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Abstract

We consider the problem of finding and maintaining the triconnected components
of a graph. The problem of decomposing a graph into triconnected components
was first described by Mac Lane in 1937 [Lan37] and later refined by Tutte in 1966
[Tut66]. Tutte introduced the concept of virtual edges and devised a decomposition
of a biconnected graph into three fundamental types of components polygons, bonds
and simple triconnected components. The polygons describe simple circles, whereas
bonds describe pairs of vertices, that are connected by multiple parallel edges. The
virtual edges represent a contraction of a path into a single edge. This allows the
splitting of a biconnected graph into multiple biconnected split graphs. For the
problem of finding and maintaining the triconnected components, we consider the
SPQR-tree, a dynamic data structure used for efficiently maintaining the triconnected
components of a graph, based on the Tutte [Tut66] components. The SPQR-tree
mainly finds applications in planarity testing [BT89, DBT96] and graph drawing
[BHR19, Gut10, DL98], but also finds applications in other areas such as lithography
[LH10]. We examine the constructing of SPQR-trees using ear-decompositions. An
ear-decomposition is another graph decomposition, which decomposes the graph into
a series of edge-disjoint paths such that each path is only connected to a former
path through its endpoints. Ear-decomposition may also be used to identify the
triconnected components of a graph and test for planarity. However, unlike current
the SPQR-tree, ear-decomposition can be easily computed using parallelism.

Deutsche Zusammenfassung

Wir betrachten das Problem der Verwaltung und Erkennung von 3-Zusammenhangs-
komponenten. Die Zerlegung eines Graphen in 3-Zusammenhangskomponenten
wurde erstmals von Mac Lane [Lan37] in 1937 beschrieben und später durch Tutte
1966 [Tut66] weiter entwickelt. Tutte führte das Prinzip der virtuellen Kanten ein
und entwickelte somit die Zerlegung in drei fundamentale Typen der Komponenten.
Tutte [Tut66] nannte diese Komponenten polygons (Polygone), bonds (Bündel) und
simple triconnected components (einfache 3-Zusammenhangskomponenten). Die Poly-
gone bezeichen einfache Kreisgraphen, wohingegen die Bündel aus zwei Knoten mit
mehreren parallelen Kanten bestehen. Die virtuellen Kanten repräsentieren die Kon-
traktion eines Pfades zu einer einzelnen Kante. Dies erlaubt es einen zweifach verbun-
denen Graphen in mehrere ebenfalls zweifach verbundene Graphen aufzuspalten. Für
die Verwaltung der 3-Zusammenhangskomponenten verwenden wir den SQPR-Baum,
eine dynamische Datenstruktur, zur Verwaltung der 3-Zusammenhangskomponenten.
Der SPQR-Baum basiert auf den Tutte-Komponenten [Tut66]. Anwendungen für
SPQR-Bäume finden sich hauptsächlich in Planaritätstests [BT89, DBT96] und im
Graphenzeichnen [BHR19, Gut10, DL98], jedoch auch in anderen Bereichen wie z.B.
in der Lithographie [LH10]. Wir betrachen die Konstruktion von SPQR-Bäumen
mittels Ohrenzerlegungen. Die Ohrenzerlegung ist eine weitere Graphenzerlegung in
eine Folge von kantendisjunkten Pfaden, die nur über ihre Endpunkte mit vorherigen
Pfaden verbunden sind. Ähnlich wie der SPQR-Baum kann eine Ohrenzerlegung
zum Finden von 3-Zusammenhangskomponenten und für Planaritätstests verwendet
werden. Anders als der SPQR-Baum lässt sich die Ohrenzerlegung jedoch leicht
parallelisieren.
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1. Introduction

Connectivity represents one of the fundamental properties of a graph. The degree of
connectivity describes how many nodes or edges have to be removed to disconnect any
two nodes of the graph. The lowest degree of connectivity is a disjoint graph, the simplest
of which is an independent set. The maximum degree of connectivity in a graph is
bounded by the number of nodes, a simple example of a highly connected graph is a clique.
The degree of connectivity is particularly important for network reliability, but is also
relevant for planarity testing and graph drawing. One important problem is finding and
maintaining components of higher connectivity in a graph of lower connectivity, such as
connected components in a disjoint graph, biconnected components in a connected graph
or triconnected components in a biconected graph.

We consider the problem of finding and maintaining the triconnected components of a graph.
The problem of decomposing a graph into triconnected components was first described
by Mac Lane in 1937 [Lan37] and later refined by Tutte in 1966 [Tut66] (c.f. [Gut10]).
Tutte introduced the concept of virtual edges and devised a decomposition of a biconnected
graph into three fundamental types of components, which he referred to as polygons,
bonds and simple triconnected components. The polygons describe simple circles, whereas
bonds describe pairs of vertices that are connected by multiple parallel paths. The two
aforementioned types are similar to the serial and parallel components in series-parallel
graphs. The virtual edges represent a contraction of a path into a single edge. This allows
the splitting of a graph into multiple biconnected split graphs, which Tutte [Tut66] referred
to as cleavage graphs.

For the problem of finding and maintaining the triconnected components, we consider the
SPQR-tree, a dynamic data structure used for efficiently maintaining the triconnected
components of a graph, based on the Tutte [Tut66] components (c.f. [BT96]). The SPQR-
tree mainly finds applications in planarity testing [BT89, DBT96] and graph drawing
[BHR19, Gut10, DL98], but also finds applications in other areas such as lithography
[LH10]. We examine the construction of SPQR-trees using ear-decompositions and compare
it to the linear time construction of Gutwenger [Gut10]. An ear-decomposition is another
graph decomposition, which decomposes the graph into a series of edge-disjoint paths
such that each path is only connected to a former path through its endpoints. Ear-
decomposition may also be used to identify the triconnected components of a graph and
test for planarity. However, unlike the SPQR-tree proposed by Di Battista and Tamassia
[BT96], ear-decomposition can be easily computed using parallelism (see e.g.[Ram92]).
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1. Introduction

1.1 SPQR-tree Background
The concept of the graph decomposition into its triconnected components originates from
the components three types of triconnected components described by Tutte in 1966 [Tut66].
As mentioned before, the three types of components in a biconnected graph are: polygons,
bonds and simple triconnected components. The components have direct counter parts in
the SPQR-tree. The polygons correspond to the S-nodes, bonds correspond to P-nodes and
simple triconnected components correspond to R-nodes (c.f. [BT96, Gut10]). Connecting
the polygons, bonds and simple triconnected components with their virtual edges, such that
two components are adjacent if they share a virtual edge, induces an an acyclic connected
graph, i.e., a tree. Adding a Q-node for each edge and rooting the tree at one of the
Q-nodes yields an SPQR-tree.

In 1973 Hopcroft and Tarjan [HT73] published a linear-time algorithm for finding the
triconnected components of a graph. The algorithm did contain some mistakes, which were
only later corrected by Gutwenger and Mutzel [GM01] in 2001. The algorithm was used to
create a linear-time algorithm for the construction of SPQR-trees.

The SPQR-tree was first proposed by Di Battista and Tamassia in 1989 [BT89] for the
purpose of on-line planarity testing. As a result, the original definition was based on planar
biconnected graphs, but the definition was soon after extended to general biconnected
graphs and also disjoint graphs using BC-trees. The definition of the SPQR-tree is simpler
than the implicit structure given by the Tutte components and allows for vertex and edge
insertions. Di Battista and Tammasia suggested that the Hopcroft and Tarjan algorithm
[HT73] could be used to construct the SPQR-tree in linear time (see [BT90, BT96]).

Even before Di Battista and Tamassia published their journal version of the SPQR-tree
in 1996 [BT96], La Poutré [Pou92] published an optimized structure for maintaining the
triconnected components of a graph in 1992 based on the SPQR-tree. The structure he
proposed achieves a running time in O (k · α (n, k)), for k operations on a graph with n
nodes. For comparison, the SPQR-tree proposed by Di Battista and Tamassia requires
O(k · log k) time for k operations (c.f. [BT96]).

The first implementation of SPQR-trees and BC-trees was published in 1997 [gdt] as part
of the GDToolkit. Di Battista and Tamassia suggested that the SPQR-tree could be
constructed in linear time by adapting the Hopcroft and Tarjan [HT73] algorithm (see
[BT96]). However, the implementation of SPQR-trees in the GDToolkit did not run in
linear time. This is likely due to the fact that no linear time implementation of the Hopcroft
and Tarjan algorithm existed at the time and the fact that the algorithm contained several
mistakes (c.f. [GM01, Gut10]). An actual linear time algorithm for the construction of the
SPQR-tree was published by Gutwenger and Mutzel in 2001 [GM01], who discovered and
corrected major mistakes in the Hopcroft and Tarjan algorithm [HT73]. The linear time
implementation was made available through the graph drawing library AGD [MGB+98],
which later became the graph drawing framework OGDF [CGJ+14].

In 2018 Holm et. al. [HIK+18] proposed a decremental SPQR-tree which supports both
edge deletion and edge contraction in O(log2(n)) amortized time. Holm and Rotenberg
[HR20] further improved the decremental SPQR-tree in 2020, turning it into a fully-dynamic
SPQR-tree with an amortized running time O(log3(n)) per edge deletion or insertion.

1.2 Ear-Decomposition Background
The ear-decomposition was originally proposed by Hetyei in 1964 [Het64] and later refined by
Lovász and Plummer in 1975 [LP75] (c.f. [Lov83]). The definition of the ear-decomposition
has changed significantly throughout the years. In its original form, the ear-decomposition
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1.2. Ear-Decomposition Background

did not require the initial ear to be a path, but rather the ear-decomposition allowed an
arbitrary subgraph of the input graph to be the starting point of the decomposition, which
was not considered to be an ear itself.

The term strong ear-decomposition was used to describe an ear-decomposition starting
with a single edge, which is more closely related to the later ear-decompositions. The single
edge starting point was eventually combined with the following ear to form a cycle, which
is the most commonly used definition ear decomposition as of today.

Ear-decompositions are used for finding maximal matching covers [Lov83], finding trin-
connected components [MR87, Ram92, FRT93], st-numbering [MSV86, Bra02, SS19] and
recognition of series-parallel graphs [Epp92].
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2. Preliminaries

We call a graph simple, if it has no parallel edges. Conversely, a graph that may contain
parallel edges is called a multigraph. In the following we simply use graph to refer to a
multigraph.

Let G = (V, E) be a graph. A path of length n ∈ N is a sequence of edges e1, e2, ..., en−1, en,
such that ei = (vi, vi+1) holds for 1 ≤ i < n, where vi ∈ V . We refer to the first and last
vertices, that is v1 and vn, as the endpoints of the path.

If the graph is simple we use the sequence of vertices to refer to the unique path induced
by the sequence.

Let G = (V, E) be a graph. We say G is connected if for any two vertices v1, v2 ∈ V , there
exists a path with v1 and v2 as its endpoints. We call a graph that is not connected is a
disjoint graph. A cutvertex v ∈ V is a vertex which upon deletion separates the graph into
multiple non connected components, that is the graph induced by V \ {v} is not connected.

Let G = (V, E) be a graph. We call two paths e1, ..., en ∈ V and e′
1, ..., e′

m ∈ V edge-disjoint,
if ei ̸= e′

j for all i ∈ {1, ..., n} and j ∈ {1, ..., m} (see Figure 2.1).

Let G = (V, E) be a graph. We call two paths v1, ..., vn ∈ V and v′
1, ..., v′

m ∈ V vertex-
disjoint, if vi ̸= v′

j holds for all 2 ≤ i ≤ n − 1 and 2 ≤ j ≤ m − 1 (see Figure 2.1).

Two non-edge-disjoint paths with at least two edges are also not vertex disjoint, as the
sharing of an edge means the endpoints of the edge are also shared, that is there is a shared
vertex that is not an endpoint of the path.

p2

p1
v

p4

p3
v w

Figure 2.1: Two edge-disjoint paths p1, p2 to the left and two non edge-disjoint paths p3, p4
to the right. The paths p1, p2 are not vertex-disjoint as both contain v as an
inner vertex. The paths p3, p4 are not edge-disjoint due to the shared edge
{v, w}. The two paths are also not vertex-disjoint due to the endpoints of the
shared edge being inner vertices.

Let G = (V, E) be a graph and k ∈ N1. We consider G to be k-vertex-connected if for all
subsets C = {v1, ..., vk−1} ⊆ V , the subgraph induced by V \ C is connected.
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2. Preliminaries

Let G = (V, E) be a graph and k ∈ N1. We consider G to be k-edge-connected if for all
subsets C = {e1, ..., ek−1} ⊆ E}, the Graph G′ = (V, E \ C) is connected.

We can also describe k-connectivity in terms of vertex disjoint paths (or edge disjoint paths
for k-edge-connectivity), that is two vertices are k-vertex-connected, if there are k vertex
disjoint paths connecting the two vertices. The two definitions are in fact equivalent as per
Menger’s theorem [Men27].

a

b

p1

p2

Figure 2.2: The two paths between the biconnected vertices a and b.

We call a graph biconnected if it is 2-vertex-connected (see Figure 2.2). Likewise, a
3-vertex-connected graph is called triconnected.

Let G = (V, E) be a graph, we call a k-vertex connected maximal subgraph G′ a k-vertex
connected component of G.

That is G′ is a k-vertex connected component if no set of vertices and edges of G may be
added to G′ without breaking the k-connectivity. As with the connectivity of the graph
itself we call a component which is 1-vertex connected, simply a connected component.
Similarly, we call the 2-vertex and 3-vertex connected components biconnected components
and triconnected components respectively (see Figure 2.2).

n = 4 n = 5 n = 6 n = 7

Figure 2.3: Different sizes of wheel graphs.

A simple category of triconnected components are the wheel graphs identified by Tutte
[Tut66] in 1966 (2.3). A wheel graph of size n ≥ 4 consists of a cycle graph with n − 1
vertices and a single vertex, which is connected to all other vertices, similar to a star graph.
The wheel graph of size n is the smallest triconnected graph with n nodes. Since each wheel
graph has n − 1 edges for the polygon and n − 1 edges for the star graph each triconnected
graph with n nodes, has at least 2n − 2 edges.

a

b

c

d

fgh

i

j
k

l

{g, d}

{d, f}
{g, e}
{i, g}
{a, b}

e

Figure 2.4: A biconnected graph with its separation pair vertices in matching colors. Note
that a vertex may belong to multiple separation pairs. Each vertex that is not
part of a separation pair is only adjacent to triconnected vertices.
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Let G be a biconnected graph. A separation-pair {s, t} of G is pair of vertices which when
removed separate the graph into multiple split components C1, ..., Cn, where n ∈ N1 (see
Figure 2.4).

