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Abstract

Let G = (V, E) be an undirected graph. We call G a circle graph if the vertices of G
can be represented as a set of chords on a circle such that two chords intersect if and
only if their respective vertices are adjacent. The coloring problem is the problem of
finding the smallest number of colors k such that the vertices of a graph G can be
assigned a color such that any two adjacent vertices of G have distinct colors. Asking
if G can be colored this way with at most k colors, is called the k-coloring problem.
The coloring problem and k-coloring problem for k ≥ 4 are known to be N P-hard and
N P-complete respectively for circle graphs. Walter Unger claimed in his Ph.D. thesis
that the 3-coloring problem can be solved in time O(n log n) for circle graphs [51].
We discuss the ideas and arguments he presents regarding the 3-coloring of circle
graphs. We introduce an auxiliary coloring function c∗ : V (G)2 → B which is defined
on pairs of vertices that share a common neighbor but are themselves not adjacent
to each other. We give constraints which c∗ has to satisfy on so-called important
subgraphs. This function c∗ is called a consistent auxiliary coloring function if there
exists a 3-coloring for each important subgraph H such that two vertices a and b
of H have the same color if and only if c∗(a, b) = true. Such a 3-coloring is said
to realize c∗. For a connected circle graph G, a 3-coloring that realizes c∗ is unique
up to permutation of the colors. We present a counterexample to the claim that G
is 3-colorable if and only if there exists a consistent auxiliary coloring function c∗.
The counterexample gives a consistent auxiliary coloring function c∗ for which there
exists no 3-coloring that realizes it. We also discuss the proposed running time of
O(n log n) for solving 3-coloring of circle graphs. To this end, we highlight a certain
step of the algorithm to compute c∗ and argue why it is not clear that this running
time holds. Lastly, we determine the efficiency and accuracy of his algorithms for
computing c∗ and the corresponding 3-coloring through experimental evaluation. We
conclude that the 3-coloring problem should be considered an open problem for circle
graphs.
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Deutsche Zusammenfassung

Sei G = (V, E) ein ungerichteter Graph. Wir nennen G einen Kreissehnengraphen,
wenn V (G) als eine Menge von Sehnen auf einem Kreis dargestellt werden kann, die
sich genau dann schneiden, wenn die entsprechenden Knoten benachbart sind. Das
Färbungsproblem ist das Problem, die kleinste Anzahl von Farben k zu finden mit der
die Knoten von G so gefärbt werden können, dass je zwei benachbarte Knoten von G
unterschiedliche Farben haben. Die Frage, ob G so mit höchstens k Farben gefärbt
werden kann, wird als k-Färbungsproblem bezeichnet. Sowohl das Färbungsprob-
lem als auch das k-Färbungsproblem für k ≥ 4 sind bekanntermaßen N P-schwer,
bzw. N P-vollständig für Kreissehnengraphen. Walter Unger behauptete in seiner
Doktorarbeit, dass das 3-Färbungsproblem in der Zeit O(n log n) für Kreisgraphen
gelöst werden kann [51]. Wir betrachten die Ideen und Argumente, die er bezüglich
der 3-Färbung von Kreisgraphen präsentiert. Wir führen eine Färbungshilfsfunktion
c∗ : V (G)2 → B ein, die für Paare von Knoten definiert ist, die einen gemeinsamen
Nachbarn haben, aber selbst nicht benachbart sind. Wir geben Bedingungen an,
welche c∗ auf sogenannten wichtigen Teilgraphen erfüllen muss. Diese Funktion c∗

wird eine konsistente Färbungshilfsfunktion genannt, wenn es eine 3-Färbung für
jeden wichtigen Teilgraphen H gibt, so dass zwei Knoten a und b von H genau dann
gleich gefärbt sind, wenn c∗(a, b) = true. Wir sagen, dass so eine Färbung c∗ real-
isiert. Eine 3-Färbung die c∗ für einen zusammenhängenden Kreissehnengraphen G
realisiert ist eindeutig bis auf Permutation der Farben. Wir stellen ein Gegenbeispiel
zu der Behauptung vor, dass G genau dann 3-färbbar ist, wenn es eine konsistente
Färbungshilfsfunktion c∗ gibt. Im Gegenbeispiel konstruieren wir eine konsistente
Färbungshilfsfunktion c∗ für die keine 3-Färbung existiert welche c∗ realisiert. Wir
behandeln außerdem die behauptete Laufzeit von O(n log n) für das Lösen von 3-
Färbung von Kreissehnengraphen. Hierfür heben wir einen bestimmten Schritt des
Algorithmus’ hervor, welcher c∗ berechnet, und zeigen, warum es nicht klar ist, dass
die Laufzeit gilt. Schließlich bestimmen wir die Effizienz und Genauigkeit seiner
Algorithmen zur Berechnung von c∗ und der entsprechenden 3-Färbung durch experi-
mentelle Evaluation. Wir kommen zu dem Schluss, dass das 3-Färbungsproblem als
ein offenes Problem für Kreissehnengraphen betrachtet werden sollte.
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1. Introduction

Let G = (V, E) be a graph. Finding the smallest number of colors necessary to color G, i.e.
assign a color to each vertex, such that any two adjacent vertices have distinct colors is
called the coloring problem. This smallest number is also called the chromatic number and
is denoted by χ(G). Asking whether G can be colored this way using at most k colors is
called the k-coloring problem. Graph coloring is a very interesting and well-studied topic
in graph theory. It dates back as far as the 19th century when Francis Guthrie tried to
color the map of English counties and noticed that he only needed for different colors.
His observations were later published by his brother Frederick [24] and their conjecture
would later become what is known today as the four color theorem. In 1976 Appel and
Haken [1] presented the proof for the four color theorem. Their proof caused a sensation at
the time, since it was a computer-assisted proof for a major theorem [53]. Their result was
confirmed in 1997 by Roberts et al. [43] who presented a simpler proof. Deciding if a graph
is 2-colorable, or bipartite, can be done via a breadth-first or depth-first search, i.e . in linear
time. Solving the k-coloring problem for any k ≥ 3, however, is N P-hard [30]. The fastest
known algorithms for deciding the 3- and 4-coloring problem are respectively O(1.3289n) [4]
and O(1.7272n) [16] where n is the number of vertices. For perfect graphs, the chromatic
number can be computed in polynomial time [23]. Perfect graphs are graphs where for
each induced subgraph the size of the largest clique is equal to the chromatic number. In
other words, if a perfect graph G has a largest clique of size k then G can be colored with
k colors.

An intersection graph is an undirected graph G = (F , E) that has a family of nonempty
sets F = {S1, . . . , Sn} as its vertex set. Two vertices Si and Sj with i ̸= j are adjacent if
and only if their corresponding sets intersect, that is Si ∩ Sj ̸= ∅. Restricting the family of
sets to different geometric objects yields a number of different intersection graph classes.
Certain classes of intersection graphs are perfect graphs, for example interval graphs. An
interval graph is an intersection graph whose vertices are sets of intervals on the real
line, see Figure 1.1(b) for an example. Interval graphs are a quite prominent graph class
and are well-researched. They were first introduced by Hajós in 1957 [27] and have been
further characterized by Gilmore and Hoffman [21], Lekkerkerker and Boland [35] and
Fulkerson and Gross [17]. An efficient recognition algorithm using the consecutive-1’s
property of incidence matrices was also presented by the latter [17]. Their result was later
improved by Booth and Lueker who were able to prove the first linear time algorithm for
interval graph recognition [7]. Further linear time recognition algorithms were presented
by Habib et al. [25], who used lexicographic breadth-first search for their fairly simple
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Figure 1.1.: (a) A graph G (b) Graph G represented as a set of intersecting intervals (c)
Graph G represented as a set of intersecting arcs on the circle (d) Graph G
represented as a set of intersecting chords on the cycle

recognition algorithm, and Corneil et al. [13], who describe a similar approach using 6-sweep
LexBFS. Interval graphs are perfect, and solving the coloring problem can be solved even
more efficiently than for perfect graphs in general, namely in linear time using a greedy
heuristic [39]. The k-coloring of a maximum cardinality subset of intervals can also be
solved in time O(k + n), assuming the intervals are already sorted by their endpoints [8].
Other generally hard problems that can be solved efficiently on interval graphs are the
maximum clique problem and the maximum independent set problem [23]. One of the earliest
applications of interval graphs is a study on the fine structure of genes by S. Benzer [5].
Further applications for interval graphs include psychophysics [28], psychology [12, 42],
archaeology [32, 42] as well as the phasing of traffic lights and the mobile radio frequency
assignment problem [41].

A natural generalization of interval graphs are so-called circular arc graphs. A circular
arc graph the intersection graph of ars around a circle, see Figure 1.1(c) for an example.
By their definition, every interval graph is a circular arc graph, although, in contrast
to interval graphs, ciruclar arc graphs are not perfect. Circular arc graphs are used to
illustrate objects or processes of a circular or repetitive nature, which is a interesting
property to study. First results for circular arc graphs were published by Hadwiger et
al. [26], Klee [33] and Tucker [49]. The first characterizations of circular arc graphs were
given by Tucker [47] and Gavril [19]. Tucker also introduced two subclasses of circular
arc graphs, namely unit circular arc graphs and proper circular arc graphs, which are
characterized by forbidden induced subgraphs. Tucker also published the first polynomial
time recognition algorithm for circular arc graphs [48]. The first linear time recognition
algorithm was given by McConnel [36] and another simpler linear time recognition algorithm
was published by Kaplan and Nussbaum [29]. While the coloring problem for circular
arc graphs is N P-complete, the 3-coloring problem can be solved in polynomial time for
circular arc graphs in general [18] and in O(n2) time for proper circular arc graphs [40].
Their applications include combinatorial auctions with structured item graphs [11] and

2



routing ring networks [45]. For a more in-depth analysis on structural results for circular
arc graphs we refer to a survey by Durán et al. [14]
If we can represent G as chords on a cycle instead of arcs, then G is called a circle graph,
see Figure 1.1(d). Circle graphs were originally introduced by Even and Itai [15] for solving
the problem of realizing a given permutation using a minimum number of parallel queues.
Their problem was equivalent to finding the chromatic number of a circle graph, which is,
similar to circular arc graphs, N P-complete [18]. Also similar to cicular arc graphs, circle
graphs are not perfect. Several different characterizations and recognition algorithms have
been given for circle graphs over the last decades [37, 20, 44, 22]. Most notably, Spinrad’s
recognition algorithm runs in time O(n2) [44] while the one presented by Gioan et al.
runs in timeO((n + m))α(n + m) where α is the inverse of the Ackerman function [22].
Several N P-complete problems can be solved in polynomial time on circle graphs, such
as determining a circle graph’s treewidth [34], finding a maximum clique [46] as well as
finding a maximum independent set on an unweighted circle graph [38]. Other problems
however remain N P-complete for circle graphs. These include a number of dominating
set problems [31] as well as the k-coloring problem for k ≥ 4 [50]. The k-coloring of circle
graphs has several interesting theoretical and practical applications [3, 9, 6]. This, in part,
stems from the fact that solving the k-coloring problem for circle graphs is equivalent to
finding a k-page book embedding with a given arrangement of the vertices on the spine,
see Figure 1.2 for an illustration. A book embedding is a planar embedding of a graph

v0 v1 v2 v3 v4

(a) (b)

Figure 1.2.: (a) A circle graph G (b) Finding a 3-coloring of G is equivalent to finding a
3-page book embedding for the graph whose vertices are those on the book
spine and the edges are the chords connecting them

onto several half-planes, called the pages, sharing the same line as one of their boundaries.
The vertices of a graph are usually required to lie on that shared boundary, the so-called
spine. The edges must stay within a single page and edges sharing the same page must
not cross each other. The book thickness of a graph is the minimum number of pages
needed for any book embedding and a k-page book embedding is a book embedding with
k pages. Given a graph G together with a fixed vertex spine ordering, we can place the
vertices on the boundary of a circle in the given order and add the edges such that they
form chords on that circle. From this drawing Γ of G we get the circle graph G′ as follows.
For each edge of G we have a corresponding vertex in G′. Two vertices of G′ are adjacent
if and only if the corresponding edges of G cross in Γ. Clearly, G′ is a circle graph and
a drawing Γ′ of G′ in which the vertices of G′ are represented as chords on a circle is
equivalent to Γ. A coloring of G′ is a partition of the edges of G into subsets which can be
drawn onto a single page without any crossings. Therefore, finding the chromatic number
for circle graphs is equivalent to an optimal book embedding. Since the two problems
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1. Introduction

are so closely related, applications for book embeddings are also of high interest when
discussing circle graphs. Book embeddings were studied for applications in "Very Large
Scale Integration" (VLSI) design by Chung et al . [9] In fact, this was one of the original
motivations for studying book embeddings. VLSI is the process of creating an integrated
circuit by combining large numbers of transistors onto a single chip. Here, the vertices of a
book embedding represent components of a circuit and the edges represent wires between
those components. Chung et al. also proposed sorting permutations using stacks as an
application for book embeddings [9]. Scheduling the phases of a traffic signal at a controlled
intersection was described by Kainen [6] as a book embedding problem as follows. Incoming
and outgoing lanes of roads at an intersection are represented as vertices placed on the
spine of a book embedding. Their position on the spine is given by their clockwise order
around the intersection. The edges of the graph represent paths through the intersection
to get from an incoming lane to an outgoing lane. A subset of edges then represents paths
that can all be traversed simultaneously without creating any interference if and only if the
subset does not contain a pair of edges that would cross when embedded to the same page
in a book embedding. A book embedding therefore describes a partition of intersection
traversals into non-interfering subsets. The book thickness is then the minimum number of
distinct phases needed for a traffic signal schedule that includes all possible traffic paths
that can be taken through the intersection at the same time.

In his Ph.D. thesis, Unger [51] gives N P-completeness proofs for the 4-coloring problem
for circle graphs and for the (2 · k − 1)-coloring for circle graph with a maximum clique of
size k. He also lists several efficient algorithms in his thesis, most notably an algorithm
that he claims solves the 3-coloring problem in time O(n log n) for circle graphs [51]. His
algorithm relies on a so-called auxiliary coloring function c∗ : V (G)2 → B, or val3 as he
called it, which is defined for all pairs of vertices that share a common neighbor but are
themselves not adjacent to each other. If c∗ satisfies a number of constraints for certain
important subgraphs of a circle graph G then, according to Unger, G is also 3-colorable.
This 3-coloring is further claimed to be unique up to permuting the colors. We note that
the above claim was published in an extended abstract [52], but, as also pointed out by
David Epstein 1, it omits many details. Unfortunately, a journal version including the
missing elements was never published. Instead, the paper refers to Unger’s Ph.D. thesis for
a complete version.

