
Partial and Simultaneous
Representations of Circular

Permutation Graphs

Master Thesis of

Miriam Münch

At the Department of Informatics and Mathematics
Chair of Theoretical Computer Science

Reviewers: Prof. Dr. I. Rutter
Prof. Dr. D. Sudholt

Advisor: Peter Stumpf, M.Sc.

Time Period: December 2nd 2020 – June 7th 2021

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Passau, June 7, 2021

iii

Abstract

A graph G = (V,E) is a comparability graph if its edges can be oriented transitively,
i.e. there exists an orientation −→E of G such that −→E containing the directed edges uv
and vw, implies that u and w are also connected and uw ∈ −→E for every u, v, w ∈ V .
The class of permutation graphs contains all graphs that are represented by at
least one permutation diagram which is a specific linear intersection representation.
A graph is a circular permutation graph if it is represented by a specific circular
intersection representation called a circular permutation diagram.
A partial representation of a comparability graph is a transitive orientation of a
subgraph. Partial representations of permutation or circular permutation graphs are
permutation or circular permutation diagrams respectively, representing a subgraph.
The partial representation problem for a graph class C answers the question whether
a given partial representation of a C graph can be extended to a representation of the
entire graph. Given C-graphs G1, . . . , Gk, the simultaneous representation problem
asks whether there exists representations R1, . . . , Rk such that for all 1 ≤ i, j ≤ k,
Ri represents Gi and Ri and Rj are isomorph on the subgraph shared by Gi and Gj .
Both problems extend the recognition problem. We present efficient algorithms to
solve the partial representation problem and the simultaneous representation problem
for the three classes of comparability, permutation and circular permutation graphs.
It turns out that the partial representation problem can be solved in linear time
for all three considered graph classes. The simultaneous representation problem for
comparability graphs is solvable in linear time, if all input graphs pairwise share the
same induced subgraph. In this case the problem is also solvable in quadratic time
for permutation and circular permutation graphs. If the input graphs pairwise share
an arbitrary subgraph however, the simultaneous representation problem is already
NP-complete for permutation graphs.

Deutsche Zusammenfassung

Ein Graph G = (V,E) ist ein Vergleichbarkeitsgraph, wenn seine Kanten transitiv
orientiert werden können, d.h. es existiert eine Orientierung −→E von G, so dass, falls−→
E , die gerichteten Kanten uv und vw enthält, dies impliziert, dass u und w ebenfalls
verbunden sind und uw ∈

−→
E für alle u, v, w ∈ V . Ein Graph G = (V,E) ist ein

Permutationsgraph, wenn er von einem Permutationsdiagramm, welches eine spezielle
lineare Schnittrepräsentation bezeichnet, repräsentiert wird. Die Klasse der zirkulären
Permutationsgraphen enthält alle Graphen, die durch eine spezielle zirkuläre Schnit-
trepräsentation, sogenannte zirkuläre Permutationsdiagramme, repräsentiert werden.
Eine partielle Repräsentation eines Vergleichbarkeitsgraphen ist eine transitive Ori-
entierung eines Teilgraphen. Partielle Repräsentationen von Permutations- oder
zirkulären Permutationsgraphen sind Permutations- bzw. zirkuläre Permutationsdia-
gramme, die einen Teilgraphen repräsentieren. Das Partialrepräsentationsproblem für
eine Graphenklasse C beantwortet die Frage, ob eine gegebene Partialrepräsentation
eines C-Graphen zu einer Repräsentation des gesamten Graphen erweitert werden
kann. Gegeben C-Graphen G1, . . . , Gk, fragt das Simultanrepräsentationsproblem, ob
es Darstellungen R1, . . . , Rk gibt, so dass für alle 1 ≤ i, j ≤ k, Gi durch Ri repräsen-
tiert wird und Ri und Rj isomorph auf dem von Gi und Gj geteilten Teilgraphen
sind. Beide Probleme sind Erweiterungen des Erkennungsproblems. Wir präsen-
tieren effiziente Algorithmen zur Lösung des partiellen Repräsentationsproblems und