For k ∈ N0 and j ∈ N1, the Ackermann function is defined as follows:

Ackk(j) =
{

j + 1, if k = 0
Ack(j+1)

k−1 (j), if k ≥ 1

The Ackermann function grows extremely quickly in k, going from 2047 at Ack3(1), to
vastly exceeding 1080 at Ack4(1).

The inverse α of the Ackermann function is given by α(m, n) = min{k ∈ N0 | Ack(m, k) ≥
n}, where m, n ∈ N0.

Since the Ackermann function grows extremely quickly, its inverse function α grows
extremely slowly, to the point, that it is often considered a constant in practical applications.

Figure 2.5: A graph G (drawn in black) with its corresponding vertex face graph G⋄ (drawn
in orange).

Let G be a plane embedded graph. We call the regions enclosed by the edges of G, the
faces of G. The outer plane, which is not enclosed by any edge is called the outer face of G.

Let G be a plane embedded graph. The dual graph G⋄ of G is the graph obtained by
placing a vertex for each face of G and connecting the vertices of adjacent faces (see Figure
2.5). The dual graph is also called the vertex-face graph.

The vertex face graph of a canonically embedded wheel graph (see Figure 2.3) is itself a
wheel graph, as the inner faces form a cycle and each inner face is connected to the outer
face.

7





3. Data Structures and Algorithms

In the following we consider useful data structures and algorithms for the SPQR-tree, such
as Union-Find, Split-Find, ear-decompositions and the BC-tree. Union-Find and Split-Find
present useful data structures for the maintenance of the SPQR-tree, as different nodes
types in the SPQR-tree require the different operations. The R-nodes only require unions
and S-nodes only require splits, but none of the different node types requires both operations.
This allows the application of both structures to different parts of the SPQR-tree without
having to use a combined, less efficient structure for the entire SPQR-tree.

3.1 Union-Find
The Union-Find structure is a data structure for maintaining disjoint sets, under union
operations. The Union-Find structure supports three operations

• makeSet(v), which creates a new set containing only v,

• find(v), which returns the representative of v,

• union(v, w), which combines the sets of v and w into a single set, with the represen-
tative v′ ∈ {find(v), find(w)}.

The structure is generally implemented as a tree, where each element except the represen-
tative has another element of the same set as its parent. To find the representative of a set,
we simply traverse the path to the root. To combine two sets we attach the root of the
second set to the root of the first set (see Figure 3.1).

1

2 3

4

5 6

union(3, 5)
1

2 3 4

5 6

Figure 3.1: A union operation in a simple Union-Find structure.

Naturally, the tree may overtime grow in depth which negatively affects the performance
of the find operation, due to the longer paths to the root. To remedy this problem, we
simply compress the path traversed during a find operation, that is we remove the path and
attach all nodes on the path to the root instead. This technique is called path compression.

9



3. Data Structures and Algorithms

Similarly, we may also improve the union operation by attaching the tree with lower height
to the tree of greater height, this technique is referred to as weighted union.

Using these techniques the running time for m operations on the Union-Find structure is
O (m · α (m, n)) time, where n is the number of makeSet operations (see also [LP90]). The
structure matches well with the R-nodes of the SPQR-tree as R-nodes are merged through
edge insertions.

3.2 Split-Find
Th Split-Find structure is a similar structure to the Union-Find. Though, its main operation
split is the counterpart to the union operation. Split-Find maintains a disjoint collection
of integer intervals, with integers 1, ..., n, under set splitting operations. Unlike Union-Find,
Split-Find requires the elements to be ordered in order for splits to be well defined and
efficient. Split-Find offers the following operations.

• find(i), which returns the representative of i,

• split(i), which splits the interval S = {a, ..., i, ..., b} into two disjoint intervals
S1 = {a, ..., i} and S2 = {i + 1, ..., b}, where a and b are the lowest and highest
integers in the interval S respectively.

Similar to Union-Find, the Split-Find structure supports the operation find(i) but uses
split instead of union. Unlike Union-Find, the Split-Find structure generally does not
support an incremental operation like makeSet. The structure is instead instantiated with
a single set containing all elements, i.e., the interval {1, ..., n}.

Like Union-Find, Split-Find can be implemented as an ordered tree or rather a forest
structure, with each set as its own tree. Though unlike Union-Find, all elements are present
as leaves and the root stores the representative of the set. The nodes in the tree are
connected via bidirectional pointers, that is, each node knows its children as well as its
parent. A simple initialization for the tree structure consists of a single tree with a single
inner node connected to the n elements. More sophisticated implementations use multiple
inner nodes to pre-split the set into multiple subsets which get bigger towards the root
and smaller towards the leaves, e.g., the subset of a parent is the union of the sets of its
children (see figure for an example 3.3). To find the representative of an element i we
simply traverse the path from the leaf i to the root of its set, the root stores the identity of
the representative. The representative in Split-Find is generally chosen to be the highest
numbered element of the set, though it is not strictly required. Using the highest element
as the representative of the set is useful in structures which use pre-split sets, as it makes
it easy to detect if a set needs to be split or is already correctly (pre-)split. This differs
from Union-Find where the number of the number of the representative does not matter,
as long as the representative is part of the same set. The reason for this divergence lies in
the splitting, which usually requires knowledge of the highest numbered element in the set
and pre-split subsets The time required to obtain the representative depends on the length
of the path.

To split the set at an element i, we traverse the path from the leaf i to the root vr. Each
node v on the path vi, ..., vr is replaced by two nodes v1, v2 one for lower half of the children
and one for the upper half. The last child of v1 is the ancestor of i, which was a child of v.
Note, that the upper half may be empty, e.g., when we call split on the last element of
a set or when v is a leaf. In this case no splitting is necessary, as v already contains the
correct children. Splitting a vertex v requires us to update its children to point to their
new parents, to avoid having to move all children, we only update the smaller portion of
the split, i.e., keeping the original vertex v as the parent of the larger portion (see Figure

10



3.2. Split-Find

1 2 3 4 5 6 7 8 1 2 3 5 6 7 84

split(3)

Figure 3.2: Splitting of the set S = {1, ..., 8} into sets S1 = {1, 2, 3} and S2 = {4, ..., 8}.
The path to the root with the split nodes is marked in blue.

3.2). We can figure out which is the smaller portion in time proportional to the smaller
portion, by simultaneously counting the two split parts.

The following recursive algorithm describes the splitting of a node v at an element i,
starting from the root node.

1. First, we obtain the unique child c of v which is an ancestor of the leaf containing i.

2. If i is not the highest numbered element of c, we recursively split c into c1 and c2,
where the highest numbered element of c1 is i.

3. Then, we split v into two new nodes v1 and v2 with v1 containing the children of v
up to and including c1 and v2 contains c2 and the following children, if c was not
split we simply use c for c1 and the next child for c2.

To easily check if i is the highest numbered of a node v, we store highest numbered vertex,
i.e., the representative of each subset at the corresponding vertex. The time required for
each split of a set depends on the number of elements that have to be moved.

Efficient Split-Find Implementations

. . .︸ ︷︷ ︸
255

. . .︸ ︷︷ ︸
22048−1

level 0

level 1

level 2

level 3

level 4

Figure 3.3: The tree structure proposed by Hopcroft and Ullman [HU73]. Each inner node
has at most 2A(i−1) children, where i is the level of the node.

Hopcroft and Ullman [HU73] have proposed a Split-Find tree structure with subset sizes
based on the values Ackermann function, which yields an upper bound of O(n · α(n)) on
the cost of moving elements.

We call level the longest path from a vertex v to a leaf, i.e., the leaves are at level 0, the
parents of the leaves are at level 1 and so forth, with the root at the highest level. A node
n at level i is complete if one of the following conditions is satisfied.

• Node n is a leaf, which means its level is zero.

• Node n has 2Ack(i−1) children and its children are complete, where i is the level of n.

This ensures that processing each additional level requires less than a fraction of the time
of its children. The structure was originally designed for the Union-Find problem and
adjusted for Split-Find.

The structure requires O(n · α(n)) amortized time for all split operations according to
Hopcroft and Ullman [HU73]. Later publications from other authors such as Gabow and
Tarjan [GT85], La Poutré [LP90] and Imai and Asano [IA84], however, state that the
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3. Data Structures and Algorithms

running time of the structure is O(n + m · log∗ n), where log∗ n is number of repeated log
applications required to get below 1, i.e.

log∗(n) = 0 if n < 1,

log∗(n) = 1 + log∗(log n) if n ≥ 1.

Though, to the extent of our knowledge none of the other authors provides an analysis of
the Hopcroft and Ullman [HU73] structure.

The time bound of O(n · α(n)) is optimal for pointer machines, since La Poutré [Pou94]
has shown that Ω(n + m · α(m, n)) is a lower bound for the split-find problem on pointer
machines. Random access machines however, do admit faster solutions.

Improvements for Split-Find

Gabow and Tarjan [GT85] have proposed a similar structure based on the layering of
Hoprcroft and Ullman [HU73]. The structure uses only three layers called macrosets,
mezzosets and microsets. Each layer has a logarithmic number of elements of its parent set,
that is each mezzoset has ⌊log n⌋ elements and each microset has ⌊log log n⌋, elements, with
the macrosets representing the actual sets which are maintained, i.e., the initial macroset
consists of n elements. Furthermore, Gabow and Tarjan [GT85] store the name of the
containing set with each integer, similar to the technique we mentioned earlier, where we
stored the highest numbered element at the inner nodes of the tree. Like the Split-Find
structure of Hopcroft and Ullman [HU73] it was originally designed for Union-Find and
modified for Split-Find.

With this structure Gabow and Tarjan have achieved an overall running time of O(m + n)
on a random acess machine, for m operations and hence amortized constant time for a
single operation, which is an improvement over the structure of Hopcroft and Ullman
[HU73]. However, this is only possible through the use of random access machines as shown
by La Poutré [Pou94].

Element Insertion

Both the structure of Gabow and Tarjan [GT85] and the structure of Hopcroft and Ullman
[HU73] require the first set to be initialized with all elements. Imai and Asano [IA84]
have proposed an incremental extensions for both data structures which allow elements
to be added. Extending the operations by add(v, v∗), which adds the element v∗ to the
set S(v), where v∗ > u ∈ S(v). The elements are effectively appended to the end of the
corresponding set and given an id that is higher than all other elements even those that
are in a different set.

This incremental principle can be applied to both the Hopcroft and Ullman [HU73] structure
as well, as the structure of Gabow and Tarjan [GT85]. The running times of the extensions
are equivalent to the non incremental running times. The extension of the Hopcroft and
Ullman [HU73] structure runs in O((k + m) log∗ k), starting from the empty set, where k is
the number of add operations and m is the number of split and find operations. Note, that
Imai and Asano [IA84] consider, as well as other authors consider the running time of the
Hopcroft and Ullman [HU73] to be O((k +m) log∗ k). As with the non incremental variants,
the extension of the Gabow and Tarjan [GT85] structure admits a better running time of
O(k + m), where k is the number of add operations and m is the number of split and find
operations. Again the bound is achieved due to the use of a random access machine.
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3.3. BC-Tree

Circular Split-Find

The circular Split-Find is an extension of the regular Split-Find (non-circular Split-Find),
where sets are considered to be cyclic rather than regular intervals, i.e., the first element
is also adjacent to the last element in the set. Due to this cyclic nature the sets are split
according to two split points i and j rather than a single one, as a single split point would
not disconnect the cycle set. The new split operation is defined as follows: split(i, j)
splits the set S = {a, ..., b, i, ..., j, c, ..., d} into two disjoint sets S1 = {a, ..., b, c, ..., d} and
S2 = {i, ..., j}, where a ≤ b < i ≤ j < c ≤ d. If a = i or j = d, the set is split in the same
way as the regular split, resulting in the sets S1 = {i, ..., j}, S2 = {c, ..., d} for the first case
and S1 = {a, ..., b}, S2 = {i, ..., j} for the second case.

This new split operation slices the set into parts an outer and an inner portion rather than
a lower and an upper portion, as is the case in the regular Split-Find. The start and end of
the inner portion is given by the two split points i and j, with the outer portion consisting
of the remaining elements. The Circular Split-Find presents a generalizaton of the regular
Split-Find, as we may replicate the behaviour of the regular Split-Find by choosing the first
or last element of the set as one of the split points, which is why the Circular Split-Find is
also referred to as the Generalized Split-Find Structure by La Poutré [LP91]. As the name
suggests, the Circular Split-Find is particularly useful for cases where the elements are
cyclic, such as the vertices and edges in a cycle graph.

3.3 BC-Tree

c2

c1 c3

C1

B2

C2

B3

B1

C3

B4

B3

B1

B4

B2

Figure 3.4: A BC-tree with the B-nodes and C-nodes colored according to their correspond-
ing part of the graph.

A block-cut-tree or BC-tree is a graph decomposition, which decomposes a connected
graph into cutvertices and biconnected components. The BC-tree consists of two node
types: B-nodes, C-nodes. The B-nodes represent the biconnected components of the graph,
whereas each C-node represents a distinct cutvertex, i.e., a vertex which upon deletion
separates the graph into multiple connected components. The C-nodes are adjacent to
the B-nodes corresponding to the split components resulting from the cutvertex of the
respective C-node (see Figure 3.4).

Definition 3.1. Let G be a connected Graph, we call T a BC-tree of G if it satisfies the
following conditions.

• Each C-node corresponds to a unique cutvertex in G
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• Each B-node corresponds either to a unique biconnected component or unique edge in
G

• A B-node and a C-node are adjacent if they share a vertex.

• No two B-nodes are adjacent.

• No two C-nodes are adjacent.

3.4 Ear-Decomposition
Definition 3.2. Let G = (V, E) be an undirected Graph. An ear-decomposition E of G is
an edge partition into vertex-disjoint paths p0, p1, ..., pn, called ears, such that p0 is a cycle
and each following path pk is connected to previous paths pi, pj only with its endpoints,
where k > j ≥ i ≥ 0 and n ∈ N0.

A variant of the ear-decomposition that is better suited to our needs is the open ear-
decomposition. The open ear-decomposition requires the ears, excluding the initial ear, to
have distinct endpoints (see Figure 3.5). The open ear-decomposition has a one to one
correspondence with biconnected graphs, that is, a graph G is biconnected if and only if it
has an open ear-decomposition (see e.g. [Sch13]). We call an ear-decomposition that is not
an open ear-decomposition a closed ear-decomposition (see Figure 3.5 for a comparison).
The closed ear-decomposition have a similar correspondence with connectivity, though
with the weaker 2-edge-connectivity rather than the stronger 2-vertex connectivity, i.e.,
biconnectivity (see e.g. [Sch13]).

