
Parameterized Complexity of
Simultaneous Planarity

Master Thesis of

Matthias Pfretzschner

At the Department of Informatics and Mathematics
Chair of Theoretical Computer Science

Reviewers: Prof. Dr. Ignaz Rutter
Prof. Dr. Dirk Sudholt

Advisor: Simon Fink, M. Sc.

Time Period: 20th May 2022 – 23rd November 2022

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Passau, November 21, 2022

iii

Abstract

Given two graphs G 1 and G 2 that share some vertices and edges forming a shared
graph G = G 1 ∩G 2 , the problem Simultaneous Embedding With Fixed Edges
(SEFE) asks whether there exist planar drawings of G 1 and G 2 that coincide
on G. While the generalization of SEFE to k input graphs is NP-complete, SEFE
is still an open problem for only two input graphs. In this work, we explore the
parameterized complexity of SEFE. We start by developing FPT-algorithms for
SEFE parameterized by the vertex cover number and feedback edge set number,
respectively, of the union graph G∪ = G 1 ∪G 2 . Subsequently, we show that SEFE is
FPT parameterized by the vertex cover number plus the number of degree-1 vertices
of the shared graph.
For instances with a connected shared graph G, SEFE has recently been solved in
quadratic time using a reduction to the problem Synchronized Planarity. We
show how the resulting instance can be augmented to also handle the case where
the shared graph is disconnected. Unfortunately, we cannot solve this augmented
Synchronized Planarity problem in polynomial time in the general case. However,
for restricted cases, we derive an FPT-algorithm for SEFE parameterized by the
number of connected components and the maximum degree of the shared graph.
Finally, we use a similar augmented Synchronized Planarity instance to solve
SEFE in quadratic time, if both input graphs G 1 and G 2 are biconnected and
have maximum degree 4. This includes cases where the shared graph has maximum
degree 4, while existing algorithms only solve instances where the shared graph has
maximum degree 3.

Deutsche Zusammenfassung

Seien G 1 und G 2 zwei Graphen mit einem gemeinsamen Graph G = G 1 ∩G 2 . Das
Problem Simultaneous Embedding With Fixed Edges (SEFE) stellt die Frage,
ob es zwei planare Zeichnungen von G 1 und G 2 gibt, die auf G übereinstimmen.
Während die Variante von SEFE mit drei oder mehr Graphen NP-vollständig ist,
bleibt SEFE weiterhin ein offenes Problem für nur zwei Eingabegraphen. In dieser
Arbeit erforschen wir die parametrisierte Komplexität von SEFE. Als Erstes entwick-
eln wir FPT-Algorithmen für SEFE parametrisiert nach der “Vertex Cover Number“
und der “Feedback Edge Set Number“ des Vereinigungsgraphen G∪ = G 1 ∪ G 2 .
Anschließend zeigen wir, dass SEFE FPT parametrisiert nach der “Vertex Cover
Number“ plus der Anzahl von Grad-1 Knoten des gemeinsamen Graphen ist.
Für Instanzen mit zusammenhängendem gemeinsamen GraphG wurde SEFE kürzlich
mit quadratischer Laufzeit mithilfe einer Reduktion auf das Problem Synchronized
Planarity gelöst. Wir zeigen, wie die resultierende Instanz erweitert werden kann,
um auch den Fall abzudecken, in dem G nicht zusammenhängend ist. Leider können
wir diese erweiterte Instanz im Allgemeinen nicht in Polynomialzeit lösen. Für
eingeschränkte Fälle entwickeln wir allerdings einen FPT-Algorithmus für SEFE
parametrisiert nach der Anzahl der Zusammenhangskomponenten und dem Maxi-
malgrad des gemeinsamen Graphen G. Zuletzt verwendend wir noch eine ähnliche
erweiterte Synchronized Planarity Instanz, um SEFE in quadratischer Zeit zu
lösen, wenn beide Eingabegraphen G 1 und G 2 zweifach zusammenhängend sind und
Maximalgrad 4 haben. Das schließt auch Fälle ein, in denen der gemeinsame Graph
G Maximalgrad 4 hat, während bereits existierende Algorithmen nur Instanzen lösen,
in denen der gemeinsame Graph Maximalgrad 3 hat.

v

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Contribution and Outline . 4

2 Preliminaries 5

3 Parameterization by the Vertex Cover Number of the Union Graph 13

4 Parameterization by the Feedback Edge Set Number of the Union Graph 17
4.1 Remarks About the Feedback Vertex Set Number 19

5 Parameterization by the Treedepth of the Union Graph 21

6 Parameterization by the Vertex Cover Number of the Shared Graph 25
6.1 Embedding the Blocks . 27
6.2 Nesting Blocks around Cutvertices . 29

6.2.1 Embedding Split Components Into Compatible Faces 30
6.3 Ordering Blocks around Cutvertices . 35
6.4 Putting Things Together . 35

7 Parameterization by the Number of Connected Components and the
Maximum Degree of the Shared Graph 37
7.1 Computing the Partial Constraints . 38
7.2 Reduction to Synchronized Planarity 42
7.3 Invariants . 45
7.4 Operations for Constrained Pipes . 49

7.4.1 Constrained PropagatePQ . 50
7.4.2 Constrained EncapsulateAndJoin . 53
7.4.3 Transitive Constrained SimplifyMatching 55
7.4.4 Trivial Constrained SimplifyMatching 56
7.4.5 Toroidal Constrained SimplifyMatching 58

7.5 Solving the Reduced Instance . 60

8 Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with
Maximum Degree 4 61
8.1 Consistent Triple Assignments . 64
8.2 Consistent Vertices in Iinit . 66

8.2.1 Four Cycle-Contained Virtual Edges 66
8.2.2 Three Cycle-Contained Virtual Edges 67
8.2.3 Two Cycle-Contained Virtual Edges 69
8.2.4 Remaining Cases . 69

8.3 Invariants . 70

vii

Contents

8.4 Modified Synchronized Planarity Operations 75
8.4.1 PropagatePQ . 75
8.4.2 EncapsulateAndJoin . 75
8.4.3 SimplifyMatching . 77

8.5 Solving the Reduced Instance . 78
8.6 Remarks About Cutvertices and Vertices of Higher Degree 80

9 Conclusion 81

Bibliography 83

viii

1. Introduction

Let G 1 = (V 1 , E 1) and G 2 = (V 2 , E 2) denote two graphs with a common shared graph
G = G 1 ∩G 2 = (V 1 ∩ V 2 , E 1 ∩ E 2). The problem Simultaneous Embedding With
Fixed Edges (SEFE) asks, whether there exist planar drawings Γ 1 and Γ 2 of G 1 and
G 2 , respectively, such that Γ 1 and Γ 2 induce the same drawing of the shared graph G.
The problem definition can be naturally generalized to the problem k-SEFE with k ≥ 2
input graphs, where each pair of graphs has a shared graph that must be drawn identically.
In the restricted sunflower case, every pair of input graphs has the same intersection.

One of the main applications for the SEFE problem is dynamic graph drawing. Given a
graph that changes over time, a visualization of k individual snapshots of the graph should
aesthetically display the changes between successive snapshots. To this end, it is helpful
to draw the part of the graph that remains unchanged between snapshots consistently.
Figure 1.1 gives an example illustrating this for k = 3 snapshots, matching the problem
k-SEFE for k = 3 in the sunflower case. In Figure 1.1a, the shared graph has a different
layout in each of the three drawings, which makes it difficult to distinguish the common
features of the drawings, although the shared graph is highlighted in each drawing. In
contrast, Figure 1.1b shows drawings of the same three graphs, but the vertices and edges
of the shared graph have the same position in each drawing. Such a visualization notably
simplifies recognizing the similarities between the “snapshots“. For more than two input
graphs, k-SEFE has been proven to be NP-complete [GJP+06], even in the sunflower
case [Sch13]. For two input graphs, however, SEFE remains an open problem.

Aside from the aforementioned applications in dynamic graph drawing, SEFE takes a central
role in the spectrum of planarity variants. In addition to the standard planarity problem,
which asks whether a given graph can be drawn crossing-free, many other famous planarity
variants are polynomial-time reducible to SEFE. This includes the problems Partially
Embedded Planarity, Partially PQ-Constrained Planarity, (Radial) Level
Planarity, Clustered Planarity [Sch13], and Partitioned T -Coherent 2-Page
Book Embedding [ABF+12]. A polynomial-time algorithm that solves SEFE would
consequently yield a unified planarity test for many well-known planarity variants [Rut20].

1.1 Related Work
Jünger and Schulz [JS09] showed that an instance of SEFE with input graphs G 1 and
G 2 is a yes-instance if and only if there exists a pair of embeddings of G 1 and G 2 that

1

1. Introduction

G 1 G 2 G 3

v

v

(a)

G 1 G 2 G 3

v v

(b)

Figure 1.1: (a) Three planar graphs G 1 , G 2 , and G 3 with a shared graph
G = G 1 ∩G 2 ∩G 3 . The edges of G are drawn in orange, and each vertex of
G has a unique color. (b) Planar drawings of the same three graphs, but the
subgraph G is drawn the same way in all three drawings.

is compatible, i.e., the two embeddings must induce the same embedding for the shared
graph G. For this to be the case, the pair of embeddings must satisfy the following two
requirements [Rut20]. First, the cyclic ordering of the edges around every vertex of G must
be identical in both embeddings. Second, for every pair C and C ′ of connected components
in G, the face of C that C ′ is embedded in must be the same in both embeddings. We call
the former property consistent edge orderings and the latter property consistent relative
positions. For example, the edges of G around the vertex v in G 2 and G 3 induce different
cyclic orders in Figure 1.1a, the shown embeddings therefore do not have consistent edge
orderings. In Figure 1.1b, however, the embeddings of G 2 and G 3 have consistent edge
orderings for the shared graph G. Figure 1.2 shows an example of two embeddings with
consistent edge orderings but inconsistent relative positions.

Most approaches for solving SEFE use this constraint-based characterization by Jünger and
Schulz [JS09] and test whether the input graphs admit compatible embeddings. However, all
existing solutions for SEFE require additional restrictions on the input graphs. Interestingly,
there are several solutions that solve SEFE in cases where only consistent edge orderings or
only consistent relative positions between the embeddings must be ensured. If the shared
graph G is connected, there are no relative positions to consider, because then G only
consists of a single connected component. Haeupler et al.[HJL13] solved SEFE in linear
time in the even more restricted case where the shared graph G is biconnected using a
PQ-tree-based planarity test. Angelini et al.[ABF+12] achieve the same result using a
different approach, where they analyze the constraints the two input graphs impose on the
embedding of nodes in the SPQR-tree of the shared graph G. Bläsius and Rutter [BR16]

2

1.1. Related Work

4

1

2

3

f

E 1

(a)

1

2

3

4
f

E 2

(b)

1

3

f
24

G

(c)

Figure 1.2: Planar embeddings E 1 (a) and E 2 (b) of G 1 and G 2 , respectively. Because
the shared graph G (c) has maximum degree 2, the edge orderings between
embeddings of G 1 and G 2 are trivially consistent. But because vertex 4 is
placed inside face f of G (shown with dashed lines) in E 2 , but outside of f in
E 1 , the two embeddings do not have consistent relative positions.

later developed a quadratic-time algorithm for SEFE if both input graphs G 1 and G 2 are
biconnected and the shared graph G is connected, using a reduction to restricted instances
of the problem Simultaneous PQ-Ordering. Very recently, Fulek and Tóth [FT20]
achieved a major breakthrough by solving SEFE in polynomial time if the shared graph
is connected. This way, they essentially solve the problem of assuring consistent edge
orderings between the two input graphs. Bläsius et al. [BFR20] later improved the running
time and solved SEFE in quadratic time if the shared graph is connected, using a reduction
to the new problem Synchronized Planarity.
On the other hand, there are also algorithms that can ensure consistent relative positions
if the edge orderings are trivially consistent. Bläsius and Rutter [BR15] gave a linear-
time algorithm that solves SEFE if each connected component of G is a cycle and a
quadratic-time algorithm for the case where each connected component of G has a fixed
embedding.

While there are algorithms that can handle consistent edge orderings and consistent relative
positions individually, unrestricted SEFE instances require both of them to be considered
at the same time. Combining these two requirements significantly complicates the problem.
Schaefer [Sch13] introduced an algorithm that uses a completely different approach and was
the first to handle cases where the shared graph consists of multiple connected components
that do not have a trivial embedding. Instead of focusing on compatible embeddings,
he uses Hanani-Tutte style theorems to characterize yes-instances of SEFE via crossing
numbers in drawings of the union graph G∪ = G 1 ∪G 2 . His algorithm handles consistent
edge orderings and relative positions implicitly and solves SEFE in polynomial time if
every connected component of the shared graph is biconnected or has maximum degree 3.

Bläsius et al. [BKR18] introduced the first constraint-based algorithm that could handle
edge orderings and relative positions at the same time. Their algorithm runs in cubic
time and solves SEFE instances where each connected component of the shared graph
is biconnected or has maximum degree 3. Since, in this case, the components of the
shared graph do not necessarily have a fixed embedding, handling relative positions is quite
involved, because the faces of the shared graph depend on the particular embedding. To
solve this issue, Bläsius et al. [BKR18] express relative positions with respect to cycles in
a cycle basis of the shared graph. They show that, in this restricted case, the important
embedding choices in the two input graphs affecting the shared graph are essentially binary
decisions and can be combined with the relative positions using a linear system of equations.

There are also other interesting variants of SEFE. The problem Simultaneous Geometric
Embedding (SGE) is a more restrictive version of SEFE that additionally requires both

3

1. Introduction

drawings to have straight lines. This additional restriction makes the problem NP-hard,
even for two graphs [EGJ+07]. The variant Simultaneous Embedding (SE) only requires
all vertices of the shared graph to have the same position in both drawings, the drawings
of the shared edges may differ. Since a planar graph always admits a planar drawing, even
if the position of all vertices is fixed [PW01], any pair of planar graphs is a yes-instance
of SE. Instead of developing testing algorithms for SE, the research therefore focuses on
drawings with small area and edges with few bends. We refer to the survey by Bläsius
et al. [BKR13] for an overview of results for the problems SGE and SE. For a thorough
history of developments for the SEFE problem, see the recent survey by Rutter [Rut20].

1.2 Contribution and Outline
This work consists of two parts. On the one hand, we explore the parameterized complexity
landscape of SEFE. On the other hand, we try to combine constraint-based solution
approaches for SEFE that solve consistent edge orderings and consistent relative positions
individually in order to solve SEFE in more general cases.

In Chapter 3, we start by developing a kernelization algorithm for SEFE parameterized by
the vertex cover number of the union graph G∪, thus showing that SEFE is FPT parame-
terized by said parameter. Similarly, we obtain a linear kernel for SEFE parameterized by
the feedback edge set number of the union graph G∪ in Chapter 4. In Chapter 5, we show
that SEFE is FPT parameterized by the treedepth of the union graph, under the additional
restriction that both input graphs must be connected in every subtree of the corresponding
treedepth decomposition. In Chapter 6, we show that SEFE is FPT parameterized by the
vertex cover number plus the number of degree-1 vertices of the shared graph G.
In the subsequent chapters, we try to extend existing constraint-based approaches in
order to solve SEFE in more general cases. Our main focus lies on the algorithm very
recently introduced by Bläsius et al. [BFR20], which solves SEFE in quadratic time if the
shared graph is connected, by reducing the instance to the new problem Synchronized
Planarity. Roughly speaking, Synchronized Planarity takes as input a graph G and
a set P of disjoint pairs of vertices of G and asks whether there exists a planar embedding
of G such that each pair of vertices in P has the same order of incident edges under
some predefined bijection. While the reduction to Synchronized Planarity can ensure
consistent edge orderings and can thus solve any instance of SEFE where the shared
graph is connected, it generally fails in the presence of multiple connected components,
because it cannot ensure consistent relative positions. We ask the natural question whether
the resulting Synchronized Planarity instance can be augmented with additional
constraints that enforce consistent relative positions.
In Chapter 7, we first characterize the embeddings of the input graphs that satisfy consistent
relative positions. Subsequently, we augment the Synchronized Planarity instance
to ensure that only those embeddings are admissible. We adjust the Synchronized
Planarity algorithm by Bläsius et al. [BFR20] so it can also handle these additional
constraints. This way, we develop an FPT-algorithm that solves SEFE parameterized by
the number of connected components and the maximum degree of the shared graph. While
this algorithm only works in restricted cases, it gives interesting insights on the interplay
between relative positions and Synchronized Planarity.
In Chapter 8, we use a very similar approach. We place pairs of triples in the Synchro-
nized Planarity instance that additionally ensure consistent relative positions with
respect to cycles in a cycle basis of the shared graph. We thus integrate the cycle-basis
approach of Bläsius et al. [BKR18] into the Synchronized Planarity-reduction by
Bläsius et al. [BFR20]. This leads to a quadratic-time algorithm that solves SEFE in the
case where both exclusive graphs are biconnected and have maximum degree 4.

4

2. Preliminaries

Graphs and Connectivity. Let G = (V,E) be a simple graph. A graph H = (V ′, E′)
is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. The subgraph H is an induced subgraph of
G, if E′ contains all edges of E connecting two vertices of V ′. The graph G is connected,
if, for every pair u, v ∈ V , there exists a path between u and v in G, otherwise G is
disconnected. A set S ⊆ V of vertices is a separating k-set of G, if |S| = k and the graph
G − S obtained after removing S from G is disconnected. The split components of a
separating k-set S are the maximal subgraphs of G that are not disconnected by removing
S from G. A separating 1-set is also called a cutvertex and a separating 2-set is also called
a separating pair. We say that G is biconnected, if it contains no cutvertex and triconnected
if it contains no separating pair. A maximal induced subgraph of G that is connected
(respectively biconnected, triconnected) is called a connected component (respectively
biconnected component, triconnected component) of G. A biconnected component is also
called a block. Every vertex of G that is not a cutvertex is located in a unique block of G
and called a block vertex.
The contraction of an edge e = {u, v} in G is an operation that first removes e from G and
subsequently merges the two vertices u and v. A graph H is a minor of G, if H can be
obtained from G by a sequence of vertex deletions, edge deletions, and edge contractions.

Circular Orderings. For a ground set X, a circular ordering (or cyclic ordering) σ
of X arranges the elements of X in a clockwise order around a circle. In this way,
the cyclic ordering σ defines an asymmetric and transitive ternary relation <σ, where
x1 <σ x2 <σ x3 for {x1, x2, x3} ⊆ X indicates that x2 appears after x1 and before x3 in
the clockwise ordering around the aforementioned circle. Two circular orderings on the
same ground set are equivalent if they induce the same ternary relation. For a circular
ordering σ = 〈x1, . . . , xn〉, we let σ = 〈xn, . . . , x1〉 denote its reversal.
For a set A ⊆ X, we let σ[A] denote the circular ordering of A obtained from σ by removing
all elements of X \A from σ. We say that a cyclic ordering of a subset A ⊆ X is a partial
ordering of X. An ordering σ of X satisfies the partial ordering σ′ for a subset A ⊆ X if
σ[A] = σ′. We say that a set A is consecutive in σ, if for every a1, a2 ∈ A and for every
x1, x2 ∈ X \A, x1 <σ a1 <σ x2 holds if and only if x1 <σ a2 <σ x2 holds. For a consecutive
set A and an element c /∈ A, we let σ[A→ c] denote the circular ordering of (X \A) ∪ {c}
obtained from σ by replacing A with c.

Drawings, Embeddings, and Planarity. A drawing Γ of G maps every vertex v ∈ V to
a coordinate Γ(v) ∈ R2 and every edge {u, v} ∈ E to a simple arc between the coordinates
Γ(u) and Γ(v). A drawing is a planar drawing, if for any pair of edges in E, the corresponding

5

2. Preliminaries

S P R

P

R

R

G T

Figure 2.1: A biconnected planar graph G with its corresponding SPQR-tree T . As a
simplification, the Q-nodes of T are omitted. Illustrated on the right are the
skeletons of the respective nodes of T . The virtual edges of the skeletons are
colored black, all other edges are marked with the color they are also marked
with in G. Every pair of twin edges is connected via a dashed line.

arcs of Γ do not intersect at interior points. The graph G is a planar graph, if there exists a
planar drawing of G. By Kuratowski’s Theorem [Kur30], a graph is planar if and only if it
does not contain the complete graph K5 or the complete bipartite graph K3,3 as a minor.
Every drawing Γ of G uniquely defines rotation system of G, a circular order for the edges
around each vertex in G. In this sense, drawings define an equivalence relation, where two
drawings Γ1 and Γ2 are equivalent if and only if Γ1 and Γ2 induce the same rotation system.
The equivalence classes of this equivalence relation are called (combinatorial) embeddings.
The edges of a planar embedding E partition the plane into several regions, called the faces
of E . For a subgraph H of G, E [H] denotes the restriction of E to H. With E(v) we denote
the circular order of the edges incident to a vertex v ∈ V induced by the embedding E .

SPQR-Trees. A pair {u, v} ∈ V 2 is a split pair of G, if {u, v} is either a separating pair
or a pair of adjacent vertices. An SPQR-tree [BT96] T is a rooted tree that decomposes
a biconnected graph G along its split pairs; see Figure 2.1 for an example. It consists of
the four node types S, P, Q, and R, where the Q-nodes constitute the leaves of T and
correspond bijectively to the edges of G. Every node µ of T is associated with a biconnected
multigraph skel(µ), called the skeleton of µ. The edges of skel(µ) are called virtual edges.
The virtual edges of µ correspond bijectively to the neighbors of µ in T , i.e., if µ contains
k virtual edges, then µ also has degree k in T . For two adjacent nodes of T , this bijective
mapping defines pairs of virtual edges, called twin edges, that are associated with each
other. After rooting T at an arbitrary node, the virtual edge of µ corresponding to the
parent of µ in T is called the parent edge.
The pertinent graph pert(µ) of a node µ of T is recursively defined as follows. If µ is a
Q-node, then pert(µ) consists of the edge of G that µ corresponds to. Otherwise, µ is an
inner node of T , and pert(µ) is obtained by replacing every virtual edge of skel(µ) with
the pertinent graph of the child it corresponds to and by subsequently removing the parent
edge in skel(µ).
For a virtual edge ε of skel(µ), let µ′ be the neighbor of µ that ε corresponds to. The
expansion graph exp(ε) of ε in skel(µ) is defined as the pertinent graph of the neighbor
µ′ after rooting T at µ. For a virtual edge ε = uv of µ, we say that a vertex x of G is
contained in ε, if x /∈ {u, v} and x is contained in the expansion graph exp(ε) of µ.
Given a graph G, the SPQR-tree T can be obtained by recursively splitting the graph
along its split pairs. Initially, T consists of a single node µ with skel(µ) = G. For a
split pair {u, v} in skel(µ), let S1, . . . , Sl denote the split components of {u, v}. Note that
S1∪· · ·∪Sl = skel(µ) and Si∩Sj = {u, v} for 1 ≤ i, j ≤ l. If l = 2, split µ into two adjacent
nodes µ1 and µ2, where skel(µ) = S1 + uv and skel(µ2) = S2 + uv. The virtual edges uv

6

appearing in skel(µ1) and skel(µ2) are the corresponding twin edges. If l > 2, create a
new node µ′ whose skeleton consists of the two vertices u and v and l parallel virtual edges
ε1, . . . , εl. For 1 ≤ i ≤ l, create a new node µi with skel(µi) = Si + uv adjacent to µ′ and
associate the virtual edge uv in skel(µi) with its twin εi of skel(µ′).
Exhaustively applying this procedure eventually yields the SPQR-tree T of G, where each
inner node of T is either an S-node, a P-node, or an R-node. The skeleton skel(µ) is a
simple cycle if µ is an S-node (“series“), several (at least 3) parallel edges if µ is a P-node
(“parallel“), or a triconnected graph if µ is an R-node (“rigid“). Fixing a planar embedding
of G completely fixes the embedding of the skeletons of all nodes in T and conversely,
choosing a planar embedding for every skeleton in T uniquely defines a planar embedding
of G. In this sense, the SPQR-tree of G breaks down the possible embedding choices of G
into simpler embedding choices for the individual skeletons of µ. Since the skeleton skel(µ)
of an R-node µ is triconnected, the embedding of skel(µ) is fixed up to mirroring, thus an
R-node only leaves a binary embedding decision. For a P-node µ, the k parallel virtual
edges in skel(µ) can be ordered arbitrarily, leaving (k − 1)! possible embeddings of skel(µ)
after fixing a virtual edge on the outer face of skel(µ). Since the skeleton of an S-node is a
simple cycle, its embedding is completely fixed. Because the skeletons of Q-nodes also have
a fixed embedding, all embedding choices of a biconnected graph G therefore break down
to embedding choices at the P-nodes and R-nodes of the SPQR-tree of G. The SPQR-tree
of G can be computed in linear time [GM00]. For a P-node µ of T , we call the two vertices
u and v in skel(µ) the poles of µ.

PQ-trees and PC-trees. The PQ-tree is a data structure introduced by Booth and
Lueker [BL76] that represents circular orderings of a ground set X, subject to specific
consecutivity constraints. While a PQ-tree is rooted, there also exists an unrooted variant
called PC-tree [SH99]. PQ-trees and PC-trees are equivalent [Hsu01] and can thus be used
interchangeably.
The leaves L(T) of a PC-tree T correspond bijectively to the elements in X and its inner
nodes I(T) are partitioned into P-nodes and C-nodes (respectively Q-nodes for PQ-trees).
The edges incident to P-nodes may be ordered arbitrarily, while for C-nodes, this order
is fixed up to reversal. The set of circular orders of L(T) that can be obtained by such
reorderings in T is called σ(T). A circular order σ of L(T) satisfies T if σ ∈ σ(T). A
PC-tree T is trivial, if it consists of a single P-node incident to all leaves of T . Note that,
in this case, σ(T) contains all distinct circular permutations of L(T).
The circular orders that satisfy T can also be described as a set of restrictions (or consecu-
tivity contraints) R(T) ⊆ P(L(T)). By this definition, a circular order σ satisfies T if all
R ∈ R(T) are consecutive in σ. A set A ⊆ L(T) is consecutive in T if A ∈ R(T). For a
consecutive set A ∈ R(T), we define the pertinent subtree pert(T,A) recursively as follows.
Every leaf in A belongs to pert(T,A) and an inner node of T belongs to pert(T,A) if all of
its neighbors, except for one, belong to pert(T,A).
We now describe the four PC-tree operations we will use later on. See Figure 2.2 for an
example illustrating each operation.

Update Let T be a PC-tree and let A ⊆ L(T) be a set of its leaves. The operation
Update produces a new PC-tree T ′ that ensures that A is consecutive in T ′, thus
σ(T ′) = {σ ∈ σ(T) | A is consecutive in σ} and R(T ′) = R(T) ∪ {A}. If σ(T ′) = ∅,
then the operation produces a trivial null tree. Hsu and McConnell [HM03, HM04]
showed that the procedure Update can be implemented to run in amortized linear
time in the size of A.

Intersect Let T1, T2 denote two PC-trees with L(T1) = L(T2). The operation Intersect
produces a new PC-tree T ′ that contains the constraints of T1 and T2, thus R(T ′) =
R(T1)∪R(T2) and σ(T ′) = σ(T1)∩σ(T2). Booth [Boo75] gave a linear-time algorithm
for this operation.

7

2. Preliminaries

1

2

3

4
5

6

7

1

2

3

4
5

6

7

T

T ′

A

A

(a)

1

2

3 4

5

6

1

2

3 4

5

6

1

2

3 4

5

6

+

T1

T2

T ′

(b)

1

2

3

4
5

6

7

A

1

2

a′ 6

7

a′

3

4

5

+

T

T ′

T ′′

(c)

a′

3

4

5T1

1

2

a′ 6

7
T2

1

2

3

4
5

6

7

T ′

+

(d)

Figure 2.2: The PC-tree operations Update (a), Intersect (b), Split (c), and Merge (d).
The P-nodes of each PC-tree are drawn as small circles, the C-nodes as big
double circles.

Split Let T denote a PC-tree and let A ⊆ L(T) denote a consecutive set of its leaves.
The procedure Split produces a new PC-tree T ′ by replacing the pertinent subtree
pert(T,A) with a single leaf a′. The operation also creates another PC-tree T ′′ by
replacing the pertinent subtree pert(T, L(T) \ A) with the leaf a′. It holds that
σ(T ′) = {σ[A→ a′] | σ ∈ σ(T)} and σ(T ′′) = {σ[(L(T) \A)→ a′] | σ ∈ σ(T)}.

Merge Let T1, T2 denote two PC-Trees sharing exactly one leaf l. Let x1 and x2 be the
two neighbors of l in T1 and T2, respectively. The operation Merge creates a new
PC-Tree T ′ by first removing l from T1 and T2 and subsequently adding the edge
x1x2 between T1 and T2.

Embedding Trees and Partial Constraints. Let v be a vertex of a planar biconnected
graph G and let E(v) denote the set of its incident edges. Let further Kv denote the set
of circular orderings σ of E(v) such that there exists a planar embedding E of G with
σ = E(v). The circular orderings of E(v) that are induced by some planar embedding of G
can be efficiently represented by a PQ-tree Tv [BL76] with L(Tv) = E(v) and σ(T) = Kv.
We call Tv the embedding tree of v in G. If an embedding E induces an order E(v) /∈ σ(Tv),
E cannot be planar. Every Q-node of Tv originates from an R-node of the SPQR-tree T of
G and every P-node of Tv stems from a P-node of T [BR16]. Note that choosing a circular
ordering σ ∈ σ(Tv) independently at every vertex v of G does not necessarily lead to a
planar embedding of G. Instead, Q-nodes of different embedding trees stemming from the
same R-node µ of T must be flipped consistently with the rotation of µ. Similarly, two
P-nodes stemming from the same P-node µ of T must be ordered compatibly with each
other under the bijective mapping induced by µ. If both poles of a P-node µ have a trivial
embedding tree, we refer to µ as a (trivial) bond.
In addition to embedding trees, we will also sometimes require a vertex v to satisfy additional
ordering constraints for subsets of E(v) in any embedding of G. Such a constraint is called
a partial constraint and is represented by a PQ-tree Pv with L(Pv) ⊆ E(V). An embedding
E satisfies the partial constraint Pv if E(v)[L(Pv)] ∈ σ(Pv).

