A Unified Hanani-Tutte Theorem for Level-Graphs

Bachelor Thesis of

Veronika Böhm

At the Department of Informatics and Mathematics

Reviewers: Prof. Dr. Ignaz Rutter Prof. Dr. Jens Zumbrägel Advisors: Peter Stumpf

Eigenständigkeitserklärung

Hiermit versichere ich,
a) dass ich die vorliegende Arbeit selbstständig und ohne unzulässige Hilfe verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie die wörtlich und sinngemäß übernommenen Passagen aus anderen Werken kenntlich gemacht habe.
b) Außerdem erkläre ich, dass ich der Universität ein einfaches Nutzungsrecht zum Zwecke der Überprüfung mittels einer Plagiatssoftware in anonymisierter Form einräume.

Abstract

A graph has a planar drawing if it can be drawn in the plane in such a way that its edges do not cross. Planarity can also be characterized by other properties of graphs, for example the circular ordering of edges at each vertex-also known as the rotation system of a graph - or the number of pairs of edges crossing an even number of times - the even crossings of the graph. The variants of the Hanani-Tutte Theorem concern themselves with the latter. The traditional Hanani-Tutte theorem-the Strong Hanani-Tutte Theorem - states that if a graph has a drawing such that every pair of independent edges - edges that have no common end-vertex - cross evenly, it also has a planar drawing. The Weak Hanani-Tutte Theorem requires a drawing where every pair of edges crosses evenly and expands the conclusion to include the existence of a planar drawing with a preserved rotation system. The generalized version-the Unified Hanani-Tutte Theorem - requires the lesser assumption of the Strong Hanani-Tutte Theorem and combines the conclusion of the strong and the weak version to conclude the existence of a planar drawing such that the rotation system of all vertices where all incident edges cross each other evenly is preserved.

We present two proofs of the Unified Hanani-Tutte Theorem in the plane, one by Pelsmajer et al. (2007) and the other by Fulek et al. (2017). We also consider levelgraphs, graphs where each vertex is assigned a level. Levels assign each vertex a single number and are represented by horizontal lines. Then, a level-graph is (level-)planar if it has a planar drawing in the plane such that each vertex lies on the horizontal line corresponding to its level. We present a proof of the Strong Hanani-Tutte Theorem for level-graphs and by Fulek et al. (2013). The main contribution of this work is an extension of this proof to the Unified Hanani-Tutte Theorem for level-graphs.

Deutsche Zusammenfassung

Ein Graph hat eine planare Zeichnung, wenn er sich in der Ebene so darstellen lässt, dass sich keine seiner Kanten kreuzen. Abgesehen davon lässt sich die Planarität eines Graphen noch auf andere Art und Weisen charakterisieren, zum Beispiel durch die Anordnung der Kanten um ihre Endknoten - das Rotationssystem des Graphenoder durch die Anzahl von Kantenpaaren, die sich gerade oft kreuzen - die geraden Kreuzungen des Graphen. Die Varianten des Hanani-Tutte Theorems beschäftigen sich mit letzterem. Die traditionelle Variante, das Strong Hanani-Tutte Theorem, besagt, dass ein Graph, der eine Zeichnung besitzt, in der sich jedes Paar unabhängiger Kanten gerade oft kreuzt, planar ist. Das Weak Hanani-Tutte Theorem setzt eine Zeichnung voraus, in der sich alle Kantenpaare gerade oft kreuzen und erweitert die Folgerung auf die Existenz einer planaren Zeichnung, in der das Rotationssystem gleich bleibt. Beide Theoreme sind verallgemeinert im Unified Hanani-Tutte Theorem, welches mit der schwächeren Voraussetzung des Strong Hanani-Tutte Theorems auskommt und dann die Existenz einer planaren Zeichnung ableitet, in der das Rotationssystem für alle Knoten, deren inzidente Kanten einander gerade oft kreuzen, unverändert bleibt.

Wir stellen zwei Beweise für das Unified Hanani-Tutte Theorem vor, von Pelsmajer et al. (2007) und von Fulek et al. (2017). Wir betrachten ebenfalls Level-GraphenGraphen, deren Knoten je ein Level zugeordnet wird. Level ordnen jedem Knoten eindeutig eine Zahl zu und werden in Zeichnungen durch Horizontalen repräsentiert. Ein Level-Graph ist (level-)planar wenn er eine planare Zeichnung in der Ebene hat, sodass jeder Knoten des Graphen auf der Horizontalen liegt, die seinem Level entspricht. Wir stellen einen Beweis des Strong Hanani-Tutte Theorems für LevelGraphen von Fulek et al. (2013) vor. Der Hauptbeitrag der Arbeit ist dann die Erweiterung dieses Beweises auf einen Beweis des Unified Hanani-Tutte Theorem für Level-Graphen.

Contents

1 Introduction 1
2 Preliminaries 5
2.1 General Terms and Techniques 5
2.2 Level-Graphs 6
3 Unified Hanani-Tutte in the Plane 8
3.1 Proof by Removing Even Crossings 8
3.2 Proof by Distinction According to Vertex-Connectivity 10
4 Strong Hanani-Tutte for Level-Graphs 13
4.1 Monotone Drawings, Level-Graphs and Hanani-Tutte 13
4.2 Properties of a Smallest Counterexample 16
4.3 Properties of Level-Graphs with Independent Even Crossings 18
4.4 Proof of the Strong Hanani-Tutte Theorem 20
5 Unified Hanani-Tutte for Level-Graphs 23
5.1 Properties of a Smallest Counterexample 23
5.2 Proof of the Unified Hanani-Tutte Theorem 29
6 Conclusion 32
Bibliography 33

1. Introduction

When considering graphs and their representations in the plane, an essential problem is to draw them in such a way that edges only overlap when they share a vertex. Then, no edges in the drawing cross and we call it a planar drawing or an embedding (Figures 1.1a,b). We can formalize this with the concept of crossing numbers. The crossing number cr (G) of a graph G is defined as the smallest number of crossings in any drawing of G. Graph G is then planar if $\operatorname{cr}(G)=0$. Planarity can also be characterized by other properties of graphs, for example the circular ordering of edges at each vertex - also known as the rotation system of a graph - or the number of pairs of edges crossing an even number of times - also known as the even crossings of the graph. The different versions of the Hanani-Tutte Theorem use the latter to characterize planar graphs. The traditional version is known as the Strong Hanani-Tutte Theorem [5, 21]. It states that if a graph G has a drawing such that every pair of independent edges cross an even number of time (Figure 1.1c), then it has a planar drawing (Figure 1.1b). We can formalize this with the independent odd crossing number $\operatorname{iocr}(G)$, defined as the smallest number of oddly crossing pairs of independent edges - the independent odd crossings - in any drawing of G :

Theorem 1.1 (Strong Hanani-Tutte Theorem). Let $G=(V, E)$ be a graph. If iocr $(G)=0$ then $\operatorname{cr}(G)=0$.

Another variant of the theorem, known as the Weak Hanani-Tutte Theorem, demands the stricter prerequisite of a drawing such that every pair of edges cross an even number of times (Figure 1.1d) and in return concludes the existence of not only a planar drawing but one such that the rotation system is preserved (Figure 1.1b) [4, 15, 16]. Again, it can be formalized by using crossing numbers. The odd crossing number ocr (G) is defined as the smallest number of odd crossing pairs of any edges in any drawing of G.

Figure 1.1: A graph in the plane with different drawings.

Type	Weak H-T	Strong H-T	Unified H-T
Plane	, [4, 15, 16]	\checkmark [5, 21]	\checkmark [12, 16]
Level	\checkmark [9, 14]	\checkmark 9]	\checkmark
Radial (level)	\checkmark [10]	\checkmark [11]	.
Torus	\checkmark [4, 17]	\checkmark [13]	$x[8]$
Orientable Surface Genus 2	\checkmark [4, 17]	?	?
Orientable Surface Genus 3	\checkmark [4, 17]	?	?
Orientable Surface Genus ≥ 4	\checkmark [4, 17]	$x[8]$	$x[8]$
Projective Plane	\checkmark [17]	\checkmark [6,18]	?
Non-orientable Surfaces	\checkmark [17]	?	?

Table 1.1: Overview of the Hanani-Tutte variants and when they apply.
Theorem 1.2 (Weak Hanani-Tutte). Let $G=(V, E)$ be a graph with a drawing realizing $\operatorname{ocr}(G)=0$. Then there is a drawing realizing $\operatorname{cr}(G)=0$ such that the rotation system is preserved.

The description of the variants as weak and strong is misleading. The Strong Hanani-Tutte Theorem is not an actual generalization of the Weak Hanani-Tutte Theorem as it does not make statements about the rotation system. Instead, both variants are weak versions of their generalization, the Unified Hanani-Tutte Theorem, indirectly proven by Pelsmajer et al. [16] and later formulated and proven by Fulek et al. [12. It requires the lesser assumption of the Strong Hanani-Tutte Theorem (Figure 1.1c) and concludes, in addition to the existence of the planar drawing (Figure 1.1b), the preservation of the rotation at even vertices - vertices where every incident edge crosses every other incident edge an even number of times.

Theorem 1.3 (Unified Hanani-Tutte). Let $G=(V, E)$ be a graph with a drawing realizing $\operatorname{iocr}(G)=0$. Then there is a drawing realizing $\operatorname{cr}(G)=0$ such that the rotation system at even vertices is preserved.

Hanani-Tutte for other Types of Graphs

A natural follow-up question is to which other types of graphs the variants of the HananiTutte Theorem apply. The version that has the most known results is the weak variant. It is not only proven for the plane, but also for x -monotone drawings and level-graphs [9, 14], radial (level-)planarity [10], as well as all orientable surfaces [4, 17] and all non-orientable surfaces [17], including the projective plane. The Strong Hanani-Tutte Theorem has, in addition to the plane, been proven for radial planarity [11], the torus [13] and the projective plane [6, 18]. Interestingly, it has been disproven for any orientable surface with a genus of 4 or more [8]. To our knowledge, it is yet to be solved whether the strong variant holds for the orientable surface of genus 2 , the orientable surface of genus 3 as well as for non-orientable surfaces other than the projective plane. As a generalization of the other variants, the Unified Hanani-Tutte Theorem has the least results. Apart from the proof in the plane, there is only a counterexample for the torus [8]. Since the Strong Hanani-Tutte Theorem was disproven for orientable surfaces with a genus of 4 or more [8], it follows that the unified version does hold either. With this work, the Unified Hanani-Tutte Theorem is now also proven for level-graphs. Table 1.1 gives a compact overview. Further examples can be found in a survey by Schaefer (2013).

Level-Graphs and Level-Planarity

We take a closer look at level-graphs. A level-graph (G, l) is a graph $G=(V, E)$ where each vertex is assigned a level. Levels are represented by horizontal lines and can be

Figure 1.2: A planar level-graph with different drawings.

Figure 1.3: A radial planar but not level-planar level-graph with different drawings.
ordered numerically. A level-graph is level-planar if it has a planar drawing that realizes the levelling of G (Figure 1.2). Pach and Tóth [14] as well as Fulek et al. [9] proved the characterisation of planarity by absence of odd crossing to hold for level-graphs by proving the Weak Hanani-Tutte Theorem. Fulek et al. [9] also proved the characterisation of planarity by absence of independent odd crossing by proving the Strong Hanani-Tutte Theorem. Randerath et al. [19] introduced another characterisation of level-planarity by considering the ordering of the vertices on each level and building a logical formula describing the following properties: The ordering of the vertices on each level is consistent, transitivity is upheld and lastly, for two independent edges starting and ending at the same level the lower-end vertices and the upper-end vertices have a corresponding order on the levels. By Randerath et al. [19] the transitivity of the ordering is not necessary characterize planarity and as a result 2-CNF can be built. Brückner et al. [3] proved that this result is equivalent to the Strong Hanani-Tutte Theorem for level-graphs 9 .