Let G = (V, E) be an undirected Graph. An open ear-decomposition is an ear-decomposition
of G, with ears p0, p1, ..., pn, such that for each i ∈ {1, ..., n}, the nodes of the path pi are
distinct.

p0p1 p2

p3 p4

p5

p0p1 p2

p4

p5

Open ear-decomposition (closed) ear-decomposition

p3

Figure 3.5: The two types of ear-decomposition. The right ear decomposition is not an
open ear decomposition due to the cycle ear p3. The closed ear-decomposition
is not biconnected due to the cut vertex (marked in red) connecting p3 to its
previous ear p0.

3.5 Ear Decomposition Algorithms
In the following we present different techniques for the computation of ear decompositions.
Ear-decompositions can be computed in linear time using either depth-first search or a
spanning tree. The time bound can be improved to logarithmic time, through parallelization
with a linear number of processors (see e.g.[Ram92]).
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3.5. Ear Decomposition Algorithms

3.5.1 Chain Decomposition

A simple greedy algorithm using depth-first search was proposed by Jens. M. Schmidt in
2013 [Sch13]. The algorithm was developed to be more easily understandable than earlier
algorithms.

First, we perform a depth-first-search on the graph, where we partition the edges into tree
edges and back edges and assign depth-first-indices to the nodes. Edges that are traversed
during the depth-first-search form the tree edges, whereas the remaining edges are called
back edges. The depth-first-search doubles as a check for connectivity, as constructing an
ear-decomposition is not possible if the graph is not connected. We consider the tree edges
to be directed towards the node and the back edges to be directed away from the node,
that is an edge is directed toward the root if traversing the edge brings us to a node with a
lower index.

We then traverse the back edge of each node in ascending order of the depth-first-indices,
marking each passed node as visited. When we encounter a visited node we stop the
traversal and proceed with the next back edge (see Figure 3.5.1). The path of each traversal
is called a chain. These chains form the ears of an ear-decomposition if the graph is
2-edge-connected. We can easily check if the graph is 2-edge-connected, by keeping track of
traversed edges, if there is an untraversed edge, the graph is not biconnected as removing the
edge disconnects the graph. The resulting ear-decomposition is an open ear decomposition
if the graph is biconnected (see [Sch13]).

v0

v1

v2

v3

v4

v5

v6

v7

v8

Figure 3.6: The resulting edge orientation of the chain decomposition, with the back edges
drawn as dashed lines.

3.5.2 Ear Decomposition using Spanning Tree

In the following we present an earlier algorithm which uses a spanning tree rather than
a depth-first search. The algorithm was proposed by Lovasz [Lov85] in 1985 and later
improved for parallel efficiency by Miller and Ramachandran [MR87, Ram92].

First, we find a spanning tree, then we pick a vertex as the root and number the vertices
of the tree in preorder starting from the root vertex with 0. The edges which are not part
of the spanning tree are called nontree edges, similar to the back edges in the algorithm
of Schmidt. In the next step, we assign ear numbers to the nontree edges, by labeling
each nontree edge by its nearest common ancestor in the spanning tree. Once the nontree
edges have been labeled, we sort the nontree edges in ascending order. Now, we extend
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the numbering to the remaining edges, i.e., the tree edges. To extend the labeling we
number each tree edge e by the smallest label of the nontree edge e′ containing e in its
fundamental cycle, that is the smallest simple cycle containing e′. The labeling can be
achieved by, first, labeling each vertex v with the minimum label of all nontree edges which
are incident incident to v and then assigning each tree edge e = (a, b), the minimum label
of all descendants of b. Lastly, the nontree edges labeled with 1 are relabeled with 0 instead.
The resulting labeling indicates the ears to which each edge belongs.

Note, that the first ear, of the computed ear decomposition, is not a circle but rather
a single edge or path, this is due to the earlier definitions of ear-decompositions which
start with a single edge rather than a circle. To obtain an ear decomposition starting
with a circle we can simply merge the first and second ear, i.e., edges labeled 0 and 1,
which yields an ear-decomposition starting with a cycle, if the ear-decomposition is an
open ear-decomposition. The algorithm runs in logarithmic time using a linear number of
processors [Ram92].
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4. SPQR-Tree Structure

An SPQR-tree is a decomposition of a biconnected graph, which decomposes the graph into
its triconnected components. The tree consists of four different types of nodes: S-nodes,
P-nodes, Q-nodes and R-nodes. Each node in the tree is associated with a biconnected
multigraph, called a skeleton (see Figure 4.1). Two nodes in the SPQR-Tree are adjacent if
and only if they share a virtual edge. The virtual edges represent a connection between
two vertices, that exists in the original graph, but is not necessarily an actual edge in the
graph. As such the virtual edge presents a contraction of a connected subgraph.

• Q-nodes are the simplest of the four node types. The skeleton of a Q-node consists of
two edges, one edge representing the actual edge in the graph and one virtual edge.

• P-nodes represent pairs of triconnected vertices. The skeleton of a P-node consists
of two vertices a, b and k ≥ 3 parallel edges e1, e2, ..., ek with endpoints a and b.
P-nodes are sometimes called bonds.

• S-nodes represent serial parts of the graph. The skeletons correspond to cycles, which
are sometimes referred to as polygons.

• R-nodes represent a simple triconnected or rigid component, their skeletons correspond
to a simple triconnected subgraph.

t

e

Q-nodeP-node

s

e

t

S-node R-node

t

s

e

t

s

e

s

Figure 4.1: The skeletons of the four node types in the SPQR-tree. The reference edge e is
shown as a dashed line.

The skeletons are obtained from the original graph by splitting the graph at a separation
pair {a, b} and adding a virtual edge e = {a, b} to each of the resulting split graphs. The
union of the skeletons, without the virtual edges yields the underlying graph. The virtual
edges induce an acyclic graph, which forms the structure of the SPQR-tree. The root of
the SPQR-tree is determined by the starting edge and the corresponding Q-node.
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4. SPQR-Tree Structure

The SPQR-tree may be rooted at any Q-node, as the resulting trees are isomorphic and
can be obtained by starting with a different edge [BT96]. For the recursive construction,
we choose the first node as the root of the SPQR-tree. Rooting the SPQR-tree at a Q-node
rather than at an S-node, P-node or R-node ensures the root node does not change with
edge insertions, which is not necessarily the case for the other node types.

Omitting Q-nodes

The Q-nodes can easily be omitted from the SPQR-tree by distinguishing between virtual
and real edges in the skeleton graphs. The real edges are the virtual edges corresponding
to a Q-node. Gutwenger and Mutzel [GM01] have shown this notion to be equivalent. In
the following we shall use the SPQR-tree without Q-nodes and use real edges instead (see
Figure 4.2 for an SPQR-tree without Q-nodes).

R1

S1

S2

S3

P2 P3

S5S4

S1

R1

S2
S3

S4

S5

P1

P2

P2

P1

Figure 4.2: A graph with its corresponding SPQR-tree. The tree consists of five S-nodes
S1, ..., S5, two P-nodes P1, P2, P3 and a single R-node R1. The edges of the
graph are colored according to the component containing the edge.

Supported Operations

The SPQR-tree as described by Di Battista and Tamassia [BT96] supports the following
operations:

• triconnected(a, b), which checks if the vertices a and b are triconnected.

• insertEdge(a, b), which inserts an edge between a and b.

• splitEdge(e, v), which splits the edge e = {a, b} into two edges e1 = {a, v}, e2 =
{v, b} sharing the vertex v.

Definition 4.1. Let G = (V, E) be a biconnected graph. We call (Vskeleton, Ereal, Evirtual,
type), with

Vskeleton ⊆ V,

Ereal ⊆ E,

Evirtual ⊆ {{a, b} | a, b ∈ V },

type ∈ {S, P, R}

a skeleton of G if the skeleton graph G′ = (Vskeleton, Ereal ∪ Evirtual) is biconnected.
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4.1. Recursive Construction

Each skeleton is itself a graph consisting of the skeleton vertices Vskeleton and the skeleton
edges Ereal ∪ Evirtual, which distinguished into real edges, edges that exist in the original
graph, and virtual edges, edges that are not part of the original graph, but represent a
contracted part of the original graph.

Definition 4.2. Let G = (V, E) be a biconnected graph, N a set of skeletons of G and

realVertex :
⋃

λ∈N

Vskeleton(λ) → V,

realEdge :
⋃

λ∈N

Ereal(λ) → E,

twinEdge :
⋃

λ∈N

Evirtual(λ) →
⋃

λ∈N

Evirtual(λ)

we call T = (G, N) an SPQR-tree of G if it satisfies all of the following conditions:
1. Vertex complete: ⋃

λ∈N Vskeleton(λ) = V .
2. Edge complete: ⋃

λ∈N Ereal(λ) = E

3. Same endpoints for twins: ∀e, e′ ∈ E′ : twinEdge(e) = e′ ⇒ realVertex({a, b}) =
realVertex({a′, b′}), where e = {a, b}, e′ = {a′, b′} and E′ = ⋃

λ∈N Evirtual(λ)
4. Virtual edge pairs: ∀e = {a, b} ∈ E′ : twinEdge(twinEdge(e)) = e, twinEdge(e) ̸= e

5. P-node skeleton: ∀λ ∈ N : type(λ) = P ⇒ |Vskeleton(λ)| = 2 and |Evirtual(λ) ∪
Ereal(λ)| ≥ 3

6. R-node skeleton: ∀λ ∈ N : type(λ) = R ⇒ G′ = (Vskeleton(λ), Evirtual(λ) ∪ Ereal(λ))
is a simple triconnected graph.

7. S-node skeleton: ∀λ ∈ N : type(λ) = S ⇒ G′ = (Vskeleton(λ), Evirtual(λ) ∪ Ereal(λ)) is
a cycle.

8. The Graph G′ = (N, E′) is a tree graph, where E′ = {{λ, µ} | λ, µ ∈ N, ∃e1 ∈
λ(Evirtual), e2 ∈ µ(Evirtual) : twinEdge(e1) = e2.

9. No two P-nodes are adjacent.
10. No two S-nodes are adjacent.

The conditions 1 and 2 are fairly simple. An SPQR-tree contains all vertices and edges of
the original graph and no other vertices or edges. Conditions 3 and 4 give the requirements
for the tree edges. A pair of two distinct virtual edges forms a tree edge. The tree edges
are represented by distinct pairs of virtual edges. Each pair consists of two virtual edges
e1 and e2 which correspond to each other, i.e., twinEdge(e1) = e2 and vice versa. Two
edges in such a pair share the same endpoints in the original graph. To avoid self edges we
require the two edges to be distinct. The three conditions 5, 6, and 7 give the requirements
for the skeletons of the different node types as outlined at the beginning of the Chapter 4.
The two conditions 9 and 10 the requirement for R-node skeletons to not contain parallel
edges (see condition 6) are not strictly necessary for the structure, but ensure that the
SPQR-trees of a graph are unique up to isomorphism (see [HR19] or Section 6.3.2 for a
relaxed SPQR-tree without the adjacency conditions).

4.1 Recursive Construction
The SPQR-tree was originally defined by Di Battista and Tamassia [BT96] via a recursive
construction starting with an edge of an adjacent separation pair, which forms the root
Q-node of the resulting SPQR-tree. The authors use a slightly different notion of the the
separation pair, called a split pair which allows a single edge to be split off.
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4. SPQR-Tree Structure

Definition 4.3. Let G be a biconnected graph. A split-pair {s, t} of G is either a separation
pair or a pair of adjacent vertices, that is there exists an edge e = {s, t} ∈ E.

For the consruction of the SPQR-tree, let G = (V, E) be a biconnected graph, s, t ∈ V be a
split pair with e = {s, t}. We call this e the reference edge. The SPQR-tree T of the graph
G with respect to the reference edge e is recursively defined as follows:

1. Trivial Case: If G consists of exactly two parallel edges between s and t, then T
consists of a single Q-node, with G as the associated skeleton.

2. Parallel Case: If the Split pair {s, t} has at least three split components C1, C2, ..., Ck,
with k ≥ 3, then the root r of T is a P-node, whose skeleton consists of k parallel
edges e1, e2, ..., ek between s and t, with e being the first edge, i.e., e = e1.

3. Series Case: If the split pair {s, t} has exactly two split components, one of the
components is the reference edge e and we refer to the other component as G′. If
the component G′ has cutvertices c1, ..., ck−1, that partition G into blocks G1, ..., Gk,
with k ≥ 2, then the root of T is an S-node with the cycle e0, e1, ..., ek, where e0 = e
and ei connecting the nodes ci−1 and ci, with c0 = s, ck = t and i ∈ {1, ..., k}.

4. Rigid Case: If none of the previous cases applies let {s1, t1}, ..., {sk, st} be the maximal
split pairs of G with respect to {s, t}, i ∈ {1, ..., k} and let Gi be the union of all split
components of the pair {si, ti}, except the component containing the reference edge
e. The root of T is an R-node. We obtain the skeleton by replacing the subgraph Gi

with the edge ei between si and ti.

4.2 SPQR-Trees on General Graphs
While the SPQR-tree requires the underlying graph to be biconnected, the structure
can easily be extended to support general graphs, i.e., graphs that are not biconnected.
Fundamentally, to maintain the triconnected components of a connected graph, we maintain
the biconnected components of the graph and maintain the triconnected components
within each biconnected component using an SPQR-tree. To maintain the biconnected
components of a connected graph we use a BC-tree (see 3.3) and a SPQR-tree to maintain
the triconnected components of each B-node.

For non-connected graphs we simply use multiple BC-trees, i.e., a BC-forest, where each
connected component is represented by a BC-tree (see [BT96]). Using a BC-tree extends
the SPQR-tree operations, allowing vertices to be inserted with a single edge rather than
by splitting an existing edge, as the BC-tree only requires simple connectivity. We call
this new operation attachVertex(a, v), which inserts the new vertex v and the edge {a, v}.
Similarly, using a BC-forest allows to further extend the operations of the SPQR-tree with
the operation insertVertex(v), which inserts the isolated vertex v.