Cycle bases. For an undirected graph G, let C denote the set of all cycles in G. For two
cycles C1, C2 ∈ C, define the sum C1 ⊕ C2 as the exclusive disjunction of the edges in C1
and C2, i.e., an edge is present in C1 ⊕ C2 if and only if it is present in exactly one of the
cycles C1 and C2. In combination with an analogous scalar multiplication �, (C,⊕,�)

8

forms a vector space over the field F2. We call a basis of this vector space a cycle basis
of G.

SEFE. Let G 1 = (V 1 , E 1) and G 2 = (V 2 , E 2) denote two graphs with a common
shared graph G = G 1 ∩ G 2 = (V 1 ∩ V 2 , E 1 ∩ E 2). The problem Simultaneous Em-
bedding With Fixed Edges (SEFE) asks, whether there exist planar drawings Γ 1

and Γ 2 of G 1 and G 2 , respectively, such that Γ 1 and Γ 2 induce the same drawing
on the shared graph G [Rut20]. We refer to such a pair of drawings as a simultaneous
drawing and to the corresponding pair of embeddings as a simultaneous embedding. We
usually refer to the two input graphs G 1 and G 2 as the exclusive graphs. The graph
G∪ = G 1 ∪G 2 = (V 1 ∪ V 2 , E 1 ∪ E 2) is called the union graph.
For brevity, we describe instances of SEFE using the union graph G∪. To this end, every
edge and vertex of G∪ is marked either 1 -exclusive (respectively 2 -exclusive), if it is only
contained in G 1 (respectively in G 2), or shared, if it is contained in both G 1 and G 2 (i.e.,
it is contained in the shared graph G). For a vertex v of the shared graph G, we let v 1 and
v 2 denote the corresponding vertices in G 1 and G 2 , respectively. We refer to connected
components of the shared graph G as shared components.
We use a consistent drawing style to illustrate SEFE instances in our figures. Edges and
vertices of G 1 are thick and blue, edges and vertices of G 2 are thin and black. Shared
edges are drawn as overlapping blue and black lines, shared vertices are filled white; see
Figure 2.3a for an example.
Jünger and Schulz [JS09] showed that an instance of SEFE admits a simultaneous embed-
ding if and only if there exists a pair of embeddings of G 1 and G 2 that is compatible, i.e.,
the two embeddings must induce the same embedding for the shared graph G. For this to
be the case, the pair of embeddings must satisfy the following two requirements [Rut20].
First, the cyclic ordering of the edges around every vertex of G must be identical in both
embeddings. Second, for every pair C and C ′ of connected components in G, the face of C
that C ′ is embedded in must be the same in both embeddings. We call the former property
consistent edge orderings and the latter property consistent relative positions.
Note that any SEFE instance with a non-planar exclusive graph is a trivial no-instance.
Since the planarity of a graph can be tested in linear time [HT74], we thus assume that
both exclusive graphs are planar. Similarly, Bläsius et al. [BKR18] gave a linear-time
preprocessing step that ensures that both exclusive graphs are connected. Therefore, we
assume that both exclusive graphs of our SEFE instance (and consequently also the union
graph) are connected.

Link graphs. Let µ denote a P-node in a block B of the shared graph G with poles u
and v. We adopt some notation from Bläsius et al. [BKR18]. We say that two virtual
edges ε1 and ε2 of µ are i -linked, if there exists a path (called i -link) between vertices
of ε1 and ε2 in G i that is vertex-disjoint from B (except for the endpoints of the path in
ε1 and ε2). Two virtual edges are union-linked, if there exists an analogous path (called
union-link) in the union graph G∪. Let the i -link graph L i

µ of µ be the graph that contains
the virtual edges of µ as nodes, and two nodes are adjacent if and only if the corresponding
virtual edges are i -linked. We analogously define the union-link graph L∪µ of µ. The
graphs L i

µ and L 2
µ are subgraphs of L∪µ , however, two virtual edges may be union-linked

but not 1 -linked or 2 -linked and thus L∪µ is not the union of L i
µ and L 2

µ . We call the
union L i

µ ∪ L
2
µ the exclusive-link graph of µ.

Connected SEFE and Synchronized Planarity. The problem Connected SEFE is
the restriction of the problem SEFE to instances where the shared graph G is connected.
Bläsius et al. [BFR20] showed that Connected SEFE can be solved in time O(n2) using
a reduction to the problem Synchronized Planarity. The problem Synchronized

9

2. Preliminaries

v

(a)

v 2

v 1

b
2
vb

1
v

(b)

Figure 2.3: A linear-time reduction from an instance of SEFE with a connected shared
graph (a) to an equivalent instance of Synchronized Planarity (b).

Planarity takes as input a tuple (G, P, Q, ψ), where G = (P ∪ Q,E) is a multi-
graph consisting of P-vertices P and Q-vertices Q. The set P contains pipes, i.e., triples
p = (u, v, ϕuv), where u and v are P-vertices of the same degree and ϕuv is a bijection
between their incident edges. An embedding E of G satisfies pipe p if the edges incident
to u and v have opposite rotations under ϕuv in E , i.e., ϕuv(E(u)) = E(v). Each P-vertex
is restricted to appear in at most one pipe. The mapping ψ allots a specific rotation to
each Q-vertex. The set Q is a partition of the vertices in Q, where each cell defines a
Q-constraint. An embedding E of G satisfies a Q-constraint X ∈ Q, if it holds that either
E(v) = ψ(v) for all v ∈ X or E(v) = ψ(v) for all v ∈ X. The tuple (G, P, Q, ψ) is a
yes-instance of Synchronized Planarity if and only if G admits an embedding where
all pipes and Q-constraints are satisfied.

Using Synchronized Planarity, the problem Connected SEFE can be solved as
follows [BFR20]. Given an instance of SEFE with input graphs G 1 and G 2 , add two
new vertices b 1

v and b 2
v for each shared vertex v appearing in the exclusive graphs as v 1

and v 2 , respectively. For each shared edge incident to v, add a parallel edge between
b 1
v and b 2

v , creating a bond between b 1
v and b 2

v where the parallel edges correspond to
the shared edges incident to v. Create two pipes (v 1 , b 1

v , ϕ1) and (v 2 , b 2
v , ϕ2), where ϕ1

and ϕ2 map the parallel edges to their corresponding edges in G. Additionally, insert
degree-1 vertices incident to v 1 and v 2 representing the exclusive edges incident to v 1

and v 2 , respectively; see Figure 2.3 for an example. Synchronized Planarity will then
determine whether G1 and G2 can be embedded such that the shared edges around each
vertex have opposite rotation. Mirroring the embedding of either G1 or G2 then yields the
desired SEFE. The problem Synchronized Planarity can therefore be used to ensure
consistent edge orderings between the two exclusive graphs.

However, this algorithm cannot handle consistent relative positions of connected components
and therefore only works if the shared graph is connected. Figure 2.4 shows an instance
where the reduction described above fails. While the two graphs shown in Figure 2.4a
clearly do not admit a SEFE, the corresponding instance of Synchronized Planarity
is a yes-instance and accepts the embedding shown in Figure 2.4b. The problem is that
Synchronized Planarity only synchronizes the rotation of shared edges, but does
not ensure consistent relative positions of connected components of the shared graph.
In Figure 2.4b, the vertex x is located in different faces of the shared graph in the two
embeddings, which is not valid for the original SEFE instance. The reduction to the
problem Synchronized Planarity can therefore not be used to also ensure consistent
relative positions between the two exclusive graphs.

10

x

G∪

(a)

x

x

E 1 E 2

(b)

Figure 2.4: (a) A no-instance of SEFE with a disconnected shared graph (b) Possible
embeddings E 1 and E 2 that satisfy the Synchronized Planarity instance
obtained from the reduction from SEFE. Note that the shared vertex x is
embedded into different faces of the shared graph in the two embeddings, thus
the reduction does not work if the shared graph is disconnected.

Parameterized Complexity. A parameterized problem is a language in Σ∗×R, where Σ
is a finite alphabet and k ∈ R is the parameter of the problem. A parameterized problem L
is fixed-parameter-tractable (FPT) if an algorithm can solve it in time O(nc · f(k)), where
n is the input size, c is a constant, and f is a computable function.
One of the main methods for finding FPT-algorithms is called kernelization. In this
approach, one defines safe reduction rules, that is, transformations of the initial input that
result in a smaller instance that is equivalent with respect to the problem. A reduced
instance obtained by exhaustively applying reduction rules is called a kernel of the problem.
If applying the reduction rules takes polynomial time in the input size and the size of the
kernel only depends on the parameter k, one can often brute-force a solution for the kernel
and immediately obtain an FPT-algorithm.
Another technique we will use utilizes bounded search trees to obtain an FPT-algorithm.
When faced with a decision with multiple possible choices (e.g., picking an order for a set
of edges), one creates multiple subproblems, called branches. Each branch corresponds to
one possible decision and in the corresponding subproblem, that decision is assumed to be
necessary, thus the original problem has a solution if and only if one of the subproblems has
a solution. Repeatedly applying this step essentially yields a search tree for the problem. If
the size of this search tree is bounded by a function in k and every step takes polynomial
time, this branching technique yields an FPT-algorithm [CFK+15].

11

3. Parameterization by the Vertex Cover
Number of the Union Graph

For a graph G = (V,E), a vertex cover is a subset of its vertices V ′ ⊆ V such that every edge
e ∈ E is incident to a vertex in V ′. The vertex cover number of G is the size of a minimum
vertex cover of G. As our first parameterization, we consider SEFE parameterized by
the vertex cover number k of the union graph G∪. We use a similar approach as Bhore
et al. [BGMN20] in their parameterization of the problem Book Thickness. Let C be
a minimum vertex cover of size k of G∪ and let N denote the partition of the vertices in
V \ C according to their neighborhood in C. Note that we also consider the type of the
edges connecting a vertex to C, i.e., two vertices connected to the same vertex in C via
different types of exclusive edges belong to different sets in the partition. Also observe
that each vertex in V \ C must have all of its neighbors contained in C. Since a vertex in
V \C can be connected to a vertex in C either via a common edge, via one of two exclusive
edges, or via no edge, we have |N | ≤ 4k. Therefore, bounding the size of each set in N by
a function in k will yield a kernel for this problem.

To this end, we first consider a set U ∈ N , where each v ∈ U has degree at most 1. Since
vertices of degree 0 can be embedded at an arbitrary position and a vertex of degree 1 can
simply be embedded directly next to its neighbor, we get the following trivial reduction
rule.

Reduction Rule 1
If G∪ contains a vertex v of degree 0 or 1, reduce the instance to (G∪ − v, k).

Subsequently, every vertex of G∪ has degree at least 2. We now define a reduction rule
that limits the number of vertices in each set U ∈ N to three.

Reduction Rule 2
If there exists a set U ∈ N with |U | > 3, pick an arbitrary vertex v ∈ U and reduce the
instance to (G∪ − v, k)

To show the safeness of Reduction Rule 2 we use the following two lemmas.

13

3. Parameterization by the Vertex Cover Number of the Union Graph

C

v1 v2v3 v4

f 1

f 2

Figure 3.1: A SEFE of four degree-4 vertices with identical neighborhood in the vertex
cover C. The colored dashed edges mark the faces f 1 and f 2 of G 1 − {v3, v4}
and G 2 − {v3, v4}, respectively, where v3 is embedded in.

Lemma 3.1. If there exists a set U ∈ N with |U | ≥ 3, then every vertex v ∈ U has degree
at most 2 in both exclusive graphs.

Proof. Recall that all vertices in U have the same neighborhood in the vertex cover C.
Therefore, if the vertices in U have degree at least 3 in one of the two exclusive graphs, we
get a subgraph isomorphic to K3,3 in this exclusive graph, because |U | ≥ 3.

Lemma 3.2. Let C ⊂ V (G∪) be a subset of the vertices in G∪. Let further v1, v2, v3, and
v4 denote four vertices of V (G∪) \C such that all four vertices have identical neighborhood
and all these neighbors are contained in C. Then G∪ admits a SEFE if and only if G∪− v4
admits a SEFE.

Proof. A simultaneous embedding E∪ of G∪ immediately yields a simultaneous embedding
E∪ − v4 of G∪ − v4.

Conversely, assume that G∪ − v4 admits a simultaneous embedding. By Reduction Rule 1
we only have to consider the case where v1, . . . , v4 have degree at least 2. The statement
clearly holds if v1, . . . , v4 have degree 2, as they can simply be placed directly next to
one another, since they have no other neighbors than the two contained in C. If the four
vertices have degree at least 3, first consider the graph G∪ − v4. Since G∪ − v4 admits a
SEFE, there must be a corresponding drawing Γ of G∪ − v4 where both exclusive graphs
are planar. Let f 1 and f 2 denote the faces of G 1 −{v3, v4} and G 2 −{v3, v4}, respectively,
where the vertex v3 is placed in Γ; see Figure 3.1. Since v4 has the identical neighborhood
as v3 (and since all these neighbors are contained in C), placing v4 in the faces f 1 and f 2

together with v3 ensures that the edges incident to v4 do not cross corresponding exclusive
edges of G∪−{v3, v4}. By Lemma 3.1, v3 and v4 are both incident to at most two exclusive
edges of each type, thus v4 can be placed next to v3 such that no exclusive edges of the
same type incident to v3 and v4 cross and we get a SEFE of G∪.

Also note that, because the four vertices have degree at most 4 in the union graph G∪ by
Lemma 3.1, the statement of Lemma 3.2 can also be verified by enumerating all possible
configurations. The safeness of Reduction Rule 2 follows directly from Lemma 3.2, because
the vertex cover C satisfies the necessary requirements.

After exhaustively applying these two Reduction Rules, every U ∈ N contains at most
three vertices. Since |N | = 4k, we get |V \ C| ∈ O(4k). Because |C| = k, we therefore
obtain a kernel of size O(4k).

14

Theorem 3.3. SEFE admits a kernel of size O(4k), where k is the size of a minimum
vertex cover of the union graph G∪.

Combined with the fact that a minimum vertex cover of size k can be computed in time
O(1.2738k + kn) [CKX10], Theorem 3.3 yields an FPT-algorithm for SEFE parameterized
by the vertex cover number of the union graph G∪.

15

4. Parameterization by the Feedback
Edge Set Number of the Union Graph

For a graph G = (V,E), a feedback edge set is a subset F ′ ⊆ E of its edges such that
removing the edges in F from G makes G acyclic, i.e., the graph G′ = (V,E \F) is a forest.
The feedback edge set number ψ of G is the size of a minimum feedback edge set of G.

In this section, we consider SEFE parameterized by the feedback edge set number ψ of
the union graph G∪. The reduction rules and arguments we use are very similar to those
used by Binucci et al [BGL+22] in their parameterization of the problem StoryPlan.
Furthermore, Bläsius and Rutter [BR15] showed that any SEFE instance can be reduced
in linear time to an equivalent instance where the input graphs G 1 and G 2 are connected,
hence we can assume the union graph G∪ to be connected.

As already mentioned in Chapter 3, we can safely remove any degree-1 vertex from the
union graph, leading to the following trivial reduction rule.

Reduction Rule 1
If G∪ contains a vertex v of degree 1, reduce the instance to (G∪ − v, ψ).

Let a k-chain of G∪ denote a path consisting of k + 2 vertices, where each of its k inner
vertices has degree 2. The following two reduction rules limit the size of each k-chain of G∪.

Reduction Rule 2
If G∪ contains a k-chain c with k ≥ 2 and c contains a shared edge e, contract e and
reduce the instance to (G∪′

, ψ).

Proof of Safeness. If G∪ admits a SEFE, let Γ denote a corresponding drawing. Since e is
a shared edge, no other edge crosses e in Γ. Therefore, contracting e in Γ introduces no
new crossings and we get a SEFE drawing Γ′ of G∪′ .

Conversely, let Γ′ denote a SEFE drawing of G∪′ . Let v denote the vertex in G∪′ obtained
by contracting edge e and let u denote one of its two neighbors in the remaining (k − 1)-
chain c′. Starting with the drawing Γ′, subdivide the edge uv, creating a new vertex v′, and

17

4. Parameterization by the Feedback Edge Set Number of the Union Graph

(a) (b)

Figure 4.1: (a) An instance G∪ of SEFE where no reduction rules can be applied. The
dashed edges belong to a minimum feedback edge set F of G∪. (b) The tree
H obtained after removing F from H. Observe that, if two degree-2 vertices
are adjacent in H, then one of them must be incident to an edge of F in G∪,
otherwise Reduction Rule 2 or Reduction Rule 3 could still be applied in G∪.

then turn the edge v′v into a shared edge. Observe that the resulting graph is isomorphic
to G∪ and the edge v′v corresponds to e. Because the edge v′v can be drawn arbitrarily
short, no edge crosses v′v and therefore we have a SEFE drawing Γ of G∪.

If e is contained in a minimum feedback edge set F , replace e with any other edge of c.
Observe that this yields a minimum feedback edge set of the graph G∪′ , thus the parameter
ψ does not change.

Reduction Rule 3
If G∪ contains a k-chain c with k ≥ 1, let e denote the first (or the last) edge of c. If
both e and its successor (respectively its predecessor) in c are i -exclusive edges, then
contract e and reduce the instance to (G∪′

, ψ).

Proof of Safeness. Let f denote the predecessor (or the successor) of e in c such that e
and f have the same type. If G∪ admits a simultaneous embedding, all edges crossing
e can simply be rerouted through f after contracting e, thus G∪′ also admits a SEFE.
Conversely, if G∪′ admits a SEFE, simply subdivide edge f to obtain a simultaneous
embedding of G∪.

The parameter ψ does not change, for the same reason mentioned in the proof of Reduction
Rule 2.

After exhaustively applying Reduction Rule 1, every k-chain with k ≥ 1 only contains
exclusive edges. Recall that we can assume that both exclusive graphs are connected.
Therefore, we have at most one path of exclusive edges in a k-chain for each of the two
exclusive graphs and thus, after exhaustively applying Reduction Rule 2, we have that
k ≤ 1 for every k-chain in G∪. Using this observation, we get the following result.

Theorem 4.1. SEFE admits a kernel of size 15ψ − 5, where ψ is the feedback edge set
number of the union graph G∪.

Proof. Let G∪′ denote the SEFE instance obtained by exhaustively applying Reduction
Rule 1, Reduction Rule 2, and Reduction Rule 3. Let F denote a minimum feedback edge
set of G∪′ . Because the reduction rules do not affect the parameter, we have |F | = ψ.
Let H be the graph obtained by removing the edges in F from G∪

′ ; see Figure 4.1 for an
example. Because F is a minimum feedback edge set and G∪′ is connected, H is a tree.

18

4.1. Remarks About the Feedback Vertex Set Number

For any leaf l of H, observe that l must be incident to an edge from the feedback edge
set in G∪′ , because otherwise we could still apply Reduction Rule 1 in G∪′ . Because an
edge of F can be incident to two such leaves in G∪′ , it follows that H overall has at most
2ψ leaves. Since H is a tree, it contains at most 2ψ − 2 vertices of degree 3 or more. It
therefore remains to bound the number of degree-2 vertices. Consider a k-chain c of H
with k ≥ 2. Because for every k′-chain in G∪

′ it is k′ ≤ 1, there must be an edge of F
incident to one of the degree-2 vertices in c in G∪′ . More specifically, there must be at
least one edge of F incident to every other degree-2 vertex in c, hence at least bk2c degree-2
vertices in c must be incident to edges of F . It is therefore not hard to see that the number
of degree-2 vertices of H is also linear in the number of its leaves. In the following, we
develop a more precise upper bound for the size of the kernel.

Let L denote the set of leaves of H and let N3 denote the vertices of degree at least 3 in H.
As argued above, it is |L| ≤ 2ψ and |N3| ≤ |L| − 2 ≤ 2ψ − 2. Let further N1

2 denote the
degree-2 vertices of H that are contained in 1-chains of H and let Nk

2 denote the degree-2
vertices of H contained in k-chains with k ≥ 2. Note that any vertex of N1

2 can only be
adjacent to vertices of L and N3. For this reason, |N1

2 | is bounded by the number of edges
a tree with |L| + |N3| nodes can have, thus |N1

2 | ≤ |L| + |N3| − 1 ≤ 4ψ − 3. As argued
above, at least bk2c vertices of a k-chain with k ≥ 2 must be incident to an edge of F
in G∪′ . Therefore, one endpoint of an edge in F can “pay“ for up to three vertices in Nk

2
and thus |Nk

2 | ≤ 6ψ. Since |V (H)| = |L| + |N3| + |N1
2 | + |Nk

2 |, we get the upper bound
|V (H)| ≤ 14ψ − 5 for the number of vertices in H. Because |V (G∪′)| = |V (H)|+ |F |, we
finally obtain an upper bound of |V (G∪′)| ≤ 15ψ − 5 for the size of our kernel.

Since a minimum feedback edge set of an undirected graph can be computed in linear time
by computing an arbitrary spanning tree, Theorem 4.1 yields an FPT algorithm for SEFE
parameterized by the feedback edge set number ψ of the union graph G∪.

4.1 Remarks About the Feedback Vertex Set Number
We now want to briefly argue how our FPT-algorithm for SEFE parameterized by the
feedback edge set number of the union graph is affected when we use a feedback vertex set
instead of a feedback edge set. Similarly to a feedback edge set, a feedback vertex set is a
subset S of vertices of G∪ such that removing S from G∪ makes the graph acyclic. The
feedback vertex set number φ of G∪ is the size of a minimum feedback vertex set of G∪.
Note that, given a feedback edge set F , a feedback vertex set can be obtained from F by
picking one endpoint of every edge in F . The feedback edge set number ψ is therefore an
upper bound for the feedback vertex set number φ.

Unfortunately, our algorithm (in its current form) does not work for feedback vertex sets.
While our Reduction Rules 1–3 can also be used to simplify the instance in this case,
some of the arguments used in the proof of Theorem 4.1 no longer apply. Recall that we
found our kernel by bounding the size of the tree H obtained after removing the minimum
feedback edge set F from the reduced union graph. This was possible because a single edge
from F only has at most two endpoints in the tree H. For a vertex from a feedback vertex
set, however, the number of incident edges, and thus the number of neighbors in H, can be
linear in the size of G∪. Therefore, more refined reduction rules are necessary to obtain a
kernel for SEFE parameterized by the feedback vertex set number of the union graph. We
leave this as an open problem for future work.

19

5. Parameterization by the Treedepth of
the Union Graph

For a connected graph G = (V,E), a treedepth decomposition is an arrangement of the
vertices in V in a rooted tree T = (V,E′) such that, for all edges in E, one endpoint is
the descendant in T of the other endpoint. The treedepth of G is the minimum height of a
treedepth decomposition of G.

In this section, we consider SEFE parameterized by the treedepth d of the union graph G∪.
For this purpose, we build on ideas by Bannister et al. [BCE18] from their kernelization for
1-Planarity to bound the number of children for each node in T . As in the previous chapter,
we assume that both exclusive graphs (and therefore the union graph) are connected, which
is safe due to the linear-time preprocessing step introduced by Bläsius and Rutter [BR15].

Let G∪ = (V,E) and let T = (V,E′) denote a treedepth decomposition of height d for G∪.
For a vertex v ∈ V , let Av be the set of ancestors of v in T , including v itself (i.e., Av is
the path from v to the root of T), and let Sv denote the set of all subtrees rooted at a
child of v in T . For a subtree T ∈ Sv, let T i denote the subgraph of G i corresponding
to T , and let vT denote the vertex obtained by contracting T into a single vertex.
Similar to Chapter 3, we create a partition Nv by grouping the subtrees in Sv according to
their neighborhood in Av in G∪. In this case, we define that two subtrees T1, T2 ∈ Sv have
the same neighborhood in Av if the corresponding contracted vertices vT1 and vT2 have
the same neighborhood in Av. Once again, we also consider the specific type of each edge
connecting the contracted vertices vT1 and vT2 to Av when creating the partition. Since a
vertex vT corresponding to a subtree T can be connected to a vertex u ∈ Av either via a
shared edge, via one of two exclusive edges, or via no edge, we get |Nv| ≤ 4d using |Av| ≤ d.
Therefore, bounding the size of each set in Nv also bounds the number of children of each
vertex v in T and thus also the total size of T .
We also require that, for every subtree T in Sv, the two exclusive graphs T 1 and T 2

are connected. This restriction will be helpful, because it allows us to use the following
variations of Lemma 3.1 and Lemma 3.2.

Lemma 5.1. If there exists a set U ∈ Nv with |U | ≥ 3, then for every subtree T ∈ U , the
two exclusive graphs T 1 and T 2 each have at most two neighbors in Av. Consequently, T
has at most four neighbors in Av.

21

5. Parameterization by the Treedepth of the Union Graph

v v

x

T T

Av Av

G∪ G∪ − TGT

v

Av

G∪ − T + vT

vT

Figure 5.1: Reduction Rule 1: Subgraph T is removed from the instance after verifying
that GT admits a SEFE.

Proof. Let Ta, Tb, and Tc denote three distinct subtrees in U . Assume, for the sake of
contradiction, that one of the two exclusive graphs of Ta, say T 1

a , has more than two
neighbors in Av. Then the same also holds for T 1

b and T 1
c , because all subtrees in U have

identical neighborhood in Av. But because the graphs T 1
a , T 1

b , and T 1
c are connected and

have the same three neighbors in Av, this yields a subgraph of G 1 that is homeomorphic
to K3,3. Since G 1 is planar, this is a contradiction.

Lemma 5.2. Let U ∈ Nv with |U | ≥ 3 be a set of subtrees with identical neighborhood
in Av. Let G∪ + u denote the graph obtained from G∪ by adding a single vertex u that has
the same neighborhood in Av as the subtrees in U . Then G∪ admits a SEFE if and only if
G∪ + u admits a SEFE.

Proof. If G∪+u admits a simultaneous embedding, simply removing u yields a simultaneous
embedding of G∪.

Conversely, assume that G∪ admits a simultaneous embedding and let Γ denote a corre-
sponding drawing. Let T1, T2, and T3 denote three distinct subtrees in U . Let Γ[Ti] denote
the restriction of Γ to the subgraph Ti. For i ∈ {1, 2, 3}, we contract the subgraph Ti into
a single vertex vTi and call the resulting drawing Γ′. Note that this contraction does not
introduce crossings in the exclusive graphs, because we require T i to be connected. By
Lemma 5.1, each vertex vTi has degree at most two in both exclusive graphs. Therefore, we
can apply the proof of Lemma 3.2 verbatim to obtain a SEFE drawing Γ′u that additionally
contains the vertex u. Note that this construction does not alter the order of incident edges
at each vertex vTi , thus the order of edges incident to vTi is the same in Γ′ and Γ′u. We can
therefore replace vTi with the drawing Γ[Ti] of the original subgraph Ti (for i ∈ {1, 2, 3})
and we obtain a SEFE drawing of G∪ + u.

Let U ∈ Nv with |U | > 3 be a set of subtrees with identical neighborhood in Av. We now
use Lemma 5.1 and Lemma 5.2 to derive a reduction rule that allows us the extract a tree
of U and to test whether it admits a SEFE independently. For a subtree T ∈ U , let GT
denote the graph obtained from G∪[V (T) ∪ Av] by contracting all vertices in Av into a
single vertex x; see Figure 5.1 for an example.

Reduction Rule 1
Let U ∈ Nv with |U | > 3 be a set of subtrees with identical neighborhood in Av. Pick
an arbitrary subtree T ∈ U and test recursively whether GT admits a SEFE. If GT does
not admit a SEFE, reduce to a trivial no-instance. Otherwise, remove T from G∪ and
reduce the instance to (G∪ − T, d).

22

σT σ′ σ′

σT
T T

vT

Av

E
1
p

E
1
q

E
2
q

E
2
p

x

e
2
p

e
2
qe

1
p

e
1
q

ΓT Γ′

Av

Γ∗

e
1
p

e
1
q

e
2
q

e
2
p e

1
p

e
1
q

e
2
q

e
2
p

q 1

p 1

p 2

q 2

q 1

p 1

p 2

q 2

Figure 5.2: Proof of Reduction Rule 1: The drawing of T in ΓT can be used to replace vertex
vT in Γ′ to obtain a drawing Γ∗ of G∪. This is possible, because the circular
orders σT and σ′ for the bundles induced by ΓT and Γ′, respectively, are always
equivalent, thus the edges connecting T to Av can be drawn crossing-free.

Proof of Safeness. We first need to show that, if G∪ admits a SEFE, then GT and G∪−T
(see Figure 5.1) also admit a SEFE. If G∪ admits a simultaneous embedding, then simply
removing T immediately yields a simultaneous embedding of G∪−T . Let Γ denote a SEFE
drawing of G∪ and let Γ[V (T) ∪Av] denote its restriction to the subgraph induced by the
vertices in T and Av. It is not immediately clear that contracting Av into a single vertex
in the drawing Γ[V (T) ∪Av] yields a SEFE drawing of GT . This is because contracting
Av into a single vertex could theoretically introduce crossings, if the vertices of Av are
distributed among several faces of T in Γ. We now show that this cannot happen. Assume
that there are distinct vertices q, r ∈ Av in G∪ connected to T i such that q and r are
placed in different faces of T i in Γ. Since we have |U | ≥ 3, there is another subtree S ∈ U
with identical neighborhoods as T , i.e., S i is connected to q and r. But since we require
S i to be connected and q, r lie in different faces of T i in Γ, this means that Γ contains a
crossings in G i , a contradiction. Therefore, all vertices of Av that T is connected to lie in
the same face of T 1 and T 2 , respectively, and thus, contracting Av into a single vertex
in the drawing Γ[V (T) ∪Av] does not introduce crossings. We therefore obtain a SEFE
drawing of GT .

Conversely, we now need to show that simultaneous embeddings of GT and G∪ − T can
be combined to obtain a simultaneous embedding of G∪. Let Γ and ΓT denote SEFE
drawings of G∪ − T and GT , respectively. Let G∪ − T + vT be the graph obtained from
G∪ − T by adding a new vertex vT that has the same neighborhood in Av as T and the
other subtrees in U ; see Figure 5.1. Since we have |U | > 3, U \ {T} still contains at least
three subtrees. Therefore, we can use Lemma 5.2 on the graph G∪ − T to obtain a SEFE
drawing Γ′ of G∪ − T + vT .
We now want to show that we can combine Γ′ and ΓT to a SEFE drawing of G∪. Essentially,
we want to replace the vertex vT in Γ′ with the drawing of T obtained from ΓT ; see Figure 5.2
for an illustration. Recall that T 1 and T 2 each have at most two neighbors in Av in G∪
by Lemma 5.1. Without loss of generality, we assume that both have exactly two such
neighbors. Let p i and q i denote the two neighbors of T i in Av. We call the set of edges
connecting T i to p i (respectively q i) a bundle and denote it by E i

p (respectively E i
q).