v

des simultanen Repräsentationsproblems für die drei Klassen der Vergleichbarkeit-,
Permutations- und zirkulären Permutationsgraphen. Es zeigt sich, dass das par-
tielle Repräsentationsproblem für alle drei betrachteten Graphenklassen in linearer
Zeit gelöst werden kann. Das Simultanrepräsentationsproblem kann für Vergleich-
barkeitsgraphen in linearer Zeit gelöst werden, sofern alle Eingabegraphen den selben
induzierten Subgraphen teilen. In diesem Fall is das Problem auch für Permutations-
und zirkuläre Permutationsgraphen in quadratischer Zeit lösbar. Wenn sich die
Eingabegraphen jedoch paarweise einen unterschiedlichen Subgraphen teilen, ist das
Simultanrepräsentationsproblem bereits für Permutationsgraphen NP-vollständig.

vi

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Comparability Graphs . 3
2.2 Permutation and Circular Permutation Graphs 4
2.3 Partial and Simultaneous Representations 8
2.4 Modular Decomposition . 8
2.5 PQ-trees . 12

3 Related Work 15
3.1 Extending Partial Representations of Comparability and Permutation Graphs 15
3.2 Solving the Simultaneous Representation Problem for Comparability and

Permutation Graphs . 16

4 Comparability graphs 17
4.1 Extending Partial Representations . 17
4.2 The Simultaneous Representation Problem 19

5 Permutation graphs 29
5.1 Extending Partial Representations . 29
5.2 The Simultaneous Representation Problem 33

5.2.1 Simultaneous Representations for Sunflower Permutation Graphs . . 33
5.2.2 Simultaneous Representations for general Permutation Graphs . . . 35

6 Circular permutation graphs 37
6.1 Extending Partial Representations . 37
6.2 The Simultaneous Representation Problem 40

7 Conclusion 43

Bibliography 45

vii

1. Introduction

In this thesis we examine two problems for the classes of comparability (Comp), permutation
(Perm) and circular permutation graphs (CPerm). The first one is the partial representation
problem RepExt(C), which given a C-graph G = (V,E) for a graph class C and a
corresponding partial representation D′ of a subgraph H, asks, whether it is possible
to extend D′ to a representation D of the entire graph, such that D restricted to H is
isomorphic to D′.

The second problem we deal with is the simultaneous representation problem SimRep(C),
which, given a number of C-graphs G1, . . . , Gr, asks whether there exist representations for
the given graphs, such that for every pair of these graphs, the corresponding representations
are the same on the subgraph shared by them.

Both problems are already well-studied. Concerning interval graphs for example it is already
known, that the partial representation problem can be solved in linear time [KKV11, BR15]
and simultaneous interval graphs can be recognized in O(n2 logn) time [JL10]. For chordal
graphs both problems turned out to be NP-complete [KKOS15, JL10].

In this thesis we examine how the two problems can be solved efficiently for comparability,
permutation and circular permutation graphs. A comparability graph is a graph whose
edges can be oriented transitively, i.e. for every triple of vertices u, v and w, u→ v and
v → w implies u → w. The class of permutation graphs contains all graphs that are
represented by a permutation diagram consisting of two parallel horizontal lines L1 and
L2 and a line segment connecting a point on L1 to a point on L2 for every vertex in the
graph. Such a (linear) permutation diagram represents a graph G = (V,E) if and only if
for every u, v ∈ V the corresponding segments intersect if and only if E contains an edge
between u and v. A circular permutation diagram consists of two concentric circles C1
and C2 with distinct radius, and a chord connecting a point on C1 to a point on C2 for
every vertex in the graph. Analogously to the linear case, a circular permutation diagram
represents a graph G = (V,E) if and only if for every u, v ∈ V the corresponding chords
intersect if and only if E contains an edge between u and v. The graphs represented by a
circular permutation diagram are called circular permutation graphs and were first studied
by Rotem and Urrutia[RU82].

