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Abstract

A graph has a planar drawing if it can be drawn in the plane in such a way that
its edges do not cross. Planarity can also be characterized by other properties of
graphs, for example the circular ordering of edges at each vertex—also known as the
rotation system of a graph—or the number of pairs of edges crossing an even number
of times—the even crossings of the graph. The variants of the Hanani-Tutte Theorem
concern themselves with the latter. The traditional Hanani-Tutte theorem—the
Strong Hanani-Tutte Theorem—states that if a graph has a drawing such that every
pair of independent edges—edges that have no common end-vertex—cross evenly,
it also has a planar drawing. The Weak Hanani-Tutte Theorem requires a drawing
where every pair of edges crosses evenly and expands the conclusion to include the
existence of a planar drawing with a preserved rotation system. The generalized
version—the Unified Hanani-Tutte Theorem—requires the lesser assumption of the
Strong Hanani-Tutte Theorem and combines the conclusion of the strong and the
weak version to conclude the existence of a planar drawing such that the rotation
system of all vertices where all incident edges cross each other evenly is preserved.

We present two proofs of the Unified Hanani-Tutte Theorem in the plane, one by
Pelsmajer et al. (2007) and the other by Fulek et al. (2017). We also consider level-
graphs, graphs where each vertex is assigned a level. Levels assign each vertex a single
number and are represented by horizontal lines. Then, a level-graph is (level-)planar
if it has a planar drawing in the plane such that each vertex lies on the horizontal line
corresponding to its level. We present a proof of the Strong Hanani-Tutte Theorem
for level-graphs and by Fulek et al. (2013). The main contribution of this work is an
extension of this proof to the Unified Hanani-Tutte Theorem for level-graphs.
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Deutsche Zusammenfassung

Ein Graph hat eine planare Zeichnung, wenn er sich in der Ebene so darstellen lässt,
dass sich keine seiner Kanten kreuzen. Abgesehen davon lässt sich die Planarität
eines Graphen noch auf andere Art und Weisen charakterisieren, zum Beispiel durch
die Anordnung der Kanten um ihre Endknoten—das Rotationssystem des Graphen—
oder durch die Anzahl von Kantenpaaren, die sich gerade oft kreuzen—die geraden
Kreuzungen des Graphen. Die Varianten des Hanani-Tutte Theorems beschäftigen sich
mit letzterem. Die traditionelle Variante, das Strong Hanani-Tutte Theorem, besagt,
dass ein Graph, der eine Zeichnung besitzt, in der sich jedes Paar unabhängiger Kanten
gerade oft kreuzt, planar ist. Das Weak Hanani-Tutte Theorem setzt eine Zeichnung
voraus, in der sich alle Kantenpaare gerade oft kreuzen und erweitert die Folgerung
auf die Existenz einer planaren Zeichnung, in der das Rotationssystem gleich bleibt.
Beide Theoreme sind verallgemeinert im Unified Hanani-Tutte Theorem, welches mit
der schwächeren Voraussetzung des Strong Hanani-Tutte Theorems auskommt und
dann die Existenz einer planaren Zeichnung ableitet, in der das Rotationssystem für
alle Knoten, deren inzidente Kanten einander gerade oft kreuzen, unverändert bleibt.

Wir stellen zwei Beweise für das Unified Hanani-Tutte Theorem vor, von Pelsmajer
et al. (2007) und von Fulek et al. (2017). Wir betrachten ebenfalls Level-Graphen—
Graphen, deren Knoten je ein Level zugeordnet wird. Level ordnen jedem Knoten
eindeutig eine Zahl zu und werden in Zeichnungen durch Horizontalen repräsentiert.
Ein Level-Graph ist (level-)planar wenn er eine planare Zeichnung in der Ebene
hat, sodass jeder Knoten des Graphen auf der Horizontalen liegt, die seinem Level
entspricht. Wir stellen einen Beweis des Strong Hanani-Tutte Theorems für Level-
Graphen von Fulek et al. (2013) vor. Der Hauptbeitrag der Arbeit ist dann die
Erweiterung dieses Beweises auf einen Beweis des Unified Hanani-Tutte Theorem für
Level-Graphen.
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1. Introduction

When considering graphs and their representations in the plane, an essential problem is to
draw them in such a way that edges only overlap when they share a vertex. Then, no edges
in the drawing cross and we call it a planar drawing or an embedding (Figures 1.1a,b). We
can formalize this with the concept of crossing numbers. The crossing number cr(G) of a
graph G is defined as the smallest number of crossings in any drawing of G. Graph G is
then planar if cr(G) = 0. Planarity can also be characterized by other properties of graphs,
for example the circular ordering of edges at each vertex—also known as the rotation system
of a graph—or the number of pairs of edges crossing an even number of times—also known
as the even crossings of the graph. The different versions of the Hanani-Tutte Theorem use
the latter to characterize planar graphs. The traditional version is known as the Strong
Hanani-Tutte Theorem [5, 21]. It states that if a graph G has a drawing such that every
pair of independent edges cross an even number of time (Figure 1.1c), then it has a planar
drawing (Figure 1.1b). We can formalize this with the independent odd crossing number
iocr(G), defined as the smallest number of oddly crossing pairs of independent edges—the
independent odd crossings—in any drawing of G:

Theorem 1.1 (Strong Hanani-Tutte Theorem). Let G = (V, E) be a graph. If iocr(G) = 0
then cr(G) = 0.

Another variant of the theorem, known as the Weak Hanani-Tutte Theorem, demands the
stricter prerequisite of a drawing such that every pair of edges cross an even number of
times (Figure 1.1d) and in return concludes the existence of not only a planar drawing but
one such that the rotation system is preserved (Figure 1.1b) [4, 15, 16]. Again, it can be
formalized by using crossing numbers. The odd crossing number ocr(G) is defined as the
smallest number of odd crossing pairs of any edges in any drawing of G.

(a) Non-planar (b) Planar (c) All independent
edges cross evenly

(d) All edges cross
evenly

Figure 1.1: A graph in the plane with different drawings.
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1. Introduction

Type Weak H-T Strong H-T Unified H-T
Plane 3[4, 15, 16] 3[5, 21] 3[12, 16]
Level 3[9, 14] 3[9] 3

Radial (level) 3[10] 3[11] ?
Torus 3[4, 17] 3[13] 7[8]

Orientable Surface Genus 2 3[4, 17] ? ?
Orientable Surface Genus 3 3[4, 17] ? ?

Orientable Surface Genus ≥ 4 3[4, 17] 7[8] 7[8]
Projective Plane 3[17] 3[6, 18] ?

Non-orientable Surfaces 3[17] ? ?

Table 1.1: Overview of the Hanani-Tutte variants and when they apply.

Theorem 1.2 (Weak Hanani-Tutte). Let G = (V, E) be a graph with a drawing realizing
ocr(G) = 0. Then there is a drawing realizing cr(G) = 0 such that the rotation system is
preserved.

The description of the variants as weak and strong is misleading. The Strong Hanani-Tutte
Theorem is not an actual generalization of the Weak Hanani-Tutte Theorem as it does not
make statements about the rotation system. Instead, both variants are weak versions of
their generalization, the Unified Hanani-Tutte Theorem, indirectly proven by Pelsmajer
et al. [16] and later formulated and proven by Fulek et al. [12]. It requires the lesser
assumption of the Strong Hanani-Tutte Theorem (Figure 1.1c) and concludes, in addition
to the existence of the planar drawing (Figure 1.1b), the preservation of the rotation at
even vertices—vertices where every incident edge crosses every other incident edge an even
number of times.

Theorem 1.3 (Unified Hanani-Tutte). Let G = (V, E) be a graph with a drawing realizing
iocr(G) = 0. Then there is a drawing realizing cr(G) = 0 such that the rotation system at
even vertices is preserved.

Hanani-Tutte for other Types of Graphs

A natural follow-up question is to which other types of graphs the variants of the Hanani-
Tutte Theorem apply. The version that has the most known results is the weak variant. It
is not only proven for the plane, but also for x-monotone drawings and level-graphs [9, 14],
radial (level-)planarity [10], as well as all orientable surfaces [4, 17] and all non-orientable
surfaces [17], including the projective plane. The Strong Hanani-Tutte Theorem has, in
addition to the plane, been proven for radial planarity [11], the torus [13] and the projective
plane [6, 18]. Interestingly, it has been disproven for any orientable surface with a genus
of 4 or more [8]. To our knowledge, it is yet to be solved whether the strong variant
holds for the orientable surface of genus 2, the orientable surface of genus 3 as well as for
non-orientable surfaces other than the projective plane. As a generalization of the other
variants, the Unified Hanani-Tutte Theorem has the least results. Apart from the proof in
the plane, there is only a counterexample for the torus [8]. Since the Strong Hanani-Tutte
Theorem was disproven for orientable surfaces with a genus of 4 or more [8], it follows that
the unified version does hold either. With this work, the Unified Hanani-Tutte Theorem is
now also proven for level-graphs. Table 1.1 gives a compact overview. Further examples
can be found in a survey by Schaefer (2013).

Level-Graphs and Level-Planarity

We take a closer look at level-graphs. A level-graph (G, l) is a graph G = (V, E) where
each vertex is assigned a level. Levels are represented by horizontal lines and can be
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(a) Non-planar drawing
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(b) Level-planar drawing

Figure 1.2: A planar level-graph with different drawings.
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(a) Non-planar drawing
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(b) Radial level-planar drawing

Figure 1.3: A radial planar but not level-planar level-graph with different drawings.

ordered numerically. A level-graph is level-planar if it has a planar drawing that realizes
the levelling of G (Figure 1.2). Pach and Tóth [14] as well as Fulek et al. [9] proved
the characterisation of planarity by absence of odd crossing to hold for level-graphs by
proving the Weak Hanani-Tutte Theorem. Fulek et al. [9] also proved the characterisation
of planarity by absence of independent odd crossing by proving the Strong Hanani-Tutte
Theorem. Randerath et al. [19] introduced another characterisation of level-planarity
by considering the ordering of the vertices on each level and building a logical formula
describing the following properties: The ordering of the vertices on each level is consistent,
transitivity is upheld and lastly, for two independent edges starting and ending at the same
level the lower-end vertices and the upper-end vertices have a corresponding order on the
levels. By Randerath et al. [19] the transitivity of the ordering is not necessary characterize
planarity and as a result 2-CNF can be built. Brückner et al. [3] proved that this result is
equivalent to the Strong Hanani-Tutte Theorem for level-graphs [9].