We discuss Unger’s ideas, concepts and proofs for solving the 3-coloring of circle graphs.
We point to problems in his statements and argue why finding an efficient algorithm that
solves 3-coloring on circle graphs should be considered an open problem. We start off with
definitions for circle graphs in Chapter 2. In Chapter 3, we introduce the auxiliary coloring
function c∗. We give a number of constraints for c∗ on certain subgraphs which we call
important subgraphs. In Chapter 3 we also present a counterexample to one of the more
crucial lemmas needed to prove that a circle graph is 3-colorable if and only if there exists
an auxiliary coloring function c∗ that satisfies certain constraints on important subgraph.
In Chapter 4 we show how this constrained auxiliary coloring function c∗ can be computed.
The heart of this chapter is the backtracking algorithm used to compute values for c∗ for
certain chordless cycles of length at least 5. We discuss Unger’s claim that the number of
leaves for the backtracking tree is in O(n log n) and show why it is not clear that this holds.
Lastly we present an experimental evaluation of the algorithms described in Unger’s Ph.D.
thesis and discuss its efficiency in practice in Chapter 5. We also compare the backtracking
approach to one using a Sat solver. Finally, we present our conclusions and some open
problems in Chapter 6.

1https://11011110.github.io/blog/2014/08/09/three-colorable-circle-graphs.html
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2. Preliminaries

Let G = (V, E) be an undirected graph. A function col : V → {1, . . . , k} is called a k-
coloring of G if every pair of adjacent vertices a, b ∈ V have different colors assigned
to them, i.e. col(a) ̸= col(b). We define col(W ) for a set of vertices W ⊆ V as the set
{col(v) : v ∈ W}. We say that a 3-coloring is unique if G has only one possible 3-coloring
up to permutation of the colors.

A circle graph is an undirected graph G that can be represented using intersecting chords in
a circle. We represent each vertex v ∈ V (G) as such a chord where two chords v, u ∈ V (G)
intersect if and only if {v, u} ∈ E(G). We can assume that no two chords share a common
endpoint on the circle. An illustration of a circle graph is given in Figure 2.1(b).

Throughout this thesis we assume G is connected and does not contain cliques of size 4
or greater. Our results and definitions can easily be extended to disconnected graphs by
applying them to each connected component. Since we are interested in 3-colorings, circle
graphs with cliques of size 4 or larger can be efficiently deemed not 3-colorable [46]. For
our purposes, we use a representation of circle graphs in which the circle is cut open and
rolled out such that the chords form arcs on a straight line, see Figure 2.1(c). Each chord
v ∈ V (G) has a left and right endpoint on the straight line. Since no two chords share a
common endpoint, we can number the endpoints from left to right and uniquely define v
by its two endpoints vℓ, vr ∈ N with vℓ < vr. From this representation of circle graphs we
can infer the following definitions.

Let G be a circle graph. We say that a chord v ∈ V (G) crosses the left endpoint of another
chord u ∈ V (G) with v ̸= u if and only if vℓ < uℓ < vr < ur. Analogously, v crosses the
right endpoint of u if and only if uℓ < vℓ < ur < vr.

v0 v4

v2

v1 v3

v0 v1 v2 v3 v4

(a)

v2

v0

v1

v3

v4

(b) (c)

Figure 2.1.: (a) An undirected graph G (b) Representation of G of chords on a circle (c)
Alternative circle graph representation for G

5



2. Preliminaries

v wu x

Figure 2.2.: Chord u encases both v and x and directly encases v, v and w directly encase
x

We say v crosses u if v crosses either the left or the right endpoint of u.

We say that c ∈ V (G) is the minimum chord of a set of chords W ⊆ V (G) or min(W ) if
and only if for all chords v ∈ W , cℓ ≤ vℓ. Analogously, c is the maximum chord in W or
max(W ) if and only if for all chords v ∈ W , cr ≥ vr.

We define the left neighborhood of a chord v in G as

N ℓ
G(v) := {u ∈ V (G) : u crosses the left endpoint of v}.

Analogously, the right neighborhood of v is defined as

N r
G(v) := {u ∈ V (G) : u crosses the right endpoint of v}.

The neighborhood of v is then defined as

NG(v) := {u ∈ V (G) : u crosses v}.

The neighborhood of a set of chords W ⊆ V (G) is defined as

NG(W ) :=
⋃

w∈W

NG(w).

The definitions for left and right neighborhoods of sets of chords are defined analogously as
N ℓ

G(W ) := ⋃
w∈W N ℓ

G(w) and N r
G(W ) := ⋃

w∈W N r
G(w).

Since the chords are represented by arcs on a straight line, we can define the notion of one
chord encasing another chord which gives us a level-like structure as follows.

We say that a chord v ∈ V (G) encases another chord u ∈ V (G) if and only if vℓ < uℓ <
ur < vr. We say that v directly encases u if there is no other chord w such that v encases
w and w encases u. See Figure 2.2 for an example.

For two sets U, W ⊆ V (G) we say that U (directly) encases W if and only if for all w ∈ W
there exists some chord u ∈ U such that u (directly) encases w.

We recursively define the levels of a circle graph G as follows:

levelG(1) := {v ∈ V (G) : ∄u ∈ V (G) : u encases v}
levelG(l) := {v ∈ V (G) : ∃u ∈ levelG(l − 1) : u directly encases v}

The position of a chord v is defined as pos(v) = i if and only if v ∈ levelG(i). The level
number of G is defined as L(G) := max{i : levelG(i) ̸= ∅}.

6



3. 3-Coloring Circle Graphs using c∗

Let G be a 3-colorable circle graph where col is a 3-coloring for G. If we have such a coloring,
we can define a function f : V (G)2 → B that tells us if a pair of vertices has the same color
or not, i.e. f(a, b) = true if col(a) = col(b) and f(a, b) = false otherwise. What is more
interesting is to see if constructing a 3-coloring using a function similar to f is also possible.
We know that adjacent vertices can never have the same color, so defining values of f for
them is unnecessary. Instead, it suffices to define f for all pairs of vertices that share a
common neighbour and are not adjacent to each other. We give constraints for f on certain
subgraphs such that values of f are equivalent to a 3-coloring on these subgraphs. We
then try and color the graph level by level using these subgraphs as connections between
levels, starting with levelG(1). We show that while this coloring strategy is promising at
first, there is a counterexample illustrating how this way of constructing a 3-coloring can
result in an incorrect coloring.

3.1. Auxiliary Coloring Function c∗

We define an auxiliary coloring function c∗ for vertices that share a common neighbor and
are not adjacent themselves as follows.

Definition 3.1 (Auxiliary Coloring Function). Let G be a circle graph. We define a
auxiliary coloring function c∗ : D → B with D := {(a, b) ∈ V (G)2 : b ∈ NG(NG(a))\NG(a)}
as a function that assigns a boolean value to all pairs of vertices (a, b) ∈ D.

Next, we establish the connection between c∗ and a 3-coloring for G. We want that the
values of c∗ for all pairs of vertices (a, b) ∈ D correspond to the fact that these vertices
have the same color in a 3-coloring.

Definition 3.2 (Realizable Auxiliary Coloring Function). Let G be a circle graph and c∗

an auxiliary coloring function. We say that c∗ is realizable if and only if there exists a
3-coloring col such that c∗(a, b) = true if and only if col(a) = col(b), and c∗(a, b) = false
otherwise. We say that col realizes c∗ and c∗ satisfies col.

It arguably would not make sense to use a realizable auxiliary coloring function on a whole
circle graph G as it already assumes the existence of a 3-coloring col for G. Instead, we
introduce a number of important subgraphs, for which we prove the existence of such a

7



3. 3-Coloring Circle Graphs using c∗
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Figure 3.1.: Important subgraph G9◁. (a) and (c) represent the possible (underlying) graphs,
(b) and (d) show the possible circle graph representations

realizable auxiliary coloring function c∗. We note that the definitions given in the following
are derived from both the definitions of the equivalent important subgraphs from Unger’s
thesis [51, p. 78] and the respective recognition algorithms [51, p. 146] he presents.

Definition 3.3 (Important Subgraph G9◁). Let G be a circle graph and let G′ be a subgraph
of G. Then G′ is the important subgraph G9◁ if it is isomorphic to the graph illustrated in
Figure 3.1(a) or (c) and there exists a chord c ∈ V (G′) such that either

• V (G′) = (NG(c) ∪ {c}) ∩ levelG(pos(c)), i.e. G′ lies within one level, and
• chord a does not cross chord b for all a ∈ N ℓ

levelG(pos(c))(c) and b ∈ N r
levelG(pos(c))(c)

or, for l < L(G) and H ⊆ levelG(l), H ′ ⊆ levelG(l + 1)

• V (G′) = (NG(c) ∩ (levelG(l) ∪ levelG(l + 1))) ∪ {c}, i.e. the neighbors of c lie on
exactly two adjacent levels, and

• H directly encases H ′ and
• c = min (⋂v∈H∪H′ NG(v))

then G′ is the important subgraph G9◁.

The chord c can be considered the "center" of G9◁. In Figure 3.1(a) c = v1 and in Figure 3.1(c)
c = v2. The two possible underlying structures of G9◁ illustrated in Figure 3.1(a) and (c)
depend on the size of c’s neighborhoods.

Definition 3.4 (Important Subgraph G□). Let G be a circle graph and let G′ be a subgraph
of G with V (G′) = {v0, . . . , v3} where vi crosses v(i+1) mod 4 for all i ∈ {0, . . . , 3}, v1 does
not cross v3 and v0 directly encases v2. If G′ is isomorphic to the graph illustrated in
Figure 3.2(a) and if either v1 directly encases v3 or

8
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(b)(a)

v0 v3

v2v1

v0 v2v1 v3 v0 v2v1 v3

Figure 3.2.: Important subgraph G□. (a) represents the underlying graph, (b) shows the
possible circle graph representations

• vr
1 < vℓ

3 and
• v1 = max(N ℓ

G(v1) ∪ N ℓ
G(v2)) and

• v3 = min(N r
G(v1) ∪ N r

G(v2))

then G′ is the important subgraph G□.

Definition 3.5 (Important Subgraph G�). Let G be a circle graph and let G′ be a subgraph
of G with V (G′) = {v0, . . . , v3} where v1 does not cross v3 and v0, v1, v2 and v0, v2, v3 form
a 3-clique each. If G′ is isomorphic to the graph illustrated in Figure 3.3(a) and if either
v1 directly encases v3 or if

• vr
1 < vℓ

3 and
• v1 = max(N ℓ

G(v0) ∩ N ℓ
G(v2)) and

• v3 = min(N r
G(v0) ∩ N r

G(v2))

then G′ is the important subgraph G�.

(b)(a)

v0 v3

v1 v2

v0 v1 v3 v2 v1 v2v0 v3

Figure 3.3.: Important subgraph G�. (a) represents the underlying graph, (b) shows the
possible circle graph representations

Definition 3.6 (Important Subgraph GD). Let G be a circle graph and let G′ be a subgraph
of G with V (G′) = {v0, . . . , v4} where vi crosses v(i+1) mod 5 and does not cross vi+2 mod 5
for all i ∈ {0, . . . , 4}. Then G′ is the important subgraph GD if it is isomorphic to the
graph illustrated in Figure 3.4(a) and if either

• v0 directly encases v2 and v3 and
• v1 = max((N ℓ

G(v2) \ N ℓ
G(v3)) ∩ N ℓ(v0)) and

• v4 = min((N r
G(v3) \ N r

G(v2)) ∩ N r
G(v0))

or if

• {v0, v1} directly encases {v2, v3, v4} and
• v1 = max((N r

G(v2) \ N r
G(v3)) ∩ N r(v0)) and

• v4 = min((N r
G(v3) \ N r

G(v2)) ∩ N r(v0)) and

9
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(b)(a)

v0

v1

v2

v3

v4 v0v1 v2 v3 v4 v0 v1 v4v2 v3

Figure 3.4.: Important subgraph GD. (a) represents the underlying graph, (b) shows the
possible circle graph representations

Definition 3.7 (Family of Important Subgraphs G⃝). Let G be a circle graph and let G′

with V (G′) = {v0, . . . , vn} be a subgraph of G with n ≥ 5 where vi crosses v(i+1) mod n+1
and does not cross vi+2 mod n+1 for all i ∈ {0, . . . , n}. Then G′ belongs to the family of
important subgraphs G⃝ if it is isomorphic to a chordless cycle of length n and if either

• v0 directly encases vi with 2 ≤ i ≤ n − 1 and
• NG(vi) ∪ NG(v0) = ∅ for 3 ≤ i ≤ n − 2 and
• vi = min(NG(vi−1) ∩ NG(vi+1)) for 2 ≤ i ≤ n − 1 and
• v1 = max((N ℓ

G(v2) \ N ℓ
G(v1)) ∩ N ℓ

G(v0)) and
• vn = min((N r

G(vn−1) \ N r
G(vn−2)) ∩ N r

G(v0))

or

• v0 directly encases vi with 2 ≤ i ≤ n − 1 and
• v1 directly encases vi with 3 ≤ i ≤ n and
• vi = min(NG(vi−1) ∩ NG(vi+1)) for 2 ≤ i ≤ n and
• v1 = max((N r

G(v2) \ N r
G(v3)) ∩ N r

G(v0)) and
• vn = min((N r

G(vn−1) \ N r
G(vn−2)) ∩ N r

G(v0)) and
• NG(vi) ∪ NG(v0) = ∅ for 4 ≤ i ≤ n − 2 and
• NG(vi) ∪ NG(v1) = ∅ for 4 ≤ i ≤ n − 1

We first show that if any only if c∗ has certain properties, it is realizable for important
subgraphs.