Note that the edges of each of the two bundles E i
p and E i

q must appear consecutively
around the outer face of T i in ΓT , otherwise we find a crossing between edges of E i

p and
E i
q . Therefore, we can draw the edges of each bundle arbitrarily close together and we

23

5. Parameterization by the Treedepth of the Union Graph

subsequently treat the bundle E i
p (respectively E i

q) as a single edge e i
p (respectively e i

q);
see Figure 5.2. Note that the edges incident to the vertex vT in G∪ − T + vT correspond
bijectively to the bundles incident to T in ΓT , since vT and T have the same neighborhood
in Av. We therefore also denote the edges incident to vT in Γ′ by e i

p and e i
q according to

this bijection; see Figure 5.2. The drawing ΓT defines a cyclic order σ i
T for the edges e i

p

and e i
q around T and the drawing Γ′ defines a cyclic order σ′ i for the edges e i

p and e i
q

around vT . Since we want to replace vT with the drawing of T obtained from ΓT , we thus
need to show that σ i

T and σ′ i are equivalent. If this is the case, the replacement can be
performed without introducing any crossings; see Figure 5.2 for an example. But since σ i

T

and σ′ i both consist of only two elements, they are always equivalent and thus the edges
connecting T to Av can be drawn crossing-free. We therefore obtain a SEFE drawing Γ∗
of G∪.

We note that this proof relies heavily on Lemma 5.1 restricting the number of bundles per
exclusive graph to at most two. Without this restriction, σT and σ′ could be two distinct
cyclic orders, thus the replacement could not always be performed without introducing
crossings.

It remains to show that Reduction Rule 1 can be applied in FPT-time. We do this using a
simple inductive argument. As the inductive hypothesis, we state that we can solve SEFE
in FPT time if G∪ has at most n vertices. As the base case, observe that SEFE can be
solved in constant time for graphs of constant size by brute-forcing all pairs of embeddings.
Now assume that G∪ contains n+ 1 vertices. Then G∪ − T and GT both contain at most
n vertices and we can thus test whether each of them admits a simultaneous embedding
in FPT time by the inductive hypothesis. As shown above, we can combine simultaneous
embeddings of G∪−T and GT to obtain a simultaneous embedding of G∪, which concludes
the inductive step.

After exhaustively applying Reduction Rule 1 for every v ∈ V , every set U ∈ Nv contains
at most three subtrees. Since |Nv| ≤ 4d, it follows that every vertex has O(4d) children
in T . Because T has height d, we therefore get the following result.

Theorem 5.3. SEFE admits a kernel of size O((4d)d) = O(4d2), where d is the treedepth
of the union graph G∪, if every subtree of the corresponding treedepth decomposition is
connected in both exclusive graphs.

As argued before, we remark that Lemma 5.1 and Lemma 5.2 rely on the requirement
that every subtree of the treedepth decomposition is connected in both exclusive graphs.
Without this restriction, the proof of Reduction Rule 1 is not correct.

24

6. Parameterization by the Vertex Cover
Number of the Shared Graph

After developing FPT algorithms with various parameters of the union graph G∪ in the
previous chapters, we now consider parameters of the shared graph G. In this case, finding
safe reduction rules becomes significantly more involved. For example, isolated vertices
or vertices of degree 1 of the union graph can be safely removed, because they can be
positioned in any drawing without introducing crossings. In the context of the shared
graph, even isolated vertices may hold important information due to their connectivity in
the exclusive graphs. The example shown in Figure 2.4 is a no-instance of SEFE, but if
the isolated vertex x is removed from the graph, the graph becomes a trivial yes-instance.
Similarly, it is also not trivial to reduce degree-1 vertices of the shared graph in the general
case. For example, consider a degree-1 vertex v of a shared component C such that v is
adjacent to a vertex u of C. It is clear that all other neighbors of v in G∪ must be embedded
in the same face of C. However, if we contract v into u, then this is not necessarily the case
anymore, thus degree-1 vertices cannot be contracted in the general case; see Figure 6.1 for
an example.
First consider parameterizations for l-Sunflower SEFE with l ≥ 3. Angelini et al.
[ALN15] showed that l-Sunflower SEFE is NP-complete for l ≥ 3, even if the shared
graph is a tree and all input graphs are biconnected. Since a tree has treewidth 1, we
immediately get the following result.

Corollary 6.1. The problem l-Sunflower SEFE with l ≥ 3 is FPT with respect to the
treewidth of the shared graph if and only if P = NP.

Since the treewidth of a graph is at most as big as its pathwidth, the same statement also
holds for parameterizations using the pathwidth of the shared graph. Angelini et al. gave
an even stronger result for l-Sunflower SEFE with l ≥ 3 in their NP-completeness proof
for the problem Partitioned l-Page Book Embedding (PBE-l)[ALN15, Theorem 4].
In this proof they give a polynomial-time reduction from the NP-complete problem
Betweenness to l-Sunflower SEFE, where the shared graph is a star. Since a star has
a vertex cover of size 1, we get the following result regarding parameterizations using the
vertex cover number of the shared graph.

Corollary 6.2. The problem l-Sunflower SEFE with l ≥ 3 is FPT with respect to the
vertex cover number of the shared graph if and only if P = NP.

25

6. Parameterization by the Vertex Cover Number of the Shared Graph

C v

u

e 1

e 2

(a)

C

u

e 1

e 2

(b)

Figure 6.1: (a) A graph G∪ that is a no-instance of SEFE, because the two exclusive edges
e 1 and e 2 cannot be embedded into the same face of C. (b) After contracting
the vertex v into u, e 1 and e 2 must no longer be embedded into the same face
of C and the graph becomes a yes-instance.

This result implies that any parameterization of 2-SEFE by the vertex cover number of the
shared graph must explicitly exploit the existence of only two exclusive graphs. Since it is
not clear how such an FPT-algorithm for SEFE would look like, we employ an additional
parameter that bounds the number of degree-1 vertices in the shared graph.

For the shared graph G, let d denote the number of degree-1 vertices in V (G) and let C
denote a minimum vertex cover of G with size k. Our goal is to enumerate all suitable
embeddings of each connected component of the shared graph using the parameters d
and k. Subsequently, we will use the algorithm by Bläsius and Rutter [BR15] that tests in
quadratic time whether G∪ admits a SEFE if every connected component of G has a fixed
embedding. To this end, we start by bounding the number of vertices of degree at least 3
in G using the following lemma.

Lemma 6.3. Let N3 denote the number of vertices of G with degree at least 3. It holds
that |N3| ≤ 3k, where k is the vertex cover number of G.

Proof. Let C denote a minimum vertex cover of G with |C| = k. The number of vertices
of degree at least 3 in C is therefore also at most k, i.e., |N3 ∩ C| ≤ k. Observe that
all neighbors of a vertex in V (G) \ C must be contained in C, because otherwise, we
immediately get an edge that is not covered by C. Thus every vertex in N3 ∩ (V (G) \ C)
has at least three neighbors in C. Therefore, we can use planarity properties derived from
Euler’s Formula to infer that |N3 ∩ (V (G) \C)| ≤ 2|C| − 4 = 2k− 4 [FLSZ19, Lemma 13.3].
Together we get that

|N3| = |N3 ∩ C|+ |N3 ∩ (V (G) \ C)| ≤ k + (2k − 4) = 3k − 4 ≤ 3k.

Since the number of degree-1 vertices of G is d and the number of vertices with degree at
least 3 is at most 3k − 4 by Lemma 6.3, only the number of isolated vertices and degree-2
vertices remains unbounded. Instead of trying to limit the number of these vertices to
obtain a kernel for SEFE, we show that degree-2 vertices only allow very limited embedding
choices for their two incident vertices. Since isolated vertices have a fixed rotation choice
and the number of all other vertices is bounded, this allows us to brute-force all suitable
embeddings of each shared component in FPT time and to subsequently determine whether
G∪ admits a SEFE with the fixed embeddings using the algorithm by Bläsius and Rutter
[BR15]. In other words, we use the bounded search tree technique where the branches of
the search tree correspond to embedding decisions in the shared graph. Our algorithm will

26

6.1. Embedding the Blocks

u

v

u

v
G∪

1

G∪
2

G∪
3

u

v

u

v

G∪
1 + uv G∪

2 + uv G∪
3 + uv

Figure 6.2: An example illustrating Reduction Rule 1. The three union split components
G∪1 , G∪2 , and G∪3 with respect to the split pair {u, v} can be decomposed into
the independent SEFE instances G∪1 + uv, G∪2 + uv, and G∪3 + uv, because G∪1
and G∪2 each contain a shared path between u and v [BKR18].

first branch for all possible embeddings of the blocks in G, and subsequently branch for all
possible configurations of blocks around cutvertices. This means that our search tree has
constant constant depth and we therefore only have to ensure that the number of branches
in each step is bounded by a function in k + d.

6.1 Embedding the Blocks
We start by enumerating all suitable embeddings of the individual blocks in the shared
graph G. Let U ⊆ (V (G) \ C) denote a set of degree-2 vertices not contained in C with
|U | ≥ 3, where all vertices in U have the same two neighbors u and v. Observe that u and
v must both be contained in C and that {u, v} is a separating pair of the shared graph with
at least |U | ≥ 3 split components. Let µ denote the corresponding P-node with at least
|U | virtual edges. We call such a P-node of G corresponding to U two-parallel. Since the
virtual edges of µ can be ordered arbitrarily with respect to G and since we currently have
no bound for |U |, we cannot afford to enumerate all possible embeddings of µ. Instead, we
use a preprocessing step given by Bläsius et al. [BKR18], which helps us reduce the number
of possible embedding choices in the P-node µ. This preprocessing step additionally uses
the connectivity information from the union graph G∪ to limit the number of possible
embeddings of P-nodes in G. We state this preprocessing step in the following reduction
rule; see Figure 6.2 for an example.

Reduction Rule 1 [BKR18, Lemma 4]
Let {u, v} be a separating pair of the union graph G∪ with split components G∪1 , . . . , G∪l ,
such that at least two split components contain a shared path between u and v. Reduce
the instance to l independent instances G∪1 + uv, . . . , G∪l + uv of SEFE.

Let {u, v} be a separating pair of the shared graph G and let µ be the corresponding
P-node. Observe that exhaustively applying Reduction Rule 1 implies that the union-link
graph L∪µ (see Chapter 2 and Figure 6.4a) of µ is connected, because otherwise, {u, v}
is also a separating pair of the union graph, and we could still apply Reduction Rule 1.
Note that two virtual edges ε1 and ε2 that are adjacent in L∪µ must also be adjacent in any
simultaneous embedding, because otherwise, the union-link between ε1 and ε2 crosses a
shared path in the virtual edge of µ embedded between ε1 and ε2 [BKR18, Lemma 2]. A
node of degree 3 or higher in L∪µ thus implies that G∪ is a no-instance. Because L∪µ must
additionally be connected by Reduction Rule 1, we therefore get the following reduction
rule.

27

6. Parameterization by the Vertex Cover Number of the Shared Graph

Reduction Rule 2 [BKR18, Lemma 3 + Lemma 4]
Let µ be a P-node of the shared graph G. If the union-link graph L∪µ of µ is not a cycle
or a path, reduce to a trivial no-instance.

Consider a P-node µ of G. After exhaustively applying Reduction Rules 1 and 2, the union
link graph L∪µ of µ must be either a path or a cycle. Since two virtual edges of µ that are
adjacent in L∪µ must be adjacent in any simultaneous embedding of G∪ [BKR18, Lemma 2],
we get the following corollary.

Corollary 6.4. In an irreducible SEFE instance G∪, the cyclic order of virtual edges in
any P-node of any block in G is fixed up to reversal.

Corollary 6.4 is very helpful, because it essentially states that, as for R-nodes, there are
only two possible embedding choices for every P-node of G. Thus it only remains to bound
the number of P-nodes and R-nodes in G, which we do with the following lemma.

Lemma 6.5. The number of all P-nodes and R-nodes in G is in O(k2).

Proof. First consider a block B of G with its corresponding SPQR-tree T . We let PR(T)
denote the number of P-nodes and R-nodes in T . Since B does not contain any degree-1
vertices and since we have bounded the number of vertices of degree at least 3 in G linearly
in k (Lemma 6.3), only the degree-2 vertices of B that are not contained in the vertex
cover C remain unbounded.
Let B′ denote the biconnected graph obtained by contracting every degree-2 vertex in B
into one of its neighbors and let T ′ denote the SQPR-tree of B′. We keep the parallel
edges that may emerge after such contractions, thus B′ is a multi-graph. Because we keep
the parallel edges, note that T and T ′ contain the same number of P-nodes and R-nodes,
i.e., PR(T) = PR(T ′). Since a biconnected graph does not contain degree-1 vertices and
since we have just eliminated all degree-2 vertices, B′ contains O(k) vertices by Lemma 6.3.
The number of bundles of parallel edges in B′ is therefore bounded by the number of edges
a planar graph with O(k) vertices can have, which is also O(k).
Let B∗ denote the biconnected graph obtained from B′ by replacing bundles of parallel
edges with a single edge and let T ∗ denote the SPQR-tree of B∗. Since B′ contains O(k)
bundles of parallel edges, removing parallel edges can only eliminate O(k) P-nodes. Observe
that removing parallel edges does not affect R-nodes, thus PR(T ′)− PR(T ∗) ∈ O(k), and
therefore PR(T)− PR(T ∗) ∈ O(k). Since B∗ contains O(k) vertices and no parallel edges,
planarity ensures that it also contains O(k) edges. Note that the size of an SPQR-tree
is linear in the number of its Q-nodes and thus linear in the number of edges of the
corresponding block. Therefore, T ∗ contains O(k) nodes and thus PR(T ∗) ∈ O(k). As
argued above, the difference PR(T)− PR(T ∗) is also in O(k), thus PR(T) ∈ O(k) and we
have shown that each block contains at most O(k) P-nodes and R-nodes.

Observe that a block of G that contains a P-node or R-node must contain at least two
vertices of the vertex cover C. Since two blocks share at most one vertex, the number of
blocks containing P-nodes or R-nodes is therefore in O(k). Since the number of all P-nodes
and Q-nodes in a single block is also in O(k), the statement of the lemma follows.

By Corollary 6.4, every P-node in G has a fixed embedding up to mirroring. In combination
with Lemma 6.5, we can therefore enumerate all embeddings of all blocks in G in FPT-time,
as there are at most 2O(k2) of such embeddings.

Corollary 6.6. 2O(k2) branches are sufficient to fix the embedding of every block in G.

28

6.2. Nesting Blocks around Cutvertices

u

v

f3f2 f4f1

B1

B2
B3

µ

(a)

u

v

f3
f2 f4f1

B1

B2

B3

µ

(b)

Figure 6.3: (a) Three blocks B1, B2, and B3 sharing the same cutvertex v. By Reduction
Rule 3, all blocks containing v must be connected in G∪ via a path that is
vertex-disjoint from v. B2 can only be embedded in the faces f2 and f3 of the
µ, thus it is a binary block with respect to B1. The block B3 is connected to
the other pole u of the P-node µ and can be embedded in all faces of µ, thus it
is a mutable block with respect to B1. Note that B3 is contained in a separate
split component (highlighted in orange) with respect to the separating pair
{u, v} in the union graph, because B3 is a mutable block. (b) After assigning
block B2 to the face f3 of µ, f3 becomes occupied.

6.2 Nesting Blocks around Cutvertices
It remains to fix the order of incident edges at all cutvertices of G. Since this order is fixed
for cutvertices of degree 2 and the total number of vertices of degree at least 3 in G is at
most 3k by Lemma 6.3, the number of relevant cutvertices is also at most 3k. Because
we have already fixed the embedding of all blocks in G by Corollary 6.6, fixing the order
of incident edges at a cutvertex v boils down to enumerating all suitable nestings of the
blocks incident to v. We use another preprocessing step given by Bläsius et al. [BKR18],
which allows us to assume that v is not a cutvertex in the union graph G∪. Thus all pairs
of blocks incident to a cutvertex v are connected in G∪ via a path that is vertex-disjoint
from v. We state this preprocessing step in the following reduction rule.

Reduction Rule 3 [BKR18, Lemma 1]
Let v be a cutvertex of the union graph G∪ with split components G∪1 , . . . , G∪l . Reduce
the instance to l independent instances G∪1 , . . . , G∪l .

From now on, when we refer to faces of a block B of G, we implicitly refer to the faces
of the fixed embedding E of B. For a cutvertex v of G, let B1 and B2 denote two blocks
of G containing v. Since we currently have no bound for the number of faces of B1 that
contain v, we cannot simply successively try to embed B2 into every face of B1. However,
by Reduction Rule 3, B2 must be connected to B1 in G∪ via a path that is vertex-disjoint
from v. If there exist two such paths with endpoints u and w in B1, then B2 must be
embedded in a face of B1 that contains the vertices v, u and w, thus the decision is at most
binary. Now consider the case where B2 is only connected to the vertices v and u of B1 in
G∪. If v and u are contained in at most two faces of B1, the embedding decision is again
at most binary. In these two cases we say that B2 is a binary block with respect to B1; see
Figure 6.3a for an example. If v and u are contained in more than two faces of B1, then v

29

6. Parameterization by the Vertex Cover Number of the Shared Graph

and u must be the poles of a P-node µ of block B1 in G, and we cannot necessarily bound
the number of virtual edges in µ by a function in k and d, since µ may be two-parallel.
In this case, we say that B2 is a mutable block with respect to B1. Note that {u, v} is a
separating pair in G∪ if B2 is a mutable block, because B2 is only connected to u and
v in G∪. This also means that B2 and B1 (and thus µ) are contained in different split
components with respect to {u, v} in G∪; see Figure 6.3a for an example.

If B2 is a mutable block with respect to B1, let S∪ denote the split component of the
separating pair {u, v} in G∪ that B2 is contained in and let S, S 1 , and S 2 denote the
corresponding subgraphs of the shared graph and the exclusive graphs. Note that S∪
cannot contain a shared path between u and v, because otherwise, we could still apply
Reduction Rule 1. We say that S∪ is exclusive connected, if the poles u and v are connected
by paths in both S 1 and S 2 . It is 1 -connected, if u and v are connected in S 1 but not
in S 2 , and analogously 2 -connected, if u and v are connected in S 2 but not in S 1 . If
neither of these three categories applies, then S∪ is union connected; see Figure 6.4b for an
example.
We now compare the connectivity of S∪ with the connectivity of the faces of µ in G∪. We
say that S∪ is compatible with a face f between two virtual edges ε1 and ε2 of µ, if both of
the following conditions apply (see also Figure 6.4b for an example):

• Either S∪ is not 1 -connected or ε1 and ε2 are not connected in the 1 -link graph L 1
µ ,

and

• Either S∪ is not 2 -connected or ε1 and ε2 are not connected in the 2 -link graph L 2
µ .

Note that a split component S∪ that is not compatible with a face f of µ can never be
embedded in f [BKR18, Proof of Lemma 5]. This is because, due to the incompatibility,
there is an exclusive path in S∪ that would cross the exclusive link between the two
corresponding adjacent virtual edges of µ. If S∪ is not compatible with any face of µ, the
corresponding SEFE instance is therefore a no-instance. We say that the P-node µ is
impossible, if there exists a split component S∪ that is not compatible with any face of µ.
We therefore obtain the following reduction rule.

Reduction Rule 4 [BKR18, Lemma 5]
If G∪ contains an impossible P-node, reduce to a trivial no-instance.

Therefore, we can now assume that G∪ contains no impossible P-nodes.

6.2.1 Embedding Split Components Into Compatible Faces

As the next step, we show how the notion of compatibility allows us to limit the number of
faces of a P-node each split component of the shared graph (and therefore each mutable
block) can be embedded in. Let u and v denote the poles of a P-node µ of G such that {u, v}
is a separating pair of the union graph G∪. Let G∪µ denote the split component that the
P-node µ is contained in1 and let S∪1 , . . . , S∪l denote the other split components. Bläsius et
al. showed that, if none of the exclusive connected split components of S∪1 , . . . , S∪l contains
a shared edge incident to one of the poles u or v of µ, then S∪1 , . . . , S∪l can be tested for
a SEFE independently and can be removed from the graph [BKR18, Lemma 6]. They
show that, with this restriction, the simultaneous embeddings of S∪1 , . . . , S∪l can always be
combined with a simultaneous embedding of G∪µ , because each split component S∪i can be
placed in an arbitrary face of µ it is compatible with without introducing any crossings.
Because each split component is compatible with some face of µ by Reduction Rule 4,

1Note that µ must be contained in a single split component by Reduction Rule 1.

30

6.2. Nesting Blocks around Cutvertices

u

v

ε1 ε2 ε3

f2

f3f1

ε1 ε2 ε3

ε1 ε2 ε3

ε1 ε2 ε3L∪
µ

L
2
µ

L
1
µ

e

(a)

u

v

u

v

u

v

u

v

S∪
1 S∪

2 S∪
3 S∪

4

(b)

u

v

S∪

g

(c)

Figure 6.4: (a) A P-node µ of the shared graph with three virtual edges ε1, ε2, and ε3 along
with its corresponding link graphs L 1

µ , L 1
µ , and L∪µ . (b) Four split components

with respect to the separating pair {u, v} in G∪. The four components S∪1 ,
S∪2 , S∪3 , and S∪4 are exclusive connected, 1 -connected, 2 -connected, and union
connected, respectively. S∪1 is compatible with f2, S∪2 is compatible with f1 and
f2, S∪3 is compatible with f2 and f3, and S∪4 is compatible with all faces of µ.
(c) Although the exclusive connected split component S∪ is compatible with
the face f2 (ε1 and ε2 are not linked in L 1

µ or L 2
µ), S∪ cannot be embedded

into f2, because the two shared edges e and g are in conflict.

31

6. Parameterization by the Vertex Cover Number of the Shared Graph

the split components can therefore be decomposed into independent instances [BKR18,
Lemma 6]. Unfortunately, this does not work in general, if one of the split components in
S∪1 , . . . , S

∪
l is exclusive connected and contains a shared edge incident to one of the poles

u or v. It is possible that such a split component S∪ cannot be embedded into a face f
of µ, even if S∪ is compatible with f ; see Figure 6.4c for an example. Since an exclusive
connected split component may contain mutable blocks of the shared graph incident to u or
v that we need to embed into a face of µ (e.g., block B3 in Figure 6.3a), we cannot exclude
this case. Instead, we will adapt Lemma 6 from the paper by Bläsius et al. [BKR18] to fit
our specific application.

We start by giving a high-level overview of our strategy. Let B1 denote the block of the
shared graph that the P-node µ is contained in. First, we assign a face of B1 to each block
that is a binary block with respect to B1. If a face f of µ subsequently contains such a
block incident to u or v, we say that f is occupied; see Figure 6.3b. For each remaining
mutable block B2 with respect to B1 that can be embedded into any face of µ, recall that
there exists a different split component S∪ of the separating pair {u, v} in G∪ that B2 is
contained in (see Figure 6.3a for an example). The link graphs of µ will give us a set FS∪

of compatible faces of µ where S∪ (and therefore B2) can potentially be embedded in. We
will show that we can adapt Lemma 6 in the paper by Bläsius et al. [BKR18], such that
we can simply remove S∪ from the instance, if FS∪ contains a face that is not occupied.
Finally, all remaining embedding choices with respect to the P-node µ only concern faces of
µ that are occupied. Since we can bound the number of occupied faces and the number of
blocks in G, we will finally show that we can brute-force all remaining embedding choices
of the shared graph.

As the first step, we now fix the position of all binary blocks. For every cutvertex v in
G and for each pair B1, B2 of blocks containing v, we create two new branches if B2 is a
binary block with respect to B1. The two branches correspond to the (at most) two faces
of B1 that B2 can be embedded into. Since we have at most 3k cutvertices with degree at
least 3 in G and since we have at most k+ d blocks in G that contain v2, we create at most
O((2(k+d)2)3k) = O(2(k+d)2·3k) branches to assign the binary blocks to all possible faces.

Now consider two blocks B1 and B2 both containing cutvertex v, such that B2 is a mutable
block with respect to B1. Recall that there exists a P-node µ with poles v and u in B1,
such that B2 is contained in a different split component S∪ of the separating pair {u, v}
in the union graph G∪ (see Figure 6.3a for an example). For a face f of µ, recall that we
say that f is occupied, if there exists a binary block incident to u or v that is assigned to
the face f ; see Figure 6.3b for an example. Note that we need to be cautious around an
occupied face f , since f may contain additional shared edges incident to u and v, thus
the problematic case shown in Figure 6.4c can occur and we have no guarantee that we
can embed S∪ into f , even if S∪ is compatible with f . If, however, S∪ itself admits a
SEFE and is compatible with a face f of µ that is not occupied, we now show that we can
always embed S∪ (and all other split components of µ that are compatible with f) into f .
Therefore, the following reduction rule allows us to decompose S∪ into an independent
SEFE instance.

Reduction Rule 5 [Derived from [BKR18, Lemma 6]]
Let f denote an unoccupied face of a non-impossible P-node µ of the shared graph G
whose poles u and v are a separating pair of the union graph G∪. Let G∪µ denote the
split component with respect to the separating pair {u, v} that µ is contained in3 and

2The number of blocks containing v is exactly the number of split components of v. Observe that each
split component of v must contain at least one additional degree-1 vertex or one additional vertex of the
vertex cover C. Therefore, there are at most k + d blocks containing v.

32

6.2. Nesting Blocks around Cutvertices

let S∪1 , . . . , S∪t be the split components that are compatible with f . Reduce the instance
to the independent instances G∪µ and S∪i + uv for i = 1, . . . , t, where S∪i + uv is the split
component S∪i together with the shared edge uv.

Proof of Safeness. The proof of safeness for this reduction rule is almost identical to the
proof of Lemma 6 in the paper by Bläsius et al [BKR18]. We only have to additionally
show that the fact that f is unoccupied allows us to also consider exclusive connected split
components that contain a shared edge incident to u or v.
If G∪ admits a SEFE, then the corresponding simultaneous embedding can be easily
decomposed into simultaneous embeddings of the split components G∪µ and S∪i + uv for
i = 1, . . . , t.
Conversely, assume that G∪µ and S∪i + uv (for i = 1, . . . , t) admit simultaneous embeddings.
We first glue the simultaneous embeddings of S∪1 +uv, . . . , S∪t +uv together in an arbitrary
order to obtain a simultaneous embedding of (S∪1 ∪ · · · ∪ S∪t) + uv; see Figure 6.5 for an
example. This is possible, because these graphs only share the vertices u and v and since
each S∪i + uv contains the shared edge uv, we may assume that u and v are on the outer
face of each S∪i . For this reason, we can add S∪i to the outer face of (S∪1 ∪ · · · ∪ S∪i−1) + uv
to retain a simultaneous embedding. We denote the resulting graph by H∪ := S∪1 ∪ · · ·∪S∪t
and the version of H∪ that additionally contains the shared edge uv by H∪ + uv.
First assume that there exists an i ∈ {1, . . . , t} such that S∪i is exclusive connected, thus
H∪ is also exclusive connected. Note that, in contrast to Lemma 6 in the paper by Bläsius
et al. [BKR18], we explicitly allow S∪i (and therefore also H∪) to contain shared edges
incident to u and v. We can do this, as shown in the following, because the face f of µ in
G∪µ is not occupied by prerequisite of this reduction, thus f does not contain any shared
edges incident to u or v in G∪µ and therefore the problematic case shown in Figure 6.4c can
not occur.
Since S∪i is exclusive connected and (by prerequisite of this reduction) compatible with face
f , the two virtual edges of µ corresponding to f cannot be 1 - or 2 -linked. This means
that G 1

µ contains face f 1 that is incident to both u and v and G 2
µ contains face f 2 that is

also incident to both u and v. Since H∪ + uv contains the shared edge uv, we may assume
that u and v are positioned on the outer face of the simultaneous embedding of H∪. We
embed all vertices of H 1 in the face f 1 of G 1

µ and all vertices of H 2 in the face f 2 of G 2
µ

to obtain embeddings of G 1
µ ∪H 1 and G 2

µ ∪H 2 , respectively; see Figure 6.5. Recall that
the face f is unoccupied and thus does not contain any shared edges incident to u or v
in G∪µ . Therefore, the edge orderings at vertex u are still consistent, since all edges of H 1

and H 2 incident to u are embedded between the two shared edges belonging to the facial
cycle of f . For the same reason, the edge orderings at v are also consistent. Because we
did not change the embeddings of Gµ or H∪, the edge orderings for all other vertices are
also consistent. Additionally, since all shared components of H∪ now belong to the face
f of the shared graph, and all shared components of G∪µ lie on the outer face of H∪, the
relative positions are also still consistent. Therefore, we obtain a simultaneous embedding
of G∪ = G∪µ ∪H∪.
Now consider the case where neither of the split components S∪1 ∪ · · · ∪ S∪t is exclusive
connected. Then each S∪i is either only 1 -connected, only 2 -connected, or union connected.
For these three cases, the proofs in Lemma 6 in the paper by Bläsius et al. [BKR18] can
be applied verbatim to our use case, because the proofs for these three cases also allow for
shared edges in S∪i that are incident to u or v. Therefore, we also obtain a simultaneous
embedding of G∪ if neither of the S∪i is exclusive connected.

3Note that µ must be contained in a single split component by Reduction Rule 1.

33

6. Parameterization by the Vertex Cover Number of the Shared Graph

u

v

u

v

u

v

u

v

u

v

u

u

v

S∪
1 + uv S∪

2 + uv H∪ + uvG∪
µ

G
1
µ G

2
µ

G∪
µ ∪H∪

f 1 f 2

f

v

u

v

H 1

u

v

H 2

u

v

u

G
1
µ ∪H 1 G

2
µ ∪H 2

f 1 f 2

v

Figure 6.5: An example illustrating how exclusive connected split components can be em-
bedded in an unoccupied face f of Gµ in Reduction Rule 5. First, simultaneous
embeddings of S∪1 + uv and S∪2 + uv are glued together to obtain a simulta-
neous embedding of H∪ + uv. Subsequently, the embeddings H 1 and H 2

are placed into faces f 1 and f 2 of G 1
µ and G 2

µ , respectively. The resulting
pair of embeddings of G 1 ∪H 1 and G 2 ∪H 2 is a simultaneous embedding of
G∪µ ∪H∪ = G∪.