Bachmaier et al. [2] introduced a generalization of level-planarity called radial (level-) planarity. Radial planarity differs from level-planarity by representation of the levels. Instead of horizontal lines, the levels are represented as concentric circles. Consequentially, the edges, instead of being y-monotone, are drawn as monotone curves from inner to outer levels (Figure 1.3).

Overview

The main result of this work is a proof of the Unified Hanani-Tutte Theorem for level-graphs. To do such, we adapt the proof for the Strong Hanani-Tutte Theorem for x-monotone graphs by Fulek et al. 9]. First, in Chapter 2, we define the basic notations and terms we used throughout the thesis. In Chapter 3, we take a look at how the Unified Hanani-Tutte Theorem can be proven in the plane by introducing two such proofs. In Chapter 4, we
introduce the proof of the Strong Hanani-Tutte Theorem our proof is based on-adapted to the terminology of level-graphs. Then, in Chapter 5 we show how to adapt the results of Section 4 to find a proof for the Unified Hanani-Tutte Theorem for level-graphs.

2. Preliminaries

2.1 General Terms and Techniques

Let $G=(V, E)$ be a graph with vertex-set V and edge-set E. Unless otherwise specified, G has no multi-edges.

We define a drawing D of G as a set of coordinates in the plane such that each vertex v is assigned a distinct point $(x(v), y(v))$ and each edge $u v \in E$ is represented as a continuous curve from $(x(u), y(u))$ to $(x(v), y(v))$. We only consider drawings such that a vertex and an edge only share a coordinate if they are incident and no edges has self-crossings. We can then define the planarity of G. A graph G is planar if it has a planar drawing-a drawing such that two edges have a common coordinate (x, y) if, and only if, they share an end-vertex v and $(x, y)=(x(v), y(v))$.

A vertex $v \in V(G)$ is even in a drawing D if all edges incident to v cross each other evenly, else v is odd. Note that in a planar drawing all vertices are even. An edge $e \in E(G)$ is even if it crosses every other edge evenly, else it is odd. A drawing of a graph is even if all edges in the drawing are even.

The rotation of a vertex v in a drawing describes the ordering of the edges incident to v, usually in a clockwise direction. The entirety of the rotation of all vertices in a drawing of a graph is called the rotation system of the graph. Two edges are consecutive in the rotation at v if no other edge lies in between them in either the clockwise or the counter-clockwise rotation at v.

We can modify the rotation at a vertex v such that two edges e_{1} and e_{2} cross each other and all other edges incident to v evenly. If e_{1} and e_{2} cross oddly, in the clockwise direction switch e_{1} with its neighbour e^{\prime} until $e^{\prime}=e_{2}$. Then switch e_{1} and e_{2}, introducing an additional crossing and making them cross evenly. Note that they are now consecutive in the rotation at w. Next, we modify the rotation further such that all other edges incident to w cross e_{1} and e_{2} evenly. Let e^{\prime} be an edge incident to w with $e^{\prime} \notin\left\{e_{1}, e_{2}\right\}$. Assume that e_{2} lies in between e^{\prime} and e_{1} in clockwise direction. If e^{\prime} crosses both e_{1} and e_{2} oddly switch it with its neighbouring edge until it was switched with both edges. If e^{\prime} crosses e_{1} evenly and e_{2} oddly switch it with its neighbouring edge in clockwise direction until it was switched with e_{2} but not yet with e_{1}. If e^{\prime} crosses e_{2} evenly and e_{1} oddly switch it with its neighbouring edge in counter-clockwise direction until it was switched with e_{1} but not yet with e_{2}. After repeating this step for each edge e that is incident to w with $e \notin\left\{e_{1}, e_{2}\right\}, e_{1}$ and e_{2} cross each other and all other edges incident to v evenly.

Throughout this thesis, we often consider induced subgraphs of some other graph. Let H and H^{\prime} be subgraphs of G. We define $H \oplus H^{\prime}$ to be the subgraph of G induced by all vertices in $V(H) \cup V\left(H^{\prime}\right)$ and $H \ominus H^{\prime}$ to be the subgraph of G induced by all vertices in $V(H) \backslash V\left(H^{\prime}\right)$. Further let W be a set of vertices in G. We define $H \oplus W$ to be the subgraph of G induced by the vertices in $V(H) \cup W$ and $H \ominus W$ to be the subgraph of G induced by the vertices in $V(H) \backslash W$. Those subgraphs then often need to be recombined together. We define glueing two graphs H and H^{\prime} at vertex a_{H} in H and vertex a_{H}^{\prime} in H^{\prime} as identifying a_{H} with a_{H}^{\prime}. The edges incident to a_{H} remain consecutive at the combined vertex as do the edges incident to a_{H}^{\prime}. The exact place of the seam will be specified.

2.2 Level-Graphs

Next, we take a closer look at level-graphs and terms and techniques used in Chapters 4 and 5. A level-graph (G, l) is a graph $G=(V, E)$ with a function $l: V \rightarrow \mathbb{N}$ assigning a level to each vertex such that the end-vertices of an edge have different levels. In this Section as well as Chapters 4 and 5 we refer to level-Graphs simply as G. We define a drawing of a level-graph G analogous to the drawing of the graph in the plane with the additional constraint that $y(v)=l(v)$ for all $v \in V$ and each edge is represented as a y-monotone curve. Similarly, we define a drawing of G to be level-planar if the drawing is planar in the plane and $y(v)=l(v)$ for all $v \in V$. Then, G is level-planar if it has a level-planar drawing. In this Section as well as Chapters 4 and 5, we refer to level-planar drawings and graphs simply as planar.

We need to describe where an object - either a vertex or an edge - lies in respect to another object in a drawing. If e and f are two edges with a common lower end-vertex v, we say e is left of f in the rotation at v if e comes after f in the counter-clockwise rotation at v and right of f in the rotation at v if e comes after f in the clockwise rotation at v. Analogous, if e and f are two edges with a common upper end-vertex v, we say e is left of f in the rotation at v if e comes after f in the clockwise rotation at v and right of f in the rotation at v if e comes after f in the counter-clockwise rotation at v. A vertex v lies left of another vertex u with the same level if $x(v)<x(u)$ and right of u if $x(v)>x(u)$. A vertex v lies left of an edge e that has a coordinate $\left(x_{e}, l(v)\right)$, if $x(v)<x_{e}$ on the horizontal line $y=l(v)$ and right of e if $x(v)>x_{e}$. An edge e with coordinate $(x(e), c)$ lies left of another edge e^{\prime} with coordinate $\left(x\left(e^{\prime}\right), c\right)$ on the horizontal line $y=c$ if $x(e)<x\left(e^{\prime}\right)$ and right of e^{\prime} if $x(e)>x\left(e^{\prime}\right)$. Similarly, we say a vertex v lies above another vertex u if $y(v)>y(u)$, i.e. $l(v)>l(u)$. A vertex v lies below a vertex u if $y(v)<y(u)$, i.e. $l(v)<l(u)$. We say another vertex w lies in between v and u if $l(v)<l(w)<l(u)$ or $l(u)<l(w)<l(v)$. Whether w may have the same level as v or u will be specified. If an edge $e=u v$ only consists of coordinates in between u and v we call it bounded by u and v or $l(u)$ and $l(v)$.

When gluing the embedding of two subgraphs, we often insert one embedding into an inner face of another along an edge. Let G be a level-graph with an edge $a b$ such that vertex a lies below vertex b and let H be a subgraph of G such that all vertices in G contains only vertices with levels higher than $l(a)$ and lower that $l(b)$. We can then insert a drawing D_{H} of H along $a b$ into an embedding $D_{G \ominus H}$ of $G \ominus H$, without adding additional crossings, by resizing D_{H}. Without loss of generality, we insert D_{H} left of $a b$. To fit the drawing we count for each level i how many edges and vertices of H cross it and define that number as c_{i}. In $D_{G \ominus H}$, define d_{i} as the distance of $a b$ to the next vertex or edge left of $a b$ on level i. In D_{H}, for each level i, compress the distance between each edge or vertex on level i to $\frac{d_{i}}{c_{i}+1}$. Assume that the course of the edges in between levels moves in correspondence to the compression on the levels and define the obtained drawing as D_{H}^{\prime}. Overall, on each level i, D_{H}^{\prime} has width $d_{i}-2 \frac{d_{i}}{c_{i}+1}$ and can therefore, in $D_{G \ominus H}$, be fitted into the space between $a b$ and the next vertex or edge left of $a b$ on any level or horizontal line.

Fulek et al. [9, Thm 2.5, 2.6] proved that, if we insert an edge e into an inner face of an embedding of G, then there exists an embedding that includes e such that the rotation system is preserved. They also proved that any bounded edge e can be redrawn without changing the rest of the drawing such that e is monotone and the number of crossings in the drawing is unchanged.

For some of the arguments, we need to distinguish whether a vertex lies inside or outside of a cycle C. The curve representing C separates the plane into one or more regions, depending on how it crosses itself. All vertices lying in regions of limited area lie inside the cycle. Any edge that starts outside C can only end inside C if it crosses any edge in C oddly. It follows that, for every edge $h=u v$ not incident to C that crosses every edge in C evenly, that u is inside of C if, and only if, v is inside of C.

3. Unified Hanani-Tutte in the Plane

In the following, we introduce two proofs of the Unified Hanani-Tutte Theorem in the Plane. In this chapter, when we talk about embeddings or embeddings with preserved rotations, it always means an embedding with preserved rotations at all even vertices.

3.1 Proof by Removing Even Crossings

According to Fulek et al. [12] the Unified Hanani-Tutte Theorem directly follows from the proof of the Strong Hanani-Tutte Theorem by Pelsmajer et al. [16]. We give an overview of the proof and pay additional attention to the rotation system at even vertices.

Theorem 1.1 (Strong Hanani-Tutte Theorem). Let $G=(V, E)$ be a graph. If iocr $(G)=0$ then $\operatorname{cr}(G)=0$.

Since the proof given for this theorem includes the preservation of the rotation system at even vertices, what is actually proven is the Unified Hanani-Tutte Theorem.

Theorem 1.3 (Unified Hanani-Tutte). Let $G=(V, E)$ be a graph with a drawing realizing $\operatorname{iocr}(G)=0$. Then there is a drawing realizing $\operatorname{cr}(G)=0$ such that the rotation system at even vertices is preserved.

Proof. Let D be a drawing of G such that there is no pair of independent edges crossing oddly. The basic idea is to find cycles in G and then make their edges even, marking them as processed after the procedure. Processed edges will always be crossing-free and contained in a cycle of crossing-free edges. Initially all edges in G are marked as unprocessed. We define the weight of Graph G as $w(G)=\sum_{v \in V} d(v)^{3}$ where $d(v)$ is the degree of vertex v in G. We prove the theorem by induction primarily over the weight $w(G)$ of G and secondarily over the number of unprocessed edges.

If all edges in D are even, the weak Hanani-Tutte theorem finishes the proof. Note that the rotation of all vertices is preserved.

Else there is at least one odd edge e with an end-vertex v. Define the edge crossing e oddly as e^{\prime} and assume e^{\prime} is incident to v, i.e. v is an odd vertex. Then, either e is a cut-edge - an edge that, if removed, separates the graph into two components - or e is contained in a cycle C. We distinguish between those two cases.

(a) Vertex u, oddly crossing edges e, e^{\prime} and processed edges e_{1}, e_{2}.

(b) Vertex u is split into vertices u_{1} and u_{2}.

Figure 3.1: Splitting vertex u.

