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Abstract

A planarity test is an algorithm that determines whether a graph is planar, i.e. whether
it can be drawn in the two-dimensional plane such that no two edges cross each
other. These algorithms may be extended to embedding algorithms, which compute
a planar embedding of the input graph, i.e. the cyclic order of edges at each vertex
in a planar drawing of that graph. Multiple linear-time planarity tests have been
proposed, for instance the “vertex-addition” test by Lempel, Even, and Cederbaum
in 1967 [LEC67], which has been extended for computing an embedding by Chiba et
al. in 1985 [CNAO85]. In 2008, Haeupler and Tarjan proposed a conceptually simpler
version of the “vertex-addition” planarity test [HT08], but the previous extension to
obtain an embedding algorithm does not apply anymore. This paper proposes an
extension to the Haeupler-Tarjan planarity test for computing a planar embedding.
Our embedding algorithm is motivated, formally proven for correctness and linear
runtime, and its implementation is evaluated in practice. Furthermore, we propose
an additional extension of the Haeupler-Tarjan planarity test for computing SPQR-
trees of biconnected input graphs. An SPQR-tree is a decomposition of a graph at
its separation pairs, which has multiple practical applications. To our knowledge,
this yields the first algorithm capable of simultaneously testing for planarity and
computing a planar embedding as well as the SPQR-tree if the graph is planar.

Deutsche Zusammenfassung

Ein Planaritätstest ist ein Algorithmus, welcher auf Planarität eines Graphen testet,
also ob dieser in die zweidimensionale Ebene gezeichnet werden kann, ohne dass
sich Kanten überschneiden. Diese Algorithmen können zu Einbettungsalgorithmen
erweitert werden, welche eine planare Einbettung des Eingabegraphen berechnen,
also die zyklische Ordnung von Kanten um jeden Knoten in einer planaren Zeich-
nung des Graphen. Es wurden mehrere Linearzeit-Planaritätstests veröffentlicht,
beispiels-weise der “vertex addition”-Test von Lempel, Even und Cederbaum in
1967 [LEC67], welcher im Jahr 1985 zu einem Einbettungsalgorithmus durch Chiba
et al. erweitert wurde [CNAO85]. In 2008 wurde eine konzeptionell einfachere
Version des “vertex addition”-Planaritätstests durch Haeupler und Tarjan veröf-
fentlicht [HT08], aller-dings kann die vorige Erweiterung zu einem Einbettungsalgo-
rithmus hier nicht mehr angewandt werden. In dieser Arbeit wird eine Erweiterung
des Haeupler-Tarjan-Planaritätstests zur Einbettungsberechnung präsentiert. Der
Algorithmus wird motiviert, dessen Korrektheit und lineare Laufzeit wird formal
bewiesen, und dessen Implementierung wird in der Praxis evaluiert. Ferner wird
eine zusätzliche Erweiterung des Haeupler-Tarjan-Planaritätstests vorgestellt, welche
SPQR-Bäume zweifach zusammenhängender Graphen berechnet. Ein SPQR-Baum
ist eine Dekomposition eines Graphen anhand seiner separierenden Knotenpaare,
wobei diese Datenstruktur viele praktische Anwendungen hat. Nach unserem Wissen
ergibt dies nun den ersten Algorithmus, der gleichzeitig einen Planaritätstest ausführt
und eine planare Einbettung sowie den SPQR-Baum berechnet, sofern der Graph
planar ist.
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1. Introduction

A graph is considered planar if and only if its vertices and edge can be drawn into the
two-dimensional plane such that no two edges cross one another. Planar graphs have
many practical applications, for example for floor plans in building architecture [WKC88],
integrated circuit design [AH92] and graph visualization [FC21]. Furthermore, a planar
embedding of a planar graph describes the cyclic order of edges around every vertex in
a planar drawing of that graph. A planarity test is an algorithm that decides whether a
given input graph is planar. Hopcraft and Tarjan proposed the first linear-time planarity
test in 1974 [HT74], using the so-called “path-addition” approach, which turned out to be
complex in practice and which resulted in the need for further elaborating research [Tam13].
The “vertex-addition” approach, based on the work of Lempel, Even and Cederbaum in
1967 [LEC67], also later turned out to be realizable in linear time [Tam13]. A more detailed
historical overview on research of planarity tests can be found in [Tam13]. All currently
known planarity tests can be categorized into “cycle based algorithms” and “vertex-addition
algorithms” [Tam13].

This paper uses the vertex-addition algorithm with a data structure called “PC-trees”
devised by Haeupler and Tarjan in 2008 [HT08] as a basis for a new embedding algorithm
of planar graphs. The approach is inspired by the embedding algorithm of Chiba et
al. [CNAO85], which uses the “vertex-addition” planarity test from Lempel, Even and
Cederbaum [LEC67] with “PQ-trees” as a basis. This embedding algorithm cannot be
reused with the Haeupler-Tarjan planarity test due to constraints that where given in the
planarity test from Lempel, Even and Cederbaum, e.g. the usage of a so-called st-numbering
in order to avoid traversing the graph in a general DFS tree, but only in a single path.
Our algorithm extends the Haeupler-Tarjan planarity test by gathering information from
PC-trees during the planarity test and by adding a post-processing step to compute a
planar embedding. The algorithm aims to be easy to understand conceptually, as PC-
trees are conceptually simpler than PQ-tree [FPR21]. Additionally, PC-trees are faster in
practice [FPR21], so we aim to translate this speed into our embedding algorithm.

Furthermore, this paper introduces an approach on how to compute an “SPQR-tree” from
a graph by extending the Haeupler-Tarjan planarity test even further. An SPQR-tree
represents a decomposition of a given biconnected graph into skeletons, which are separated
by “separation pairs” of the graph, i.e. pairs of vertices whose removal disconnects the
graph [FR23]. SPQR-trees where first introduced by Di Battista and Tamassia for usage
in incremental planarity testing [DBT89], but now, they also find practical applications in
integrated circuit design [CHH99] and business processes modeling [VVK09]. For a more
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1. Introduction

detailed overview of applications for SPQR-trees, see [FR23]. In 2001, Gutwenger and
Mutzel proposed a linear time algorithm for computing SPQR-trees [GM01] based on the
approach by Hopcraft and Tarjan [HT73]. For a given input graph, our approach performs
the planarity test and calculates the SPQR-tree of the given input graph simultaneously.
To our knowledge, this is the first algorithm that combines these steps.

In Chapter 2, basic definitions and concepts are presented that are necessary for under-
standing this thesis. Next, Chapter 3 presents our embedding algorithm. The algorithm is
motivated and illustrated in Section 3.1. Furthermore, a formal proof of correctness can be
found in Section 3.2 and Section 3.3 specifies the implementation, where we also show the
runtime to be linear. In Chapter 4, we will describe our extension to the Haeupler-Tarjan
planarity test with PC-trees for computing SPQR-tree of the input graph. Then, Chapter 5
presents the evaluation of our implementation of our embedding algorithm compared to
the unmodified Haeupler-Tarjan planarity test and compared to the embedding algorithm
and the planarity test found in the Open Graph Drawing Framework. Finally, Chapter 6
gives a summary of our findings and presents an outlook into possible further research.
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2. Preliminaries

This chapter provides the basic definitions and concepts required by this thesis. Additionally,
some conventions are established.

2.1. Graphs
Let V be a finite set of vertices. Given E ⊆ {{v, w} | v, w ∈ V ∧ v ≠ w}, G = (V, E) is an
undirected simple graph. Given E ⊆ V × V , G = (V, E) is a directed simple graph. Given
that E is a multiset of directed edges from {{v, w} | v, w ∈ V }, G = (V, E) is an undirected
multigraph. Given that E is a multiset of undirected edges from V × V , G = (V, E) is a
directed multigraph. Given a graph G, V (G) is the vertex set and E(G) is the edge set of G.
The two endpoints of an edge are the two vertices that an edge is attached to. Note that
all graphs except undirected simple graphs may contain edges that represent self-loops, i.e.
edges with two equal endpoints. Furthermore, for directed graphs G = (V, E) we define
source : E → V, (v, w) 7→ v and target : E → V, (v, w) 7→ w. Given a graph G, the degree
deg(v) of a vertex v ∈ V (G) is the number of endpoints from all edges that are equal to v.

2.1.1. Walks and paths

Let G = (V, E) be a graph. A walk a in G is an ordered set of vertices and edges
(x1, e1, x2, e2, x3, . . . , xk, ek, xk+1) with k ∈ N0, x1, . . . , xk+1 ∈ V and e1, . . . , ek ∈ E such
that ∀i ∈ {1, . . . , k} : ei = (xi, xi+1) if G is directed and ∀i ∈ {1, . . . , k} : ei = {xi, xi+1} if
G is undirected. Additionally, a has length k. A vertex v is called reachable from w if there
exists a walk from v to w. A path p in G is a walk where no vertices nor edges are repeated.
A cycle c in G is a walk where no vertices nor edges are repeated except the first and last
vertices, which are equal. Two or more paths are called independent if they are pair-wise
vertex-distinct with respect to their inner vertices, i.e. ignoring their endpoints [Die17]. If
a path inside a graph G from v ∈ V (G) to w ∈ V (G) exists, then v −→

G
w denotes any such

path.

2.1.2. Special graphs

A forest F is a simple graph that contains no cycles and no self loops. Leaves are vertices
v ∈ F (V ) in forests with deg(v) ≤ 1, inner vertices are vertices v ∈ F (V ) with deg(v) > 1.
Note that every path in a forest is unique. A graph G = (V, E) is k-connected if there
exist k independent paths in G between any two vertices in V . A subgraph G′ = (V ′, E′)

3



2. Preliminaries

Algorithm 2.1: Depth-first search
1 ET ← ∅
2 EB ← ∅ multiset
3 ES ← ∅ multiset
4 Function DFS (G = (V, E))
5 forall v ∈ V do
6 v.visited ← false
7 forall v ∈ V do
8 if not v.visited then

// e is a self-loop
9 DFS-connected(G, v, 0, null)

10 Function DFS-connected(G = (V, E), v, currentDepth, previousTreeEdge)
11 v.visited ← true
12 depth(v)← currentDepth
13 forall e ∈ E with v ∈ e do
14 if e = {v, v} then
15 ES ← ES ∪ {(v, v)}
16 else
17 let w ∈ e such that w ̸= v
18 if not w.visited then

// e is a tree edge
19 ET ← ET ∪ {(v, w)}
20 DFS-connected(G, w, currentDepth +1, e)
21 else if e ̸= previousTreeEdge then

// e is a back edge
22 EB ← EB ∪ {(v, w)}

of G with V ′ ⊆ V and E′ ⊆ E is k-connected in G if there exist k independent paths in G
between any pair of vertices in V ′. We define connected, biconnected and triconnected as
1-connected, 2-connected and 3-connected respectively. A tree is a connected forest. Given
a graph G, there exists a partition of V (G) and E(G) such that the corresponding vertex
and edge sets of these partitions form connected graphs, the connected components of G.

2.1.3. Depth-first search

Let G = (V, E) be an undirected graph. A depth-first search (DFS) is an algorithm that
traverses all vertices of G. A recursive definition is given in Algorithm 2.1. The algorithm
partitions the edges into tree edges ET , back edges EB and self-loops ES . Note that all
tree edges and back edges are directed, even though edges in E are undirected. The graph
T = (V, ET ) is a forest, the DFS forest. In case G is connected, T is also connected and
therefore a tree, the DFS tree. A vertex r ∈ V that has no incoming tree edge in T is
called a DFS root. Given a vertex u ∈ V , subtree(u) denotes the subtree that is rooted at
u, i.e. subtree(u) is the restriction on T that contains all vertices that are reachable from
u. Furthermore, given a back edge b ∈ EB , the corresponding tree edge of b is the tree edge
t ∈ ET which, outgoing from target(b), points into the subtree that contains source(b), i.e.
source(t) = target(b) and source(b) ∈ subtree(target(t)). Algorithm 2.1 also computes the
depth of every vertex v, which is the length of the path from the root of the connected
component to v in T .

4



2.2. Planar graphs

2.2. Planar graphs
The following definitions are similar to [Tam13]. A drawing D of a graph G is a function
that maps all vertices of G to points in the two-dimensional real plane and that maps all
edges of G to Jordan arcs with the endpoints of an arc being the mappings of the endpoints
of the corresponding edge. A drawing D is planar if no vertex lies on an edge, except at
its endpoints, if no vertices overlap and if there exist no intersections, also called crossings,
of distinct edges in D, except for at their endpoints. A graph G is planar if there exists a
planar drawing of G. A planar drawing D partitions the plane into connected regions, the
faces of D. Since the graph is finite, there exists an unbounded face, the outer face of D.

2.2.1. Embeddings
To describe embeddings, we first need to introduce cyclic orders. A partial cyclic order
C of a set or multiset X is an equivalency class of linear orders over a set YC ⊆ X where
for all linear orders L, L′ ∈ C, we can obtain L′ from L by cyclically shifting L, i.e. for
|YC | = n and L = (x0, . . . , xn−1) with x1, . . . , xn ∈ X, there exists i ∈ {0, . . . , n− 1} such
that L′ = (xi mod n, xi+1 mod n, . . . , xi+n−1 mod n). A (complete) cyclic order C ′ of a set X
is a partial cyclic order with YC′ = X. Note that for illustration purposes, in this paper,
cyclic orders are considered to be counter-clockwise. Given a partial cyclic order C over X,
we write (x1, . . . , xk) ▷ C with x1, . . . , xk ∈ X and k ∈ N if and only if there exists L ∈ C
such that the elements x1, . . . , xk appear in L in this order. Similarly, given a linear order
P over a set X, we write (x1, . . . , xk) ▷ P if and only if x1, . . . , xk appear in P in that order.
Moreover, let ζ(X) be the set of all possible partial cyclic orders of X, and let ζC(X) be
the set of all possible complete cyclic orders of X. A cut of a partial cyclic order C over
YC ⊆ X at an element x ∈ YC is a linear order L ∈ C such that x is the last element in L.
Given a partial cyclic order C of X and a set Y ⊆ X, the restriction CY of C on Y is a
partial cyclic order on Y that keeps all orderings of C on elements in Y . Additionally, we
need the concept of consecutivity in cyclic orders: Let C be a partial cyclic order on a set
X. Then Y ⊆ X is consecutive in C if and only if for all a, b ∈ Y , for all c, d ∈ X \ Y and
for all L ∈ C, we have that (a, c, b, d) ▷ L does not hold. Furthermore, we say that a, b ∈ X
are consecutive in C if and only if {a, b} is consecutive in C. Given a partial cyclic order C
on X, as inspired by [Nov82], we define the dual flipped(C) of C as the set of all reversed
linear orders from C, i.e. flipped(C) := {reverse(L) | L ∈ C}.
A (combinatorial) embedding E of a graph G = (V, E) describes for every vertex v ∈ V a
cyclic order of all edges incident to v. Formally, an embedding E is a function E : V → ζ(V )
such that for every v ∈ V , E(v) is a cyclic order of all edges incident to v (self-loops occur
twice in the cyclic order). Given an embedding E of a graph G = (V, E) and given a subset
of edges P ⊆ E, the restriction EP of E on P describes only the embedding of edges in P .
Formally, EP : V → ζ(V ), v 7→ (E(v))P . Given a graph G and an embedding E of G, then
a face f of G is defined by the cycle obtained from starting at a vertex v in G and walking
along some edge e incident to G to w ∈ V (G), then taking the next edge counter-clockwise
in E(w), and repeating this until we arrive at the starting vertex.