After exhaustively applying Reduction Rule 5, consider once again a cutvertex v of G and
two blocks B1 and B2 containing v, such that B2 is a mutable block with respect to B1.
Recall that this means that B1 contains a P-node µ with poles v and u, such that B2 is
contained in a split component S∪ of the separating pair {u, v} in G∪. Since we cannot
bound the number of faces in µ, we need to further restrict the faces of µ that S∪ can be
embedded in. Let FS∪ denote the faces of µ that S∪ is compatible with. By Reduction
Rule 4, FS∪ is not empty. Additionally, FS∪ only contains occupied faces of µ, because
otherwise, we would have removed S∪ with Reduction Rule 5. But since a face f of µ is only
occupied if we assigned a binary block incident to u or v to f , the number of occupied faces

34

6.3. Ordering Blocks around Cutvertices

in f is bounded by the number of blocks incident to u and v. As argued before, there can
be at most k+ d blocks incident to a single vertex, thus |FS∪ | ≤ 2(k+ d). We create a new
branch for every face f ∈ FS∪ and assign the mutable block B2 to f in this branch. Thus,
for every pair B1, B2 of blocks containing the same cutvertex v we need at most 2(k + d)
branches to assign B2 to every admissible face of B1. Since we have to do this for each of
the O((k + d)2) pairs of blocks incident to a single cutvertex and since we have at most 3k
cutvertices of degree at least 3, we need O(((2(k + d))(k+d)2)3k) = O((2(k + d))(k+d)2·3k)
branches to fix the nesting of the blocks at each cutvertex of G. Note that this bound also
includes the branches we created to assign all binary blocks to their respective faces.

Corollary 6.7. O((2(k+d))(k+d)2·3k) branches are sufficient to fix the nesting of the blocks
around every cutvertex of G.

6.3 Ordering Blocks around Cutvertices
We have now successfully fixed the nesting of the blocks at each cutvertex of G. Note,
however, that there may be multiple blocks assigned to the same face f of another block at
a cutvertex v of G. In this case, we still need to determine the order of these blocks in the
face f . For this reason, we simply enumerate all possible orders of the blocks incident to
every cutvertex of G with degree at least 3. As argued before, a single vertex is contained
in at most k + d blocks, hence there are at most (k + d)! orderings for the blocks around a
single cutvertex. Since we have to do this at each of the at most 3k cutvertices of degree
at least 3 (Lemma 6.3), this creates an additional O(((k + d)!)3k) branches. Because every
block of G has a fixed embedding, we have now completely fixed the order of edges around
each cutvertex of G.

Corollary 6.8. O(((k+ d)!)3k) branches are sufficient to fix the order of the blocks around
every cutvertex of G.

6.4 Putting Things Together
Finally, every connected component of the shared graph G now has a fixed embedding in
every branch, thus we can use the algorithm by Bläsius and Rutter [BR15] to determine
whether G∪ allows a simultaneous embedding with the given embeddings. Recall that our
algorithm first fixes the embedding of each block in G and subsequently nests and orders
all blocks around cutvertices of G. By combining Corollaries 6.6, 6.7, and 6.8, we need a
total of O(2O(k2) · (2(k + d))(k+d)2·3k · ((k + d)!)3k) branches to enumerate all admissible
embeddings of all connected components in G. Note that not all branches lead to a valid
embedding of all connected components in G (e.g., different nesting decisions can contradict
one another). If this is the case, we reduce to a trivial no-instance in the corresponding
branch.

Theorem 6.9. SEFE is FPT parameterized by the number of degree-1 vertices d and the
vertex cover number k of the shared graph and can be solved in time

O(2O(k2) · (2(k + d))(k+d)2·3k · ((k + d)!)3k · poly(n)).

35

7. Parameterization by the Number of
Connected Components and the
Maximum Degree of the Shared Graph

In this chapter, we develop an FPT-algorithm for SEFE parameterized by the number of
shared components k and the maximum degree ∆ of the Shared graph. In order to obtain
this parameterization, we extend the quadratic-time algorithm for Connected SEFE
by Bläsius et al. [BFR20] with additional constraints that also ensure consistent relative
positions between the two exclusive graphs. Their algorithm uses the linear-time reduction
to the problem Synchronized Planarity described in Chapter 2 (see Figure 2.3). In
order to solve the resulting Synchronized Planarity instance, Bläsius et al. [BFR20]
transform the graph into an equivalent instance without any pipes using different operations,
depending on whether the P-vertices matched by a pipe are cut-vertices or block-vertices,
respectively. They show that, after exhaustively applying said operations, the resulting
instance contains only Q-constraints but no pipes. These Q-constraints, together with the
natural embedding restrictions represented by an SPQR-Tree of the graph, can be expressed
as an instance of 2-SAT. Because applying the operations takes time in O(m2) and the
resulting 2-SAT formula has size O(m) and can be solved in linear time, Synchronized
Planarity can be solved in time O(m2).

However, this algorithm cannot handle consistent relative positions of connected components
and therefore only works if the shared graph is connected. Figure 2.4 shows an instance
where the reduction described above fails. While the two graphs shown in Figure 2.4a
clearly do not admit a SEFE, the corresponding instance of Synchronized Planarity
is a yes-instance and accepts the embedding shown in Figure 2.4b. The problem is that
Synchronized Planarity only synchronizes the rotation of shared edges, but does
not ensure consistent relative positions of connected components of the shared graph.
In Figure 2.4b, the vertex x is located in different faces of the shared graph in the two
embeddings, which is not valid for the original SEFE instance. While the reduction to
Synchronized Planarity ensures consistent edge orderings between the two exclusive
graphs, it evidently does not ensure consistent relative positions.

Recall from Chapter 2 that a partial constraint for a vertex v is a PQ-tree that constrains
the admissible cyclic orderings of a subset of edges incident to v. We will show that we
can characterize the embeddings that satisfy consistent relative positions using a set of
partial constraints for the vertices in both exclusive graphs. Subsequently, we will encode

37

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

p 1

p 2

H

Cv 2

v 1

e 1

e 2

(a)

C

ef

v 2

v 1

(b)

Figure 7.1: (a) A graph G∪ with a pairs f = (v 1 , v 2) of fixpoints fixing the relative position
of shared component H with respect to shared component C. The fixation
edges e 1 and e 2 are marked green and red, respectively. The fixation paths p 1

and p 2 are illustrated as dashes paths. (b) The corresponding auxiliary graph
G′f containing the dummy edge v 1 v 2 .

these partial constraints into the Synchronized Planarity instance obtained from
the reduction from SEFE. The resulting instance represents exactly the simultaneous
embeddings of our initial SEFE instance. However, we will still have to modify the
operations of the Synchronized Planarity algorithm by Bläsius et al. [BFR20] to
also handle the additional partial constraints. Because this is a difficult task in general,
we will further restrict our initial SEFE instance and we will finally obtain the desired
FPT-algorithm.

7.1 Computing the Partial Constraints
We start by determining the partial constraints that ensure consistent relative positions.
Let C and H be two connected components of the shared graph. Because we can assume
that G 1 and G 2 are both connected [BR15], there must be at least one path connecting
C and H in G 1 and G 2 , respectively. For i ∈ {1, 2}, pick a vertex v i in C, such that
v i is connected to H via a path p i in G i containing no vertices from C. We call the
pair f = (v 1 , v 2) of vertices the fixpoints of H with respect to C; see Figure 7.1a for an
example. We also say that f directly fixes the position of H with respect to C. We refer to
the path p i as the fixation path of f in G i . The edge e i of p i that is incident to v i is
called the fixation edge of fixpoint v i . We let F denote the set of fixpoint pairs obtained
after repeating this for every pair of shared components in G. Note that |F| ≤ k2, since G
contains k connected components. With the following lemma, we show that ensuring that
each pair of fixation edges is embedded into the same face of G is sufficient to guarantee
consistent relative positions for the SEFE instance.

Lemma 7.1. Let E∪ = (E 1 , E 2) denote planar embeddings of G 1 and G 2 with consistent
edge orderings. Then E∪ is a simultaneous embedding if and only if the two corresponding
fixation edges are embedded in the same face of G for every pair of fixpoints in F .

Proof. Let C and H denote two shared components and let (v 1 , v 2) ∈ F denote the
fixpoints of H with respect to C. It is clear that, for i ∈ {1, 2}, the fixation path e i of v i

must be entirely contained in a single face h of C in E i , because otherwise, e i crosses the
boundary of h. Since this boundary consists of shared edges, this would contradict the
planarity of E i , thus e i is entirely contained in a single face h of C. Since e i also contains
a vertex of the shared component H, H must also be fully contained in the face h of C in
E i . Consequently, the relative position of H with respect to C is consistent if and only if
the two fixation paths are contained in the same face of C, which concludes the proof.

38

7.1. Computing the Partial Constraints

H

I

C

v 1

v 2

u 1 u 2

(a)

C

v 1

v 2

u 1 u 2

(b)

C

v 1

v 2

u 1 u 2

(c)

Figure 7.2: (a) A graph G∪ with two pairs f = (v 1 , v 2) and g = (u 1 , u 2) of fixpoint
vertices fixing the relative positions of H and I with respect to C. (b) The
auxiliary graph G′f containing the dummy edge v 1 v 2 . (c) The auxiliary graph
G′g containing the dummy edge u 1 u 2 .

Lemma 7.1 states that, in any simultaneous embedding of G∪, both fixation edges of a
pair f ∈ F of fixpoints must be embedded in the same face of G. In order to determine
the embeddings of G that fulfill this requirement, we now construct a set of auxiliary
graphs from which we will derive the necessary partial constraints for our Synchronized
Planarity instance.

To this end, let f = (v 1 , v 2) ∈ F be a pair of fixpoints of G∪ such that f directly fixes
the position of a shared component H with respect to another shared component C. We
obtain the auxiliary graph G′f from the shared graph G by adding the edge v 1 v 2 to G;
see Figure 7.1b. We refer to v 1 v 2 as the dummy edge corresponding to f in G′f . This
shared edge represents a path pf between v 1 and v 2 in G∪ that consists of the fixation
paths p 1 and p 2 , and vertices of the shared component H. No shared edge of C may cross
an edge of pf in G∪ and, similarly, no shared edge of C may cross the dummy edge v 1 v 2

in G′f . We call this path pf the representation path of f . Therefore, if G′f is not planar,
we can immediately reduce to a trivial no-instance, because in any embedding of G∪ with
consistent edge orderings, there is a shared edge of G that crosses pf . Since every pair of
fixation edges must be embedded in the same face of G in any simultaneous embedding
of G∪ (Lemma 7.1), the auxiliary graph G′f describes exactly the admissible embeddings
of G where the fixation edges of f can be embedded in a common face. Essentially, we
want to ensure that the shared graph in E 1 and E 2 only takes embeddings that are
“allowed“ by the auxiliary graph G′f . We will additionally ensure that the fixation edges
of f are embedded in the same position in E 1 and E 2 as the dummy edge v 1 v 2 in the
corresponding embedding of G′f . Since the dummy edge lies within a single face of the
shared graph G, the two fixation edges of f consequently lie in that same face of G. By
Lemma 7.1, ensuring this for every pair of fixpoints in F yields exactly the simultaneous
embeddings of G∪. Note that we create a separate auxiliary graph for each pair of fixpoints;
see Figure 7.2.

We now want to derive partial constraints for the vertices of G∪ from the auxiliary graph G′f
that ensure that we only admit embeddings of the shared graph where both fixation edges
are embedded in the same face. To this end, let B denote a block of the auxiliary graph
G′f . Observe that B may consist of several blocks of the shared graph G; see Figure 7.3 for
an example. Using the SPQR-tree representation of G′f , determine the embedding tree Tf,v

39

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

B1

B2

B3

B4

S1

S2

S3

v

H

G

(a)

B

e

S′

S

v

G′
f

(b)

TS
f,v TS′

f,v

Ev(S) Ev(S
′)

(c)

Figure 7.3: (a) The shared graph G consisting of blocks B1, . . . , B4. There are three split
components S1, S2, and S3 of G incident to cutvertex v. Additionally, the
two fixation paths corresponding to shared component H are shown. (b) The
auxiliary graph G′f containing the dummy edge e corresponding to shared
component H. The blocks B1, B2, and B3 fall together into a single block
B in G′f and the split components S1 and S2 fall together into a single split
component S incident to v in G′f . (c) Possible face constraint trees TSf,v and
TS

′
f,v obtained from the SPQR-trees of G′f . The tree TSf,v constrains the edges
Ev(S) of split component S incident to v in G′f (Analogously for TS′

f,v).

for every vertex v in B. If v is contained in multiple blocks of G′f , we get an embedding
tree TSf,v for every split component S incident to v in G′f . Since G′f only contains a single
additional edge compared to G, S consists of at most two split components incident to
v in the shared graph G. We call TSf,v the face constraint tree of S at v for the pair f of
fixpoints; see Figure 7.3c for an example. If a face constraint tree of v contains a dummy
edge of G′f as one of its leaves l, we subsequently identify l with the corresponding fixation
edge incident to v.

Unfortunately, we cannot just pick orderings for each face constraint tree independently. In
order to obtain a valid embedding of G′f , every pair of P-nodes stemming from the same
P-node of the SPQR-tree T of G′f and all Q-nodes stemming from the same R-node of
T must be ordered consistently. For a Q-node q, let ψ(q) be a binary variable denoting
the rotation of q. For a set Q of Q-nodes stemming from the same R-node of T , we
require that ψ(q1) = ψ(q2) holds for every q1, q2 ∈ Q in any embedding of G′f . For a
P-node p of a face constraint tree, let σp denote an order of its children in an embedding
of G′f . For two P-nodes p1 and p2 stemming from the same P-node µ of T , we require
that σp1 = δp2p1(σp2) holds in any embedding of G′f , where δp2p1 maps the children of p2
to the children of p1 according to the virtual edges in µ. We call these constraints the
synchronization constraints between the face constraint trees.

Recall that a single split component incident to a vertex v in the auxiliary graph G′f may
consist of up to two split components incident to v in the shared graph G. For this reason,
we need to be extra cautious at cutvertices of the shared graph. Let v denote a cutvertex of
G and let S1, S2, and S3 denote three split components of G incident to v such that S1 and
S2 are connected as a single split component S of G′f (i.e., S1 and S2 belong to the same
block of G′f). For a given embedding of the shared graph, even if the edges in S satisfy the
face constraint tree TSf,v, S1 and S2 could still be embedded in different faces of S3; see
Figure 7.4 for an example. This means that the face constraint trees alone are not sufficient
to ensure that every relative position corresponds to a face of G if a single pair of fixpoints
is contained in two blocks of G. We solve this issue using additional partial constraints.

40

7.1. Computing the Partial Constraints

S2

S3

S1

v

G

H

(a)

S2

S3

S1

v

S

G′
f

e

(b)

Ev(S1) Ev(S2) Ev(S3)

T1,2,3(v)

(c)

Figure 7.4: (a) Three split components S1, S2, and S3 of a cutvertex v in the shared
graph G. Because there are fixation paths connecting S1 and S2 to H, S1 and
S2 must be embedded in the same face of S3. (b) In the corresponding auxiliary
graph G′f , the dummy edge e connects S1 and S2 into a new split component S.
However, since S3 and S are still disconnected in G′f , no face constraint tree
forbids S1 and S2 to be embedded into different faces of S3. (c) The pairwise
consecutivity tree T1,2,3(v) ensuring that the edges of S1 and S2 are consecutive
with respect to the edges in S3.

Let S1, . . . , Sl denote the split components of G incident to v and let Ev(Si) denote the
set of edges incident to v in G belonging to split component Si. Let Si, Sj be a pair of
split components with 1 ≤ i < j ≤ l such that Ev(Si) and Ev(Sj) belong to the same split
component of G′f . For every split component Sk with 1 ≤ k ≤ l, let Ti,j,k(v) denote the
PQ-tree with leaves L(Ti,j,k(v)) = Ev(Si) ∪Ev(Sj) ∪Ev(Sk) that ensures that the edges in
Ev(Si) ∪ Ev(Sj) are consecutive. We call Ti,j,k(v) the pairwise consecutivity tree of (Si, Sj)
and Sk; see Figure 7.4c for an example. Observe that these partial constraints ensure that
Si and Sj are always embedded in the same face of Sk. Also note that these trees are
similar to the pairwise consecutivity trees introduced by Bläsius et al. [BKR18].

Lemma 7.2. An instance G∪ of SEFE admits a simultaneous embedding E∪ = (E 1 , E 2)
if and only if E 1 and E 2 have consistent edge orderings and E∪ satisfies all face constraint
trees, all synchronization constraints, and all pairwise consecutivity trees.

Proof. If E∪ = (E 1 , E 2) is a simultaneous embedding G∪, then it is clear that both
embeddings must have consistent edge orderings. Consider two split components S1 and S2
of a cutvertex of the shared graph such that there exists a pair f = (v 1 , v 2) of fixpoints
with v 1 and v 2 contained in S1 and S2, respectively. Then clearly, S1 and S2 must be
embedded in the same face of the shared graph, because otherwise, a shared edge would
cross the representation path of f . Since the pairwise consecutivity trees only ensure
that S1 and S2 are embedded in the same face of the shared graph, they are therefore
satisfied for E∪. Now take the embedding E∪ of G∪, replace the representation path pf
corresponding to f with a single dummy edge, and subsequently remove all exclusive
edges. The result is a planar embedding E of G′f . Since the face constraint trees and
synchronization constraints are obtained directly from the embedding representation of
G′f , they are therefore all satisfied in E∪.

Conversely, let E∪ = (E 1 , E 2) be an embedding of G∪ with consistent edge orderings and
such that E∪ satisfies all pairwise consecutivity constraints, all face constraint trees, and
all synchronization constraints. Since E∪ has consistent edge orderings, it only remains
to show that for any pair C,H of shared components of G, H is embedded in the same
face of C in E 1 and E 2 . Let f = (v 1 , v 2) denote the pair of fixpoints in G∪ that directly

41

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

fixes the position of H with respect to C. Then we have an auxiliary graph G′f with an
additional dummy edge that corresponds to the representation path pf . First assume
that both vertices of f are contained in the same block of the shared graph. Because
the face constraint trees and the synchronization constraints are satisfied in E∪, and no
shared edge may cross the dummy edge in any embedding of G′f , no shared edge crosses
the representation path pf in E∪. If the two vertices of f are contained in two different
blocks of G, then the pairwise consecutivity trees additionally ensure that no shared edge
of another block may cross the representation path pf . Overall, if all these constraints are
satisfied, no shared edge may cross pf in E∪ and thus H is contained in the same face of C
in E 1 and E 2 .

Observe that we now have a set of face constraint trees for each shared vertex v of G and,
if v is a cutvertex in G, additionally a set of pairwise consecutivity trees. From now on, we
group these constraints together in a set Rv and refer to them as the partial constraints
of v.

7.2 Reduction to Synchronized Planarity

Recall that finding a simultaneous embedding of G∪ requires finding an embedding with
consistent edge orderings and consistent relative positions. By Lemma 7.2, ensuring that
every shared vertex of G∪ satisfies the partial constraints together with the synchroniza-
tion constraints guarantees consistent relative positions. The problem Synchronized
Planarity is suitable to ensure that all shared edges are ordered consistently in both
exclusive graphs [BFR20, Theorem 16]. Therefore, our goal is to augment the Synchro-
nized Planarity instance with our partial constraints in order to represent exactly the
simultaneous embeddings of G∪.

Given our initial instance G∪ of SEFE with exclusive graphs G 1 and G 2 , we now reduce
our instance to an instance I∗ = (H,P,Q, ϕ) of Synchronized Planarity using the
reduction by Bläsius et al. [BFR20]. Add two new vertices b 1

v and b 2
v for each shared

vertex v appearing in the exclusive graphs as v 1 and v 2 , respectively. For each shared edge
incident to v, add a parallel edge between b 1

v and b 2
v , creating a bond µ between b 1

v and b 2
v

where the parallel edges correspond to the shared edges incident to v. Additionally, insert
degree-1 vertices incident to b 1

v and b 2
v representing the exclusive edges incident to v 1

and v 2 , respectively; see Figure 2.3 for an example. Create two pipes (v 1 , b 1
v , ϕ1) and

(v 2 , b 2
v , ϕ2), where ϕ1 and ϕ2 map the edges incident to v 1 and v 2 to their corresponding

edges of µ. Recall that Synchronized Planarity only ensures consistent edge orderings
and not consistent relative positions for our SEFE instance, i.e., G∪ and I∗ are not yet
equivalent. We still have to restrict the admissible edge orderings at each vertex in I∗
to ensure that they conform with the partial constraints and synchronization constraints
obtained in Section 7.1.

To this end, let ρ = (v i , b i
v , ϕ) be an arbitrary pipe of I∗. Observe that v i and b i

v

correspond to the same shared vertex v of the SEFE instance G∪. We now augment ρ with
the partial constraints Rv, turning ρ into a constrained pipe ρ′ = (v i , b i

v , ϕ,Rv). We say
that an embedding satisfies the constrained pipe ρ′ if it satisfies the pipe ρ and all partial
constraints in Rv. Additionally, all synchronization constraints between partial constraints
must be satisfied. The resulting instance is Iinit = (H,P ′,Q, ϕ) with H = H 1 +H 2 +X,
where H 1 and H 2 are the subgraphs of H corresponding to the exclusive graphs G 1

and G 2 of G∪ and X contains the bonds between H 1 and H 2 . Since the standard
Synchronized Planarity reduction ensures consistent edge orderings, the instance Iinit
is equivalent to the instance G∪ of SEFE by Lemma 7.2.

42

7.2. Reduction to Synchronized Planarity

u

v

ε1 ε2 ε3H

µ

(a)

u

v

ε1 ε2 ε3ε4

µ′

(b)

ε1 ε2 ε4 ε3

Tu

Tv

(c)

Figure 7.5: (a) A P-node µ of the shared graph G consisting of three virtual edges. (b)
The corresponding P-node µ′ of the corresponding auxiliary graph after adding
the dummy edge corresponding to the fixation edges of shared component H.
This results in an additional virtual edge ε4. (c) Since the structure of G itself
does not ensure that ε4 has the same position incident to both poles u and
v, the P-nodes of the corresponding face constraint trees Tu and Tv require a
synchronization constraint.

Since synchronization constraints are not necessarily local, they create complicated depen-
dencies between the pipes of our initial Synchronized Planarity instance Iinit. While
synchronization constraints between Q-nodes can simply be handled by synchronizing the
binary rotation decision of the Q-nodes, synchronization constraints between P-nodes are
more difficult. Therefore, we seek to eliminate this issue using bounded search trees. Recall
that F denotes the set of fixpoint pairs of G∪, with |F| ≤ k2. For every pair f = (v 1 , v 2)
of fixpoints in F , we enumerate all possible orderings of shared edges and fixation edges
around v 1 and v 2 , creating a new branch for each of the O((∆ + k)!) orderings at each
vertex. Regarding the synchronization constraints between inner nodes of partial constraints
derived from an auxiliary graph, observe that these synchronization constraints are only
necessary if the orderings of the corresponding nodes are not already synchronized due to
the structure of the shared graph G itself. Recall that we only add a single edge to G in
every auxiliary graph. This is equivalent to an application of the operation insertEdge in
the paper by Di Battista and Tammassia [BT96]. They thoroughly describe the possible
changes this operation can make to the SPQR-trees of the graph. Essentially, we only have
to add an additional synchronization constraint between P-nodes, if insertEdge either
created a new P-node in the SPQR-tree, or an existing P-node gets an additional virtual
edge; see Figure 7.5 for an example. By Battista and Tammassia [BT96], there can only
be one such P-node per operation, thus we only need to additionally fix the edge ordering
at the two poles of this P-node. Let u and v denote the poles of such a P-node. As we did
with the fixpoints, we again create a new branch for every possible ordering of shared edges
incident to u and v. Let S denote the set of all vertices that now have a fixed ordering of
their incident edges. Since we have at most 2k2 fixpoints and k2 auxiliary graphs in total,
it is |S| ≤ 4k2 and we therefore get O(((∆ + k)!)4k2) branches in total. For each vertex v,
for which we have now “guessed“ an ordering φ, we fix the edges incident to v according
to φ in every auxiliary graph and we update the partial constraints we derived from the
auxiliary graphs accordingly. Whenever the enumerated orderings at different vertices
are incompatible, we reduce to a trivial no-instance in that branch. Observe that we now
eliminated all synchronization constraints between P-nodes of the partial constraints in
the instance Iinit.

To simplify the partial constraints in the instance Iinit even further, we now eliminate all
partial constraints that contain fixation edges. Let v ∈ S denote a vertex with a fixed
ordering φ of its incident shared edges and fixation edges and let v 1 and v 2 denote the

43

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

b
2
v

v 1

b
1
v

µ
φ 1

(a)

v 1

b
1
v

µ′

q
1

φ

b
2
v

(b)

Figure 7.6: (a) A pipe connecting two vertices v 1 and b 1
v with a fixed ordering φ 1 for

all shared edges and fixation edges. (b) The resulting equivalent instance of
Synchronized Planarity after applying the operation PropagatePartial.
The Q-vertex q 1

φ ensure that the edges constrained by φ 1 appear in the order
defined by φ 1 around the vertex b 1

v (and consequently also around the vertex
v 1).

two occurrences of v in H 1 and H 2 , respectively, of Iinit. Let ρ 1 denote the pipe between
v 1 and b 1

v , where b 1
v is the corresponding vertex of the bond µ between b 1

v and b 2
v ; see

Figure 7.6a. Let φ 1 denote the restriction of φ to only shared edges and i -exclusive
edges. We now directly encode the ordering φ 1 into the graph structure. First, order
the parallel edges of µ as they appear in φ 1 and subdivide each of the parallel edges.
Merge the subdivision vertices into a single Q-vertex q 1

φ that fixes the order of the shared
edges according to φ 1 . For every degree-1 vertex x incident to b 1

v that corresponds to a
fixation edge, also merge x into q 1

φ at the position defined by φ 1 ; see Figure 7.6b for an
example. The Q-constraint corresponding to q 1

φ has a fixed rotation, as defined by φ 1 .
We subsequently turn the pipe ρ 1 into a regular pipe without any partial constraints.
We repeat this procedure symmetrically for φ 2 at vertex v 2 and call this procedure
PropagatePartial.

Lemma 7.3. Applying the operation PropagatePartial to an instance I of Synchro-
nized Planarity yields an equivalent instance I ′.

Proof. We show that applying the construction to v 1 is correct, the correctness of the
whole operation then follows from symmetry. Let ρ = (v 1 , b 1

v , ϕ,R) denote the pipe
matching v 1 and b 1

v . Note that we can assume that R only contains the ordering φ 1 as
a partial constraint, since φ 1 completely fixes the order of all shared edges and fixation
edges around v 1 . Let E be a valid embedding of I such that E(v 1) = ϕ(E(b 1

v)) satisfies
the partial ordering φ 1 . To obtain an embedding E ’ of I’, insert the Q-vertex q 1

φ into the
bond µ as described above. Since E(b 1

v) satisfies φ 1 and since all other edges incident to
b 1
v that are not constrained by φ 1 belong to degree-1 dummy vertices, this insertion does
not introduce any crossings.

Conversely, let E ′ denote an embedding of I ′. Since the order of shared edges and fixation
edges incident to b 1

v is fixed by q 1
φ , E ′(v 1) = ϕ(E ′(b 1

v)) satisfies the partial ordering φ 1 .
Revert the insertion of the vertex q 1

φ , i.e., first “unmerge“ q 1
φ and subsequently contract

the subdivision vertices of the shared parallel edges in µ. This does not change the order
of edges incident to b 1

v and thus we obtain the desired embedding of I.

To summarize, recall that we have completely fixed the order of shared edges and fixation
edges around all fixpoints and around all vertices that would require synchronization

44

7.3. Invariants

constraints between P-nodes of their corresponding partial constraints. The set of these
vertices is denoted by S. We then used the operation PropagatePartial to encode these
fixed orderings directly into the graph structure, thus the vertices in S have no partial
constraints in the resulting Synchronized Planarity instance. This is helpful for two
reasons. First, we no longer have partial constraints that additionally constrain fixation
edges, because all fixpoints are contained in S. Therefore, all remaining partial constraints
only constrain shared edges. Second, we no longer have to worry about synchronization
constraints between P-nodes, all remaining synchronization constraints only concern Q-
nodes. These synchronization constraints will be no problem, because we can simply encode
them into the Q-constraints of our Synchronized Planarity instance.

7.3 Invariants
As the next step, we still have to show how the operations of the Synchronized Planarity
algorithm can be adjusted to also handle constrained pipes. For arbitrary Synchronized
Planarity instances with arbitrary constrained pipes, this is very difficult. Especially
the operation EncapsulateAndJoin poses a challenge, because the partial constraints
essentially restrict the admissible cuts of the resulting bipartition, which is difficult to
model using pipes and Q-constraints. However, the Synchronized Planarity instances
we can obtain from the reduction from SEFE are very restricted. To restrict the possible
cases even more, we assume that both exclusive graphs are biconnected. This way, the
only cutvertices of our initial Synchronized Planarity instance Iinit are the vertices
adjacent to degree-1 dummy vertices. Additionally, we require that every pair of fixpoints
in F is block-local, i.e., they are contained in the same block of the shared graph G. With
this additional restriction, every face constraint tree restricts exactly one split component
of the shared graph incident to a vertex. Additionally, the pairwise consecutivity trees
become superfluous.

While these restrictions significantly limit the possible cases that can occur in our initial
Synchronized Planarity instance Iinit, we also need to ensure that this also remains the
case in the intermediate instances obtained after applying an operation of the Synchro-
nized Planarity algorithm. To this end, we use this chapter to state several invariants
that restrict the possible structures of our Synchronized Planarity instance. In the next
chapter, we will then show that these invariants are sufficient to modify the Synchronized
Planarity operations to also handle the additional partial constraints. This will allow
us to solve the initial Synchronized Planarity instance Iinit and consequently the
equivalent SEFE instance G∪.