4.3 Cycle Trees
A similar structure to the SPQR-tree is the cycle tree proposed by J.A. La Poutré in 1992
[Pou92, Pou94]. The nodes of the cycle tree are called cycles, bars and 3vc-classes. The
3vc-classes represent the triconnected components of the graph, like the R-nodes in the
SPQR-tree. The cylce nodes represent the biconnected components of the graph, similar
to the S-nodes in the SPQR-tree. The bars represent the separation-pairs of the graph and
are further divided into 3vc-bars and cycle bars. The 3vc-bars are the separation-pairs that
are triconnected. The 3vc-bars are similar to the P-nodes in the SPQR-tree. Each 3vc-bar
is part of exactly one 3vc-class in the cycle tree. The cycle bars represent real edges of
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Figure 4.3: A biconnected graph with its coresponding cycle tree. The 3vc-classes (in green)
and 3vc-bars (in red) are drawn with dashed lines and the cycle nodes (in
blue) and cycle bars (in orange) are drawn with solid lines. The links between
the bars and classes are drawn using dotted lines like the tree edges in the
SPQR-tree.

the cycle nodes, similar to the Q-nodes in the SPQR-tree. However, unlike the Q-nodes,
the cycle bars also serve as links between the adjacent cycle nodes and 3vc-classes, that
is, cycle bars as well as 3vc-bars may be adjacent to multiple cycle node and 3vc-classes.
As such the cycle bars may be seen as P-nodes with a real edge or adjacent Q-node (see
Figure 4.3 for an example of a cycle tree).

Like the SPQR-tree, the construction of the cycle tree uses recursion by splitting the graph
on the separation-pairs. However, unlike the SPQR-tree, the cycle tree is only split on
triconnected separation-pairs instead of the biconnected separation-pairs.

If all nodes in the graph are triconnected, then the corresponding cycle tree consists of a
single 3vc-class. Likewise, if the graph is a simple cycle, then the corresponding cycle tree
consists of a single cycle node with the edges as cycle bars. If the graph is neither fully
triconnected, nor a simple cycle, then there is a triconnected separation-pair {a, b}.

Deleting a and b from the graph induces multiple connected subgraphs H1, ..., Hk, where
k ∈ N. Let H ′

i = (Vi ∪ {a, b}, Ei ∪ {a, b}), for i ∈ {1, ..., k}. The cycle trees are recursively
constructed for each of these subgraphs.

Edge insertions on cycle trees, between nodes that are not triconnected, are processed in a
similar way to the edge insertions in the SPQR-tree (which are presented in Chapter 6).
To insert an edge between two non triconnected nodes a and b, we obtain the tree path
between the vertices a and b. The 3vc-classes and bars on the path and the vertices a and
b are merged into a new 3vc-class. The cycle nodes on the path, like the S-nodes in the
SPQR-tree, are split into new cycles by the nodes in the bars on the path. Unlike the
SPQR-tree, the cycle tree does not support edge splits or any other way of inserting a new
vertex. Similarly, the edges inside the 3vc-classes are also not maintained.

Extension to General Graphs

To extend the cycle trees to general graphs, La Poutré [Pou92] proposed further structures,
such as the cluster partition the rooted cluster tree and the dynamic microset (see [LP93]
for more information on the dynamic microset). The rooted cluster tree with the cluster
partition restructures the components of the cycle tree, whereas the dynamic microset is
an independent structure based on the microset introduced by Gabow and Tarjan [GT85]
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4. SPQR-Tree Structure

(see Section 3.2). The dynamic microset is used to effiently join clusters similar to the
microset in the Union-Find and Split-Find structure of Gabow and Tarjan [GT85]. La
Poutré suggested that the running time of O(n + m · α(n, m)) for the rooted cluster tree is
optimal for pointer machines, where n is the number of vertices and m is the number of
edges.

A cluster partition of a biconnected graph is a non-disjoint partition of the vertex set of the
graph into clusters, such that each cluster contains at least three nodes of the graph and
shares at most two nodes with every other cluster. For a cluster C, the set of triconnected
node pairs is referred to as not3bar(C). Furthermore, for a cluster C the subgraph induced
by its vertices has to be connected and for any node a ∈ C there are at most two pairs with
a in not3bar(C), that is for {a, b}, {a, c}, {a, d} ∈ not3bar(C), b = c or b = d. A 3vc-class is
considered to occur in a cluster if the cluster contains at least three nodes of the 3vc-class.
A 3vc-class that occurs in multiple clusters is called a multiple class. Similarly, nodes that
occur in multiple clusters are called multiple nodes. The nodes of a cluster induce a subtree
of the cycle tree, this subtree is referred to as the local tree of the cluster. The cluster
partition satisfies the following four constraints (c.f. [Pou92]):

• For every 3vc-class K and nodes a, b, c ∈ K, there is a cluster C, such that a, b, c ∈ C.

• For every separation-pair {a, b} in the graph, there is some cluster C, such that a
and b are part of the subgraph induced by C.

• For every Cluster C and triconnected node pair {a, b} ∈ not3bar(C), {a, b} is not a
3vc-bar of the subgraph induced by C.

• For every node pair {a, b} in the graph, there is at most one cluster C, with a, b ∈ C
and {a, b} ̸∈ not3bar(C).

The rooted cluster tree combines the concept of the cycle tree with the cluster partition
in a tree structure, where the nodes of the rooted cluster tree are the clusters, multiple
3vc-classes and the 3vc-bars of the cycle tree.

For the general case La Poutré maintains the triconnected components of each biconnected
component in the graph, similar to how BC-forests are used to maintain the multiple
biconnected components of a general graph. For the maintenance of the biconnected
components La Poutré distinguishes between small and large components. The small
components are components of size O(log log n) and the large components have size
O(log n), where n is the number of nodes in the graph. The idea behind this separation is
similar to the subdivision Gabow and Tarjan [GT85] used for Union-Find and Split-Find
(c.f. Section 3.2). For the small components dynamic microsets are used. The larger
components are maintained using the cluster trees, where Union-Find structures are used
for the 3vc-classes and Split-Find structures for the cycles in the local cycle trees of each
cluster. To join biconnected components of the same size class auxiliary edges are inserted
between the connection nodes, i.e., common nodes, of the joining clusters, creating a new
cycle tree consisting of the old cycle trees and the newly created cycle, with the clusters
combined into a new cluster partition.

The overall structure maintains the triconnected components of a general graph in O(n +
k · α(n, k)) time, where n is the number of nodes in the graph and k is the number of
insertions and query operations [Pou92].

While the Cycle trees were not developed further, some of the improvements of La Poutré
[Pou92] can be integrated into the SPQR-tree, by using Union-Find structures for the
R-nodes and Split-Find structures for the S-nodes. Di Battista and Tamassia [BT96]
suggested that by using Split-Find and Union-Find the running time of k operations on an
SPQR-tree starting from a triangle graph could be reduced to O(k · α(n, k)). The authors
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4.3. Cycle Trees

argue that this is possible due to the lack of interaction between the Union-Find and the
Split-Find the SPQR-tree and suggest the use of a Split-Find structure which supports
insertions, finds and splits in amortized O(1).

However, the Split-Find structure of Imai and Asanao [IA84] referenced by Di Battista
and Tammasia [DBT96] only allows element insertions at the end of a set. To the extent
of our knowledge no Split-Find structures which allows arbitrary insertions in amortized
O(1) exists. As such insertion of an arbitrary vertex inside an S-node without breaking the
corresponding Split-Find structure, like the one prroposed by Imai and Asano [IA84] is non
trivial. It is possible remedy this problem by reassigning the Split-Find ids of the S-node
links, but doing so would likely break the O(k · α(n, k)) bound. Alternatively, it is possible
to bypass the problem using a construction which only inserts vertices at the end of an
S-node, like the construction using ear-decomposition (see Section 5.1). Furthermore, the
cycle trees and cluster trees of La Poutré [Pou92] only allow edge insertions, as such it is
unclear whether the O(k · α(n, k)) bound could still be achieved if edge splits are allowed.

23





5. Efficient SPQR-Tree Construction

The SPQR-tree of a graph can be constructed in various different ways all of which result
in isomorphic SPQR-trees, that is, the resulting SPQR-trees may be rooted at different
SPQR-nodes, but may be rerooted to obtain the same SPQR-tree. In the following we
describe the incremental construction of the SPQR-tree using ear-decomposition and the
linear-time construction proposed by Gutwenger and Mutzel [GM01, Gut10] in 2001.

5.1 Construction using Ear-Decomposition
Ear decompositions provide a natural, incremental construction of the SPQR-tree, using
only the SPQR-tree operations insertEdge and splitEdge starting from a single S-node
with three vertices. The idea was proposed by Di Battista and Tamassia [DBT96], who used
it to show that the SPQR-tree of any biconnected graph G = (V, E) can be constructed
using |E| − 3 insertEdge and |V | − 3 insertVertex operations starting from a triangle
graph.

To construct the SPQR-tree from an open ear-decomposition E = e0, e1, ..., ek, we first
construct the S-node for the first ear. Since the first ear is a cycle the S-node is a perfect
match for the ear. The real edges of the S-node are given by the edges of the ear. For the
following ears, we first insert an edge covering the whole ear and then split the edge for
each inner vertex on the ear (see Figure 5.1).

Figure 5.1: Insertion of an ear, an edge is inserted between the two endpoints and then
continually split until all vertices of the ear have been inserted.

Ear decompositions are not necessarily unique, as such it is possible that the first ear only
consists of two edges. In this case using the ear for the starting node is not possible, as
S-nodes require at least a three vertices. There are two cases where this can occur

1. The underlying graph consists only of two vertices with parallel edges between them.
In this case no corresponding SPQR-tree can exists, as the graph is not biconnected.

2. If the graph has more than two vertices, then there is at least one additional vertex v
and an ear ei connecting v with the two vertices of the first ear. In this case we can
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5. Efficient SPQR-Tree Construction

move the last edge of the first ear e0 to the ear ei, turning the ear ei into a cycle and
the ear e0 into a simple ear. Swapping the two ears e0 and ei yields an equivalent
ear decomposition, which starts with a cycle and satisfies the ear-decomposition
requirements, as the requirements of any ear which depends on the original ear e0 is
also satisfies by the swapped ear ei, since all vertices of e0 are also contained in ei.

Alternatively, we may run the ear-decomposition on the corresponding simple graph. Each
parallel edge forms a simple ear consisting solely of a single edge. We may place these
parallel edge ears at the end of the ear list obtained from the simple graph, as the vertices
of the parallel edges are already present in previous ears.

The construction requires k edge insertions, one for each ear after the first, and up to n − 3
edge splits, one for each unique vertex in an ear.

In practice it may be better to construct the complete S-node of an ear, rather than starting
from a triangle graph and splitting the edge to insert the remaining vertices. Similarly, the
first ear may also be constructed as a completed S-node. This not only reduces the number
of operations necessary to insert an ear, but also allows the use of a faster non incremental
Split-Find for further operations, as Split-Find generally does not alllow arbitrary vertex
insertions. However, the number of operations required is still dependent on the size of the
ear.

5.2 Linear-Time Construction
Gutwenger and Mutzel [GM01, Gut10] devised an efficient algorithm to construct the SPQR-
tree of a biconnected graph in linear time. The algorithm is based on and corrects the
mistakes of the Hoprcoft and Tarjan [HT73] algorithm for finding triconnected components.

5.2.1 Overview

C
S1

S2

S3

Cycle C with segments S1, S2, S3

Figure 5.2: The cycle C with its relative segments S1, S2, S3. The cycle is shown in blue.

The main idea behind the algorithm is to find the separation pairs of the graph to compute
the split components. Gutwenger and Mutzel [GM01] use the idea of Hopcroft and Tarjan
[HT73] to obtain the separation pairs of the graph by finding a cycle and its segments (see
Figure 5.2). The idea is similar to the computation of ear-decompositions, with the cycle
as the initial ear and the split components as the ears (see 3.5.1). The difference lies in
the handling of the segments, which are split off similar to the original definition given by
Tutte [Tut66]. The following theorem shows the relation between the separation pairs and
the segments of cycles.
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5.2. Linear-Time Construction

a
b

type-1 separation pair

a

b

type-2 separation pair

p1

p2

C C

Figure 5.3: The two types of separation pairs, with the split off segment and the two
separation vertices a and b shown in red. The cycle C is shown in blue for the
type-1 separation pair. For the type-2 separation pair the Cycle is divided into
two paths p1 and p2 which are shown in orange and green respectively.

Theorem 5.1. (Gutwenger, Hopcroft and Tarjan [Gut10, HT73]) Let G = (V, E) be a
biconnected graph, C a cycle in G and S1, ..., Sn the connected components of G \ C, called
segments relative to C and let a, b ∈ V . Then each pair {a, b} is a separation if and only
if it satisfies all of the following conditions.

• a and b lie on the cycle C or a and b are part of the same segment Si, where
i ∈ {1, ..., n}.

• If a and b lie on the cycle c, let p1, p2 be the two paths in C connecting a and b (see
Figure 5.3). Then

– Type 1: there exists a segment Si ∈ {S1, ..., Sn}, such that Si has at least two
edges, Si ∩ C = {a, b} and Si \ {a, b} ≠ ∅.

– Type 2: ∀Si ∈ {S1, ..., Sn} : Si ∩ p1 ⊆ {a, b}, Si ∩ p2 ⊆ {a, b} and there exist
vertices c ∈ p1 and d ∈ p2 such that {c, d} ∩ {a, b} = ∅.

• If a and b do not lie on the cycle C, then there exists some other cycle C ′ in G such
that the above case holds.

Recursively subdividing the graph into a cycle and the relative segments allows us to find
the separation pairs. The idea originates from Auslander and Parter [AP61] as well as
Goldstein [Gol63] (c.f. [Gut10]).

The algorithm requires a biconnected Graph G, without self loops, as self loops are not
supported by the SPQR-tree. The entire algorithm consists of six major steps, which are
as follows.

1. Remove parallel edges by replacing them with virtual edges.

2. Perform a depth-first-search and partition the edges into tree edges and back edges.

3. Compute a set of paths covering the dfs-tree, consisting of multiple tree edges followed
by a single back edge, similar to the ears in the ear-decomposition (see 3.5.1).

4. Check potential separation pairs and construct the split components with tree edges
between adjacent components.

5. Merge adjacent polygons and merge adjacent bonds.
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5. Efficient SPQR-Tree Construction

6. Direct the SPQR-tree by rooting it at the SPQR-node containing the reference edge

The components are created by the function newComponent(e1, ..., ek), which assigns the
edges to a new component C and removes the edges from the graph. The type of the
component may be detected from the edges, i.e., a polygon only has degree 2 vertices, as
such each edge in shares its endpoints with exactly two other edges. The bonds consists
of parallel edges with the same endpoint. The simple triconnected component has at
least degree 3 at each of its vertices and has at least four vertices. As such the type of a
component may be determined by examining only a constant number of vertices or edges.
To add an edge e to a component C we use the notation C := C ∪ {e}, as with the creation
of components we remove the add edge from the graph.