2.2.2. Planar embeddings
The following definitions are similar to [Tam13]. A drawing D of a graph G prescribes
a cyclic order of edges around each vertex and therefore describes an embedding E of G.
In fact, there exist many drawings of G which describe the same embedding. Thus, an
embedding E describes an equivalency class of drawings which all implement E . E is planar
if and only if there exists a planar drawing in the equivalency class of drawings described
by E . Note that every embedding of a forest (and thus of every tree) is planar and thus
every forest and every tree is planar. If a graph is a cycle, then the graph is planar and a
planar embedding of it has exactly two faces, the outer face and the inner face.
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Figure 2.1.: Illustration of all possible embeddings for a PC-tree. P-nodes are illustrated
using circles, C-nodes are double-circles. Circular orders are depicted using
the blue arrows.

2.2.3. PC-trees

The following description of PC-trees is taken from [FPR21]. Given a finite set X, a
PC-tree T aims to describe a set of cyclic orders ord(T ) ⊆ ζ(X). T is an undirected tree,
where every inner node is either a P-node or a C-node and every leaf is an element in X,
the elements which are to be ordered. Additionally, for every C-node c, there exists a given
cyclic order Kc of all edges connected to c. Now, we obtain the set of described cyclic
orders ord(T ) by drawing T according to all possible embeddings E of T with E(c) = Kc or
E(c) = flipped(Kc) for every C-node c and then by taking the cyclic order of encountered
vertices x ∈ X when tracing around the boundary of the outer face of the drawing for every
such drawing of T . As an example, Figure 2.1 shows all possible embeddings and cyclic
orders for a given PC-tree. Given a PC-tree T and Y ⊆ X, a restriction is an operation
that produces a new PC-tree T ′ which restricts ord(T ) such that Y is consecutive in all
cyclic orderings of T ′, i.e. ord(T ′) ⊆ ord(T ), Y is consecutive in C for all C ∈ ord(T ′)
and ord(T ′) is maximal. A restriction on Y ⊆ X in T is impossible if and only if such
a restriction would produce a new PC-tree T ′ with ord(T ′) = ∅, i.e. if and only if there
exists no R ⊆ ord(T ) such that R ̸= ∅, ord(T ′) ⊆ ord(T ) and Y is consecutive in C for all
C ∈ R. Given a restriction on Y ⊆ X, we assign labels to all nodes in T . A leaf l ∈ X of
T is full if l ∈ Y and empty otherwise. Recursively, an inner node n of T is full if at least
deg(n)− 1 neighbors of n are full, otherwise n is partial if at least one neighbor of n is full,
and empty otherwise. For a detailed description on how to efficiently compute restrictions
on PC-trees and these labels of PC-nodes, see [FPR21].

2.2.4. Planarity test

A planarity test is an algorithm that decides whether a given undirected graph G is
planar [Tam13]. In the following, the Haeupler-Tarjan planarity test [HT08] is explained,
which we will use as a basis for our algorithms in this paper. The planarity test uses a

6
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(a) Input graph with DFS.
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(d) PC-tree after deleting all
full nodes and attaching
to the P-node with label
3.

Figure 2.2.: Example of the retreat step for the tree edge (4, 3).

DFS to traverse an input graph and then processes every vertex in reverse DFS discovery
order. Here, PC-trees are used to track the cyclic orders of outgoing edges from the
already processed subgraphs. In more detail, the algorithm performs the following steps
to determine the planarity of an undirected input graph G. First, a DFS on G is started.
This DFS traverses G and discovers tree edges, back edges and self-loops. Self-loops are
ignored, since they have no influence on the planarity of G. When advancing along a tree
edge (v, w), a new PC-tree is constructed that contains a P-node with label w and an
attached leaf that represents the edge (w, v). When advancing along a back edge (v, w),
we add a new leaf to the P-node with label v that represents the back edge (v, w). When
retreating along a tree edge (v, w) (retreating from w to v), we perform a reduction on the
PC-tree T of w (i.e. the PC-tree that contains or contained the label w) to make all leaves
consecutive which represent edges connecting to v. Now, if this reduction is found to be
impossible, then we stop the algorithm and G is determined not to be planar. Otherwise,
the reduction is executed and all full nodes in T are deleted, such that the subtree T ′

remains. Now, T ′ is attached to another PC-tree at the P-node with label v. Finally, if
the algorithm successfully executed without stopping, G is determined to be planar. In
Figure 2.2, we see an example of the retreat step.

2.3. SPQR-trees
The following definitions are taken from [FR23]. Given a graph G = (V, E), a separating
k-set of G is a set S of k vertices of G such that G− S has more connected components
than G, where G− S denotes the removal of all vertices of S and their incident edges in
G. A separating 1-set is called a cut-vertex, a separating 2-set is a separation pair. A
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5

4

3

2

1

(a) Graph G.

rigid bond polygon

1

222

555

3

4

(b) Skeletons of G. Real edges are
black, virtual edges are blue.

PR S

(c) The SPQR-
tree of G.

Figure 2.3.: Example of an SPQR-tree.

separation pair v, w of a biconnected graph G splits G into bridges, which are the connected
components of G− v − w. Now, the SPQR-tree D of a biconnected undirected multigraph
G = (V, E) represents a decomposition of G along its separation pairs in a tree with three
node types, P-nodes that represent bonds, i.e. two vertices with at least three connecting
edges, S-nodes that represent polygons, i.e. simple cycles, and R-nodes that represent rigids,
i.e. triconnected components, such that no two P-nodes and no two S-nodes are adjacent
in D. The bonds, polygons and rigids are then the skeletons of G. An edge of a skeleton
is either a real edge if the corresponding edge also exists in G, or a virtual edge if that
edge corresponds to a non-empty bridge. Note that a pair of virtual edges in different
skeletons corresponds to an edge in the SPQR-tree. For a formal definition of SPQR-trees,
see [FR23]. Note that for simplicity, this paper assumes that corresponding vertices in the
graph and its skeletons are equal. In Figure 2.3, we see an example of an SPQR-tree.

2.4. Tuple ordering

Let n ∈ N, let v =

v1
...

vn

 , w =

w1
...

wn

 ∈ Rn. Then v < w is defined as the lexicographic

order on the components of v and w, i.e. v < w if and only if there exists an i ∈ {1, . . . , n}
such that vj = wj for all j ∈ {1, . . . , i− 1} and vi < wi. Moreover, v ≤ w holds if and only
if v = w or v < w.

8



3. Embedding Algorithm

In this chapter, we construct an algorithm that solves the following problem: Given an
arbitrary undirected multigraph G = (V, E), determine whether G is planar. Additionally,
if this is the case, output an arbitrary planar embedding E of G. The algorithm should
run in linear time O(|V |+ |E|). In order to check for planarity, we resort to the planarity
test by Haeupler and Tarjan [HT08]. If this test discovers that the input graph G is not
planar, then there exists no planar embedding E of G. Otherwise, we need to compute E ,
which is done by extending the planarity testing algorithm. In Section 3.1, the embedding
algorithm is motivated and intuitively explained. Next, Section 3.2 elaborates on the
correctness of our algorithm by devising a formal proof. Finally, Section 3.3 provides
necessary implementation details and shows that the algorithm indeed runs in linear time.

3.1. Orderings
Let G = (V, E) be a planar undirected multigraph. W.l.o.g. we can assume that G is
connected, because for any graph that is not connected, we can consider its connected
components separately. Based on a DFS with root r such that r is not a cut-vertex of
G, let ET , EB, ES be the sets of tree edges, back edges and self-loops, respectively, and
let T = (V, ET ) be the DFS tree. We refer to tree edges as directed downwards, directed
away from the DFS root, and back edges are directed upwards. To describe the orderings
in a planar embedding E of G, for all vertices v we first describe orderings of back edges
connecting to the path r −→

T
v. Afterwards, at each vertex, we distinguish different types of

edges resulting from the DFS that connect to v: outgoing tree edges, outgoing back edges,
incoming back edges, incoming tree edges and self-loops. These different types of edges are
also illustrated in Figure 3.1.

3.1.1. Orderings at root paths

Let v ∈ V and be the DFS root of the connected component that contains v, let w1, . . . , wk ∈
V be the DFS children of v and let E be a planar embedding of G. For all wi, wj ∈ V
of v with i ̸= j, we observe that the DFS guarantees that there exist no edges with one
endpoint in subtree(wi) and the other one in subtree(wj). For a vertex u ∈ V , let Bu be
the set of all back edges originating in subtree(u) and let B′

u ⊆ Bu be the set of all back
edges originating in subtree(u) that also target vertices on the tree edge path r −→

T
u but

that do not target u itself, i.e. depth(target(b)) < depth(u) for all b ∈ B′
u. Additionally, let

9
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v
incoming back edge

incoming tree edge

outgoing back edge

outgoing tree edge
self-loop

Figure 3.1.: Edge types.

v

w1

w2
w3

w4

lp(w3)

lp(w2)

lp(w1)

lp(w4)

r

Lv

EL(v)

Figure 3.2.: Edge ordering around vertex v. The blue arrows denote tree edges or tree edge
paths, the orange arrows denote back edges, the red arrow denotes the linear
order around the path r −→

T
v, the green arrow denotes the linear order of the

embedding around v.
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w

r

u

v f

g

h′

h′′

Z

Figure 3.3.: Illustration of non-consecutive back edges during the proof of Lemma 3.1. h′

and h′′ show the two possibilities of h, where it either originates at v or in a
subtree of a child of v.

Lu be the linear order of back edges in B′
u obtained by tracing around r −→

T
u in a planar

drawing of G that respects E . As illustrated in Figure 3.2, the back edges in B′
v, form some

kind of layers in a planar drawing. Specifically, there exist some restrictions on the linear
order Lv that result from a planar embedding of G. This observation can be formalized
using the following lemma.

Lemma 3.1. Let E be a planar embedding of a connected planar undirected multigraph G,
let there be a DFS on G with DFS tree T and with a non-cut-vertex root, let v ∈ V (G), let
w ∈ V (G) be a DFS child of v from a DFS on G with non-cut-vertex root. Then B′

w is
consecutive in Lv.

Proof. Assume the statement is wrong, then there exist f, g ∈ B′
w and h ∈ EB \B′

w such
that (f, h), (h, g) ▷ Lv, where either source(h) = v or h ∈ B′

u with u being a DFS child of v
and u ≠ w. Let Z be the cycle in G formed by f , g, the tree edge path with endpoints
source(f) and source(g) and the tree edge path with endpoints target(f) and target(g).
The situation is now depicted in Figure 3.3. Since (f, h), (h, g) ▷ Lv, h is connected to
target(h) at the inner face of Z. Additionally, v lies on the outer face of Z by definition of
f and g, so source(h) also lies on the outer face of Z, thus h is connected to source(h) in
the outer face of Z. Consequently, h must intersect Z in every planar drawing of G that
respects E , therefore E is not planar, a contradiction.

3.1.2. Outgoing tree edges

Let v ∈ V and let w1, . . . , wk ∈ V be all DFS children of v. Given a planar embedding E
of G, we now focus on the outgoing tree edges originating at v to describe their orderings
in E . Based on the findings from Lemma 3.1, we define an equivalency relation ∼v on the
set B′

v: b ∼v c if and only if source(b) ̸= v ̸= source(c) and b, c originate in the subtree of
the same child of v. Thus, we get the following equivalency classes for ∼v: Every outgoing
back edge at v has its own equivalency class and there exists an equivalency class B′

wi
for

all i ∈ {1, . . . , k}, corresponding to subtree(wi) and thus to the outgoing tree edge (v, wi).

11



3. Embedding Algorithm

t

vEL(v)

E(v)

(a) Definition of EL(v) with
v ̸= r.

E(r)

EL(r) r

f

(b) Definition of EL(r).

Figure 3.4.: Example of the definition of EL.

Since here, we focus on outgoing tree edges from v, moving forward we only consider the
second type of equivalency classes.

From Lemma 3.1, we conclude that all back edges in the same equivalency class are
consecutive in Lv. Therefore, when describing the ordering in Lv of back edges in B′

wi

in relation to back edges in B′
wj

for i, j ∈ {1, . . . , k} with i ̸= j, we can instead describe
the ordering in Lv by the relation of representatives of those classes. As a representative
for the equivalency class B′

wi
≠ ∅ with i ∈ {1, . . . , k}, we choose the low pointer lp(wi) of

subtree(wi), which is defined as follows:

lp(wi) ∈ Bwi such that depth(target(lp(wi))) = min
e∈Bwi

depth(target(e))

Such a low pointer lp(wi) may not exist because no back edges originate in subtree(wi), i.e.
Bwi = ∅. In this case, we write lp(wi) = ⊥. Additionally, lp(wi) may not be uniquely defined,
as there may exist back edges b, d ∈ Bwi with b ̸= d and depth(target(b)) = depth(target(d)).
In this case, lp(wi) refers to an arbitrary one of those candidates. Observe that since
B′

wi
⊆ Bwi , B′

wi
= ∅ and lp(wi) ̸= ⊥ may hold. Obviously, in this case, lp(wi) is not a

representative of B′
wi

, but we see that in this case, all outgoing back edges from subtree(wi)
connect to v, so the position of the outgoing tree edge (v, wi) among the other outgoing
tree edges in E(v) does not matter, i.e. there exists a planar embedding E of G for every
possible position of (v, wi).

Now, using low pointers as representatives, we can show that there exist restrictions on
orderings of outgoing tree edges at v for every planar embedding E of G. In general,
we observe that when tracing around r −→

T
v in clockwise direction, we encounter low

pointers of children of v in counter-clockwise order. For every embedding E of G and every
vertex v ∈ V \ {r} with incoming tree edge t into v, let EL(v) be the cut of E(v) at t, i.e.
EL(v) ∈ E(v) such that t is the last element in EL(v). Additionally, we define EL(r) as
follows: Let f be a face of G according to E such that r is incident to f . Since r is no
cut-vertex, f is incident to r at exactly one position in E(r). If we assume this is not
the case, for every face f incident to r there would exist (a, b, c, d) ▷ E(r) such that f is
incident to r between a, b and between c, d respectively. By removing r, we would get that
w.l.o.g. the components of G that are connected to r via a, c and b, d respectively would
be separated by the face f ′ of G− r, which is the enlarged face f from the removal of r.
Therefore, this contradicts r being no cut-vertex. Now, let EL(r) be the cut of E(r) such
that the edges next to the incidence point of f at r are the first and last elements in EL(r).
This definition of EL is also illustrated in Figure 3.4. Note that B′

r = ∅, so Lr is also empty.
Having defined EL, we now formalize our intuition on the layers visible in Figure 3.2, which
are formed by back edges in B′

w1 , . . . , B′
wk

. We need this formalization later.
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b′′ clockwise

EL(target(b))

bt

b′ counter-clockwise

Figure 3.5.: Illustration of the definition of the orientations clockwise and counter-clockwise.

Lemma 3.2. Let E be a planar embedding of a connected planar undirected multigraph G,
let there be a DFS on G with DFS tree T and with a non-cut-vertex root, let v ∈ V , let a, c
be outgoing tree edges from v, let b ∈ B′

target(a) and d ∈ B′
target(c). Then (a, c) ▷ EL(v) ⇐⇒

(d, b) ▷ Lv.