Bachmaier et al. [2] introduced a generalization of level-planarity called radial (level-)
planarity. Radial planarity differs from level-planarity by representation of the levels.
Instead of horizontal lines, the levels are represented as concentric circles. Consequentially,
the edges, instead of being y-monotone, are drawn as monotone curves from inner to outer
levels (Figure 1.3).

Overview

The main result of this work is a proof of the Unified Hanani-Tutte Theorem for level-graphs.
To do such, we adapt the proof for the Strong Hanani-Tutte Theorem for x-monotone
graphs by Fulek et al. [9]. First, in Chapter 2, we define the basic notations and terms we
used throughout the thesis. In Chapter 3, we take a look at how the Unified Hanani-Tutte
Theorem can be proven in the plane by introducing two such proofs. In Chapter 4, we
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1. Introduction

introduce the proof of the Strong Hanani-Tutte Theorem our proof is based on—adapted
to the terminology of level-graphs. Then, in Chapter 5 we show how to adapt the results
of Section 4 to find a proof for the Unified Hanani-Tutte Theorem for level-graphs.

4



2. Preliminaries

2.1 General Terms and Techniques
Let G = (V, E) be a graph with vertex-set V and edge-set E. Unless otherwise specified,
G has no multi-edges.

We define a drawing D of G as a set of coordinates in the plane such that each vertex v is
assigned a distinct point (x(v), y(v)) and each edge uv ∈ E is represented as a continuous
curve from (x(u), y(u)) to (x(v), y(v)). We only consider drawings such that a vertex and
an edge only share a coordinate if they are incident and no edges has self-crossings. We
can then define the planarity of G. A graph G is planar if it has a planar drawing—a
drawing such that two edges have a common coordinate (x, y) if, and only if, they share an
end-vertex v and (x, y) = (x(v), y(v)).

A vertex v ∈ V (G) is even in a drawing D if all edges incident to v cross each other evenly,
else v is odd. Note that in a planar drawing all vertices are even. An edge e ∈ E(G) is
even if it crosses every other edge evenly, else it is odd. A drawing of a graph is even if all
edges in the drawing are even.

The rotation of a vertex v in a drawing describes the ordering of the edges incident to v,
usually in a clockwise direction. The entirety of the rotation of all vertices in a drawing of a
graph is called the rotation system of the graph. Two edges are consecutive in the rotation
at v if no other edge lies in between them in either the clockwise or the counter-clockwise
rotation at v.

We can modify the rotation at a vertex v such that two edges e1 and e2 cross each other
and all other edges incident to v evenly. If e1 and e2 cross oddly, in the clockwise direction
switch e1 with its neighbour e′ until e′ = e2. Then switch e1 and e2, introducing an
additional crossing and making them cross evenly. Note that they are now consecutive in
the rotation at w. Next, we modify the rotation further such that all other edges incident
to w cross e1 and e2 evenly. Let e′ be an edge incident to w with e′ 6∈ {e1, e2}. Assume
that e2 lies in between e′ and e1 in clockwise direction. If e′ crosses both e1 and e2 oddly
switch it with its neighbouring edge until it was switched with both edges. If e′ crosses e1
evenly and e2 oddly switch it with its neighbouring edge in clockwise direction until it was
switched with e2 but not yet with e1. If e′ crosses e2 evenly and e1 oddly switch it with its
neighbouring edge in counter-clockwise direction until it was switched with e1 but not yet
with e2. After repeating this step for each edge e that is incident to w with e 6∈ {e1, e2}, e1
and e2 cross each other and all other edges incident to v evenly.

5



2. Preliminaries

Throughout this thesis, we often consider induced subgraphs of some other graph. Let
H and H ′ be subgraphs of G. We define H ⊕H ′ to be the subgraph of G induced by all
vertices in V (H) ∪ V (H ′) and H 	 H ′ to be the subgraph of G induced by all vertices
in V (H) \ V (H ′). Further let W be a set of vertices in G. We define H ⊕W to be the
subgraph of G induced by the vertices in V (H) ∪W and H 	W to be the subgraph of G
induced by the vertices in V (H) \W . Those subgraphs then often need to be recombined
together. We define glueing two graphs H and H ′ at vertex aH in H and vertex a′H in H ′

as identifying aH with a′H . The edges incident to aH remain consecutive at the combined
vertex as do the edges incident to a′H . The exact place of the seam will be specified.

2.2 Level-Graphs
Next, we take a closer look at level-graphs and terms and techniques used in Chapters 4 and
5. A level-graph (G, l) is a graph G = (V, E) with a function l : V → N assigning a level to
each vertex such that the end-vertices of an edge have different levels. In this Section as
well as Chapters 4 and 5 we refer to level-Graphs simply as G. We define a drawing of
a level-graph G analogous to the drawing of the graph in the plane with the additional
constraint that y(v) = l(v) for all v ∈ V and each edge is represented as a y-monotone
curve. Similarly, we define a drawing of G to be level-planar if the drawing is planar in the
plane and y(v) = l(v) for all v ∈ V . Then, G is level-planar if it has a level-planar drawing.
In this Section as well as Chapters 4 and 5, we refer to level-planar drawings and graphs
simply as planar.

We need to describe where an object—either a vertex or an edge—lies in respect to another
object in a drawing. If e and f are two edges with a common lower end-vertex v, we say e
is left of f in the rotation at v if e comes after f in the counter-clockwise rotation at v and
right of f in the rotation at v if e comes after f in the clockwise rotation at v. Analogous,
if e and f are two edges with a common upper end-vertex v, we say e is left of f in the
rotation at v if e comes after f in the clockwise rotation at v and right of f in the rotation
at v if e comes after f in the counter-clockwise rotation at v. A vertex v lies left of another
vertex u with the same level if x(v) < x(u) and right of u if x(v) > x(u). A vertex v lies
left of an edge e that has a coordinate (xe, l(v)), if x(v) < xe on the horizontal line y = l(v)
and right of e if x(v) > xe. An edge e with coordinate (x(e), c) lies left of another edge
e′ with coordinate (x(e′), c) on the horizontal line y = c if x(e) < x(e′) and right of e′ if
x(e) > x(e′). Similarly, we say a vertex v lies above another vertex u if y(v) > y(u), i.e.
l(v) > l(u). A vertex v lies below a vertex u if y(v) < y(u), i.e. l(v) < l(u). We say another
vertex w lies in between v and u if l(v) < l(w) < l(u) or l(u) < l(w) < l(v). Whether w
may have the same level as v or u will be specified. If an edge e = uv only consists of
coordinates in between u and v we call it bounded by u and v or l(u) and l(v).

When gluing the embedding of two subgraphs, we often insert one embedding into an inner
face of another along an edge. Let G be a level-graph with an edge ab such that vertex a
lies below vertex b and let H be a subgraph of G such that all vertices in G contains only
vertices with levels higher than l(a) and lower that l(b). We can then insert a drawing DH

of H along ab into an embedding DG	H of G	H, without adding additional crossings, by
resizing DH . Without loss of generality, we insert DH left of ab. To fit the drawing we
count for each level i how many edges and vertices of H cross it and define that number as
ci. In DG	H , define di as the distance of ab to the next vertex or edge left of ab on level i.
In DH , for each level i, compress the distance between each edge or vertex on level i to

di
ci+1 . Assume that the course of the edges in between levels moves in correspondence to the
compression on the levels and define the obtained drawing as D′H . Overall, on each level i,
D′H has width di − 2 di

ci+1 and can therefore, in DG	H , be fitted into the space between ab
and the next vertex or edge left of ab on any level or horizontal line.
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2.2. Level-Graphs

Fulek et al. [9, Thm 2.5, 2.6] proved that, if we insert an edge e into an inner face of an
embedding of G, then there exists an embedding that includes e such that the rotation
system is preserved. They also proved that any bounded edge e can be redrawn without
changing the rest of the drawing such that e is monotone and the number of crossings in
the drawing is unchanged.

For some of the arguments, we need to distinguish whether a vertex lies inside or outside
of a cycle C. The curve representing C separates the plane into one or more regions,
depending on how it crosses itself. All vertices lying in regions of limited area lie inside the
cycle. Any edge that starts outside C can only end inside C if it crosses any edge in C
oddly. It follows that, for every edge h = uv not incident to C that crosses every edge in C
evenly, that u is inside of C if, and only if, v is inside of C.

7



3. Unified Hanani-Tutte in the Plane

In the following, we introduce two proofs of the Unified Hanani-Tutte Theorem in the
Plane. In this chapter, when we talk about embeddings or embeddings with preserved
rotations, it always means an embedding with preserved rotations at all even vertices.

3.1 Proof by Removing Even Crossings
According to Fulek et al. [12] the Unified Hanani-Tutte Theorem directly follows from the
proof of the Strong Hanani-Tutte Theorem by Pelsmajer et al. [16]. We give an overview
of the proof and pay additional attention to the rotation system at even vertices.

Theorem 1.1 (Strong Hanani-Tutte Theorem). Let G = (V, E) be a graph. If iocr(G) = 0
then cr(G) = 0.

Since the proof given for this theorem includes the preservation of the rotation system at
even vertices, what is actually proven is the Unified Hanani-Tutte Theorem.