5.2.2 Preparation

Before we can compute the separation pairs we first have to prepare the graph and pre-
compute several values. To prepare the graph for the split component computation, we
split off the parallel edges. Once the parallel edges have been removed we perform a
depth-first-search to calculate an ordering which will help us in the detection of separation
pairs.

Replacing Parallel Edges

Algorithm 5.1: Simplification of the Graph by splitting off parallel edges.
Data: A biconnected Graph G = (V, E)
Result: The simple Graph G′ = (V, E′), where parallel edges are replaced by a

single edge
1 splitBonds
2 sort edges such that parallel edges are grouped together
3 for each maximal bundle of parallel edges e1, ..., ek ≥ 2 do
4 let e1, ..., ek be edges incident to v and w
5 Replace e1, ..., ek by a new edge e′ := (v, w, l), where l is a new label.
6 C := newComponent(e1, ..., ek, e′)

The first step in the linear time construction algorithm is to simplify the Graph G = (V, E)
by replacing parallel edges with a single edge (see Algorithm 5.1). We call the simple Graph
G′ = (V, E′). To find the parallel edges, we sort the adjacency lists of G, such that parallel
edges are grouped together. To achieve the grouping we first sort the edges according to
the index of the lower endpoint and then use a stable sort according to the index of the
higher endpoint. If the vertices are not numbered we simply label the vertices in some
order from 1, ..., |V | (c.f. [Gut10]).

Depth First Searches

For the linear-time construction Gutwenger [Gut10] uses multiple depth-first searches. The
depth-first search ranks the vertices in the order of traversal from 1 to n = |V |. We call
the edges, which are traversed during the dept-first-search tree edges if they lead to an
unranked vertex and back edges if they lead back to an already ranked vertex, similar to the
chain decomposition algorithm (c.f. Section 3.5.1). Gutwenger and Mutzel [GM01, Gut10]
use the notation of Hoprcoft and Tarjan [HT73], calling the tree edges tree-arcs or T-arcs
and the back edges B-arcs.

The first procedure DFS1 (see Algorithm 5.2) computes two values lowpt1 and lowpt2 for
each vertex v ∈ V , using a simple depth first search (see Figure 5.4 for an example of the
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Figure 5.4: The DFS-tree with the back edges drawn as dashed lines and the lowpt values
next to each vertex, with lowpt1 at the top and lowpt2 at the bottom. Notice
the similarity to the DFS-tree of the chain decomposition 3.5.1. In fact, ordering
the paths found by the algorithm in the order they are found, satisfies the
requirements of an open ear-decomposition.

resulting dfs-tree). The value lowpt1(v) is the rank of the lowest ranked vertex reachable
from v by traversing any number of tree edges followed by at most one back edge. This
includes v itself. Note, that traversing a tree edge always leads to a higher ranked vertex
whereas traversing a back edge always leads to a lower ranked vertex, which is why the
traversal allows an arbitrary number of tree edges but only one back edge.

The value of lowpt2(v) is the second lowest ranked vertex reachable that is different from
lowpt1(v) or rank(v) if no lower ranked vertex is reachable. Hence, the values of lowpt1(v)
and lowpt2(v) are only the same if v is the lowest vertex reachable. This is always the case
for the starting vertex as no other vertex may be lower ranked. The lowpt1 and lowpt2
value of each vertex v, is at least the respective lowpt value of its parent vertex in the
dfs-tree (c.f. [Gut10]).

More formally, the values of lowpt1 and lowpt2 of a vertex v ∈ V are defined as follows.

lowpt1(v) := min({rank(w) | v
∗→↪→ w} ∪ {rank(v)}),

lowpt2(v) := min({rank(w) | v
∗→↪→ w} \ lowpt1(v) ∪ {rank(v)}),

where v
∗→↪→ w signifies a path of zero or more tree edges starting from v followed by a

single back edge ending at w (see [Gut10]).

The lowpoints allow us to find the type-1 and type-2 separation pairs (see Figure 5.5).
The following lemma shows the conditions with regards to the lowpoints, satisfied by the
different types of separation pairs type-1, type-2 and parallel edge separation pairs.

Lemma 5.2. (Gutwenger, Hopcroft and Tarjan [Gut10, HT73]) Let G = (V, E) be a
bicconected graph, a, b ∈ V with rank(a) < rank(b), where rank(v) is the rank of v in a
depth first search. Then, {a, b} is a separation pair if and only if it satisfies one of the
following three conditions.

• Type-1: There exist distinct vertices v, w ∈ V \{a, b}, such that v is a direct descendant
of b, with lowpoint1(v) = a, lowpoint2(v) ≥ b and w is also a (not necessarily direct)
descendent of b, but is not a descendant of v.
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Figure 5.5: The two separation pair types, with the type-1 separation pair to the left and
the type-2 separation pair to the right. The cycle is shown in blue, with the
separation pair nodes in red and the split off segment in green.

• Type-2: a is not the root vertex and there exists a vertex v ∈ V \ {b}, such that v is a
direct descendant of a, i.e., a → v, and b is a (not necessarily direct) descendant of
v, i.e., v

∗→ b.

– For every back edge x ↪→ y with rank(v) ≤ rank(x) < rank(b), rank(a) ≤ y
holds.

– For every back edge x ↪→ y with rank(a) < rank(y) < rank(b) and every vertex
v in the tree edge path b → v

∗→ x, w ≥ rank(a) holds.

• Parallel Edge Case: There are parallel edges between a and b in G and G consists of
at least four edges.

Furthermore, the values lowpt1 and lowp2 are used to define an ordering ϕ : E′ → N on
the edges e ∈ G′,

e = (v, w) 7→


3 · rank(w) + 1, if e is a back edge
3 · lowpt1(w), if e is a tree edge and lowpt2(w) < rank(v)
3 · lowpt1(w) + 2, if e is a tree edge and lowpt2(w) ≥ rank(v)

The ordering is used to sort the adjacency entries for each vertex, which is required for the
later separation pair detection. Similarly, the vertices are also reordered such that for each
vertex v with children w1, ..., wn in the dfs tree, rank(wi) = v + descendants(wi+1) + ... +
descendants(wn) + 1. For the root we keep the rank as 1. The new ordering is computed
in a second dfs (see Algorithm 5.3).

The second depth-first-search traversal (see Algorithm 5.3) identifies the paths in the
dfs-tree, similar to the identification of the ears in the chain decomposition algorithm
(see Section 3.5.1). Furthermore, the second dfs renumbers the vertices and computes the
highpoints of each vertex. Unlike the name suggests, the highpoint of a vertex v is the list
of descendants of v which have a back edge leading to v, rather than just a single vertex.
This is a remnant of the original Hopcroft and Tarjan algorithm [HT73] which incorrectly
used a single vertex rather than maintaining the list of vertices. The old highpoint of
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Hopcroft and Tarjan has been replaced by the corresponding list and a function high which
returns the first element of the list (see Algorithm 5.4).

The function makeTreeEdge(e, v → w) makes e a new tree edge in the dfs-tree leading from
v to w.

5.2.3 Split Component Computation

The split component computation is the most intensive step in the algorithm. The split
components are computed in the path search procedure (see 5.4) and the type-1 (see
Algorithm 5.6) and type-2 checks (see Algorithm 5.5). The path search uses two stacks,
TStack and EStack. The latter contains the edges that have been visited but have yet to
be assigned to a component. The former contains triples of vertices (h, a, b) where {a, b} is
a potential type-2 separation pair and h is the highest numbered vertex in the component
to be split off. Neither Gutwenger and Mutzel [GM01, Gut10] nor Hopcroft and Tarjan
[HT73] give an algorithm for the calculation of the triples.

The triples may be obtained in yet another depth first search similar to the second one
5.3, where we traverse the path and add the triple (h, a, b) to the stack, where a and b
are two distinct vertices of the path and h is the highest vertex to be split off. We can
obtain this highest numbered vertex in the split component through the highpoints of the
path vertices, which where computed earlier in the second depth first search 5.3. We use
an end of stack symbol ⊥ to separate the different paths on the TStack, the technique is
mentioned in Hopcroft and Tarjan [HT73], using the three letters eos as the end of stack
symbol.

For the sake of readability in the pathsearch and type-1 and type-2 checks, we use the
vertices by their rank, e.g., lowpt1[v] may refer to the vertex w with rank[w] = lowpt1[v]
as well as the numerical value of lowpt1[v].

5.2.4 Merging Components

The last step of the algorithm is to merge the adjacent bonds as well as the adjacent
polygons. This directly corresponds to the requirement of the SPQR-tree not to have any
adjacent P-nodes or S-nodes (c.f. Chapter 4). We consider two components adjacent if
they share a virtual edge (see Algorithm 5.7). The type of a component is implicitly given
by its skeleton. The polygons are cycles with at least three vertices and no parallel edges,
whereas the bonds have exactly two vertices and at least three edges.

Combining the previous sub-algorithms we obtain the linear time construction (see Al-
gorithm 5.8). The path search algorithm (see Algorithm 5.4) creates the majority of the
components, but leaves the edges of the last component on the stack. This is a remnant
of the original Hopcroft and Tarjan algorithm [HT73], where the last component was
overlooked. The end of stack symbol ⊥ is pushed on the triple stack for consistency as the
different paths are all separated by an end of stack symbol, which is removed each time a
new path is visited.
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Algorithm 5.2: DFS calculating rank, lowpt values and the number of descen-
dants for each vertex.

Data: biconnected simple Graph G′ = (V, E′), initial vertex s ∈ V
Result: The lowpoints, rank and number of descendants of each vertex.

1 DFS1(vertex v, vertex parent)
2 nextNum := nextNum + 1 // the rank counter which increases with

each recursive step
3 rank[v] := nextNum
4 lowpt1[v] := rank[v]
5 lowpt2[v] := rank[v]
6 descendants[v] := 1 // the number of descendants including v itself
7 forall e = (v, w) ∈ E′ do
8 if e is marked then
9 continue

10 if rank[w] = 0 then
11 mark e as tree edge // if w has not been visited yet, we mark

the edge leading to w as tree edge
12 DFS1(w, v)
13 if lowpt1[w] < lowpt1[v] then
14 lowpt2[v] := min{lowpt1[v], lowpt2[w]}
15 lowpt1[v] = lowpt1[w]
16 else if lowpt1[w] = lowpt1[v] then
17 lowpt2[v] := min{lowpt2[v], lowpt2[w]}
18 else
19 lowpt2[v] := min{lowpt2[v], lowpt1[w]}
20 descendants[v] := descendants[v] + descendants[w]
21 else
22 mark e as back edge // if w has been visited the edge

leading to w is a back edge
23 if rank[w] < lowpt1[v] then
24 lowpt2[v] := lowpt1[v] lowpt1[v] := rank[w]
25 else if rank[w] > lowpt1[v] then
26 lowpt2[v] := min{lowpt2[v], rank[w]}
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Algorithm 5.3: DFS2 computing new numbering and paths.
Data: biconnected simple Graph G′ = (V, E′), initial vertex s ∈ V , ordered

adjacency lists Adj(v) for each v ∈ V
1 DFS2(vertex v, vertex parent)
2 numCount := |V |
3 newPath := true
4 forall e ∈ E′ do
5 startsPath[e] = false
6 PathFinder(v)

7 forall v ∈ V do
8 old2new[rank[v]] := newnum[v]
9 forall v ∈ V do

10 lowpt1[v] := old2new[lowpt1[v]]
11 lowpt2[v] := old2new[lowpt2[v]]

12 PathFinder(vertex v, vertex parent)
13 newNum[v] := numCount − descendants[v] + 1
14 e1, ..., ek := A(v)
15 forall i ∈ {1, ..., k} do
16 ei = (v, w)
17 if newPath then
18 newPath := false
19 startsPath[e] := true
20 if eisatreeedge then
21 PathFinder(w)
22 numCount := numCount − 1
23 else
24 highpt[w].pushBack(newNum[v])
25 newPath := true
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Algorithm 5.4: The computation of the split components.
Data: Result of DFS1 and DFS2

1 pathSearch(vertex v)
2 outv := |Adj(v)|
3 forall e ∈ Adj(v) do
4 if e is a tree edge then
5 if startsPath[e] then
6 pop all (h, a, b) with a > lowpt1[w] from TStack
7 if no triples were deleted then
8 TStack.push(w + descendants[w] − 1, lowpt1[w], v)
9 else

10 y := max{h | (h, a, b) deleted from TStack}
11 let (h, a, b) be the last triple deleted.
12 TStack.push(y, lowpt1[w], b)

13 pathSearch(w)
14 EStack.push({v, w})
15 typeTwoCheck
16 typeOneCheck
17 if startsPath[e] then
18 remove all triples upto and including the first ⊥ on TStack.
19 while (h, a, b) on TStack has b ̸= v and high(v) > h do
20 TStack.pop()

21 else
22 let e = {v, w} be a back edge
23 if startsPath[e] then
24 deletions := 0
25 lastDeleted := null
26 forall (h, a, b) ∈ TStack with a > w do
27 lastDeleted := (h, a, b)
28 pop (h, a, b)
29 deletions := deletions + 1
30 if deletions = 0 then
31 TStack.push(v, w, v)
32 else
33 y := max{h | (h, a, b) deleted from TStack}
34 (h, a, b) := lastDeleted
35 TStack.push(y, w, b)

36 EStack.push(e)
37 outv := outv − 1

38 high(vertex v)
39 if highpoint[v] is empty then
40 return 0
41 else
42 return highpoint[v].front()
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Algorithm 5.5: The type-2 separation pair check. Note, the function checks for
multiple type-2 separation pairs

Data:
1 type2Check
2 while v ̸= 1 and (((h, a, b) on TStack has a = v) or (deg(w) = 2 and

firstChild(w) > w)) do
3 if a = v and parent(b) = a then
4 TStack.pop()
5 else
6 ea,b := null
7 if deg(w) = 2 and firstChild(w) > w then
8 C := newComponent()
9 ev,w := fromEStack.pop()

10 ew,x := fromEStack.pop()
11 add (v, w) and (w, x) to C
12 C := C ∪ {ev,w, ew,x}
13 e′ := newVirtualEdge(v, x, C)
14 if EStack.top() = (x, v) then
15 ea,b := EStack.pop()
16 delHigh(ea,b)