To have access to more information about our Synchronized Planarity instance, we
retain a mapping o : V (I)→ V (G∪) from every vertex v of an instance I to a vertex o(v)
of the initial SEFE instance G∪. In the instance Iinit, every vertex u i of H i is mapped to
the vertex u of G∪ it originates from and for every pipe matching vertices u i and b i

u , we
set o(b i

u) = o(u i) = u. Let v denote a vertex of the Synchronized Planarity instance
I and let o(v) denote the corresponding vertex of the SEFE instance G∪. We additionally
define a mapping from the shared edges incident to o(v) to the edges incident to v. For
an edge e incident to o(v), we let rv(e) denote the corresponding edge incident to v. This
defines a mapping r : V (I) × E(G) → E(I). In the initial Synchronized Planarity
instance Iinit, we simply map the shared edges incident to o(v) in G∪ to the corresponding
edges incident to v in Iinit, thus rv is an injection in Iinit; see Figure 7.7. However, rv
is not necessarily injective after the operations PropagatePQ and EncapsulateAndJoin
introduce new vertices. After these operations, rv can map several shared edges incident
to o(v) to a single edge incident to v. Additionally, there may be shared edges incident
to o(v) that have no corresponding edge incident to v. In this case, we write rv(e) = ⊥

45

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

b
2
u

u 2

b
1
u

u 1

u u

{e}
{f}
{g}

{e}
{f}
{g} u u

{} {}{}
{e}
{f}
{g}

{}
{e}
{f}
{g}

H 1 H 2X

Figure 7.7: The mappings o and r in the Synchronized Planarity instance Iinit. Each
vertex x is annotated in blue with its corresponding vertex o(x) of the instance
G∪. For each edge h incident to a vertex x, the red set represents r−1

x (h), i.e.,
the set of shared edges incident to o(x) that h corresponds to.

B

e
f

g h

o(u)u{e}

{f, g}

{h}
i

{i}

j

k
l

m

j k l m

R

I G

Figure 7.8: An illustration of Invariant 7.1. The partial constraint R restricts exactly the
edges {j, k, l,m} incident to vertex u in I that correspond to the edges of the
shared block B incident to o(u) in G.

to denote that the shared edge e incident to o(v) has no corresponding edge incident to
v. We will define how the mappings o and r are updated when we describe the individual
operations in Section 7.4.

Roughly speaking, the mapping ru gives us an idea which edges incident to u correspond
to the shared edges incident to o(u) in G. This mapping therefore also tells us which
edges incident to u correspond to edges of a single block incident to o(u) in G. This allows
our invariants to make statements about the blocks of G containing o(u) and about the
corresponding edges incident to u in the Synchronized Planarity instance I. From
now on, if we say a shared block B around o(u) in G, we mean a block B of the shared
graph G that contains o(u). Additionally, B implicitly refers to the set of edges incident
to o(u) that belong to the block B in G. For a set E of edges incident to o(u), we define
ru(E) = {ru(e) | e ∈ E}. For a shared block B around o(u) in G, the set ru(B) is therefore
now well-defined.

Our first invariant states that every partial constraint in the Synchronized Planarity
instance refers to a block in the shared graph G; see Figure 7.8 for an illustration. This
will later allow us to make statements about the structure of our partial constraints using
the mapping r. Recall that a partial constraint R is a PQ-tree, thus L(R) denotes the set
of leaves of R.

Invariant 7.1. Let ρ = (u, v, ϕuv,R) be a pipe of I. For every partial constraint R ∈ R
there exists a shared block B around o(u) in G, such that R constrains exactly the edges
incident to u that correspond to the block B, i.e., L(R) = ru(B).

Since we require that every pair of fixpoints is block-local and since we have eliminated
all partial constraints containing fixation edges, we have already shown before that every

46

7.3. Invariants

Bu

e1
e2
e3 e4

o(u)

e5

G

u v

Bv

f1

f2

o(v)

f3

G

{e1, e2}

{e3}

{e4, e5}

{f1}

{f3}

{f2}

I

ρ

Figure 7.9: An illustration of Invariant 7.2. The edges incident to u in I that correspond
to the shared block Bu are bijectively mapped to the edges incident to v that
correspond to Bv by the pipe ρ.

partial constraint restricts the edges of a single block in the shared graph. The construction
of the Synchronized Planarity instance Iinit and our choice of the mapping functions
o and r in Iinit therefore ensure that Invariant 7.1 holds in Iinit.

Our next invariant states that, for two vertices u and v matched by a pipe ρ, the shared
blocks around o(u) and o(v) come in pairs whose corresponding edges incident to u and v
are matched bijectively by ρ; see Figure 7.9 for an illustration.

Invariant 7.2. Let ρ = (u, v, ϕuv,R) be a pipe of I and let Bu denote a shared block
around o(u) in G with |ru(Bu)| > 1. Then there exists a shared block Bv around o(v) such
that rv(Bv) = ϕuv(ru(Bu))

We define ϕuv(⊥) = ⊥, thus the invariant is also well-defined if edges incident to o(u) are
mapped to ⊥. Recall that every pipe in the initial Synchronized Planarity instance
Iinit matches vertices v i and b i

v both corresponding to the same vertex v of the shared
graph, thus we defined o(v i) = o(b i

v) = v. Since the pipe ρ matches the edges incident to
v i and b i

v that correspond to the same edge of the SEFE instance G∪, Invariant 7.2 holds
in Iinit.

The next invariant basically makes the same statement as the previous invariant, but
for poles of a P-node µ in the Synchronized Planarity instance; see Figure 7.10 for
an illustration. While we will only need this invariant for bonds, it is easier to show
that the invariant remains intact throughout the algorithm if we state it for general P-
nodes. Together with the previous invariant, this invariant will allow us to ensure that
Invariant 7.1 remains intact after an application of the transitive case of the operation
SimplifyMatching.

Invariant 7.3. Let u and v be the poles of a P-node µ in I and let Bu denote a shared
block around o(u) in G such that edges of ru(Bu) are contained in at least two virtual edges
of µ. Then there exists a shared block Bv around o(v) such that rv(Bv) = δuv(ru(Bu)),
where δuv maps the edges incident to u to the edges incident to v according to the virtual
edges in µ.

In the initial Synchronized Planarity instance Iinit, a P-node µ can either appear
in one of the subgraphs H 1 and H 2 corresponding to G 1 and G 2 , or in the subgraph
X that synchronizes the corresponding shared edges between H 1 and H 2 . In the latter
case, Invariant 7.3 holds, because both poles of µ correspond to the same vertex of the

47

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

{f1}{e1, e2}

{e3}

{e4}

{e5}

{f3}

{f2}

µ

u v

Bu

e1
e2
e3 e4

o(u)

e5

G

Bv

f1

f2

o(v)

f3

GI

Figure 7.10: An illustration of Invariant 7.3. The edges incident to u in I that correspond
to the shared block Bu are contained in the same three virtual edges of µ as
the edges incident to v that correspond to the shared block Bv.

shared graph and the parallel edges of µ are exactly the corresponding shared edges. Now
consider the former case. Without loss of generality, assume µ is contained in H 1 with
poles u 1 and v 1 . Now let B denote a shared block around u in G such that edges of B
incident to u 1 are contained exactly in the set τ of virtual edges in µ with |τ | > 1. Then
the edges of B incident to v 1 must also be contained exactly in the virtual edges of τ ,
because otherwise, u 1 or v 1 would split B. Let Bu denote the edges of B incident to u 1

and let Bv denote the edges of B incident to v 1 . Since the mappings r
u 1 and r

v 1 map
the shared edges incident to u and v in G to their corresponding versions incident to u 1

and v 1 , Bu and Bv therefore satisfy Invariant 7.3.

The next invariant states that the connectivity of the shared edges in the Synchronized
Planarity instance does not decrease compared to the shared graph G, which will be
helpful for the operation EncapsulateAndJoin.

Invariant 7.4. Let u be an arbitrary vertex of I and let B denote a shared block around
o(u) in G. Then either ru(B) = ⊥, or all edges of ru(B) belong to a single block in I.

If u is contained in H 1 or H 2 then all edges incident to u that belong to a single block
of the shared graph must also belong to a single block H i , because the connectivity in
the exclusive graphs only increases. If u is contained in the subgraph X, then all edges
corresponding to shared edges are parallel edges in the corresponding bond and thus also
belong to a single block. Invariant 7.4 therefore holds in Iinit.

The next invariant ensures that all cutvertices of the Synchronized Planarity instance
are rather simple, which also helps us handle the operation EncapsulateAndJoin.

Invariant 7.5. Let v be an arbitrary vertex of I. If v is a cutvertex, then all split
components of v, except for at most one, consist of a single degree-1 vertex.

Since we require both exclusive graphs of our SEFE instance to be biconnected, H 1 and
H 2 both contain no cutvertices. For a vertex v of the subgraph X, recall that all edges
incident to x that correspond to shared edges are parallel edges in the corresponding bond,
all other edges are incident to degree-1 vertices. Therefore, Invariant 7.5 holds in Iinit.

For a vertex u of the Synchronized Planarity instance, the last invariant makes
the following statement. If we remove all partial constraints from our Synchronized
Planarity instance, then any planar embedding of the resulting instance must also induce

48

7.4. Operations for Constrained Pipes

B1

e2

u{f2}

{e1, e2}

{e3}

Ê

B2

f1

f2

o(u)

f3

e1

e3

{f1}

{f3}

E

a

b

c

d

e

Figure 7.11: An illustration of Invariant 7.6. The shown embedding Ê of the Syn-
chronized Planarity instance Î induces the edge ordering Ê(u)[Ou] =
〈a, b, c, d, e〉 around u. The embedding E of the shared graph G induces
the edge ordering E(o(u)) = 〈e1, e2, e3, f1, f2, f3〉 around o(u). Note that
ru(〈e1, e2, e3, f1, f2, f3〉) = 〈a, b, c, d, e〉. If Î allows the edges b and c to be
swapped in Ê , then the corresponding edges e3 and f1 must also be swapped
in E . This would yield a non-planar embedding of G, because edges of the
blocks B1 and B2 would alternate. By Invariant 7.6, swapping b and c in Ê
therefore yields an embedding that does not satisfy Î.

a valid edge ordering for the shared edges around o(u) in G, subject to the mapping ru.
This invariant is particularly powerful in combination with the previous invariants that refer
to shared blocks around o(u) in G. If the vertex u allows an arbitrary order of its incident
edges, this invariant will let us draw conclusions for the blocks around o(u) in G, because
edges of different blocks cannot alternate arbitrarily in a planar embedding. Together with
Invariant 7.1, this will later allow us to restrict the number of partial constraints in a single
pipe, which helps us solve case i of the operation SimplifyMatching. See Figure 7.11 for
an example illustrating this invariant.

Invariant 7.6. Let u be an arbitrary vertex of I and let Î denote the Synchronized
Planarity instance obtained by removing all partial constraints from all pipes in I. Let
O denote the set of shared edges incident to o(u) in G and let Ou = ru(O) denote the set
of the corresponding edges incident to u in Î. For any embedding Ê of Î there also exists a
planar embedding E of the shared graph G with Ê(u)[Ou] = ru(E(o(u))).

Since the standard Synchronized Planarity reduction ensures consistent edge orderings,
any planar embedding of Îinit induces a planar embedding of the shared graph G. Since
the mapping r maps all shared edges around vertices of G to the corresponding shared
edges around the vertices in Îinit, Invariant 7.6 must therefore hold in Iinit.

Note that Invariant 7.1 and Invariant 7.4 together imply that every partial constraint only
constrains edges of a single block of I. We state this in the following corollary.

Corollary 7.4. Let ρ = (u, v, ϕuv,R) be a pipe of I and let R ∈ R be a partial constraint.
Then all edges incident to u that are constrained by R belong to a single block.

7.4 Operations for Constrained Pipes
As the next step, we modify the Synchronized Planarity operations PropagatePQ,
EncapsulateAndJoin, and SimplifyMatching for constrained pipes. Because this is a

49

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

difficult task in general, we rely on the invariants we defined in Section 7.3 to restrict the
possible cases that can arise. We also show that the invariants we defined remain intact
after applying one of these operations.

7.4.1 Constrained PropagatePQ

In order to handle constrained pipes with the operation PropagatePQ, we need to break
down partial constraints to the individual inner nodes of the embedding tree of a vertex.
Given a PC-tree T and an additional PC-tree P with L(P) ⊆ L(T) defining a partial
constraint over L(T), we want to compute a PC-tree Nx for every x in the set I(T) of inner
nodes of T , such that Nx defines a partial constraint for the edges incident to x in T . In
other words, we want to break down the partial constraint P to partial constraints for each
individual inner node of T . In order to simplify the notation, we root each PC-tree at an
arbitrary inner node and denote by Tx the subtree of T rooted at x. Let T ′ denote the tree
obtained by projecting T to the leaves in P , i.e., T ′ := Project(T, L(P)). As the first step,
we obtain S := Intersect(T ′, P) by intersecting T ′ and P , thus the resulting PC-tree S
contains all restrictions of both T ′ and P ; see Figure 7.12 for an example. Additionally,
if a C-node q′ of T ′ and a C-node q′′ of P coincide in a C-node q in S, we synchronize
their rotation using equations ψ(q) = ψ(q′) = ψ(q′′). We call these equations rotation
constraints. Let r denote the root of T and let c(r) denote the set of children of r. For
each child c ∈ c(r), the set A(c) := L(Tc) ∩ L(P) is the set of leaves of the subtree Tc
that are part of the partial constraint P (Note that A(c) might be empty). Because A(c)
is consecutive in T ′, A(c) is also consecutive in the intersection S and we can apply the
operation (Kc, S

′) := Split(S,A(c)). If a C-node q from S is split into C-nodes q′ in
Kc and q′′ in S′, we set ψ(q) = ψ(q′) = ψ(q′′) to ensure that q, q′, and q′′ are flipped in
compatible ways. Let Nr denote the PC-tree obtained by repeatedly applying this split
operation to the resulting PC-tree S′ for each c ∈ c(r), thus Nr is the desired broken-down
partial constraint for the root r of T . Subsequently, recursively executing this procedure
for Kc for each non-leaf c ∈ c(r) eventually yields the desired partial constraint Nx for
every inner node x ∈ I(T). Figure 7.12 gives an example for this procedure.

Lemma 7.5. Let φ denote an order of the leaves of T that satisfies T . Then φ satisfies
the partial constraint P if and only if φ satisfies the divided partial constraint Nx for all
inner nodes x ∈ I(T) together with their rotation constraints.

Proof. Let φ denote an order of the leaves of T that satisfies both T and P . Then clearly,
φ[L(P)] satisfies S = Intersect(Project(T, L(P)), P). Let r be the root of T with
children c1, . . . , cj and let Nr be the corresponding partial constraint for r. Because Nr is
obtained using a sequence of Split operations on S, it holds, by the definition of the Split
operation, that φ[A(c1) → a1, · · · , A(cj) → aj] satisfies Nr. Since, for any x ∈ I(T), Nx

can also be obtained by rooting T at x, the same holds for Nx for all x ∈ I(T). Furthermore,
because the rotation constraints only synchronize the rotation of C-nodes that stem from
the same C-node in S and since φ must satisfy that C-node, φ[A(c1)→ a1, · · · , A(cj)→ aj]
satisfies all divided partial constraints Nx for all x ∈ I(T) together with the rotation
constraints between their C-nodes.

Conversely, let φ be an order that satisfies Nx for all x ∈ I(T) together with their rotation
constraints. In a leaf-to-root BFS-order of T , compute N ′x := Merge(Nx, N

′
c1 , · · · , N

′
cj

),
where c1, . . . , cj are the children of x in T . For root r of T , modify N ′r as follows. For any
two adjacent C-nodes q1 and q2 in N ′r with rotation constraints ψ(q1) = ψ(q2), merge q1
and q2 accordingly. Denote the resulting PC-tree by Ŝ. Because φ respects the rotation
constraints between the partial constraints, φ satisfies Ŝ. The only difference between S
and Ŝ is that a P-node of S may be split into adjacent P-nodes in Ŝ. This means that the

50

7.4. Operations for Constrained Pipes

a b c d e f a b c d e f

x

y z

g g

PT

a b c d e f g

T ′

(a)

a b c d e f g a b y z c d x e f g x

S Nx Ny Nz

(b)

Figure 7.12: (a) An embedding tree T together with a partial constraint P and the pro-
jection T ′ = Project(T, L(P)) of T to the leaves in P . (b) The resulting
intersection S = Intersect(T ′, P) of T ′ and P , together with the divided
partial constraints Nx, Ny, and Nz corresponding to the inner nodes x, y,
and z in T . The rotation of all green C-nodes is synchronized using rotation
constraints.

restrictions of S are a subset of the restrictions of Ŝ and since φ satisfies Ŝ, φ therefore
also satisfies S and thus φ also satisfies the partial constraint P .

This powerful tool allows us to break down a partial constraint to the individual inner
nodes of an embedding tree. Using this, we modify the operation PropagatePQ for
constrained pipes as follows; see Figure 7.13. Let ρ = (u, v, ϕuv,R) be a constrained
pipe where u is a blockvertex with a non-trivial embedding tree Tu. First, we apply the
standard version of PropagatePQ, replacing u (respectively v) with the embedding tree
Tu (respectively the mirrored version T ′u of Tu). For each Q-node appearing as q in Tu
and as q′ in T ′u we add a Q-constraint between q and q′. Next, for each partial constraint
Pi ∈ R = {P1, . . . , Pj}, we break down Pi to the inner nodes I(Tu) of Tu using the algorithm
described above, resulting in a new partial constraint N i

x for each inner node x ∈ I(Tu).
If this operation fails, we reduce to a trivial no-instance. Repeating this for every partial
constraint Pi ∈ R = {P1, . . . , Pj} yields a new set Rx = {N1

x , . . . , N
j
x} for each inner node

x ∈ I(Tu). For every P-node appearing as x in Tu and as x′ in T ′u, we therefore create
the new pipe ρx = (x, x′, ϕxx′ ,Rx), where ϕxx′ naturally maps the edges incident to x in
Tu to the corresponding edges incident to x′ in T ′u. We call this operation Constrained
PropagatePQ.

We now describe how the mappings o and r are updated after the operation Constrained
PropagatePQ. For each inner node x of the embedding tree Tu we used to replace vertex u,
we set o(x) = o(u). For every shared edge e incident to o(u), we set rx(e) = e′, where e′ is
the edge incident to x whose subtree in Tu contains the edge ru(e) as a leaf; see Figure 7.14
for an example. The updated mappings for the other matched vertex v are analogous.

Lemma 7.6. Applying the operation Constrained PropagatePQ operation to an instance
I yields an equivalent instance I ′ where all invariants remain intact.

Proof. The correctness of Constrained PropagatePQ follows directly from the correctness
of PropagatePQ [BFR20, Lemma 5] in combination with Lemma 7.5.

51

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

u v

R = {P1, P2}

(a)

x x′

y y′

z z′Rz = {N1
z , N

2
z }

Rx = {N1
x , N

2
x}

Tu T ′
u

(b)

Figure 7.13: A constrained pipe matching a block vertex u and a cutvertex v with partial
constraints R = {P1, P2} (a). Note that the edge ordering around v is mirrored
with respect to u. The resulting equivalent instance (b) obtained after applying
the operation Constrained PropagatePQ, which replaces u and v with the
embedding tree Tu and its mirrored version T ′u, respectively. The partial
constraints in R are broken down to the individual nodes of the embedding
tree and used as constraints for the newly added pipes between P-nodes of Tu
and T ′u.

u

{}
{}

{}

{e1} {e2}
{e3}

{e4}{e5}
{e6}

(a)

y

{}

{}{e1}

{e2, e3}

{e4, e5, e6}

Tu

(b)

Figure 7.14: (a) A matched vertex u. The red sets indicate the shared edges incident to
o(u) in G that each edge incident to u corresponds to. (b) After replacing
u with the embedding tree Tu, the edges incident to the inner node y are
annotated with all edges contained in the corresponding subtree.

52

7.4. Operations for Constrained Pipes

We first show that Invariant 7.1 holds for the newly created vertices, which all correspond
to inner nodes of the embedding tree Tu. Essentially, we have to show that our updated
mapping r is consistent with the way we break down the partial constraints to the inner
nodes of Tu. Let R denote a partial constraint of R and let x denote an inner node of Tu.
Let B denote the shared block around o(u) in G that R corresponds to by Invariant 7.1,
hence L(R) = ru(B). Our updated mapping ensures that the set rx(B) contains exactly
the edges incident to x whose subtrees in Tu contain edges of ru(B) = L(R) as leaves. By
construction, the new partial constraint Nx derived from R contains as leaves exactly the
edges incident to x whose subtrees in Tu contain an edge of L(R) = ru(B) as a leaf. Since
L(R) = ru(B), it therefore follows that L(Nx) = rx(B) and thus Invariant 7.1 remains
intact.

Since all new pipes match vertices corresponding to the same inner node of Tu, the mapping
r is updated symmetrically for both endpoints of these pipes. Since Invariant 7.2 holds for
ρ in I, it therefore also holds for all newly created pipes in I ′.

Now we want to show that Invariant 7.3 holds for all P-nodes in I ′. Let x be an inner node
of Tu such that x is the pole of a P-node µ′ with twin pole y in I ′ after replacing u with Tu.
Since Constrained PropagatePQ only increases the connectivity of the graph, this means
that u was also already the pole of a P-node µ with twin pole y in I. Every virtual edge of
µ′ thus consists of one or more virtual edges of µ. Since we defined the mapping rx for the
new pole accordingly, and since Invariant 7.3 holds for µ in I, Invariant 7.3 therefore also
holds for µ′ in I ′.

Because Constrained PropagatePQ only increases the connectivity of the graph, it is easy
to see that Invariant 7.4 and Invariant 7.5 also remain intact.

Finally, we still need to show that Invariant 7.6 remains intact. Let Î denote the Syn-
chronized Planarity instance obtained from I by ignoring all partial constraints of I.
For the vertex u of pipe ρ, let O denote the set of shared edges incident to o(u) in G,
and let Ou = ru(O) denote the set of the corresponding edges incident to u in Î. Let Ê
denote a planar embedding of Î and let φ̂ := Ê(u)[Ou] be the ordering of the edges in Ou
induced by Ê . By Invariant 7.6, there exists an embedding E of G with φ := E(o(u)) such
that ru(φ) = φ̂. Let Î ′ denote the reduced instance, again ignoring all partial constraints,
and let x denote an inner node of the embedding tree Tu we used to replace vertex u.
Since the operation PropagatePQ is correct [BFR20, Lemma 5], any embedding Ê ′ of Î ′
can be obtained from Ê by replacing vertex u with a suitable embedding of the tree Tu
in Ê . Let x denote an inner node of Tu and let Ox = rx(O) denote the edges incident to x
that correspond to the shared edges incident to o(x) = o(u). Since the mapping rx groups
the edges of Ou according to the subtrees of Tu incident to x (see the definition above)
and since o(x) = o(u), it is Ê ′(x)[Ox] = rx(E(o(x))) = rx(E(o(u))) = rx(φ). Therefore,
Invariant 7.6 holds for all newly created vertices.

7.4.2 Constrained EncapsulateAndJoin

Now we handle constrained pipes ρ = (u, v, ϕuv,R) between two cutvertices u and v using
a modified version of EncapsulateAndJoin called Constrained EncapsulateAndJoin.
First apply the operation Encapsulate to u (respectively to v). By Invariant 7.5, u has at
most one split component Su that consists of more than one edge, all other split components
are degree-1 vertices. As a simplification, we do not split the degree-1 vertices incident
to u. The operation Encapsulate thus only creates two new matched vertices wSu and
w′Su

corresponding to the split component Su; see Figure 7.15. By Corollary 7.4, all partial
constraints of R in the pipe ρ that are non-trivial (i.e., they constrain at least three edges)
only constrain edges belonging to Su. We can therefore move all partial constraints in R

53

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

Su

Su

w′
Su

wSu
u

R

Su
u

U1

w′
Sv

K

w′
Su

wSv
R

Sv

wSu

(a)

(b) (c)

R

µ

Figure 7.15: (a) A cutvertex u matched via a constrained pipe with partial constraints
R. By Invariant 7.5, u has at most one split component Su that consists of
more than one edge, all other split components are degree-1 vertices. (b) The
result of encapsulating u. As a simplification, the degree-1 vertices are not
split. The partial constraints in R are moved to the new pipe matching w′Su

and wSu , which is possible by Corollary 7.4. (c) An example illustrating the
resulting bipartition K after joining u with its partner v.

Su
u

Su
w′

Su
wSu u

{e1, e2}

{}

{e5}

{}

{}

{e5}

{}

{}

{}
{e1, e2}

{e4}

{e1, e2}

{e3}
{}

{e3}

{e4}

{e1, e2}

{}

{e3}

{e4}

(a) (b)

{e3}

{e4}

Figure 7.16: (a) A matched cutvertex u with a single split component Su consisting of more
than one edge. The edges incident to u are annotated with the shared edges
of o(u) they correspond to. (b) The mappings rwSu

and rw′
Su

for the new
vertices wSu and w′Su

after applying the operation Encapsulate to u. Note
that rwSu

(e5) = rw′
Su

(e5) = ⊥, because the edge incident to u corresponding
to e5 does not belong to the split component Su.

to the new pipe matching w′Su
and wSu and subsequently, the pipe ρ no longer contains

partial constraints. We can therefore apply the operation Join to the pipe ρ as in the
standard operation.

We update the mappings o and r after the operation Encapsulate as follows. We set
o(wSu) = o(w′Su

) = o(u). Let δ denote the natural mapping of the edges of Su incident to u
to the edges incident to wSu . For every edge e incident to o(u), we set rwSu

(e) = δ(ru(e)),
if ru(e) is contained in Su, and rwSu

(e) = ⊥ otherwise. For the vertex w′Su
that is matched

with wSu via a pipe with mapping ϕ, we set rw′
Su

(e) = ϕ(rwSu
(e)); see Figure 7.16 for an

example. Since the operation Join does not create new vertices, o and r do not have to be
updated afterwards.

Lemma 7.7. Applying the operation Constrained EncapsulateAndJoin to an instance
I yields an equivalent instance I ′ where all invariants remain intact.

Proof. We have already shown above that it is correct to move the partial constraint
in R to the new pipe matching w′Su

and wSu after the operation Encapsulate. Sub-
sequently, the pipe ρ no longer contains partial constraints, thus the correctness of

54

7.4. Operations for Constrained Pipes

Constrained EncapsulateAndJoin follows from the correctness of the standard oper-
ation EncapsulateAndJoin [BFR20, Lemma 4].

It therefore only remains to show that the invariants remain intact. First consider the
operation Encapsulate. Since we only encapsulate the split component Su incident to u, it
is clear that Invariant 7.5 remains intact. Recall that we have o(wSu) = o(w′Su

) = o(u) and
that the mappings rwSu

and rw′
Su

map the edges incident to o(u) in G to the edges incident
to wSu and w′Su

the same way the mapping ru maps them to u. The only difference is that,
for any edge e incident to o(u) where ru(e) does not belong to the split component Su, it
is rwSu

(e) = rw′
Su

(e) = ⊥. The new mappings are therefore basically copies of the mapping
ru, only the shared edges that do not “belong“ to Su are mapped to ⊥. Invariant 7.4
therefore remains intact and Invariant 7.2 holds for the new pipe matching w′Su

and wSu .
For the same reason, Invariant 7.3 also holds for the new bond with poles wSu and u1.
Because Invariant 7.1 was correct for ρ in I, it also holds for the pipe matching w′Su

and
wSu in I ′. Observe that in any embedding of I ′ the edges incident wSu and w′Su

have the
same (possibly reversed) cyclic order as the corresponding edges incident to u. Because
Invariant 7.6 holds for u in I, and since, as argued above, the mappings rwSu

and rw′
Su

are
well-defined, Invariant 7.6 therefore also holds for wSu and w′Su

.

Now consider the subsequent application of the operation Join. It is clear that Invariant 7.5
still holds. Since we do not alter the mappings o and r in this step, Invariant 7.4 and
Invariant 7.6 also remain intact. Because no new pipes are created, Invariant 7.1 and
Invariant 7.2 still hold. Note that Join might create new P-nodes in the resulting bipartition
K in the form of a trivial bond µ with poles w′Su

and w′Sv
; see Figure 7.15 for an example.

Note that the operation Join ensures that the bond µ matches the between w′Su
and w′Sv

the same way as the pipe ρ matches the corresponding edges between u and v in I. Since
Invariant 7.2 holds for pipe ρ in I, Invariant 7.3 therefore holds for the bond µ in I ′

Now the only operation that remains to be adjusted for constrained pipes is SimplifyMatching.
For standard pipes, the three cases of SimplifyMatching are quite straightforward and
are therefore grouped together. In the presence of constrained pipes, these cases become
significantly more involved. For this reason, we split the three cases into different operations
and show their correctness separately.

7.4.3 Transitive Constrained SimplifyMatching

Let ρ = (u, u′, ϕuu′ ,R1) be a pipe of the Synchronized Planarity instance I, where one
of the matched vertices, say u, has a trivial embedding tree. This means that u is a pole of
a bond µ; let v denote the other pole of µ. We first consider case iii of SimplifyMatching,
where v is part of a constrained pipe ρ′ = (v, v′, ϕvv′ ,R2) with v′ 6= u; see Figure 7.17c.
In this case, we remove ρ and ρ′ and create a new pipe ρ∗ = (u′, v′, ϕu′v′ ,R1 ∪ R2),
where ϕu′v′ := ϕvv′ ◦ δuv ◦ ϕu′u and where δuv bijectively maps the edges of u to the
edges of v according to the bond µ. We call this operation Transitive Constrained
SimplifyMatching.

Lemma 7.8. Applying the operation Transitive Constrained SimplifyMatching to an
instance I yields an equivalent instance I ′ where all invariants remain intact.

Proof. Let E denote an embedding of the original instance I that satisfies ρ and ρ′,
i.e., E(u) = ϕu′u(E(u′)) and E(v′) = ϕvv′(E(v)). Additionally, E(u) satisfies the partial

1Recall that we defined δ(⊥) = ⊥ for any mapping δ, thus the statements of the invariants are also
well-defined after setting rwSu

(e) = rw′
Su

(e) = ⊥ for some edges incident to o(u).