Lemma 3.8 (Properties of c∗ for G9◁, G□, G� and GD). Let G be a circle graph and c∗

an auxiliary coloring function for G.

a) Let I be an important subgraph G9◁ of G. Then c∗ is realizable for I if and only if c∗

has the following properties:

(G1.1) c∗(v0, v2) = true or c∗(v0, v3) = true

(G1.2) c∗(v0, v2) = false or c∗(v0, v3) = false

b) Let I be an important subgraph G□ of G. Then c∗ is realizable for I if and only if c∗

has the following property:

(G2) c∗(v0, v2) = true or c∗(v1, v3) = true

c) Let I be an important subgraph G� of G. Then c∗ is realizable for I if and only if c∗

has the following property:

(G3) c∗(v0, v2) = true

d) Let I be an important subgraph GD of G with V (I) = {v0, . . . v4} Then c∗ is realizable
for I if and only if c∗ has the following properties:

10
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(G4.1) For two pairs of vertices vi, vj and vi, vj′ with 0 ≤ i ≤ 4 and j = i+2 mod 5 and
j′ = i + 3 mod 5, i.e. vj and vj′ are adjacent, c∗(vi, vj) = false or c∗(vi, vj′) =
false must hold

(G4.2) For exactly two distinct pairs of chords va, vb and vc, vd, that is |{va, vb, vc, vd}| =
4 and a, b, c, d ∈ {0, . . . , 4}, it must hold that c∗(ca, cb) = c∗(cc, cd) = true

Proof. We prove the statements as follows, using the vertex labeling from Figures 3.1 to 3.4.

a): Assume c∗ is realizable and let col be a 3-coloring that realizes c∗. Since v1, v2, v3
form a 3-clique, they must have a different color each in any 3-coloring. It must also hold
that col(v0) ̸= col(v1), since v0 and v1 are adjacent. Therefore v1 must have one of the
remaining two colors {0, 1, 2} \ col({v1}), so either col(v0) = col(v2) and col(v0) ̸= col(v3),
or col(v0) = col(v3) and col(v0) ̸= col(v2). Hence, c∗ must have properties G1.1 and G1.2.
Conversely, if c∗ has properties G1.1 and G1.2. then any 3-coloring col constructed as
described above realizes c∗, hence c∗ is realizable. Therefore, c∗ is realizable for G9◁ if and
only if it has properties G1.1 and G1.2.

b): Assume c∗ is realizable and let col be a 3-coloring col that realizes c∗. Clearly, for any 3-
coloring, col(v0) ̸= col(v1). Then either col(v2) = col(v0) or col(v2) = {0, 1, 2}\col({v0, v1})
in which case col(v3) = col(v1). From this we see that c∗ must have property G2. Conversely,
if c∗ has property G2, then any 3-coloring col constructed as described above realizes c∗,
hence c∗ is realizable. Therefore, c∗ is realizable for G□ if and only if it has property G2.

c): Assume c∗ is realizable and let col be a 3-coloring col that realizes c∗. The vertices
{v0, v1, v2} form a 3-clique, so for any 3-coloring it holds w.l.o.g. that col(v0) = 0, col(v1) = 1
and col(v2) = 3. Then the only color v3 can have is col(v1), since v3 is adjacent to both
v0 and v2. Hence, c∗ must have property G3. Conversely, if c∗ has property G3, then the
3-coloring from before realizes c∗, meaning that c∗ is realizable. Therefore, c∗ is realizable
for G� if and only if it has property G3.

d): Assume c∗ is realizable and let col be a 3-coloring for G with col(vi) = col(vj) and
col(vi) = col(vj′) for 0 ≤ i ≤ 4 and j = i + 2 mod 5 and j′ = i + 3 mod 5. This is not a
3-coloring since {vj , vj′} ∈ E(G). Hence, either col(vi) = col(vj) and col(vi) ̸= col(vj′),
col(vi) = col(vj′) and col(vi) ̸= col(vj) or col(vj) ̸= col(vi) ̸= col(vj′). It follows that
c∗ must have property G4.1. Since G is a cycle of length 5 it must be colored with at
least 3 colors and therefore w.l.o.g. the chord col(v0) = 0 and the remaining chords are
colored as follows: col(v1) = 1, col(v2) = 2, col(v3) = 1 and col(v4) = 2. This means
that exactly c∗(v1, v3) = c∗(v2, v4) = true must hold and c∗ must have property G4.2.
Conversely, if c∗ has properties G4.1 and G4.2, w.l.o.g. c∗ is defined as follows: c∗(v0, v2) =
true, c∗(v1, v3) = true, c∗(v2, v4) = false, c∗(v3, v0) = false and c∗(v4, v1) = false. We
see that w.l.o.g. col can be derived as follows: col(v0) = col(v2) = 0, col(v1) = col(v3) = 2
and col(v4) = 2. Therefore, if c∗ has properties G4.1 and G4.2 there exists a 3-coloring
realizing it. In conclusion, c∗ is realizable for GD if and only if it has properties G4.1 and
G4.2.

Next, we prove that if and only if certain properties hold for c∗, it is realizable for important
subgraphs of G⃝. Recall that an important subgraph G⃝ of G⃝ is isomorphic to a chordless
cycle of length l ≥ 6. Since c∗ is defined only on vertices that share a common neighbor, we
introduce a recursive function h : V (G)2 → B to describe the relationship between the first
two vertices of the cycle v0 and v1 and every other vertex vi of G⃝ with 2 ≤ i ≤ l with regard
to having the same color in a 3-coloring. Namely, if c∗ is realizable and c∗(vi−2, vi) = true,
then clearly v0 and vi have the same color if and only if v0 and vi−2 have the same color.
Hence, we set h(v0, vi) := h(v0, vi−2). On the other hand, if c∗(vi−2, vi) = false, then
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3. 3-Coloring Circle Graphs using c∗

v0 and vi have the same color if and only if that color is not used by either vi−1 or vi−2.
Hence, h(v0, vi) := ¬h(v0, vi−2) ∧ ¬h(v0, vi−1). By the same arguments this also holds for
v1 and each vi. Finally, after applying h to all vertices of the cycle, we want the first and
last vertex of the cycle to have different colors, i.e. h(v0, vl) = false and that the values of
h(v0, vl−1) and h(v1, vl) are equal to c∗(v0, vl−1) and c∗(v1, vl) respectively. This implies
that we were able to color the cycle while traversing it such that the coloring realizes c∗.
With the help of this recursive function h we prove the following lemma.

Lemma 3.9. Let G be a circle graph and I an important subgraph G⃝ ∈ G⃝ of G with
V (I) = {v0, . . . , vl} and l ≤ 5 and let c∗ be an auxiliary coloring function for G. We define
a recursive function h : V (I)2 → B with x ∈ {0, 1} and x + 3 ≤ i ≤ l as follows:

h(vx, vx+1) := false and
h(vx, vx+2) := c∗(vx, vx+2) and

h(vx, vi) =
{

h(vx, vi−2) if c∗(vi−2, vi) = true
¬h(vx, vi−2) ∧ ¬h(vx, vi−1) if c∗(vi−2, vi) = false

Then c∗ is realizable for I if and only if the following statements hold:

• h(v0, vl) = false and
• h(v0, vl−1) = c∗(v0, vl−1) and
• h(v1, vl) = c∗(v1, vl)

Proof. Assume c∗ is realizable on I and let col be a 3-coloring that realizes c∗. As an
intermediate step, we show by induction on i that if c∗ is realizable on the first i vertices
of I, then h(v0, vi) = true if and only if col(v0) = col(vi) where 1 ≤ i ≤ l. For i ≤ 2
it holds by construction of h that h(v0, v1) = false and h(v0, v2) = c∗(v0, v2), so the
intermediate statement follows directly. Now assume that h(v0, vi) = true if and only if
col(v0) = col(vi) for 2 ≤ i < l. We show that the intermediate statement holds for i + 1.
Assume c∗ is realizable on {v0, . . . , vi+1} and let col be a 3-coloring that realizes c∗. If
c∗(vi−1, vi+1) = true, then col(vi−1) = col(vi+1). This means that col(v0) = col(vi+1) if
and only if col(v0) = col(vi−1). Then h(v0, vi+1) = true if and only if h(v0, vi−1) = true
which proves the intermediate statement for this case. If c∗(vi−1, vi+1) = false, then
col(vi+1) must be {0, 1, 2} \ col(vi−1, vi). Therefore, col(v0) = col(vi+1) holds if and only
if col(v0) ̸= col(vi−1) and col(v0) ̸= col(vi). Hence, h(v0, vi+1) = true if and only if
h(v0, vi−1) = false and h(v0, vi) = false. This concludes the proof for the intermediate
statement. The same statement can be proven analogously for h(v1, vi) with 3 ≤ i ≤ l. Since
v0 and vl are adjacent, col(v0) ̸= col(vl), hence from the intermediate statement it follows
that h(v0, vl) = false. With this we get that if c∗ is realizable, then h(v0, vl) = false,
h(v0, vl−1) = c∗(v0, vl−1) and h(v1, vl) = c∗(v1, vl).

Now assume h(v0, vl) = false, h(v0, vl−1) = c∗(v0, vl−1) and h(v1, vl) = c∗(v1, vl). Using
induction over i with 1 ≤ i ≤ l we show that if h is defined as above then there exists a
3-coloring col realizing c∗ for vertices {v0, . . . , vi} of I such that h(v0, vi) = true if and only
if col(v0) = col(vi). For i ≤ 2 we have that h(v0, v1) = false and h(v0, v2) = c∗(v0, v2).
Clearly, in any 3-coloring, v0 and v1 must have different colors, so col(v0) ̸= col(v1). W.l.o.g.
we pick the colors 0 and 1 for v0 and v1 respectively. For v2 we then either pick 0 or 2,
depending on c∗. This proves the base case. Now assume that there exists a 3-coloring that
realizes c∗ for {v0, . . . , vi} and h(v0, vi) = true if and only if col(v0) = col(vi). We show that
c∗ is also realizable for i + 1 and that h(v0, vi+1) = true if and only if col(v0) = col(vi+1).
For this we consider the two cases for c∗(vi−1, vi+1). First assume c∗(vi−1, vi+1) = true.
By definition of h we get h(v0, vi+1) = h(v0, vi−1). By induction hypothesis there exists
a 3-coloring col that realizes c∗ for {v0, . . . , vi}. with h(v0, vi−1) = true if and only if
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col(v0) = col(vi−1). Clearly, col(vi−1) ̸= col(vi) must hold, therefore col(vi+1) := col(vi−1)
is a valid extension for col, realizing c∗. This also means that col(v0) = col(vi+1) if
and only if col(v0) = col(vi−1). Hence, h(v0, vi+1) = h(v0, vi−1) = true if and only if
col(v0) = col(vi+1). Now assume c∗(vi−1, vi+1) = false. Then h(v0, vi+1) is true if and
only if h(v0, vi−1) = h(v0, vi) = false. By induction hypothesis, there exists a 3-coloring
col that realizes c∗ for {v0, . . . , vi} and h(v0, vi−1) = true if and only if col(v0) = col(vi−1).
We want to extend col to vi+1 such that col realizes c∗, i.e. vi−1 and vi+1 have different
colors. The obvious choice for vi+1 is the color {0, 1, 2} \ col({vi−1, vi}). This color
is the same as col(v0) if and only if col(v0) ̸= col(vi−1) and col(v0) ̸= col(vi). Hence,
h(v0, vi+1) = ¬h(v0, vi−1) ∧ ¬h(v0, vi) = true if and only if col(v0) = col(vi+1). This
concludes the induction proof for the second intermediate statement, which can be proven
analogously for h(v1, vi) with 2 ≤ i ≤ l. We lastly need to argue that once we’re done
iteratively coloring the circle such that the coloring realizes c∗, we do not end up with
conflicting colors for v0 and vl, i.e. that col(v0) ̸= col(vl). Since by assumption it holds
that h(v0, vl) = false and that by induction there exists a 3-coloring col realizing c∗ with
h(v0, vi) = true if and only if col(v0) = col(vi), we have that col(v0) ̸= col(vl). This proves
the lemma.

We have shown that for important subgraphs G9◁, G□, G� and GD as well as for important
subgraphs of G⃝, c∗ is realizable if and only if its values for the vertices in D correspond to
3-colorings on these subgraphs. From this we infer the following definition of a consistent
auxiliary coloring function.

Definition 3.10 (Consistent Auxiliary Coloring Function). Let G be a circle graph and c∗ an
auxiliary coloring function. We say that c∗ is consistent if and only if it is realizable for each
important subgraph G9◁, G□, G� and GD of G as well as the important subgraphs G⃝ ∈ G⃝
of G.

We note that these definitions and lemmas are equivalent to the ones presented by Unger
in his thesis [51, p. 83ff.].

3.2. 3-Coloring Graphs with c∗

In this section we discuss if a graph G is 3-colorable if and only if there exists a consistent
auxiliary coloring function c∗. As argued before, deriving an auxiliary coloring function
from an existing 3-coloring can be done fairly easily. What is less obvious is how we can
prove the existence of a 3-coloring using such a function. Our first step was to shown that
if and only if c∗ has certain properties, there exists a 3-coloring for important subgraphs
realizing c∗. From this we derived the definition of a consistent auxiliary coloring function
c∗. Now we want to construct a 3-coloring for a circle graph G using a consistent auxiliary
coloring function c∗. We do this level by level starting with the outermost one, that is
levelG(1), which we color from left to right such that the resulting 3-coloring realizes c∗.
The remaining graph is colored by extending the 3-coloring level by level, i.e. from level i
to level i + 1. During each of these steps, the 3-coloring expands through the circle graph
using the important subgraphs as bridges across and within levels.

An additional result is that any 3-coloring col of a circle graph G is unique if it is constructed
using a consistent auxiliary coloring function c∗ for G as follows. We start by picking some
first edge {v0, v1} ∈ E(G) and color its endpoints with two different colors. This base
case coloring is clearly unique. We then pick some uncolored vertex v ∈ V (G) that has
at least one colored neighbor and assign a color to it as follows. We assume that vertices
{v0, . . . , vi} have been colored uniquely. Let vi+1 be an uncolored vertex that has at least
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one colored neighbor vi. By the induction hypothesis and due to the connectivity of G,
vi has another colored neighbor vj with j < i and col(vi) ̸= col(vj). Note that vi+1 can
be adjacent to vi only or to vj as well. If vi+1 is adjacent to both vi and vj , vi+1 must be
colored with the one remaining color {0, 1, 2} \ col({vi, vj}), which yields a unique coloring.
If vi+1 is adjacent only to vi, then c∗(vj , vi+1) decides whether vj and vi+1 have the same
color. In this case we either get col(vj) = col(vi+1) or, as before, the remaining color
{0, 1, 2} \ col(vi, vj). In every case, the 3-coloring including col(vi+1) is unique and we get
the following lemma.