Proof. Assume (a, c) ▷ EL(v) and (b, d) ▷ Lv. Let D be the cycle in G formed by d and the
path target(d) −→

T
source(d). Since (a, c) ▷ EL(v), w.l.o.g. target(a) lies in the outer face of

D, and because of (b, d) ▷ Lv, b connects to target(b) at the inside of D. Therefore, the
path source(a) −→

T
source(b) followed by b must cross D in every planar drawing of G that

respects E , a contradiction to E being planar. By assuming (d, b) ▷ Lv and (c, a) ▷ EL(v),
we can make the same argument by swapping a, c and b, d respectively.

In the following, we define the orientations clockwise and counter-clockwise for back edges
as follows: Given a back edge b ∈ EB, its corresponding tree edge bt ∈ ET and a planar
embedding E of G, b is clockwise if (b, bt) ▷ EL(target(b)) and b is counter-clockwise if
(bt, b) ▷ EL(target(b)). This definition is also illustrated in Figure 3.5. We now want to
describe the restrictions that are placed on outgoing tree edges in EL(v) by Lemma 3.1. To
achieve this, we first use a function σ : EB → Z with the following properties for all v ∈ V
and b, c ∈ B′

v:

Properties 3.3.

(i) σ(b) < 0 if and only if b is clockwise

(ii) σ(b) > 0 if and only if b is counter-clockwise

(iii) If b, c are clockwise and depth(target(b)) > depth(target(c)), then σ(b) < σ(c)

(iv) If b, c are counter-clockwise and depth(target(b)) < depth(target(c)), then σ(b) <
σ(c)

(v) σ(b) = σ(c) if and only if b, c have the same orientation and target(b) = target(c)

Note that σ depends on a given planar embedding and a given DFS. Using these properties,
we get the following lemma.

Lemma 3.4. Let E be a planar embedding of a connected planar undirected multigraph
G, let there be a DFS on G with a non-cut-vertex root, let v ∈ V , let b, c ∈ B′

v such that
target(b) ̸= target(c) if b, c have the same orientation. Then σ(b) < σ(c) ⇐⇒ (c, b) ▷ Lv.

Proof. Assume σ(b) < σ(c). If both σ-vales have different signs, then σ(b) < 0 < σ(c)
must hold, so by Properties 3.3 (i) and 3.3 (ii) we have b being clockwise and c being
counter-clockwise, thus we get (c, b) ▷ Lv. Otherwise, w.l.o.g. let 0 < σ(b) < σ(c) (the other

13
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v

w1 w2

lp(w2)

lp(w1)

r

(a) Ordering (w1, w2) ▷ EL(v)

v

w2 w1

lp(w1)

lp(w2)

r

(b) Ordering (w2, w1) ▷ EL(v)

Figure 3.6.: Example for σ(lp(w1)) = σ(lp(w2)). With E(target(lp(w1))) being fixed, the
relative ordering of w1, w2 in E(v) is not arbitrary.

case is analogous). Therefore, b and c have the same orientation by Property 3.3 (ii). From
Property 3.3 (iv), we now get depth(target(b)) < depth(target(c)), thus (c, b) ▷ Lv.

Assume (b, c) ▷ Lv. If b and c have the same orientation, then b must be counter-clockwise
and c must be clockwise, therefore Properties 3.3 (i) and 3.3 (ii) lead to σ(b) < 0 < σ(c).
Otherwise, w.l.o.g. let b and c are both counter-clockwise (the other case is analogous).
Now, from (c, b) ▷ Lv and target(b) ̸= target(c) follows depth(target(b)) < depth(target(c)),
hence we get σ(b) < σ(c) by Property 3.3 (iv).

With Lemma 3.4, we see that the function σ is sufficient for dealing with graphs where no
two low pointers connect to the same node and have the same orientation. However, if such
two low pointers b and c exist, σ(b) = σ(c) holds by Property 3.3 (v). Therefore, for such
cases, σ is not sufficient to describe the ordering of outgoing tree edges at v. An example
of this is illustrated in Figure 3.6. We now define another function φ : ET ∪ EB → Z as a
tie-breaker for such cases. Note that in Section 3.1.4, we will define φ(e) = 0 for all tree
edges e ∈ ET to have a more compact notation. Until then, we only focus on values of φ
for back edges. The function describes the relative ordering of incoming back edges at a
vertex by having the following properties for all b, c ∈ EB:

Properties 3.5.

(i) φ(b) < 0 if and only if b is clockwise

(ii) φ(b) > 0 if and only if b is counter-clockwise

(iii) If target(b) = target(c) and b, c have the same orientation, then φ(b) > φ(c) ⇐⇒
(b, c) ▷ EL(target(b))

From Property 3.5 (iii), we also get the following statement.

Lemma 3.6. Let b, c ∈ EB with target(b) = target(c) and b, c having the same orientation.
Then φ(b) > φ(c) if and only if (c, b) ▷ Lu for all u ∈ (target(b) −→

T
source(b)∩ target(c) −→

T

source(c)) with depth(u) > depth(target(b)).
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φ = −2

φ = −1 φ = 1

φ = 2

φ = 3

Figure 3.7.: Example of assigned φ-values.

Proof. Simply follows from Property 3.5 (iii) and the definitions of EL and Lu.

Note that here, φ depends on a given planar embedding and on a given DFS. For an
exemplar assignment of φ-values to back edges, see Figure 3.7. Based on these properties
for φ, we can now describe the ordering of outgoing tree edges in EL(v) even further.

Lemma 3.7. Let E be a planar embedding of a connected planar undirected multigraph G,
let there be a DFS on G with a non-cut-vertex root, let v ∈ V , let b, c ∈ B′

v. Then(
σ(b)
−φ(b)

)
<

(
σ(c)
−φ(c)

)
⇐⇒ (c, b) ▷ Lv

Proof. If target(b) ̸= target(c) or b, c have the same orientation, the statement simply
follows from Lemma 3.4. Therefore, now assume target(b) = target(c) and b, c having
the same orientation. Hence, σ(b) = σ(c) holds due to Property 3.3 (v). Assuming(

σ(b)
−φ(b)

)
<

(
σ(c)
−φ(c)

)
holds, then we get φ(b) > φ(c) due to σ(b) = σ(c). Consequently,

we get (c, b) ▷ Lv from Lemma 3.6. Assuming (c, b) ▷ Lv holds, we get φ(b) > φ(c) due to

Lemma 3.6. Hence,
(

σ(b)
−φ(b)

)
<

(
σ(c)
−φ(c)

)
.

Now, based on Lemma 3.1, we can use low pointers as representatives of subtrees and apply
Lemma 3.7, which gives us our ordering of outgoing tree edges due to Lemma 3.2.

Lemma 3.8. Let G be a connected planar undirected multigraph, let v ∈ V (G), let u, w be
DFS children of v based on a DFS on G with a non-cut-vertex root, and let eu, ew be the
respective tree edges. If B′

u ̸= ∅ ≠ B′
w, then for any planar embedding E of G, we have:(

σ(lp(u))
−φ(lp(u))

)
<

(
σ(lp(w))
−φ(lp(w))

)
⇐⇒ (eu, ew) ▷ EL(v)

Additionally, there exists a planar embedding E of G such that we have(
σ(lp(u))
−φ(lp(u))

)
≤
(

σ(lp(w))
−φ(lp(w))

)
⇐⇒ (eu, ew) ▷ EL(v)

where σ(⊥) := 0 and φ(⊥) := 0.

Proof. Assume B′
u ̸= ∅ ̸= B′

w, then we get lp(u) ̸= ⊥ ̸= lp(w) and lp(u), lp(w) act
as representatives for the equivalency classes B′

u, B′
w respectively. Let E be a planar

embedding of G, then we have(
σ(lp(u))
−φ(lp(u))

)
<

(
σ(lp(w))
−φ(lp(w))

)
⇐⇒

Lemma 3.7
(lp(w), lp(w)) ▷ Lv ⇐⇒

Lemma 3.2
(eu, ew) ▷ EL(v)
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v

r

b

(a) G

v

r

b

s

e1

e2

(b) G′

Figure 3.8.: Example of G and its subdivision G′.

Additionally, if B′
u = ∅, then subtree(u) only has connections to v, so eu may be placed

in an arbitrary position in EL(v) among the other outgoing tree edges. Therefore, in this

case, the value of
(

σ(lp(u))
−φ(lp(u))

)
may be arbitrarily chosen, which implies the existence of a

planar embedding E that satisfies the above equivalence. Ditto for ew if B′
w = ∅.

3.1.3. Outgoing back edges
We now focus on the ordering of outgoing back edges from v in a planar embedding E of G.
Let e ∈ EB be such an outgoing back edges at v, let b := target(e). This setting can now
be reduced to handling an outgoing tree edge: Consider a graph G′ which is a subdivision
of G where a vertex s /∈ V splits the edge e into e1, e2 /∈ E such that e1 = {v, s} and
e2 = {s, b}. An example for G and G′ can be seen in Figure 3.8. Obviously, for every
planar embedding E of G, we have a corresponding planar embedding E ′ of G′ where e1
has the same position in E ′(v) as e has in E(v) and e2 has the same position in E ′(b) as e
has in E(b). Considering Lemma 3.8 and given that e and e2 have the same orientation, we
have lp(s) = e2 and thus σ(lp(s)) = σ(e2) = σ(e) by Property 3.3 (v). Additionally, for all
d ∈ EB with target(d) = target(lp(s)) we have φ(lp(s)) < φ(d) =⇒ φ(e2) < φ(d) as well
as φ(lp(s)) > φ(d) =⇒ φ(e2) > φ(d) based on Properties 3.5 (i) to 3.5 (iii). Therefore,
w.l.o.g. we can assume φ(lp(s)) = φ(e2). We now conclude our description of orderings for
outgoing tree and back edges at v:

Lemma 3.9. Let G be a connected planar undirected multigraph, let there be a DFS on G
with a non-cut-vertex root, let v ∈ V (G). For an edge e that is incident to v and w ∈ e
being the other endpoint of e, we define M(e) depending on the type of e as follows. Note
that σ(⊥) := 0, φ(⊥) := 0.

Type of e outgoing outgoing
tree edge back edge

M(e)
(

σ(lp(w))
−φ(lp(w))

) (
σ(e)
−φ(e)

)

Let g, h be outgoing tree edges or outgoing back edges at v. If e ∈ EB =⇒ B′
target(e) ̸= ∅

for all e ∈ {g, h}, then for any planar embedding E of G, we have:

M(g) < M(h) ⇐⇒ (g, h) ▷ EL(v)
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Additionally, there exists a planar embedding E of G such that

M(g) ≤M(h) ⇐⇒ (g, h) ▷ EL(v)

Proof. Simply follows from the above construction of G′ and Lemma 3.8.

3.1.4. Incoming back edges

Now, we address the ordering of incoming back edges at a vertex in a planar embedding
E of G. Given a vertex w ∈ V with w ̸= r, we define Iw to be the set of all back edges
originating in subtree(w) that are incoming back edges into the DFS parent of w. We
now show that all incoming back edges and their respective outgoing tree edge may be
consecutive in a planar embedding.

Lemma 3.10. Let G be a connected planar undirected multigraph, let there be a DFS on
G with non-cut-vertex root r, let E be a planar embedding of G. Then there exists a planar
embedding E ′ of G such that all outgoing tree edges, outgoing back edges and incoming tree
edges have the same relative positions in E ′ as in E and such that for all w ∈ V (G) \ {r}
with incoming tree edge t, Iw∪̇{t} is consecutive in E ′(parent(w)).

Proof. Let w ∈ V (G)\{r} with incoming tree edge t such that Iw∪̇{t} is not consecutive in
E(parent(w)). Let v := parent(w). There now must exist a, b ∈ Iw∪̇{t} and (c, d) ▷ E(v) \
(Iw∪̇{t}) such that (a, c, b, d) ▷ E(v). We now show that there exists a planar embedding
E ′ such that (a, b, c, d) ▷ E ′(v), which is sufficient to prove this lemma. Consider the cycle
Z formed by a, b and the tree edge path between the endpoints of a and b in subtree(w).
We see that v ∈ Z because v is an endpoint of a. Due to (a, c, b, d) ▷ E(v), c connects at
the inside of Z and d connects at the outside of Z. First, assume that c is an outgoing
tree edge from v. This case is illustrated in Figure 3.9a. Since c connects at the inside of
Z and E is planar, subtree(target(c)) must only have connections to v, as connections to
subtree(w) would violate the DFS and edges to other parts of the DFS tree would cross Z
in every drawing that respects E , violating the planarity of E . Therefore, we can create
another planar embedding E ′ of G from E by moving the connections to subtree(target(c))
in E(v) to the outside of Z, i.e. (a, b, e, d) ▷ E ′(v) for all e ∈ Itarget(c) ∪ {c}. This is also
illustrated in Figure 3.9b. Next, assume that c is an outgoing back edge at v. This case is
illustrated in Figure 3.9c. Then c connects to v at the inside of Z, but it also connects
to target(c) ▷ r −→

T
v, target(c) ̸= v, on the outside of Z. Thus, c would cross Z in every

drawing that respects E , contradicting the planarity of E , so this assumption is wrong.
Next, assume that c is an incoming back edge at v. This case is illustrated in Figure 3.9d.
Since c /∈ Iw, c must originate in another subtree. Let u be the root of this subtree such
that u is a child of v. Given that E is planar, subtree(u) must lie on the inside of Z.
Therefore, there exists an outgoing back edge s from v to u such that (a, s, b, d) ▷ E(v). We
now apply the above case concerning outgoing back edges. Finally, assume that c is the
incoming tree edge at v, so v is not a DFS root. This case is illustrated in Figure 3.9e.
Therefore, the subgraph G− subtree(v) lies on the inside of Z. Thus, for all children u of v
with u ̸= w, subtree(u) has no connections to G− subtree(v), i.e. B′

u = ∅. Let f, g ∈ {a, b}
such that f ̸= g and f ∈ Iw and w.l.o.g. (g, c, f, d) ▷ E(v). Now, we can create another
planar embedding E ′ of G from E by moving f to the other far side of Iw in E(v), i.e. such
that (f, g, c, d) ▷E ′(v). This is also illustrated in Figure 3.9f. Then E ′ is also planar because
Z separates the same parts of subtree(w) and G− subtree(v) in E ′ as in E .

Based on this finding, we can attempt to use the ordering values shown in Lemma 3.8 for
the respective outgoing tree edges to describe a possible embedding of G, but we must
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w

v

ca

b

d

(a) Case where c is outgoing tree
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(e) Case where c is incoming
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(f) Case where c is incoming tree
edge, illustration of E ′.

Figure 3.9.: Illustration for the proof of Lemma 3.10.
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v

w1 w2

d1 d2

(a) Correct ordering with
consecutivity.

v

w1 w2

d1 d2

(b) Incorrect ordering
without consecutivity

Figure 3.10.: Example of ambiguous ordering of incoming back edges. Here, σ(w1) = σ(w2)
and φ(lp(w1)) = φ(lp(w2)) hold.

consider the following edge case: For v ∈ V and for u, w being DFS children of v, we may
have σ(lp(u)) = σ(lp(w)) and φ(lp(u)) = φ(lp(w)), suggesting an ambiguous ordering. An
example of such a case is shown in Figure 3.10. Now, to use as a tie-breaker, we introduce
an injective function N : V → Z, which maps every vertex to a unique identifier. The value
of this function is used to group edges by subtrees. This ensures that an embedding as
in Lemma 3.10 is always achieved. Next, we need to describe the ordering of incoming
back edges and their respective outgoing tree edge, i.e. the set Iw ∪ {t}, among themselves.
For this, we use the values of φ(e) for all c ∈ Iw and the value 0 for the tree edge. As
referenced at the definition of φ, we here define φ(e) = 0 for all tree edges e ∈ ET . We
now get the following lemma.