17 else
18 (h, a, b) := TStack.pop()
19 C := newComponent()
20 while (x, y) on EStack has a ≤ x ≤ h and a ≤ y ≤ h do
21 if (x, y) = (a, b) then
22 ea,b = EStack.pop()
23 delHigh(ea,b)
24 else
25 ex,y = EStack.pop()
26 delHigh(ex,y)
27 C := C ∪ {ex,y}

28 e′ := newVirtualEdge(a, b, C)
29 if ea,b ̸= null then
30 C := newComponent(ea,b, e′)
31 e′ := newVirtualEdge(v, b, C)
32 EStack.push(e′)
33 makeTreeEdge(e′, v → b)
34 w := b
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Algorithm 5.6: The type-1 separation pair check.
Data: The lowpoints, descendants, parent and the rank of each vertex, The edge

stack EStack.
1 type1Check
2 if lowpt2[w] ≥ v and lowpt1 ≤ v and (parent(v) ̸= 1 or outv ≥ 2) then
3 C := newComponent()
4 while (x, y) on EStack has rank[w] ≤ rank[x] < rank[w] + descendants[w]

or rank[w] ≤ y < w + descendants[w] do
5 ex,y := EStack.pop()
6 delHigh(ex,y)
7 C := C ∪ {ex,y}
8 e′ := newVirtualEdge(v, lowpt1[w], C)
9 if EStack.top() = (v, lowpt1[w]) then

10 e′′ := EStack.pop()
11 C := newComponent(e′′, e′)
12 if lowpt1[w] ̸= parent(v) then
13 EStack.push(e′)
14 else
15 C := newComponent(e′, lowpt1[w] → v)
16 e′ := newVirtualEdge(lowpt1[w], v, C)
17 makeTreeEdge(e′, lowpt1[w] → v)

Algorithm 5.7: Merging adjacent serial and parallel components.
Data: A set of components C1, ..., Ck consisting of bonds, polygons and simple

triconnected components
1 mergeAdjacentComponents
2 for i ∈ {1, ..., k} do
3 if Ci ̸= ∅ and Ci is a bond or a polygon then
4 forall e = (u, v, l) ∈ Ci do
5 if ∃j ̸= i such that e ∈ Cj and type(Ci) = type(Cj) then
6 Ci := (Ci ∪ Cj) \ {e} Cj := ∅
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Algorithm 5.8: The linear-time algorithm. First the lowpoints are calculated
in DFS1 and updated in DFS2. Next, the recursive path search computes the
split components, excluding the last. The last split component is created from
the leftover edges on the stack. Lastly, adjacent bonds and polygons are merged.

Data: A biconnected Graph G = (V, E), the start vertex s ∈ V
Result: The Tutte components of G.

1 splitBonds(G)
2 nextNum := 0 // the dfs rank counter
3 DFS1(s, null) // the dfs starts at s which has no previous node
4 DFS2(s)
5 TStack.push(⊥)
6 calculate triples for TStack
7 pathSearch(s)
8 let e1, ..., ek be the remaining edges on EStack
9 Cn := newComponent(e1, ..., ek) // pathSearch does not create the last

component
10 mergeAdjacentComponents(C1, ..., Cn)
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6. Dynamic SPQR-Tree Operations

In the following we give a detailed description of the SPQR-tree operations and the
operations of its extension to general graphs. The SPQR-tree fundamentally supports two
different kinds of operations, triconnectivity queries, which do not change the structure of
the SPQR-tree and incremental updates, such as edge and vertex insertions, which change
the structure of the SPQR-tree.

6.1 Triconnectivity Queries
One of the major functions of the SPQR-tree is to check whether two given vertices are
triconnected. Two vertices a and b are triconnected, if they belong to the same triconnected
component. In the SPQR-tree, the triconnected components are represented by P-nodes
and R-nodes, as such a and b are triconnected, if there is a P-node or an R-node, which
contains both a and b in its skeleton. We call these SPQR-nodes the common allocation
nodes of a and b or simply an allocation node of a if the SPQR-node contains a. A simple
way to find the common allocation nodes is to iterate through all the SPQR-nodes in the
SPQR-tree. However, this simple solution can be quite costly, requiring O(n) time in the
worst case, where n is the number of nodes in the SPQR-tree.

v

v

v

v

v v

v

Figure 6.1: The tree induced by the allocation nodes of a vertex v, with the proper allocation
node as the root (shown in green).

The allocation nodes form a subtree of the SPQR-tree, as allocation nodes are adjacent
due to the virtual edges. The lowest common ancestor of the allocation nodes of a vertex v
is called the proper allocation node of v (see Figure 6.1). To check if an SPQR-tree node is
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6. Dynamic SPQR-Tree Operations

an allocation node of a vertex v, we only need the proper allocation node of v and the poles
of each SPQR-tree node, i.e., the endpoints of the reference edge. This is due to the fact,
that a node in the SPQR-tree is an allocation node if and only if it is the proper allocation
node or if it contains the vertex v as a pole.

Now that we have the proper allocation nodes and the poles, we only need to check three
cases to test whether a and b are triconnected (c.f. [DBT96]). In the following we use
prop(v) to denote the proper allocation node of a vertex v and parent(λ) to denote the
parent node of an SPQR-tree node λ.

1. prop(a) = prop(b) is an R-node or a P-node (see Figure 6.2 case 1).

2. prop(a) is an R-node with b as a pole or vice versa ((see Figure 6.2 case 2)).

3. a and b are poles of a P- or R-node λ, which is the child of an S-node µ, i.e.,
parent(λ) = µ (see Figure 6.2 case 3)).

a

b

b

a
a

a

b

a

b

case 1 case 2 case 3

Figure 6.2: The three cases of triconnectivity from left to right: 1. shared proper allocation
R-node or P-node, 2. b is a pole of the proper allocation R-node of a, 3. a and
b are poles of a P-node, which is a child of their proper allocation S-node. The
proper allocation nodes are shown in green, with the other allocation nodes
shown in blue.

Note, the case where the proper allocation node of a vertex v is a P-node only occurs if
that P-node is the root node, this is due to the fact, that P-nodes only contain two nodes,
the poles, which are also allocated at the parent SPQR-node. Furthermore, in the last case
the S-node is the proper allocation node of at least one of the two vertices a and b, as only
one of the two may be a pole of the S-node due to the lack of parallel edges in S-nodes.

By maintaining the poles of each SPQR-tree node and the proper allocation nodes for each
vertex, the triconnectivity of two vertices can be tested in O(1) (see [BT96]).

6.2 Incremental Updates

SPQR-trees can be updated to reflect incremental changes of the underlying graph without
having to recompute the whole tree. The SPQR-tree supports edge splits and edge insertion.
In fact, the entire SPQR-tree can be constructed starting from the triangle graph using
only edge splits and insertions [BT96].

6.2.1 Vertex Insertion

To maintain biconnectivity in a graph, a vertex may only be inserted by splitting an edge, as
inserting an isolated vertex or a vertex, which has only one edge breaks the biconnectivity
of the graph.
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Figure 6.3: A vertex insertion via edge split inside an S-node, creating a new S-node with
the new edges and vertex, which is then merged with the adjacent S-node.
Dashed lines indicate virtual edges and dotted lines indicate tree edges.

Edge Splitting

To split an edge we replace the unique real edge e with a virtual edge. This virtual edge
corresponds to a new S-node containing the new edges e1, e2 and the virtual edge e. If
the new S-node is a child of another S-node we simplify the structure by absorbing the
new S-node into its parent, i.e., the real edges of the new S-node become part of the
parent S-node instead and the corresponding virtual edge is removed. If the edge e was
the reference edge of the SPQR-tree, the new reference edge of the SPQR-tree becomes e1
(see Figure 6.3). The entire process can be computed in O(1) time (see [BT96]).

6.2.2 Edge Insertion

Edge insertions are more complex than edge splits, as inserting edges increases the connec-
tivity of the two endpoints and potentially of further vertices. This manifests itself in the
SPQR-tree in the form of splits for affected S-nodes and merges for R-nodes, as affected
biconnected components are split and triconnected components grow. The requirement for
the splitting of S-nodes derives from the fact that affected vertices that were previously
biconnected are now triconnected and hence need to be part of a triconnected component,
i.e., an R-node or P-node. For the edge insertion we present two algorithm first the original
edge insertion algorithm 6.2.2 described by Di Battista and Tamssia [BT96] and second a
simplified edge insertion algorithm 6.2.2, which reduces the required case distinctions.

Merging Adjacent SPQR-nodes

a

b b

a

c

d

e

f

a

e fcd

b

Figure 6.4: The merge of two adjacent R-nodes, the virtual edge {a, b} (shown in red) is
removed as it is no longer needed. Note, the resulting skeleton not necessarily
triconnected as only two vertices may be shared between the two SPQR-nodes.
For the triconnectivity an additional edge such as {c, e} (shown in blue) or
{d, f} is necessary.

To merge two adjacent SPQR-nodes λ and µ of the same type, we create a new SPQR-node
ν with the union of the vertex and edge sets as its skeleton. The virtual edge shared
between λ and µ is removed from ν as it is no longer needed.

The SPQR-nodes λ and µ are removed and the neighbors of ν are given by the merged
virtual edges, i.e., ν is adjacent to the union of neighbors, without the nodes λ and µ (see
Figure 6.4). The merging of two SPQR-nodes is similar to the merging of vertices in a
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Graph, where the resulting self loops are removed. The self loops in our case are the virtual
edges which are shared. The resulting skeleton of ν is defined as follows.

ν(V ′) = λ(V ′) ∪ µ(V ′)
ν(Ereal) = λ(Ereal) ∪ µ(Ereal)

ν(Evirtual) = λ(Evirtual) ∪ µ(Evirtual) \ (λ(Evirtual) ∩ µ(Evirtual))

For the merge between an R-node λ and another adjacent SPQR-node µ of a different type
we create a new R-node ν and assign the skeleton as above.

Note, merging two R-nodes without the insertion of an edge between distinct, i.e., not
shared vertices and virtual edges will not result in a triconnected skeleton, as two distinct
R-nodes are only biconnected. This may be observed in the example Figure 6.4, where the
resulting skeleton is only triconnected due to insertion of the edge {c, e}.

Splitting S-nodes

To split an S-node S, along an edge e = {a, b}, we create two new S-nodes. The node S
is split into two edge-disjoint paths between the vertices a and b. To complete the cycle
again we add a virtual between a and b to the two S-nodes.

vk−1

v0

v1

vivi+1

vj

. . .
. . .

. . .

vi+1

vj

. . .

vk−1

v0

v1

vi

. . .

. . .
vj

vi

S

S2

S1

e e

Figure 6.5: Splitting the S-node S at the edge e = {vi, vj}.

Let S be an S-node, with k edges, Vskeleton(S) = {v0, ..., vk−1} and E = Ereal(S) ∪
Evirtual(S) = {ei, ..., ek−1} ordered such that ei = {vi, v(i+1) mod k}, for all i ∈ {0, ..., k −1},
To split S at an edge e = {vi, vj} with 1 ≤ i ≤ j ≤ k, we create two new S-nodes S1 with
the edges E1 = {e0, ..., ei−1, ej , ..., vk−1} and S2 with the edges E2 = {ei, ei+1, ..., ej−1} and
add the edge e = {vi, vj} to both as a virtual edge (see Figure 6.5). The resulting skeletons
of S1 and S2 are

Vskeleton(S1) = {v0, ..., vi, vj , vj+1, ..., vk−1}
Ereal(S1) = Ereal(S) ∩ E1

Evirtual(S1) = Evirtual(S) ∩ E1 ∪ {e}
Vskeleton(S2) = {vi, vi+1, ..., vj−1, vj}

Ereal(S2) = Ereal(S) ∩ E2

Evirtual(S2) = Evirtual(S) ∩ E2 ∪ {e}.

Finding the shortest Path between two Allocation Nodes

Let a, b ∈ V , to obtain the shortest path between the allocation nodes of a and the
allocation nodes of b we again use the proper allocation nodes, we introduced earlier. Due
to the allocation nodes forming a subtree, one of the endpoints of the path will always be
a proper allocation node (see Figure 6.6). Let A be the proper allocation node of a and let
B be the proper allocation node of b. Either the trees induced by the allocation nodes of a
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b

a

a

a

a

Figure 6.6: The allocation nodes of a (shown in blue) and b (shown in green), which do
not have a common allocation node. The shortest path between the allocation
nodes a and b (shown in grey) ends at the two proper allocation nodes and
passes through the common ancestor P-node.

and b are disjoint or there is some overlap between the two. If the two subtrees overlap,
then at least one of the two proper allocation nodes is also an allocation node of the other
vertex, i.e., the proper allocation node of a is an allocation node of b or vice versa. If the
allocation node trees of a and b are disjoint, there are two cases:

1. B is a descendant of A or vice versa. Without loss of generality, let B be a descendant
of A. Then the shortest path between two allocation nodes can be obtained by
following the parent path of B until we find an allocation node of a or we arrive at A.

2. There is some common ancestor C of A and B. Then, we follow the parent path of
both A and B and mark the visited nodes until we arrive at an already visited node.
The common ancestor C is the first and only node that is visited by both paths. The
shortest path between A and B is the combination of the paths from A to C and
from B to C, that is the path A, . . . , C, . . . , B.

Let p be the length of the shortest path. To obtain the shortest path in O(p) time, we
traverse both paths simultaneously and stop when we find an allocation node of the other
or an already visited node.

Original Edge Insertion Algorithm

In the following we present the edge insertion algorithm proposed by Di Battista and
Tamassia [BT96]. The algorithm has been extended by an additional case for the insertion
of parallel edges in an R-node, which was not considered by the authors (see Case 1b). The
change ensures that the SPQR-tree is unique, up to isomorphism with regards to the root
node, regardless of the construction. The distinction is not necessary for simple graphs, as
the case is already covered by the Case 4.

Let e = {a, b} be the inserted edge. For the restructuring of the SPQR-tree, Di Battista
and Tamassia [BT96] use the common allocation nodes to distinguish five cases. The
common allocation nodes of a and b are the nodes, which have both a and b as part of
their skeletons.

1. Shared R-node:

If a and b have exactly one common allocation node R which is an R-node, there are
two possible cases:

a) The edge e does not yet exist in R. Then, we simply add e to R (see Figure 6.7).

b) An equivalent e′ already exists in R. Then, we instead create a new P-node
with a virtual edge eR connecting it to the r-node and the two edges, e and e′.
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The place of e′ in the R-node is taken by a new virtual edge eR which connects
the R-node to the P-node (see Figure 6.8).