Case 1: e is a cut-edge. Let u be the other end-vertex of e, i.e. $e=u v$. Then e separates G into two subgraphs G_{v} and G_{u}, containing v and u respectively, that, by inductive hypothesis, each have an embedding with preserved rotations, $D_{G_{v}}$ and $D_{G_{u}}$. We can assume that v is on the outer face of $D_{G_{v}}$ and that u is on the outer face of $D_{G_{u}}$. Else, for each subgraph, draw the embedding onto a sphere. Using a stereographic projection (e.g.[1]), we can project the embedding back onto the plane, excepting a single point of the sphere. By choosing this point to be in a face containing v or u respectively, the projected embedding in the plane has the same rotation system as the original embedding and v and u now lie on the outer face of $D_{G_{v}}$ and $D_{G_{u}}$. If u is even, we need to take a closer look at the rotation at u. Choose the point to remove when re-projecting the embedding onto the plane to be inside the face whose boundary contains the two edges that were consecutive to e at u in the initial drawing. To obtain an embedding of G join $D_{G_{v}}$ and $D_{G_{u}}$ back together by re-inserting edge $e=u v$. Since in $D_{G_{u}}$, the outer face contains the two edges that were consecutive to e at u in the initial drawing, when we re-insert e it is now consecutive to the same edges as in the initial drawing and as such the rotation at u is preserved. As v is an odd vertex, we have found an embedding of G where the rotation at even vertices is preserved.

Case 2: e is contained in a cycle C. Then, there either is an odd vertex $u \in C$ such that u has an incident processed edge e_{1} or for each odd vertex w in C, every edge incident to w is unprocessed. We distinguish between both cases.

Case 2.1: There is an odd vertex u in C with incident processed edge e_{1}. As e_{1} is a processed edge, it is contained in a cycle C^{\prime} of processed edges. Then, there is another processed edge e_{2} incident to w. Note that all processed edges are crossing-free. Cycle C^{\prime} divides the plane in two regions such that both e and e^{\prime} are in the same region. If e were in a different region than e^{\prime}, in order to cross, at least one of them would have to cross one of the edges in C^{\prime}. But, since all edges in C^{\prime} are processed, they are crossing-free. As such, we can split u into two adjacent vertices u_{1} and u_{2} such that e and e^{\prime} as well as every edge incident to u lying in the same region as e and e^{\prime} is made incident to u_{1} and the other edges incident to u are made incident to u_{2} (Figure 3.1). This does not increase the number of crossings in the drawing. Now, since $d(u)=d\left(u_{1}\right)+d\left(u_{2}\right)-2$, it follows that $d(u)^{3}=\left(d\left(u_{1}\right)+d\left(u_{2}\right)-2\right)^{3}<d\left(u_{1}\right)^{3}+d\left(u_{2}\right)^{3}$. Then, by induction the new graph has an embedding with preserved rotations. Contraction of $u_{1} u_{2}$ yields an embedding of G where the rotation at even vertices is preserved.
Case 2.2: For each odd vertex w in C, every edge incident to w is unprocessed. Then, for each such w repeat the following process. In a small neighbourhood of w, modify the rotation at w such that both edges incident to w contained in C cross evenly. After the modifications, each edge in C is even. Note that the number of pairs of independent edges crossing oddly was not changed. As proven by Pelsmajer et al. [16, Thm 2.1], in a graph in the plane, it is possible to remove all even crossings in a graph. Therefore, we can modify

Figure 3.2: Lemma 3.1: G_{3}, G_{5} and G_{7} have consecutive connecting edges in the rotation at v (see Fig. 1 [12]).
our drawing such that each edge of C is crossing-free, there are no new odd crossings and crossing-free edges remain crossing-free. Then, we mark all edges in C as processed. The number of unprocessed edges has decreased and as such the inductive hypothesis can be applied to get an embedding of G such that the rotations at even vertices is preserved.

In all cases, we can find an embedding of G.

3.2 Proof by Distinction According to Vertex-Connectivity

Fulek et al. [12] give a simpler proof for the Unified Hanani-Tutte Theorem.

Well-Formed Rotation Systems

During the main portion of the proof, Fulek et al. [9] make two statements regarding the rotation system. The first considers the rotation at a cut-vertex, if the graph has vertex-connectivity 1 and the second considers the rotations at a separating pair, if the graph has vertex-connectivity 2 . Hence, let G be a graph with drawing D such that every pair of independent edges cross evenly.

First, consider the case that G has a cut-vertex v separating G into k components G_{i}.
Lemma 3.1 ([12, Claim A]). If v is even in D, then there is an $i \in\{1 \ldots k\}$ such that the edges connecting G_{i} with v are consecutive in the rotation of v in D (Figure 3.1). Thus they form a well-defined linear order.

Proof. Let $I=\left\{e_{1}, \ldots, e_{n}\right\}$ be a minimal interval of edges consecutive in the clockwise rotation of v such that I contains all edges of some component G_{i} incident to v and for each e_{j} let v_{i} be the other end-vertex. Suppose there is an edge $e_{l} \in I$ that connects v to $G_{j}, j \neq i$. By minimality, $l \neq 1$ and $l \neq n$ and as such, e_{l} lies after e_{1} and before e_{n} in the clockwise rotation at v. Additionally, there is a connecting edge from v to G_{j} that is not in I. Edge f lies before e_{1} and after e_{n} in the clockwise rotation at v. Since $e_{1}=v v_{1}$ and $e_{n}=v v_{n}$ are in the same connected component, there exists a path from v_{1} to v_{n} that does not include v. This is true for e_{l} and f as well. Then there exists a cycle C including e_{1}, v and e_{n} as well as a cycle C^{\prime} including e_{l}, v and f. Since in D every pair of independent edges crosses evenly and v is even, every edge of C crosses every edge of C^{\prime} an even number of times. The curves representing C and C^{\prime} cross at v. Since C and C^{\prime} only share a single vertex, this implies that there is an edge in C that crosses an edge in C^{\prime} oddly. Therefore, I can not contain any such e_{l} and as such there is a component G_{i} with consecutive edges in the rotation at v.

Second, consider the case that G has a separating pair (u, v) separating G into k components G_{i}.

Figure 3.3: Lemma $3.2, v$ and u are even: The components G_{i} all have connecting edges consecutive in the rotation at v. The order of all G_{i} is inverse to v at u. (see Fig. 3 [12])

Lemma 3.2 ([12, Claim B]). If v is even in D, then for each $i \in\{1 \ldots k\}$, the edges connecting G_{i} to v are consecutive in the rotation of v in D. This defines a well-defined linear order C_{v} of the graphs G_{i} around v. If both u and v are even, then the analogously defined order C_{u} is inverse to C_{v} (Figure 3.2).

Proof. Let $a, c \in V\left(G_{i}\right), b \in V\left(G_{j}\right)$ and $d \in V\left(G_{j^{\prime}}\right)$ with $i \notin\left\{j, j^{\prime}\right\}$ such that the edges $v a, v b, v c$ and $v d$ occur in the clockwise rotation at v in this order. Let C_{i} be a cycle in $G \ominus\{u\}$ extending path avc and let C_{j} be a cycle in $G \ominus G_{i}$ extending path bvd. Note that C_{i} and C_{j} share only vertex v. Since every pair of independent edges crosses evenly and v is even, every edge of C_{i} crosses every edge of C_{j} an even number of times. The curves representing C_{i} and C_{j} cross at v. Since C_{i} and C_{j} only share a single vertex, this implies that there is an edge in C_{i} that crosses an edge in C_{j} oddly. Therefore, such a C_{j} cannot exist and as such there is no such edge $v b$ lying in between $v a$ and $v c$ in the clockwise rotation at v. Therefore, the connecting edges of every G_{i} are consecutive in the rotation at v and as such the order C_{v} is well-defined

Next, assume both u and v are even. Let P_{i}, P_{j} and P_{l} be distinct paths from v to u through component $G_{m}, m \in\{i, j, l\}$ respectively. In each subgraph induced by paths P_{i}, P_{j}, P_{l} every pair of independent edges crosses evenly. By a local redrawing at internal vertices on the paths the drawing can be made even. The Weak Hanani-Tutte Theorem then implies that the cyclic order of the paths at v is inverse to the cyclic order of the paths at u. It follow that the cyclic order C_{u} at u is inverse to C_{v} at v.

Proof of the Unified Hanani-Tutte Theorem

Now, we can present the proof.
Theorem 1.3 (Unified Hanani-Tutte). Let $G=(V, E)$ be a graph with a drawing realizing $\operatorname{iocr}(G)=0$. Then there is a drawing realizing $\operatorname{cr}(G)=0$ such that the rotation system at even vertices is preserved.

Proof. Let G be a graph with a drawing D such that every pair of independent edges cross evenly. We prove the theorem by induction over $n=|V|$.

The base case $n=1$, a graph with only a single vertex, is trivial.
For the inductive step, we distinguish by vertex-connectivity.
Case 1: G is disconnected. Then, the statement follows for every component by inductive hypothesis, which can then be embedded next to each other.

Case 2: G has vertex connectivity 1. Then, there exists a separating vertex v. Define G_{i} to be the components of $G \ominus\{v\}$.

If v is odd in D, we do not need to pay attention to the rotation system at v. By inductive hypothesis, each $G_{i} \oplus v$ has an embedding $D_{G_{i}}$. To obtain an embedding of G, glue the different $D_{G_{i}}$ at v in an arbitrary order.

Else, v is even in D. By Lemma 3.1 there is at least one component G_{i} whose connecting edges to v are consecutive in the rotation at v. Then, by inductive hypothesis, $G \ominus G_{i}$ has an embedding $D_{G \ominus G_{i}}$ and $G_{i} \oplus\{v\}$ has an embedding $D_{G_{i}}$. To obtain an embedding of G, glue $D_{G_{i}}$ in an appropriate face of $D_{G \ominus G_{i}}$.

Case 3: G has vertex connectivity 2. Then, there exists a separating pair (u, v). Let G_{i} be the components of $G \ominus\{v, u\}$. By inductive Hypothesis, each $G_{i} \oplus\{u, v\}$ has an embedding $D_{G_{i} \oplus\{u, v\}}$.
If both v and u are odd, in order to obtain an embedding of G, glue all $D_{G_{i} \oplus\{u, v\}}$ at v arbitrarily and at u in a way that does not introduce any crossings.

Else, if v is even and u is odd, applying Lemma 3.1 to $G \ominus\{u\}$ and separating vertex v, there is a component G_{j} whose connecting edges to v are consecutive in the rotation at v. Then, by inductive hypothesis, $G \ominus G_{j}$ has an embedding $D_{G \ominus G_{j}}$ and $G_{j} \oplus\{u, v\}$ has an embedding $D_{G_{j} \oplus\{u, v\}}$. To obtain an embedding of G, glue $D_{G_{j} \oplus\{u, v\}}$ in the appropriate face of $D_{G \ominus G_{j}}$ at u and v. If v is odd and u is even, we can the argue analogously.
Else, both v and u are even. By inductive hypothesis, each $G_{i} \oplus\{u, v\}$ has an embedding $D_{G_{i} \oplus\{u, v\}}$. Define $G_{0}=(\{u, v\},\{u v\})$ if $u v \in G$. By Lemma 3.2 all $D_{G_{i} \oplus\{u, v\}}$ can be glued together in a way that preserves the rotations at both u and v without adding any crossings.

Case 4: G has vertex connectivity 3 or more. We show that it is possible to change the rotation of odd vertices locally to get an even drawing. The Weak Hanani-Tutte Theorem (Thm. 1.2) then finishes the proof.
Let v be an odd vertex in G and $u v$ any arbitrary edge incident to v. It is possible to redraw every other edge incident to v in a small neighbourhood of v such that they cross $u v$ evenly. For any edges f_{1}, f_{2} consecutive in the rotation at v that cross oddly remove the odd crossing by swapping them in the rotation at v. Let $\left(u_{0}=u, u_{1}, \ldots, u_{\operatorname{deg}(v)}\right)$ be the end-vertices of the clockwise rotation of edges at v. After the adjustments, $v u_{0}$ crosses every $v u_{i}$ evenly and every $v u_{i}$ crosses $v u_{i+1}$ evenly. Next, we prove that in this case v is an even vertex.