Klavík et al. already showed that RepExt(Comp) can be solved in O((n+m)∆) time for
comparability graphs with n vertices, m edges and maximum degree ∆ [KKKW12] (see
Chapter 3). For RepExt(Perm) they gave an O(n3) time algorithm. We show that both
problems can be solved in O(n+m) time. Furthermore we also give an algorithm solving

1

1. Introduction

RepExt SimRep
Comp O((n+m)∆) [KKKW12] O(nm) [JL10]
Perm O(n3) [KKKW12] O(n3) [JL10]
CPerm ? ?

(a) known runtimes

RepExt SimRep
Comp O(n+m) O(n+m)
Perm O(n+m) O(n2)
CPerm O(n+m) O(n2)

(b) new runtimes

Figure 1.1: Comparison of results

RepExt(CPerm) in the same runtime. Concerning the simultaneous representation
problem for so called sunflower graphs that all share the same subgraph, Jampani and
Lubiw gave an O(nm) algorithm to solve SimRep(Comp) and an O(n3) algorithm to
solve SimRep(Perm) [JL10] (see Chapter 3). We show that the problem can be solved in
O(n+m) time for comparability graphs and in O(n2) time for permutation and circular
permutation graphs. Figure 1.1 summarises the already known and the new results.

All new algorithms presented in this thesis use the modular decomposition of a graph which
was first described by Gallai [Gal67]. A module of an undirected graph G = (V,E) is a
subset of vertices X ⊆ V such that every vertex in V \X is either adjacent to every x ∈ X
or to none of them. The modular decomposition of a graph is a canonical linear-space
representation of its modules. McConnell and Spinrad presented linear-time algorithms to
compute the modular decomposition of a graph and to solve the strongly related transitive
orientation problem that asks whether the edges of a given graph can be oriented transitively
[MS99]. With these base algorithms they were able to show that also many other related
problems such as recognition of permutation graphs and two-dimensional partial orders,
Recognition of cointerval graphs and interval graphs and Recognition of circular permutation
graphs are solvable in O(n+m) time for graphs with n vertices and m edges.

For the more general non-sunflower case, where the input graphs pairwise share an arbitrary
set of vertices and edges induced by them, we proof that for permutation graphs the
simultaneous representation problem is NP-complete. Since every permutation graph is also
a circular permutation graph and a comparability graph the simultaneous representation
problem for these two graph classes is also NP-complete in the non-sunflower case.

In Chapter 2 we give basic definitions and notations used in the following. In Chapter 3 we
give linear-time algorithms to solve RepExt(Comp) and SimRep(Comp) respectively. The
linear-time algorithm to solve RepExt(Perm) and the algorithm with quadratic runtime
for solving SimRep(Perm) for the sunflower case we present in Chapter 4. Furthermore,
in this chapter we see that the simultaneous representation problem for non-sunflower
permutation graphs is NP-complete. In Chapter 5 we give the linear-time algorithm to solve
RepExt(CPerm) and the algorithm with quadratic runtime for solving SimRep(CPerm).

2

2. Preliminaries

In this chapter we introduce basic definitions and notation that we use in the following
sections. Let G = (V,E) be an undirected graph and let U ⊆ V be a set of vertices. Then
the vertices in U induce all edges in E whose endpoints both are in U . We denote the
graph that consists of the vertices in U and all edges of G induced by them as [U]G.

2.1 Comparability Graphs
To define the class of comparability graphs, we first introduce transitive orientations. Figure
2.1 gives an example of a comparability graph and a corresponding transitive orientation.
A transitive orientation of an undirected graph G = (V,E) is an assignment of direction to
each of its edges, such that for every u, v, w ∈ V , if uv ∈ E is oriented from u to v and
vw ∈ E is oriented from v to w, then uw is also an edge in E and is oriented from u to
w. A graph G is transitively orientable or a comparability graph if and only if a transitive
orientation for its edges does exist. If the complement of G is a comparability graph, G
is a co-comparability graph. We denote the class of comparability graphs by Comp. The
class coComp contains all co-comparability graphs. In the following the term (partial)
representation for a comparability graph denotes a (partial) transitive orientation of its
edges.