55

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

uu′ v

ρ

(a)

u v

ρ

(b)

uu′ v

ρ

v′

ρ′

ρ∗

(c)

Figure 7.17: The three different cases of the operation SimplifyMatching.

constraints in R1 and E(v′) satisfies R2. Because the embedding is planar, it is E(v) =
δuv(E(u)) and therefore [BFR20, Lemma 6]

E(v′) = ϕvv′(δuv(E(u))) = ϕvv′(δuv(E(u)))
= ϕvv′(δuv(ϕu′u(E(u′)))) = ϕvv′ ◦ δuv ◦ ϕu′u(E(u′)) = ϕu′v′(E(u′)).

Therefore, E(v′) satisfies ρ∗ with partial constraintsR1∪R2 and thus E is also an embedding
of the reduced instance I ′.

To obtain an embedding E of the original instance from an embedding E ′ of the reduced
instance, set E(u) = ϕu′u(E(u′)) and E(v) = ϕv′v(E(v′)). Since both E(u′) and E(v′) satisfy
the partial constraints R1 ∪R2, both pipes ρ and ρ′ are satisfied in E . Additionally, E is
planar [BFR20, Lemma 6].

It remains to show that the operation retains all invariants. Since Transitive Constrained
SimplifyMatching does not alter the graph structure or the mappings r and o, Invariants
7.3–7.6 are not affected.

To show that Invariant 7.2 holds for the new pipe ρ∗ in I ′, first note that Invariant 7.2
holds for the old pipes ρ and ρ′ in the original instance I, and that Invariant 7.3 holds for
µ in I. Let Bu′ denote a shared block around o(u′) in the shared graph G. We can use
these invariants successively for ρ, µ, and ρ′, to find a block Bv′ around o(v′) in G with
rv′(Bv′) = ϕvv′ ◦ δuv ◦ϕu′u(ru′(Bu′)) = ϕu′v′(ru′(Bu′)). Therefore, Invariant 7.2 holds in I ′.

It only remains to show that Invariant 7.1 remains intact. Let R ∈ R1 ∪R2 be a partial
constraint of the new pipe ρ∗. First consider the case where R originates from the pipe ρ
matching u′ and u, i.e., R ∈ R1. By Invariant 7.1, there exists a block Bu′ around o(u′)
in the shared graph G, such that L(R) = ru′(Bu′)2, thus we are immediately done. Now
consider the case where R ∈ R2. Then we can use Invariant 7.2 on the pipe ρ′ to find a
block Bv′ around o(v′) such that L(R) = rv′(Bv′). Since we have already shown above that
Invariant 7.2 holds for the pipe ρ∗ in I ′, we can use Invariant 7.2 in ρ∗ to find a block Bu′

around o(u′) with ru′(Bu′) = ϕ−1
u′v′(rv′(Bv′)). Hence the partial constraint R constrains

exactly the edges of Bu′ incident to u′ and thus Invariant 7.2 remains intact.

7.4.4 Trivial Constrained SimplifyMatching

As the next operation, we modify case i of the standard operation SimplifyMatching. In
this case, we have a pipe ρ = (u, u′, ϕuu′ ,R) and u is a pole of a trivial bond µ with twin
pole v, where v is unmatched; see Figure 7.17a. In the standard operation, we can simply
remove ρ from the instance, because the bond µ can always mirror the edge orderings
enforced by u′ [BFR20, Lemma 6]. But in our case, we also have to ensure that these edge
orderings enforced by u′ are compatible with the partial constraints R of ρ.

2Note that pipes are bidirectional, hence we can also use the invariant in the reverse direction.

56

7.4. Operations for Constrained Pipes

uu′ v

R

µµ′

Figure 7.18: After eliminating cutvertices and if no other operation can be applied, ev-
ery pipe satisfying the prerequisites of the operation Trivial Constrained
SimplifyMatching matches the poles of two trivial bonds µ and µ′. Since the
other poles of µ and µ′ must be unmatched, only the partial constraints in R
restrict the order of virtual edges in µ and µ′.

First consider the case where u′ is a cutvertex. By Invariant 7.5, there is at most one split
component S incident to u′ that contains more than one edge. Since every partial constraint
only restricts the edges of a single split component by Corollary 7.4, all non-trivial partial
constraints restrict edges in S. Therefore, all other split components are not contained in
any partial constraints and we remove them from u′ and we split off their corresponding
virtual edges in µ.

Now we assume that no other operation can be applied to any pipe in the Synchronized
Planarity instance I. Therefore, we now know that u′ is also the pole of a different trivial
bond µ′, because if u′ had a non-trivial embedding tree, we could still apply Constrained
PropagatePQ. Additionally, the twin pole of u′ in µ′ is unmatched, because otherwise, we
could still apply Transitive Constrained SimplifyMatching on µ′. The bonds µ and
µ′ therefore have the structure shown in Figure 7.18.

Since µ and µ′ themselves carry no restrictions on the possible orderings of their virtual
edges, we only need to verify that the partial constraints in R are compatible, i.e., they
do not contradict one another. For arbitrary partial constraints, this is a very difficult
problem, however, our invariants heavily restrict the possible cases. In fact, we will show
that R can only contain partial constraints restricting the same leaf set, which makes
the problem trivial. To show this, we will use Invariant 7.6. Recall that this invariant
essentially states that any planar embedding of the instance Î obtained by removing all
partial constraints from I must also induce a valid edge ordering for the shared edges
around o(u) in G, subject to the mapping ru.

As an example illustrating this, consider again the situation shown in Figure 7.11. As stated
in the caption, swapping the edges b and c around u would mean that the corresponding
embedding of the shared graph G cannot be planar, because swapping the corresponding
edges e3 and f1 around o(u) would mean that edges of the blocks B1 and B2 alternate.
We used this observation, in combination with Invariant 7.6, to conclude that Î does not
allow the edges b and c incident to u to be swapped. However, in the context of Trivial
Constrained SimplifyMatching, any ordering of the edges incident to u leads to a valid
embedding of Î (see Figure 7.18), since Î contains no partial constraints. This means that
the blocks around o(u) cannot have the structure shown in Figure 7.11, because otherwise,
Invariant 7.6 would be violated.

Lemma 7.9. There is at most one shared block B around o(u) in G such that |ru(B)| ≥ 3.

Proof. Assume, for the sake of contradiction, that there are two distinct blocks Ba and Bb
around o(u) in G such that |ru(Ba)| ≥ 3 and |ru(Bb)| ≥ 3. Let Î denote the Synchronized
Planarity instance obtained by removing all partial constraints from I. Observe that,
after removing the partial constraints in R from the pipe ρ, any cyclic ordering of the

57

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

edges incident to u can be extended to a planar embedding of Î; see Figure 7.18. We will
use this fact, combined with Invariant 7.6, to find a contradiction.

Let E(u) denote the set of edges incident to u, let O denote the shared edges incident to
o(u) in G and let Ou = ru(O) ⊆ E(u) denote the corresponding edges incident to u in Î.
Recall that ru(Ba) ⊆ E(u) and ru(Bb) ⊆ E(u). Also recall that ru(Ba) and ru(Bb) are not
necessarily disjoint, because the mapping ru may map several shared edges incident to
o(u) to the same edge incident to u. Let {a1, a2, a3} ⊆ ru(Ba) and let {b1, b2, b3} ⊆ ru(Bb).
Pick an arbitrary planar embedding Ê of Î3, where the cyclic ordering σ = Ê(u) satisfies
the constraint {a1, b1} <σ {a2, b2} <σ {a3, b3}. Note that we always find an ordering
satisfying this constraint (possibly after renaming the elements in {b1, b2, b3}), even if
ru(Ba) = ru(Bb). Now consider an order σ′ of the shared edges incident to o(u), such that
ru(σ′) = σ[Su]. Then {r−1

u (a1), r−1
u (b1)} <σ′ {r−1

u (a2), r−1
u (b2)} <σ′ {r−1

u (a3), r−1
u (b3)}

must hold for σ′. But this means that edges of Ba and Bb must alternate, which means
that no planar embedding of G can induce the edge ordering σ′ around o(v), since Ba
and Bb are distinct blocks. Hence we have a planar embedding Ê of Î, but there cannot
exist a planar embedding E of the shared graph G with E(o(u)) = Ê(u)[Ou]. This is a
contradiction to Invariant 7.6.

Now consider a partial constraint R ∈ R. Note that any partial constraint with at most
two leaves is always trivially satisfied and can therefore be removed from R. Thus, for
all remaining partial constraints in R, it is |L(R)| ≥ 3. Recall that Invariant 7.1 ensures
that, for every partial constraint R ∈ R, there exists a shared block B around o(u) in
the shared graph G, such that L(R) = ru(B). Since |L(R)| = |ru(B)| ≥ 3, this block B
is unique by Lemma 7.9. This means that for every pair R1, R2 of partial constraints in
R, it is L(R1) = L(R2) = ru(B), hence all partial constraints in R have the same set of
leaves. Since the intersection of two PQ-trees with the same leaf set is well-defined, we can
now intersect all partial constraints in R and obtain a single partial constraint R′. If this
operation fails, no ordering of the virtual edges in µ and µ′ satisfies the partial constraints
in R, thus we reduce to a trivial no-instance. Since the virtual edges in µ and µ′ can be
ordered arbitrarily, we can simply pick any ordering that satisfies the partial constraint R′.
Since R contains no other partial constraints, the constrained pipe ρ can therefore always
be satisfied and we can remove it as in the standard operation. We call this operation
Trivial Constrained SimplifyMatching.

7.4.5 Toroidal Constrained SimplifyMatching

The last remaining operation is case ii of the standard operation SimplifyMatching. In
this case, we have a pipe ρ = (u, v, ϕuv,R), where u and v are the poles of a trivial bond µ;
see Figure 7.17b. For x ∈ {u, v}, let δx denote the bijection between the edges incident to
x and the virtual edges of bond µ and let δuv = δ−1

u ◦ δv be the corresponding bijection
between the edges incident to u and v, respectively. Let further π = ϕuv ◦ δuv be the
permutation of the virtual edges in µ defined by ϕ. As in the standard version of the
operation, we first determine whether all cycles in π have the same length and we reduce
to a trivial no-instance if this is not the case, because then µ has no planar embedding that
satisfies ρ [BFR20]. The proof of the standard operation [BFR20, Lemma 6] uses the fact
that all cycles of permutation π have the same length if and only if π is order-preserving
with respect to some cyclic ordering O of the virtual edges in µ [BR16, Lemma 2.2], i.e., it
is π(O) = (O). If this is the case, an unconstrained pipe can simply be removed, because
O immediately yields a planar embedding of µ that satisfies ρ. If ρ is a constrained pipe,

3As argued before, if Î is a yes-instance, then any ordering σ of E(u) is induced by some planar embedding
of Î; see Figure 7.18.

58

7.4. Operations for Constrained Pipes

however, O does not necessarily satisfy the partial constraints defined in the set R of ρ.
Therefore, we need to determine whether there is an ordering O such that O satisfies all
partial constraints in R and such that π is order-preserving with respect to O.

Corollary 7.10. Let L be a set and let π : L → L be a permutation where all cycles in
π have length m. Then π is order-preserving with respect to a cyclic order O = l1 . . . ln
of L with n = |L| if and only if li <O lj <O lk implies π(li) <O π(lj) <O π(lk) for all
i, j, k ∈ {1, . . . , n}

We call the requirement from Corollary 7.10 the order-preservation constraints of π. To
determine whether the trivial bond µ admits a planar embedding that satisfies pipe ρ, we
have to find an ordering of its virtual edges that satisfies the partial constraints R of ρ and
the order-preservation constraints of π. However, we also have to consider that there might
be Q-nodes in partial constraints of R that are part of a synchronization constraint with
Q-nodes of partial constraints in other pipes of the Synchronized Planarity instance.
We therefore cannot simply combine the order-preservation constraints of π with the partial
constraints of R and solve them independently from the remaining instance. Recall from
the operation Trivial Constrained SimplifyMatching that we used the fact that the
virtual edges of µ can be ordered arbitrarily to infer that all partial constraints must
constrain the same set of leaves using Invariant 7.1 and Invariant 7.6. We were able to
do this, because the virtual edges of µ can be ordered arbitrarily if we ignore the partial
constraints in the pipes, thus Invariant 7.6 significantly restricts the possibilities. For the
operation Trivial Constrained SimplifyMatching, this does not work as easily. Even
if we ignore the partial constraints in ρ, the pipe ρ itself restricts the possible orderings of
the virtual edges in µ via the permutation π, thus we can not as easily conclude that all
partial constraints in R constrain the same set of edges.

Due to these considerations, we currently cannot solve this case in general. However, we
believe that the following always holds.

Conjecture 7.11. If R contains a partial constraint R with |L(R)| ≥ 3 and all cycles of
the permutation π have the same length, then all cycles of the permutation π have length 1.

If Conjecture 7.11 holds, then the operation Toroidal Constrained SimplifyMatching
is very simple. If not all cycles of π have the same length, then we can reduce to a trivial
no-instance as described above. If the pipe ρ contains no partial constraints, or only trivial
partial constraints with less than three leaves, we can proceed as in the standard operation.
Otherwise, if R contains a partial constraint restricting at least three edges, then all cycles
of π must have length 1 by Conjecture 7.11. If all cycles of the permutation π have length 1,
then the permutation π is the identity, thus we can handle this case the same way as the
operation Trivial Constrained SimplifyMatching.

We believe that Conjecture 7.11 holds for the following reason. The different operations
most likely cannot create the structure consisting of a trivial bond µ and a pipe matching
its poles out of thin air. Instead, the permutation π must have already been hidden in the
instance previously, as a cyclic sequence v0, . . . , vl, v0 of vertices, where l is an odd integer.
The vertices vi and vi+1 are matched via a pipe for even i and, for odd i, vi and v(i+1)%l
belong to the same connected component. We believe that, if one of the pipes contains a non-
trivial partial constraint, there exists a permutation π defined by the mappings of the pipes
in combination with disjoint paths through the connected components, such that at least
one cycle of π has length 1. If this can be stated as an invariant, then Conjecture 7.11 holds
for the operation Toroidal Constrained SimplifyMatching, which makes the operation
simple as described above. Since the partial constraints correspond to blocks of the shared

59

7. Parameterization by the Number of Connected Components and the Maximum Degree
of the Shared Graph

graph and since corresponding shared edges are matched consistently via pipes, we believe
that it is possible to show that this invariant holds in Iinit and that it also remains intact
throughout the algorithm.

7.5 Solving the Reduced Instance
Observe that our modified Synchronized Planarity operations make the same struc-
tural changes to the graph as the original operations, they only differ in the way they
treat the partial constraints. Therefore, the analysis of the original Synchronized Pla-
narity algorithm still applies and we obtain an equivalent pipe-free instance in polynomial
time [BFR20]. Since a pipe-free instance also contains no partial constraints, the reduced
instance can be solved using a 2-Sat instance obtained from the Q-constraints of the
instance, as in the original algorithm [BFR20]. We remark that the additional partial
constraints of our SEFE instance are implicitly encoded into this 2-Sat instance, because we
added additional Q-constraints between Q-vertices when breaking down partial constraints
in the operation Constrained PropagatePQ. Since we have shown in Section 7.4 that all
our modified operations are correct, we finally get the following result.

Theorem 7.12. The problem Simultaneous Embedding With Fixed Edges is FPT
parameterized by the number k of connected components of the shared graph and the
maximum degree ∆ of the shared graph and can be solved in time O(((k+ ∆)!)4k2 ·poly(n)),
if the following conditions apply:

1. both exclusive graphs are biconnected,

2. every pair of fixpoints is block-local, and

3. Conjecture 7.11 holds for the operation Toroidal Constrained SimplifyMatching.

60

8. Polynomial-Time Algorithm for SEFE
of two Biconnected Graphs with
Maximum Degree 4

In this section, we construct a polynomial-time algorithm to solve SEFE when the two
input graphs G 1 and G 2 are both biconnected and have maximum degree at most 4.
Observe that this implies that the shared graph G also has maximum degree at most 4 and
that the union graph G∪ has maximum degree at most 8. This extends previous results
from algorithms by Schaefer [Sch13] and by Bläsius et al. [BKR18], which solve SEFE
for non-trivial connected components of the shared graph if all these components have
maximum degree 3.

In order to obtain this polynomial-time algorithm, we once again augment the Synchro-
nized Planarity instance obtained from the linear-time reduction from SEFE [BFR20]
(see Chapter 2 and Figure 2.3) with additional constraints enforcing consistent relative
positions, similar to our approach in Chapter 7. This time, instead of deriving necessary
and sufficient partial constraints from a set of auxiliary graphs, we aim to ensure consistent
relative positions by incorporating the approach introduced by Bläsius et al. [BKR18] into
Synchronized Planarity. Since the shared graph has no fixed embedding, relative
positions of connected components of the shared graph cannot be expressed with respect
to faces of the shared graph. Instead, Bläsius et al. [BKR18] express the position of a
component D with respect to another component H by fixating the position of D relative
to all cycles of a cycle basis B of H. For this purpose, assign a direction to each cycle
C ∈ B and let the binary variable posC(D) denote whether component D lies to the left
or to the right of the edges of the directed cycle C. Bläsius et al. showed that, for any
embedding E of H, assigning a value posC(D) for each C ∈ B already uniquely defines the
position of D in a face in E [BKR18, Theorem 8], if such a face exists.

Bläsius et al. [BKR18] use relative positions with respect to a cycle basis to ensure that
every shared component is embedded in the same face of the shared graph in G 1 and G 2 .
To this end, they examine the SPQR-tree representation of both exclusive graphs and
derive necessary and sufficient (in-)equations between the binary variables determining
the relative positions. Since the embedding of R-nodes is fixed up to reversal, the relative
positions can be simply synchronized with a binary variable representing the flip of the
R-node. For P-nodes, they add equations that ensure that all shared components contained
in a single virtual edge have the same relative position. Since they additionally need to

61

8. Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with Maximum
Degree 4

ensure that both exclusive graphs have consistent edge orderings, they also use a system
of equations to synchronize the possible embedding decisions for both graphs. Since the
admissible orderings of P-nodes and cutvertices cannot be expressed using just equations
on binary variables, they restrict themselves to the case where all P-nodes and cutvertices
have shared degree at most 3. With this restriction, all relevant embedding choices become
binary decisions, which allows them to solve SEFE in cubic time. However, their algorithm
in general only works on graphs where the shared graph has maximum degree 3 [BKR18,
Theorem 9].

We now develop an algorithm that allows the shared graph to have maximum degree 4, if
both exclusive graphs are biconnected and have maximum degree 4. Similarly to Bläsius
et al. [BKR18], we also use relative positions with respect to cycles of a cycle basis to
ensure consistent relative positions. However, we use Synchronized Planarity to
ensure consistent edge orderings of both exclusive graphs. For this purpose, let B denote
a cycle basis of the shared graph G. Let C ∈ B be a cycle of the cycle basis and let K
denote a shared component of G. We may assume, without loss of generality, that B only
consists of simple cycles [BKR18]. For i ∈ {1, 2}, pick an arbitrary path p i in G i that
is vertex-disjoint from C (except for its endpoint) and that connects C to K in G i ; see
Figure 8.1a for an example. Since both exclusive graphs are connected, such a path always
exists. Let v i denote the endpoint of path p i on C and let f i denote the edge of p i

incident to v i . Let further e i
1 and e i

2 denote the two shared edges of C incident to v i .
We create a triple t i = (e i

1 , f
i , e i

2) and we use the binary variable ord(t i) to express the
rotation of t i , i.e., whether the edge f i (and therefore also the shared component K) is
embedded between e i

1 and e i
2 in clockwise cyclic order or not. We call these variables the

rotation variables. The equation ord(t 1) = ord(t 2) is clearly necessary to ensure that the
shared component K is embedded on the same side of cycle C in both exclusive graphs. We
call these equations the triple equations and we say that t 1 is the partner triple of t 2 . To
compute all triples of a single cycle C, start a DFS at C in both exclusive graphs, putting
all vertices of C on the stack. When extending a path, only consider vertices that are not
contained in C. If the DFS first reaches a vertex of a new shared component K, we have
found the desired path p i connecting C to K in G i . This way, we can compute all triples
of the cycle C in linear time and since the cycle basis B contains O(n) cycles [BKR18], we
can compute all triples and the corresponding triple equations in time O(n2).

Since the triples determine all relative positions of a shared component H with respect to
cycles of the cycle basis B, assigning a value to each triple uniquely determines a face of
the shared graph where H is embedded, if such a face exists [BKR18, Theorem 8]. The
triple equations additionally ensure that this relative position is identical for both exclusive
graphs. Therefore, it remains to determine whether there exist embeddings of the exclusive
graphs with consistent edge orderings such that the triple equations are satisfied.

Since the problem Synchronized Planarity can determine the set of embeddings of G 1

and G 2 with consistent edge orderings using a system of equations on the rotation of Q-
nodes, our goal is to encode the triple equations into this system of equations. We start with
the Synchronized Planarity instance (H = (H 1 ∪H 2 ∪B,E),P,Q, ψ) obtained after
the reduction from SEFE, where H 1 and H 2 denote the subgraphs of H corresponding to
the two exclusive graphs, and B contains the bonds synchronizing the shared edges between
H 1 and H 2 . Recall that the vertices and edges of H 1 and H 2 correspond bijectively to
the vertices and edges in G 1 and G 2 . We place every triple located at G 1 and G 2 at its
corresponding position in H 1 or H 2 ; see Figure 8.1b. We let T denote the set of these
triples and we let ξ denotes the set of triple equations between the triples in T . For a triple
t in T , recall that the binary rotation variable ord(t) indicates the rotation in which the
edges of t appear in the cyclic order around the corresponding vertex of H. Observe that
an embedding of H fixes a rotation for each triple in T and thus induces an assignment

62

C

t 1

t 2

p 1

p 2

K

(a)

C

t 1

C

t 2

K K

H 1 H 2B

(b)

Figure 8.1: (a) A cycle C of the cycle basis of the shared graph. To ensure that the
shared component K lies on the same side of C in both exclusive graphs, the
triples t 1 and t 2 must be ordered consistently. The corresponding paths p 1

and p 2 are marked as dashed colored edges. (b) An equivalent instance of
Triple-SyncPlan.

for these binary variables. We therefore say that an embedding of H satisfies the triple
equations ξ, if the corresponding assignment for the rotation of all triples satisfies the triple
equations. In this way, we define an instance Iinit = (H = (H 1 ∪H 2 ∪B,E),P,Q, ψ, T , ξ)
of the the new augmented problem Triple-SyncPlan. A planar embedding E of H
satisfies the Triple-SyncPlan instance Iinit if it satisfies all pipes, all Q-constraints, and
additionally the triple equations in ξ.

Since the reduction from SEFE to Synchronized Planarity takes linear time [BFR20]
and since we can compute all triples in T in quadratic time as argued before, the Triple-
SyncPlan instance Iinit can be obtained in quadratic time. First, we will now show that the
SEFE instance G∪ and the Triple-SyncPlan instance Iinit are equivalent. Subsequently,
we will show how the operations of the Synchronized Planarity algorithm can be
modified to solve the Triple-SyncPlan instance Iinit.

Lemma 8.1. An instance G∪ of SEFE admits a simultaneous embedding E∪ = (E 1 , E 2) if
and only if the corresponding Triple-SyncPlan instance Iinit admits a planar embedding.

Proof. Since a simultaneous embedding of G∪ guarantees consistent edge orderings between
G 1 and G 2 , the pipes and Q-constraints of Iinit are also satisfied. Since, as argued before,
the additional triple equations are necessary, they must also be satisfied and thus Iinit
admits a planar embedding.

Conversely, let (E 1 , E 2) be embeddings of H 1 and H 2 (and therefore of G 1 and G 2) that
satisfy the Triple-SyncPlan instance. Since the Synchronized Planarity reduction
ensures that the shared edges are ordered consistently in E 1 and E 2 [BFR20], it suffices
to show that every connected component of the shared graph is embedded in the same face
of G in E 1 and E 2 . Let H denote a connected component of the shared graph and let f 1

and f 2 denote the faces of G in E 1 and E 2 , respectively, that H is embedded in. Since,
for each cycle C in B and for every shared component H in G, we have a triple in each
exclusive graph, we get two relative position variables pos 1

C (H) and pos 2
C (H). However,

our triple equations ensure that pos 1
C (H) = pos 2

C (H) and since the face containing H
is determined by the relative position variables [BFR20, Theorem 8], it must hold that
f 1 = f 2 .

63

8. Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with Maximum
Degree 4

Note that Lemma 8.1 does not rely on the restriction that both exclusive graphs of the
SEFE instance are biconnected and have maximum degree 4. However, our algorithm will
only be able to solve the resulting Triple-SyncPlan instance Iinit, if it stems from a
SEFE instance G∪ where these restrictions hold.

8.1 Consistent Triple Assignments
Consider an assignment φ that assigns a boolean value to each rotation variable ord(t) for
all t ∈ T and that additionally satisfies all triple equations in ξ. Unfortunately, although
φ satisfies the triple equations, there is no guarantee that the triples at a single vertex
do not contradict each other; see Figure 8.2. This is a problem for us, because we will
be confronted with the situation, where Synchronized Planarity lets us choose an
arbitrary order for the edges incident to a vertex v of degree 4 independently from the
remaining instance. However, since there may be multiple triples located at v and since
these triples can communicate with other parts of the instance via triple equations, we
cannot pick an arbitrary assignment for the triples located at v. In this case, we need
to find an assignment for the triples at v that satisfies the triple equations and does not
produce contradictions between the triples located at v. As explained in Figure 8.2, the
latter constraint can (in general) not be formulated as a 2-Sat instance and thus also not
as a set of equations. Since our final goal will be to encode our triple equations into the
2-Sat instance that is used to solve the regular Synchronized Planarity problem, this
poses a problem.
If an assignment φ for the triples does not produce a contradiction between triples located
at a single vertex v, we say that φ is consistent for v. If every assignment satisfying the
triple equations is consistent for v, we say that v itself is consistent. In order to be able to
encode our triple equations into the 2-Sat formula solving Synchronized Planarity,
we need to ensure that every vertex v is consistent. To this end, we will show that, for
a vertex v that is not consistent in Iinit, the union graph G∪ always yields additional
necessary equations between triples located at v. We will encode these equations into the
triple equations in ξ and subsequently, v will be consistent.

To simplify our proofs, we assume that all possible triples containing two edges of a cycle in
B are present at v, even if some of these triples are not part of a triple equation. Therefore,
a triple (e1, e2, e3) is present at v if and only if there exists a cycle C in the cycle basis B
such that e1 and e3 are contained in C. Additionally, if we have two triples at v constraining
the same three edges, we can synchronize them using an (in-)equality and subsequently
remove one of the triples from v. Therefore, we end up with at most distinct

(4
3
)

= 4 triples
at every vertex. Note that this way, we cannot have vertices that contain exactly three
triples. For vertices with at most two distinct triples, these triples cannot contradict each
other. Therefore, any vertex that contains less than four triples is automatically consistent
and we only have to consider vertices with exactly four triples.

Corollary 8.2. Any vertex with less than four distinct triples is consistent.

Now consider a vertex v that is not consistent, i.e, v contains four distinct triples. If we can
find one necessary equation between two distinct triples located at v, all valid assignments
for the triples at v can be formulated via equations. This can be verified using the truth
table in Figure 8.2. For example, if ord(t1) 6= ord(t2) is necessary, an assignment for the
triples at v is valid if and only if additionally ord(t3) 6= ord(t4) and ord(t1) = ord(t3) holds.
From now on, we therefore immediately infer that v is consistent, if we find such a necessary
equation between two of its triples. Implicitly, we add the corresponding equations to the
triple equations in ξ to ensure that v is consistent. This yields the following corollary.

64

8.1. Consistent Triple Assignments

ve4 e1

e2

t1 = (e1, e2, e3)

t2 = (e2, e3, e4)

t3 = (e1, e2, e4)

t4 = (e1, e3, e4)

e3

ord(t1) ord(t2) ord(t3) ord(t4) valid
1 1 1 1 1
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
1 0 0 1 0
1 0 0 0 0
0 1 1 1 0
0 1 1 0 0
0 1 0 1 1
0 1 0 0 0
0 0 1 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Figure 8.2: A vertex v with four incident edges, such that the cyclic order of each subset of
three edges is constrained by a triple. The binary variable ord(ti) represents
whether the three edges belonging to ti appear clockwise around v in the
shown order or its reverse. Not every assignment for the triples is valid, e.g.,
ord(t1) = ord(t2) = ord(t3) = 1 and ord(t4) = 0 does not induce an order of the
edges incident to v, since the triples contradict each other. Because exactly six
of the 24 = 16 possible assignments are valid, the valid assignments cannot be
expressed as a 2-Sat formula, and therefore also not by a set of equations. If,
however, there is an additional constraint that two triples must be (un-)equal,
the remaining valid assignments can be formulated as a 2-Sat formula.

Corollary 8.3. If there exists a necessary equation between two distinct triples located at
a vertex v, then v is consistent.

With the following lemma, we will show that we always find such a necessary equation at
vertices with non-trivial embedding tree, which implies that the vertex is consistent.

Lemma 8.4. If a vertex v of degree at most 4 has a non-trivial embedding tree, then v is
consistent.

Proof. By Corollary 8.2, we only have to consider the case where v has degree exactly 4 and
contains exactly four triples. Let Tv denote the embedding tree of v. Since Tv is non-trivial,
there exists a consecutivity constraint R ∈ R(T) with |R| = 2 (note that |R| ∈ {0, 1, 3, 4}
would be a trivial constraint). Without loss of generality, assume R = {e1, e2}, i.e., e1 and e2
must be consecutive. Since we only have to consider the case where v contains exactly four
distinct triples, there must be two triples t1 and t2 constraining edges E(t1) = {e1, e2, e3}
and E(t2) = {e1, e2, e4}, respectively. But since e1 and e2 must be consecutive, either
ord(t1) = ord(t2) or ord(t1) 6= ord(t2) is necessary, depending on the default rotation of
t1 and t2. For example, for t1 = (e1, e2, e3) and t2 = (e4, e2, e1), only assignments with
ord(t1) 6= ord(t2) yield cyclic orders where e1 and e2 are consecutive, thus ord(t1) 6= ord(t2)
is a necessary equation. By Corollary 8.3, v is therefore consistent.