Theorem 1.3 (Unified Hanani-Tutte). Let G = (V, E) be a graph with a drawing realizing
iocr(G) = 0. Then there is a drawing realizing cr(G) = 0 such that the rotation system at
even vertices is preserved.

Proof. Let D be a drawing of G such that there is no pair of independent edges crossing
oddly. The basic idea is to find cycles in G and then make their edges even, marking them
as processed after the procedure. Processed edges will always be crossing-free and contained
in a cycle of crossing-free edges. Initially all edges in G are marked as unprocessed. We
define the weight of Graph G as w(G) =

∑
v∈ V d(v)3 where d(v) is the degree of vertex

v in G. We prove the theorem by induction primarily over the weight w(G) of G and
secondarily over the number of unprocessed edges.

If all edges in D are even, the weak Hanani-Tutte theorem finishes the proof. Note that
the rotation of all vertices is preserved.

Else there is at least one odd edge e with an end-vertex v. Define the edge crossing e oddly
as e′ and assume e′ is incident to v, i.e. v is an odd vertex. Then, either e is a cut-edge—an
edge that, if removed, separates the graph into two components—or e is contained in a
cycle C. We distinguish between those two cases.

8



3.1. Proof by Removing Even Crossings

e

e′ u

e1

e2

(a) Vertex u, oddly crossing edges e, e′ and
processed edges e1, e2.

e

e′
u1 u2

e1

e2

(b) Vertex u is split into vertices u1 and u2.

Figure 3.1: Splitting vertex u.

Case 1: e is a cut-edge. Let u be the other end-vertex of e, i.e. e = uv. Then e separates
G into two subgraphs Gv and Gu, containing v and u respectively, that, by inductive
hypothesis, each have an embedding with preserved rotations, DGv and DGu . We can
assume that v is on the outer face of DGv and that u is on the outer face of DGu . Else,
for each subgraph, draw the embedding onto a sphere. Using a stereographic projection
(e.g.[1]), we can project the embedding back onto the plane, excepting a single point of the
sphere. By choosing this point to be in a face containing v or u respectively, the projected
embedding in the plane has the same rotation system as the original embedding and v
and u now lie on the outer face of DGv and DGu . If u is even, we need to take a closer
look at the rotation at u. Choose the point to remove when re-projecting the embedding
onto the plane to be inside the face whose boundary contains the two edges that were
consecutive to e at u in the initial drawing. To obtain an embedding of G join DGv and
DGu back together by re-inserting edge e = uv. Since in DGu , the outer face contains the
two edges that were consecutive to e at u in the initial drawing, when we re-insert e it is
now consecutive to the same edges as in the initial drawing and as such the rotation at u
is preserved. As v is an odd vertex, we have found an embedding of G where the rotation
at even vertices is preserved.

Case 2: e is contained in a cycle C. Then, there either is an odd vertex u ∈ C such that u
has an incident processed edge e1 or for each odd vertex w in C, every edge incident to w
is unprocessed. We distinguish between both cases.

Case 2.1: There is an odd vertex u in C with incident processed edge e1. As e1 is a
processed edge, it is contained in a cycle C ′ of processed edges. Then, there is another
processed edge e2 incident to w. Note that all processed edges are crossing-free. Cycle
C ′ divides the plane in two regions such that both e and e′ are in the same region. If e
were in a different region than e′, in order to cross, at least one of them would have to
cross one of the edges in C ′. But, since all edges in C ′ are processed, they are crossing-free.
As such, we can split u into two adjacent vertices u1 and u2 such that e and e′ as well as
every edge incident to u lying in the same region as e and e′ is made incident to u1 and
the other edges incident to u are made incident to u2 (Figure 3.1). This does not increase
the number of crossings in the drawing. Now, since d(u) = d(u1) + d(u2) − 2, it follows
that d(u)3 = (d(u1) + d(u2)− 2)3 < d(u1)3 + d(u2)3. Then, by induction the new graph
has an embedding with preserved rotations. Contraction of u1u2 yields an embedding of G
where the rotation at even vertices is preserved.

Case 2.2: For each odd vertex w in C, every edge incident to w is unprocessed. Then,
for each such w repeat the following process. In a small neighbourhood of w, modify the
rotation at w such that both edges incident to w contained in C cross evenly. After the
modifications, each edge in C is even. Note that the number of pairs of independent edges
crossing oddly was not changed. As proven by Pelsmajer et al. [16, Thm 2.1], in a graph in
the plane, it is possible to remove all even crossings in a graph. Therefore, we can modify

9



3. Unified Hanani-Tutte in the Plane

G3
G4

G1

G5

G6
G7 v

Figure 3.2: Lemma 3.1: G3, G5 and G7 have consecutive connecting edges in the rotation
at v (see Fig. 1 [12]).

our drawing such that each edge of C is crossing-free, there are no new odd crossings and
crossing-free edges remain crossing-free. Then, we mark all edges in C as processed. The
number of unprocessed edges has decreased and as such the inductive hypothesis can be
applied to get an embedding of G such that the rotations at even vertices is preserved.

In all cases, we can find an embedding of G.

3.2 Proof by Distinction According to Vertex-Connectivity
Fulek et al. [12] give a simpler proof for the Unified Hanani-Tutte Theorem.

Well-Formed Rotation Systems

During the main portion of the proof, Fulek et al. [9] make two statements regarding
the rotation system. The first considers the rotation at a cut-vertex, if the graph has
vertex-connectivity 1 and the second considers the rotations at a separating pair, if the
graph has vertex-connectivity 2. Hence, let G be a graph with drawing D such that every
pair of independent edges cross evenly.

First, consider the case that G has a cut-vertex v separating G into k components Gi.

Lemma 3.1 ([12, Claim A]). If v is even in D, then there is an i ∈ {1 . . . k} such that the
edges connecting Gi with v are consecutive in the rotation of v in D (Figure 3.1). Thus
they form a well-defined linear order.

Proof. Let I = {e1, . . . , en} be a minimal interval of edges consecutive in the clockwise
rotation of v such that I contains all edges of some component Gi incident to v and for
each ej let vi be the other end-vertex. Suppose there is an edge el ∈ I that connects v
to Gj , j 6= i. By minimality, l 6= 1 and l 6= n and as such, el lies after e1 and before en

in the clockwise rotation at v. Additionally, there is a connecting edge f from v to Gj

that is not in I. Edge f lies before e1 and after en in the clockwise rotation at v. Since
e1 = vv1 and en = vvn are in the same connected component, there exists a path from v1
to vn that does not include v. This is true for el and f as well. Then there exists a cycle
C including e1, v and en as well as a cycle C ′ including el, v and f . Since in D every pair
of independent edges crosses evenly and v is even, every edge of C crosses every edge of C ′

an even number of times. The curves representing C and C ′ cross at v. Since C and C ′

only share a single vertex, this implies that there is an edge in C that crosses an edge in
C ′ oddly. Therefore, I can not contain any such el and as such there is a component Gi

with consecutive edges in the rotation at v.

Second, consider the case that G has a separating pair (u, v) separating G into k components
Gi.

10



3.2. Proof by Distinction According to Vertex-Connectivity

G1

G2

G3

G4

uv

Figure 3.3: Lemma 3.2: v and u are even: The components Gi all have connecting edges
consecutive in the rotation at v. The order of all Gi is inverse to v at u. (see
Fig. 3 [12])

Lemma 3.2 ([12, Claim B]). If v is even in D, then for each i ∈ {1 . . . k}, the edges
connecting Gi to v are consecutive in the rotation of v in D. This defines a well-defined
linear order Cv of the graphs Gi around v. If both u and v are even, then the analogously
defined order Cu is inverse to Cv (Figure 3.2).

Proof. Let a, c ∈ V (Gi), b ∈ V (Gj) and d ∈ V (Gj′) with i /∈ {j, j′} such that the edges
va, vb, vc and vd occur in the clockwise rotation at v in this order. Let Ci be a cycle in
G 	 {u} extending path avc and let Cj be a cycle in G 	 Gi extending path bvd. Note
that Ci and Cj share only vertex v. Since every pair of independent edges crosses evenly
and v is even, every edge of Ci crosses every edge of Cj an even number of times. The
curves representing Ci and Cj cross at v. Since Ci and Cj only share a single vertex, this
implies that there is an edge in Ci that crosses an edge in Cj oddly. Therefore, such a
Cj cannot exist and as such there is no such edge vb lying in between va and vc in the
clockwise rotation at v. Therefore, the connecting edges of every Gi are consecutive in the
rotation at v and as such the order Cv is well-defined

Next, assume both u and v are even. Let Pi, Pj and Pl be distinct paths from v to u
through component Gm, m ∈ {i, j, l} respectively. In each subgraph induced by paths
Pi, Pj , Pl every pair of independent edges crosses evenly. By a local redrawing at internal
vertices on the paths the drawing can be made even. The Weak Hanani-Tutte Theorem
then implies that the cyclic order of the paths at v is inverse to the cyclic order of the
paths at u. It follow that the cyclic order Cu at u is inverse to Cv at v.

Proof of the Unified Hanani-Tutte Theorem

Now, we can present the proof.

Theorem 1.3 (Unified Hanani-Tutte). Let G = (V, E) be a graph with a drawing realizing
iocr(G) = 0. Then there is a drawing realizing cr(G) = 0 such that the rotation system at
even vertices is preserved.

Proof. Let G be a graph with a drawing D such that every pair of independent edges cross
evenly. We prove the theorem by induction over n = |V |.

The base case n = 1, a graph with only a single vertex, is trivial.

For the inductive step, we distinguish by vertex-connectivity.

Case 1: G is disconnected. Then, the statement follows for every component by inductive
hypothesis, which can then be embedded next to each other.