Lemma 3.11. Let G be a connected planar undirected multigraph, let there be a DFS on
G with a non-cut-vertex root, let E be a planar embedding of G that satisfies Lemma 3.10,
let v ∈ V (G), let w be a child of v, let t be the tree edge from v to w. Then we have
φ(a) < φ(b) ⇐⇒ (a, b) ▷ EL(v) for all a, b ∈ Iw ∪ {t}.

Proof. Let a, b ∈ Iw ∪ {t}. W.l.o.g. assume that φ(a) ≥ 0 (the other case is symmetric).
Assume that φ(a) < φ(b) holds. If φ(a) = 0, then a = t, so b is a back edge and a its
corresponding tree edge. Now, φ(b) > 0, so b is counter-clockwise by Property 3.5 (ii).
Consequently, (a, b) ▷ EL(v) holds by definition of counter-clockwise. If φ(a) > 0, then
a, b are both back edges and by Property 3.5 (ii), they are both counter-clockwise. From
Property 3.5 (iii), we now get (a, b) ▷ EL(v). Assume that (a, b) ▷ EL(v) holds. If a = t,
then φ(a) = 0. Because of (a, b) ▷ EL(v), b is counter-clockwise, so φ(b) > 0 based
on Property 3.5 (ii). Hence, we have φ(a) = 0 < φ(b). If a ̸= t, then φ(a) ̸= 0 by
Properties 3.5 (i) and 3.5 (ii), so φ(a) > 0 and a, b are both back edges. Therefore, a is
counter-clockwise due to Property 3.5 (ii). Since (a, b) ▷ EL(v), we get φ(a) < φ(b) by
Property 3.5 (iii).

Based on the above insights, we now get the following description for orderings of incoming
back edges:

Lemma 3.12. Let G be a connected planar undirected multigraph, let there be a DFS on
G with a non-cut-vertex root, let v ∈ V (G). For an edge e that is incident to v and w ∈ e
being the other endpoint of e, we define M(e) depending on the type of e as follows. Note
that σ(⊥) := 0, φ(⊥) := 0 and x is the target of the corresponding tree edge of e if e ∈ EB.
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3. Embedding Algorithm

Type of e outgoing outgoing incoming
tree edge back edge back edge

M(e)


σ(lp(w))
−φ(lp(w))

N(w)
0




σ(e)
−φ(e)

0
0




σ(lp(x))
−φ(lp(x))

N(x)
φ(e)


Let g, h be outgoing tree, incoming back edges or outgoing back edges at v. Then there
exists a planar embedding E of G such that

M(g) ≤M(h) ⇐⇒ (g, h) ▷ EL(v)

Proof. Simply follows from Lemmas 3.9 to 3.11 and the construction of the vertex identifier
function N .

3.1.5. Incoming tree edges

Let v ∈ V \ {r}. By definition of EL(v), the incoming tree edge t into v is the last element
in EL(v). Therefore, we use the value ∞ to describe the ordering of incoming tree edges
among all other edges.

Lemma 3.13. Let G be a connected planar undirected multigraph, let there be a DFS on
G with a non-cut-vertex root, let v ∈ V (G). For an edge e that is incident to v and w ∈ e
being the other endpoint of e, we define M(e) depending on the type of e as follows. Note
that σ(⊥) := 0, φ(⊥) := 0 and x is the target of the corresponding tree edge of e if e ∈ EB.

Type of e outgoing outgoing incoming incoming
tree edge back edge back edge tree edge

M(e)


σ(lp(w))
−φ(lp(w))

N(w)
0




σ(e)
−φ(e)

0
0




σ(lp(x))
−φ(lp(x))

N(x)
φ(e)



∞
0
0
0


Let g, h be outgoing tree, incoming back edges, outgoing back edges or incoming tree edges
at v. Then there exists a planar embedding E of G such that

M(g) ≤M(h) ⇐⇒ (g, h) ▷ EL(v)

Proof. Simply follows from Lemma 3.12 and the definition of EL.

3.1.6. Self-loops

Dealing with self-loops is conceptually trivial. For every vertex v ∈ V , let Sv ⊆ ES be the
set of self-loops that connect to v. We now get the following result.

Lemma 3.14. Let G be a connected planar undirected multigraph, let there be a DFS
on G with a non-cut-vertex root, let E be a planar embedding of G, Then there exists an
embedding E ′ such that all tree edges and back edges in E have the same relative positions
in E as in E ′ and such that for every vertex v ∈ V (G) and for every self loop s ∈ Sv, the
two appearances of s in E(v) are consecutive.
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Proof. Let v ∈ V (G), let Sv = {s1, s2, . . . , sl}. Then define E ′
L(v) := (s1, s1, s2, s2, . . . , sl, sl)∪

(EL(v) \ Sv), where ∪ denotes concatenation.

To achieve such an ordering, we first use the value −∞ to move all self-loops to the front of
EL(v). Then, we use an injective function ι : ES → Z to assign identifiers to all self-loops
for grouping their endpoints, as shown in the proof of Lemma 3.14. Using this, we get the
following ordering for all edges.

Lemma 3.15. Let G be a connected planar undirected multigraph, let there be a DFS on
G with a non-cut-vertex root, let v ∈ V (G). For an edge e that is incident to v and w ∈ e
being the other endpoint of e, we define M(e) depending on the type of e as follows. Note
that σ(⊥) := 0, φ(⊥) := 0 and x is the target of the corresponding tree edge of e if e ∈ EB.

Type of e outgoing outgoing incoming incoming self-loop
tree edge back edge back edge tree edge

M(e)


σ(lp(w))
−φ(lp(w))

N(w)
0




σ(e)
−φ(e)

0
0




σ(lp(x))
−φ(lp(x))

N(x)
φ(e)



∞
0
0
0



−∞
ι(e)
0
0


Let g, h be edges at v. Then there exists a planar embedding E of G such that

M(g) ≤M(h) ⇐⇒ (g, h) ▷ EL(v)

Proof. Simply follows from Lemmas 3.13 and 3.14.
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3. Embedding Algorithm

3.2. Correctness
Given a planar undirected multigraph G, we have now seen that there exists a planar
embedding E of G that satisfies the orderings described in Lemmas 3.1, 3.8, 3.9, 3.12, 3.13
and 3.15. Note that Lemma 3.15 also summarizes the Lemmas 3.8, 3.9, 3.12 and 3.13. Now,
we have no planar embedding of G given, and we want to obtain a planar embedding of G.
We do this by assigning values to the functions N , ι φ, lp and σ, such that, based on a DFS
of G, Lemma 3.1, Properties 3.3 (i) to 3.3 (v) for σ, and Properties 3.5 (i) to 3.5 (iii) of φ
are satisfied for some planar embedding E , and such that the definitions for N , ι and lp are
satisfied (which do not depend on a planar embedding). Lemma 3.1 and the properties for
φ are ensured by using PC-trees, as we will describe in Section 3.3.1.2, and the properties
of σ are ensured by computing σ using a formula, as we will describe in Section 3.3.1.4.
Next, we compute the cyclic orderings E(v) for every v ∈ V (G) based on Lemma 3.15. We
thus obtain an embedding E of G. In this section, we prove that this resulting embedding
is indeed planar. Afterwards, in Section 3.3, we discuss more details on to how compute
the embedding. We now show the following theorem.

Theorem 3.16. Let G be an undirected planar multigraph, let E be a combinatorial
embedding that respects the Lemmas 3.1 and 3.15. Then E is planar.

Let G = (V, E) be a planar undirected multigraph. W.l.o.g. we can assume that G is
connected, since Lemmas 3.1 and 3.15 independently apply to all connected components
of G. Let E an embedding that respects the orderings from Lemmas 3.1 and 3.15. The
beginning of our proof is analogous to [Bra09]. Let T be the DFS tree of G based on some
DFS with non-cut-vertex root, let ET ∪̇EB∪̇ES the partition of edges in E from the DFS.

Claim 1. W.l.o.g. we can assume ES = ∅.

Proof. Since Lemma 3.14 holds for E due to Lemma 3.15, we can infer that all self-loops of G
are embedded into E such that they do not interfere which any other edges in ET ∪EB.

Next, let DET
be a planar drawing of T according to EET

. DET
exists because a tree is

always planar and each embedding of it is planar. Let P ⊆ EB be a maximal subset of back
edges such that there is a planar drawing DET ∪P of the graph (V, ET ∪ P ) according to
EET ∪P . Now, if P = EB holds, then DET ∪P = DET ∪EB

is equivalent to a planar drawing of
G, so E is planar, done. Thus, we continue by assuming P ⊊ EB. Our goal is now to show
that this assumption leads to a contradiction. The maximality of P implies that there
exists s ∈ EB \ P such that s cannot be added to DET ∪P according to EET ∪P ∪{s} without
introducing an edge crossing. Now, choose s such that the depth of its target is minimal,
i.e. depth(target(s)) = mine∈EB\P depth(target(e)). Given that the tree T has only one
face, s can be added to DET ∪P according to EET ∪P ∪{s} without s crossing a tree edge (but
s crosses at least one back edge). Now, let DET ∪P ∪{s} be such a drawing. Furthermore, let
Q ⊆ P be the set of all edges in P that cross s in the drawing DET ∪P ∪{s}.

Claim 2. W.l.o.g. we can assume that every edge in Q crosses s exactly once.

Proof. Let b ∈ Q such that s and b cross at least twice in DET ∪P ∪{s}, let B be the cycle
in G formed by b and the path target(b) −→

T
source(b), let Kb be the ordered set of all

crossings of s and b in DET ∪P ∪{s}. We have |Kb| ≥ 2. Since s does not cross any tree edges,
Kb contains exactly all crossings of s and B. Therefore, observe that for two successive
crossings k1, k2 ∈ Kb, w.l.o.g. s enters B with k1 and exits B with k2. This is illustrated in
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s
b

k1

k2

(a) Drawing DET ∪P ∪{s}
with the consecutive
crossings k1, k2 of s
and b.

s
b

ε−distance

(b) Drawing D′
ET ∪P ∪{s}

without the previous
crossings of s and b.

Figure 3.11.: Illustration of eliminating two consecutive crossings of back edges from
Claim 2.

Figure 3.11a. We now can eliminate those two crossings by redrawing s such that s stops
right before k1, proceeds next to b at an ε-distance (ε ∈ R+) until k2, and then continues
as in DET ∪P ∪{s}. From this, we get a new drawing D′

ET ∪P ∪{s} such that |K ′
b| = |Kb| − 2,

where K ′
b is the ordered set of all crossings of s and b in D′

ET ∪P ∪{s}. This is illustrated in
Figure 3.11b. We now observe that if b crosses s an even number of times, we can eliminate
all crossings, which leads to a contradiction of b ∈ Q. If b crosses s an odd number of times,
we can eliminate all but one crossing.

Now, choose t ∈ Q such that the depth of is target is minimal, i.e. depth(target(t)) =
mine∈Q depth(target(e)).

Claim 3. W.l.o.g. we can assume depth(target(s)) ≤ depth(target(t)).

Proof. Let P ′ := (P \ Q) ∪ {s}. By definition of Q, P ′ ⊆ EB is maximal w.r.t. adding
edges such that a drawing DET ∪P ′ according to EET ∪P ′ is planar. Let DET ∪P ′∪{t} be a
drawing according to EET ∪P ′∪{t} which extends DET ∪P ′ . By definition of P ′, DET ∪P ′∪{t},
t must cross an edge in ET ∪ P ′ at least once, and w.l.o.g. t crosses an edge in P ′. Let
Q′ ⊆ P ′ be the set of all edges in P ′ that cross t in the drawing DET ∪P ′∪{t}. Due to the
above, we have Q′ ̸= ∅. Similar to Claim 2, we can w.l.o.g. assume that all edges in Q′

cross t exactly once. We have now constructed the same situation as in our above proof,
but where the roles of s and t are swapped. This justifies our claim, that w.l.o.g. we can
assume depth(target(s)) ≤ depth(target(t)).

Let x0, . . . , xk ∈ V with source(s) = xk and target(s) = x0 be the vertices of the tree edge
path ps := x0 −→

T
xk. Define S as the cycle formed by ps and s and let pt := target(t) −→

T

source(t). Additionally, let i, j ∈ {0, . . . , k} such that xi = target(t) and such that xj is
the common vertex of the tree edge paths ps and pt with the highest depth, i.e. xj ∈ ps ∩ pt

and depth(xj) = maxu∈ps∩pt depth(u). xj is well-defined, because if ps ∩ pt = ∅ would hold,
then this leads to a contradiction of t ∈ Q, i.e. of t crossing s once. W.l.o.g. we can assume
φ(t) > 0, since the other case would be symmetric. Therefore, by Property 3.5 (ii), t is
counter-clockwise.

In general, i ≤ j must hold because t is a back edge in a DFS tree. Furthermore, k > 0
holds, otherwise s would be a self-loop. Additionally, if source(t) = xj holds, then i < j, as
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lp(xj+1)
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(a) Case where s is counter-clockwise.

z xj+1

y

x0

xi

xj

xk

r

t

c hj

lp(xj+1)

lp(z)

s

(b) Case where s is clockwise.

Figure 3.12.: Illustration of the general situation, i.e. if source(t) ̸= xj and j < k.

otherwise t would be a self loop. In particular, if source(t) = xj , then j > 0. Additionally,
we have the following definitions: In the case source(t) ̸= xj holds, let y := source(t), let z
be the DFS child of xj which lies on the tree edge path xj −→

T
y and let c ∈ ET be the tree

edge from xj to z. Also, for every l ∈ {0, . . . , k − 1}, let hl ∈ ET be the tree edge from xl

to xl+1. An illustration of the current situation is given in Figure 3.12. In case j < k holds,
let s∗ := lp(xj+1). In case y ̸= xj holds, let t∗ := lp(z). Now, we want to consider these
low pointers and show their respective relations to s and t.

Claim 4. Assume that y ̸= xj holds if q = t or that j < k holds if q = s. Let (q, q∗) ∈
{(s, s∗), (t, t∗)}. Then w.l.o.g. we can assume φ(q) = φ(q∗) and σ(q) = σ(q∗).

Proof. We get that q and q∗ must be consecutive in Lxj by Lemma 3.1. Thus, the
definition of lp and the minimality of depth(target(q)) now imply depth(target(q∗)) =
depth(target(q)). Therefore, we get target(q∗) = target(q). Given that q and q∗ are
consecutive in Lxj , they are now also consecutive in E(target(q)), so w.l.o.g. we can assume
that φ(q) = φ(q∗) holds based on Lemma 3.12. Additionally, if q∗ has the same orientation
as q, then by Property 3.3 (v), we get σ(q) = σ(q∗). If they have different orientations,
then w.l.o.g. we can nevertheless assume σ(q) = σ(q∗), because q and q∗ are consecutive in
Lxj .

Next, we reduce the case j = k to the more general case j < k.

Claim 5. W.l.o.g. we can assume j < k.