65

8. Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with Maximum
Degree 4

We now want to modify the Triple-SyncPlan instance Iinit to ensure that each vertex
of H is consistent. Recall that the subgraph B of H matching the shared edges of H 1 and
H 2 does not contain any triples, thus all vertices of B are consistent. Since G 1 and G 2 are
both biconnected, the two subgraphs H 1 and H 2 of the Triple-SyncPlan instance Iinit
are also biconnected, thus we only have to consider the consistency of block vertices. Since
any block vertex with a non-trivial embedding tree is consistent by Lemma 8.4, only vertices
of H 1 or H 2 with a trivial embedding tree remain. First, we will now show that we always
find a necessary equation between triples located at each such vertex v due to the structure
of the union graph G∪, hence v becomes consistent by Corollary 8.3. This way, we can
show that each vertex of the initial instance Iinit is consistent. Subsequently, we will show
how the operations of the Synchronized Planarity algorithm can be modified to yield
corresponding operations for our Triple-SyncPlan problem that can additionally handle
triples. We will also show that the vertices of our instance remain consistent throughout
applications of these operations. For the final reduced instance, we can then combine our
triple equations with the 2-Sat instance that solves the regular Synchronized Planarity
problem, to obtain a 2-Sat formula that solves our Triple-SyncPlan instance.

8.2 Consistent Vertices in Iinit

We now want to show that all vertices of the initial Triple-SyncPlan instance Iinit are
consistent. As argued above, it only remains to ensure that block vertices of H 1 and H 2

with a trivial embedding tree are consistent to ensure that all vertices in Iinit are consistent.
Recall that the vertices and edges in H 1 and H 2 of Iinit correspond bijectively to the
vertices in G 1 and G 2 of the SEFE instance. We therefore argue the consistency for the
vertices in the SEFE instance, the consistency of the corresponding vertices in H 1 and
H 2 then follows immediately. We also only argue the consistency of vertices in G 1 , but
all arguments can be applied symmetrically to G 2 .

Consider a vertex u 1 in G 1 with a trivial embedding tree, hence u 1 has degree exactly 4.
Then u 1 is a pole of a trivial bond µ with twin pole v 1 . We will assume as a simplification
that the triples located at u 1 directly refer to the virtual edges of µ. We consider different
cases for µ, based on how the cycles of the cycle basis B appear in the virtual edges
of µ. We say that a vertex or edge is contained in a virtual edge ε of µ, if the vertex
or edge is contained in the expansion graph exp(ε) of ε. We say that a virtual edge ε
of µ is cycle-contained, if there exists a cycle C ∈ B such that edges of C are contained
in ε and another virtual edge ε′ 6= ε of µ; see Figure 8.3 for an example. Note that any
cycle-contained virtual edge contains a path of shared edges between the poles u 1 and v 1 .
We say that two virtual edges ε1 and ε2 of µ are union-linked, if ε1 and ε2 are connected
in G∪ via a path that is vertex-disjoint from the poles of µ and all other virtual edges in µ.
If no virtual edge of µ is cycle-contained, then we have no triples located at the poles of µ
and we are done. Observe that, if we have a cycle-contained virtual edge in µ, there must
also be a second cycle-contained virtual edge in µ. Therefore, we have to consider the three
remaining cases, where µ has two, three, or four cycle-contained virtual edges.

8.2.1 Four Cycle-Contained Virtual Edges

First consider the case where µ contains exactly four cycle-contained virtual edges. In this
case, every virtual edge contains a shared path between u 1 and v 1 . If there are two virtual
edges in µ that are union-linked, they must therefore be adjacent in any embedding of µ
[BFR20, Lemma 2]. We can therefore implicitly restrict the embedding tree of the pole
u 1 of µ accordingly, thus µ is subsequently consistent by Lemma 8.4. If no pair of virtual
edges is union-linked, then {u 1 , v 1 } is a separating pair in the union graph G∪, which we
can decompose into independent subinstances [BKR18, Lemma 4] of lower degree.

66

8.2. Consistent Vertices in Iinit

µ

u 1 v 1

ε1

ε2

ε3

ε4

C2

C1

Figure 8.3: A trivial bond µ with four virtual edges. The virtual edges ε1 and ε4 are
cycle-contained, because edges of the cycle C1 (blue) are contained in ε1 and ε4.
Note that ε3 is not cycle-contained, because the edges of cycle C2 (red) are
only contained in ε3 and not in any other virtual edge.

8.2.2 Three Cycle-Contained Virtual Edges

Before we consider the case where µ contains three cycle-contained virtual edges, we
need some auxiliary tools. We start with the following lemma, which essentially states
that triples at the poles of a trivial bond constraining the same virtual edges must be
synchronized.

Lemma 8.5. Let u and v denote two poles of a trivial bond µ of degree 4. Let δuv denote
the bijection from the edges incident to u to the edges incident to v according to the bond µ.
For a triple tu = (e1, e2, e3) located at u and a triple tv = (δuv(e1), δuv(e2), δuv(e3)) located
at v, it is ord(tu) 6= ord(tv) in any embedding of µ.

Proof. Assume that there exists an embedding E of µ with ord(tu) = ord(tv). Then
the edges {e1, e2, e3} appear in the same clockwise cyclic order around u as the edges
{δuv(e1), δuv(e2), δuv(e3)} appear around v, which is a contradiction to the fact that u and
v are the poles of a trivial bond.

Using Lemma 8.5, we will now add additional necessary triple equations such that we
subsequently know that the triples located at the two poles of a bond are essentially just
synchronized copies of each other. Let µ denote a bond in G 1 with poles u 1 and v 1 and
let δuv denote the bijective mapping of the edges incident to u 1 to the edges incident to v 1

according to the bond µ. Recall that we assume that a triple tu = (e1, e2, e3) is present at
u 1 if and only if there exists a cycle C in the cycle basis B such that e1 and e3 are contained
in C. But since e1 and e3 are contained in two different virtual edges of µ, the edges δuv(e1)
and δuv(e3) are also part of the cycle C and thus the triple tv = (δuv(e1), δuv(e2), δuv(e3))
is present at v 1 and constrains the same three virtual edges as tu. We add the equation
ord(tu) 6= ord(tv) to our triple equations, which is a necessary equation by Lemma 8.5.
This means there now exists a bijective mapping between the triples at u 1 and the triples
at v 1 and due to the new equations, the triples at u 1 can never contradict the triples at
v 1 and vice versa. We therefore now say that the bond µ is triple-mirrored.

Corollary 8.6. Every trivial bond of G 1 and G 2 is triple-mirrored.

Now consider the case where exactly three edges of µ are cycle-contained. In this case, a path
in G∪ between two cycle-contained virtual edges ε1 and ε2 of µ does not immediately lead to
a consecutivity constraint for two virtual edges of µ, because the non-cycle-contained virtual

67

8. Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with Maximum
Degree 4

edge ε does not necessarily contain a shared path and could possibly still be embedded
between ε1 and ε2. This leads to instances where we cannot express the valid assignments
for the triples located at u 1 via our triple equations. However, we will show with the
following lemma that we can always find an equivalent instance where µ is consistent.

Lemma 8.7. Let µ denote a trivial bond of the exclusive graph G i with exactly three
cycle-contained virtual edges. If the poles of µ are not consistent, an equivalent instance
where both poles are consistent can be computed in time O(n2).

Proof. We will assume that µ is part of G 1 , but all arguments can also be applied to the
symmetric case where µ is located in G 2 .

If the non-cycle-contained virtual edge of µ is union-linked to a cycle-contained virtual
edge of µ, these two virtual edges must be adjacent in any embedding of µ, thus we can
once again infer that both poles of µ are consistent using Lemma 8.4. Therefore, we now
assume that this is not the case.

Consider the case where no triple of µ has a partner triple in G 2 . Note that this can
only happen because we added additional “dummy-triples“ earlier. In this case, all triples
located at the poles of µ are “dummy-triples“ which do not communicate with the remaining
instance. We can thus simply remove all triples located at the poles of µ and we end up
with an equivalent instance where both poles of µ are consistent. Therefore, we now assume
that some triple of µ has a partner triple in G 2 .

Let u 1 and v 1 denote the poles of µ and let t = (ε1, ε2, ε3) denote a triple of µ corresponding
to a cycle C ∈ B, where ε2 is not cycle-contained and ε1, ε3 are cycle contained. For the
partner triple t′ of t in G 2 with respect to cycle C, let w denote the vertex of the shared
graph that t′ is located at and consider the position of w in µ. If w is contained in ε1
(or ε3), then ε2 and ε1 (or ε2 and ε3) are union-linked (by the definition of partner triples),
which is a contradiction to an earlier assumption. Therefore, w must be one of the poles
of µ. Hence, every triple of µ that contains the non-cycle-contained virtual edge ε2 only
communicates with triples located at the vertices u 2 or v 2 corresponding to u 1 and v 1

in G 2 . Without loss of generality, we assume that t is located at u 1 in µ.
Let S denote the set of the three shared edges incident to u 1 that correspond to the
cycle-contained virtual edges in µ and let e 1 denote the edge corresponding to the non-
cycle-contained virtual edge ε2. Let further t 1 = (s1, e

1 , s2) denote a triple of µ located at
u 1 such that s1, s2 ∈ S, i.e., t 1 constrains e 1 and two cycle-contained virtual edges in µ.
Assume without loss of generality that the partner triple t 2 of G 2 that t 1 communicates
with (i.e., ord(t 1) = ord(t 2)) is located at u 2 , i.e., t 2 = (s1, f

2 , s2). It is f 2 /∈ S,
because otherwise, the non-cycle-contained virtual edge ε2 would be union-linked to a
cycle-contained virtual edge by the definition of partner triples, a contradiction. Since t 1

and t 2 are partner triples, e 1 and f 2 are connected in G∪ via a path that is vertex-disjoint
from the poles of µ. This path is also disjoint from all cycle-contained virtual edges of µ,
otherwise we again find a union-link for ε2. Therefore, ord((s′1, e 1 , s′2)) = ord((s′1, f 2 , s′2))
also holds for all s′1, s′2 ∈ S in any simultaneous embedding of G∪. Since the fourth
triple located at u 1 contains three shared edges, it is inherently synchronized with the
corresponding triple located at u 2 due to consistent edge orderings between the two
exclusive graphs. Hence all four triples are synchronized between u 1 and u 2 and they
therefore induce a bijective mapping ϕ between the edges incident to u 1 and u 2 , where
ϕ(e 1) = f 2 , and ϕ(s) = s for all s ∈ S. For any simultaneous embedding (E 1 , E 2), it
therefore holds E 2 (u 2) = ϕ(E 1 (u 1)). Additionally, u 2 is consistent if and only if u 1 is
consistent. If u 2 has a non-trivial embedding tree, it thus immediately follows that u 1 is
consistent by Lemma 8.4. Because µ is triple-mirrored by Corollary 8.6, this also implies
that v 1 is consistent.

68

8.2. Consistent Vertices in Iinit

B

H 2H 1

x 2

x 1

u 2u 1

v 2v 1

εε′

µµ′

µa

µb

Figure 8.4: Two corresponding bonds µ and µ′ of the two exclusive graphs in the initial
Synchronized Planarity instance Iinit. Both bonds contain three cycle-
contained virtual edges, marked with a shared path. Because the non-cycle-
contained virtual edges E and E ′ are both connected to the two exclusive
versions x 1 and x 2 of the same shared vertex x, E and E ′ must be embedded in
the same face of the shared graph. The additional edge marked in red ensures
that this is always the case.

If u 2 has a trivial embedding tree it is the pole of a trivial bond µ′ in G 2 with twin
pole v 2 , and the bijective mapping ϕ between the edges incident to u 1 and u 2 naturally
extends to a bijective mapping ϕµµ′ between the virtual edges of µ and µ′. The non-cycle-
contained virtual edge ε in µ must therefore be embedded in the same position in µ as the
non-cycle-contained virtual edge ε′ = ϕµµ′(ε) in µ′. If ε (and therefore also ε′) is attached
to one of its poles via a shared edge, then the consistent edge orderings already ensure this
constraint. If ε is attached to both of its poles via an exclusive edge, we modify the initial
Triple-SyncPlan instance as follows. Instead of matching the exclusive edges incident
to u 1 and u 2 to dummy degree-1 vertices in B, we create a fourth parallel edge in the
corresponding bond; see Figure 8.4. This change only adds the additional constraint that ε
and ε′ must be embedded consistently, which is a necessary constraint due to the mapping
ϕµµ′ induced by the triples in µ and µ′ as argued above. Since the triples in µ and µ′ only
communicate among each other (as shown above), and since µ and µ′ are triple-mirrored
by Corollary 8.6, these triples only ensure that any embeddings of µ and µ′ respect the
mapping ϕµµ′ . But since the Triple-SyncPlan instance now always guarantees this
constraint, we can once again remove all triples from µ and µ′ and thus the poles of µ and
µ′ are now consistent.

Although the admissible assignments of triples at a trivial bond µ with three cycle-contained
edges cannot always be expressed using just triple equations, we can use Lemma 8.7 to
obtain an equivalent instance, where both poles of µ are consistent.

8.2.3 Two Cycle-Contained Virtual Edges
Finally, we now consider the last case, where µ contains exactly two cycle-contained virtual
edges ε1 and ε2; let ε3 and ε4 denote the other two virtual edges. Then µ contains at most
the two triples (ε1, ε3, ε2) and (ε1, ε4, ε2). By Corollary 8.2, both poles of µ are therefore
consistent.

8.2.4 Remaining Cases
We have now shown that all vertices of G 1 and G 2 with a trivial embedding tree are
consistent. Every vertex with a non-trivial embedding tree is consistent by Lemma 8.4.

69

8. Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with Maximum
Degree 4

Since G 1 and G 2 are biconnected, they contain no cutvertices, thus all vertices of G 1

and G 2 are consistent. Since the vertices in G 1 and G 2 correspond bijectively to the
vertices in the subgraphs H 1 and H 2 of H in Iinit, the same also holds for all vertices
in H 1 and H 2 . Therefore, any assignment for the triples that also satisfies the triple
equations does not produce any contradictions between triples located at a single vertex.
After applying Lemma 8.7 to Iinit, and after adding all new triple equations to ξ in Iinit,
we get the following corollary.

Corollary 8.8. In the initial Triple-SyncPlan instance Iinit, all vertices of the subgraphs
H 1 and H 2 are consistent.

Corollary 8.8 states that the triples located at every vertex of the initial Triple-SyncPlan
instance behave nicely. As our next goal, we want to modify the operations of the regular
Synchronized Planarity algorithm such that they can additionally handle triples.
Before that, we will now state invariants that essentially guarantee that triples still behave
nicely after each application of such an operation.

8.3 Invariants
Before we develop our invariants, we first state an additional auxiliary lemma, which helps
us characterize the interactions between triples located at the two endpoints of a pipe.

Lemma 8.9. Let ρ = (u, v, ϕuv) denote a pipe in the Triple-SyncPlan instance I. For
a triple tu = (e1, e2, e3) located at u and a triple tv = (ϕuv(e1), ϕuv(e2), ϕuv(e3)) located at
v, it is ord(tu) 6= ord(tv) in any embedding of I.

Proof. Assume that there exists an embedding E of I with ord(tu) = ord(tv). Then
E(u) 6= E(v), thus E does not satisfy pipe ρ, a contradiction.

Let u and v denote two vertices in a Triple-SyncPlan instance I and let δuv denote a
bijective mapping between the edges incident to u and the edges incident to v. We say
that the triples located at u and v are mirrored with respect to δuv, if for every triple
tu = (e1, e2, e3) located at u, there is a corresponding triple tv = (δuv(e1), δuv(e2), δuv(e3))
located at v and the triple equations in ξ enforce ord(tv) 6= ord(tv). Additionally, the same
must also hold for the triples located at v with the mapping δ−1

uv .
We say that a pipe ρ = (u, v, ϕuv) is triple-mirrored, if the triples located at u and v are
mirrored with respect to the mapping ϕuv; see Figure 8.5a for an example. We say that a
trivial bond µ with poles u and v is triple-mirrored, if the triples located at u and v are
mirrored with respect to the bijective mapping δuv defined by µ; see Figure 8.5b. Note that
this definition of triple-mirrored bonds is consistent with the definition of triple-mirrored
bonds of Section 8.2.2.

Recall that all triples of our Triple-SyncPlan instance Iinit are located at vertices in the
subgraphs H 1 and H 2 of H. We now copy these triples along the pipes into the subgraph
B of H; see Figure 8.6. Let u i denote a vertex of H i that is matched with a vertex b i

u of
B via a pipe ρ = (u i , b i

u , ϕ). We copy all triples from u i to b i
u via the mapping ϕ and

add an inequality for their rotations to the triple equations in ξ. By Lemma 8.9, this does
not alter the set of admissible embeddings of the Triple-SyncPlan instance. Note that
subsequently, every pipe of Iinit is triple-mirrored, which we state in the following invariant.

Invariant 8.1. Every pipe ρ of the Triple-SyncPlan instance I is triple-mirrored.

70

8.3. Invariants

u v

ρ

(a)

u v

µ

(b)

Figure 8.5: Two examples illustrating triples that are mirrored with respect to a pipe ρ (a)
and triples that are mirrored with respect to a trivial bond µ (b).

B H 2H 1

b
2
u

u 2

b
1
u

u 1

Figure 8.6: The three subgraphs H 1 , H 2 , and B of the initial Triple-SyncPlan instance
Iinit. The triples from vertices in H 1 and H 2 are copied to the vertices in B
along the pipes, as indicated by the green arrows. Subsequently, all pipes are
triple-mirrored.

We also want to ensure that every trivial bond of our Triple-SyncPlan instance is
triple-mirrored. In the reduced instance, this will help us find an embedding for such bonds
that is compatible with the triple equations.

Invariant 8.2. Every trivial bond of degree 4 in the Triple-SyncPlan instance I is
triple-mirrored.

Lemma 8.10. Invariant 8.2 holds in Iinit.

Proof. By Corollary 8.6, every bond of G 1 and G 2 , and therefore also every bond of H 1

and H 2 is triple-mirrored. It only remains to show that the same also holds for all bonds
in the subgraph B of H in Iinit after copying the triples from H 1 and H 2 along pipes
into B.

Consider a trivial bond µ of degree 4 in B with poles b 1
u and b 2

u . Recall that the bonds in
B synchronize the shared edges of corresponding shared vertices in H 1 and H 2 . Therefore,
there exists a vertex u 1 in H 1 and a vertex u 2 in H 2 such that u 1 is matched with
b 1
u and u 2 is matched with b 2

u . Let ρ1 = (u 1 , b 1
u , ϕ1) and ρ2 = (u 2 , b 2

u , ϕ2) denote the
corresponding pipes.
There are two possibilities for the origin of µ. Either µ still has the same structure that it
originally had after the reduction from SEFE to Triple-SyncPlan, or we altered µ with
a transformation in Lemma 8.7. In the latter case, we removed all triples from u 1 and
u 2 after the transformation. Therefore, after copying triples from H 1 and H 2 along the
pipes into B, the poles of µ still contain no triples and therefore µ is triple-mirrored.
It thus only remains to consider the case where µ directly originates from the reduction
from SEFE to Triple-SyncPlan. Since µ is a bond of degree 4 in B, the edges incident
to u 1 and u 2 refer to the same four shared edges of the shared graph G in the SEFE
instance. Let δµ denote the mapping from the edges incident to b 1

u to the edges incident to
b 2
u according to bond µ and let ϕ denote the bijective mapping that maps every shared edge

71

8. Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with Maximum
Degree 4

incident to u 1 to its corresponding version incident to u 2 . Note that ϕ = ϕ1 ◦ δµ ◦ϕ−1
2 , i.e.,

the two pipes ρ1 and ρ2, and the bond µ map the shared edges incident to u 1 to the shared
edges incident to u 2 the same way as ϕ. Since the pipes ρ1 and ρ2 are triple-mirrored
by Invariant 8.1, it therefore suffices to show that the triples located at u 1 and u 2 are
mirrored with respect to ϕ to also show that µ is triple-mirrored.

Recall that we assume that a triple (e, f, g) is present at a vertex v in G 1 and G 2 (and
thus also in H 1 and H 2) if and only if there exists a cycle C in the cycle basis B of
G that contains the edges e and g. Let t 1 = (e1, e2, e3) denote a triple located at u 1

(proceed symmetrically for triples located at u 2). This means that e1 and e3 belong to
a cycle C in the cycle basis B of the shared graph G. But since ϕ(e1) and ϕ(e3) refer to
the same shared edges as e1 and e3, there must also be the triple t 2 = (ϕ(e1), ϕ(e2), ϕ(e3))
located at u 2 . We add the equation ord(t 1) 6= ord(t 2) to the triple equations in ξ and
subsequently, the triples located at u 1 and u 2 are mirrored with respect to ϕ. Since
ϕ = ϕ1 ◦ δµ ◦ϕ−1

2 and since ρ1 and ρ2 are triple-mirrored by Invariant 8.1, this implies that
µ is also triple-mirrored.

The next invariant ensures that all vertices of our Triple-SyncPlan instance remain
consistent throughout our algorithm. This will ensure that we will be able to encode
the constraints imposed by triples into a 2-Sat instance in the reduced instance. By
Corollary 8.8, the invariant holds for all vertices of the subgraphsH 1 andH 2 corresponding
to the exclusive graphs G 1 and G 2 . Subsequently, we only added triples to the vertices
of the remaining subgraph B when we copied the triples of H 1 and H 2 along the pipes
into B. Since these pipes are triple-mirrored by Invariant 8.1, the consistency of the vertices
in B follows from the consistency of their matched vertices in H 1 or H 2 . Therefore, every
vertex of Iinit is consistent, which we state in the following invariant.

Invariant 8.3. Every vertex of the Triple-SyncPlan instance I is consistent.

Since both exclusive graphs have maximum degree 4, the reduction from SEFE to Triple-
SyncPlan ensures that all vertices of Iinit also have maximum degree 4. To ensure that
this remains the case throughout the algorithm, we state the following invariant.

Invariant 8.4. Every vertex v of the Triple-SyncPlan instance I has degree at most 4.

The next two invariants restrict the structure of cutvertices, which will help us handle the
operation EncapsulateAndJoin.

Invariant 8.5. Let v denote a degree-4 cutvertex of the Triple-SyncPlan instance I.
Then all split components of v, except for at most one, only contain a single edge incident
to v.

Invariant 8.6. Let v denote a degree-4 cutvertex of the Triple-SyncPlan instance I
that contains a triple t. Then at least two of the edges constrained by t belong to the same
split component of v.

Lemma 8.11. Invariant 8.5 and Invariant 8.6 hold in Iinit.

Proof. Since the exclusive graphs G 1 and G 2 of the SEFE instance are biconnected, the
subgraphs H 1 and H 2 of Iinit contain no cutvertices. The subgraph B matching the
shared edges between H 1 and H 2 therefore only contains cutvertices because there are

72

8.3. Invariants

B

u 2u 1

v 2v 1

µ 2µ 1

b
2
ub

1
u

b
1
v b

2
v

µb

µa

ef

e′f ′

ef

e′f ′

H 2H 1

Figure 8.7: A bond-pipe cycle v 1 , b 1
v , b

2
v , v 2 , u 2 , b 2

u , b
1
u , u 1 , v 1 .

degree-1 dummy vertices corresponding to exclusive edges. Because a split component
corresponding to such a degree-1 dummy vertex contains only a single edge, Invariant 8.5
holds in Iinit.

Now consider a cutvertex b 1
u of the subgraph B that contains a triple t = (e1, e2, e3) (the case

for b 2
u is symmetrical). Let u 1 denote the vertex of H 1 that b 1

u is matched with via pipe
ρ1 = (u 1 , b 1

u , ϕ). Then t originates from copying the triple t′ = (ϕ−1(e1), ϕ−1(e2), ϕ−1(e3))
from u 1 to b 1

u (see Figure 8.6). Recall that this means that the edges ϕ−1(e1) and ϕ−1(e3)
must be contained in a cycle of the shared graph, i.e., ϕ−1(e1) and ϕ−1(e3) are both shared
edges. By the construction of the subgraph B in the Triple-SyncPlan reduction, e1 and
e2 are therefore two parallel edges in the subgraph B and thus belong to the same split
component incident to b 1

u . Thus, Invariant 8.6 holds for all cutvertices in B. Since H 1

and H 2 contain no cutvertices, Invariant 8.6 therefore holds in Iinit.

The next invariant will help us handle the toroidal case of SimplifyMatching. For an
odd k, let v0, v1, v2, . . . , vk, v0 be a sequence of distinct degree-4 vertices in H, such that,
for even i, vi and v(i+1) are matched via a pipe ρi and, for odd i, vi and v(i+1)%k are the
poles of a trivial bond µi. We call such a sequence a bond-pipe cycle; see Figure 8.7 for an
example. Let δi denote the bijective mapping of bond µi and let ϕi denote the mapping
corresponding to pipe ρi. Let π := δk ◦ ϕk−1 ◦ . . . δ1 ◦ ϕ0 be the permutation of the edges
incident to v0 defined by the bond-pipe-cycle.

Invariant 8.7. Let v0 be a degree-4 vertex in I. Let v0, v1, v2, . . . , vk, v0 be a bond-pipe
cycle with permutation π. If v0 contains a triple, then there exists an edge e incident to v0
such that π(e) = e.

Lemma 8.12. Invariant 8.7 holds in Iinit.

Proof. Without loss of generality, we assume that v0 is contained in H 1 of Iinit (otherwise
shift the cycle until this holds). Note that, since all pipes of Iinit match vertices of H i to
vertices of B, the bond-pipe cycle must consist of one bond µ 1 in H 1 , one bond µ 2 in
H 2 , and two bonds µa and µb in B; see Figure 8.7 for an example. Recall that a subgraph
of B is only a trivial bond of degree 4, if the corresponding vertices in H 1 and H 2 both
have four incident shared edges1, thus the bond-pipe cycle must have the structure shown
in Figure 8.7.

1This is not necessarily the case for bonds that we altered using Lemma 8.7; see bond µb in Figure 8.4.
However, the other bond (µa in Figure 8.4) does not have degree 4 and therefore µa and µb are not
contained in a bond-pipe cycle.

73

8. Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with Maximum
Degree 4

We show that the invariant holds using Figure 8.7 with v0 = v 1 , i.e., the bond-pipe cycle
c is defined by the sequence v 1 , b 1

v , b
2
v , v 2 , u 2 , b 2

u , b
1
u , u 1 , v 1 . Since v 1 contains a triple,

there must be two shared edges e and f incident to v 1 that are contained in the same cycle
C of the cycle basis B of the shared graph. Since e and f are located in different virtual
edges of µ 1 , there are also two edges e′ and f ′ of C incident to u 1 such that e and e′

(respectively f and f ′) are connected via a shared path in the corresponding virtual edge2.
Since C is a shared cycle, the same edges are also incident to v 2 and u 2 in H 2 . Because
the bonds µa and µb and their incident pipes directly match the corresponding versions
of the same edge, it must therefore hold π(e) = e and π(f) = f for the permutation π
corresponding to the bond-pipe cycle c. Thus Invariant 8.7 holds in Iinit.

Our next invariant states that every cutvertex containing a triple must be either a Q-vertex
or matched via a pipe. Because our reduced instance will be pipe-free (as in the standard
Synchronized Planarity algorithm), this invariant heavily simplifies the embedding
choices of cutvertices containing triples.

Invariant 8.8. Let v denote a cutvertex of degree 4 in the Triple-SyncPlan instance I
such that v contains a triple. Then v is either a Q-vertex or matched via a pipe.

Recall that we assume that both exclusive graphs of the SEFE instance are biconnected.
Therefore, in the instance Iinit, all cutvertices are contained in the subgraph B of H
matching the shared edges of H 1 to the corresponding edges in H 2 . Since all vertices in
B are matched via a pipe to a vertex in H 1 or H 2 , Invariant 8.8 holds in Iinit.

The last invariant is essentially an auxiliary invariant guaranteeing that case i of the
SimplifyMatching operation can never occur in our application. This way, we can ensure
that Invariant 8.8 remains intact throughout our algorithm.

Invariant 8.9. Let µ denote a trivial bond of degree 4 in the Triple-SyncPlan instance
I such that one of the poles in µ contains a triple. Then either both poles of µ are part of
a pipe or neither of them.

Lemma 8.13. Invariant 8.9 holds in Iinit.

Proof. Note that the poles of a trivial bond µ of degree 4 in B are matched with vertices
in H 1 and H 2 , respectively, thus the invariant holds for all bonds in B.

Now consider a trivial bond µ of degree 4 contained in H i and let u i and v i denote its
poles. Now assume that the pole u i is matched via a pipe, but v i is not. Due to the
reduction from SEFE to Triple-SyncPlan, this means that u i is a shared vertex in G i ,
and v i is an exclusive vertex. Note that any cycle of G i containing u i also contains v i .
Since v i is an exclusive vertex, neither u i nor v i can be contained in a cycle of the shared
graph. But since vertices of G 1 and G 2 only contain triples if they are contained in a
cycle of the shared graph, u i and v i both contain no triples.

Like Bläsius et al. [BFR20], we temporarily replace Q-vertices with wheels of corresponding
degree when we compute their embedding trees. This implies that no Q-vertex can be the
pole of a trivial bond.

2Note that we make no assumptions how the other two virtual edges of µ 1 and µ 2 look like internally.
As shown in Figure 8.7, these two virtual edges can even be matched differently in µ 1 and µ 2 .

74

8.4. Modified Synchronized Planarity Operations

e1

e2

e4

e3

u

t

(a)

e1

e2

e4

e3

x

t

Tu

(b)

e1

e2

e4

e3

x

t

Tu

(c)

Figure 8.8: (a) A triple t constraining the edges e1, e2, and e3 incident to u. (b)-(c) The
new position of the triple t if the PQ-tree Tu used to replace u consists of a
single inner Q-node, or two inner Q-nodes.

8.4 Modified Synchronized Planarity Operations
We now show how the different operations of the Synchronized Planarity algorithm
can be adapted to additionally handle the triples in the Triple-SyncPlan problem. We
also show that all invariants remain intact after every application of such an operation.