It will be useful many times to examine the partial orientation < of the vertices of a
comparability graph G = (V,E) induced by a (partial) transitive orientation −→E of G. For
two vertices u and v in V we have u < v if −→E contains the directed edge −→uv. If uv /∈ E,
the vertices u and v are incomparable. The transitive orientation of the graph given in
Figure 2.1 induces 1 < 3, 1 < 4, 2 < 3, 2 < 4 and 2 < 5. Note that a transitive orientation
of a complete graph G induces a total order on the vertices of G.

1 5

4

3

2

Figure 2.1: A transitively oriented comparability graph.

3

2. Preliminaries

1 2 3 4 5

3 4 1 5 2

1 5

4

3

2

Figure 2.2: A permutation diagram and a corresponding permutation graph.

2.2 Permutation and Circular Permutation Graphs
In this section we define the classes of permutation and circular permutation graphs. An
example for the following two definitions concerning permutation diagrams and permutation
graphs is given in Figure 2.2. Usually permutation diagrams are defined to consist of two
parallel lines L1 and L2 labelled by 1, 2, . . . , n and a permutation of 1, 2, . . . , n respectively,
from left to right and a set of line segments {1̄, 2̄, . . . , n̄} such that for every 1 ≤ i ≤ n
segment ī connects i on L1 with i on L2. Here, we define permutation diagrams in a more
general way by using a set of arbitrary labels for the horizontal lines. This will make the
description of partial representations easier, since we do not have to rename labels of the
diagram or nodes of a corresponding graph when extending a representation.

Definition 2.1 (Permutation Diagram). Let S be a set of labels and let P1 and P2 be
permutations of the elements in S. Let L1 and L2 be two parallel horizontal lines, such
that |S| pairwise distinct points on the upper line L1 are labelled with the elements in P1
from left to right, while |S| points on the bottom line L2 are labelled with the elements of
P2, again from left to right.

A permutation diagram D consists of L1 and L2 and a set of line segments {u | u ∈ S}
such that for every u ∈ S, segment u connects the point labelled with u on L1 with the point
labelled with u on L2. Note that two segments x and y intersect if and only if the order of
the corresponding endpoints along L1 is opposite to their order along L2.

Definition 2.2 (Permutation Graph). Let S be a set of labels and let D be a permutation
diagram of the elements in S. An undirected graph G is represented by D if its vertices
can be labelled with the elements of S, such that segment u intersects segment v if and only
if the vertices labelled with u and v are adjacent in G. G is called a permutation graph, if
there exists at least one permutation diagram D that represents G.

Let Perm be the class of permutation graphs. Then we have Perm = Comp ∩ coComp
[EPL72].

Let G = (V,E) be a permutation graph. If we have a transitive orientation −→E of G and a
transitive orientation

−→
E of the complement graph G = (V,E), we get the corresponding

permutation diagram D for G as follows [PLE71]:

Consider the complete graph G′ = (V,E∪E). Then E′1 := −→E ∪
−→
E is a transitive orientation

of G′ and we can label the vertices of V according to the total order induced by E′1, i.e.
every v ∈ V , is labelled with the number of edges oriented towards v incremented by one.
Then the points along the bottom line L1 of D, are labelled with 1, . . . , n which is the
total order induced by E′1. The points along the bottom line L2 of D, are labelled with
the labels of the vertices according to the total order induced by the transitive orientation
E′2 := ←−E ∪

−→
E of G′, which we obtain from E′1 by reversing all orientations of −→E . This

means that v is the direct right neighbour of u if and only if the number of edges oriented
towards v is exactly by one greater than the number of edges oriented towards u in E′2.

4

2.2. Permutation and Circular Permutation Graphs

r φ

x

pole

Figure 2.3: A point x = (r, φ) in a polar coordinate system.