Proof. Based on the definitions in Lemma 3.12, we see that for embedding either hj or s
at xj , we have 

σ(lp(target(hj)))
−φ(lp(target(hj)))

N(target(hj))
0

 =


σ(s)
−φ(s)

N(xj+1)
0


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as ordering values for j < k and 
σ(s)
−φ(s)

0
0


as ordering values for j = k. From Lemma 3.8, we get that there exist no e ∈ B′

xj
such that

(
σ(s)
−φ(s)

)
=
(

σ(e)
−φ(e)

)

Therefore, the value N(xj+1) is redundant, and we conclude that s for j = k and hj for
j < k are embedded in the same position in E(xj).

Next, we reduce the case y = xj to the more general case y ̸= xj .

Claim 6. W.l.o.g. we can assume y ̸= xj.

Proof. Based on the definitions in Lemma 3.12, we see that for embedding either c or t at
xj , we have 

σ(lp(target(c)))
−φ(lp(target(c)))

N(target(c))
0

 =


σ(t)
−φ(t)
N(z)

0


as ordering values for y ̸= xj and 

σ(t)
−φ(t)

0
0


as ordering values for y = xj . From Lemma 3.8, we get that there exist no e ∈ B′

z such
that (

σ(t)
−φ(t)

)
=
(

σ(e)
−φ(e)

)

Therefore, the value N(z) is redundant, and we conclude that t for y = xj and c for y ̸= xj

are embedded in the same position in E(xj).

The following claim will be used to simplify the further proof.

Claim 7. Let d ∈ V , let e, f ∈ B′
d with target(e) = target(f). Then φ(e) ̸= φ(f).

Proof. Simply follows from Properties 3.5 (i) to 3.5 (iii): W.l.o.g. let φ(e) ≤ φ(f). If e, f
have different orientations, then φ(e) < 0 < φ(f) by Properties 3.5 (i) and 3.5 (ii). If e, f
have the same orientation, then φ(e) < φ(f) by Property 3.5 (iii).

Now, we eliminate the case j = 0.

Claim 8. If j = 0, then we get a contradiction to Claim 7.
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Proof. Since φ(t) > 0, (c, t, s) ▷ E(x0) due to Lemma 3.12. Additionally, s and t cross once,
so we also have (c, h0, t) ▷ E(x0). From Lemma 3.12, we now get

σ(t)
−φ(t)
N(z)

0

 =


σ(t∗)
−φ(t∗)
N(z)

0

 ≤


σ(s∗)
−φ(s∗)
N(xj+1)

0

 ≤


σ(t)
−φ(t)

0
0


Therefore, we get σ(t) = σ(s∗) = σ(s) and φ(t) = φ(s∗) = φ(s). Property 3.3 (v) now
implies target(s) = target(t). With φ(t) = φ(s), we see that Claim 7 is violated.

The previous claims showed that we can now assume the following: 0 < j < k, y =
source(t) ̸= xj , σ(s) = σ(s∗), σ(t) = σ(t∗), φ(s) = φ(s∗) and φ(t) = φ(t∗). Recall that
s∗ = lp(xj+1) and t∗ = lp(xz). Now, let S be the cycle formed by s and x0 −→

T
xk. Now, t

either connects to source(t) = y on the inside or on the outside of S. The two following
claims deal with these two remaining cases.

Claim 9. If t connects to source(t) = y on the inside of S, we get a contradiction to
Claim 7.

Proof. If t connects to source(t) = y on the inside of S, then t must connect to xi on the
outside of S, which is only possible for target(t) = xi = x0, e.g. i = 0, and (h0, s, t) ▷ E(x0).
Therefore, from Lemma 3.12 we get that φ(s) ≤ φ(t) holds. Additionally, for t to be
connecting to y on the inside of S, we need (hj , c, hj−1) ▷ E(xj). Lemma 3.8 now yields(

σ(s)
−φ(s)

)
=
(

σ(s∗)
−φ(s∗)

)
≤
(

σ(t∗)
−φ(t∗)

)
=
(

σ(t)
−φ(t)

)
Since s, t have the same orientation, Property 3.3 (v) now implies σ(s) = σ(t), thus we
have −φ(s) ≤ −φ(t), hence φ(s) ≥ φ(t). With the above, we thus get φ(s) = φ(t), which
contradicts Claim 7.

Claim 10. If t connects to source(t) = y on the outside of S, we get a contradiction to
Claim 7.

Proof. Considering the case that t connects to source(t) = y on the outside of S, we have
(c, hj , hj−1) ▷ E(xj) for s and t to be crossing once. Hence, from Lemma 3.8 we get(

σ(t)
−φ(t)

)
=
(

σ(t∗)
−φ(t∗)

)
≤
(

σ(s∗)
−φ(s∗)

)
=
(

σ(s)
−φ(s)

)
If σ(t) < σ(s) holds, then 0 < σ(t) < σ(s), so Property 3.3 (ii) implies that s, t are both
counter-clockwise. Now, from Property 3.3 (iv) we get depth(target(t)) < depth(target(s)),
which is a contradiction. If σ(t) = σ(s) holds, then −φ(t) ≤ −φ(s) must hold. From
σ(t) = σ(s), Property 3.3 (v) leads to s, t having the same orientation and xi = target(t) =
target(s) = x0, i.e. i = 0. For s, t to be crossing once, (h0, t, s) ▷ E(x0) holds, so from
Lemma 3.12 we get

σ(lp(x1))
−φ(lp(x1))

N(x1)
0

 ≤


σ(lp(x1))
−φ(lp(x1))

N(x1)
φ(t)

 ≤


σ(lp(x1))
−φ(lp(x1))

N(x1)
φ(s)


This leads to φ(t) ≤ φ(s), thus φ(t) = φ(s) with the above, which contradicts Claim 7.

Due to these contradictions, our assumption of P ⊊ EB was wrong, therefore P = EB

must hold and DET ∪P = DET ∪EB
is equivalent to a planar drawing of G, so E is planar.
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3.3. Implementation
In this section, we describe the implementation of our embedding algorithm, which extends
the Haeupler-Tarjan planarity test. During the planarity test, as described in described
in Section 3.3.1, we compute additional information for the following embedding step. If
the graph is found not to be planar, the algorithm exists and the additional information is
discarded. Otherwise, the graph is planar and therefore, there exists a planar embedding
of it. To find such a planar embedding, the embedding step is now run as described in
Section 3.3.2, which returns a planar embedding.

3.3.1. Computing ordering values

In order to compute the orderings, we need suitable values for the functions N , ι φ, lp
and σ.

3.3.1.1. Computing identifier

The injective function N : V → N, which serves as an identifier function for vertices, can
simply be implemented as a bijective function N : V → {1, . . . , |V |} by numbering the
vertices. Hence, the inverse N−1, which returns the vertex for a given valid identifier,
can also easily be computed in constant time. Similarly, we can implement the injective
function ι : ES → Z as a bijective numbering ι : ES → {1, . . . , |ES |} of all self-loops in
ES . This can be implemented by simply using a global counter: When discovering a new
self-loop e during the DFS, we set ι(e) to the value of the global counter and then increment
the counter.

3.3.1.2. Computing relative ordering values

During the course of the planarity test, the relative orderings that φ aims to describe are
encoded into the data structure T used for managing all permitted cyclic orders of outgoing
back edges, which in our case is a PC-tree. In particular, when adding a new node v, a
restriction on T is performed to make all back edges targeting v and the corresponding
tree edge t consecutive, resulting in a new PC-tree T ′. A valid relative ordering of all back
edges that target v, which are represented by the full leaves of T ′, can now be obtained by
traversing T ′. This approach was also taken by Frey [Fre22]. Given some legal embedding
of T ′, i.e. where the orders Kc or flipped(Kc) around C-nodes c are respected, we walk
along the outer face of T ′ (which is the only face of T ′ since it is a tree) in both directions,
starting at the full tree edge t, until we respectively discover an empty node. This results
in two linear orders DL, DR of discovered leaves, where all back edges targeting v are either
contained in DL and DR. Conceptually, we now see that reverse(DL) ∪ (t) ∪DR is the
consecutive part of the cyclic order that is represented by T in the chosen embedding. For
every leaf l ∈ DL∪̇DR, we define the distance of l to be the index (1-indexed) of the position
of l in either DL or DR respectively. For every back edge e which is represented by a leaf
l ∈ DL∪̇DR, |φ(e)| is assigned the distance of l. Additionally, we assign sign(φ(e)) = −1 if
l ∈ DL and sign(φ(e)) = +1 if l ∈ DR. Altogether, we thus obtain a value for φ(e) ∈ Z\{0}.
The pseudocode for the traversal and the φ-assignment is given in Algorithm 3.1. Note
that in the implementation of PC-trees that we used, PC-trees are actually rooted, and in
the planarity test, the root is the current tree edge that has been made consecutive along
with all back edges that connect to the new node [FPR21]. Furthermore, we observe that
the usage of PC-trees in fact guarantees that Lemma 3.1 is respected in our calculated
embedding. This is because all back edges that originate in the same subtree are consecutive
in all cyclic orders of the PC-tree. This property, which is the main property that actually
guarantees the proper working of the planarity test, is illustrated by Figure 3.13.
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3. Embedding Algorithm

Algorithm 3.1: PC-tree traversal with φ-assignment
1 Function Traverse(D′)
2 finished ← TraverseRec(D′.GetRoot(), 1, 0)
3 if not finished then
4 TraverseRec(D′.GetRoot(), −1, 0)

5 Function TraverseRec(v, direction, nextValue)
6 if v.IsEmpty() then
7 return True
8 else if v.IsLeaf() then
9 φ(PCTreeLeafToBackEdge(v))← nextValue

10 return False
11 else
12 if direction = 1 then
13 begin ← v.RightmostChild
14 end ← v.LeftmostChild
15 else
16 begin ← v.LeftmostChild
17 end ← v.RightmostChild
18 forall children w of v from begin to end do
19 finished ← TraverseRec(w, direction, nextValue)
20 if finished then
21 return True

22 return False

5

4

3

2

1

(a) Graph G.

5

4

(4, 3)

(4, 2)

(5, 3)

(5, 2)

(5, 1)

(b) PC-tree T after processing vertices 5 and 4.
Notice that all outgoing back edges from
subtree(5) are consecutive in all orders in
ord(T ).

Figure 3.13.: Example of respected consecutivity in PC-trees.
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Now, the problem remains that the choices of the embedding at C-nodes c, where either
Kc or flipped(Kc) are taken to calculate φ as described above, can vary during the course
of the planarity test. This is due to fact that an implementation PC-trees may only store
one legal embedding of the tree, which is used for traversing the tree as above, but then
the orderings at C-nodes may be individually flipped during the execution of a restriction
on the PC-tree [FPR21]. As a result, the signs of the φ-values may be incompatible with
the signs of previously computed φ-vales. This problem has already been identified by
Chiba et al. in their embedding algorithm [CNAO85]. To solve this, we take a similar
approach as Chiba et al. [CNAO85] and Frey [Fre22]: We use indicators to track whether
an ordering of a C-node has been flipped since the creation of the C-node. When a C-node
c is created, we also create an indicator ic. Conceptually, ic is an “arrow” in the PC-tree
with its base base(ic) being a neighboring node of c and with its target target(ic) being
another neighboring node of c such that base(ic) and target(ic) are consecutive in Kc. If
the PC-nodes base(ic) or target(ic) are deleted or merged into c, we need to keep ic “valid”,
i.e. we may need to reassign base and target. Indicators are collected during the tree walk
for assigning φ-values. These collected indicators are now removed from the PC-tree, and
we store the dependence to the newly created indicator for the new C-node. In the end,
these dependencies allow us to traverse the indicator dependency tree using a DFS in order
to correct all signs of φ-values.

3.3.1.3. Computing low pointers

For a ∈ V , we have defined a low pointer as follows:

lp(a) ∈ Ba such that depth(target(lp(a))) = min
e∈Ba

depth(target(e))

Computing the low pointer for every vertex can be done during the DFS of the planarity
test. When advancing along a back edge e ∈ EB with v := source(e) and w := target(e)
and if w has a smaller depth than the current low pointer of v, assign e as the new low
pointer of v. If the low pointer of v does not exist, the assignment also happens. When
retreating along a tree edge e ∈ ET with v := source(e) and w := target(e) and if w has a
low pointer with a smaller depth than the current low pointer of v, assign the low pointer
of w as the new low pointer of v. If the low pointer of v does not exist, but the low
pointer of w does, the assignment also occurs. The pseudocode of this procedure is given
in Algorithm 3.2, which is based on the recursive DFS in Algorithm 2.1. It is obvious that
using this approach, low pointers can be computed with constant time overhead regarding
the DFS.

3.3.1.4. Computing depth-based ordering values

Having computed assignments for φ and lp, the following lemma shows a viable formula
for σ.

Lemma 3.17. Let G = (V, E) be a connected planar undirected multigraph, let there be a
DFS on G. We define σ as follows for all e ∈ EB:

σ(e) = (depth(target(e)) + 1) · sign(φ(e))

Then the Properties 3.3 (i) to 3.3 (v) of σ are satisfied.

Proof. Notice that sign(σ) = sign(φ) because depth + 1 > 0. Therefore, Properties 3.3 (i)
and 3.3 (ii) of σ holds due to Properties 3.5 (i) and 3.5 (ii) of φ. Let v ∈ V (G) and b, c ∈ B′

v.
If b, c are clockwise and depth(target(b)) > depth(target(c)), then φ(b) < 0 and φ(c) < 0
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Algorithm 3.2: Depth-first search with low pointers
1 Function DFS (G = (V, E))
2 forall v ∈ V do
3 v.visited ← false
4 forall v ∈ V do
5 if not v.visited then
6 DFS-connected(G, v, null)

7 Function DFS-connected(G = (V, E), v, previousTreeEdge)
8 v.visited ← true
9 forall e ∈ E with v ∈ e do

10 if e = {v, v} then
// e is a self-loop

11 ES ← ES ∪ {e}
12 else
13 let w ∈ e such that w ̸= v
14 if not w.visited then

// e is a tree edge
15 DFS-connected(G, w, e)
16 if lp(w) ̸= null and (lp(v) = null or depth(target(lp(w))) <

depth(target(lp(v)))) then
17 lp(v)← lp(w)

18 else if e ̸= previousTreeEdge then
// e is a back edge

19 if lp(v) = null or depth(w) < depth(target(lp(v))) then
20 lp(v)← e

because of Property 3.5 (i) of φ, and we have σ(b) = (depth(target(b)) + 1) · sign(φ(b)) =
−(depth(target(b)) + 1) < −(depth(target(c)) + 1) = (depth(target(c)) + 1) · sign(φ(c)) =
σ(c), thus Property 3.3 (iii) holds. Analogously, we get Property 3.3 (iv). Concerning
Property 3.3 (v), if σ(b) = σ(c), we get sign(φ(b)) = sign(φ(c)) and depth(target(b)) =
depth(target(c)) by the formula of σ, therefore b, c have the same orientation by Prop-
erties 3.5 (i) and 3.5 (ii) of φ and target(b) = target(c) due to b, c ∈ B′

v. On the other
hand, if b, c have the same orientation and target(b) = target(c) holds, then we get
sign(φ(b)) = sign(φ(c)) by Properties 3.5 (i) and 3.5 (ii) of φ and depth(target(b)) =
depth(target(c)).

Using this formula for σ, we can also show that the function is linearly bounded by the
input size.

Lemma 3.18. Let σ be defined as in Lemma 3.17. Then −(|V |+ 1) < σ < |V |+ 1.