Suppose v is not even in G. Then, there is a pair of incident edges $v u_{i}=e_{i}, v u_{j}=e_{j}$ crossing oddly. Assume $i<j$. If there is more than one pair, choose the one with the least number of edges between them. Define edge $u v_{k}=e_{k}$ as the edge consecutive to e_{i} lying in between e_{i} and e_{j} and define $u v_{0}=e_{0}$. Note that among e_{0}, e_{i}, e_{k} and e_{j} only e_{i} and e_{j} cross oddly. Using Menger's Theorem (e.g. [7]) and the fact that G has at least vertex-connectivity 3 , there are vertex-disjoint paths P_{1} from u_{0} to u_{k} and P_{2} from u_{i} to u_{j}. We can then define two cycles C and C^{\prime}. Cycle C comprises of edges e_{0} and e_{k} as well as path P_{1}. Cycle C^{\prime} comprises of edges e_{i} and e_{j} as well as path P_{2}. Note that C and C^{\prime} only share vertex v. Every edge of C crosses every edge of C^{\prime} an even number of times. The curves representing C and C^{\prime} cross at v. Since C and C^{\prime} only share a single vertex, this implies that there is an edge in C that crosses an edge in C^{\prime} oddly.
Overall, if G is disconnected or has vertex-connectivity 1 or 2 , we can find an embedding for G by inductive hypothesis. Else, G has vertex-connectivity 3 . Then, we can change the rotation of all odd vertices locally to get an even drawing and the theorem follows with the Weak Hanani-Tutte Theorem.

4. Strong Hanani-Tutte for Level-Graphs

To later prove the Unified Hanani-Tutte Theorem for level-Graphs, we first present the proof for the Strong Hanani-Tutte Theorem for x-monotone Graphs 9, adapted for level-graphs.

Theorem 4.1 (Strong Hanani-Tutte for level-graphs). Let $G=(V, E)$ be a level-graph with level-assignment $l: V \rightarrow \mathbb{N}$. If G has a drawing such that every pair of independent edges crosses an even number of times, then G has a planar drawing.

The theorem was proven by excluding the existence of a smallest counterexample in the sense that it has as few vertices as possible. Fulek et al. 9 give some properties for a possible smallest counterexample and also properties of level-graphs with a drawing such that all independent edges cross each other evenly. Using those, the existence of a smallest counterexample for the theorem can be disproven by contradiction. But before that, we take a look at the relationship between x-monotone drawings and level-graphs, particularly in the context of the Hanani-Tutte Theorems.

4.1 Monotone Drawings, Level-Graphs and Hanani-Tutte

Fulek et al. [9] consider x-monotone drawings of regular graphs-drawings such that every edge is monotone in x-direction and every vertical line contains at most one vertex. Both x-monotone drawings and level-graphs are based on a similar concept where the vertices are at least partially ordered.

We can represent an x-monotone drawing as a level-graph by rotating and stretching it partially (Figure 4.1). Let G be a graph with an x-monotone drawing D. First, we modify D by rotating it 90 degrees counter-clockwise, which results in a y-monotone drawing. Using D, we can define an order on the vertices where $v<v^{\prime}$ if $x(v)<x\left(v^{\prime}\right)$. We then define a function $f: V \rightarrow \mathbb{N}$ such that $f(u)=1$ for vertex $u=\min \{v \in V\}$ and $f\left(v^{\prime}\right)=f(v)+1$ for all $v, v^{\prime} \in V$ if $v<v^{\prime}$ and there is no vertex $v^{\prime \prime}$ such that $v<v^{\prime \prime}<v^{\prime}$. Then $f(v)<f\left(v^{\prime}\right) \Leftrightarrow v<v^{\prime}$. We then modify D to a drawing D^{\prime} by scaling its y-axis such that $y(v)=f(v)$ for each vertex. Then, D^{\prime} is a drawing of level-graph (G, l) with $l=f$.
Representing a level-graph as an x-monotone drawing is not universally possible, but restricted by the number of vertices per level or x-coordinate respectively. A representation as an x-monotone drawing is only possible if each vertex has a unique level. Hence, let G be a level-graph with a level-assignment l and let D be a drawing of G. If each level has only a single vertex, we obtain an x-monotone drawing by simply rotating $D 90$ degrees

(a) The x-monotone drawing.

(b) The corresponding level-graph is obtained by rotating and partially stretching.

Figure 4.1: The modification of an x-monotone drawing to a level-graph.
clockwise. Else, if there is at least one level with more than one vertex, we can still use some properties of x -monotone drawings, the Hanani-Tutte Theorems included. We need to ensure that any modifications we make after converting the graph to an x-monotone drawing do not hinder the re-conversion to the original level-graph. After modifying the x-monotone drawing, it is possible that an edge acts as a barrier between a vertex and its original level (Figure 4.4). To prevent this, we insert temporary vertices and edges as placeholders (see [9, Sec. 4.2]) (Figure 4.2). Therefore, before converting the level-graph do the following. Define v_{i}^{j} to be the vertices on level i, as ordered in the original drawing from left to right. For each level k with more than one vertex and each vertex v_{k}^{l} such that there is no edge that has v_{k}^{l} as an upper end-vertex, insert a vertex v^{\prime} just below level k and add edge $v^{\prime} v_{k}^{l}$ without adding any crossing. Then, we modify D such that each vertex has a unique y-coordinate. On k, for each v_{k}^{l} with $l>1$ we take a small surrounding and distort the inside along the y-axis such that $y\left(v_{k}^{l}\right) \neq l\left(v_{k}^{l}\right), y\left(v_{k}^{l}\right) \neq y\left(v^{\prime}\right)$ for all other vertices v^{\prime} with $l(v)=l\left(v^{\prime}\right)$ and $y\left(v_{k}^{l}\right)<y\left(v_{k}^{l+1}\right)$. This drawing is y-monotone. We can obtain an x-monotone drawing by rotating the drawing 90 degrees clockwise.

We can use these connections between level-graphs and x-monotone drawings to, for example, explain how the Weak Hanani-Tutte Theorem for level-graphs follows from the Weak Hanani-Tutte Theorem for x-monotone drawings (Figure 4.3). Let G be a level-graph with a drawing such that every pair of edges crosses evenly. Using the described method, we can obtain a drawing of a level-graph with only a single vertex per level without adding or removing any crossings. This drawing is a y-monotone drawing, rotate it to obtain a x-monotone drawing. Then, with the Weak Hanani-Tutte Theorem for x-monotone drawings, we obtain an embedding with preserved rotations. To obtain an embedding of G revert the modifications. First, rotate the embedding of the x-monotone drawing counter-clockwise to make the embedding y-monotone. Then, by reverting the distortions we can move the vertices back to their original level. Since each distorted vertex v has an incident edge e crossing its original level and since the embedding is crossing-free this does not add or change any crossings and retains the monotony of any edge. Therefore, we have found an embedding of G with preserved rotations in respect to the initial drawing. Consequentially, the Weak Hanani-Tutte Theorem holds for level-graphs.

Theorem 4.2 (Weak Hanani-Tutte Theorem for level-graphs). Let $G=(V, E)$ be a levelgraph with level-assignment $l: V \rightarrow \mathbb{N}$. If G has drawing such that every pair of edges cross an even number of time, then G has an embedding such that the rotation at all vertices is preserved.

A similar approach could be used to conclude the Strong Hanani-Tutte Theorem for level-graphs from th Strong Hanani-Tutte Theorem for x-monotone drawings.

Figure 4.2: The modification of a level-graph that has a level with more than one vertex. If needed, a placeholder is inserted.

Figure 4.3: Continuation of Figure 4.2, An x-monotone drawing where the vertices on the same level were correctly modified.

(a) The x-monotone drawing without placeholder.

(b) An embedding of the x monotone drawing.

(c) The embedding as y monotone drawing. A reversion to the original graph is not possible.

Figure 4.4: Continuation of Figure 4.2, An x-monotone drawing where the vertices on the same level were not correctly modified.

4.2 Properties of a Smallest Counterexample

In the following we reiterate the properties for a smallest counterexample as given by Fulek et al. [9]. In preparation for the proof of the Unified Hanani-Tutte Theorem in Section 5 we can consider that by allowing multi-edges in G the Lemmata in this section hold for multi-graphs as well.

Lemma 4.3 (Lemma 3.3 i 9). Let G be a smallest counterexample to Theorem 4.1. Then G is connected.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every pair of independent edges crosses an even number of times. If G is not connected, by minimality, its components themselves have embeddings with preserved rotations. Define the different components as G_{i}. We can pull the components apart such that each G_{i} completely lies to the left of G_{i+1} and embed them separately. The different components do not intersect each other and as such we found an embedding of G.

Hence, for the rest of this section assume that all smallest counterexamples to Theorem 4.1 are connected.

Lemma 4.4 (Lemma 3.3 ii [9]). Let G be a smallest counterexample to Theorem 4.1. Then G has no connected subgraph H such that

1. H has only the neighbours a and b.
2. H lies completely between the vertices a and b.
3. $G \ominus H$ has other vertices apart from a and b.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every pair of independent edges crosses an even number of times and consider such a H. Then, let $E_{a} \subsetneq E(G)$ be the set of edges connecting a to H and let $E_{b} \subsetneq E(G)$ be the set of edges connecting b to H. If $a b \notin E(G)$ insert $a b$ by taking any path P from a to b in H and drawing $a b$ next to P. Then, $a b$ is bounded by $l(a)$ and $l(b)$ and we can redraw $a b$ to be monotone while leaving the number of crossings unchanged. Since each edge in $G \ominus H$ crosses each edge in H evenly, $a b$ has no odd crossings with any edge of $G \ominus H \ominus\{a, b\}$. Then, by minimality of $G, G \ominus H$ has an embedding $D_{G \ominus H}$. Similarly we can obtain an embedding D_{H} for $H \oplus\{a, b\}$. To obtain an embedding of G glue D_{H} to $D_{G \ominus H}$ at a and b along $a b$. If $a b \notin E(G)$ originally, remove it.

Lemma 4.5 (Lemma 3.3 iii [9]). Let G be a smallest counterexample to Theorem 4.1. If G has a cut-vertex a and $G \ominus\{a\}$ has a component H that lies completely above a, then
a) H contains only a single vertex b.
b) G has no edge ac such that c lies above b.
c) G has no connected subgraph H^{\prime} such that

1. H^{\prime} fully lies between the vertices a and b.
2. H^{\prime} has neighbouring vertex a.
3. all other neighbouring vertices of H^{\prime} lie above b.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every pair of independent edges crosses an even number of times and consider such a H.

Figure 4.5: Vertex a, subgraph H^{\prime}, leftmost connecting edge $a u$ and the face f let to $a u$.

Figure 4.6: The boundary walk of f starting at a and continuing through $a u$.
a) Let H be a component of $G \ominus\{a\}$ such that $l(a)<l(v)$ for all vertices v in H and let b be the vertex with maximal level in H. If $|V(H)|>1$ we get a contradiction using Lemma 4.4 and choosing H in Lemma 4.4 as $H \ominus\{b\}$. It follows that $|V(H)|=1$ and as such $H=\{b\}$.
b) Consider an edge $a c$ in G with $l(b)<l(c)$. By minimality of G, the subgraph $G \ominus\{b\}$ has an embedding $D_{G \ominus\{b\}}$. We can then obtain an embedding of G by inserting vertex b and edge $a b$ into $D_{G \ominus\{b\}}$ along $a c$.
c) Consider such a H^{\prime}. We can assume that H^{\prime} is an induced subgraph. Due to minimality of G, subgraph $G \ominus\{b\}$ has an embedding $D_{G \ominus\{b\}}$. Next we show ho to embed $a b$ in $D_{G \ominus\{b\}}$. Define $a u$ to be the edge leftmost at a connecting a to H^{\prime} and define f to be the face left of $a u$ containing $a u$ in its boundary (Figure 4.5). Assume that $a b$ lies to the left of $a u$. Then, starting at a and continuing through $a u$, follow the boundary of f until we come across a vertex c that is not contained in H^{\prime}. If $c=a$ (Figure 4.6a) then H^{\prime} has no neighbours v above b, which contradicts our assumptions. Therefore, c must lie above b (Figure 4.6b). Add edge $a b$ and vertex b to $D_{G \ominus\{b\}}$ by drawing it inside the face f along the walk defined by the boundary of f from a to c through H^{\prime} and stopping at level $l(b)$. We can redraw $a b$ to be monotone without changing the crossings and therefore we can embed a crossing-free edge $a b$. Then, we have found an embedding of G with preserved rotations.

