost Flow Algorithm by Li Chen et al.
	4.1 Interior Point Methods
	4.2 Reductions
	4.3 Overview
	4.3.1 Reducing the potential
	4.3.1.1 Dynamic trees

	4.3.2 How to find min-ratio cycles
	4.3.2.1 HSFC data structure as a black box
	4.3.2.2 Tree-chain motivation
	4.3.2.3 Definitions
	4.3.2.4 Low stretch decomposition
	4.3.2.5 Algorithm stack

	4.4 Initial Point
	4.5 Interpreting gradients and lengths
	4.6 Updates in the HSFC data structure
	4.7 Min-ratio cycles in the branching tree-chain
	4.7.1 Finding min-ratio cycles
	4.7.2 Limiting the min-ratio cycles via the width

	4.8 The Rebuilding Game

	5 A partial Implementation
	5.0.1 The IPM
	5.1 Finding minimum ratio cycles
	5.2 Theoretical approximation value
	5.3 Bellman Ford Algorithm
	5.4 Finding min-weight cycles
	5.5 Analysis
	5.5.1 Practical analysis
	5.5.2 Theoretical analysis

	6 Conclusion
	Bibliography