2. Shared S-node:
If a and b have exactly one common allocation node S which is an S-node, we split
the node S between the two vertices a and b creating two new S-nodes Sa and Sb.
We replace the old S-node S with the two nodes Sa, Sb separated by a new P-node P
containing the edge e (see Figure 6.12).

3. Shared P-node:
If a and b have one common allocation P-node p, we simply add the edge e to the
P-node P (see Figure 6.9).

4. Adjacent Case: If a and b have exactly two common allocation nodes N1 and N2.
The two nodes are adjacent in the SPQR-tree, due to the allocation nodes forming a
subtree. In this case, we replace the tree edge between the two nodes with a new
P-node P , which is adjacent to the two nodes N1 and N2 and contains the new edge
{a, b} (see Figure 6.10). There are two cases in which we find two common allocation
nodes without a shared P-node.

a) Two adjacent R-nodes.
b) An S-node adjacent to an R-node.

Two S-nodes cannot be adjacent due to the merging of adjacent S-nodes created
during the intermediate steps of edge insertion and edge splits. The same applies to
P-nodes as well.

5. Path Case:
If a and b do not have any common allocation nodes, let p be the shortest path
between two allocation nodes of a and b. Let λ and µ be the SPQR-node endpoints
of the path, which are allocation nodes of a and b respectively (see Figure 6.11 for an
example of the Path Case).

a) First, we remove all the tree edges on the path p.
b) Then, we split every S-node S on the path p between its neighbors on the path.

For the endpoints of the path λ and µ we split S between its unique neighbor
on the path and the corresponding vertex a or b, respectively.

c) Next, we create a new R-node R containing a, b, e and merge the skeletons of
R-nodes on the path into it. The skeletons of this new R-node then contains
the union of the skeletons of the R-nodes on the path p, the two edge endpoints
a, b and the edge e.

d) Then, we connect the P-nodes on the path p and the new nodes resulting from
the splits to the newly created R-node r, adding the corresponding virtual edges
to r for each node.

e) Lastly, we absorb 2-edge S-node and P-node neighbors into R, that is we remove
S-nodes and P-nodes which only have two edges, one virtual and one real edge
and add the real edge to R, replacing the corresponding real edge in R.

The SPQR-tree changes the most in the path case. The additional edge increases the
connectivity of a formerly biconnected path, collapsing the path in the SPQR-tree into a
single R-node (see Figure 6.11).
A sequence of k ∈ N intermixed triconnectivity queries and insert edge operations on an
SPQR-tree can be computed in O (n · log n + k) time, where n is the number of vertices
(see [BT96]).
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Figure 6.7: Insertion of the edge {a, b} inside an R-node, with the new edge shown in blue.
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Figure 6.8: Insertion of an edge e = {a, b} into an R-node which already has an equivalent
real edge in its skeleton. A new P-node is created containing both real edges.

Split types

The splits of S-nodes can be categorized into three types: inner splits, path splits and
endpoint splits. The inner split describes the split which occurs if both endpoints of the
inserted edge e = {a, b} are properly allocated at the S-node. In this case the S-node is
split along the virtual edge e resulting in two new S-nodes with sharing the virtual edge e
(see Figure 6.12). Note, that if a and b are already adjacent before the insertion of e, then
the split results in an S-node consisting only of the singular edge e. This S-node is then
absorbed into to the newly created P-node.

The path split occurs if the S-node s is an inner node of the tree path. In this case the
S-node is split along the edges induced by the connecting reference edges of its neighbors
on the path, i.e., its own poles and the poles of its path child c. The resulting S-nodes have
distinct reference edges, comprised of one pole of s and one pole of c (c.f. Figure 6.13).

Lastly, the endpoint split occurs if the S-node is at one end of the path, this is the case if
one of the endpoints is properly allocated at the S-node. Here the S-nodes are split among
the poles and the edge endpoint, creating virtual edges from each of the two poles to the
endpoint. The resulting S-nodes share the endpoint as a pole (c.f. Figure 6.14).

The different types of splits may be generalized into a single type based on the path split
by using auxiliary self loops instead of the endpoint vertices. For the endpoint split we use
an auxiliary self loop at the endpoint. Similarly, for the inner split we use two auxiliary
self loop at each endpoint of the inserted edge.
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e

a

a

a

e

Figure 6.9: Insertion of the edge e = {a, b} inside a P-node, with the new edge shown in
blue.
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Figure 6.10: Insertion of the edge {a, b}, with two common allocation nodes. A new P-node
is added adjacent to the two allocation nodes and the edge is added to the
new P-node.
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Figure 6.11: Insertion of the edge {e, j} (shown in blue) and the resulting contraction of
the path in the SPQR-tree. The SPQR-tree before the insertion is shown in
the middle, with the resulting SPQR-tree to the right and the graph in the
top left corner. The edges which are removed are shown in red and the added
edges are shown in green.
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Figure 6.12: Insertion of the edge {a, c} and the subsequent split of the S-node into two
smaller S-nodes, with the virtual edges drawn as dashed lines and tree edges
drawn as dotted lines.
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Figure 6.13: The split that occurs inside an S-node which is an inner node of the path.
The S-node is split along the virtual edges of the path.

Simplified Edge Insertion

The edge insertion algorithm presented by Di Battista and Tamassia [BT96] requires many
case distinctions. Despite the many cases, the algorithm largely follows the same pattern
in each case, that is splitting some set of S-nodes, inserting a P-nodes for parallel edges
and combining adjacent nodes of the same type.

In the following we present a simpler edge insertion algorithm, by reducing the case
distinction to this core. For this, we use the shortest path between two allocation nodes
and treat the common allocation nodes as paths of length 1. To avoid the ambiguity caused
by multiple common allocation nodes, we use the proper allocation nodes of the inserted
edge endpoints and obtain the path. Note, that the path between the two proper allocation
nodes is not necessarily the shortest path between two allocation nodes. This is the case if
one proper allocation node is an ancestor of the other. In this case we simply use the first
allocation node which is also an ancestor instead.

We break down the insertion of an edge e = {a, b} into the following steps (see Figure 6.15):

1. First, we obtain the shortest path between two allocation nodes of a and b. Note the
path consists of a single allocation node if a and b share a common allocation node.

2. Next, we split each S-node of the path along the endpoints of its virtual edges on the
path, creating new virtual edges for the split parts.

3. Similarly, for each P-node with more than three edges, we split off all edges except
the virtual edges on the path.

4. Then, we merge the nodes of the path into a new SPQR-node λ and remove the
virtual edges forming the path.

5. Next, we insert the edge e into λ.

• If an equivalent edge e′ already exists in λ, we first add a new P-node µ. If the
existing edge e′ is a real edge we move it to µ and add virtual edges connecting λ
and µ (see Figure 6.8). If e′ is a virtual edge, then there is another SPQR-node ν
which contains the twin edge e′′ = twinEdge(e′). In this case we add two virtual
edges eλ and eν to µ such that twinEdge(e′) = eλ and twinEdge(e′′) = eν . and
vice versa.
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Figure 6.14: The split that occurs in an S-node that is at one end of the path.

a

b

a

b c

cb

e

f

a

b

h

i

i

h

j

i h

g

b
h

b

a

a

c

d

Figure 6.15: The splitting of S-nodes and P-nodes of the path. Edges resulting from the
splitting are shown in green. The virtual and tree edges that are removed as
part of the merging are shown in red.

6. Lastly, we merge adjacent S-nodes and P-nodes.

The newly created SPQR-node λ is an R-node, if the length of a path is at least 2 and a
P-node if the length is less than 2. This is due to the fact, that a path of length 2 consists
of at least four distinct nodes, the two endpoints of the inserted edge a and b and the poles
of the proper allocation nodes of a and b. For paths of length 1, there are two cases, either
a parallel edge is inserted or an S-node is split. In both cases we create a P-node.

For the S-nodes at the endpoints of the path we use an auxiliary self loop at the corre-
sponding proper allocation node instead, as there is only one virtual edge on the path.
After the splitting each S-node of the path is either a triangle or a square and each P-node
has exactly three edges. This derives from the fact that each S-node of the path shares at
most four nodes with its neighbors.

For comparison the original edge insertion algorithm by Di Battista and Tamassia [BT96]
distinguishes five cases, whereas the only separate case in our algorithm is the insertion of
parallel edges in an R-node, which was not considered by Di Battista and Tamassia [BT96].

6.2.3 BC-Tree Operations

In the following we describe the operations which are unique to the BC-tree and not covered
by the SPQR-tree, i.e., the insertion of non biconnected vertices and the insertion of an
edge between two B-nodes.

Triconnectivity

Similar to the SPQR-tree, we also maintain the proper allocation node in the BC-tree or
BC-forest. This allows us to easily answer queries of the form triconnected(a, b) queries
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by first checking if a and b are biconnected, by checking if a and b are part of the same
B-node. If a and b are not part of the same B-node they are not biconnected and hence
cannot be triconnected. If however, a and b are part of the same B-node we simply pass
the query to the corresponding SPQR-tree.

Vertex Insertion

To insert a new vertex a, connected by an edge e = {a, b}, can be attached to a BC-tree
by adding a new C-node for the vertex b and a new B-node containing the two endpoints
a, b and the edge e. If there already is a C-node containing b, we do not need to add the
C-node. To insert an isolated vertex in a BC-Forest, we simply add a new BC-tree.

Edge Insertion

For edge insertions, we obtain the proper allocation nodes of the two edge endpoints. If two
endpoints have the same B-node as proper allocation node, we simply use the underlying
SPQR-tree to insert the edge, as the BC-tree does not change. If however, the two endpoints
do not have any common allocation nodes in the BC-tree, we obtain the shortest path p
between two allocation nodes of a and b in the BC-tree and merge the B-nodes of the path
p into a new B-node, similar to the path contraction in the SPQR-tree.
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Figure 6.16: Insertion of an edge e = {a, b} in a BC-tree. The B-nodes of the path are
merged and the inner C-nodes disappear, as their vertices are no longer
cutvertices. The edge and the resulting path in the BC-tree are shown in blue
with the auxiliary edges drawn in green. The combination of the inserted edge
and the auxiliary edges forms the cycle and thus the S-node.

The edge e = {a, b} is then inserted as follows (see Figure 6.16)

1. First, we add an auxiliary edge ei to the SPQR-tree of each B-node bi of the path p.
Let ci−1 and ci+1 be the vertices of the C-node neighbors bi on the path p, then the
auxiliary edge ei = {ci−1, ci+1} connects the the two vertices. For the B-nodes which
only have one C-node neighbor, i.e., the endpoints of the path we use the vertices a
or b instead.

2. Let b′ be the B-node with the most vertices and re-root all other B-nodes of the path
at the auxiliary edges we inserted earlier.

3. Then, we merge the B-nodes into b′. This is achieved by connecting the SPQR-trees
with a new S-node s′ containing the edge e and the auxiliary edges, keeping the path
order for the S-node edges.
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4. Lastly, merge S-nodes that are adjacent to s′ and remove the C-nodes which no longer
correspond to a cutvertex, which are the C-nodes that were only adjacent to path
nodes (similar to the degree 3 P-nodes in the SPQR-tree).

The S-node forms the cycle given by the path and the endpoint a, b and connects the former
B-nodes of the path to a single B-node.

To insert an edge e = {a, b} between two BC-trees we simply add C-nodes for a and b
to their respective BC-trees and a new B-node B′ which connects the two C-nodes. If a
or b already have corresponding C-nodes, we simply reuse them instead of creating new
C-nodes.

A sequence of k ∈ N operations on a BC-forest takes O (n log n + k) time, starting from a
single vertex, where n is the number of vertices in the graph and k is the total number of
operations (c.f. [BT96]).

6.3 Dynamic Extension of SPQR-Trees
While the SPQR-tree and BC-tree only allow edge and node insertions, it is possible
to use the structure of the SPQR-tree to maintain the triconnected components under
edge deletions. One such variant was proposed by Holm et al.[HIK+18] in 2018. The
decremental SPQR-tree proposed by Holm et al.[HIK+18] supports edge deletions and
vertex contractions, instead of edge insertions and splits. In the following year Holm and
Rotenberg [HR19] published a fully dynamic SPQR-tree, supporting both edge insertions
and deletions.

6.3.1 Edge Removal in SPQR-Trees

Removing an edge from the SPQR-tree is significantly more involved than inserting and
edge, as removing an edge may increase the size of the SPQR-tree, by collapsing R-nodes
into multiple S- and P-nodes, which negatively impacts the running time of decremental
SPQR-trees. Holm et al.[HIK+18] managed to efficiently support edge deletions and
contractions in O(log2(n)) amortized time, by maintaining the separating 4-cycles in the
dual graph. The separating 4-cycles in the dual graph have a one to one correspondence to
the separation pairs. Maintaining the separating 4-cycles makes it easier to maintain the
separation pairs, as deleting an edge in an embedded graph results in the contraction of
an edge in the dual graph, as the edge separating the two faces is removed. This ensures
the dual graph shrinks while the SPQR-tree expands, when triconnected components fall
apart.

6.3.2 Dynamic SPQR-Trees

In 2019 Holm and Rotenberg [HR19] published a fully dynamic SPQR-tree, that runs in
O(log3 n) time and supports both insertions and undo operations. The authors use a heavy
path decomposition to identify paths in the SPQR-tree, containing the majority of the
SPQR-nodes and pre-split the S- and P-nodes, that lie on a heavy path.

The heavy path decomposition partitions the edges of a tree into heavy edges and light
edges. An edge e = (v, parent(v)) is heavy if size (parent (v)) ≤ 2 · size(v), where size(v) is
the number of descendants of v including v itself. The set of descendants of v is the union
of its children with the descendants of each of its children. The concept of the heavy path
decomposition was originally proposed by Sleator and Tarjan [ST83] in 1983.

For the pre-splitting, the S-nodes lying on heavy paths are split into a primary and up
to two secondary child nodes, with the primary child node containing the heavy path.
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Similarly, the P-nodes are split into a primary child and at most one secondary child node.
The primary child inherits the heavy path, whereas the secondary child node inherits
the remaining nodes. The secondary children of S-nodes and P-nodes may again be split
according to their own heavy paths. Since the original definition of the SPQR-tree does
not allow S-nodes to be adjacent to other S-nodes and P-nodes to be adjacent to other
P-nodes, the authors use a relaxed definition of the SPQR-tree, which allows S-nodes and
P-nodes to be adjacent to their respective node types. This change does not break the
SPQR-tree, as the requirement in the regular SPQR-tree simply minimizes the number of
S- and P-nodes, by merging adjacent S- and P-nodes with their respective neighbors of
the same type. However, since the relaxed SPQR-tree by Holm and Rotenberg does not
minimize the number of nodes, it is not unique, unlike the regular SPQR-tree.