To make it more clear that when Lemma 4.5 is used, all assumptions are met and it can in fact be applied, we extend the Lemma to exclude the existence of a component H^{\prime} of $G \ominus\{a\}$.

Lemma 4.6 (Extension of Lemma 4.5). If G has a cut-vertex a and $G \ominus\{a\}$ has a component H that lies completely above a, then
a) H contains only a single vertex b.
b) G has no edge ac such that c lies above b.
c) G has no connected subgraph \bar{H} such that

1. \bar{H} is a component of $G \ominus\{a\}$.
2. \bar{H} fully lies above vertex a.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every pair of independent edges crosses an even number of times. Items a) and b) apply by Lemma 4.5.

To prove item c), suppose there is such a \bar{H}. Define \hat{H} as the subgraph induced by all vertices of \bar{H} with a level lower than $l(b)$. Then, either \hat{H} is connected or \hat{H} has more than one component. If \hat{H} is connected, \hat{H} lies above a and below b, a is neighbouring vertex of \bar{H} and \bar{H} has no other neighbouring vertices below b. This contradicts Lemma 4.5 with $H^{\prime}=\hat{H}$. Else, \hat{H} has more than one component. Define \hat{H}_{i} as the components of \hat{H}. Then there exists a component \hat{H}_{j} of \hat{H} that has neighbour a and has no other neighbours below b. By definition, all vertices of \hat{H}_{j} lie between a and b. This contradicts Lemma 4.5 with $H^{\prime}=\hat{H}_{j}$.

4.3 Properties of Level-Graphs with Independent Even Crossings

In this section we consider a specific situation: Let G be a level-graph such that all independent edges cross an even number of times. Assume that G has an odd vertex v_{0} with three incident edges e_{1}, e_{2} and e_{3} such that e_{3} lies between e_{1} and e_{2}. The edges e_{1} and e_{2} cross oddly and e_{3} crosses both e_{1} and e_{2} evenly (Figure 4.9). This situation arises in the main part of the proof (Section 4.4). There, we have a drawing of G with a minimal number of odd crossings, which results in the defined constellation of edges for any remaining odd crossings.

Lemma 4.7 (Lemma $3.4[9])$. For arbitrary $l_{R}>l\left(v_{0}\right)$, define G^{\prime} as the graph induced by all vertices of G lying between levels $l\left(v_{0}\right)$ (excluded) and l_{R} (included). Let G_{i}^{\prime} be the component of G^{\prime} that contains v_{i}. If $l\left(v_{i}\right)>l_{R}$, then $G_{i}^{\prime}=\emptyset$.

Suppose that $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$ are pairwise disjoint and that for every $i=1,2,3$ there is a path $P_{i}($ in $G)$ from v_{0} through e_{i} to some vertex v_{i}^{\prime} that lies above level l_{R} such that all vertices of P_{i} lie above v_{0} (Figure 4.7). If $G_{i}^{\prime}=\emptyset$, then define $E\left(P_{i}\right)=\left\{e_{i}\right\}$.

Then each G_{i}^{\prime} has no neighbours (in G) below v_{0}.

Sketch Proof. The lemma is proven by contradiction. If there were a neighbour v^{\prime} of G_{i}^{\prime} below v_{0}, there would be a path P_{i}^{\prime} from v_{i} to v^{\prime} that, apart from v^{\prime}, fully lies in G_{i}^{\prime}. Using the fact that each time two edges e and f cross, they switch order on a horizontal line and the fact that all pairs of independent edges cross an even number of times, each assignment of $\{i, j, k\}$ to $\{1,2,3\}$ can be lead to a contradiction such that the last edge of P_{i}^{\prime} must pass both left and right of v_{0}.

Figure 4.7: Graph G, induced subgraph G^{\prime} between $l\left(v_{0}\right)$ and l_{R}, vertices v_{1}, v_{2}, v_{3} contained in components $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$ as well as paths $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ ending over l_{R}. (see Fig. 6 [9])

Figure 4.8: Edges e_{i}, e_{j}, e_{k}, cycle C containing e_{j}, e_{k} and its uppermost vertex v_{l}.

Lemma 4.8 (Lemma 3.5 [9). Suppose that for some distinct $j, k \in\{1,2,3\}$, there is a cycle C that contains e_{j} and e_{k} such that every vertex of C lies above v_{0}. Let v_{l} be the vertex on C with the highest level (Figure 4.8). Let i be the index such that $\{i, j, k\}=\{1,2,3\}$ and suppose that v_{i} is not in C. Let G_{i}^{\prime} be the component of $G \ominus C$ that contains v_{i}.

Then every vertex v of G_{i}^{\prime} lies between v_{0} and v_{l} (both excluded).
Sketch Proof. The lemma is proven by contradiction. Suppose that v_{i} lies above v_{l}. This can be disproven by leading each assignment of $\{i, j, k\}$ to $\{1,2,3\}$ to a contradiction such that v_{l} lies both left and right of e_{i}. As such v_{i} lies between v_{0} and v_{l} (both excluded). Vertex v_{i} lies between the paths P_{j} and P_{k}. Then, supposing there is a path P_{i}^{\prime} in G_{i}^{\prime} to a vertex either below v_{0} or above v_{l}, it can be deduced that all vertices in P_{i}^{\prime} are all either to the left or to the right of both P_{j} and P_{k}, contradicting the placement of v_{i}.

After careful consideration of the full proofs, it can be deduced that both Lemma 4.7 and Lemma 4.8 hold for multi-graphs as well.

4.4 Proof of the Strong Hanani-Tutte Theorem

Using the properties established in this chapter, Fulek et al. 9 prove the Strong HananiTutte Theorem for level-graphs by disproving the existence of a smallest counterexample G.

Theorem 4.1 (Strong Hanani-Tutte for level-graphs). Let $G=(V, E)$ be a level-graph with level-assignment $l: V \rightarrow \mathbb{N}$. If G has a drawing such that every pair of independent edges crosses an even number of times, then G has a planar drawing.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing D such that every pair of independent edges crosses an even number of times and the number of pairs of edges crossing oddly is minimal.

If D has no odd crossing pair of edges then the Weak Hanani-Tutte Theorem for level-graphs (Thm. 4.2) finishes the proof.

Else, D has a pair of edges crossing oddly. By Lemma $4.3 G$ is connected. Since all independent edges cross evenly, this pair has a common end-vertex v_{0}. We can assume v_{0} is the lower end-vertex. Note that v_{0} is an odd vertex. Define e_{1}, e_{2} as the pair of odd-crossing edges incident to v_{0} such that there are as few edges between both in clockwise rotation at v_{0} as possible and such that e_{1} lies to the left of e_{2}. By minimality of the number of odd crossings, e_{1} and e_{2} are not consecutive in the rotation at v_{0}. Otherwise this odd crossing could be resolved by switching e_{1} and e_{2} in the rotation at v_{0}. By choice of e_{1} and e_{2}, there are edges incident to v_{0} lying between e_{1} and e_{2} that cross each other as well as e_{1} and e_{2} evenly. Let e_{3} be such an edge (Figure 4.9). Define v_{1}, v_{2}, v_{3} as the upper end-vertices of e_{1}, e_{2}, e_{3} and let G_{0} be the subgraph of G induced by all vertices lying above v_{0}. We distinguish by the placement of v_{1}, v_{2} and v_{3} in the components of $G_{0} \ominus v_{0}$.

Case 1: All vertices of $\left\{v_{1}, v_{2}, v_{3}\right\}$ are in different components of $G_{0} \ominus v_{0}$.
For $i \in\{1,2,3\}$ let G_{i} be the component of $G_{0} \ominus v_{0}$ that contains v_{i} and let v_{i}^{\prime} be the vertex with the highest level in G_{i}. Assign $\{1,2,3\}$ to $\{i, j, k\}$ such that v_{i}^{\prime} is the lowest of $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$. Then define $G_{i}^{\prime}, G_{j}^{\prime}$ and G_{k}^{\prime} as the components of the subgraph induced by all vertices lying between v_{0} and v_{i}^{\prime} that contain v_{i}, v_{j} and v_{k} respectively. If v_{j} lies above v_{i}^{\prime}, then define $G_{j}^{\prime}=\emptyset$. Define G_{k}^{\prime} analogous. Thus, we can apply Lemma 4.7 with $l_{R}=l\left(v_{i}^{\prime}\right)$, which then states that $G_{i}^{\prime}, G_{j}^{\prime}, G_{k}^{\prime}$ have no neighbours below v_{0}. Note that by definition of

Figure 4.9: Edges e_{1}, e_{2}, e_{3} and end-vertices v_{1}, v_{2}, v_{3}. The pairs e_{1}, e_{3} and e_{2}, e_{3} cross evenly and the pair e_{1}, e_{2} crosses oddly.

Figure 4.10: Lower bound $l\left(v_{0}\right)$, upper bound $l\left(v_{l}\right)$ edges e_{i}, e_{j}, e_{k} and path Q.
l_{R} and v_{i}, G_{i} has no neighbours in G below v_{0} and is therefore a component of $G \ominus\left\{v_{0}\right\}$. Also note that by definition of l_{R} and v_{i}, G_{i} lies on and below l_{R}. Overall $G_{i}^{\prime}=G_{i}$ and as such G_{i}^{\prime} is a component of $G \ominus\left\{v_{0}\right\}$. We can then apply Lemma 4.6 with $a=v_{0}$ and $H=G_{i}^{\prime}$. It follows that G_{i}^{\prime} only contains a single vertex and therefore $v_{i}=v_{i}^{\prime}(4.6 \mathrm{a})$). It also follows that v_{j} and v_{k} lie below v_{i} and below $\left.v_{i}^{\prime}(4.6 \mathrm{~b})\right)$. Therefore $G_{j}^{\prime} \neq \emptyset$ and $G_{k}^{\prime} \neq \emptyset$. Overall, both G_{j}^{\prime} and G_{k}^{\prime} are connected components of $G \ominus\left\{v_{0}\right\}$ that fully lie above v_{0}, contradicting Lemma 4.6.