8.4.1 PropagatePQ

First consider an application of the operation PropagatePQ to the instance I, i.e., we
have a pipe ρ = (u, v, ϕuv) where u is a blockvertex with a non-trivial embedding tree.
In this case, PropagatePQ replaces the vertex u with its embedding tree Tu, and vertex
v with the mirrored version T ′u of Tu [BFR20]. In the general case, the corresponding
P-nodes of Tu and T ′u are subsequently matched with a pipe and corresponding Q-nodes are
synchronized using a Q-constraint. However, by Invariant 8.4, u has degree at most 4 and
thus the non-trivial embedding tree Tu only contains Q-nodes. Therefore, an application of
PropagatePQ completely eliminates the pipe ρ. Given a triple t = (e1, e2, e3) at vertex u
(the case for v is symmetrical), there exists a unique inner node x in Tu, such that three
neighbors of x each contain exactly one of the three edges of t in their subtree. Place the
triple t at the corresponding position at node x and observe that t still represents the
binary decision whether e2 is embedded between e1 and e3 or not; see Figure 8.8.

Because PropagatePQ only introduces Q-vertices and thus no new pipes and bonds, Invari-
ants 8.1 and 8.2 remain intact. Since these Q-vertices have a non-trivial embedding tree, we
can use Lemma 8.4 to infer that all new vertices are consistent, thus Invariant 8.3 remains
intact. All newly introduced vertices have degree at most 4, thus Invariant 8.4 remains
intact. If the embedding tree Tu has more than one inner node, then all new vertices have
degree 3 and Invariant 8.5 and Invariant 8.6 remain intact. Otherwise, T ′u consists of a
single inner node x. But since Invariant 8.5 and Invariant 8.6 hold in I for vertex u, they
still hold after replacing u with x. If u (and therefore also v) belongs to a bond-pipe cycle
in I, then PropagatePQ breaks this cycle, since the newly created vertices are not matched
via pipes or poles of a trivial bond. For the same reason, no new bond-pipe cycles can be
created by this operation. Since all other bond-pipe cycles are unaffected, Invariant 8.7 also
remains intact. Since PropagatePQ only creates Q-vertices, Invariant 8.9 and Invariant 8.8
also remain intact.

8.4.2 EncapsulateAndJoin

Now consider an application of the operation EncapsulateAndJoin, i.e., we have a pipe
ρ = (u,w, ϕuw), where both u and w are cutvertices. For every split component S incident
to u or w, let vS denote the vertex of the resulting instance I ′ corresponding to S. If
a triple t located at u or w is contained in a single split component S, we move t to

75

8. Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with Maximum
Degree 4

vSu
vSw

K

(a)

vSu
vSw

K

(b)

vSu
vSw

K

(c)

Figure 8.9: The three different cases that can occur for the bipartite graph K resulting from
an operation of EncapsulateAndJoin, if both exclusive graphs are biconnected
and have maximum degree 4, and one of the matched vertices contains a triple.
Note that all pipes are of degree at most 3 and could thus be replaced with
Q-constraints.

the corresponding position at vS . Any other triple is removed from the graph, but the
corresponding rotation variable remains part of the triple equations.

Lemma 8.14. Applying the operation EncapsulateAndJoin to an instance I of Triple-
SyncPlan yields an equivalent instance I ′.

Proof. If u and w do not contain triples, the correctness follows immediately from the
correctness of the standard operation [BFR20, Lemma 4]. Since u and w are matched in I,
they have mirrored triples by Invariant 8.1 and we thus now assume that both of them
contain triples. By Invariant 8.5, u and w each have at most one non-trivial split component
(i.e., a split component consisting of more than one edge incident to the cutvertex). Since
u and w both contain triples and at least two edges of each triple must be contained in the
same split component by Invariant 8.6, there are only three possibilities for the structure
of the bipartition K in the resulting instance I ′; see Figure 8.9.

Let E denote an embedding of I and let ψ denote the corresponding truth assignment for
all triples in T of I satisfying all triple equations. Then an embedding E ′ of I ′ can be
obtained by encapsulating each split component incident to u and subsequently joining
u and w via the satisfied pipe (u,w, ϕuw) [BFR20, Lemma 4]. Let Su and Sw denote the
non-trivial split component incident to u and w, respectively. Therefore, any triple of
I that is completely contained in Su (resp. Sw) is still satisfied at the new vertex vSu

(resp. vSw). Since we removed all other triples from the instance, E ′ is an embedding of I ′
that satisfies ψ.

Conversely, let E ′ denote an embedding of I ′ with triple assignment ψ that satisfies all
triple equations. In the following, we argue for triples located at u in I, but all arguments
can also be applied to triples located at w. We obtain an embedding E of I via a cut of
the bipartition K in E ′ [BFR20, Lemma 4]. Clearly, any triple located at vertex Su in E ′ is
therefore also satisfied at vertex u in E . Now consider a triple t = (e1, e2, e3) located at u
in I such that e1 and e3 belong to Su, but e2 belongs to a different trivial split component,
thus t is not present in E ′ (but ψ still assigns a rotation to t). Since the pipe matching u
and w is triple-mirrored by Invariant 8.1, there is a triple t′ = (ϕuw(e1), ϕuw(e2), ϕuw(e3))
located at w in I with ord(t) 6= ord(t′). First consider the case where t′ is completely
contained in split component Sw of w in I and is thus located at vertex vSw in I ′. Note
that this can only occur in the case shown in Figure 8.9c. In this case, the triple t′ already
restricts the embedding (and therefore the cut) of the bipartite graph K such that t is
also satisfied in I. Now consider the case where t′ is also not present in I ′, thus ϕuw(e1)
and ϕuw(e3) belong to the split component Sw at w in I and ϕuw(e2) is a trivial split
component. Thus e2 and ϕuw(e2) are both a trivial split component incident to u and
w, respectively. Note that this can only occur in the two cases shown in Figure 8.9a and

76

8.4. Modified Synchronized Planarity Operations

uu′ v

ρ

(a)

u v

ρ

(b)

uu′ v

ρ

v′

ρ′

ρ∗

(c)

Figure 8.10: The three different cases of the operation SimplifyMatching.

Figure 8.9b. In this case, only the triples located at u and w containing the edges e2 or
ϕuw(e2) constrain the position of e2 and ϕuw(e2) in I. In the bipartition K of I ′, the
two vertices corresponding to e2 and ϕuw(e2) are only connected to each other and can
thus appear in any position in a cut of K. Thus, we start with an embedding E ′ of I ′
and first obtain an embedding E of I via a cut of the bipartition K as described above.
Subsequently, move e2 and ϕuw(e2) consistently around u and w, respectively, such that
the triples at u and w are satisfied with assignment ψ. Since u and w are consistent in I by
Invariant 8.3 and triple-mirrored by Invariant 8.1,and since ψ satisfies the triple equations,
such a position always exists. We therefore obtain an embedding of I satisfying all triple
equations.

It remains to show that the invariants remain intact. As shown in Figure 8.9, all newly
created vertices have degree at most 3 and can therefore be matched via Q-constraints,
thus Invariant 8.1 and Invariant 8.2 remain intact. For the same reason, each newly
created vertex has a non-trivial embedding tree, thus we can use Lemma 8.4 to infer
that Invariant 8.3 remains intact. Since all newly created vertices have degree at most
3, Invariants 8.5, 8.6, 8.4, 8.9, and 8.8 are also not affected. If u (and therefore also w)
belongs to a bond-pipe cycle in I, then EncapsulateAndJoin breaks this cycle, since all
newly created vertices have degree at most 3. For the same reason, no new bond-pipe
cycles can be created by this operation. Since all other bond-pipe cycles are unaffected,
Invariant 8.7 also remains intact.

8.4.3 SimplifyMatching

Now consider an application of SimplifyMatching case i, i.e., we have a pipe ρ =
(u, u′, ϕuu′), where u is part of a trivial bond µ with twin pole v and exactly four virtual
edges and v is unmatched (see Figure 8.10a). By Invariant 8.9, this case cannot occur in
our application. We remark that the fact that this case cannot occur is the reason why
Invariant 8.8 always remains intact.

Next, consider an application of SimplifyMatching case ii, i.e., there is a pipe ρ =
(u, v, ϕuv), such that u and v are the poles of a trivial bond µ (see Figure 8.10b). If the
permutation π = δuv ◦ ϕ−1

uv defined by µ and ρ has cycles of different length, we reduce to
a trivial no-instance as in the original operation [BFR20]. Since µ and ρ form a bond-pipe
cycle with permutation π, by Invariant 8.7, there exists an edge e incident to u such that
π(e) = e, i.e., this particular cycle has length 1 and consequently all cycles of π have
length 1. Therefore, the permutation π is the identity and thus the pipe ρ is redundant
and can be removed.
Note that removing ρ breaks the bond-pipe cycle formed by µ and ρ, all other cycles are
unaffected, thus Invariant 8.7 remains intact. Before the operation, both poles of µ were
part of a pipe, afterwards, neither of them are matched, thus Invariant 8.9 remains intact.
Since the operation only removes pipe ρ and does not otherwise alter the instance, all other
invariants also remain intact.

77

8. Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with Maximum
Degree 4

Finally, consider an application of the operation SimplifyMatching case iii (the transitive
case), i.e., we have two pipes ρ = (u′, u, ϕu′u) and ρ′ = (v, v′, ϕvv′) such that u and v are
the poles of a trivial bond µ (see Figure 8.10c). The operation SimplifyMatching removes
the pipes ρ and ρ′ and adds a new pipe ρ∗ = (u′, v′, ϕvv′ ◦ δuv ◦ ϕu′u), where δuv bijectively
maps the edges incident to u to the edges incident to v according to the bond µ [BFR20].
Note that ρ, ρ′, and µ are triple-mirrored by Invariants 8.1 and 8.2, thus the triples located
at u, u′, v and v′ are synchronized copies of one another. Therefore, the operation is also
correct in the presence of triples.
Since ρ, ρ′, and µ are triple-mirrored, the triples located at u′ and v′ are also mirrored with
respect to the bijection ϕvv′ ◦ δuv ◦ ϕu′u. Therefore, the pipe ρ∗ is triple-mirrored in the
reduced instance. Since the operation does not create any other new pipes, Invariant 8.1
remains intact. Before the operation, both poles of µ were part of a pipe, afterwards, neither
of them are matched, thus Invariant 8.9 remains intact. Note that replacing ρ and ρ′ with
ρ∗ can only shorten a bond-pipe cycle, however, the corresponding permutation π remains
the same, thus Invariant 8.7 still holds. Other than that, the operation only removes the
pipes ρ and ρ′ and does not otherwise alter the instance, thus all other invariants still hold.

8.5 Solving the Reduced Instance
We have shown in Section 8.4 how the operations of the standard Synchronized Pla-
narity algorithm can be modified to additionally handle triples and that all invariants
from Section 8.3 remain intact. Observe that all of our operations only differ from their
original variants in the way they treat triples, the analysis of the original Synchronized
Planarity algorithm still holds and we obtain an equivalent instance I ′ containing no
pipes in time O(n2)3 [BFR20, Theorem 12].

In the standard Synchronized Planarity algorithm, an embedding of the reduced
pipe-free instance I ′ can be computed as follows [BFR20]. First, every Q-vertex is replaced
with a wheel of the respective degree, which yields a graph H ′. Subsequently, each Q-vertex
is contained in a single R-node of a biconnected component of H ′. Since I ′ no longer
contains pipes, it suffices to find an embedding of H ′ where the Q-constraints between
Q-vertices are satisfied. Finding such an embedding is simple, because every Q-vertex is
contained in a single R-node, and the embedding of an R-node is a binary decision. Simply
introduce a boolean variable representing the rotation of each Q-vertex and another boolean
variable representing the rotation of each R-node. Subsequently, the variables of Q-vertices
belonging to the same Q-constraint can be synchronized via equations. Additionally, the
rotation of each Q-vertex can be synchronized with the rotation of the unique R-node
it is contained in using an equation between the corresponding boolean variables. This
yields a 2-Sat formula that can be solved in linear time. Every solution for this 2-Sat
formula yields an embedding of all R-nodes in H ′, such that all Q-constraints are satisfied.
Subsequently, choosing an arbitrary embedding for each P-node in H ′ and picking an
arbitrary nesting for the split components incident to each cutvertex yields an embedding
that is a valid solution for I ′ [BFR20]. Conversely, if the 2-Sat instance has no solution,
then I ′ is a no-instance.

Unfortunately, triples heavily complicate the reduced instance in general. Since some of the
triples may be contained in P-nodes or contained in multiple split components incident to
a cutvertex, it is not that simple to represent all admissible solutions via a 2-Sat formula.
This is because the embedding choices at P-nodes and cutvertices are usually not binary
decisions and even the admissible assignments for triples located at a single vertex can,
in general, not be formulated as a 2-Sat instance (see Figure 8.2). This is where our
invariants come into play. In Section 8.3, we stated several invariants and showed that

3Since both exclusive graphs have maximum degree 4, it is m ∈ O(n).

78

8.5. Solving the Reduced Instance

they hold in the initial Triple-SyncPlan instance Iinit. Note that these invariants rely
heavily on the restriction that both exclusive graphs of our initial SEFE instance are
biconnected and have maximum degree 4. Subsequently, we showed in Section 8.4 that
these invariants also retain their validity after applying one of the operations PropagatePQ,
EncapsulateAndJoin, or SimplifyMatching. As argued above, exhaustively applying
these operations yields a pipe-free instance I ′ of Triple-SyncPlan. Additionally, all
invariants still hold in I ′. In the following, we show how these invariants can be used to
solve the reduced instance I ′.

As in the standard Synchronized Planarity algorithm, we first build a 2-Sat instance
that synchronizes the rotation of each Q-vertex with the embedding of the R-node that it is
contained in. Additionally, we encode the Q-constraints into this 2-Sat formula [BFR20].
Recall that we have a boolean variable ord(t) representing the rotation of every triple t. We
add these boolean variables and all our triple equations to the 2-Sat instance. Note that
these equations can be converted to a 2-Sat formula the same way as the Q-constraints.
If a triple t is fully contained within an R-node µ, we synchronize ord(t) with the cor-
responding boolean variable representing the rotation of µ. Note that we can convert
any degree-3 vertex of I ′ into a Q-vertex [BFR20, Lemma 3]. Therefore, only embedding
choices regarding P-nodes and cutvertices of degree 4 remain, since all vertices of I ′ have
degree at most 4 by Invariant 8.4.

We first consider a cutvertex v of degree 4 that contains a triple. By Invariant 8.8, v must
be either a Q-vertex or matched via a pipe. Since the reduced instance I ′ is pipe-free, v
must therefore be a Q-vertex and thus only represents a binary embedding decision. We
can therefore simply synchronize the rotation of triples located at v with the Q-constraint
corresponding to v in our 2-Sat instance. Subsequently, all embedding choices regarding
such cutvertices and their triples are encoded into our 2-Sat formula.

Now it only remains to show that, for any solution of our 2-Sat instance, we also find an
embedding for every P-node that satisfies the triples located at its poles. We prove this in
the following lemma.

Lemma 8.15. Let µ be a P-node of degree 4 in I ′. Let ψ be an assignment for the triples
in I ′ that satisfies the triple equations. Then there exists a planar embedding of µ that
satisfies the triples located at the poles of µ with assignment ψ.

Proof. Let u and v denote the poles of µ. By Invariant 8.3, the vertex u is consistent. This
means that there exists a cyclic ordering σ of the edges incident to u that satisfies the
triples located at u with assignment ψ, since ψ satisfies the triple equations. To create an
embedding Eµ of µ, pick Eµ(u) = σ and Eµ(v) = δuv(Eµ(u)) = δuv(σ). It is clear that Eµ is
a planar embedding of µ. Because σ satisfies the triples located at u with assignment ψ,
the same also holds for Eµ(u) = σ. It remains to show that the same also holds for Eµ(v).
By Invariant 8.2, the bond µ is triple-mirrored, i.e., the triples located at v are copies
of the triples located at u and vice versa. By the definition of triple-mirrored, for each
triple t = (e1, e2, e3) located at u and its corresponding copy t′ = (δuv(e1), δuv(e2), δuv(e3))
located at v, the equation ord(t) 6= ord(t′) is part of the triple equations. Because Eµ(u)
satisfies the triples located at u with assignment ψ, the order Eµ(v) = δuv(Eµ(u)) therefore
also satisfies the triples located at v. Thus the embedding Eµ is a planar embedding of µ
that satisfies the triples at the poles of µ.

Since we have encoded the triple equations into our 2-Sat instance, any solution of the
2-Sat instance can therefore be extended to a planar embedding for each P-node in I ′
by Lemma 8.15. Since the same also holds for all R-nodes in I ′ [BFR20], and since all

79

8. Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with Maximum
Degree 4

cutvertices containing triples are Q-vertices, any solution for the 2-Sat instance yields
a planar embedding that satisfies all Q-constraints and all triple equations of I ′. If the
2-Sat instance is unsatisfiable, we report an invalid instance. Our 2-Sat formula has size
in O(n2) and can be solved in linear time. Finally, we get the following result.

Theorem 8.16. Simultaneous Embedding with Fixed Edges can be solved in time
O(n2) if both exclusive graphs are biconnected and have maximum degree 4.

8.6 Remarks About Cutvertices and Vertices of Higher De-
gree

Since our algorithm is restricted to instances where both exclusive graphs are biconnected
and have maximum degree 4, the question arises whether the algorithm can be adjusted
to also handle cutvertices or vertices of higher degree. If the exclusive graphs contain
cutvertices, we additionally have to ensure that these cutvertices are consistent in the
initial instance Iinit in Section 8.2. Possibly, this can once again be done by finding
necessary equations between two distinct triples located at such a cutvertex, by examining
the structure of the union graph. Adjusting the invariants in Section 8.3 to also handle
cutvertices in the exclusive graphs should be straightforward.
When considering vertices of degree 5, we once again have to ensure their consistency
in the initial instance Iinit. Unfortunately, a non-trivial embedding tree with five leaves
does not necessarily only consist of Q-nodes as its inner nodes, thus Lemma 8.4 does not
hold in general in this case. For the modified Synchronized Planarity operations in
Section 8.4, a more refined analysis is necessary, because the number of possible cases that
can occur increases with vertices of degree 5.

80

9. Conclusion

In this work, we first showed that SEFE is FPT parameterized by the vertex cover number
of the union graph (Chapter 3) and the feedback edge set number of the union graph
(Chapter 4), respectively. While our parameterization by the treedepth of the union
graph (Chapter 5) only works in restricted cases, it features a promising approach and
reveals problems that must be solved before advancing to less restrictive parameters in
the FPT-landscape. We remark that these parameterizations can be straightforwardly
extended to k-SEFE with k ≥ 3.

In chapter Chapter 6, we started analyzing parameters of the shared graph. It becomes
immediately clear that parameterizations of the shared graph are significantly more involved,
because any reduction rule affecting the shared graph must consider all its possible
configurations in the union graph. This makes kernelization approaches difficult. Instead,
we combined the parameters vertex cover number and number of degree-1 vertices to
essentially enumerate all suitable embeddings of the shared components. Subsequently, we
used the algorithm by Bläsius and Rutter [BR15] that solves SEFE in quadratic time, if
each shared component has a fixed embedding, and we finally obtained an FPT-algorithm.
Our algorithm also extends to the sunflower case of k-SEFE with k ≥ 3. Interestingly,
the problem remains far from trivial, even when using a combination of these two very
restrictive parameters.

As the next step, our goal was to combine techniques for ensuring consistent relative positions
with the recently developed Synchronized Planarity reduction that ensures consistent
edge orderings. In Chapter 7, we first characterized the embeddings of the exclusive graphs
that satisfy consistent relative positions. We derived partial constraints, a set of PQ-trees
we used to annotate the pipes of the Synchronized Planarity instance, that additionally
constrain the set of admissible edge orderings. The resulting instance describes exactly
the simultaneous embeddings of the original SEFE instance, but the operations of the
Synchronized Planarity algorithm must also be adjusted to handle the additional
partial constraints. This is particularly challenging for the operation EncapsulateAndJoin
handling pipes matching two cutvertices, because the partial constraints essentially restrict
the admissible cuts of the resulting bipartition. For this reason, we needed additional
restrictions, but finally developed an FPT algorithm for SEFE parameterized by the
number of connected components and the maximum degree of the shared graph, if both
exclusive graphs are biconnected, each pair of fixpoints is block-local, and Conjecture 7.11
holds for the operation Toroidal Constrained SimplifyMatching.

81

9. Conclusion

Finally, we used a very similar approach in Chapter 8 to solve SEFE if both exclusive
graphs are biconnected and have maximum degree 4. We placed triples in both exclusive
graphs of the Synchronized Planarity instance that ensure that, for every cycle C in
a cycle basis of the shared graph, every shared component lies on the same side of C in
both exclusive graphs. As Bläsius et al. [BKR18] have shown, ensuring consistent relative
positions with respect to cycles of a cycle basis ensures consistent relative positions in
all possible embeddings. We modified the operations of the Synchronized Planarity
algorithm to additionally handle the triples and in this way obtained a quadratic time-
algorithm that solves SEFE if both exclusive graphs are biconnected and have maximum
degree 4. We remark that the Synchronized Planarity reduction only works for two
input graphs, our algorithm therefore does not extend to k-SEFE with k ≥ 3.

While we developed FPT-algorithms for SEFE parameterized by several parameters, we
only argued why it is difficult to proceed with less restrictive parameters. Finding more
parameterizations or actual hardness results with respect to the W -hierarchy [CFK+15]
remains an open problem for future work. In Chapter 6, we showed that the vertex cover
number of the shared graph alone is sufficient to enumerate all suitable embeddings of every
block in the shared graph G in FPT time. It should be possible to extend our observations
to completely fix the embedding of every shared component, except for the position of
degree-1 vertices. This basically already fixes all faces of the shared graph G and subse-
quently, it only remains to determine the degree-1 vertices that can be embedded together
into the same face. While this is not very difficult if every face induces a simple cycle, the
general case is more challenging. However, solving this could lead to an FPT-algorithm
for SEFE parameterized by the vertex cover number of the shared graph alone. Since our
parameterization uses the vertex cover number plus the number of degree-1 vertices of the
shared graph, it is also an interesting question whether SEFE is still FPT parameterized
by the treewidth plus the number of degree-1 vertices of the shared graph.
Although the algorithm from Chapter 7, where we augmented the Synchronized Pla-
narity problem with partial constraints, only works under rather strong and impractical
restrictions, we believe it is a very promising approach that provides interesting insights
on the interplay between relative positions and Synchronized Planarity. Finding
stronger invariants for the augmented Synchronized Planarity instance could lead to
an algorithm that solves SEFE in more general cases than currently known algorithms.
To this end, it could be helpful to better understand how the intermediate instances of the
Synchronized Planarity algorithm relate to the original SEFE instance.
The same also applies to the quadratic-time algorithm that solves SEFE if both exclusive
graphs are biconnected and have maximum degree 4 (Chapter 8). It is quite realistic that
the algorithm can be adjusted to also handle cutvertices and/or exclusive graphs with
maximum degree 5. We leave these considerations as open problems for future work.

82

Bibliography

[ABF+12] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani,
and Ignaz Rutter. Testing the simultaneous embeddability of two graphs whose
intersection is a biconnected or a connected graph. J. Discrete Algorithms,
14:150–172, 2012.

[ALN15] Patrizio Angelini, Giordano Da Lozzo, and Daniel Neuwirth. Advancements
on SEFE and partitioned book embedding problems. Theor. Comput. Sci.,
575:71–89, 2015.

[BCE18] Michael J. Bannister, Sergio Cabello, and David Eppstein. Parameterized
complexity of 1-planarity. J. Graph Algorithms Appl., 22(1):23–49, 2018.

[BFR20] Thomas Bläsius, Simon D. Fink, and Ignaz Rutter. Synchronized planarity
with applications to constrained planarity problems. CoRR, abs/2007.15362,
2020.

[BGL+22] Carla Binucci, Emilio Di Giacomo, William J. Lenhart, Giuseppe Liotta,
Fabrizio Montecchiani, Martin Nöllenburg, and Antonios Symvonis. On the
complexity of the Storyplan Problem. CoRR, abs/2209.00453, 2022.

[BGMN20] Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg.
Parameterized algorithms for book embedding problems. J. Graph Algorithms
Appl., 24(4):603–620, 2020.

[BKR13] Thomas Bläsius, Stephen G. Kobourov, and Ignaz Rutter. Simultaneous
embedding of planar graphs. In Roberto Tamassia, editor, Handbook on Graph
Drawing and Visualization, pages 349–381. Chapman and Hall/CRC, 2013.

[BKR18] Thomas Bläsius, Annette Karrer, and Ignaz Rutter. Simultaneous embedding:
Edge orderings, relative positions, cutvertices. Algorithmica, 80(4):1214–1277,
2018.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree algorithms. J.
Comput. Syst. Sci., 13(3):335–379, 1976.

[Boo75] Kellogg S. Booth. PQ-tree algorithms. PhD thesis, University of California,
Berkeley, 1975.

[BR15] Thomas Bläsius and Ignaz Rutter. Disconnectivity and relative positions in
simultaneous embeddings. Comput. Geom., 48(6):459–478, 2015.

[BR16] Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with applications
to constrained embedding problems. ACM Trans. Algorithms, 12(2):16:1–16:46,
2016.

[BT96] Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of tricon-
nected components with SPQR-trees. Algorithmica, 15(4):302–318, 1996.

83

Bibliography

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

[CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex
cover. Theor. Comput. Sci., 411(40-42):3736–3756, 2010.

[EGJ+07] Alejandro Estrella-Balderrama, Elisabeth Gassner, Michael Jünger, Merijam
Percan, Marcus Schaefer, and Michael Schulz. Simultaneous geometric graph
embeddings. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors, Graph
Drawing, 15th International Symposium, GD 2007, volume 4875 of Lecture
Notes in Computer Science, pages 280–290. Springer, 2007.

[FLSZ19] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Ker-
nelization: Theory of Parameterized Preprocessing. Cambridge University Press,
2019.

[FT20] Radoslav Fulek and Csaba D. Tóth. Atomic embeddability, clustered planarity,
and thickenability. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, pages 2876–2895. SIAM,
2020.

[GJP+06] Elisabeth Gassner, Michael Jünger, Merijam Percan, Marcus Schaefer, and
Michael Schulz. Simultaneous graph embeddings with fixed edges. In Fedor V.
Fomin, editor, Graph-Theoretic Concepts in Computer Science, 32nd Interna-
tional Workshop, WG 2006, volume 4271 of Lecture Notes in Computer Science,
pages 325–335. Springer, 2006.

[GM00] Carsten Gutwenger and Petra Mutzel. A linear time implementation of spqr-
trees. In Joe Marks, editor, Graph Drawing, 8th International Symposium,
GD 2000, volume 1984 of Lecture Notes in Computer Science, pages 77–90.
Springer, 2000.

[HJL13] Bernhard Haeupler, Krishnam Raju Jampani, and Anna Lubiw. Testing
simultaneous planarity when the common graph is 2-connected. J. Graph
Algorithms Appl., 17(3):147–171, 2013.

[HM03] Wen-Lian Hsu and Ross M. McConnell. PC trees and circular-ones arrange-
ments. Theor. Comput. Sci., 296(1):99–116, 2003.

[HM04] Wen-Lian Hsu and Ross M. McConnell. PQ trees, PC trees, and planar graphs.
In Dinesh P. Mehta and Sartaj Sahni, editors, Handbook of Data Structures
and Applications. Chapman and Hall/CRC, 2004.

[Hsu01] Wen-Lian Hsu. PC-trees vs. PQ-trees. In Jie Wang, editor, Computing and
Combinatorics, 7th Annual International Conference, COCOON 2001, volume
2108 of Lecture Notes in Computer Science, pages 207–217. Springer, 2001.

[HT74] John E. Hopcroft and Robert E. Tarjan. Efficient planarity testing. J. ACM,
21(4):549–568, 1974.

[JS09] Michael Jünger and Michael Schulz. Intersection graphs in simultaneous
embedding with fixed edges. J. Graph Algorithms Appl., 13(2):205–218, 2009.

[Kur30] Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Fun-
damenta mathematicae, 15(1):271–283, 1930.

[PW01] János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex
locations. Graphs Comb., 17(4):717–728, 2001.

84

Bibliography

[Rut20] Ignaz Rutter. Simultaneous embedding. In Seok-Hee Hong and Takeshi
Tokuyama, editors, Beyond Planar Graphs, Communications of NII Shonan
Meetings, pages 237–265. Springer, 2020.

[Sch13] Marcus Schaefer. Toward a theory of planarity: Hanani-tutte and planarity
variants. J. Graph Algorithms Appl., 17(4):367–440, 2013.

[SH99] Wei-Kuan Shih and Wen-Lian Hsu. A new planarity test. Theor. Comput. Sci.,
223(1-2):179–191, 1999.

85

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Outline

	2 Preliminaries
	3 Parameterization by the Vertex Cover Number of the Union Graph
	4 Parameterization by the Feedback Edge Set Number of the Union Graph
	4.1 Remarks About the Feedback Vertex Set Number

	5 Parameterization by the Treedepth of the Union Graph
	6 Parameterization by the Vertex Cover Number of the Shared Graph
	6.1 Embedding the Blocks
	6.2 Nesting Blocks around Cutvertices
	6.2.1 Embedding Split Components Into Compatible Faces

	6.3 Ordering Blocks around Cutvertices
	6.4 Putting Things Together

	7 Parameterization by the Number of Connected Components and the Maximum Degree of the Shared Graph
	7.1 Computing the Partial Constraints
	7.2 Reduction to Synchronized Planarity
	7.3 Invariants
	7.4 Operations for Constrained Pipes
	7.4.1 Constrained PropagatePQ
	7.4.2 Constrained EncapsulateAndJoin
	7.4.3 Transitive Constrained SimplifyMatching
	7.4.4 Trivial Constrained SimplifyMatching
	7.4.5 Toroidal Constrained SimplifyMatching

	7.5 Solving the Reduced Instance

	8 Polynomial-Time Algorithm for SEFE of two Biconnected Graphs with Maximum Degree 4
	8.1 Consistent Triple Assignments
	8.2 Consistent Vertices in Iinit
	8.2.1 Four Cycle-Contained Virtual Edges
	8.2.2 Three Cycle-Contained Virtual Edges
	8.2.3 Two Cycle-Contained Virtual Edges
	8.2.4 Remaining Cases

	8.3 Invariants
	8.4 Modified Synchronized Planarity Operations
	8.4.1 PropagatePQ
	8.4.2 EncapsulateAndJoin
	8.4.3 SimplifyMatching

	8.5 Solving the Reduced Instance
	8.6 Remarks About Cutvertices and Vertices of Higher Degree

	9 Conclusion
	Bibliography