Lemma 3.11. Let G be a 3-colorable circle graph and let c∗ be a consistent auxiliary
function for G. Any 3-coloring that realizes c∗ and is constructed as described above is
unique.

Next, we show that if two important subgraphs share exactly two vertices in a circle graph,
then the 3-coloring of the union of these two subgraphs realizing c∗ is also unique. This
lemma is relevant for when we use the important subgraphs as connective elements between
and within levels of a circle graph.

Lemma 3.12. Let Gi and Gj be two important subgraphs in a circle graph G and let c∗ be
a consistent auxiliary coloring function for G. If there are exactly two adjacent vertices in
V (Gi) ∩ V (Gj) then there exists a unique 3-coloring for these subgraphs that realizes c∗.

Proof. By Lemma 3.11, the colorings we can infer from c∗ for Gi and Gj by Lemma 3.8
and 3.9 are in fact unique. W.l.o.g. we color Gi first. Then the colors of two adjacent
vertices of Gj are already given by the coloring for Gi. Since c∗ is consistent on G we know
that there also exists a 3-coloring for Gj . Using the two colored vertices in Gj we can then
by Lemma 3.11, 3.8 and 3.9 construct the unique coloring for Gj . Hence the coloring for
both subgraphs is also a unique 3-coloring realizing c∗.

We move on to the first step of constructing a 3-coloring for a circle graph G. That is, we
color the chords of the first layer levelG(1) from left to right and show that for each new
chord we encounter we can extend our current 3-coloring using c∗.

Lemma 3.13. Let G be a circle graph for which there exists a consistent auxiliary coloring
function c∗. Then there exists a unique 3-coloring for levelG(1) that realizes c∗.

Proof. Let G′ be the subgraph induced by levelG(1) = {v1, v2, . . . , vn} with the chords
ordered by their left endpoints. Since by assumption G is connected, so is G′, therefore
vi ∈ N ℓ

G′(vi+1) for 1 ≤ i < n. We show that if there exists a 3-coloring col for chords v1 up
to vi that realizes c∗, then col can be extended to vi+1 such that it realizes c∗.

We define the set of chords Li as follows:

Li := N ℓ
G′(vi) ∪ N ℓ

G′(N ℓ
G′(vi)) for all i with 1 ≤ i ≤ n.

Since G′ is connected and consists of only one level, i.e. no chord can encase another chord,
N ℓ

G′(vi) ∪ {vi} forms a clique. Also, by assumption G′ does not contain any 4-cliques and
hence, |N ℓ

G′(vi)| ≤ 2. We show in the following that |Li| ≤ 4 by considering every possible
size of N ℓ

G′(vi).

If |N ℓ
G′(vi)| = 0 then i = 0 and clearly |Li| = 0 ≤ 4.
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viba

Figure 3.5.: Chords that cross only the left endpoint of b would be encased by a and
therefore on a different level

Now assume that |N ℓ
G′(vi)| = 1 with N ℓ

G′(vi) = {a}. Similar to before, since G′ is connected
and only consists of one level, a can have at most 2 other chords crossing its left endpoint,
forming a clique.
Hence, |N ℓ

G′(a)| ≤ 2, and therefore |Li| = |N ℓ
G′(vi)| + |N ℓ

G′(N ℓ
G′(vi))| ≤ 1 + 2 ≤ 4.

Now assume that |N ℓ
G′(vi)| = 2 with N ℓ

G′(vi) = {a, b} and assume w.l.o..g. that al < bl.
Again, because G′ is connected and consists of only one level, a and b can each have at most 2
neighbors, forming two 3-cliques respectively. We show that all chords in N ℓ

G′(N ℓ
G′(vi)) either

cross both a and b simultaneously, or they only cross a. Assume there exists some chord in
N ℓ

G′(N ℓ
G′(vi)) crossing only the left endpoint of b and not a. Then a encases any such chord,

see Figure 3.5. This is a contradiction, since all chords of G′ belong to the same level. Hence,
all chords in N ℓ

G′(N ℓ
G′(vi)) either cross both a and b or only a, so N ℓ

G′(N ℓ
G′(vi)) = N ℓ

G′(a).
Since N ℓ

G′(a) ≤ 2, it follows that |Li| = |N ℓ
G′(vi)| + |N ℓ

G′(N ℓ
G′(vi))| ≤ 2 + 2 ≤ 4.

We now construct a 3-coloring of G′ that realizes c∗ For this we consider each possible size
of Li+1. We start with the two trivial cases of |Li+1| = 0 and |Li+1| = 1. If |Li+1| = 0,
then, since G′ is connected, i = 0 and L1 = {v1}, so we set col(v1) := 1. If |Li+1| = 1, then
i = 1 and L2 = {v1, v2} where v1 has color 1. Hence, we set col(c2) := 2. The coloring so
far is not relevant to c∗, since c∗ is only defined on chords that are not adjacent. Therefore,
this coloring trivially realizes c∗. From now on we assume that there exists a 3-coloring col
for {v1, . . . , vi} that realizes c∗ and show that col can be extended to vi+1 such that it still
realizes c∗.

Assume |Li+1| = 2. We can distinguish two subcases, namely |N ℓ
G′(vi+1)| = 1 and

|N ℓ
G′(vi+1)| = 2. If |N ℓ

G′(vi+1)| = 1, then |N ℓ
G′(N ℓ

G′(vi+1))| = 1, see Figure 3.6(a). We set
col(vi+1) according to c∗(vi−1, vi+1), which means vi+1 either has the same color as vi−1
or the color {0, 1, 2} \ col({vi−1, vi}). In both cases, the resulting 3-coloring is correct and
realizes c∗.

vi+1vivi−1

(a)

v3v2v1

(b)

Figure 3.6.: Illustration of Case |Li+1| = 2 in Lemma 3.13

If |N ℓ
G′(vi+1)| = 2, then i = 2 and N ℓ

G′(vi+1) = N ℓ
G′(v3) = {v1, v2}, see Figure 3.6(b). By

Definition 3.1, c∗ is not defined for this 3-clique and therefore v3 gets the remaining color
{0, 1, 2} \ col({v1, v2}) = 0. This coloring trivially realizes c∗.

Now consider the case |Li+1| = 3. For this, we again consider the following subcases: If
|N ℓ

G′(vi+1)| = |{vi}| = 1, then |N ℓ
G′(N ℓ

G′(vi+1))| = 2 and Li+1 is the important subgraph G9◁,
see Figure 3.7(a) and 3.1(a) and (b). |N ℓ

G′(vi+1)| = 1 or |N ℓ
G′(vi+1)| = 2. From Lemma 3.8(a)

we get a 3-coloring that realizes c∗ by setting either col(vi+1) := col(vi−2) or col(vi+1) :=
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3. 3-Coloring Circle Graphs using c∗

vi+1vivi−1

(a) (b)

vi−2 vi+1vivi−1vi−2

(c)

vi+1vivi−1vi−2

Figure 3.7.: Illustration of Case |Li+1| = 0 in Lemma 3.13

col(vi−1), depending on c∗. Hence, col(vi+1) is given by c∗ and the resulting 3-coloring
realizes c∗.

For |N ℓ
G′(vi+1)| = |{vi−1, vi}| = 2 we consider the two possible positions of vi−2. Either vi−2

crosses only vi−1, see Figure 3.7(b) or it crosses both vi−1 and vi, see Figure 3.7(c). In the
first case, Li+1 is the important subgraph G9◁, see Figure 3.1(a) and (b). From Lemma 3.8
we get that either col(vi+1) := col(vi−2) if c∗(vi−2, vi+1) = true or {0, 1, 2} \ col({vi−1, vi)}
otherwise, which are both correct color assignments for vi+1 that realize c∗.

In the second case, where vi−2 crosses both vi−1 and vi, see Figure 3.7(c), Li+1 is the
important subgraph G�, see Figure 3.3. By Lemma 3.8(c), we have that c∗(vi−2, vi+1) =
true, hence col(vi+1) := col(vi−2), which gives us a 3-coloring that realizes c∗.

Lastly, we consider the case |Li+1| = 4. Since G′ does not contain any cliques larger
than 3, so the chords in Li+1 must be distributed as follows: N ℓ

G′(vi+1) = {vi−1, vi}
and N ℓ

G′(N ℓ
G′(vi+1)) = {vi−2, vi−3}. We consider the possible positions for vi−2 and vi−3.

Because no chord can be encased by another chord, vi−2 and vi−3 must cross each other.
They also must cross vi−1. If vi−2 or vi−3 only cross vi, then they would be encased by vi -
a contradiction. The only way a chord in N ℓ

G′(N ℓ
G′(vi+1)) can cross both vi−1 and vi is if it

does not encase the other chord in N ℓ
G′(N ℓ

G′(vi+1)). This yields the following two possible
cases. In the first case, illustrated in Figure 3.8(a), Li+1 forms four important subgraphs
G9◁, also illustrated in Figure 3.1(c). From Lemma 3.8(a) we get that the color for vi+1

(a) (b)

vi+1vivi−1vi−2vi−3 vi+1vivi−1vi−2vi−3

Figure 3.8.: Illustration of Case |Li+1| = 4 in Lemma 3.13

is determined by c∗(vi−3, vi+1) and c∗(vi−2, vi+1). Assume c∗(vi−3, vi+1) = true. Then
c∗(vi−2, vi+1) = false and c∗(vi−2, vi) = true. To realize c∗, we set col(vi+1) := col(vi−3).
Since c∗(vi−2, vi+1) = false and c∗(vi−2, vi) = true and by induction hypothesis we have
that col(vi+1) ̸= col(vi). The case c∗(vi−2, vi+1) = true works analogously. Both cases give
a correct coloring of vi+1 that realizes c∗. In the second case, illustrated in Figure 3.8(b),
{vi−2} is the important subgraph G�, see Figure 3.3. Lemma 3.8(c) then gives us that
col(vi+1) := col(vi−2) yields a correct 3-coloring, which also realizes c∗.

From this proof together with Lemma 3.11 we get that if there exists a consistent auxiliary
coloring function c∗ for G then there exists a unique 3-coloring for levelG(1) that realizes
c∗.

Next, we show that a 3-coloring of the first l layers of a circle graph G that realizes c∗

can be extended to layer l + 1. We separate the proof for this statement into two lemmas.
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3.2. 3-Coloring Graphs with c∗

First, we show that we can extend the 3-coloring to the chords in layer l + 1 that have a
neighbor in layer l. Then, we prove that the 3-coloring can be extended to the remaining
chords in layer l + 1.

Lemma 3.14. Let G be a circle graph for which there exists a consistent auxiliary coloring
function c∗. Further, let there be a unique 3-coloring for

⋃l
i=1 levelG(i) that realizes c∗

with l < L(G). Then this 3-coloring can be extended to chords in levelG(l + 1) that have a
neighbor in

⋃l
i=1 levelG(i). This 3-coloring is unique.

Proof. Let v be a chord in levelG(l +1) with a neighbor in ⋃l
i=1 levelG(i). Then there exists

a chord u ∈ levelG(l) such that u directly encases v and v ∈ NG(NG(u)). In particular,
there exists some chord w in the set of chords Wv := ⋃l

i=1 levelG(i) ∩ NG(v) ∩ NG(u) that
connects v to the previous layer. We show that for each such v, u and Wv the following
coloring method is correct:

col(v) :=
{

col(u), if c∗(v, u) = true
{0, 1, 2} \ (col(Wv) ∪ col({u})), if c∗(v, u) = false

Assume c∗(v, u) = true and we set col(v) := col(u). Since Wv ⊆
⋃l

i=1 levelG(i) ∩ NG(u)
and by assumption the 3-coloring for all chords in ⋃l

i=1 levelG(i) is correct, col(u) ̸= col(w)
for all w ∈ Wv. Therefore, coloring v with the same color as u yields a correct 3-coloring.

Now assume c∗(v, u) = false. We show that col(v) := {0, 1, 2}\ (col(Wv)∪col({u})) is also
a correct 3-coloring. For this, we first prove that |col(Wv) ∪ {col(u)}| = 2 by contradiction.
We assume that u directly encases v, c∗(u, v) = false and |col(Wv)∪{col(u)}| ≠ 2. Because
Wv ⊆

⋃l
i=1 levelG(i)∩NG(u) and we assume a 3-coloring for ⋃l

i=1 levelG(i), all chords in Wv

must be colored differently from u and therefore only |col(Wv)∪{col(u)}| = 3 can hold. If so,
there exist two chords a, b ∈ Wv with col(a) ̸= col(b). If a and b cross, see Figure 3.9(a), it
would form the important subgraph G�, see Figure 3.3 and by Lemma 3.8(c) c∗(v, u) = true
must hold, a contradiction. If a and b don’t cross, then their two possible positions are

a u v b

(a)

a u v b

(b)

au v b

(c)

Figure 3.9.: Possible positions of chords a, b ∈ Wv

illustrated in Figure 3.9(b) and (c), that is, w.l.o.g. either ar < bℓ or a encases b. In both
cases {a, b, v, u} form the important subgraph G□ see Figure 3.2. By Lemma 3.8b) and
our assumption that the c∗ is realizable for ⋃l

i=1 levelG(i), either c∗(v, u) = true, which
is a contradiction, or c∗(a, b) = true, which would mean |col(Wv) ∪ {col(u)}| = 2, also a
contradiction. Since for |col(Wv) ∪ {col(u)}| ≠ 2 all cases led to contradictions, we can
conclude that |col(Wv)| = 1 and therefore |col(Wv) ∪ {col(u)}| = 2.