Given a permutation diagram D representing a permutation graph G = (V,E) we directly
get a corresponding transitive orientation of G by orienting an edge e in E towards the
endpoint that appears to the right of the other on the upper horizontal line of D. From
PERM = CO ∩ coCO we get that the complement of every permutation graph is a
permutation graph itself. We get the corresponding permutation diagram D′ of G by
reversing the order of the nodes along the bottom line of D.

Next we will introduce the class of circular permutation graphs. Here we consider them
embedded into a polar coordinate system which is a two-dimensional coordinate system in
which every point x = (r, φ) is determined by its distance r from a fixed point called pole
and its angle phi from a fixed direction (see Figure 2.3).

Furthermore, we define a chord in a polar coordinate system to be monotonous if the r
coordinates of the points along the chord either increases or decreases monotonously and
either the φ coordinate is the same for all points or the coordinates of every two points
that are not both endpoints, differ in φ.

Definition 2.3 (Circular Permutation Diagram). Let S be a set of labels and let P1 and
P2 be permutations of the elements in S. Let C1 and C2 be two concentric circles with
shared centre M , such that |S| points on the inner circle C1 are labelled with the elements
of P1 in the counter-clockwise direction, while |S| points on the outer circle C2 are labelled
with the elements of P2, also in the counter-clockwise direction.

A circular permutation diagram C of P consists of C1 and C2 in a polar coordinate system
whose pole is located in M and a set of monotonous chords {u | u ∈ S} such that for
every u ∈ S, chord u connects the point labelled with u on the inner and the point labelled
with u on the outer circle, totally within the annular region contained between C1 and C2.
Furthermore here, we demand for every u 6= v that u and v intersect at most once.

Note that there may exist different circular permutation diagrams for the same permutation.
Furthermore, it is also possible to obtain the same diagram for two different permutations.

Definition 2.4 (Circular Permutation Graph). Let C be a circular permutation diagram.
An undirected graph G is represented by C if its vertices can be labelled with the elements
of S such that chord i intersects chord j if and only if the vertices labelled with i and j
are adjacent in G. G is called a circular permutation graph, if there exists at least one
circular permutation diagram C that represents G.

An example of a circular permutation graph and its corresponding circular permutation
diagram is given in Figure 2.4.

To illustrate the relation between linear and circular permutation diagrams we need to
further consider cylindrical coordinate systems which are three-dimensional coordinate
systems in which every point x = (r, φ, z) is determined by its distance r from a reference
axis, its angle φ from a fixed reference direction and its distance z from a fixed plane
perpendicular to the chosen axis (see Figure 2.5).

5

2. Preliminaries

1 5

4

3

2

1

1
2
3

4
5

5

24

3

Figure 2.4: A circular permutation diagram and a corresponding circular permutation
graph

xr

z

φ

Figure 2.5: A point x = (r, φ, z) in a cylindrical coordinate system.

Analogously to the case of a polar coordinate system, we define a chord in a cylindrical
coordinate system to be monotonous if the z coordinates of the points along the chord
either increases or decreases monotonously and either the φ coordinate is the same for all
points or the coordinates of every two points that are not both endpoints, differ in φ.

Definition 2.5 (Cylindrical Permutation Diagram). Let S be a set of labels and let P1 and
P2 be permutations of the elements in S. A cylindrical permutation diagram C consists of
two parallel lines L1 and L2 on the surface of a cylinder parallel to the bottom base area
such that |S| points on the upper line L1 are labelled with the elements in P1 from left to
right, while |S| points on the bottom line L2 are labelled with the elements of P2, again
from left to right. Furthermore we have a set of monotonous chords {u | u ∈ S} such that
for all points along every chord the r coordinate equals the radius of the considered cylinder
and for every u ∈ S, chord u connects the point labelled with u on L1 with the point labelled
with u on L2 totally within the region between the two parallel lines.

Lemma 2.6. Every circular permutation diagram C can be mapped isomorphically to
a cylindrical permutation diagram C ′ such that C and C ′ represent the same circular
permutation graphs.