11



3. Unified Hanani-Tutte in the Plane

Case 2: G has vertex connectivity 1. Then, there exists a separating vertex v. Define Gi to
be the components of G	 {v}.
If v is odd in D, we do not need to pay attention to the rotation system at v. By inductive
hypothesis, each Gi ⊕ v has an embedding DGi . To obtain an embedding of G, glue the
different DGi at v in an arbitrary order.
Else, v is even in D. By Lemma 3.1 there is at least one component Gi whose connecting
edges to v are consecutive in the rotation at v. Then, by inductive hypothesis, G	Gi has
an embedding DG	Gi and Gi ⊕ {v} has an embedding DGi . To obtain an embedding of G,
glue DGi in an appropriate face of DG	Gi .
Case 3: G has vertex connectivity 2. Then, there exists a separating pair (u, v). Let Gi be
the components of G	{v, u}. By inductive Hypothesis, each Gi⊕{u, v} has an embedding
DGi⊕{u,v}.
If both v and u are odd, in order to obtain an embedding of G, glue all DGi⊕{u,v} at v
arbitrarily and at u in a way that does not introduce any crossings.
Else, if v is even and u is odd, applying Lemma 3.1 to G	 {u} and separating vertex v,
there is a component Gj whose connecting edges to v are consecutive in the rotation at v.
Then, by inductive hypothesis, G	Gj has an embedding DG	Gj and Gj ⊕ {u, v} has an
embedding DGj⊕{u,v}. To obtain an embedding of G, glue DGj⊕{u,v} in the appropriate
face of DG	Gj at u and v. If v is odd and u is even, we can the argue analogously.
Else, both v and u are even. By inductive hypothesis, each Gi ⊕ {u, v} has an embedding
DGi⊕{u,v}. Define G0 = ({u, v}, {uv}) if uv ∈ G. By Lemma 3.2 all DGi⊕{u,v} can be
glued together in a way that preserves the rotations at both u and v without adding any
crossings.
Case 4: G has vertex connectivity 3 or more. We show that it is possible to change the
rotation of odd vertices locally to get an even drawing. The Weak Hanani-Tutte Theorem
(Thm. 1.2) then finishes the proof.
Let v be an odd vertex in G and uv any arbitrary edge incident to v. It is possible to
redraw every other edge incident to v in a small neighbourhood of v such that they cross
uv evenly. For any edges f1, f2 consecutive in the rotation at v that cross oddly remove
the odd crossing by swapping them in the rotation at v. Let (u0 = u, u1, . . . , udeg(v)) be
the end-vertices of the clockwise rotation of edges at v. After the adjustments, vu0 crosses
every vui evenly and every vui crosses vui+1 evenly. Next, we prove that in this case v is
an even vertex.
Suppose v is not even in G. Then, there is a pair of incident edges vui = ei, vuj = ej

crossing oddly. Assume i < j. If there is more than one pair, choose the one with the
least number of edges between them. Define edge uvk = ek as the edge consecutive to ei

lying in between ei and ej and define uv0 = e0. Note that among e0, ei, ek and ej only ei

and ej cross oddly. Using Menger’s Theorem (e.g. [7]) and the fact that G has at least
vertex-connectivity 3, there are vertex-disjoint paths P1 from u0 to uk and P2 from ui to
uj . We can then define two cycles C and C ′. Cycle C comprises of edges e0 and ek as well
as path P1. Cycle C ′ comprises of edges ei and ej as well as path P2. Note that C and C ′

only share vertex v. Every edge of C crosses every edge of C ′ an even number of times.
The curves representing C and C ′ cross at v. Since C and C ′ only share a single vertex,
this implies that there is an edge in C that crosses an edge in C ′ oddly.
Overall, if G is disconnected or has vertex-connectivity 1 or 2, we can find an embedding
for G by inductive hypothesis. Else, G has vertex-connectivity 3. Then, we can change the
rotation of all odd vertices locally to get an even drawing and the theorem follows with the
Weak Hanani-Tutte Theorem.
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4. Strong Hanani-Tutte for Level-Graphs

To later prove the Unified Hanani-Tutte Theorem for level-Graphs, we first present the proof
for the Strong Hanani-Tutte Theorem for x-monotone Graphs [9], adapted for level-graphs.

Theorem 4.1 (Strong Hanani-Tutte for level-graphs). Let G = (V, E) be a level-graph
with level-assignment l : V → N. If G has a drawing such that every pair of independent
edges crosses an even number of times, then G has a planar drawing.

The theorem was proven by excluding the existence of a smallest counterexample in the
sense that it has as few vertices as possible. Fulek et al. [9] give some properties for a
possible smallest counterexample and also properties of level-graphs with a drawing such
that all independent edges cross each other evenly. Using those, the existence of a smallest
counterexample for the theorem can be disproven by contradiction. But before that, we
take a look at the relationship between x-monotone drawings and level-graphs, particularly
in the context of the Hanani-Tutte Theorems.

4.1 Monotone Drawings, Level-Graphs and Hanani-Tutte
Fulek et al. [9] consider x-monotone drawings of regular graphs—drawings such that every
edge is monotone in x-direction and every vertical line contains at most one vertex. Both
x-monotone drawings and level-graphs are based on a similar concept where the vertices
are at least partially ordered.

We can represent an x-monotone drawing as a level-graph by rotating and stretching
it partially (Figure 4.1). Let G be a graph with an x-monotone drawing D. First, we
modify D by rotating it 90 degrees counter-clockwise, which results in a y-monotone
drawing. Using D, we can define an order on the vertices where v < v′ if x(v) < x(v′).
We then define a function f : V → N such that f(u) = 1 for vertex u = min{v ∈ V } and
f(v′) = f(v) + 1 for all v, v′ ∈ V if v < v′ and there is no vertex v′′ such that v < v′′ < v′.
Then f(v) < f(v′)⇔ v < v′. We then modify D to a drawing D′ by scaling its y-axis such
that y(v) = f(v) for each vertex. Then, D′ is a drawing of level-graph (G, l) with l = f .

Representing a level-graph as an x-monotone drawing is not universally possible, but
restricted by the number of vertices per level or x-coordinate respectively. A representation
as an x-monotone drawing is only possible if each vertex has a unique level. Hence, let G
be a level-graph with a level-assignment l and let D be a drawing of G. If each level has
only a single vertex, we obtain an x-monotone drawing by simply rotating D 90 degrees
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4. Strong Hanani-Tutte for Level-Graphs

x(v1) x(v2) x(v3) x(v4) x(v5) x(v6)

(a) The x-monotone drawing.
l(v1)

l(v2)

l(v3)

l(v4)

l(v5)

l(v6)

(b) The corresponding level-graph is obtained
by rotating and partially stretching.

Figure 4.1: The modification of an x-monotone drawing to a level-graph.

clockwise. Else, if there is at least one level with more than one vertex, we can still use
some properties of x-monotone drawings, the Hanani-Tutte Theorems included. We need
to ensure that any modifications we make after converting the graph to an x-monotone
drawing do not hinder the re-conversion to the original level-graph. After modifying the
x-monotone drawing, it is possible that an edge acts as a barrier between a vertex and
its original level (Figure 4.4). To prevent this, we insert temporary vertices and edges as
placeholders (see [9, Sec. 4.2]) (Figure 4.2). Therefore, before converting the level-graph
do the following. Define vj

i to be the vertices on level i, as ordered in the original drawing
from left to right. For each level k with more than one vertex and each vertex vl

k such
that there is no edge that has vl

k as an upper end-vertex, insert a vertex v′ just below
level k and add edge v′vl

k without adding any crossing. Then, we modify D such that each
vertex has a unique y-coordinate. On k, for each vl

k with l > 1 we take a small surrounding
and distort the inside along the y-axis such that y(vl

k) 6= l(vl
k), y(vl

k) 6= y(v′) for all other
vertices v′ with l(v) = l(v′) and y(vl

k) < y(vl+1
k ). This drawing is y-monotone. We can

obtain an x-monotone drawing by rotating the drawing 90 degrees clockwise.

We can use these connections between level-graphs and x-monotone drawings to, for
example, explain how the Weak Hanani-Tutte Theorem for level-graphs follows from the
Weak Hanani-Tutte Theorem for x-monotone drawings (Figure 4.3). Let G be a level-graph
with a drawing such that every pair of edges crosses evenly. Using the described method,
we can obtain a drawing of a level-graph with only a single vertex per level without adding
or removing any crossings. This drawing is a y-monotone drawing, rotate it to obtain
a x-monotone drawing. Then, with the Weak Hanani-Tutte Theorem for x-monotone
drawings, we obtain an embedding with preserved rotations. To obtain an embedding
of G revert the modifications. First, rotate the embedding of the x-monotone drawing
counter-clockwise to make the embedding y-monotone. Then, by reverting the distortions
we can move the vertices back to their original level. Since each distorted vertex v has
an incident edge e crossing its original level and since the embedding is crossing-free this
does not add or change any crossings and retains the monotony of any edge. Therefore, we
have found an embedding of G with preserved rotations in respect to the initial drawing.
Consequentially, the Weak Hanani-Tutte Theorem holds for level-graphs.

Theorem 4.2 (Weak Hanani-Tutte Theorem for level-graphs). Let G = (V, E) be a level-
graph with level-assignment l : V → N. If G has drawing such that every pair of edges cross
an even number of time, then G has an embedding such that the rotation at all vertices is
preserved.

A similar approach could be used to conclude the Strong Hanani-Tutte Theorem for
level-graphs from th Strong Hanani-Tutte Theorem for x-monotone drawings.
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4.1. Monotone Drawings, Level-Graphs and Hanani-Tutte

(a) The initial level-graph. (b) Distortion of the vertices

Figure 4.2: The modification of a level-graph that has a level with more than one vertex.
If needed, a placeholder is inserted.

(a) The x-monotone
drawing with place-
holder.

(b) An embedding of
the x-monotone
drawing.

(c) The embedding as y-
monotone drawing.

(d) Converted back into
the original level-
graph.

Figure 4.3: Continuation of Figure 4.2. An x-monotone drawing where the vertices on the
same level were correctly modified.

(a) The x-monotone
drawing without
placeholder.