We now show that we don’t create a conflicting coloring for two crossing chords v, v′

with v ∈ levelG(l + 1) and v′ ∈
⋃l+1

i=1 levelG(i), i.e. that all such crossing chords v, v′

have different colors, after applying our coloring strategy to all chords in levelG(l + 1)
that have a neighbor in ⋃l

i=1 levelG(i). For this, we distinguish two cases for v′, that is
v′ ∈

⋃l
i=1 levelG(i) and v′ ∈ levelG(l + 1). Assume v′ ∈

⋃l
i=1 levelG(i) and col(v) = col(v′).
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3. 3-Coloring Circle Graphs using c∗

Since v′ crosses v but pos(v′) < pos(v), v′ must cross any chord that directly encases v.
Otherwise, v′ would also be encased by that chord and pos(v′) = pos(v). In particular, v′

crosses u and therefore v′ ∈ Wv. By construction, col(v) := col(u) if c∗(v, u) = true and
col(v) := {0, 1, 2} \ (col(Wv) ∪ {col(u)}) otherwise. If c∗(v, u) = true, this would imply
col(u) = col(v′), which is a contradiction to the existence of a 3-coloring for ⋃l

i=1 levelG(i).
If c∗(v, u) = false, v would have been assigned a color different from col(v′), since v′ ∈ Wv.

Now, let v′ ∈ levelG(l + 1) and assume col(v) = col(v′). Since v and v′ belong to the
same level, u either directly encases both v and v′ or there exist two crossing chords
u, u′ ∈ levelG(l) directly encasing v and v′ respectively. We consider these two cases in the
following. Assume u directly encases both v and v′. Then u ∈ NG(NG(v)) ∩ NG(NG(v′)).
Therefore, there either exists a chord a that crosses both v and v′ as well as u, see
Figure 3.10(a), or there exist two chords a, b crossing v and v′ respectively, as illustrated in
Figure 3.10(b).

(b) (c)

ua v v′ b u v u′ v′

(a)

ua v v′

Figure 3.10.: Possible positions for chords in Wv and Wv′ relative to x and x′

First, we consider the case illustrated in Figure 3.10(a), where a single chord a crosses
both x and x′. In this case, {v, v′, u, a} form the important subgraph G9◁ and by
Lemma 3.8(a) we have that c∗(v, u) = true if and only if c∗(v′, u) = false and anal-
ogously, c∗(v, u) = false if and only if c∗(v′, u) = true. We see that if col(v) := col(u), we
set col(v′) := {0, 1, 2} \ (col(Wv′) ∪ {col(u)}) and vice versa. Since u ∈ Wv, resp. Wv′ ,
this means that v and v′ are assigned different colors.

Now assume there exist two chords a, b as in Figure 3.10(a). Then {a, b, u, v, v′} form the
important subgraph GD, see Figure 3.4. Since col(v) = col(v′), this means that either
c∗(v, u) = c∗(v′, u) = true or that col(Wv) = col(Wv′). From Lemma 3.8(d), it follows that
c∗(v, u) = c∗(v′, u) = true is a contradiction to c∗ being consistent. Further, if col(Wv) =
col(Wv′), then col(a) = col(b). Then the values for c∗ are as follows: c∗(a, b) = true
and c∗(v, u) = c∗(v′, u) = c∗(a, v′) = c∗(b, v) = false. This is also a contradiction to
Lemma 3.8(d), since G4.2 states that two values of c∗ that are defined for GD must
be true. Hence, if col(v) = col(v′), then this is a contradiction to our assumption
that c∗ is consistent. Now assume there exist two chords u, u′ such that u directly
encases v and u′ directly encases v′ as illustrated in Figure 3.10(c). Similarly to before,
u ∈ NG(NG(v)) and u′ ∈ NG(NG(v′)). Since v crosses v′ and u does not encase v′, u
crosses v′. By the same argument u′ crosses v, see Figure 3.10(c). The chords {u, v, u′, v′}
then form the important subgraph G□, see Figure 3.2. By Lemma 3.8(b), we know
that c∗(v, u) = true or c∗(v′, u′) = true. Also, since we assume that there exists a
3-coloring for ⋃l

i=1 levelG(i), we have col(u) ̸= col(u′). If c∗(v, u) = c∗(v′, u′) = true, then
col(v) := col(u) and col(v′) := col(u′) and therefore col(v) ̸= col(u′). If c∗(v, u) = true
and c∗(v′, u′) = false, then col(v) := col(u) and col(v′) := {0, 1, 2} \ (col(Wv′) ∪ {col(u′)}).
Since u ∈ NG(u′), col(u) ∈ col(Wv′) and therefore col(v) ̸= col(v′). The case c∗(v, u) = true
and c∗(v′, u′) = false works analogously. Therefore, v and v′ are assigned different colors
by our coloring method, a contradiction.

In conclusion, the proposed method to extend the 3-coloring to levelG(l + 1) is correct and
by Lemma 3.11 also unique.
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3.3. The Limits of c∗ - a Counterexample

3.3. The Limits of c∗ - a Counterexample
So far we were able to confirm Unger’s results regarding the construction of a 3-coloring
using a consistent auxiliary coloring function c∗. The next step of constructing the 3-coloring
would be to show the following claim.

Disputable Claim 3.15. [51, p. 97] Let G be a circle graph for which there exists a
consistent auxiliary coloring function c∗. Further, let there be a 3-coloring that realizes
c∗ for

⋃l
i=1 levelG(i) as well as for the chords in levelG(l + 1) that have a neighbor in⋃l

i=1 levelG(i) with l < L(G). Then this 3-coloring can be extended to all uncolored chords
in levelG(l + 1). The 3-coloring is unique.

In other words, we want to show that the coloring of some level l + 1 ≤ L(G), which we get
from Lemma 3.14, can be extended to the remaining chords in level l + 1, i.e. those that
do not have a neighbor in level l, given a consistent auxiliary coloring function c∗. Note
that in Unger’s thesis this claim is part of a proof for a more general lemma [51, p. 97]. In
the following we give a high level description of the part of the proof that is relevant for
Claim 3.15.

Proof Sketch [51]. From Lemma 3.14 we get a 3-coloring that realizes c∗ for the chords
v ∈ levelG(l + 1) for which there exists a chord y ∈ levelG(l) such that u directly encases v
and v ∈ NG(NG(u)). Hence, the chords that still have to be colored are those, that lie in
levelG(l + 1), but don’t have a neighbor in ⋃l

i=1 levelG(i). We first consider all chords that
are part of cycles that also contain a chord of level l. For chords that are part of a GD or
G⃝ we get a unique and correct 3-coloring by Lemma 3.8(d) and 3.9. The remaining chords,
i.e. chords that cross those that are part of the aforementioned important subgraphs, can
then supposedly be colored trivially or using Lemma 3.12. Namely, they either form a
3-clique or a G�, see Figure 3.11. The chords in level l + 1, that are not part of any cycle

v0 v2 v3 v4v1 v5 v6ba v0 v1

v2
v6

v5

v4

v3

b

a

Figure 3.11.: Chords a and b form several G� with the chords of G⃝

are then colored using the procedure in Lemma 3.13. Since they are not part of any cycle,
nor do they cross chords of one, there exists some chord x that doesn’t have a left, resp. a
right neighbor, see Figure 3.12 for some examples. Hence, we can choose x as the starting
point for the coloring method described in the proof for Lemma 3.13. Note that we might
need to permute the colors of these chords once we reach the first chord that is already
colored.

In the following we construct a counterexample in which following the steps described in
Lemma 3.13 and 3.14 and Claim 3.15 using a consistent auxiliary coloring function c∗

does not result in a 3-coloring. Moreover, it disproves the claim that there always exists
a 3-coloring for G if c∗ is consistent for G. This counterexample illustrates how coloring
chords that are part of a cycle but not of an important subgraph GD or G⃝ such that the
coloring realizes c∗ might not be possible even if c∗ is consistent. Consider the graph G
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3. 3-Coloring Circle Graphs using c∗

x

(a) (b)

x

Figure 3.12.: Two examples where the chords in levelG(l+1) are not part of any cycle. Chord
x is the starting point for applying the coloring method from Lemma 3.13.

v0v1 v2 v3 v4v5 v6 v1

v2

v3
v4

v0

v6v5

Figure 3.13.: The Graph used in our counterexample

illustrated in Figure 3.13. We first list all important subgraphs of G. The graph contains
one G9◁ formed by {v0, v3, v4, v6}. Note that by Definition 3.3 the chords {v1, v2, v3, v5}
do not form a G9◁ since pos(v1) ̸= pos(v2) and v1 also does not directly encase the other
chords. The same argument holds for {v3, v4, v5, v6}, namely pos(v4) ̸= pos(v3) and v4
does not directly encase v3, v5 and v6. Definition 3.3 does also not apply to {v2, v3, v5, v6}
since both v2 and v6 cross v5. We also note that our definition for G9◁ is less strict that
Unger’s. By the definition given in his thesis, this graph would not contain any G9◁. But,
since both in this and Unger’s thesis c∗ is defined for c∗(v0, v3) and c∗(v0, v6), the values
for c∗ we give later on do not contradict any of Unger’s original definitions or restrictions.
The graph further contains two G� formed by {v2, v3, v5, v6} and {v3, v4, v5, v6}.
Lastly, G contains the GD formed by {v0, v1, v2, v3, v4}. Note that G does not contain any
G⃝ ∈ G⃝ since v3 = min(NG(v4)∩NG(v6)) and v2 = min(NG(v1)∩NG(v3)) and therefore
{v0, v1, v2, v5, v6, v4} do not form a G⃝.
Next, we give an auxiliary coloring function c∗ and show that it is in fact consistent, i.e. it
is realizable for all important subgraphs of G.
From Definition 3.1 we get the following domain for c∗:

D := {(v0, v2), (v0, v3), (v0, v6), (v1, v3), (v1, v4), (v1, v5), (v2, v4), (v2, v6), (v4, v5)}

We further define c∗ as follows. To satisfy the constraints given for G9◁ in Lemma 3.8(a)
we set c∗(v0, v3) = false and c∗(v0, v6) = true. Further, we set c∗(v4, v5) = true and
c∗(v2, v6) = true to satisfy the constraints for G� by Lemma 3.8(c). Lastly, we need to
set the remaining values for c∗ such that it is realizable for GD. Lemma 3.8(d) gives
us that c∗(vi, v(i+2) mod 5) = false or c∗(vi, v(i+3) mod 5) = false for i ∈ {0, . . . , 4} and
that there can be only two distinct pairs of vertices for which c∗ is true. We set the
remaining values for c∗ as follows: c∗(v1, v3) = true, c∗(v2, v4) = true, c∗(v0, v2) = false
and c∗(v1, v4) = false. Since for each of the five constraints we always have at least one
value of c∗ set to false and exactly two values set to true, c∗ is realizable on GD and
therefore on all important subgraphs of G. Hence, by Definition 3.10, c∗ is a consistent
auxiliary coloring function.
We now apply the steps described in Lemma 3.13 and 3.14 as well as the proof sketch for
Claim 3.15. We start with coloring levelG(1). Using Lemma 3.13, we get a 3-coloring col
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for levelG(1) where col(v1) = 1, col(v0) = 2 and col(v4) = 0, since c∗(v1, v4) = false. Next,
we color the chords in levelG(2) that have a neighbor in levelG(1), namely v2, v3 and v6.
From Lemma 3.14 and the respective values of c∗, we get col(v2) = {0, 1, 2}\col({0, 1}) = 2,
since c∗(v0, v2) = false, col(v3) = {0, 1, 2} \ col({1, 2}) = 0, since c∗(v0, v3) = false and
col(v6) = col(v0) = 1. The coloring up to this point is illustrated in Figure 3.14. We now

v0v1 v2 v3 v4v5 v6 v1

v2

v3
v4

v0

v6v5

0

1

1

0

2 2

Figure 3.14.: An example of how the graph in the counterexample can be colored

apply the steps for coloring the remaining chords of levelG(2), in this case v5. From c∗(v4, v5)
we get that col(v5) = col(v4) = 0. But then col is no longer a 3-coloring since v5 crosses v2
and col(v5) = col(v2). In fact, col(NG(v5)) = {0, 1, 2}, which means there is no color left for
v5. This counterexample therefore disproves the claim that if given a consistent auxiliary
coloring function c∗ for a circle graph G, we can construct a 3-coloring col of G that realizes
c∗ for G by following the steps of Lemma 3.13, 3.14 and Claim 3.15. It also disproves the
statement that there always exists a 3-coloring realizing a consistent auxiliary coloring
function c∗. Note that we set c∗(v0, v6) = c∗(v2, v6) = c∗(v2, v4) = true. No 3-coloring
realizes this consistent auxiliary coloring function since it would require v0, v4 and v6 to
have the same color. We can further observe, that there exists a contradiction within the
values of c∗, this contradiction being that c∗(v0, v6) = true and c∗(v2, v6) = true, but also
c∗(v0, v2) = false. But, as we have seen, neither transitively assigning the same color
to crossing chords nor this contradiction does not result in c∗ not being consistent. The
constraints we defined for c∗ only ensured that c∗ is realizable on all important subgraphs
individually, not on all of them at the same time. Thus, these kinds of problematic values
for c∗ are possible for pairs of chords that do not appear in the same constraint. Fixing this
inconsistency, that is requiring c∗(v0, v2) = true, would in fact result in a 3-coloring for
this example. If we have c∗(v0, v2) = true, then col(v2) is set to col(v0) = 2. Further, to
satisfy the constraints for GD, c∗(v0, v3) and c∗(v2, v4) must be set to false. This means
that col(v5) = col(4) = 0 ̸= 2 = col(v0) = col(v2) = col(v6). This 3-coloring is illustrated in
Figure 3.15. This also shows that the characterization of a consistent auxiliary coloring

v0v1 v2 v3 v4v5 v6 v1

v2

v3
v4

v0

v6v5

1

2

2

1

2 3

3

Figure 3.15.: A coloring for the graph from our counterexample. This shows that the
characterization of c∗ was not disproven.

function c∗ is not inherently disproven, that is we have not shown that a circle graph G
for which there exists a consistent auxiliary coloring function c∗ is not 3-colorable. But
the properties of a consistent auxiliary coloring function c∗ clearly do not suffice to ensure
that it is always realizable for a circle graph G. We leave it as an open problem to specify
a strategy to ensure that the properties of c∗ do not allow contradicting or un-realizable
values.
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4. Constructing c∗

In the previous chapter we discussed whether a circle graph G is 3-colorable if and only if
there exists a consistent auxiliary coloring function c∗. We have shown that in general, for
a circle graph G for which there exists a consistent auxiliary coloring function c∗ there does
not always exist a 3-coloring of G realizing c∗, even if G is 3-colorable. But although the
properties of c∗ were not enough to always find a correct 3-coloring we are still interested
in finding a consistent auxiliary coloring function c∗ and seeing how the coloring algorithms
hold up in practice. To this end, we show how to construct a consistent auxiliary coloring
function c∗ using the properties given in Lemma 3.8 and 3.9. More precisely, we transform
these constraints into boolean formulas F1 and F2. In F1, we have the clauses we get from
the important subgraphs G9◁, G□, G� and GD. We show that F1 is an instance of 2-Sat of
polynomial size and solving it therefore takes polynomial time. If there exists no solution
for F1, we know that our graph is not 3-colorable and we stop. If we find a solution for
F1, this solution gives us values for c∗ for all important subgraphs except for those that
belong to G⃝. Note that we also have to make sure that property G4.2 applies to c∗ after
finding a solution for F1, that is, for every GD exactly two values of c∗ for vertices of GD
are true. To accomplish these two tasks we take the following two approaches. The first is
to search for a valid value assignment for c∗ using a backtracking algorithm. The second
approach is constructing a second boolean formula F2 containing more boolean clauses
for GD as well as for all G⃝ ∈ G⃝. This formula F2 is not an instance of 2-Sat, hence
it cannot be solved in polynomial time generally speaking. Similar to before, solving this
boolean formula either gives us all values for c∗ or tells us that G is not 3-colorable.