Case 2. At least two vertices of $\left\{v_{1}, v_{2}, v_{3}\right\}$ are in the same component of $G_{0} \ominus v_{0}$.
Let l be the smallest level such that the subgraph induced by all vertices of G lying between the levels $l\left(v_{0}\right)$ (excluded) and l (included) has a component that contains at least two vertices of $\left\{v_{1}, v_{2}, v_{3}\right\}$. Then there is a cycle C that contains e_{j} and e_{k} such that $\left\{e_{j}, e_{k}\right\} \subsetneq\left\{e_{1}, e_{2}, e_{3}\right\}$ as well as a vertex v_{l} on level l such that all vertices of the cycle lie between v_{0} and v_{l}, both included (Figure 4.10). If $v_{l}=e_{n}$ for a $n \in\{1,2,3\}$ then we can assume that $e_{n}=v v_{n}$ is a part of cycle C. Let $i \in\{1,2,3\}$ such that $i \neq k$ and $i \neq j$, then it follows that $v_{i} \neq v_{l}$. Suppose there is path Q from v_{i} to C such that the vertices of Q lie completely between v_{0} and v_{l}, excluding both. Then there exists a cycle C^{\prime} that includes v_{0}, e_{i}, Q and part of $C \ominus\left\{v_{l}\right\}$ such that it either contains e_{j} or e_{k}. But then all vertices in C^{\prime} lie between v_{0} (included) and v_{l} (excluded). This contradicts the choice of l as the smallest level such that a cycle with any two of $\left\{e_{1}, e_{2}, e_{3}\right\}$ completely lies on and below l. Supposing $V(Q)=\left\{v_{i}\right\}$ implies that v_{i} is not contained in C.
Next, let G_{i}^{\prime} be the component of $G \ominus C$ that contains v_{i}. By Lemma $4.8 G_{i}^{\prime}$ lies between v_{0} and v_{l} (both excluded). The previous paragraph also implies that G_{i}^{\prime} has no neighbours in $C \ominus\left\{v_{0}, v_{l}\right\}$. Let v_{i}^{\prime} be the vertex with the highest level in G_{i}^{\prime} and define $G_{j}^{\prime}, G_{k}^{\prime}$ according to Lemma 4.7 with $l_{R}=l\left(v_{i}^{\prime}\right)$. By choice of l and as v_{i}^{\prime} lies below l, it follows that $G_{j}^{\prime} \neq G_{k}^{\prime}$.
We further distinguish by adjacency of v_{l} to G_{i}^{\prime} :

Case 2.1: G_{i}^{\prime} is not adjacent to v_{l}
Since v_{i} is a vertex of G_{i}^{\prime}, v_{i} is in a different component of $G_{0} \ominus v_{0}$ than both v_{j} and v_{k}. Note that G_{i}^{\prime} neither has a neighbour below $l\left(v_{0}\right)$ nor a neighbour above or on l nor a neighbour in $C-\left\{v_{0}, v_{l}\right\}$. As such, the only neighbour of G_{i}^{\prime} is v_{0}. Further note that G_{i}^{\prime} lies completely between the levels $l\left(v_{0}\right)$ and $l\left(v_{l}\right)$ (both excluded). Therefore G_{i}^{\prime} is a component of $G \ominus\left\{v_{0}\right\}$. We can therefore apply Lemma 4.6 with $a=v_{0}$ and $H=G_{i}^{\prime}$. It follows that G_{i}^{\prime} only contains a single vertex and therefore $\left.v_{i}=v_{i}^{\prime}(4.6 \mathrm{a})\right)$. It also follows that v_{j} and v_{k} lie below v_{i} and below $\left.v_{i}^{\prime}(4.6 \mathrm{~b})\right)$. Therefore neither G_{j}^{\prime} or G_{k}^{\prime} are empty. Overall, both G_{j}^{\prime} and G_{k}^{\prime} are connected components of $G \ominus\left\{v_{0}\right\}$ that fully lie above v_{0}, contradicting Lemma 4.6.

Case 2.2: G contains an edge from G_{i}^{\prime} to v_{l}
Then G_{i}^{\prime} has only neighbours v_{0} and v_{l}, lies completely between its neighbours and $G \ominus G_{i}^{\prime}$ contains at least all vertices in $C \ominus\left\{v_{0}, v_{l}\right\}$ and is therefore not empty, contradicting Lemma 4.4.

Overall, after minimizing the number of odd crossings in a smallest counterexample G, either there are none left and according to the Weak Hanani-Tutte Theorem (Thm 4.2) G has an embedding, or there is at least one odd crossing left. Then, for each complete case distinction we make, each case can be lead to a contradiction. Therefore, after minimizing the number of odd crossings for G, none will be left and as such G has an embedding. It follows that G is not a counterexample to Theorem 4.1 and since G was defined to be the smallest counterexample, there exist none at all. Therefore, the Unified Hanani-Tutte Theorem for level-graphs (Thm 4.1) was proven.

5. Unified Hanani-Tutte for Level-Graphs

In order to prove the Unified Hanani-Tutte Theorem for level-graphs, we expand and adapt the proof for the Strong Hanani-Tutte Theorem for level-graphs (Thm 4.1).

Theorem 5.1 (Unified Hanani-Tutte for level-graphs). Let $G=(V, E)$ be a multi-levelgraph with level-assignment $l: V \rightarrow \mathbb{N}$. If G has drawing such that every pair of independent edges crosses an even number of times, then G has an embedding such that the rotation at all even vertices is preserved.

In this chapter, when we talk about an embedding or an embedding with preserved rotation, it always means an embedding such that the rotation at all even vertices is preserved.

5.1 Properties of a Smallest Counterexample

The properties for a smallest counterexample to the Strong Hanani-Tutte Theorem (Section 4.2)apply to a smallest counterexample to the Unified Hanani-Tutte Theorem as well. The proofs remove and then re-insert one or more edges into the rotation at a vertex v. Therefore, we need to distinguish for those v whether it is an even or an odd vertex in the initial drawing. If all such vertices v are odd, we do not need to pay attention to the rotation at those v and as such the proof given for the corresponding lemma in Section 4.2 is valid for this case. Therefore, we only take a closer look at the cases where at least one such v is an even vertex.

Lemma 5.2 (Analogous to Lemma 4.3). Suppose that G is a smallest counterexample to Theorem 5.1. Then G is connected.

Proof. The Lemma can be proven analogous to Lemma 4.3 .

Hence, assume that all smallest counterexamples to Theorem 5.1 are connected.
Lemma 5.3 (Analogous to Lemma 4.4). Suppose that G is a smallest counterexample to Theorem 5.1. Then G has no connected subgraph H such that

1. H has only the neighbours a and b.
2. H lies completely in between the vertices a and b.
3. $G \ominus H$ has other vertices apart from a and b.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every pair of independent edges crosses an even number of times. We expand on the proof of Lemma 4.4. Suppose such a graph H exists. The basic idea is to use the minimality of G to find embeddings for subgraphs $G \ominus H$ and $H \oplus\{a, b\}$ and glue them back together to find an embedding of G and therefore contradict the assumption that G is a counterexample. We need to ensure that the rotation at the vertices where we glue the embedding of the subgraphs back together is preserved for even vertices. Therefore, we differentiate between four separate cases for the vertices a and b and whether they are even (Figure 5.2) or odd (Figure 5.1).

Let $E_{a} \subsetneq E$ be the set of edges connecting H to a and let $E_{b} \subsetneq E$ be the set of edges connecting H to b.

Case 1: If neither a nor b are even, we do not need to pay further attention to the rotation of edges at a or b in order to fulfil Theorem 5.1. Therefore, the proof for the corresponding lemma in Section 4.2 (Lemma 4.4) is valid.

Case 2: If a is even and b is odd, define $\left\{e_{1}, \ldots, e_{\left|E_{a}\right|}\right\}$ as the edges in E_{a} as appearing in clockwise order at a and for each $i \in\left\{1, \ldots,\left|E_{a}\right|\right\}$ define v_{i} as the other endpoint of e_{i}.

If the edges in E_{a} are not consecutive in the rotation at a, there is at least one edge in between e_{i} and e_{i+1} for least one index i. In order to deal with these, we show that all edges in between e_{i} and e_{i+1} connect to a subgraph G_{i} of G that only contains and is even induced by all vertices that do not lie in H and are contained inside a cycle C_{i} defined by the edges e_{i}, e_{i+1} and any arbitrary path P_{i} that connects v_{i} and v_{i+1} and fully lies in H. Hence, assume that there are l_{i} edges in between e_{i} and e_{i+1} in the clockwise rotation at a. Define the edges that lie in between e_{i} and e_{i+1} in the rotation at a as $e_{i}^{j}, j \in\left\{1, \ldots, l_{i}\right\}$. Further, for all e_{i}^{j} define v_{i}^{j} to be its other end-vertex. Since a is even, e_{i}^{j} crosses both e_{i} and e_{i+1} evenly and therefore every v_{i}^{j} lies in between e_{i} and e_{i+1}. Additionally, since by definition of e_{i}^{j}, no v_{i}^{j} is adjacent to any vertex in H, v_{i}^{j} also lies in between $l(a)$ and P_{i}. Therefore v_{i}^{j} is contained in the region defined by C_{i} with limited area and as such v_{i}^{j} lies inside of C_{i}. Let v be a vertex that is not adjacent to H or C_{i}. Then, any edge incident to v crosses any edge in C_{i} evenly. It follows that, if v is inside C_{i}, every end-vertex of any edge incident to v lies inside of C_{i} as well. Analogously, if v lies outside of C_{i}, every end-vertex of any edge incident to v lies outside of C_{i} as well.

By definition of H and e_{i}^{j}, there is no path from a to H that includes e_{i}^{j}. Note that there is then also no such path that includes any v_{j} and therefore no vertex on such a path, excepting a, is incident any e_{j}. It follows that no vertex on such a path, excepting a and v_{i}^{j}, is adjacent to either C_{i} or H. For any fixed $i \in\left\{1, \ldots,\left|E_{a}\right|\right\}$, we can then deduce that every path that starts at a and continues through a e_{i}^{j} only contains vertices on the inside of C_{i}. Analogously, every path that starts at a and contains neither any vertex of C_{i} nor any v_{i}^{j}, contains, apart from a, only vertices lying outside of C_{i}. For $i \neq k$, it follows that any vertex not in H that is contained inside of C_{i} lies outside of C_{k}. It also follows that any vertex not in H that lies on the inside of C_{k} lies outside of C_{i}. Note that the areas inside of C_{i} and C_{k} need not be disjunct. Now we can define G_{i} as the subgraph of G induced by all vertices contained inside C_{i} that are not part of H. There is no vertex $z \in G$ that does not lie in H or any G_{i} such that z lies inside a cycle C_{k} since every possible path from a to z that does not contain e_{i}, e_{i+1} or any e_{i}^{j} starts outside of C_{i}. As argued before, all vertices on such a path, including z, lie outside of C_{i} as well. Overall, all edges e_{i}^{j} lying in between e_{i} and e_{i+1} connect a to a subgraph G_{i} of G containing all connected components of $G \ominus\{a\}$ that are connected to a by the edges lying in between e_{i} and e_{i+1} in the rotation at a. Define the union of all G_{i} as \mathcal{G}.

(a) Subgraph H is connected to a by edges e_{k}. There is at least one non-consecutive pair of edges e_{i}, e_{i+1}.

(b) The resulting embedding.

Figure 5.1: Uneven vertex a, subgraph H and non-consecutive connecting edges. The rotation can be changed arbitrarily.

(a) Subgraph H is connected to a by edges e_{k}. There are non-consecutive e_{i} and a_{i+1} that, together with a path through h Form cycle C_{i}.

(b) The resulting embedding. The rotation at a is preserved.

Figure 5.2: Even vertex a, subgraph H and non-consecutive connecting edges.

Figure 5.3: Graph G has a cut-vertex a. Subgraph $G \ominus\{a\}$ has component $H=\{b\}$. Edge $a c$ and subgraph H^{\prime} can not occur in a smallest counterexample.

To finish this case, we need to ensure that the edge $a b$ is contained in G at a convenient position. If $a b \notin G$ or if $a b \in G$ such that $a b$ is not consecutive to any edge in E_{a}, we insert an edge $a b$ by taking any path P from a through H to b and drawing the edge $a b$ in the region just to the left of P. Edge $a b$ is then bounded by $l(a)$ and $l(b)$ and has, analogous to P, no odd crossings with any edge of $G \ominus H \ominus \mathcal{G}$ that is not incident to a or b. Then, $G \ominus H \ominus \mathcal{G}$, including $a b$, has no pair of independent edges that cross oddly. We can redraw $a b$ as a monotone edge without changing the crossings of $a b$ with any edge in $G \ominus H \ominus \mathcal{G}$. Therefore, we get a monotone edge $a b$ that crosses any edge in $G \ominus H \ominus \mathcal{G}$ evenly.