(b) An embedding of the x-
monotone drawing.

(c) The embedding as y-
monotone drawing. A
reversion to the original
graph is not possible.

Figure 4.4: Continuation of Figure 4.2. An x-monotone drawing where the vertices on the
same level were not correctly modified.
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4. Strong Hanani-Tutte for Level-Graphs

4.2 Properties of a Smallest Counterexample
In the following we reiterate the properties for a smallest counterexample as given by Fulek
et al. [9]. In preparation for the proof of the Unified Hanani-Tutte Theorem in Section 5
we can consider that by allowing multi-edges in G the Lemmata in this section hold for
multi-graphs as well.

Lemma 4.3 (Lemma 3.3 i [9]). Let G be a smallest counterexample to Theorem 4.1. Then
G is connected.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every
pair of independent edges crosses an even number of times. If G is not connected, by
minimality, its components themselves have embeddings with preserved rotations. Define
the different components as Gi. We can pull the components apart such that each Gi

completely lies to the left of Gi+1 and embed them separately. The different components
do not intersect each other and as such we found an embedding of G.

Hence, for the rest of this section assume that all smallest counterexamples to Theorem 4.1
are connected.

Lemma 4.4 (Lemma 3.3 ii [9]). Let G be a smallest counterexample to Theorem 4.1. Then
G has no connected subgraph H such that

1. H has only the neighbours a and b.

2. H lies completely between the vertices a and b.

3. G	H has other vertices apart from a and b.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every
pair of independent edges crosses an even number of times and consider such a H. Then,
let Ea ( E(G) be the set of edges connecting a to H and let Eb ( E(G) be the set of
edges connecting b to H. If ab 6∈ E(G) insert ab by taking any path P from a to b in H
and drawing ab next to P . Then, ab is bounded by l(a) and l(b) and we can redraw ab to
be monotone while leaving the number of crossings unchanged. Since each edge in G	H
crosses each edge in H evenly, ab has no odd crossings with any edge of G	H 	 {a, b}.
Then, by minimality of G, G	H has an embedding DG	H . Similarly we can obtain an
embedding DH for H ⊕{a, b}. To obtain an embedding of G glue DH to DG	H at a and b
along ab. If ab 6∈ E(G) originally, remove it.

Lemma 4.5 (Lemma 3.3 iii [9]). Let G be a smallest counterexample to Theorem 4.1. If
G has a cut-vertex a and G	 {a} has a component H that lies completely above a, then

a) H contains only a single vertex b.

b) G has no edge ac such that c lies above b.

c) G has no connected subgraph H ′ such that

1. H ′ fully lies between the vertices a and b.

2. H ′ has neighbouring vertex a.

3. all other neighbouring vertices of H ′ lie above b.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every
pair of independent edges crosses an even number of times and consider such a H.
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4.2. Properties of a Smallest Counterexample

...

...

f
H ′

au

a

Figure 4.5: Vertex a, subgraph H ′, leftmost connecting edge au and the face f let to au.

...

H ′

au

a

f

(a) The boundary walk ends where it started,
contradicting the assumptions regarding
H ′.

...

H ′

au

f

c

b

a

(b) The boundary walk exits H ′ to vertex c
above b. Edge ab can be embedded along
the boundary walk.

Figure 4.6: The boundary walk of f starting at a and continuing through au.

a) Let H be a component of G	{a} such that l(a) < l(v) for all vertices v in H and let
b be the vertex with maximal level in H. If |V (H)| > 1 we get a contradiction using
Lemma 4.4 and choosing H in Lemma 4.4 as H 	 {b}. It follows that |V (H)| = 1
and as such H = {b}.

b) Consider an edge ac in G with l(b) < l(c). By minimality of G, the subgraph G	{b}
has an embedding DG	{b}. We can then obtain an embedding of G by inserting
vertex b and edge ab into DG	{b} along ac.

c) Consider such a H ′. We can assume that H ′ is an induced subgraph. Due to
minimality of G, subgraph G 	 {b} has an embedding DG	{b}. Next we show ho
to embed ab in DG	{b}. Define au to be the edge leftmost at a connecting a to H ′

and define f to be the face left of au containing au in its boundary (Figure 4.5).
Assume that ab lies to the left of au. Then, starting at a and continuing through au,
follow the boundary of f until we come across a vertex c that is not contained in H ′.
If c = a (Figure 4.6a) then H ′ has no neighbours v above b, which contradicts our
assumptions. Therefore, c must lie above b (Figure 4.6b). Add edge ab and vertex b
to DG	{b} by drawing it inside the face f along the walk defined by the boundary
of f from a to c through H ′ and stopping at level l(b). We can redraw ab to be
monotone without changing the crossings and therefore we can embed a crossing-free
edge ab. Then, we have found an embedding of G with preserved rotations.

17



4. Strong Hanani-Tutte for Level-Graphs

To make it more clear that when Lemma 4.5 is used, all assumptions are met and it can
in fact be applied, we extend the Lemma to exclude the existence of a component H ′ of
G	 {a}.

Lemma 4.6 (Extension of Lemma 4.5). If G has a cut-vertex a and G 	 {a} has a
component H that lies completely above a, then

a) H contains only a single vertex b.

b) G has no edge ac such that c lies above b.

c) G has no connected subgraph H such that

1. H is a component of G	 {a}.

2. H fully lies above vertex a.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every
pair of independent edges crosses an even number of times. Items a) and b) apply by
Lemma 4.5.

To prove item c), suppose there is such a H. Define Ĥ as the subgraph induced by all
vertices of H with a level lower than l(b). Then, either Ĥ is connected or Ĥ has more than
one component. If Ĥ is connected, Ĥ lies above a and below b, a is neighbouring vertex of
H and H has no other neighbouring vertices below b. This contradicts Lemma 4.5 with
H ′ = Ĥ. Else, Ĥ has more than one component. Define Ĥi as the components of Ĥ. Then
there exists a component Ĥj of Ĥ that has neighbour a and has no other neighbours below
b. By definition, all vertices of Ĥj lie between a and b. This contradicts Lemma 4.5 with
H ′ = Ĥj .

4.3 Properties of Level-Graphs with Independent Even Cross-
ings

In this section we consider a specific situation: Let G be a level-graph such that all
independent edges cross an even number of times. Assume that G has an odd vertex v0
with three incident edges e1, e2 and e3 such that e3 lies between e1 and e2. The edges
e1 and e2 cross oddly and e3 crosses both e1 and e2 evenly (Figure 4.9). This situation
arises in the main part of the proof (Section 4.4). There, we have a drawing of G with a
minimal number of odd crossings, which results in the defined constellation of edges for
any remaining odd crossings.

Lemma 4.7 (Lemma 3.4 [9]). For arbitrary lR > l(v0), define G′ as the graph induced
by all vertices of G lying between levels l(v0) (excluded) and lR (included). Let G′i be the
component of G′ that contains vi. If l(vi) > lR, then G′i = ∅.

Suppose that G′1, G′2, G′3 are pairwise disjoint and that for every i = 1, 2, 3 there is a path
Pi (in G) from v0 through ei to some vertex v′i that lies above level lR such that all vertices
of Pi lie above v0 (Figure 4.7). If G′i = ∅, then define E(Pi) = {ei}.

Then each G′i has no neighbours (in G) below v0.

Sketch Proof. The lemma is proven by contradiction. If there were a neighbour v′ of G′i
below v0, there would be a path P ′i from vi to v′ that, apart from v′, fully lies in G′i. Using
the fact that each time two edges e and f cross, they switch order on a horizontal line and
the fact that all pairs of independent edges cross an even number of times, each assignment
of {i, j, k} to {1, 2, 3} can be lead to a contradiction such that the last edge of P ′i must
pass both left and right of v0.
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4.3. Properties of Level-Graphs with Independent Even Crossings

v0

lR

l(v0)

P2
P3

P1

v′2
v′3 v′1

G

G′
1

G′
G′

3

v3

G′
2

v2v1

e1 e3 e2

Figure 4.7: Graph G, induced subgraph G′ between l(v0) and lR, vertices v1, v2, v3 contained
in components G′1, G′2, G′3 as well as paths P ′1, P ′2, P ′3 ending over lR. (see Fig.
6 [9])

v0

ej ek

ei

vl
l(vl) = l

l(v0)

Figure 4.8: Edges ei, ej , ek, cycle C containing ej , ek and its uppermost vertex vl.
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4. Strong Hanani-Tutte for Level-Graphs

Lemma 4.8 (Lemma 3.5 [9]). Suppose that for some distinct j, k ∈ {1, 2, 3}, there is a
cycle C that contains ej and ek such that every vertex of C lies above v0. Let vl be the vertex
on C with the highest level (Figure 4.8). Let i be the index such that {i, j, k} = {1, 2, 3}
and suppose that vi is not in C. Let G′i be the component of G	 C that contains vi .

Then every vertex v of G′i lies between v0 and vl (both excluded).

Sketch Proof. The lemma is proven by contradiction. Suppose that vi lies above vl. This
can be disproven by leading each assignment of {i, j, k} to {1, 2, 3} to a contradiction such
that vl lies both left and right of ei. As such vi lies between v0 and vl (both excluded).
Vertex vi lies between the paths Pj and Pk. Then, supposing there is a path P ′i in G′i to a
vertex either below v0 or above vl, it can be deduced that all vertices in P ′i are all either to
the left or to the right of both Pj and Pk, contradicting the placement of vi.

After careful consideration of the full proofs, it can be deduced that both Lemma 4.7 and
Lemma 4.8 hold for multi-graphs as well.

4.4 Proof of the Strong Hanani-Tutte Theorem
Using the properties established in this chapter, Fulek et al. [9] prove the Strong Hanani-
Tutte Theorem for level-graphs by disproving the existence of a smallest counterexample
G.