4.1. Upper Bounds for the Number of Important Subgraphs
To show that we only need polynomial time to solve F1 we prove that the number of clauses
for a circle graph G is polynomial. To this end, we give upper bounds for the number of
each important subgraph in a circle graph G.

Lemma 4.1. Let G be a circle graph with |V (G)| = n. Then G contains O(n2) important
subgraphs G9◁.

Proof. By Definition 3.3, G9◁ ranges over either one or two levels. Let c be a chord in G
such that (NG(c)∪{c})∩ levelG(pos(c)) forms an important subgraph G9◁. By Definition 3.3
and the fact that G does not contain any cliques larger than 3, chord c can only be part of
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one such graph G9◁ per level, hence G contains O(n) of these subgraphs. Now assume that
for some level l < L(G), (NG(c) ∩ (levelG(l) ∪ levelG(l + 1))) ∪ {c} forms the important
subgraph G9◁. By Definition 3.3 chord c = min (⋂v∈H∪H′ NG(v)), with H ⊆ levelG(l) and
H ′ ⊆ levelG(l + 1) and H directly encases H ′, i.e. c is uniquely determined for each pair
of subsets H, H ′. Therefore c can only be part of one G9◁ for any two adjacent levels per
endpoint, which are at most 2 · (L(G) − 1) per chord, so O(n2) overall. Hence, G contains
O(n2) important subgraphs G9◁.

To determine the number of important subgraphs G□ and G� in a circle graph G we
introduce sets of chords U(G) and P (G). The set U(G) contains all pairs of chords that
directly encase each other, while P (G) contains all pais of chords that are the maximum
chord of the left neighborhood and the minimum chord of the right neighborhood of some
chord v ∈ V (G).

Definition 4.2. Let G be a circle graph. Then we define U(G) and P (G) as follows:

U(G) := {{a, b} : a, b ∈ V (G) and a directly encases b}
P (G) := {{a, b} : ∃c ∈ V (G) : a = max(N ℓ

G(c)) and b = min(N r
G(c))}

We can show that the sizes of these sets are in O(n). This helps us to prove the upper
bound on the number of important subgraphs G□ and G� in a circle graph G.

Lemma 4.3. Let G be a circle graph with |V (G)| = n. Then |U(G)| ∈ O(n) and
|P (G)| ∈ O(n).

Proof. Let c be some chord in G. We show that the number of chords that can directly
encase c is at most 3. Let Ec be the set of chords that directly encase c. By definition,
no chord e in Ec can encase another, since otherwise e would no longer directly encase c.
Hence, they form a clique. Since we assumed that G does not contain any cliques of size
4 or larger, |Uc| ≤ 3. Hence, for any chord in G there can be at most 3 chords directly
encasing it and therefore the number of elements in U(G) is at most 3 · n ∈ O(n).

Since for any chord c ∈ V (G) the chords a = max(N ℓ
G(c)) and b = min(N r

G(c)) are unique,
the number of elements in P (G) is at most 2 · n and therefore |P (G)| ∈ O(n).

We now prove the upper bound for the number of important subgraphs G□ and G� in a
circle graph G.

Lemma 4.4. Let G be a circle graph with |V (G)| = n. Then G contains O(n2) important
subgraphs G□

Proof. By Definition 3.4, {v0, v2} ∈ U(G). We consider the two cases for the positions of
v1 and v3. First, assume v1 directly encases v3. Then {v1, v3} ∈ U(G). With Lemma 4.3 it
follows that each of the O(n) possible pairs {v0, v2} can be combined with O(n) possible
pairs (v1, v3) to form G□ and therefore there are at most O(n2) important subgraphs G□

in G. Next, assume that vr
1 < vl

3. By Definition 3.4 {v1, v3} is uniquely determined for all
O(n) possible choices of {v0, v2} and G contains at most O(n) such important subgraphs
G□.

Lemma 4.5. Let G be a circle graph with |V (G)| = n. Then G contains O(n3) important
subgraphs G�
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Proof. By Definition 3.5 we have to consider two cases for G�. First, we assume that v1
directly encases v3. In this case {v1, v3} ∈ U(G) and we have at most O(n) choices for
v0 and v2 resp. This gives us O(n3) important subgraphs G�. Next, assume vr

1 < vl
3. By

Definition 3.5, v1 and v3 are uniquely determined by v0 and v2. Hence, G contains at most
O(n) such important subgraphs G�.

Lemma 4.6. Let G be a circle graph with |V (G)| = n. Then G contains O(n) important
subgraphs GD.

Proof. We show that for a chord v ∈ V (G) there are at most six important subgraphs
GD such that v directly encases two of the five chords. Assume a chord vℓ crosses the
left endpoint of v such that there are three chords {v2, v3, v4} directly encased by {v, vℓ}
and {v, vℓ, v2, v3, v4} induce an important subgraph GD. We show that there exist two
sets of chords for which this holds. Assume {v,vℓ} directly encase another set of chords
{v′

2, v′
3, v′

4} such that {v, vℓ, v′
2, v′

3, v′
4} also induce a GD. Since {v0, vℓ} must directly encase

chords in order for them to be a GD, the chords {v2, v3, v4} must not encase any chord in
{v′

2, v′
3, v′

4} and vice versa. They therefore cross each other as illustrated in Figure 4.1(a),
i.e. in such a way that none of them encase each other. Now assume there is a third set of

vl v2 v4v3v′3 v′4v′2 v0

vl v2 v4v3v′3 v′4v′2 v0v′′2 v′′3 v′′4 vl

v0

v2
v3

v4

v′2

v′′2

(a)

(b) (c)

Figure 4.1.: (a) In order for {v, vℓ, v′
2, v′

3, v′
4} to induce a GD, the vertices in {v2, v3, v4} and

{v′
2, v′

3, v′
4} must not encase each other, therefore they cross (b) If there is a

third set of chords directly encased by {v, vℓ} then the chords induce 4-cliques
(c) An example of 4-cliques induced by {v0, v2, v′

2, v′′
2} and {v2, v′

2, v′′
2 , v3}

chords {v′′
2 , v′′

3 , v′′
4} directly encased by {v, vℓ} such that {v, vℓ, v′′

2 , v′′
3 , v′′

4} also induce a GD.
Similar to before, these chords must also cross the chords in {v2, v3, v4} and {v′

2, v′
3, v′

4}
such that they don’t encase each other, see Figure 4.1(b). Then G contains cliques of
size 4, see Figure 4.1(c), a contradiction. Hence, a set of chords {v0, vℓ} can directly
encase at most two sets of chords {v2, v3, v4} and {v′

2, v′
3, v′

4} such that {v, vℓ, v2, v3, v4}
and {v, vℓ, v′

2, v′
3, v′

4} each induce a GD. The case for a chord vr crossing the right endpoint
of v works analogously.

By the same arguments v can directly encase at most two sets of chords {v2, v3} and {v′
2, v′

3}
such that {v, v1, v2, v3, v4} and {v, v1, v′

2, v′
3, v4} each induce an important subgraph GD

with v1 = max((N r
G(v2) \ N r

G(v3)) ∩ N r(v)) and v4 = min((N r
G(v3) \ N r

G(v2)) ∩ N r(v)), see
Figure 4.2 for an illustration. Note that any chord that crosses the left endpoint of v′

2
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v0vl v2 v3 vrv′2 v′3

v0vl v2 v3 vrv′2 v′3v′′2 v′′3

(a)

(b)

v0

vl

v2

v3

vr

v′2

v′′2

(c)

Figure 4.2.: (a) In order for v′
2 and v′

3 to form G′c
D

without encasing or being encased by
the chords of Gc

D
they have to cross each other (b) If there is a third set of

chords directly encased by v0, then the chords for 4-cliques (c) An example of
4-cliques formed by {vl, v2, v′

2, v′′
2} and {v2, v′

2, v′′
2 , v3}

must also cross the left endpoint of v2 and hence v1 = max((N r
G(v2) \ N r

G(v3)) ∩ N r(v)) =
max((N r

G(v′
2) \ N r

G(v′
3)) ∩ N r(v)). The same applies to v4.

In conclusion, we have that a circle graph G contains at most n · 6 = O(n) important
subgraphs GD.

We now prove an upper bound for the size of G⃝.

Lemma 4.7. Let G be a circle graph with |V (G)| = n. Then G contains O(n) important
subgraphs G⃝ ∈ G⃝.

Proof. We show that for a chord v ∈ V (G) there are at most three G⃝ ∈ G⃝ such that
v directly encases l − 2 chords of G⃝ with l = |V (G⃝)|. Let vℓ be a chord crossing the
left endpoint of v such that {v, vℓ} encase a set of chords {v2, . . . , vl} and {v, vℓ, v2, . . . , vl}
induce an important subgraph G⃝. Assume there exists another set of chords {v′

j ∈
V (G) : 2 ≤ j ≤ l} that is also directly encased by {v, vℓ} and w.l.o.g. induces a connected
graph, i.e. a path. If a chord v′

j encases a chord vi with 2 ≤ i ≤ l, then vi is no longer
directly encased by v or vℓ and hence vi is not part of the induced important subgraph
G⃝. The statement is analogous for vi encasing a chord v′

j . Hence, no chord of {v2, . . . , vl}
encases any chords of {v′

j ∈ V (G) : 2 ≤ j ≤ l} and vice versa. Therefore, a chord v′
j

crosses two crossing chords vi and v(i+1) mod l and vℓ
i < v′ℓ

j < vr
i < v′r

j , in which case
j = i, see Figure 4.3(a). By Definition 3.7, vi = min

(
NG(vi−1) ∩ NG(v(i+1) mod l)

)
. Let

v′
k := max{v′

j : 2 ≤ j ≤ m} with vk crossing vi and v(i+1) mod l. Then

v′
k = min

(
NG(v′

k−1) ∩ NG(v(i+1) mod l)
)

= min({v′
k−2, v′

k, vi−1, vi} ∩ {vi+2 mod l, vi, v′
k})

= min(vi, v′
k) = vi

since vℓ
i < v′ℓ

k < vr
i < v′r

k . Therefore, the chord v′
k is not part of any induced important

subgraph G⃝. Since this holds for all v′
j we have that {v, vℓ} ∪ {v′

j : 2 ≤ j ≤ l} does not
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v0 v2 v3 v4vl v5 v6 vrv′3 v′4 v′5v′2

vl v2 v4 v5 v6v′2 v3v0 v′4 v′5v′3

(a)

(b)

Figure 4.3.: In order for {v, vℓ, v′
2, . . . , v′

5} to induce a GD without encasing or being encased
by the chords of the GD induced by {v, vℓ, v′

2, . . . , v′
5} they have to cross each

other

induce an important subgraph G⃝ and therefore the important subgraph G⃝ induced by
{v, vℓ, v2, . . . vl} is unique. The case for a chord vr crossing the right endpoint of v works
analogously.

We apply the same arguments and show that v can induce only one important subgraph
G⃝ with a set of chords {v1, v2, . . . , vl} where {v2, . . . , vl−1} are directly encased by v and
v1 = max((N r

G(v2) \ N r
G(v3)) ∩ N r(v)) and vl = min((N r

G(vl−1) \ N r
G(vl−2)) ∩ N r(v)), see

Figure 4.2 for an illustration. Assume there exists another set of chords {v′
j : 2 ≤ j < m}

that are directly encased by v such that they also induce an important subgraph G⃝. Again,
these chords must not encase any of the chords in {v2, . . . , vl−1} and vice versa. Since no
chord v′

j encases some chord vi and vice versa, we have that v′
j crosses two crossing chords vi

and vi+1 in which case j = i and vℓ
i < v′ℓ

j < vr
i < v′r

j . Let v′
k := max{v′

j : 2 ≤ j ≤ m} with vk

crossing vi and vi+1 and vi+1 ∈ V (G′ℓ
⃝). Then by Definition 3.7 and with vℓ

i < v′ℓ
k < vr

i < v′r
k

we have

v′
k = min

(
NG(v′

k−1) ∩ NG(vi+1)
)

= min
(
{v′

k−2, v′
k, vi−1, vi−1} ∩ {vi+2, vi, v′

k}
)

= min
(
{vi, v′

k}
)

= vi

Therefore v′
k is not a chord of the important subgraph G⃝ induced by v, v1, vl and the

chords directly encased by v. Since this holds for all v′
j we have that the important subgraph

G⃝ induced by v, v1, v2, . . . , vl is unique.

4.2. Constructing Clauses of Size 2
To construct F1, we consider the important subgraphs G9◁, G□, G� and GD. From the
coloring constraints we defined in Lemma 3.8(a) to (d) we infer boolean clauses of length 2
as follows.