By minimality the induced subgraph of G obtained by removing H and all G_{i} has an embedding $D_{G \ominus H \ominus \mathcal{G}}$ with preserved rotations. Similarly, we can obtain an embedding D_{H} for $H \oplus\{a, b\}$ as well as an embedding $D_{G_{i}}$ for each existing $G_{i} \oplus\{a\}$. To obtain an embedding of G we first insert H by glueing D_{H} to $D_{G \ominus H \ominus \mathcal{G}}$ at a and b just to the right or left of $a b$, depending on its previous position in the initial drawing and obtain an embedding $D_{G \ominus \mathcal{G}}$ of $G \ominus \mathcal{G}$. For each defined G_{i}, to embed $D_{G_{i}}$ into $D_{G \ominus \mathcal{G}}$, define f_{i} as the face of $D_{G \ominus \mathcal{G}}$ that contains e_{i} and e_{i+1} in its boundary. We can then embed an edge t from a to the highest vertex in f_{i} and embed $D_{G_{i}}$ along t. Remove t again. If an edge $a b$ was inserted previously remove it as well. Then, we have found an embedding of G with preserved rotations.

Case 3: If b is even and a is odd we can argue analogously to to the case 'if a is even and b is odd'.

Case 4: If both a and b are even, we can argue similarly to the procedure used for a in the previous case. If the edges in E_{a} are not consecutive in the rotation at a, define subgraphs G_{i}^{a} analogous to G_{i} in the previous case where necessary. If the edges in E_{b} are not consecutive in the rotation at b, define G_{i}^{b} for b analogous to G_{i}^{a} for a. As done previously, add $a b$, if necessary, get the embeddings of the subgraphs $G \ominus H \ominus \mathcal{G}, H \oplus\{a, b\}$ as well as embeddings for all $G_{i}^{a} \oplus\{a\}$ and all $G_{i}^{b} \oplus\{b\}$. As before, to get an embedding for G glue the embeddings at a and b taking into account the original rotation at those vertices. If necessary remove $a b$ again.

Lemma 5.4 (Analogous to Lemma 4.5). Suppose that G is smallest counterexample to Theorem 5.1. If G has a cut-vertex a and $G \ominus\{a\}$ has a component H that lies completely above a, then
a) H contains only a single vertex b.
b) G has no edge ac such that c lies above b.

Figure 5.4: Part of the embedding of G with vertex a, Paths P_{1} and P_{j} as well as edges $a c$ and $w u_{j}$.
c) G has no connected subgraph H^{\prime} such that

1. H^{\prime} fully lies in between the vertices a and b.
2. H^{\prime} has neighbouring vertex a.
3. all other neighbouring vertices of H^{\prime} lie above b.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every pair of independent edges crosses an even number of times and suppose such a graph H exists. We expand on the proof of Lemma 4.5.
a) Since Lemma 4.4 holds for the Unified Hanani-Tutte Theorem as well (Lem. 5.3), we can argue analogously to the proof of the corresponding lemma in Section 4.2 (Lem. 4.5 a$)$).
b) The basic idea is to obtain an embedding of $G \ominus\{b\}$ by minimality of G and then find a way to embed b and $a b$ correctly. Consider a possible edge $a c$ in G with $l(b)<l(c)$. If there are more such edges choose the one with the least amount of edges incident to a in between $a c$ and $a b$ in the rotation at a. We assume that $a c$ lies to the right of $a b$. Then, we distinguish for a whether it is even or odd.

Case 1: If a is odd, we do not need to pay further attention to the rotation at a and therefore we can argue analogously to the proof for the corresponding lemma in Section 4.2 (Lem. 4.5 b)).

Case 2: If a is even, we first embed $G \ominus\{b\}$. By minimality, $G \ominus\{b\}$ has an embedding $D_{G \ominus\{b\}}$ with preserved rotation. If $a c$ is consecutive to $a b$ in the rotation at a, to obtain an embedding of G, we can embed b and $a b$ in $D_{G \ominus\{b\}}$ along but left of $a c$. Else, $a c$ is not consecutive to $a b$ at a. Then, we construct a path in $D_{G \ominus\{b\}}$ along which we can embed $a b$ as follows (Figure 5.4). In the initial drawing, let e_{1}, \ldots, e_{k} be the edges between $a b$ and $a c$ in the clockwise rotation at a such that e_{1} is consecutive to $a b$ and $e_{k}=a c$ and let v_{1}, \ldots, v_{k} be their upper end-vertices.

In $D_{G \ominus\{b\}}$, if there are one or more paths from a through e_{1} to a vertex v that lies above b, define the leftmost of those as P_{1}. Then we can embed $a b$ and b just to the left of P_{1} and add end-vertex b at level $l(b)$. If $a b$ is crossing-free we are done. Else, by construction of P_{1}, for every edge $e_{u}=u x$ crossing $a b, u$ lies in P_{1} and x lies to the left of P_{1}. Since we chose the leftmost of all suitable paths, the highest vertex reachable through a path from u through e_{u} still lies below b. Next, we take a look
at only those vertices that lie between $l(a)$ and $l(b)$ (both excluded). In the original drawing, $a b$ separates those vertices into two vertex-sets V_{l} and V_{r}-depending on whether they lie left or right of $a b$ in the initial drawing. No vertex u_{l} in V_{l} is adjacent to any vertex u_{r} in V_{r} since every edge $u_{l} u_{r}$ connecting u_{l} and u_{r} would need to cross $a b$ oddly. Now, since a is an even vertex and the rotation at a is preserved in $D_{G \ominus\{b\}}$, all e_{i} lie right of $a b$ in the original drawing as well as in $D_{G \ominus\{b\}}$. As such all v_{i} with $l\left(v_{i}\right) \leq l(b)$ lie in V_{r}. Consequently any vertex along a path in between $l(a)$ and $l(b)$ (both excluded) that starts at v_{i} only contain vertices in V_{r}, including u and any paths containing e_{u}. We return to considering $D_{G \ominus\{b\}}$. By definition of P_{1} as leftmost possible path, it overall follows that e_{u} connects a subgraph K-defined as the component of $G \ominus\{u\}$ containing x - to P_{1}. To remove the crossing of $a b$ and e_{u}, we can lay $a b$ around K without introducing additional crossings. Then, $a b$ is bounded by $l(a)$ and $l(b)$ and we can redraw $a b$ as a monotone edge without changing the crossings in the drawing. We have then obtain an embedding of G such that the rotation is preserved.

Else, there is no path from a through e_{1} to a vertex v above b. Then define P_{1}, similarly to the previous paragraph, as the leftmost of all possible paths that start at a, continue through e_{1} and end at the highest vertex reachable through such a path. We then want to find a way to continue P_{1} to reach a vertex above b without introducing additional crossings. Hence, let j be the lowest index such that there is a path from a through e_{j} to a vertex above b. Define the lowest such vertex as u_{j} and define P_{j} to be the leftmost path from a through e_{j} to u_{j}. Since $e_{k}=a c$ and if $j=k$ then $u_{j}=c$ and $P_{j}=\{a c\}$, there is always at least one such such index j. Next, let w be the uppermost vertex on P_{1}. Note that no edges cross each other and w is connected to u_{j} through a. Therefore, there is a path from w to u_{j} that is bounded by $l(a)$ and $l\left(u_{j}\right)$ along which we can embed an edge $w u_{j}$. We can then draw a monotone edge from w to u_{j}. As such, we can continue P_{1} by adding an edge $w u_{j}$ in a way that does not add any crossing. Define the resulting path as P_{1}^{\prime}. As argued before, we can draw $a b$ crossing-free along P_{1}^{\prime} and add end-vertex b at level $l(b)$. As such, we have found an embedding of G with preserved rotation.

Overall, if G contains an edge $a c$ and $l(b)<l(c)$ we can always find a way to embed G such that the rotation is preserved.
c) Consider such a H^{\prime}. By minimality of G, we can obtain an embedding $D_{G \ominus\{b\}}$ of $G \ominus\{b\}$. Analogous to the proof of the corresponding lemma in Section 4.2 (Lem. 4.5 c)), in $D_{G \ominus\{b\}}$, do the following. Define $a u$ to be the edge from a to H^{\prime} leftmost at a and define f to be the face to the left of $a u$ containing $a u$ in its boundary (Figure 4.5). We know that there is a path P that goes through H^{\prime} from a to a vertex c lying above b that is defined by walking along the boundary of f.

If a is odd we can embed $a b$ along P, analogous to the proof for Lemma 4.5 c).
If a is even and $a b$ consecutive to $a u$ at a in the initial drawing, we can embed $a b$ into $D_{G \ominus\{b\}}$ in the same was as if a was odd.

If a is even and $a b$ is not consecutive to $a u$ in the initial drawing, let e_{1} be the consecutive edge to the left of $a b$ in the rotation at a. Now, using the same method as in the proof for Lemma 5.4 b), either there is a path P_{1} from a through e_{1} to a vertex above b or we can construct such a path P_{1}^{\prime}. Instead of considering an edge $a c$ we can consider a path from a to c. Then, we can embed $a b$ into $D_{G \ominus\{b\}}$ along either P_{1} or P_{1}^{\prime}.

Altogether, we have again found an embedding for G.

Lemma 5.5 (Extension of Lemma 5.4, analogous to Lemma 4.6). If G has a cut-vertex a and $G \ominus\{a\}$ has a component H that lies completely above a, then
a) H contains only a single vertex b.
b) G has no edge ac such that c lies above b.
c) G has no connected subgraph \bar{H} such that

1. \bar{H} is a component of $G \ominus\{a\}$.
2. \bar{H} fully lies above vertex a.

Proof. Items a) and b) apply by Lemma 5.4. Item c) can be proven analogous to corresponding Lemma 4.6.

5.2 Proof of the Unified Hanani-Tutte Theorem

Theorem 5.1 (Unified Hanani-Tutte for level-graphs). Let $G=(V, E)$ be a multi-levelgraph with level-assignment $l: V \rightarrow \mathbb{N}$. If G has drawing such that every pair of independent edges crosses an even number of times, then G has an embedding such that the rotation at all even vertices is preserved.

The main portion of the proof of the Unified Hanani-Tutte Theorem is matches the proof of the Strong Hanani-Tutte Theorem (Section 4.4). Though, since we consider multi-graphs, we need to ensure Section 4.4 applies for multi-graphs as well. The proof starts with a smallest counterexample G for Theorem 5.1 and a drawing of G with a minimal number of odd crossings such that all independent edges cross evenly. If there are no odd crossings left, the Weak Hanani-Tutte Theorem for level-graphs finishes the proof. Else, this results in the situation described in Section 4.3: There are three edges e_{1}, e_{2}, e_{3} that have a common lower end-vertex v_{0} such that e_{3} lies in between e_{1} and e_{2}. The edges e_{1} and e_{2} cross oddly and e_{3} crosses both e_{1} and e_{2} evenly. In order to be able to apply Lemma 4.7 and Lemma 4.8, the upper end-vertices of e_{1}, e_{2} and e_{3} must be distinct. Then, the proof is analogous to Section 4.4. Hence:

Lemma 5.6. Let G be a smallest counterexample to Theorem 5.1 with a drawing such that the number of odd crossings is minimal. If there is an odd vertex v_{0} left, then there are three incident edges e_{1}, e_{2} and e_{3} such that e_{3} lies in between e_{1} and e_{2} in the rotation at v_{0}, e_{1} and e_{2} cross oddly and e_{3} crosses both e_{1} and e_{2} evenly. Then the other end-vertices of e_{1}, e_{2} and $e_{3}-v_{1}, v_{2}$ and v_{3}-are distinct.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every pair of independent edges crosses an even number of times and the number of pairs of edges crossing oddly is minimal. Further let v_{0} be an odd vertex. Then there is an incident pair of odd-crossing edges e_{1} and e_{2}. By minimality of the number of odd crossings, e_{1} and e_{2} are not consecutive in the rotation at v_{0}. Therefore, there is at least one incident edge e_{3} that lies in between e_{1} and e_{2} and crosses both e_{1} and e_{2} evenly (Figure 4.9). We can assume that v_{0} is the lower-end vertex of e_{1}, e_{2} and e_{3}. We show that $v_{1}=v_{2}, v_{1} \neq v_{3}$ as well as $v_{1}=v_{3}, v_{1} \neq v_{2}$ as well as $v_{2}=v_{3}, v_{2} \neq v_{1}$ and finally $v_{1}=v_{2}=v_{3}$ always lead to a contradiction.