Theorem 4.1 (Strong Hanani-Tutte for level-graphs). Let G = (V, E) be a level-graph
with level-assignment l : V → N. If G has a drawing such that every pair of independent
edges crosses an even number of times, then G has a planar drawing.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing D such that
every pair of independent edges crosses an even number of times and the number of pairs
of edges crossing oddly is minimal.

If D has no odd crossing pair of edges then the Weak Hanani-Tutte Theorem for level-graphs
(Thm. 4.2) finishes the proof.

Else, D has a pair of edges crossing oddly. By Lemma 4.3 G is connected. Since all
independent edges cross evenly, this pair has a common end-vertex v0. We can assume v0 is
the lower end-vertex. Note that v0 is an odd vertex. Define e1, e2 as the pair of odd-crossing
edges incident to v0 such that there are as few edges between both in clockwise rotation at
v0 as possible and such that e1 lies to the left of e2. By minimality of the number of odd
crossings, e1 and e2 are not consecutive in the rotation at v0. Otherwise this odd crossing
could be resolved by switching e1 and e2 in the rotation at v0. By choice of e1 and e2, there
are edges incident to v0 lying between e1 and e2 that cross each other as well as e1 and
e2 evenly. Let e3 be such an edge (Figure 4.9). Define v1, v2, v3 as the upper end-vertices
of e1, e2, e3 and let G0 be the subgraph of G induced by all vertices lying above v0. We
distinguish by the placement of v1, v2 and v3 in the components of G0 	 v0.

Case 1: All vertices of {v1, v2, v3} are in different components of G0 	 v0.

For i ∈ {1, 2, 3} let Gi be the component of G0 	 v0 that contains vi and let v′i be the
vertex with the highest level in Gi. Assign {1, 2, 3} to {i, j, k} such that v′i is the lowest of
{v′1, v′2, v′3}. Then define G′i, G′j and G′k as the components of the subgraph induced by all
vertices lying between v0 and v′i that contain vi, vj and vk respectively. If vj lies above v′i,
then define G′j = ∅. Define G′k analogous. Thus, we can apply Lemma 4.7 with lR = l(v′i),
which then states that G′i, G′j , G′k have no neighbours below v0. Note that by definition of
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v0

e1 e2
e3

v3
v1

v2

Figure 4.9: Edges e1, e2, e3 and end-vertices v1, v2, v3. The pairs e1, e3 and e2, e3 cross
evenly and the pair e1, e2 crosses oddly.

v0

lR

l(v0)

Q

vl

vj

vivk

ek
ei ej

Figure 4.10: Lower bound l(v0), upper bound l(vl) edges ei, ej , ek and path Q.

lR and vi, Gi has no neighbours in G below v0 and is therefore a component of G	 {v0}.
Also note that by definition of lR and vi, Gi lies on and below lR. Overall G′i = Gi and
as such G′i is a component of G	 {v0}. We can then apply Lemma 4.6 with a = v0 and
H = G′i. It follows that G′i only contains a single vertex and therefore vi = v′i (4.6 a)).
It also follows that vj and vk lie below vi and below v′i (4.6 b)). Therefore G′j 6= ∅ and
G′k 6= ∅. Overall, both G′j and G′k are connected components of G 	 {v0} that fully lie
above v0, contradicting Lemma 4.6.

Case 2. At least two vertices of {v1, v2, v3} are in the same component of G0 	 v0.

Let l be the smallest level such that the subgraph induced by all vertices of G lying
between the levels l(v0) (excluded) and l (included) has a component that contains at
least two vertices of {v1, v2, v3}. Then there is a cycle C that contains ej and ek such that
{ej , ek} ( {e1, e2, e3} as well as a vertex vl on level l such that all vertices of the cycle lie
between v0 and vl, both included (Figure 4.10). If vl = en for a n ∈ {1, 2, 3} then we can
assume that en = vvn is a part of cycle C. Let i ∈ {1, 2, 3} such that i 6= k and i 6= j, then
it follows that vi 6= vl. Suppose there is path Q from vi to C such that the vertices of Q lie
completely between v0 and vl, excluding both. Then there exists a cycle C ′ that includes
v0, ei, Q and part of C 	 {vl} such that it either contains ej or ek. But then all vertices
in C ′ lie between v0 (included) and vl (excluded). This contradicts the choice of l as the
smallest level such that a cycle with any two of {e1, e2, e3} completely lies on and below l.
Supposing V (Q) = {vi} implies that vi is not contained in C.

Next, let G′i be the component of G	C that contains vi. By Lemma 4.8 G′i lies between v0
and vl (both excluded). The previous paragraph also implies that G′i has no neighbours in
C 	 {v0, vl}. Let v′i be the vertex with the highest level in G′i and define G′j , G′k according
to Lemma 4.7 with lR = l(v′i). By choice of l and as v′i lies below l, it follows that G′j 6= G′k.

We further distinguish by adjacency of vl to G′i:
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4. Strong Hanani-Tutte for Level-Graphs

Case 2.1: G′i is not adjacent to vl

Since vi is a vertex of G′i, vi is in a different component of G0 	 v0 than both vj and vk.
Note that G′i neither has a neighbour below l(v0) nor a neighbour above or on l nor a
neighbour in C−{v0, vl}. As such, the only neighbour of G′i is v0. Further note that G′i lies
completely between the levels l(v0) and l(vl) (both excluded). Therefore G′i is a component
of G	 {v0}. We can therefore apply Lemma 4.6 with a = v0 and H = G′i. It follows that
G′i only contains a single vertex and therefore vi = v′i (4.6 a)). It also follows that vj and
vk lie below vi and below v′i (4.6 b)). Therefore neither G′j or G′k are empty. Overall, both
G′j and G′k are connected components of G 	 {v0} that fully lie above v0, contradicting
Lemma 4.6.

Case 2.2: G contains an edge from G′i to vl

Then G′i has only neighbours v0 and vl, lies completely between its neighbours and G	G′i
contains at least all vertices in C 	 {v0, vl} and is therefore not empty, contradicting
Lemma 4.4.

Overall, after minimizing the number of odd crossings in a smallest counterexample G,
either there are none left and according to the Weak Hanani-Tutte Theorem (Thm 4.2) G
has an embedding, or there is at least one odd crossing left. Then, for each complete case
distinction we make, each case can be lead to a contradiction. Therefore, after minimizing
the number of odd crossings for G, none will be left and as such G has an embedding. It
follows that G is not a counterexample to Theorem 4.1 and since G was defined to be
the smallest counterexample, there exist none at all. Therefore, the Unified Hanani-Tutte
Theorem for level-graphs (Thm 4.1) was proven.
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In order to prove the Unified Hanani-Tutte Theorem for level-graphs, we expand and adapt
the proof for the Strong Hanani-Tutte Theorem for level-graphs (Thm 4.1).

Theorem 5.1 (Unified Hanani-Tutte for level-graphs). Let G = (V, E) be a multi-level-
graph with level-assignment l : V → N. If G has drawing such that every pair of independent
edges crosses an even number of times, then G has an embedding such that the rotation at
all even vertices is preserved.

In this chapter, when we talk about an embedding or an embedding with preserved rotation,
it always means an embedding such that the rotation at all even vertices is preserved.

5.1 Properties of a Smallest Counterexample
The properties for a smallest counterexample to the Strong Hanani-Tutte Theorem (Sec-
tion 4.2)apply to a smallest counterexample to the Unified Hanani-Tutte Theorem as well.
The proofs remove and then re-insert one or more edges into the rotation at a vertex v.
Therefore, we need to distinguish for those v whether it is an even or an odd vertex in
the initial drawing. If all such vertices v are odd, we do not need to pay attention to the
rotation at those v and as such the proof given for the corresponding lemma in Section 4.2
is valid for this case. Therefore, we only take a closer look at the cases where at least one
such v is an even vertex.

Lemma 5.2 (Analogous to Lemma 4.3). Suppose that G is a smallest counterexample to
Theorem 5.1. Then G is connected.

Proof. The Lemma can be proven analogous to Lemma 4.3.

Hence, assume that all smallest counterexamples to Theorem 5.1 are connected.

Lemma 5.3 (Analogous to Lemma 4.4). Suppose that G is a smallest counterexample to
Theorem 5.1. Then G has no connected subgraph H such that

1. H has only the neighbours a and b.

2. H lies completely in between the vertices a and b.

3. G	H has other vertices apart from a and b.
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5. Unified Hanani-Tutte for Level-Graphs

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every
pair of independent edges crosses an even number of times. We expand on the proof of
Lemma 4.4. Suppose such a graph H exists. The basic idea is to use the minimality of G to
find embeddings for subgraphs G	H and H ⊕ {a, b} and glue them back together to find
an embedding of G and therefore contradict the assumption that G is a counterexample.
We need to ensure that the rotation at the vertices where we glue the embedding of the
subgraphs back together is preserved for even vertices. Therefore, we differentiate between
four separate cases for the vertices a and b and whether they are even (Figure 5.2) or odd
(Figure 5.1).

Let Ea ( E be the set of edges connecting H to a and let Eb ( E be the set of edges
connecting H to b.

Case 1: If neither a nor b are even, we do not need to pay further attention to the rotation
of edges at a or b in order to fulfil Theorem 5.1. Therefore, the proof for the corresponding
lemma in Section 4.2 (Lemma 4.4) is valid.

Case 2: If a is even and b is odd, define {e1, . . . , e|Ea|} as the edges in Ea as appearing in
clockwise order at a and for each i ∈ {1, . . . , |Ea|} define vi as the other endpoint of ei.