G9◁: (c∗(v0, v2) ∨ c∗(v0, v3)) ∧ (c∗(v0, v2) ∨ c∗(v0, v3))

G□: c∗(v0, v2) ∨ c∗(v1, v3)

G�: c∗(v0, v2)

GD: (¬c∗(v0, v2) ∨ ¬c∗(v0, v3)) ∧ (¬c∗(v3, v0) ∨ ¬c∗(v3, v1)) ∧ (¬c∗(v1, v3) ∨ ¬c∗(v1, v4)) ∧
(¬c∗(v4, v1) ∨ ¬c∗(v4, v2)) ∧ (¬c∗(v2, v4) ∨ ¬c∗(v2, v0))
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The conjunction of all these clauses for each important subgraph gives us a 2-Sat instance
F1. From Lemma 4.1 to 4.6 we know that the number of important subgraph is polynomially
bounded, hence F1 has polynomial size and therefore a satisfying assignment for F1 can be
found in polynomial time [2].

4.3. Constructing Clauses for GD and G⃝

To ensure that c∗ satisfy the constrained given by property G4.2 in Lemma 3.8(d), i.e. for
exactly two distinct pairs c∗ is true, we add the following clauses to our formula F2 for
every GD with V (GD) = {v0, . . . , v4} as in Figure 3.4. For each possible permutation of
c∗(vi, v(i+2) mod 5) and c∗(vj , v(j+2) mod 5) where i, j ∈ {0, 1, 2, 3, 4} and i ̸= j we construct
a conjuction in which every value of c∗ that is defined for V (GD) is negated except for
c∗(vi, v(i+2) mod 5) and c∗(vj , v(j+2) mod 5). We then construct the disjunction of all these
conjunctions. This disjunction is equivalent to the constraint G4.2 in Lemma 3.8(d). Since
this formula is a disjunction of conjunctions, i.e. it is in DNF, and we get such a formula
for every GD, which are O(n) many by Lemma 4.6, we cannot solve it in polynomial time.

We now construct a boolean formula for G⃝ ∈ G⃝ using Lemma 3.9. Let G⃝ ∈ G⃝
with V (G⃝) = {v0, . . . , vl}. Recall that we used a recursive function h : V (G2) → B to
determine if a vertex vi has the same color as vx with x ∈ {0, 1} and x + 3 ≤ i ≤ l in some
3-coloring col that realizes c∗. From Lemma 3.9 it follows that c∗ is realizable on G if and
only if h(v0, v1) = h(v1, v2) = h(v0, vl) = false, hence we require our boolean formula to
include

¬h(v0, v1) ∧ ¬h(v1, v2) ∧ ¬h(v0, vl)

Next, we add to our formula

h(vx, vx+2) ⇔ c∗(vx, vx+2)

as well as
(h(v0, vl−1) ⇔ c∗(v0, vl−1)) ∧ (h(v1, vl) ⇔ c∗(v1, vl))

These clauses also follow directly from Lemma 3.9.

Lastly, we need to add clauses representing the recursion of h as follows. We can formulate
the statement h(vx, vi) = h(vx, vi−2) if c∗(vi−2, vi) = true as

c∗(vi−2, vi) ⇒ (h(vx, vi) ⇔ h(vx, vi−2))

Similarly, from h(vx, vi) = ¬h(vx, vi−2) ∧ ¬h(vx, vi−1) if c∗(vi−2, vi) = false we get

¬c∗(vi−2, vi) ⇒ (h(vx, vi) ⇔ (¬h(vx, vi−2) ∧ ¬h(vx, vi−1)))

Putting all of these clauses together, we get the following boolean formula for G⃝:

¬h(v0, v1) ∧ ¬h(v1, v2) ∧ ¬h(v0, vl) ∧ (h(vx, vx+2) ⇔ c∗(vx, vx+2))∧
(h(v0, vl−1) ⇔ c∗(v0, vl−1)) ∧ (h(v1, vl) ⇔ c∗(v1, vl))∧

(c∗(vi−2, vi) ⇒ (h(vx, vi) ⇔ h(vx, vi−2)))∧
(¬c∗(vi−2, vi) ⇒ (h(vx, vi) ⇔ (¬h(vx, vi−2) ∧ ¬h(vx, vi−1))))

This formula clearly is also not a 2-Sat instance and therefore not solvable in polynomial
time. The conjunction of the DNF formulas for all GD and the formulas for all G⃝ ∈ G⃝
gives us our boolean formula F2.
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4.4. Finding c∗ values for GD and G⃝ using Backtracking

In the following, we say that the value of c∗(a, b) is relevant for an important subgraph I,
if there exists a pair of vertices {a, b} ∈ V (I) for which c∗ is defined. As we have seen in
Section 4.3, to find values such that c∗ has the properties we required in Lemma 3.8 and 3.9
we would need to solve a boolean formula that is not a 2-Sat instance. This is due to the
more complicated formulas we get for the important subgraphs GD and G⃝ ∈ G⃝. To find
a value assignment for all the c∗ values that are relevant for GD and G⃝ we present the
following backtracking algorithm. This algorithm is derived from Unger’s description [51,
p. 108f.].

We first consider the important subgraphs GD. From solving the 2-Sat formula we get
values that satisfy property G4.1. We have to verify that these values also hold up to
property G4.2. For this we simply verify if the current values for c∗ can yield a 3-coloring
by applying the recursive auxiliary function h from Lemma 3.9. If h(v0, v4) = false,
h(v0, v3) = c∗(v0, v3) and h(v1, v4) = c∗(v1, v4) then by Lemma 3.9 c∗ is realizable and the
values for c∗ are kept, and we move on to the next GD. Note that we don’t require a
specific order in which we handle each GD. If one of these statements does not hold for h,
or the values result in our 2-Sat formula being unsatisfiable, we choose new values for c∗.
Since we have five relevant c∗ values for GD we can try up to 25 assignments for c∗ for one
GD. When choosing new values for c∗ we pick one of the 25 possibilities which we have
not tried yet. If for a GD none of the possible assignments pass the checks for c∗ to be
realizable, we backtrack to the previous GD if possible and try the next assignment there.
If we are not able to backtrack any further, i.e. we have tried all possible assignments for
all GD, we stop and know that GD is not 3-colorable. If we find an assignment for c∗ such
that for all GD the c∗ values satisfy the 2-Sat instance and also property G4.2, i.e. c∗ can
be realized for each GD by a 3-coloring by Lemma 3.9, then we move on to G⃝.

The backtracking algorithm works similar for G⃝. We choose G⃝ ∈ G⃝ as the one with the
least undefined relevant c∗ values up to this point, i.e. with the least relevant values of c∗ for
G⃝ that have not been assigned a value by solving the 2-Sat instance. We assign the free
c∗ variables of G⃝ a possible combination of values we haven’t tried yet, similar to what we
did for GD, and apply our function h to all c∗ values of G⃝. Similar to before, we pick a new
assignment for the undefined c∗ variables should h(v0, vl) = false, h(v0, vl−1) = c∗(v0, vl−1)
or h(v1, vl) = c∗(v1, vl) not hold. An illustration of the corresponding backtracking tree is
given in Figure 4.4.

r

Figure 4.4.: Example backtracking tree. The root r represents the value assignments for c∗

given by the 2-Sat instance. Every level in the backtracking tree represents c∗

value assignments for one GD resp. G⃝ ∈ G⃝. Red vertices represent invalid
c∗ value assignments, green vertices represent valid c∗ value assignments.
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4.4.1. Discussing the Running Time of the Backtracking Algorithm
At every node in our backtracking tree we verify the assignment chosen for c∗. The
procedure is given in Lemma 3.9. Using dynamic programming we can easily compute h in
linear time and verify in constant time if our assignment for c∗ is valid using h. The running
time of our backtracking algorithm is therefore as follows. Since a valid c∗ assignment for
G⃝ is equivalent to a path in our backtracking tree from the root to the deepest leaf with
a positive result, the running time for finding and verifying this assignment is O(n2). We
also have to consider all the other leaves that returned a negative result. For every such
leaf x we get a running time of depth(x) · O(n) = O(n2). Our total running time is then
O(n2) + depth(x) · O(n2) = (depth(x) + 1)O(n2).
We see that the running time depends on the number of leaves in the backtracking tree.
Therefore, we need to show that the number of leaves is polynomially bounded in order to
maintain an efficient algorithm for computing c∗. Unger claims that the backtracking tree
constructed by the backtracking algorithm has O(log n) leaves. This means that according
to him we only have to try out O(log n) assignments until we find an assigment for c∗ that
satisfies all constraints for all important subgraphs. We first present the definitions needed
for the arguments Unger gives to support his claim that the backtracking tree has only
O(log n) leaves.

Definition 4.8. Let G be a circle graph with its consistent auxiliary coloring function c∗

and G′ be the important subgraph G9◁, G□ or GD of G. Let c∗(x, y) ∨ c∗(x′, y′) be one of
the clauses we get from G′. Then ¬c∗(x, y) ⇒⇒ c∗(x′, y′) is a clear implication. For a clause
¬c∗(x, y) ∨ ¬c∗(x′, y′) we have that c∗(x, y) ⇒⇒ ¬c∗(x, z) is a clear implication.

The transitive closure for clear implications is then defined as follows.

Definition 4.9. Let D := {(a, b) ∈ V (G)2 : b ∈ NG(NG(a)) \ NG(a)} as in Definition 3.1
and (x, y), (x′, y′) ∈ D. We define

• c∗(x, y) ⇛ c∗(x′, y′), if there exists a sequence of chords ai, bi with (ai, bi) ∈ D for
1 ≤ i ≤ k with

(a0, b0) = (x, y)
(ak, bk) = (x′, y′)

c∗(ai, bi) ⇒⇒ ¬(ai+1, bi+1) for 1 ≤ i ≤ k and i even
¬c∗(ai, bi) ⇒⇒ c∗(ai+1, bi+1) for 1 ≤ i ≤ k and i odd

• c∗(x, y) ⇛ ¬c∗(x′, y′), if c∗(x, y) ⇒⇒ ¬c∗(x′, y′) or if there exist two chords a, b with
(a, b) ∈ D and

c∗(x, y) ⇛ c∗(a, b) and
c∗(a, b) ⇒⇒ ¬c∗(x′, y′)

• ¬c∗(x, y) ⇛ c∗(x′, y′), if ¬c∗(x, y) ⇒⇒ c∗(x′, y′) or if there exist two chords a, b with
(a, b) ∈ D and

¬c∗(x, y) ⇒⇒ c∗(a, b) and
c∗(a, b) ⇛ c∗(x′, y′)

• ¬c∗(x, y) ⇛ ¬c∗(x′, y′), if there exist two chords a, b with (a, b) ∈ D and

¬c∗(x, y) ⇒⇒ c∗(a, b) and
c∗(a, b) ⇛ ¬c∗(x′, y′)
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Definition 4.10. Let (a, b) ⇒⇒ (c, d) and (e, f) ⇛ (g, h) be two implications. They are
independent if the following does not hold:

• (a, b) ⇛ (g, h) or
• (e, f) ⇛ (c, d)

With these definitions we are able to present the lemma that is crucial for the argument,
that the backtracking tree has O(log n) leaves.

Unclear Lemma 4.11. [51, p. 107] Let G be a circle graph with

• {ai, bi} encases {ai+1, bi+1} for 1 ≤ i < k

• {ci, di} encases {ci+1, di+1} for 1 ≤ i < k

• (ai, bi) ⇛ (cp(i), dp(i)) for 1 ≤ i < k and some permutation p

Further, for 1 ≤ i < j ≤ k let (ci, bi) ⇛ (cp(i), dp(i)) and (cj , bj) ⇛ (cp(j), dp(j)) be
independent implications.

Then G has at least 2k chords.

In the original proof, Unger lists four examples of circle graphs and claims, that for all
examples, if another independent implication is added then this would double the number
of chords of the circle graph. Unfortunately, there is no explanation given as to why
the presented examples cover all possible cases. It is also not clear to us how one would
construct another or any independent implication. No arguments for this are given by
Unger, either. Since we were not able to reconstruct the proof for this claim, we must
regard the statement as non-proven for this thesis. Instead, we give two explanations to
further show why we doubt it is that this statement holds.

4.4.2. Naive Worst-Case for Exponential Number of Leaves

We first argue how in a worst-case scenario our backtracking tree might grow to have 2O(n2)

leaves. For every G⃝ ∈ G⃝ we have |V (G⃝)| = l values of c∗ for vertices of G⃝. This
means that, assuming no values of c∗ are otherwise given, we have to try at most 2l values
for c∗ for G⃝. From Lemma 4.7 we know that we have O(n) subgraphs G⃝. Consider
the following scenario. Let G⃝ = {G⃝0, . . . , G⃝k} and let 0, . . . , k be the order in which
we search values for c∗ using the backtracking algorithm. Assume that for G⃝0 up to
G⃝k−1 the first c∗ assignment we try yields a positive result. But for the last remaining
G⃝k we try all 2|V (G⃝k)| assignments for c∗ and all yield a negative result. We then try
the next assignment for G⃝k−1 and again get a positive result. But for G⃝k we again get
2|V (G⃝k) negative results. This continues until we have tried evey possible assignment for
all G⃝i with i ∈ {0, . . . , k}. Since every inner node in our backtracking tree can have up to
2|V (G⃝i)| children and clearly |V (G⃝i)| ∈ O(n), we get (2O(n))O(n) = 2O(n2) leaves in our
backtracking tree. This is an upper bound on a possible worst-case size of the backtracking
tree. We note that we were not able to construct an explicit (counter-)example for this
scenario. On one hand, it is not clear to us that there exists a circle graph such that
computing values for c∗ results in a backtracking tree with exponentially many leaves.
On the other hand, the converse also does not seem obvious, namely why this scenario
should never occur. One argument might be as follows. We either don’t have many c∗

values given for a G⃝ which means that in theory we must try many c∗ assignments, but
in practice we find a valid assignment for c∗ fairly fast since there are not many other c∗

values correlating with our choice of c∗. If we do have values for c∗ given for G⃝ by other
important subgraphs then the more such values there are the fewer values we are left with
to try out. Concretizing these ideas is left as an open problem.
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4. Constructing c∗

4.4.3. Backtracking parameterized in the largest G⃝ ∈ G⃝

We want to briefly discuss the idea of parameterizing the number of leaves in our back-
tracking tree by the size of the largest G⃝. Let k := max{l : l = |V (G⃝)| with G⃝ ∈ G⃝}
be the size of the largest G⃝. Similar to Section 4.4.2, we can argue that every inner node
in out backtracking tree has at most 2k children and that the size of G⃝ is O(n). It is
easy to see that the number of leaves is still at most 2k·O(n). In order do state that the
backtracking algorithm is not FPT we have to show that the size of G⃝ is in fact Ω(n)
and that such a worst-case backtracking tree can occur. At this point we are not able to
give a proof for this. But, similar to the arguments given in Section 4.4.2, it seems unlikely
that our backtracking algorithm is FPT in the size of the largest G⃝ ∈ G⃝.
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5. Experimental Evaluation

In this chapter we present the results of our experimental evaluation of the algorithms
described in Chapters 3 and 4. We evaluate the running time of our algorithms as well as
the backtracking algorithm for G⃝. We also evaluate the backtracking trees for G⃝. We
consider the number of backtracking leaves, the amount of backtracking leaves which are
actual valid assignments for c∗ and the amount of backtracking leaves visited until a first
solution is found in relation to the size of the worst-case number of leaves in relation to
both the number of vertices in the circle graph and the number of important subgraphs
in G⃝. Note that here we consider a worst-case backtracking tree to be one where we
prune the tree at inner nodes with invalid value assignments for c∗ and try all possible
assignments for c∗ when we reach the last remaining G⃝ ∈ G⃝. By evaluating the number
of leaves in a backtracking tree that represent a valid value assignment for c∗ we hope to
get some insight on how high our chances are of having many good solutions in our tree.
The relation of the number of worst-case leaves and the number of leaves we actually visit
for our test graphs is meant to show how good our heuristic is at finding the first valid leaf
in our tree. We also present the absolute running time for both the backtracking for G⃝
and computing c∗ using a Sat solver. In the following we give a high level description of
the code before presenting the results of the experimental evaluation.