Proof. Let e ∈ EB. Then we have σ(e) = (depth(target(e))+1)·sign(φ(e)) ≤ depth(target(e))+
1 ≤ |V | − 1 + 1 = |V | < |V | + 1 and σ(e) = (depth(target(e)) + 1) · sign(φ(e)) ≥
−(depth(target(e)) + 1) ≥ −(|V | − 1 + 1) = −|V | > −(|V |+ 1) for all e ∈ EB.
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3.3.2. Embedding step

After the execution of the DFS and therefore after the planarity test, which we have
extended by computing the necessary values as described above, we now compute a planar
embedding E of G by computing E such that it satisfies the Lemmas 3.1 and 3.15 as in
described in Theorem 3.16. This is done by sorting the edges according to their orderings
at every vertex. To achieve a linear running time in total, we hereby use radix sort
and sort all the edges at once. In particular, we construct two vectors for every edge
e ∈ ET ∪EB ∪ES . The vector MO(e) contains the ordering values for the outgoing edge e
at source(e) and the vector MI(e) contains the ordering values for the incoming edge e at
target(e), see Lemma 3.15. These vectors are put into an array A. For e ∈ ET ∪EB ∪ES

with v := source(e) and w := target(e), we define the vectors as follows. Note that if e is a
back edge, then x ∈ V is the target of the corresponding tree edge.

MO(e) :=


(N(v), σ(lp(w)),−φ(lp(w)), N(w), 0) if e ∈ ET ∧ lp(w) ̸= ⊥
(N(v), 0, 0, 0, 0) if e ∈ ET ∧ lp(w) = ⊥
(N(v), σ(e),−φ(e), 0, 0) if e ∈ EB

(N(v),−(|V |+ 1), ι(e), 0, 0) if e ∈ ES

MI(e) :=


(N(w), |V |+ 1, 0, 0, 0) if e ∈ ET

(N(w), σ(lp(x)),−φ(lp(x)), N(x), φ(e)) if e ∈ EB

(N(v),−(|V |+ 1), ι(e), 0, 0) if e ∈ ES

We construct MI(e) for a tree edge e such that in the final sorted order, it is placed after
all other vectors of edges that connect to target(e), as seen in Lemma 3.13. For this,
the value |V | + 1 is used instead of ∞, because we have σ(f) < |V | + 1 for all f ∈ EB

as shown in Lemma 3.18. Similarly, for a self-loop e, we need to place it before any
tree or back edges in the final sorted order as seen in Lemma 3.15. We use the value
−(|V |+ 1) instead of −∞ in the ordering tuples because we have σ(f) > −(|V |+ 1) for
all f ∈ EB as shown in Lemma 3.18. The first component of every vector is the identifier
of the vertex that e connects to. By adding this component, we can sort all vectors at
once, which yields a grouping of connection points. Therefore, by using radix sort and
counting sort on A, we can achieve a total linear running time. Note that vectors are
sorted lexicographically. Having sorted the vectors to obtain an array A′, we can obtain
the resulting planar embedding E of G by iterating through A′ and assigning the cyclic
orders as we encounter vectors of corresponding edges. The algorithm is illustrated in
Algorithm 3.3.

Algorithm 3.3: Embedding step
1 Function Embed(G with DFS edges ET ∪ EB ∪ ES)
2 A← new array
3 forall e ∈ ET ∪ EB ∪ ES do
4 A.append(MO(e))
5 A.append(MI(e))
6 RadixSort(A)
7 E ← empty embedding
8 forall t = (id, _, _, _, _) ∈ A in order do
9 v ← N−1(id)

10 E(v).append(t.GetCorrespondingEdge())
11 return E
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3.3.3. Running time

In this section, we want to show that our embedding algorithm indeed runs in linear time.

Theorem 3.19. Given an input graph G = (V, E), our embedding algorithm runs in linear
time O(|V |+ |E|).

The Haeupler-Tarjan planarity test runs in linear time [HT08]. Thus, we only have to
investigate our extension of the algorithm for computing a planar embedding. It is clear that
we can compute the identifier functions N and ι in linear time O(|V |) and O(|ES |) ⊆ O(|E|)
respectively. We now discuss the runtime of computing and correcting φ-values.

Claim 1. Given an input graph G = (V, E), φ can be correctly computed for all back edges
EB in time O(|V |+ |E|).

Proof. The tree walk Traverse in Algorithm 3.1 for assigning φ-values only introduces
constant overhead for every non-empty PC-tree node. Since assigning full and partial labels
to PC-tree nodes takes linear time in total regarding the planarity test [FPR21], we get
that this part of assigning φ-values also only takes linear time in total during the planarity
test. Considering the sign correction, the described indicators from Section 3.3.1.2 can
be implemented such that for every PC-tree node n, there exists at most one indicator
having n as a base and there exists at most one indicator having n as a target. This is
done by collecting indicators greedily whenever an indicator is moved such that bases
or targets would be shared. Using this approach, a constant overhead for all C-node
operations can be achieved and therefore, keeping indicators “valid” and collecting indicators
during φ-value assignment only introduces linear overhead in total. Additionally, the
correction of φ-values with the traversal of the indicator dependency tree has a runtime
of O(number of indicators + number of φ-values) ⊆ O(|V |+ |EB|) ⊆ O(|V |+ |E|), so this
also introduces an additional linear overhead in total. We therefore see that computing
correct φ-values only adds a linear running time overhead in total.

Furthermore, we see in Section 3.3.1.3 and Algorithm 3.2 that low pointers can be computed
with constant overhead over the DFS. Additionally, using the formula for σ given in
Section 3.3.1, we can also compute this function in constant time after all φ-values have
been correctly assigned. Note that depth can be computed with constant overhead over the
DFS, see Section 2.1.3. It remains that we investigate the running time for the embedding
step, which occurs after the planarity test and the φ-value correction.

Claim 2. Given an input graph G = (V, E), the algorithm Embed from Algorithm 3.3
runs in time O(|V |+ |E|).

Proof. The first for-loop in Embed trivially runs in time Θ(|E|). Additionally, after
this loop, A contains 2 · |E| elements. The element count in A does not change with
the call RadixSort(A). Therefore, the second for-loop has 2 · |E| iterations. Since
GetCorrespondingEdge and N−1 can be computed in O(1), we get a running time
of Θ(|E|) for the second for-loop. It is left to consider the running time for the call
RadixSort(A). For this, we examine the value ranges for all components of the vectors
MO and MI . Note that those vectors only contain integers. In the following, let e ∈
ET ∪ EB ∪ ES , let M ∈ {MO, MI} and let M(e) = (m1, m2, m3, m4, m5). Concerning the
first component, we see that m1 = N(·) ∈ {1, . . . , |V |} as described in Section 3.3.1.1,
therefore 1 ≤ m1 ≤ |V |. Similarly, for the forth component we either have m4 = 0
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or m4 = N(·) ∈ {1, . . . , |V |}, so 0 ≤ m4 ≤ |V |. For the second component, we have
m2 ∈ {σ(·), 0, |V | + 1,−(|V | + 1)}. Because of −(|V | + 1) < σ < |V | + 1 as shown in
Lemma 3.18, we get −(|V |+ 1) ≤ m4 ≤ |V |+ 1. Regarding the third and fifth components,
we have m3, m4 ∈ φ(EB) ∪ −φ(EB) ∪ ι(ES). From the algorithm in Section 3.3.1.2, we
infer that |φ| ≤ |EB| must hold because there can at most occur |EB| back edges when
traversing the PC-tree. Moreover, Section 3.3.1.1 yields ι(ES) = {1, . . . , |ES |}, so we
have ι ≤ |ES |. Therefore, we get −|E| ≤ −(|EB| + |ES |) ≤ mi ≤ |EB| + |ES | ≤ |E| for
i ∈ {3, 4}. In total, we now have |mi| ≤ |V |+ |E|+ 1 for all i ∈ {1, . . . , 5}. The running
time of radix sort is in general Θ(d · (n + k)), where d is the number of values in the tuple,
n is the number of tuples to be sorted and k is the number of possible values for each
component in the tuple [CLRS22]. In our case, we have d = 5, n = |A| = 2 · |E| and
k ≤ 2 · (|V |+ |E|+ 1) + 1 = 2 · |V |+ 2 · |E|+ 3. Therefore, the call RadixSort(A) runs in
time O(5 · (2 · |E|+ 2 · |V |+ 2 · |E|+ 3)) = O(|V |+ |E|). In total, for Embed we get the
running time O(|E|+ |V |+ |E|+ |E|) = O(|V |+ |E|).

In total, we see that our embedding algorithm terminates in time O(|V |+ |E|).
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In this chapter, we develop an algorithm approach that, based on the Haeupler-Tarjan
planarity test with PC-trees [HT08], computes the SPQR-tree for the given input graph.
Specifically, we want the algorithm to solve the following problem: Given a biconnected
undirected multigraph G = (V, E), determine whether G is planar. Additionally, if this
is the case, output the skeletons of the SPQR-tree of G. To develop such an algorithm,
we focus on the duality of PC-trees and SPQR-trees. In Section 4.1, we investigate some
general observations regarding the relation between planarity test and SPQR-trees. Then,
we individually describe how bonds, rigids and polygons of the SPQR-tree can be derived
from the planarity test in Section 4.2, 4.3 and 4.4 respectively.

4.1. General observations

First, we investigate the placement of separation pairs in a DFS-tree.

Lemma 4.1. Let G = (V, E) be a biconnected undirected multigraph, let v, w ∈ V be a
separation pair in G. Then for every DFS of G, v is an ancestor of w or w is an ancestor
of v.

Proof. Assume that the statement is wrong. Then there exists a ∈ V with DFS children
x, y such that v ∈ subtree(x) and w ∈ subtree(y). Let a1, . . . , ak ∈ V be the vertices on
the DFS tree edge path such that a1 is the DFS root and ak = a. Let S := {a1, . . . , ak}.
Since G is biconnected, G contains no cut-vertex, thus G − v and G − w are connected
respectively. Let b ∈ subtree(v) and d ∈ subtree(w). There exists a path pb := b −−−→

G−v
x

such that w /∈ pb, because v and w are separated in G − S. Analogously, there exists a
path qd := d −−−→

G−w
y with v /∈ qd. Therefore, by concatenating pb, the edges {x, a}, {a, y}

and qd, there exists a path from b to d in G− v − w. Additionally, we obviously have that
G− subtree(v)− subtree(w) is connected. Altogether, we get that G− v −w is connected,
a contradiction to v, w being a separation pair of G.

In addition, we observe a correlation between the graph and the PC-trees during the
planarity test with regard to existent paths.
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Figure 4.1.: Illustration of the proof of Lemma 4.1.

Lemma 4.2. Let T be a PC-tree during the planarity test of a biconnected undirected
multigraph G, let v, w ∈ V (G) be labels of the nodes x, y ∈ V (T ), let u ∈ V (G) \ {v, w}.
Then there exists a path from v to w in G that does not contain u if and only if there exists
a path in T from x to y that does not contain a node with label u or if there exists paths
from x and y to a leaf of T respectively that both contain no nodes with label u.

Proof. Assume there exists a path p from v to w in G that does not contain u. If u has not
already been merged into T , then T contains a path from x to y that does not contain the
label u. This path follows the labels as in p, aside from possible contractions that occurred
in the PC-trees. If u has already been merged into T and if the path in T from x to y
contains a node with label u, then x and y have respective paths to leaves of T that do not
contain the label u due to the biconnectivity of G. The other direction of the equivalency
is analogous.

4.2. Deriving bonds

In SPQR-trees, bonds are represented by P-nodes. Bonds consist of exactly two vertices,
which are connected by at least three edges [FR23]. Let D be the SPQR-tree of G, let
B ∈ V (D) be a P-node. Let v, w ∈ V be the vertices in G that form the bond that is
represented by B. By Lemma 4.1, we get that w.l.o.g. v is an ancestor of w in every DFS
tree of G. Let c be the child of v such that w ∈ subtree(c). During the planarity test, when
retreating along the tree edge (v, c) (retreating from c to v), we are now able to discover
the bond v, w by using the following rule.

Rule 1 (Bonds). Let G = (V, E) be a biconnected undirected multigraph, let T ′ be a PC-tree
during the planarity test on G that results from a restriction on the edges connecting to the
new node v ∈ V , let p be a P-node in T ′ with label w ∈ V , deg(p) ≥ 3 and with at least 2
full neighbors. Then v, w is a bond in the SPQR-tree of the graph.

To justify this rule, we first show that the P-node in Rule 1 actually has at least deg(p)− 1
full neighbors.

Lemma 4.3. Let G = (V, E) be a biconnected undirected multigraph, let T ′ be a PC-tree
during the planarity test on G that results from a restriction on the edges connecting to a new
node, let p be a P-node in T ′ with deg(p) ≥ 3, let Q be the set of all nodes that is p is adjacent
to, let F be the set of all full nodes in T ′. Then |Q ∩ F | ≥ 2 ⇐⇒ |Q ∩ F | ≥ deg(p)− 1.
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Proof. The direction |Q∩F | ≥ 2⇐= |Q∩F | ≥ deg(p)−1 is trivial. Assume that |Q∩F | ≥ 2
holds. Note that |Q| = deg(p) ≥ 3. If |Q| = 3, then we have |Q ∩ F | ≥ 2 = |Q| − 1 =
deg(p)− 1. If |Q| ≥ 4, then there exist a, b ∈ Q∩F with a ̸= b due to |Q∩F | ≥ 2. We now
assume that |Q∩F | ≤ deg(p)− 2 holds. Therefore, there exist c, d ∈ Q \F with c ̸= d. For
q ∈ Q, let subtree(q) be the subtree of T ′ that is obtained by cutting T ′ at the edge {q, p}
and that contains q. We now have that a, b are full and c, d are not full, so there exist
full leaves a′ ∈ subtree(a), b′ ∈ subtree(b) and empty leaves c′ ∈ subtree(c), d′ ∈ subtree(d).
By embedding T ′ using an embedding E with (a, c, b, d) ▷ E(p), we now get that there
exists a possible cyclic ordering C ∈ ord(T ′) with (a′, c′, b′, d′) ▷ C, so the full leaves are
not consecutive in C, which contradicts the restriction on the PC-tree.

Now, we show that in Rule 1, the vertices of the constructed bond are a separation pair in
the graph, and we show that a bridge of the bond corresponds to a neighboring subtree of
the selected P-node, while we define a subtree of a neighbor a of a node p in a PC-tree T
as the connected component that contains a in T − p.

Lemma 4.4. Let G = (V, E) be a biconnected undirected multigraph, let T ′ be a PC-tree
during the planarity test on G that results from a restriction on the edges connecting to
the new node v ∈ V , let p be a P-node in T ′ with label w ∈ V , deg(p) ≥ 3 and with at
least 2 full neighbors. Then v, w is a separation pair in G and a neighboring subtree of p
corresponds to a bridge of the bond formed by v, w.