If the edges in Ea are not consecutive in the rotation at a, there is at least one edge in
between ei and ei+1 for least one index i. In order to deal with these, we show that all
edges in between ei and ei+1 connect to a subgraph Gi of G that only contains and is even
induced by all vertices that do not lie in H and are contained inside a cycle Ci defined by
the edges ei, ei+1 and any arbitrary path Pi that connects vi and vi+1 and fully lies in H.
Hence, assume that there are li edges in between ei and ei+1 in the clockwise rotation at a.
Define the edges that lie in between ei and ei+1 in the rotation at a as ej

i , j ∈ {1, . . . , li}.
Further, for all ej

i define vj
i to be its other end-vertex. Since a is even, ej

i crosses both ei

and ei+1 evenly and therefore every vj
i lies in between ei and ei+1. Additionally, since by

definition of ej
i , no vj

i is adjacent to any vertex in H, vj
i also lies in between l(a) and Pi.

Therefore vj
i is contained in the region defined by Ci with limited area and as such vj

i lies
inside of Ci. Let v be a vertex that is not adjacent to H or Ci. Then, any edge incident
to v crosses any edge in Ci evenly. It follows that, if v is inside Ci, every end-vertex of
any edge incident to v lies inside of Ci as well. Analogously, if v lies outside of Ci, every
end-vertex of any edge incident to v lies outside of Ci as well.

By definition of H and ej
i , there is no path from a to H that includes ej

i . Note that there
is then also no such path that includes any vj and therefore no vertex on such a path,
excepting a, is incident any ej . It follows that no vertex on such a path, excepting a and
vj

i , is adjacent to either Ci or H. For any fixed i ∈ {1, . . . , |Ea|}, we can then deduce that
every path that starts at a and continues through a ej

i only contains vertices on the inside
of Ci. Analogously, every path that starts at a and contains neither any vertex of Ci nor
any vj

i , contains, apart from a, only vertices lying outside of Ci. For i 6= k, it follows that
any vertex not in H that is contained inside of Ci lies outside of Ck. It also follows that
any vertex not in H that lies on the inside of Ck lies outside of Ci. Note that the areas
inside of Ci and Ck need not be disjunct. Now we can define Gi as the subgraph of G
induced by all vertices contained inside Ci that are not part of H. There is no vertex z ∈ G
that does not lie in H or any Gi such that z lies inside a cycle Ck since every possible
path from a to z that does not contain ei, ei+1 or any ej

i starts outside of Ci. As argued
before, all vertices on such a path, including z, lie outside of Ci as well. Overall, all edges
ej

i lying in between ei and ei+1 connect a to a subgraph Gi of G containing all connected
components of G	 {a} that are connected to a by the edges lying in between ei and ei+1
in the rotation at a. Define the union of all Gi as G.
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H

...
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ei
ei+1

e0 e|Ea|

(a) Subgraph H is connected to a by edges
ek. There is at least one non-consecutive
pair of edges ei, ei+1.

ei

H

...

H

ei+1

e0
e|Ea|

...

(b) The resulting embedding.

Figure 5.1: Uneven vertex a, subgraph H and non-consecutive connecting edges. The
rotation can be changed arbitrarily.

H
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e1

ei
ei+1

e|Ea|

C

(a) Subgraph H is connected to a by edges
ek. There are non-consecutive ei and
ai+1 that, together with a path through
h Form cycle Ci.

H

...
e1

ei

ei+1

e|Ea|

...

C

(b) The resulting embedding. The rotation
at a is preserved.

Figure 5.2: Even vertex a, subgraph H and non-consecutive connecting edges.
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5. Unified Hanani-Tutte for Level-Graphs

l(b)

l(a)

b

c

ac

H ′

G	H

a

ab

Figure 5.3: Graph G has a cut-vertex a. Subgraph G	{a} has component H = {b} . Edge
ac and subgraph H ′ can not occur in a smallest counterexample.

To finish this case, we need to ensure that the edge ab is contained in G at a convenient
position. If ab 6∈ G or if ab ∈ G such that ab is not consecutive to any edge in Ea, we insert
an edge ab by taking any path P from a through H to b and drawing the edge ab in the
region just to the left of P . Edge ab is then bounded by l(a) and l(b) and has, analogous
to P , no odd crossings with any edge of G	H 	 G that is not incident to a or b. Then,
G	H 	G, including ab, has no pair of independent edges that cross oddly. We can redraw
ab as a monotone edge without changing the crossings of ab with any edge in G	H 	 G.
Therefore, we get a monotone edge ab that crosses any edge in G	H 	 G evenly.

By minimality the induced subgraph of G obtained by removing H and all Gi has an
embedding DG	H	G with preserved rotations. Similarly, we can obtain an embedding
DH for H ⊕ {a, b} as well as an embedding DGi for each existing Gi ⊕ {a}. To obtain
an embedding of G we first insert H by glueing DH to DG	H	G at a and b just to the
right or left of ab, depending on its previous position in the initial drawing and obtain an
embedding DG	G of G	 G. For each defined Gi, to embed DGi into DG	G , define fi as
the face of DG	G that contains ei and ei+1 in its boundary. We can then embed an edge t
from a to the highest vertex in fi and embed DGi along t. Remove t again. If an edge ab
was inserted previously remove it as well. Then, we have found an embedding of G with
preserved rotations.

Case 3: If b is even and a is odd we can argue analogously to to the case ’if a is even and b
is odd’.

Case 4: If both a and b are even, we can argue similarly to the procedure used for a in
the previous case. If the edges in Ea are not consecutive in the rotation at a, define
subgraphs Ga

i analogous to Gi in the previous case where necessary. If the edges in Eb

are not consecutive in the rotation at b, define Gb
i for b analogous to Ga

i for a. As done
previously, add ab, if necessary, get the embeddings of the subgraphs G	H	G, H⊕{a, b}
as well as embeddings for all Ga

i ⊕ {a} and all Gb
i ⊕ {b}. As before, to get an embedding

for G glue the embeddings at a and b taking into account the original rotation at those
vertices. If necessary remove ab again.

Lemma 5.4 (Analogous to Lemma 4.5). Suppose that G is smallest counterexample to
Theorem 5.1. If G has a cut-vertex a and G	 {a} has a component H that lies completely
above a, then

a) H contains only a single vertex b.

b) G has no edge ac such that c lies above b.
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a l(a)

initial
drawing

Figure 5.4: Part of the embedding of G with vertex a, Paths P1 and Pj as well as edges ac
and wuj .

c) G has no connected subgraph H ′ such that

1. H ′ fully lies in between the vertices a and b.

2. H ′ has neighbouring vertex a.

3. all other neighbouring vertices of H ′ lie above b.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every
pair of independent edges crosses an even number of times and suppose such a graph H
exists. We expand on the proof of Lemma 4.5.

a) Since Lemma 4.4 holds for the Unified Hanani-Tutte Theorem as well (Lem. 5.3),
we can argue analogously to the proof of the corresponding lemma in Section 4.2
(Lem. 4.5 a)).

b) The basic idea is to obtain an embedding of G	{b} by minimality of G and then find
a way to embed b and ab correctly. Consider a possible edge ac in G with l(b) < l(c).
If there are more such edges choose the one with the least amount of edges incident
to a in between ac and ab in the rotation at a. We assume that ac lies to the right of
ab. Then, we distinguish for a whether it is even or odd.

Case 1: If a is odd, we do not need to pay further attention to the rotation at a
and therefore we can argue analogously to the proof for the corresponding lemma in
Section 4.2 (Lem. 4.5 b)).

Case 2: If a is even, we first embed G	{b}. By minimality, G	{b} has an embedding
DG	{b} with preserved rotation. If ac is consecutive to ab in the rotation at a, to
obtain an embedding of G, we can embed b and ab in DG	{b} along but left of ac.
Else, ac is not consecutive to ab at a. Then, we construct a path in DG	{b} along
which we can embed ab as follows (Figure 5.4). In the initial drawing, let e1, ..., ek be
the edges between ab and ac in the clockwise rotation at a such that e1 is consecutive
to ab and ek = ac and let v1, . . . , vk be their upper end-vertices.

In DG	{b}, if there are one or more paths from a through e1 to a vertex v that lies
above b, define the leftmost of those as P1. Then we can embed ab and b just to the
left of P1 and add end-vertex b at level l(b). If ab is crossing-free we are done. Else,
by construction of P1, for every edge eu = ux crossing ab, u lies in P1 and x lies to
the left of P1. Since we chose the leftmost of all suitable paths, the highest vertex
reachable through a path from u through eu still lies below b. Next, we take a look
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5. Unified Hanani-Tutte for Level-Graphs

at only those vertices that lie between l(a) and l(b) (both excluded). In the original
drawing, ab separates those vertices into two vertex-sets Vl and Vr—depending on
whether they lie left or right of ab in the initial drawing. No vertex ul in Vl is adjacent
to any vertex ur in Vr since every edge ulur connecting ul and ur would need to
cross ab oddly. Now, since a is an even vertex and the rotation at a is preserved in
DG	{b}, all ei lie right of ab in the original drawing as well as in DG	{b}. As such all
vi with l(vi) ≤ l(b) lie in Vr. Consequently any vertex along a path in between l(a)
and l(b) (both excluded) that starts at vi only contain vertices in Vr, including u and
any paths containing eu. We return to considering DG	{b}. By definition of P1 as
leftmost possible path, it overall follows that eu connects a subgraph K—defined as
the component of G	 {u} containing x—to P1. To remove the crossing of ab and
eu, we can lay ab around K without introducing additional crossings. Then, ab is
bounded by l(a) and l(b) and we can redraw ab as a monotone edge without changing
the crossings in the drawing. We have then obtain an embedding of G such that the
rotation is preserved.

Else, there is no path from a through e1 to a vertex v above b. Then define P1,
similarly to the previous paragraph, as the leftmost of all possible paths that start
at a, continue through e1 and end at the highest vertex reachable through such a
path. We then want to find a way to continue P1 to reach a vertex above b without
introducing additional crossings. Hence, let j be the lowest index such that there is
a path from a through ej to a vertex above b. Define the lowest such vertex as uj

and define Pj to be the leftmost path from a through ej to uj . Since ek = ac and
if j = k then uj = c and Pj = {ac}, there is always at least one such such index j.
Next, let w be the uppermost vertex on P1. Note that no edges cross each other
and w is connected to uj through a. Therefore, there is a path from w to uj that
is bounded by l(a) and l(uj) along which we can embed an edge wuj . We can then
draw a monotone edge from w to uj . As such, we can continue P1 by adding an edge
wuj in a way that does not add any crossing. Define the resulting path as P ′1. As
argued before, we can draw ab crossing-free along P ′1 and add end-vertex b at level
l(b). As such, we have found an embedding of G with preserved rotation.