5.1. Implementation
A circle graph G is read as input. The graph contains the left and right endpoints of each
chord as well as the level assignment for each chord. After reading the graph, the first step
is to find all important subgraphs. For this, we use relatively straightforward recognition
algorithms that we derived from the recognition algorithms presented by Unger [51] with
slight alterations to realize them in Python. These have not been fully optimized, since our
main focus is the running time of the backtracking algorithm. After finding all important
subgraphs we compute values for c∗. To this end, we first build all 2-Sat clauses for the
important subgraphs G9◁, G□, G� and GD as described in Section 4.2. Then we use a Sat
solver to find a satisfying assignment for the values of c∗ used in our 2-Sat formula. Then,
we use one of the following two approaches to finalize the values of c∗ needed for GD and
G⃝. Our first approach is the backtracking algorithm described in Chapter 4, Section 4.4
to find valid assignments for the c∗ values of all GD and G⃝. Our second approach is to
build clauses for these important subgraphs and then use the Sat solver from before to
find the values for c∗. We compare the efficiency of these two approaches in Sections 5.3.1
and 5.3.2.
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5. Experimental Evaluation

5.2. Sample Data
To test the efficiency of our python application we generated 1822 test graphs of different
sizes and using different generation methods. All of these graphs are connected and do not
contain cliques of size 4 or greater. The graphs are built incrementally, i.e. we randomly
add one chord after another and check, whether the resulting graph still satisfies certain
constraints. These constraints depend on the generation method. If the constraints are
satisfied we add the chord to the graph and repeat these steps until we reach a graph with
the desired number of vertices. The two constraints all graph generators have in common
is that the graph must remain connected and free of any k-cliques with k ≥ 4 The graphs
are divided into two categories based on the way they were generated. The first graph
category are graphs where the chord added in step i has color i mod 3. We refer to this
category as C. We assign colors to chords while generating the graph which ensures that
the resulting graph is 3-colorable. The color that is assigned to a new chord ci is i mod 3.
If the color is already used by a neighbor, i.e. the resulting coloring is not a 3-coloring,
we don’t keep the chord and try inserting it another way, still requiring it to have color
i mod 3. We slightly modify this method to get our second generation strategy which we
call RC. Instead of assigning the color i mod 3, we randomly choose a color ri ∈ {0, 1, 2}
for the chord added in step i. The remaining generation strategy works as before, namely
if adding the new chord with this randomly chosen color ri breaks our 3-coloring, we try to
add the colored chord a different way.

Both categories contain only 3-colorable graphs. This allows us to evaluate how accurate
the algorithms is able to decide if a graph is 3-colorable. From the counterexample in
Section 3.2 we know that following the coloring algorithms using a consistent auxiliary
coloring function c∗ might not always result in a 3-coloring. To see how well the algorithm
performs on our random 3-colorable graphs we verified the coloring after following the steps
given in Section 3.2. If the coloring is not correct, i.e. there are at least two crossing chords
with the same color, we marked the result as invalid. Otherwise, the result was considered
valid. An evaluation on the percentage of valid results is given in the following section.
This way of generating instances further proved to yield more interesting graphs, that
is graphs that contained several important subgraphs G⃝ ∈ G⃝. An example of graphs
generated and colored by our application is given in Figure A.1 and A.2 in Appendix A.

5.3. Evaluation
For the evaluation, we implemented a Python application using Python 3.10 for the backend
and the JavaScript framework D3.js 1 in our frontend. We evaluated the efficiency of this
application and the used algorithms on cluster nodes each equipped with two Intel Xeon
E5 CPUs and 256 GiB RAM. We stored our sample graphs as JSON files, containing
the required metadata, i.e. the left and right indices and level of all chords as well as the
important subgraphs each chord belongs to. For solving the Sat instances, we used the
Python library pySMT 2 with the SMT solver MathSAT 5 [10]. In the following we present
the results for both sample data categories combined.

5.3.1. Computing c∗ using Backtracking

We present the following results for our implementation of the backtracking algorithm. For
the absolute running time of the backtracking algorithm, we notice a exponential tendency
in our data, especially for graphs with more nodes and G⃝, see Figure 5.1. When looking
at the number of backtracking leaves in relation to the number of nodes, resp. the size of

1https://d3js.org/
2http://www.pysmt.org/
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5.3. Evaluation

(a) (b)

Figure 5.1.: Absolute running time in fractional seconds of backtracking algorithm for G⃝
in relation to (a) the number of nodes in the graph and (b) the number of
important subgraphs in G⃝

(a) (b)

Figure 5.2.: Number of backtracking leaves in relation to (a) the number of nodes in the
graph and (b) the number of important subgraphs in G⃝

G⃝, we also see a exponential tendency, again more so for graphs with more nodes and
G⃝, see Figure 5.2. But we also note that there is a not insignificant amount of scattering
for these values. In order to get more insight into the properties of the backtracking trees
we also evaluated the backtracking trees themselves. Namely, we looked at the relation
of leaves that represent solutions and leaves that represent invalid c∗ value assignments.
We also evaluated the number of leaves that we actually visit until we find a solution in
relation to the number of leaves in the worst-case backtracking tree. For the percentage of
leaves that are solutions in a worst-case backtracking tree we see a rapid decline as the
graphs increase in size, both in respect to the number of nodes and the size of G⃝, see
Figure 5.3. Figure 5.4 indicates that as we have more nodes in the graph and important
subgraphs in G⃝, our backtracking trees grow larger while the number of solutions remains
virtually constant. From these numbers it might seem that the chance of quickly finding
a first solution in the backtracking tree would decrease as there are fewer solution leaves
in comparison to the number of all leaves. Interestingly, the evaluation shows that the
number of leaves actually visited until a first solution is reached behaves a bit differently
than maybe expected. Figure 5.5 shows that as the number of nodes and the number of
important subgraphs G⃝ in the graph grows, we either visit all nodes of the backtracking
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(a) (b)

Figure 5.3.: Percentage of leaves in a worst-case backtracking tree that are solutions in
relation to (a) the number of nodes in the graph and (b) the number of
important subgraphs in G⃝

(a) (b)

(c) (d)

Figure 5.4.: Absolute number of leaves in a worst-case backtracking tree (top) and absolute
number of solutions in a worst-case backtracking tree (bottom) in relation to
the number of nodes in the graph (left) and the number of important subgraphs
in G⃝ (right)
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5.3. Evaluation

(a) (b)

Figure 5.5.: Number of backtracking leaves in relation to (a) the number of nodes in the
graph and (b) the number of important subgraphs in G⃝

(a) (b)

Figure 5.6.: Number of backtracking leaves in relation to (a) the number of nodes in the
graph and (b) the number of important subgraphs in G⃝

tree, i.e. 100%, or about only about 20% to 40%, so significantly less than half. We found
that this tendency seems to correlate with the average number of c∗ values that are relevant
to G⃝ and not shared with other important subgraphs, so the values that we essentially
have to "try out" during the backtracking algorithm. Figure 5.6 shows that the number of
these c∗ values mostly averages at around 3 to 4 per circle graph. Especially Figure 5.6(b)
suggests a correlation between these figures. This leads us to believe that there might be a
connection between the number of leaves we need to visit until we find a solution and the
number of c∗ values that are relevant for G⃝ and not shared with other subgraphs. This
would then partly coincide with the assumptions made by Unger regarding the number of
leaves in the backtracking tree, although a formal proof of this would still be needed.

5.3.2. Computing c∗ using 3-Sat

For our Sat solver approach we looked at the development of the absolute running time for
computing a solution for our formula. Compared to the running time for the backtracking
algorithm, we notice a seemingly linear time increase for computing c∗ using the Sat
solver as opposed to the more exponentially-seeming and scattered time increase for the
backtracking algorithm, see Figure 5.7. The Sat solver also performs better in absolute
numbers. While the backtracking algorithm needs up to 300 seconds per graph in most
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(a) (b)

Figure 5.7.: Absolute running time in fractional seconds of computing a solution for F1 ∧F2
in relation to (a) the number of nodes in the graph and (b) the number of
important subgraphs in G⃝

(a) (b)

Figure 5.8.: Absolute running time in fractional seconds of computing a solution for F1 ∧F2
in relation to (a) the number of nodes in the graph and (b) the number of
important subgraphs in G⃝

cases, the Sat solver needs no more than 0.13 seconds, even for larger graphs. If we also
factor in the time it takes to compute all clauses, see Figure 5.8, the Sat solver still needs
less than 7 seconds for any graph of any size and any number of G⃝. We note that the
time it takes to compute the clauses for the 2-Sat instance is not included in the running
time of the backtracking algorithm, although it would merely add a few seconds onto an
already relatively high amount of time. In terms of running time, the Sat solver clearly
performs better than the backtracking algorithm.

5.3.3. Coloring Circle Graphs using c∗

We were interested in seeing how the effects of our counterexample played out in practice,
that is, how many consistent auxiliary coloring functions c∗ can actually be used to construct
a 3-coloring. In Figure 5.9 the percentages of sample circle graphs is given for which the
3-coloring constructed using c∗ was correct. Unfortunately, not many of our test graphs
were colored correctly. About 8% of graphs were colored correctly with c∗ computed by
the Sat solver, and nearly 12% with c∗ computed using the backtracking algorithm. From
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5.3. Evaluation

Figure 5.9.: Percentage of graphs for which the consistent auxiliary coloring function c∗ was
able to construct a 3-coloring. The left bar shows that number for c∗ computed
with the Sat solver, the right bar shows the number for c∗ computed by the
backtracking algorithm.

Table 5.1.: Number of vertices of graphs that were correctly colored using c∗

maximum #vertices average #vertices median #vertices
c∗ Sat solver 48 10.724 8
c∗ backtracking 57 13.376 15

Tables 5.1 and 5.2 we see that the graphs that were colored correctly are relatively small
compared to the rest of our samples and often do not contain many G⃝ ∈ G⃝.

Table 5.2.: Number of important subgraphs G⃝ ∈ G⃝ of graphs that were correctly colored
using c∗

maximum |G⃝| average |G⃝| median |G⃝|
c∗ Sat solver 6 0.699 0
c∗ backtracking 8 0.5 0

The difference in performance between the consistent auxiliary coloring functions computed
by the Sat solver and the backtracking algorithm suggests that the values for c∗ computed
by the Sat solver contain more errors in the sense that c∗ contains contradicting or
unrealizable values, than those computed by the backtracking algorithm.
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6. Conclusion

We have shown that the existence of a consistent auxiliary coloring function c∗ for a circle
graph G is not equivalent to G being 3-colorable. That is, a consistent auxiliary coloring
function c∗ is not generally realizable for G. With this we have disproven a lemma that is
crucial to Unger’s result on the 3-coloring of circle graphs. We discussed the backtracking
algorithm and the potential number of leaves of the corresponding backtracking tree. While
we can neither prove nor disprove Unger’s claim that the number of leaves is in O(log n), we
have given our thoughts and arguments on why we doubt that this holds. In our evaluation
we investigated the running time for the backtracking algorithm and the Sat solver for
computing a consistent auxiliary coloring function c∗. We have seen that in practice, while
the Sat solver is significantly faster at computing values for c∗, the number of graphs
that were correctly 3-colored using c∗ was higher for consistent auxiliary coloring functions
computed with backtracking. Our evaluation also showed that the number of leaves we
visit until we find a solution can be relatively small, even for circle graphs with many nodes
and important subgraphs G⃝ ∈ G⃝. It also suggests a correlation between the number
of values for c∗ that are defined for the vertices of important subgraphs in G⃝ and not
for any other subgraph, i.e. c∗ values that are relevant only to G⃝, and the number of
backtracking leaves visited until a solution is found. This to some degree coincides with
the claims Unger stated in regard to clear implications.

An open problem we gave in Chapter 3 is to see whether there is a way to add more
properties or other forms of restrictions to c∗ such that our presented counterexample
becomes obsolete. One possible approach might be to find a way to prohibit c∗ to have
contradicting or non-realizable values with respect to the entire circle graph G. Another
open problem is to specify and finalize the ideas on why the backtracking tree might
have a tighter upper bound on the number of leaves than 2O(n2) or to give a lower bound.
From our evaluation it seems likely that there is some correlation between the size of the
graph and the number of values of c∗ we have to try until we find a solution. Studying
and formalizing this potential connection is also left as an open problem. In general, the
3-coloring problem should be considered an open problem for circle graphs still.
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Appendix

A. Sample Graphs Examples

(a)

(b)

Figure A.1.: (a) A sample graph of category C (b) Coloring computed by our application
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6. Appendix

(a)

(b)

Figure A.2.: (a) A sample graph of category RC (b) Coloring computed by our application
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