Proof. Consider a circular permutation diagram C and a cylinder whose base area has
the same radius y as the inner circle C1 of C. Then we map the two circles C1 and C2 to
two lines parallel to the bottom base area whose vertical distance equals the difference of
the radii of C1 and C2. Now we map every point x = (r, φ) on every chord of C to the
point x = (y, φ, r). Then every chord v̄ in C is mapped to a chord in C ′ connecting a point
on the lower parallel line to a point on the upper parallel line totally within the region
between the two lines. The intersection points with the two parallel lines we label with v.
Then a chord v̄ in C ′ intersects a chord ū if and only if the two corresponding chords in C
intersect, hence C ′ represents the same circular permutation diagram as C.

Now consider a cylindrical permutation diagram C ′ and let C1 and C2 be two concentric
circles around the origin of a polar coordinate system such that the radius of C1 equals

6

2.2. Permutation and Circular Permutation Graphs

1 2 3 4 5 6

6 3 1 4 5 2

(a) linear permuta-
tion diagram

2

3

3 4

1 4

(b) cylinder representation

1

1
2
3

4
5

6
2

34
6

5

(c) circular permu-
tation diagram

Figure 2.6: The linear permutation diagram (a) is mapped onto the surface of the cylinder
(b) and afterwards transformed into the circular permutation diagram (c)

the radius of the base area of the cylinder and the radius of C2 is greater than the radius
of C1 by the vertical distance between the two horizontal lines of C ′. Now we map every
point x′ = (r, φ, z) on every chord of C ′ to the point x = (z, φ). Then every chord v̄ in C ′
is mapped to a chord in C connecting a point on C1 to a point on C2 totally within the
annular region between the two circles. The intersection points with the two circles we
label with v. Then a chord v̄ in C intersects a chord ū if and only if the two corresponding
chords in C ′ intersect, hence C represents the same circular permutation diagram as C ′.

Hence circular permutation diagrams are equivalent to cylindrical permutation diagrams.

Lemma 2.7. Every permutation diagram D can be transformed into a circular representa-
tion C.

Proof. Consider a Cartesian coordinate system, with the bottom line L2 of D on the x-axis,
such that the left endpoint of L2 lies in the origin. Project D onto the surface of a cylinder
with a circumference that equals the length of the horizontal lines L1 and L2 of D, such
that L1 and L2 run parallel to the base areas and the segments are oriented in the same
direction as in D. To ensure monotony, for the projections of the line segments we demand
that for all points x = (r1, φ1, z1), y = (r2, φ2, z2) along them, z1 6= z2. The points along
one segment, except for the two endpoints, either all have the same φ -value, or their
coordinates all pairwise differ in φ. Then we know that there exists an equivalent circular
permutation diagram representing the same graphs as D. Figure 2.6 illustrates the steps of
an example transformation.

Let G = (V,E) be a circular permutation graph. Switching a vertex v in G, i.e. connecting
it to all vertices it was not adjacent to in G and removing all edges to its former neighbours,
gives us the graph Gv = (V,Ev) with Ev = (E\{xy ∈ E | x = v}) ∪ {vx | x ∈ V, vx /∈ E}.

Let C be a circular permutation diagram representing a permutation graph G = (V,E)
and let v ∈ V be a vertex in G. The chord v in C can be switched to the chord v′, if v′
has the same endpoints as v, but intersects exactly the chords v does not intersect in C.
Hence, this modified circular permutation diagram C ′ is a representation of Gv [RU82].
Here we will further demand that there exists no intermediate point along u, such that an
intermediate point of u′ has the same angular coordinate. Notice that for every chord u in
a circular permutation diagram C, there exists at least one chord u′ such that u can be
switched to u′. Most of the time, it suffices to know that there exists a u′ with the desired
properties that u can be switched to, hence, we often use the term switch chord u, without
further specifying u′.

7

2. Preliminaries

Definition 2.8. Let D1 and D2 be two circular permutation diagrams. Then D1 and D2
are isomorphic, if and only if the labels in S appear in the same order respectively along both
the outer and the inner circles of the diagrams and for every u, v ∈ S, chord u intersects
chord v in D1 if and only if chord u intersects chord v in D2.