Overall, if G contains an edge ac and l(b) < l(c) we can always find a way to embed
G such that the rotation is preserved.

c) Consider such a H ′. By minimality of G, we can obtain an embedding DG	{b} of
G	{b}. Analogous to the proof of the corresponding lemma in Section 4.2 (Lem. 4.5
c)), in DG	{b}, do the following. Define au to be the edge from a to H ′ leftmost at a
and define f to be the face to the left of au containing au in its boundary (Figure 4.5).
We know that there is a path P that goes through H ′ from a to a vertex c lying
above b that is defined by walking along the boundary of f .

If a is odd we can embed ab along P , analogous to the proof for Lemma 4.5 c).

If a is even and ab consecutive to au at a in the initial drawing, we can embed ab
into DG	{b} in the same was as if a was odd.

If a is even and ab is not consecutive to au in the initial drawing, let e1 be the
consecutive edge to the left of ab in the rotation at a. Now, using the same method
as in the proof for Lemma 5.4 b), either there is a path P1 from a through e1 to a
vertex above b or we can construct such a path P ′1. Instead of considering an edge ac
we can consider a path from a to c. Then, we can embed ab into DG	{b} along either
P1 or P ′1.

Altogether, we have again found an embedding for G.
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Lemma 5.5 (Extension of Lemma 5.4, analogous to Lemma 4.6). If G has a cut-vertex a
and G	 {a} has a component H that lies completely above a, then

a) H contains only a single vertex b.

b) G has no edge ac such that c lies above b.

c) G has no connected subgraph H such that

1. H is a component of G	 {a}.

2. H fully lies above vertex a.

Proof. Items a) and b) apply by Lemma 5.4. Item c) can be proven analogous to corre-
sponding Lemma 4.6.

5.2 Proof of the Unified Hanani-Tutte Theorem
Theorem 5.1 (Unified Hanani-Tutte for level-graphs). Let G = (V, E) be a multi-level-
graph with level-assignment l : V → N. If G has drawing such that every pair of independent
edges crosses an even number of times, then G has an embedding such that the rotation at
all even vertices is preserved.

The main portion of the proof of the Unified Hanani-Tutte Theorem is matches the proof of
the Strong Hanani-Tutte Theorem (Section 4.4). Though, since we consider multi-graphs,
we need to ensure Section 4.4 applies for multi-graphs as well. The proof starts with a
smallest counterexample G for Theorem 5.1 and a drawing of G with a minimal number of
odd crossings such that all independent edges cross evenly. If there are no odd crossings left,
the Weak Hanani-Tutte Theorem for level-graphs finishes the proof. Else, this results in
the situation described in Section 4.3: There are three edges e1, e2, e3 that have a common
lower end-vertex v0 such that e3 lies in between e1 and e2. The edges e1 and e2 cross
oddly and e3 crosses both e1 and e2 evenly. In order to be able to apply Lemma 4.7 and
Lemma 4.8, the upper end-vertices of e1, e2 and e3 must be distinct. Then, the proof is
analogous to Section 4.4. Hence:

Lemma 5.6. Let G be a smallest counterexample to Theorem 5.1 with a drawing such that
the number of odd crossings is minimal. If there is an odd vertex v0 left, then there are
three incident edges e1, e2 and e3 such that e3 lies in between e1 and e2 in the rotation at
v0, e1 and e2 cross oddly and e3 crosses both e1 and e2 evenly. Then the other end-vertices
of e1, e2 and e3—v1, v2 and v3—are distinct.

Proof. Let G be a smallest counterexample to Theorem 4.1 with a drawing such that every
pair of independent edges crosses an even number of times and the number of pairs of
edges crossing oddly is minimal. Further let v0 be an odd vertex. Then there is an incident
pair of odd-crossing edges e1 and e2. By minimality of the number of odd crossings, e1
and e2 are not consecutive in the rotation at v0. Therefore, there is at least one incident
edge e3 that lies in between e1 and e2 and crosses both e1 and e2 evenly (Figure 4.9). We
can assume that v0 is the lower-end vertex of e1, e2 and e3. We show that v1 = v2, v1 6= v3
as well as v1 = v3, v1 6= v2 as well as v2 = v3, v2 6= v1 and finally v1 = v2 = v3 always lead
to a contradiction.

Case 1: v1 = v2, v1 6= v3 (Figure 5.5)
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v1 = v2

v0

e3 e2e1

v1 = v2

v0

e3 e2

e1

Figure 5.5: The upper end-vertices of e1 and e2—v1 and v2—are the same. We can embed
e1 along e2 and reduce the overall number of odd crossings.

min(l(v1), l(v2))
= l(v2)

v1 = v3

e2
e3

e1

min(l(v1), l(v2))
= l(v2)

v1 = v3

v2

e2e3e1
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v2

Figure 5.6: The upper end-vertices of e1 and e3—v1 and v3—are the same. The end-vertex
v2 of e2 lies below v1 = v3. Every vertex inside of cycle C = {e1, e2} is adjacent
only to vertices inside of C, to v0 or to v1. Subgraphs G	K and K ⊕{v0} can
be embedded separately and glued back together to get an embedding of G.

Then, v1 = v2 is an odd vertex and the rotation at v1 and v0 can be changed arbitrarily.
Therefore, we can resolve the odd crossing by removing one of e1, e2 and embedding it
along the other edge. By taking the edge ei with the higher number of odd crossings and
embedding it along ej , j 6= i we can obtain a drawing of G where the overall number of
odd crossings is decreased, contradicting the minimality of the number of odd crossings in
the initial drawing.

Case 2: v1 = v3, v1 6= v2

We know that e3 starts to the right of e1 and to the left of e2 at v0. Since e3 crosses e2 evenly,
e3 lies to the left of e2 at level min(l(v2), l(v3)). By definition, e2 starts to the right of e1.
Since e2 crosses e1 oddly, e2 lies to the right of e1 at min(l(v1), l(v2)) = min(l(v2), l(v3)).

If min(l(v2), l(v3)) = l(v3), since v1 = v3, e2 lies to the right of e1 and to the left of e3 at
level l(v3), contradicting the fact that on level l(v3) e1 and e3 have the same coordinate
(x(v3), y(v3)).

Else min(l(v2), l(v3)) = l(v2). Then, at level l(v2), since e2 crosses e1 oddly and e3 evenly,
v2 lies in between e1 and e3. Since e1 and e3 start with e3 lying to the right of e1, but
e2 must cross e1 oddly and e3 evenly, e1 and e3 cross oddly in between l(v0) and l(v2).
Since overall e1 and e3 cross evenly, they need to cross oddly again between l(v2) and l(v1).
Therefore, v2 lies in an area limited by cycle C = {e1, e3} and as such inside C. Note that
for every edge c of C and every edge h = uv that is not incident to C and crosses c evenly it
follows that u lies inside of C if, and only if, v lies inside of C. As such, any path containing
v2 either contains only vertices inside of C or it contains a vertex in C, meaning vertex v0
or v1. Therefore, each components of G 	 {v0, v1} either consists exclusively of vertices
on the inside of C or it consists exclusively of vertices on the outside of C. We define the
union of the components lying inside C as subgraph K. By previous argument, K consists
exclusively of vertices that lie inside of C. Note that K can only be adjacent to v1 if v1 is
odd. By minimality of G, subgraphs G	K and K ⊕ {v0, v1} have an embeddings with
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5.2. Proof of the Unified Hanani-Tutte Theorem

preserved rotations, DG	K and DK respectively. We can then obtain an embedding of G
by flattening DK as needed and inserting it into DG	K along either e1 or e3 (Figure 5.6).

Case 3: v2 = v3, v1 6= v3

We arrive at a contradiction analogous to the previous case.

Case 4: v1 = v2 = v3

In this case e1 lies to the left of e2 and e3 lies left of e2 and right of e1 in the rotation at v0.
Since e1 and e2 cross oddly and e3 crosses both e1 and e2 evenly, regarding the rotation at
v1 = v2 = v3, e3 must still lie to the left of e2 and to the right of e1, but e2 must lie to the
left of e1, which in turn demands that e2 lies to the left of e1, a contradiction.
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6. Conclusion

In this thesis, we considered the different variants of the Hanani-Tutte Theorem with a
special emphasis on the Unified Hanani-Tutte Theorem. First, we took a look at how
the unified Hanani-Tutte Theorem can be proven in the plane. Then, we considered
level-planarity and presented a proof of the Strong Hanani-Tutte Theorem for level-graphs.
Afterwards, we showed how to adapt this proof to the Unified Hanani-Tutte Theorem for
level-graphs. Overall,the main result of this work.

Open Questions

The following questions immediately follow from our work: Is it possible. . .

. . . to use a different approach to find an easier and/or more direct proof for the Unified
Hanani-Tutte Theorem for level-graphs?

. . . to modify the proof of Theorem 5.1 (Chapter 5) to include radial level-planarity?

As mentioned in the Introduction, there are still many open Hanani-Tutte problems (table
in Figure 1.1), especially on non-orientable surfaces. There are other interesting questions
regarding the variants of the Hanani-Tutte Theorem: Is there any type of drawing where. . .

. . . the weak Hanani-Tutte Theorem does not hold?

. . . either ocr = 0 is equivalent to cr = 0 but the rotation system cannot generally be
preserved?

. . . —in addition to orientable surfaces of genus at least 4—the Strong Hanani-Tutte
Theorem does not hold?
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