Case 1: $v_{1}=v_{2}, v_{1} \neq v_{3}$ (Figure 5.5)

Figure 5.5: The upper end-vertices of e_{1} and $e_{2}-v_{1}$ and v_{2}-are the same. We can embed e_{1} along e_{2} and reduce the overall number of odd crossings.

Figure 5.6: The upper end-vertices of e_{1} and $e_{3}-v_{1}$ and v_{3}-are the same. The end-vertex v_{2} of e_{2} lies below $v_{1}=v_{3}$. Every vertex inside of cycle $C=\left\{e_{1}, e_{2}\right\}$ is adjacent only to vertices inside of C, to v_{0} or to v_{1}. Subgraphs $G \ominus K$ and $K \oplus\left\{v_{0}\right\}$ can be embedded separately and glued back together to get an embedding of G.

Then, $v_{1}=v_{2}$ is an odd vertex and the rotation at v_{1} and v_{0} can be changed arbitrarily. Therefore, we can resolve the odd crossing by removing one of e_{1}, e_{2} and embedding it along the other edge. By taking the edge e_{i} with the higher number of odd crossings and embedding it along $e_{j}, j \neq i$ we can obtain a drawing of G where the overall number of odd crossings is decreased, contradicting the minimality of the number of odd crossings in the initial drawing.

Case 2: $v_{1}=v_{3}, v_{1} \neq v_{2}$
We know that e_{3} starts to the right of e_{1} and to the left of e_{2} at v_{0}. Since e_{3} crosses e_{2} evenly, e_{3} lies to the left of e_{2} at level $\min \left(l\left(v_{2}\right), l\left(v_{3}\right)\right)$. By definition, e_{2} starts to the right of e_{1}. Since e_{2} crosses e_{1} oddly, e_{2} lies to the right of e_{1} at $\min \left(l\left(v_{1}\right), l\left(v_{2}\right)\right)=\min \left(l\left(v_{2}\right), l\left(v_{3}\right)\right)$.

If $\min \left(l\left(v_{2}\right), l\left(v_{3}\right)\right)=l\left(v_{3}\right)$, since $v_{1}=v_{3}, e_{2}$ lies to the right of e_{1} and to the left of e_{3} at level $l\left(v_{3}\right)$, contradicting the fact that on level $l\left(v_{3}\right) e_{1}$ and e_{3} have the same coordinate $\left(x\left(v_{3}\right), y\left(v_{3}\right)\right)$.

Else $\min \left(l\left(v_{2}\right), l\left(v_{3}\right)\right)=l\left(v_{2}\right)$. Then, at level $l\left(v_{2}\right)$, since e_{2} crosses e_{1} oddly and e_{3} evenly, v_{2} lies in between e_{1} and e_{3}. Since e_{1} and e_{3} start with e_{3} lying to the right of e_{1}, but e_{2} must cross e_{1} oddly and e_{3} evenly, e_{1} and e_{3} cross oddly in between $l\left(v_{0}\right)$ and $l\left(v_{2}\right)$. Since overall e_{1} and e_{3} cross evenly, they need to cross oddly again between $l\left(v_{2}\right)$ and $l\left(v_{1}\right)$. Therefore, v_{2} lies in an area limited by cycle $C=\left\{e_{1}, e_{3}\right\}$ and as such inside C. Note that for every edge c of C and every edge $h=u v$ that is not incident to C and crosses c evenly it follows that u lies inside of C if, and only if, v lies inside of C. As such, any path containing v_{2} either contains only vertices inside of C or it contains a vertex in C, meaning vertex v_{0} or v_{1}. Therefore, each components of $G \ominus\left\{v_{0}, v_{1}\right\}$ either consists exclusively of vertices on the inside of C or it consists exclusively of vertices on the outside of C. We define the union of the components lying inside C as subgraph K. By previous argument, K consists exclusively of vertices that lie inside of C. Note that K can only be adjacent to v_{1} if v_{1} is odd. By minimality of G, subgraphs $G \ominus K$ and $K \oplus\left\{v_{0}, v_{1}\right\}$ have an embeddings with
preserved rotations, $D_{G \ominus K}$ and D_{K} respectively. We can then obtain an embedding of G by flattening D_{K} as needed and inserting it into $D_{G \ominus K}$ along either e_{1} or e_{3} (Figure 5.6).

Case 3: $v_{2}=v_{3}, v_{1} \neq v_{3}$
We arrive at a contradiction analogous to the previous case.
Case 4: $v_{1}=v_{2}=v_{3}$
In this case e_{1} lies to the left of e_{2} and e_{3} lies left of e_{2} and right of e_{1} in the rotation at v_{0}. Since e_{1} and e_{2} cross oddly and e_{3} crosses both e_{1} and e_{2} evenly, regarding the rotation at $v_{1}=v_{2}=v_{3}, e_{3}$ must still lie to the left of e_{2} and to the right of e_{1}, but e_{2} must lie to the left of e_{1}, which in turn demands that e_{2} lies to the left of e_{1}, a contradiction.

6. Conclusion

In this thesis, we considered the different variants of the Hanani-Tutte Theorem with a special emphasis on the Unified Hanani-Tutte Theorem. First, we took a look at how the unified Hanani-Tutte Theorem can be proven in the plane. Then, we considered level-planarity and presented a proof of the Strong Hanani-Tutte Theorem for level-graphs. Afterwards, we showed how to adapt this proof to the Unified Hanani-Tutte Theorem for level-graphs. Overall,the main result of this work.

Open Questions

The following questions immediately follow from our work: Is it possible...
... to use a different approach to find an easier and/or more direct proof for the Unified Hanani-Tutte Theorem for level-graphs?
... to modify the proof of Theorem 5.1 (Chapter 5) to include radial level-planarity?
As mentioned in the Introduction, there are still many open Hanani-Tutte problems (table in Figure 1.1), especially on non-orientable surfaces. There are other interesting questions regarding the variants of the Hanani-Tutte Theorem: Is there any type of drawing where...
... the weak Hanani-Tutte Theorem does not hold?
\ldots. either $o c r=0$ is equivalent to $c r=0$ but the rotation system cannot generally be preserved?
... -in addition to orientable surfaces of genus at least 4-the Strong Hanani-Tutte Theorem does not hold?

Bibliography

[1] T. A. Apostol. Mathematical analysis. Reading, Mass. Addison-Wesley, 2nd edition, 1974. ISBN 0201002884.
[2] C. Bachmaier, F.-J. Brandenburg, and M. Forster. Radial level planarity testing and embedding in linear time. Journal of Graph Algorithms and Applications, 9(1):53-97, 2005. doi: 10.7155/jgaa.00100.
[3] G. Brückner, I. Rutter, and P. Stumpf. Level planarity: Transitivity vs. even crossings. Graph Drawing and Network Visualization, 11282:39-52, 2018. doi: 10.1007/978-3-030-04414-5_3.
[4] G. Cairns and Y. Nikolayevsky. Bounds for generalized thrackles. Discrete \& Computational Geometry, 23(2):191-206, 2000. doi: 10.1007/PL00009495.
[5] C. Chojnacki. Über wesentlich unplättbare kurven im dreidimensionalen raume. Fundamenta Mathematicae, 23(1):135-142, 1934. doi: 10.4064/fm-23-1-135-142.
[6] É. C. de Verdière, V. Kaluza, P. Paták, Z. Patáková, and M. Tancer. A direct proof of the strong hanani-tutte theorem on the projective plane. Graph Drawing and Network Visualization, 9801:454-467, 2016. doi: 10.1007/978-3-319-50106-2_35.
[7] R. Diestel. Graph Theory. Springer Berlin / Heidelberg, Berlin, Heidelberg, 5th edition, 2017. ISBN 3662536218. doi: 10.1007/978-3-662-53622-3.
[8] R. Fulek and J. Kynčl. Counterexample to an extension of the hanani-tutte theorem on the surface of genus 4. Combinatorica, 39:1267-1279, 2019. doi: 10.1007/s00493-019-3905-7.
[9] R. Fulek, M. J. Pelsmajer, M. Schaefer, and D. Štefankovič. Hanani-tutte, monotone drawings, and level-planarity. In J. Pach, editor, Thirty Essays on Geometric Graph Theory, pages 263-287. Springer New York, New York, 2013. ISBN 978-1-4614-0110-0. doi: 10.1007/978-1-4614-0110-0_14.
[10] R. Fulek, M. J. Pelsmajer, and M. Schaefer. Hanani-tutte for radial planarity. Graph Drawing and Network Visualization, 9411:99-110, 2015. doi: 10.1007/ 978-3-319-27261-0_9.
[11] R. Fulek, M. J. Pelsmajer, and M. Schaefer. Hanani-tutte for radial planarity ii. Graph Drawing and Network Visualization, 9801:468-481, 2016. doi: 10.1007/ 978-3-319-50106-2_36.
[12] R. Fulek, J. Kynčl, and D. Pálvölgyi. Unified hanani-tutte theorem. The Electronic Journal of Combinatorics, 24(3), July 2017. doi: 10.37236/6663.
[13] R. Fulek, M. J. Pelsmajer, and M. Schaefer. Strong Hanani-Tutte for the Torus. In K. Buchin and E. Colin de Verdière, editors, 37th International Symposium on Computational Geometry (SoCG 2021), volume 189 of Leibniz International Proceedings in Informatics (LIPIcs), pages 38:1-38:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik. ISBN 978-3-95977-184-9. doi: 10.4230/LIPIcs.SoCG. 2021.38.
[14] J. Pach and G. Tóth. Monotone drawings of planar graphs. Journal of graph theory, 46(1):39-47, 2004-05. doi: 10.1002/jgt. 10168.
[15] J. Pach and G. Tóth. Which crossing number is it anyway? Journal of Combinatorial Theory, Series B, 80(2):225-246, 2000. ISSN 0095-8956. doi: https://doi.org/10.1006/ jctb.2000.1978.
[16] M. J. Pelsmajer, M. Schaefer, and D. Štefankovič. Removing even crossings. Journal of combinatorial theory. Series B, 97(4):489-500, 2007. doi: 10.46298/dmtcs.3430.
[17] M. J. Pelsmajer, M. Schaefer, and D. Štefankovič. Removing even crossings on surfaces. Electronic notes in discrete mathematics, 29:85-90, 2007. doi: 10.1007/ 978-3-319-50106-2_36.
[18] M. J. Pelsmajer, M. Schaefer, and D. Stasi. Strong hanani-tutte on the projective plane. SIAM journal on discrete mathematics, 23(3):1317-1323, 2009. doi: 10.1137/ 08072485X.
[19] B. Randerath, E. Speckenmeyer, E. Boros, P. L. Hammer, A. Kogan, K. Makino, B. Simeone, and O. Cepek. A satisfiability formulation of problems on level graphs. Electronic notes in discrete mathematics, 9:269-277, 2001. doi: 10.1016/S1571-0653(04) 00327-0.
[20] M. Schaefer. Toward a theory of planarity: Hanani-tutte and planarity variants. Journal of graph algorithms and applications, 17(4):367-440, 2013. doi: 10.7155/jgaa.00298.
[21] W. T. Tutte. Toward a theory of crossing numbers. Journal of Combinatorial Theory, Series A, 8(1):45-53, 1970. doi: 10.1016/S0021-9800(70)80007-2.