Proof. We need to show that the bridges induced by v, w are not connected. Since
deg(p) ≥ 3, there exist neighbors a, b of p in T ′ with a ̸= b. Let x, y ∈ V be labels in the
subtrees of a and b respectively, while the subtree of a neighbor d of p is defined as the
connected component of T ′− p that contains d. Similar to the proof of Lemma 4.2, we now
get that there exist no paths from x to y in G that neither contain v nor w, because the
subtrees of a and b either only contain full leaves that connect to v or only contain empty
leaves that do not connect to v. Given that a subtree of a neighbor of p is connected in
T ′−w, we see that the corresponding subgraph in G− v−w is also connected. Altogether,
we get that a neighbor of p corresponds to a bridge

4.3. Deriving rigids
In SPQR-trees, rigids, which are simple triconnected graphs, are represented by R-
nodes [FR23]. During the planarity test, they are represented by C-nodes in the PC-tree,
as we make clear in the following. To track the information which vertices of the graph are
part of the current triconnected component that is represented by a C-node, every C-node
c stores a subgraph Rc of G with internal edges and with boundary edges to the neighbors
of c in the PC-tree. Given a PC-tree T before a restriction during the planarity test, let
T ′ be the PC-tree that results from T after the next restriction regarding a new node n,
let T ′′ the PC-tree that results from deleting all full nodes and appending the remaining
tree to the P-node of n. Additionally, let t be the terminal path in T for the restriction
regarding n. Note that t partitions the PC-tree into a full region, an empty region and
t itself. W.l.o.g. we assume that t contains no nodes with degree 2. Let Ct∪̇Pt = V (t)
be the partition of edges in the terminal path t into its C-nodes Ct and its P-nodes Pt

respectively. During one step of the planarity test from T to T ′′, there can occur three
different events: Rigid construction, Rigid expansion, and Rigid finalization. Construction
of a C-node a ∈ V (T ′′) occurs if and only if Ct = ∅ and a is created during the restriction
operation. Expansion of a C-node a ∈ V (T ′′) occurs if and only if Ct ̸= ∅ and a is created
during the restriction operation. Finalization occurs if and only if a C-node a ∈ V (T ′) is
deleted during the merge operation from T ′ to T ′′, i.e. if and only if a is full.
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4. SPQR-tree construction

Rule 2 (Rigid construction). If we have Ct = ∅, let a ∈ V (T ′′) be the C-node that was
created by the restriction operation. Then we define the subgraph Ra stored in a as follows:
As vertices, Ra contains all labels of the P-nodes in Pt and the newly merged vertex n. As
internal edges, Ra contains the edges of t with their endpoints being mapped to their labels
and edges to n that represent the bridges to this new vertex. As boundary edges, Ra contains
the edges that connect the labels of the P-nodes in Pt to their corresponding PC-nodes.

Rule 3 (Rigid expansion). If we have Ct ̸= ∅, let a ∈ V (T ′′) be the C-node that was created
by the restriction operation. Then we define the subgraph Ra stored in a as follows: As
vertices, Ra contains the newly merged vertex n, as well as all labels of the nodes in the
terminal path t, where equal labels are merged. As internal edges, Ra contains edges from
the terminal path t, edges from all C-nodes in Ct and edges to n that represent the bridges
to this new vertex. As boundary edges, Ra contains the edges that connect the labels of the
nodes in the terminal path and n to their corresponding PC-nodes.

Rule 4 (Rigid finalization). If we have that a C-node a ∈ V (T ′) is full. Then a is deleted
during the merging procedure for the new node n, and we get a new R-node for the SPQR-
tree of G with Ra + n as skeleton with the internal edges of Ra + n as its edges, while
Ra + n has vertices V (Ra) ∪ {n} and edges the internal edges of Ra as well as edges that
represent the bridges to n.

We now show that for every PC-tree Ti during the planarity test and every C-node c ∈ V (Ti),
Rc is triconnected in G. For this, we need to make the following assumption, which seems
to be true, but we were not able to proof it.

Assumption 1. Let c be a C-node in an PC-tree during the planarity test, let p be a
path in G between two vertices in V (Rc), let q be a path in G between two vertices in
V (G) \ V (Rc). Then p and q are independent.

Using this assumption, we can now continue with our analysis.

Lemma 4.5. Let T be a PC-tree before a restriction during the planarity test, let c ∈ V (T )
be a C-node in T , let Rc be the subgraph of G that is represented by c. Then V (Rc) is
triconnected in G.

Proof. We perform an induction over the steps i ∈ {1, . . . , |ET |+ 1} of the planarity test,
where each step corresponds to a state of the PC-trees between the retreat operations at
tree edges. As the base case, we have i = 1. This is before the first retreat operation, thus
no restrictions on PC-trees have taken place, so there exist no C-nodes. Therefore, the
statement trivially holds for all C-nodes in this step. In the induction step, we obtained
PC-tree Ti+1 from Ti by retreating on a tree edge with source n. Let t be the terminal
path for the restriction from Ti to T ′

i . Let v1, . . . , vm ∈ V (t) be the nodes of the terminal
path. t now partitions Ti into a full region, an empty region and t itself. Let d be a C-node
in T ′′

i = Ti+1. There are now three different cases how d is generated. If there is a C-node
c in Ti in the empty region and c = d, then c and Rc remained unchanged from Ti to
T ′′

i = Ti+1. Therefore, by the induction hypothesis, the property still holds for d.

If d was generated by the restriction and t only contains P-nodes, then Rule 2 was applied.
We now have that for every node v ∈ V (t), deg(v) ≥ 3 holds in T ′

i after deletions of
degree-1-nodes, contractions of degree-2-P-nodes and merges of C-nodes into c have taken
place. Given a node p ∈ V (t), let PF (v) be a node in the full region that is connected
to p in Ti, if such a node exists, and let PE(v) be a node in the empty region that is
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4.3. Deriving rigids

connected to p in Ti, if such a node exists. Now, PF (v1), PF (vm), PE(v1), PE(vm) all exist
because otherwise, we would get a contradiction to the construction of the terminal path.
Additionally, for all nodes vi with i ∈ {2, . . . , k − 1}, there exists at least PE(t) or PF (t) in
Ti, because t contains no degree-2-nodes. Let a, b ∈ {1, . . . , m} with a < b. We now need
to show that there exist three independent paths between va and vb. As a first path p1, we
simply take the subpath in t between va and vb. Next, w.l.o.g. assume that va is connected
to PE(va), the other case is symmetric. If vb is connected to PE(vb), then take p2 as the path
va → PE(va) → · · · → PE(vb) → vb and p3 as the path va → v1 → PF (v1) → · · · → n →
· · · → PF (vm)→ vm → vb. These paths are illustrated in Figure 4.2a. If vb is connected
to PF (vb), then take p2 as the path va → PE(va)→ · · · → PE(vm)→ vm → vb and p3 as
the path va → v1 → PF (v1)→ · · · → n→ · · · → PF (vb)→ vb. These paths are illustrated
in Figure 4.2b. Now, we see that the paths p1, p2, p3 are independent. Additionally, given
i ∈ {1, . . . , m}, we have to show that there exist three independent paths between vi and
m in G. We have constructed a new C-node during this restriction, so we have at least two
full leaves in the T ′. Therefore, we can easily find these three independent paths by going
through the full region with two paths and going through the empty region with one path,
which is possible since G is biconnected.

If d was generated by the restriction and t contains P-nodes and C-nodes, then Rule 3
was applied. We have that for every node v ∈ V (t), deg(v) ≥ 3 holds, analogously to the
base case. Observe that now, all C-nodes in Ct are merged into d. Let v, w ∈ V (Rd). We
now need to show that there exist three independent paths between v and w in G. By the
induction hypothesis, we see that this holds for v, w ∈ V (Rc) for all c ∈ Ct. Additionally,
analogously to the induction base, we see that this holds for v, w coming from P-nodes
in t. Note that here, by Assumption 1, we can simply walk through C-nodes. Therefore,
we only have to consider two remaining cases, v, w coming from different C-nodes in
Ct and w.l.o.g. v coming from a C-node and w coming from a P-node. First, consider
v ∈ V (Ra), w ∈ V (Rb) with a, b ∈ Ct and a ̸= b. Let (c, u) ∈ {(a, v), (b, w)}. Since
deg(c) ≥ 3, define the paths p1, p2, p3 analogously to in the previous case for Rule 2.
p1, p2, p3 now connect to x, y, z ∈ V (Rc) respectively. It remains to show that there exist
three independent paths q1, q2, q3 from u to x, y and z in G respectively. Then, respectively
concatenating those paths, i.e. p1∪q1, p2∪q2, p3∪q3, yields the required independent paths.
Now, let h /∈ V (Rc) be a new vertex, and add h to Rc to obtain R′

c by connecting it x, y and
z, i.e. R′

c := (V (Rc)∪̇{h}, E(Rc)∪̇{{x, h}, {y, h}, {z, h}}). Then for all s, t ∈ V (R′
c), there

exist independent paths between s and t. In particular, let q′
1, q′

2, q′
3 be three independent

paths between u and h. Then w.l.o.g. x ∈ q′
1, y ∈ q′

2 and z ∈ q′
3 must hold, so q1, q2, q3

with qi := q′
i − h for i ∈ {1, 2, 3} are the required independent paths from u to x, y and z.

Note that by Assumption 1, the paths q1, q2, q3 inside the C-nodes do not share vertices
of G with the paths p1, p2, p3 outside the C-nodes. Analogously to the case with Rule 3,
we also see that the new node n is also triconnected w.r.t. the other vertices in the new
C-node.

It now remains to show that when applying Rule 4, we obtain a maximally triconnected
component of G as a rigid. We here also require the following assumption:

Assumption 2. When Rule 4 is applied, then the resulting rigid is maximal regarding all
vertices that have already been merged into the PC-tree in previous steps.

Using this assumption, we can now in part proof the maximality of the generated rigids.

Lemma 4.6. Let T be a PC-tree before a restriction during the planarity test on a
biconnected planar multigraph G = (V, E), let c ∈ V (T ′) be a full C-node in the PC-tree
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(a) Paths if vb is connected to PE(vb).
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n
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(b) Paths if vb is connected to PF (vb).

Figure 4.2.: Illustration of paths p1, p2, p3 during C-node construction.
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4.4. Deriving polygons

after the restriction for the new node n and before the merge. Then Rc + n is a maximally
triconnected component of G.

Proof. We first show that Rc + n is triconnected in G. Because of deg(c) ≥ 3, there
exist three independent paths from every vertex x ∈ Rc to n: Inside Rc, we construct
the independent paths to the “border” of Rc just like the paths q′

1, q′
2, q′

3 in the proof of
Lemma 4.5. Outside Rc, given that c is full, we either have that c has exactly deg(c)− 1
full neighbors or exactly deg(c) full neighbors. If c has exactly deg(c) ≥ 3 full neighbors,
then there exist three independent paths from c to full leaves in T ′, which represent edges
connecting to n, thus three independent paths from x to n also exist in G for all x ∈ Rc. If
c has exactly deg(c)− 1 ≥ 3− 1 = 2 full neighbors, then there exist two independent paths
from c to leaves in T ′ that represent edges connecting to n. Moreover, there exists another
path from c to an empty leaf in T ′. Therefore, three independent paths from x to n also
exist in G for all x ∈ Rc.

Now, let M := Rc + n. We now want to show that M is indeed maximally triconnected.
We focus on vertices that are merged into the PC-tree in later steps. Since c is full, we
now would have at most two boundary edges in M , one edge connected to n and one edge
connected to the possibly existent vertex in Rc that is connected to a non-full neighbor of
c. Due to these two “bottlenecks”, there cannot exist another vertex z that is merged in a
later step such that there exist at least three independent paths between z and any vertex
in M . In conjunction with Assumption 2, we now get the maximality of the generated
rigid.

4.4. Deriving polygons
In SPQR-trees, polygons are represented by S-nodes. Polygons are simple cyclic graphs.
First, we get the following result that characterizes separation pairs of G in polygons.

Lemma 4.7. Let S be a polygon of an SPQR-tree of a biconnected undirected multigraph
G, let v, w ∈ V (S) with v ̸= w. Then v, w is not a separation pair of G if and only if
{v, w} ∈ E(S) and {v, w} is a real edge.

Proof. Simply follows from the definition of polygons as skeletons and the fact that if
{v, w} ∈ E(S) is a real edge, then removing {v, w} from G does not increase the count of
connected components since the edge itself would be removed as well.

We now can describe the positions of the vertices of polygons in DFS trees.

Lemma 4.8. Let S be a polygon of an SPQR-tree of a biconnected undirected multigraph
G, let T be a directed DFS tree of G. Then all vertices of S are part of a single path in T .

Proof. Assume the above statement is wrong, then there exist v, w ∈ V (S) such that v and
w lie in disjunct subtrees of T . If v, w is a separation pair of G, then this is a contradiction
to Lemma 4.1. If v, w is not a separation pair of G, then we get that {v, w} ∈ E(S) and
{v, w} is a real edge from Lemma 4.7. Therefore, we have {v, w} ∈ E, which violates the
DFS as v and w lie in disjunct subtrees.

Now, let S be a polygon of an SPQR-tree of a biconnected undirected multigraph G. From
Lemma 4.8, we infer that when retreating to a new vertex v ∈ V (S) during the planarity
test, all other vertices of V (S) with greater depth than v have been merged previously in
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4. SPQR-tree construction

the “same” PC-tree. Therefore, for every PC-tree, we need to consider all vertices that have
been merged into a PC-tree to find polygons. In general, during the planarity test, when
retreating to a new vertex v, a P-node is created with label v. During further operations,
this information on which vertices had been encountered by the PC-tree may though be
lost. In Section 4.3, we have seen that vertices, which are part of rigids, are stored in the
subgraphs of C-nodes, thus these labels are not lost. Therefore, we only have to consider
vertices that are not part of any rigids. In general, label lists on edges are now used to store
the labels of removed P-nodes in PC-trees. Given a PC-tree T and an edge {p, q} ∈ E(T )
with p, q ∈ V (T ), we thus define the lT (p, q) as the list of labels on the edge {p, q}. Given
a P-node k in a PC-tree, then the label of k is the label incident to all edges that are
connected to k. Given a C-node k in a PC-tree and an edge e that is incident to k, then
the label in k that is incident to {k, k′} is the vertex in Rk which has a boundary edge
that is connected to k′. To generate these label lists, we now define the following rule.

Rule 5 (Label list expansion). Let T ′ be a PC-tree after a restriction for a new node n
during the planarity test of a biconnected undirected graph G = (V, E), let T ′′ be the PC-tree
after merging a vertex n ∈ V as a P-node m, let p ∈ V (T ′) a P-node or C-node with
exactly deg(p)− 1 full neighbors such that, given the non-full neighbor q of p, subtree(p) at
q contains all full leaves, let v be the label in p that is incident to the edge {p, q}, let w be
the label in q that is incident to the edge {p, q} if q is not a leaf. Then we define lT ′′(m, q)
as follows (∪ signifies list concatenation):

lT ′′(m, q) :=


() if lT ′(p, q) = () and (v = w or q is a leaf)
lT ′(p, q) if v = lT ′(p, q).firstElement
(v) ∪ lT ′(p, q) otherwise

This rule realizes both edge types to be generated in polygons: Virtual edges represent
bridges, which are “compressed” by this rule into a single edge based on the relation of
the labels. Real edges are realizes if there was only a single full leaf and p is a P-node
with degree 2. Now, having saved the labels in the PC-tree, we construct polygons of the
SPQR-tree by using the following rules. Here, a polygon is described by a linear order LS

of vertices, whose ends can be connected to form the cyclic order of vertices in the polygon.