6.4 SPQR-Tree with Union-Find and Split-Find
Di Battista and Tamassia [BT96] suggested that the running time of the SPQR-tree could
be improved to O(k · α(n)) using Union-Find and Split-Find, where k is the number of
edge insertions and query operations. Though, no in depth description on how to apply
the structures to the SPQR-tree was given.

We maintain the SPQR-tree as a single graph called the skeleton graph with the different
skeletons as disjoint components. In addition, we store the proper allocation node for each
vertex of the original graph and the SPQR-node of each vertex in a skeleton and keep a
map to identify the corresponding virtual or real edge of each edge in the skeleton and
the children of each SPQR-node. The parent of each SPQR-node may be obtained via
the corresponding edge of its reference edge. Lastly, we maintain a pointer to the root
SPQR-node. This is not strictly necessary as the root may be identified by its non virtual
reference edge. In the following we describe how to apply both Split-Find and Union-Find
to the SPQR-tree.

Merging R-nodes using Union-Find

We use a single Union-Find for the vertices of the skeleton graph. For this we simply create
a new set in the Union-Find structure whenever a new vertex is added to the skeleton
graph. This allows us to merge two vertices by performing a union between the two.

When two R-nodes are merged we simply perform a union operation for the shared vertices.
Since only the path vertices may be shared, at most two vertices may be shared between
two R-nodes. The children of the merged R-node are appended to the parent R-node. This
allows us to merge two R-nodes in O(α(n)) amortized time.

Splitting S-nodes using Split-Find

Using Split-Find brings with it some limitations as Split-Find generally does not allow
adding new elements. Even incremental variants such as the one of Imai and Asanao [IA84]
only allows insertions at the end of the ordered sets. To the extent of our knowledge no
other incremental variants with a similar time bound exist. To alleviate this problem we
insert entire S-nodes rather than splitting edges. This still allows the SPQR-tree to be
constructed incrementally by inserting entire ears of an ear-decomposition rather than
single vertices. To insert an entire S-node in the SPQR-tree, we simply insert a virtual
edge and attach the new S-node to it. The change works well with the construction via
ear-decomposition, as S-nodes can be inserted as an entire ear without needing to split
edges.

Similar to the Union-Find, we use a single circular Split-Find to maintain the vertices of
S-nodes. This differs from the original proposal of La Poutré [Pou92], who used separate
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Split-Find structures for each of the cycle trees. To avoid having to use separate Split-Find
structures for each S-node, we use an incremental Split-Find structure, which allows us
to add entire sets as well as single elements. This allows us to use the same Split-Find
structure for multiple S-nodes and allows us to add the split vertices to the resulting
S-nodes. Such a structure can be created using a structure similar to the one proposed
by Hopcroft and Ullman [HU73] or the one proposed by Gabow and Tarjan [GT85] and
adding new layers as needed, effectively appending the new set or element to the structure.
Using Split-Find allows us to split an S-node in O(α(n)) amortized time.

Running Time Improvements

Using both structures we may obtain an amortized running time of O(α(n)), where n is
the number of vertices. The insertion of k vertices through the insertion of an ear requires
O(k), resulting in an amortized time of O(1), per vertex, which is equivalent to the vertex
insertion via an edge split. For the insertion of an edge e = {a, b} we need to find the
shortest path between allocation nodes of a and b in the SPQR-tree. This path may be
obtained in O(p), where p is the length of the path. Each node of the path is either an
S-node, P-node or R-node. For the S-nodes we may perform the splits using the split
find structure in O(α(n)) amortized time. Adding the corresponding virtual edge to the
resulting R-node or P-node only requires constant time. Similarly, merging the R-nodes
may be done in O(α(n)) amortized time. For the P-nodes we modify at most three edges,
as such we may also handle the P-nodes in constant time. Combining the path computation,
splitting and merging we obtain an amortized running time of O(p · α(n)), where p is the
length of the path. Intuitively, the actual cost is lower as once an edge has been inserted
the path is contracted and therefore the cost of obtaining, splitting and merging the path
nodes is only payed once.

Theorem 6.1. Let T be an SPQR-tree of a biconnected graph G = (V, E) using Split-Find
and Union-Find. The amortized running time of insertEdge is in O(α(n)).

Proof. Let e = {a, b} ∈ E be the edge to be inserted and let Π be the set of SPQR-nodes
forming the shortest path between allocation nodes of a and b. This path can be computed
in O(|Π|) as we have outlined earlier. Fundamentally, there are two distinct cases which
have to be handled differently. The first is the trivial case, where |Π| = 1. In this case
the SPQR-tree may be updated in O(α(n)) if the unique node λ ∈ Π is an S-node and
O(1) ≤ (α(n)) for P-nodes and R-nodes.

The second case |Π| ≥ 2 is the more complex than the first. Let R be the set of R-nodes,
P the set of P-nodes and S the set of S-nodes in T . Let Φ(T ) = 2 · |R| + 2 ·

∑
λ∈P deg(λ)

be the potential of the SPQR-tree T .

Since, S-nodes must not be adjacent the number of S-nodes in the path is |SΠ| ≤ ⌈ |Π|
2 ⌉

since |SΠ| ∈ N0, ⌈ |Π|
2 ⌉ ≤ |Π|

2 + 1
2 The remaining SPQR-nodes of the path are either R-nodes

or P-nodes, hence there are |RΠ| + |PΠ| ≥ ⌊ |Π|
2 ⌋ ≥ |Π|

2 − 1
2 = |Π|−1

2 R-nodes and P-nodes
of the path. Let Rπ and PΠ be the sets of R-nodes and P-nodes of the path respectively,
then |RΠ| + |PΠ| ≥ |Π|

2 − 1. The merging changes the number of R-nodes from |R| to
|R| − |RΠ| + 1, as the R-nodes of the path are merged into a single R-node µ or the new
R-node µ is created if RΠ = ∅. Similarly, the degree of each P-node λ ∈ PΠ reduces by 1 as
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the two path edges of λ are removed and a single edge is added to connect λ to µ. Hence,
the potential of the updated SPQR-tree T ′ is as follows.

Φ(T ′) = 2 · (|R| − |RΠ| + 1) + 2 ·
∑
λ∈P

deg(λ) − 2 · |PΠ|

= 2 · (|R| + 1) + 2 ·
∑
λ∈P

deg(λ) − 2 · (|PΠ| + |RΠ|)

≤ 2 · (|R| + 1) + 2 ·
∑
λ∈P

deg(λ) − 2 · |Π| − 1
2

= 2 · (|R| + 1) + 2 ·
∑
λ∈P

deg(λ) − |Π| + 1

= 2 · |R| + 2 ·
∑
λ∈P

deg(λ) − |Π| + 3

= Φ(T ) − |Π| + 3

From the change in the potential we obtain an amortized running time in O(α(n) + 3) =
O(α(n)) for the insertEdge operation.

6.5 SPQR-Tree Implementations
The Open Graph Drawing Framework [CGJ+14], or OGDF for short, is an open source
C++ library providing data structures and algorithms for creating, maintaining and
processing graphs. The framework provides algorithms for automated graph drawing,
but also includes an implementation of SPQR-trees and BC-trees with the linear-time
construction of Gutwenger and Mutzel. The project originated from the AGD library
(Algorithms for Graph Drawing) [MGB+98], which was developed in 1996. After a complete
redesign and rewrite of the AGD library in 1999 the project was renamed OGDF and has
since been continuously updated and expanded (see [CGJ+14]).

As part of our study of the SPQR-tree, we created our own implementation of the SPQR-
tree in C++. Our implementation consists of two variants a regular SPQR-tree and an
improved version using Split-Find and Union-Find. Both variants make use of the graph
structures provided by the OGDF library. The improved version also uses the Union-Find
structure provided by OGDF, for the Split-Find we created our own incremental variant
based on the structure described by Hopcroft and Ullman [HU73] which was extended to
allow incrementally adding new sets and elements as described by Imai and Asano [IA84]
(see Section 3.2). Our implementations use the ear-decomposition construction algorithm
to construct the SPQR-tree, unlike the OGDF implementation, which uses the linear time
algorithm of Gutwenger [Gut10] (see Section 5.2).

Running Time Comparisons

We tested our two implementations against each other and against the OGDF implementa-
tion on different sized graphs ranging from 100 vertices to 5000 vertices in increments of
100. For the number of edges we chose twice the number of vertices, e.g. 200 edges for the
graph with 100 vertices and 400 edges for the graph with 200 vertices and so on. We believe
that this ratio of edges to vertices results in larger SPQR-trees, as more dense graphs will
likely result in few large R-nodes and sparse graph will result few in large S-nodes. The
graph were generated randomly using OGDFs randomBiconnectedGraph function. The
test system was an Intel Xeon E5 CPU, clocked at 3.0 GHz with 10 cores and 64 GB RAM.
For greater accuracy of the results, each measurement were repeated ten times for each
datapoint. The measurements were taken in microseconds using the C++ Chrono library.

53



6. Dynamic SPQR-Tree Operations

The test results show a noticeable improvement from the simple SPQR-tree to the improved
SPQR-tree. Though, as expected the ear-decomposition is drastically slower than the linear
time construction used by OGDF (see Figure 6.17). A closer comparison of the linear-time
and the ear-decomposition reveals that the running time of linear-time algorithm is only
slightly slower than the ear-decomposition algorithm, roughly by a factor of 2 (see Figure
6.18). As such it is highly unlikely that an incremental construction using ear-decomposition
could be faster than the linear-time construction.
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Figure 6.17: Comparison of the ear-decomposition construction using both out implemen-
tations and the linear time construction used by the OGDF implementation.
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Figure 6.18: A closer comparison of the linear time construction and a simple ear-
decomposition algorithm

Problems with OGDF

The implementation of SPQR-trees in OGDF is generally very efficient, however, we have
discovered that the OGDF implementation struggles with the insertion of an edges into
large P-nodes, yet has no problem when the edge is inserted on a path containing the very
same large P-node, if the P-node is an inner node of the path. In the following we present
a minimal example which demonstrates the problem.

Let n ∈ N and consider the complete bipartite graph K2,n with the two vertex sets
V1 = {s, t} and V2 = {v1, ..., vn} (see Figure 6.19). The SPQR-tree of a bipartite graph
consists of a single P-node P with Vskeleton(P ) = {s, t} connected to n S-nodes S1, . . . ,
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Sn, with Vskeleton(Si) = {s, vi, t} for each i ∈ {1, ..., n}. Inserting an edge e = {s, t} simply
consists of adding e to Ereal(P ), i.e., Ereal(P ) ∪ {e}.

. . .

s

t

v1 vn
. . .. . .

vi vj

e

Figure 6.19: Insertion of the edge e = {s, t} in the complete bipartite graph K2,n.

We tested the OGDF implementation on different sizes of n ranging from 100 to 5000
in increments of 100 with ten measurements for each n and each variant. The different
insertions are s, t, a, b and s, a, where a and b refer to randomly selected but distinct
vi, vj ∈ {v1, ..., vn}.

Adding the edge e to the SPQR-tree in OGDF requires time linear to the number of vertices.
In contrast inserting an edge between two vertices vi, vj ∈ V2 is much faster even though
the operation is more complicated in theory (see Figures 6.20 and 6.21). A similar trend
may be observed when adding edges with only one endpoint in the P-node, though the
required running time is not as drastic and more varied, requiring roughly half the time as
the insertion in the P-node. This suggests a link between the running time and the degree
of the endpoints of the inserted edge. The tests were conducted using the current version
of OGDF, Dogwood (released February 2nd, 2022), using a DynamicSPQRTree constructed
from the complete bipartite graph K2,n.
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Figure 6.20: Test results from the different edge insertion for the complete bipartite graphs.

We also tested our own implementation on the very same graphs. The results are more in
line with the with the expected results, with the s, t insertion being the fastest and the a, b
insertion being the slowest (see Figure 6.22). However, our implementation is by no means
faster than the OGDF version, which is to be expected. The improved SPQR-tree shows a
similar trend with slightly better running times (see Figure 6.23).
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Figure 6.21: Test results obtained from a slower test system and less accuracy which better
illustrates the trend (i3-7100U CPU@2.4 GHz with 2 cores and 8 GB RAM)
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Figure 6.22: Test results of the different edge insertion on the bipartite graph using our
implementation of the SPQR-tree.
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Figure 6.23: Comparison of the test results using the different SPQR-tree implementations.
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7. Conclusion

The SPQR-tree remains an important data structure in the field of graph drawing and
planarity testing. We have presented two different approaches for the construction of the
SPQR-tree. A complex linear time construction which detects the separation pairs in
the input graph and a simple incremental construction using an ear-decomposition. We
compared the two approaches in a randomized experiment. Naturally, the linear time
algorithm remains faster, which is to be expected as the ear-decomposition construction
does not offer a theoretical improvement over the linear time algorithm. However, the
simplicity of the ear-decomposition construction provides an advantage over the linear time
construction particularly in the implementation of the SPQR-tree.

Furthermore, we have presented an alternative edge insertion algorithm for the SPQR-tree,
which reduces the number of case distinctions of the original algorithm This makes the
algorithm more concise and therefore easier to comprehend. We also extended the original
algorithm by an additional case which was overlooked by the authors

We also created our own implementation of the SPQR-tree applying both Union-Find and
Split-Find, which had been suggested before by the original authors, but to the extent of
our knowledge had yet to be tested. The application of both structures shows a noticeable
improvement in the running time of the SPQR-tree. There is some overhead to the two
structures which may be observed in smaller graphs.

Additionally, we discovered a potential issue with the SPQR-tree implementation in t he
open graph drawing framework OGDF. The OGDF implementation struggles with the
insertion of some edges in the complete bipartite graph K2,n, yet handles the theoretically
more involved case easily. This suggests that the problem may be alleviated easily without
any major changes.

Further research may examine the impact of different ear-decompositions on the running
time of the ear-decomposition construction. It is likely that some ear-decomposition are
better suited for the ear-decomposition construction than others. We conjecture that it
is best to insert parallel edges last, as these can be inserted easily if the corresponding
P-node has already been created. Such an ear-decomposition may easily be obtained from
a regular ear-decomposition by moving the simple ears to the end of the path list.
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