Rule 6 (Polygon construction from circle). Let T ′ be a PC-tree after a restriction for a new
node n during the planarity test of a biconnected undirected graph G = (V, E), let p ∈ V (T ′)
be full with exactly deg(p)− 1 full neighbors such that, given the non-full neighbor q of p,
subtree(p) at q does not contain all full leaves, let v be the label in p that is incident to the
edge {p, q} if p is not a leaf, let w be the label in q that is incident to the edge {p, q} if q
is not a leaf. We define kp := (v) if p is not a leaf and kp := () if p is a leaf, ditto for kq.
Then we get a polygon of the SPQR-tree of G by the following linear order LS of vertices
(∪ signifies list concatenation):

LS := kp ∪ lT ′(p, q) ∪ kq ∪ (n)

Rule 7 (Polygon construction from enclosure). Let T be a PC-tree before a restriction
for a new node n during the planarity test of a biconnected undirected graph G = (V, E),
let T ′ be the PC-tree after the restriction, let t be the terminal path in T , let p, q ∈ V (t)
such that {p, q} ∈ E(t) and lT (p, q) ̸= (), let v be the label in p that is incident to the edge
{p, q}, let w be the label in q that is incident to the edge {p, q}. Then we get a polygon of
the SPQR-tree of G by the following linear order LS of vertices:

LS := (v) ∪ lT (p, q) ∪ (w)
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4.4. Deriving polygons

Rule 6 formalizes the construction of a polygon when we have found its final vertex. Rule 7
deals with a special case where the nodes at the end of a label list are actually merged into
a C-node during the restriction.
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5. Evaluation

In this chapter, we evaluate and compare our implementation of our embedding algorithm
from Chapter 3. First, we describe implementation and evaluation details in Section 5.1.
Then, we present and describe our evaluation results in Section 5.2.

5.1. Implementation and evaluation details
In order to implement our embedding algorithm, we used C++ version 17, the Open Graph
Drawing Framework (OGDF) version 2022.02 (Dogwood) and the PC-tree implementation
by Fink et al. [FPR21]. For benchmarking, we used one of the “Chimaira”-nodes in the
Infosun cluster of the University of Passau, which has the following specifications:

• CPU: Intel Xeon E5-2690v2 (10 cores, 20 threads)

• RAM: 64 GB

• OS: GNU/Linux Debian 11 with kernel version 5.10.0-24-amd64

Note that we ran benchmarks while having exclusive access to that node, i.e. no other jobs
of the Slurm cluster were running on that node. We ran at most 8 benchmarks of different
graphs concurrently in different processes. For measuring runtimes, we subtracted ending
and starting time obtained by calling the function std::chrono::steady_clock::now. In order
to decrease run-to-run variance by external factors such as CPU-scheduling, CPU-boosting
behavior and operating system overhead, we repeated every run on each graph 5 times and
took the average running time from those runs as our measured value.

5.2. Evaluation results
We compared our embedding algorithm to the embedding algorithm by Boyer and Myr-
vold [BM04], which is included in the OGDF. Additionally, we measured our planarity test
and the Boyer and Myrvold planarity test contained in the OGDF. Note that our planarity
test is simply an implementation of the Haeupler and Tarjan planarity test without our
extensions for computing a planar embedding. We used two different datasets for evaluation:
randomly generated graphs, see Section 5.2.1, and graph generated by the OGDF test
function forEachGraphItWorks, see Section 5.2.2. Most plots in this chapter have two
versions next to one another, a scatter plot and a line plot, both depicting the same dataset.
Most plots are colored based on the used algorithm. Scatter plots may also use different
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(a) Scatter plot by graph size.
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(b) Line plot by graph size.

(c) Scatter plot by density.

0.00 0.75 1.50 2.25 3.00
Density

0

1000

2000

3000

4000

5000

Ti
m

e 
[m

s]

(d) Line plot by density.

Figure 5.1.: Running times for random planar graphs.

symbols to illustrate differences of the input graphs. Details can be found in the legends
of the plots. In the line plots, the line represents the median value and the shaded area
represents the interquartile range, based on an assignment of the measurements into 20
buckets with approximately same sizes. The plots show running times in relation to either
the sum of vertices and edges or in relation to the graph density. For a graph G = (V, E),
we define its size as its sum of vertex count and edge count, i.e. |V |+ |E|. Moreover, its
density equals its edge count divided by its vertex count, i.e. |E|

|V | .

5.2.1. Random graphs

We evaluated our embedding implementation on random graphs. Random planar graphs
where specifically generated using the OGDF function ogdf::randomPlanarConnectedGraph.
Additionally, other graphs were generated using ogdf::randomGraph. Those generator
functions are abbreviated in the plots with “PlanarConnected” and “Random” respectively.
Graphs that are generated by ogdf::randomGraph may be planar or non-planar, thus they
were categorized accordingly. In total, we tested 2, 000 random graphs, of which 1, 159
were planar and 841 were non-planar, with up to 1, 000, 000 vertices and up to 3, 000, 000
edges. In Figure 5.1, we have four plots that show the running time for every random
planar graph G = (V, E) based on either its size, see Figures 5.1a and 5.1b or based on
its density, see Figures 5.1c and 5.1d. First, we observe that there is a gap in the dataset
around the density value 0.75. This can be explained by the usage of both generator
functions randomGraph and randomPlanarConnectedGraph. As we see in Figure 5.1c,
there are some graphs generated by randomGraph with density about less than 0.5, then
we have a gap until density about 1, where we see a bulk of graphs that are generated by
randomPlanarConnectedGraph. Since randomPlanarConnectedGraph always generates
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(a) Scatter plot by graph size.
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(b) Line plot by graph size.

(c) Scatter plot by density.
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(d) Line plot by density.

Figure 5.2.: Relative running times for random planar graphs.

(a) Scatter plot by graph size |V |+ |E|. (b) Line plot by graph size |V |+ |E|.

Figure 5.3.: Running times for random planar graphs with marked truncation of edge
counts by randomPlanarConnectedGraph.
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(a) Scatter plot by graph size.
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(b) Line plot by graph size.

(c) Scatter plot by density.
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(d) Line plot by density.

Figure 5.4.: Running times for random non-planar graphs.

connected graphs, these graphs all have a density of |E|
|V | ≥

|V |−1
|V | −−−−→|V |→∞

1. Additionally, the

target edge count of a generated graph is selected uniformly at random from {0, . . . , 3 · |V |}.
Given that randomPlanarConnectedGraph must return a connected graph, the edge count
of all graphs with target edge count less than |V | − 1 actually is truncated to an edge
count of |V | − 1, which leads to a density of about 1. This explanation is also supported
by Figure 5.3b, which shows where truncation occurs. This explains the vertical “line” in
the scatter plot. Furthermore, the probability of a random graph being planar, which are
outputted by randomGraph, decreases with the number of edges. Therefore, get this gap
around a density of 0.75, and we only find outputs of randomGraph to the left of this gap.
Moreover, in the scatter plot of Figure 5.1a, we see that up to a graph size of 2, 000, 000,
running times are also concentrated into single lines with a lower gradient than the median
gradient. These lines are more visible in Figure 5.3a, which also confirms that this is caused
by the truncation of randomPlanarConnectedGraph. From the plots by graph size, we
infer that all four algorithms seem to have a linear running time regarding the graph size.
Additionally, our embedding algorithm on average takes a bit more than twice the time of
the Haeupler-Tarjan planarity test, which it is still faster than the OGDF planarity test
and embedding algorithm, which are both about 30% slower than our embedding algorithm.
This value is also illustrated by the relative time plots in Figure 5.2. In Figure 5.1d, we
also see that our algorithms have a lesser variance than the OGDF algorithms. Concerning
the plots by density, we also see here that our embedding algorithm is faster than the
OGDF algorithms. Note that both OGDF algorithms always have very similar running
times, suggesting that the OGDF planarity test may perform unnecessary computations.

We now discuss the plots of random non-planar graphs in Figure 5.4. From the plots by
graph size, we infer that all four algorithms seem to have a linear running time regarding
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(a) Scatter plot by graph size.

0 900,000 1,800,000 2,700,000
Vertices + Edges

2

4

6

8

10

Re
la

tiv
e 

tim
e 

to
 o

wn
 e

m
be

d

Own planar
Own embed
OGDF planar
OGDF embed

(b) Line plot by graph size.

(c) Scatter plot by density.
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(d) Line plot by density.

Figure 5.5.: Relative running times for random non-planar graphs.

the graph size. From both plots, by size and by density, we infer that on average, our
embedding algorithm is only very slightly slower than the Haeupler-Tarjan planarity test
on non-planar graphs. This suggests that in practice, the computation for calculating low
pointers and the values for φ, which are performed during the course of the planarity test
until the test terminates, have hardly any overhead. The plot by graph size shows that on
average, the OGDF planarity test and embedding algorithm take around 3 times as long
as our algorithms, when disregarding small graph densities, where the OGDF algorithms
are much slower, as shown in Figure 5.5.

5.2.2. Graphs from forEachGraphItWorks

In this section, we use a dataset of graphs that was generated by the function forEach-
GraphItWorks found in the testing part of the OGDF library, which generates graphs based
on different types. In total, we generated 1, 150 graphs for this dataset, with up to 200, 000
vertices. Note that due to several problems, not all graph types that are generated by
forEachGraphItWorks could be included in this dataset. The graph type “path-like tree”
was not included due to dependency issues with resource files in the OGDF, the type
“connected dense graph” was not included because it generates graphs with |V |2/4 edges,
thus large graphs with up to 200, 000 vertices would yield to up to 200, 0002/4 = 1010

edges, which thus requires at least tens of gigabytes of RAM to generate one graph, which
is not practical. For a complete list of all used graph types, see Appendix Section A. In
the scatter plots, some noteworthy type distinctions are illustrated using different symbols,
as annotated by the legends. Additionally, we omitted density plots for this dataset, as
the generated graphs have “very discrete” densities, therefore those plots are not very
expressive.
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5. Evaluation

(a) Scatter plot by graph size.
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(b) Line plot by graph size.

Figure 5.6.: Running times for planar graphs from forEachGraphItWorks.
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Figure 5.7.: Relative running times for planar graphs from forEachGraphItWorks.

Concerning planar graphs from forEachGraphItWorks, in general, Figure 5.6a shows a
linear correlation between graph size and running time for our algorithms. The OGDF
algorithms also mostly have this linear correlation, but for the graph type of “acyclic grid”
graphs, there seems to be a “quadratic-like” correlation between graph size and processing
time, which is not present with our algorithms. Looking at the corresponding line graph
in Figure 5.6b, we see that the “acyclic grid” as outlier cases are omitted, since they do
not fall in the interquartile range. Moreover, wee see that the horizontal axis only shows
values for graph sizes up to about 1, 000, 000, which is lower than in the scatter plot. This
is due to the bucketing that is performed, because there are few graphs, all dense graphs,
with such high sizes in our dataset. Therefore, our line plot in fact represents our scatter
plot more zoomed in. We observe that there is a bend in our linear correlation to a more
shallow gradient at a graph size of about 600, 000 for all four algorithms, which can be
explained by the existence of more “fast” graphs in our dataset, i.e. graphs with lower
processing time than the linear correlation to the right of 600, 000. These graphs do not
reach higher size values. Concerning the relative running times displayed in Figure 5.7, we
see that at around a graph size of 1, 000, 000, the OGDF embedding algorithm is about
15% slower than our algorithm, but the OGDF embedding algorithm seems to approach
our embedding algorithm with increasing graph size. Due to the above-mentioned problems
with the forEachGraphItWorks, we were not able to test if the OGDF algorithm eventually
reaches or surpasses the speed of our algorithm. It must be noted that with increasing
size, this dataset only specifically contains dense graphs starting from a graph size of
about 700, 000, as visible in Figure 5.6a. Note that for this forEachGraphItWorks dataset,
we omitted scatter plots for relative runtimes, as outlier data values, where the OGDF

50



5.2. Evaluation results

(a) Scatter plot by graph size.
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(b) Line plot by graph size.

Figure 5.8.: Running times for non-planar graphs from forEachGraphItWorks.

algorithms have significantly larger relative running time than our algorithm, compress the
scale of the vertical axis such that the plot is not expressive.
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Figure 5.9.: Relative running times for non-planar graphs from forEachGraphItWorks.

Concerning non-planar graphs from forEachGraphItWorks, we see in Figure 5.8 that there
is also a linear correlation between graph size and processing time. Notice that here, our
embedding algorithm also has a small overhead compared to our Haeupler-Tarjan planarity
test, as seen with random graphs. In relation to the OGDF algorithms, we see that our
algorithms are about three times as fast for non-planar graphs in this dataset, which is
visible in Figure 5.9.
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6. Conclusion

In this paper, we have seen that we can extend the Haeupler-Tarjan planarity test to form
an embedding algorithm, which also runs in linear time O(|V |+ |E|) given an input graph
G = (V, E). During the evaluation of our implementation, we have seen that our embedding
algorithm is consistently faster than the embedding algorithm by Boyer and Myrvold that
is implemented in the Open Graph Drawing Framework library. Specifically, on random
graphs, the library embedding algorithm was consistently at least 30% slower than our
algorithm on planar graphs and consistently at least 300% slower on non-planar graphs
than our algorithm. Furthermore, we devised a further extension to the Haeupler-Tarjan
planarity test to simultaneously compute the SPQR-tree of a biconnected input graph.
We thus obtain an algorithm that performs a planarity test, and further outputs a planar
embedding and the SPQR-tree of the biconnected input graph if it is planar.

Based on this thesis, further research can be taken into many directions. We have
presented an approach for computing SPQR-trees during the Haeupler-Tarjan planarity
test, which utilizes the duality of PC-trees and SPQR-trees. Further research may continue
to investigate this duality as well as our algorithm, particularly its runtime. Additionally,
there not yet exists an implementation of our SPQR-tree algorithm, which may also be
tested in practice. Furthermore, our approach only computes SPQR-trees for planar
biconnected graphs, but the algorithm could be modified to deal with non-planar and non-
biconnected graphs. In case of non-planar graphs, the planarity test normally terminates
when discovering an impossible restriction. In order to continue nonetheless, “R-nodes” may
be used in PC-trees to represent C-nodes where the cyclic order is not respected anymore,
similar to R-nodes in PQR-trees [TM05]. Concerning non-biconnected graphs, during
the planarity test, cut-vertices can easily be detected with the help of the PC-trees and
the algorithm would output an SPQR-forest. Furthermore, our algorithm for computing
an embedding and SPQR-tree may be combined in order to compute embeddings for
all triconnected components of the input graph. Finally, the correlation between the
Haeupler-Tarjan approach using PC-trees or PQ-trees and the approach by Hopcraft and
Tarjan [HT73] and by Gutwenger and Mutzel [GM01] that use low pointers for computing
SPQR-trees may be investigated further.
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Appendix

A. Graph types from forEachGraphItWorks
The following graph types generated by forEachGraphItWorks were used in the evaluation:

• graph with a single node

• graph with a single node and one self-loop

• graph without any nodes

• graph with three nodes and no edge

• graph with three nodes and one edge

• graph with two nodes and directed parallel edges

• graph with two nodes and no edge

• graph with two nodes and one edge

• graph with two nodes and two edges (one self-loop)

• graph with two nodes and undirected parallel edges

• K2,3

• K3,3

• K4

• K5

• non-upward planar graph

• Petersen graph

• 3-regular arborescence

• 4-regular graph

• acyclic biconnected non-planar graph

• acyclic biconnected planar graph

• acyclic grid graph
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6. Appendix

• arborescence

• arborescence forest

• biconnected almost planar graph

• biconnected graph

• connected planar graph

• connected sparse graph

• disconnected planar graph

• isolated nodes

• maximal planar graph

• path with multi-edges

• planar dense triconnected multi-graph

• planar sparse triconnected multi-graph

• series parallel DAG

• triconnected graph

• triconnected planar graph

• wheel graph
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