2.3 Partial and Simultaneous Representations
A partial representation of a graph G = (V,E) is a mapping φ : R → S of the induced
subgraphG[R] for a set R ⊆ V to a class S of objects [KKKW12]. The partial representation
problem RepExt(C) for a graph class C represented in a class S is defined as follows
[KKKW12]. Given a graph G ∈ C and a partial representation φ : R→ S is it possible to
extend φ to a representation ψ : V → S of the entire graph G, such that ψ|R = φ?

Let C be a graph class and let G1, . . . , Gr be graphs in C. Then G1, . . . , Gr are said to
be simultaneous C graphs, if there exist representations R1, . . . , Rr such that for each
1 ≤ i, j ≤ r, Ri represents Gi and Ri and Rj are the same on the subgraph shared by Gi
and Gj . The simultaneous C representation problem SimRep(C) for a graph class C, given
C-graphs G1, . . . , Gr, asks whether they are simultaneous C graphs [JL10].

Often the simultaneous representation is examined for the special case of so called sunflower-
graphs where the given graphs G1, G2, . . . , Gr all pairwise share the same induced subgraph
I.

Definition 2.9. Let C be a graph class and let G1 = (V1, E1), G2 = (V2, E2), . . . , Gr =
(Vr, Er) be graphs in C sharing some vertices I and the edges induced by I such that for any
two distinct i, j with 1 ≤ i < j ≤ r, Vi ∩ Vj = I and [I]Gi = [I]Gj . Then G1, G2, . . . , Gr are
called r-sunflower C graphs.

2.4 Modular Decomposition
In this section we introduce the modular decomposition on which our efficient algorithms
to solve the partial representation problem and the simultaneous representation problem
are based. Let G = (V,E) be an undirected graph for the rest of this section. The overall
aim is to find so called quotient graphs, whose vertices are modules, i.e. special subsets of
V , that are transitively orientable if and only if the subgraph of G induced by the edges
represented by the edges in the quotient graph can be oriented transitively. First of all, we
need the definition of a module.

Definition 2.10 (Modules). A set of verticesM ⊆ V is a module, if every vertex u ∈ V \M
is either adjacent to all vertices in M or to none of them.

V and its singleton subsets are called the trivial modules. If G has no non-trivial modules,
then it is called prime. A module M of a graph G that does not overlap with any other
module of G is called strong. This means, M is strong if for all modules M ′ of G we either
haveM ∩M ′ = ∅ orM ⊆M ′ orM ′ ⊆M . Let S be a subset of V . A moduleM is maximal
with respect to S, if M ⊂ S and there exists no module M ′ such that M ⊂M ′ ⊂ S. Every
graph has a uniquely defined (maximal strong) modular decomposition that contains all
maximal strong modules [HP10]. For the definition of the modular decomposition tree,
additionally we have to introduce the Γ-relation and edge classes. If a graph G is transitively
orientable every two edges that are Γ-related and thus share a common endpoint have
to be directed in the same way with respect to this shared endpoint in every transitive
orientation of G. Moreover in every transitive orientation of G there are only two possible
orientations for every edge class where one is the reverse of the other.

8

2.4. Modular Decomposition

Definition 2.11 (The Γ-relation). Let G = (V,E) be an undirected graph and let ab, cd ∈ E
with a, b, c, d ∈ V , be two distinct adjacent edges of G, i.e. a = c and b 6= d. Then abΓcd if
and only if bd /∈ E.

Let G′ = (V,E′) be the directed graph we obtain from G by replacing every undirected edge
uv in E by the two directed edges −→uv and −→vu. Then for any two edges ab and bc such that
ac /∈ E, no transitive orientation of H can contain −→ab and −→bc, as well as it can not contain−→
cb and −→ba. We define −→abΓ−→cd if and only if a = c and bd /∈ E, or b = d and ac /∈ E.

The Γ relation describes the directly implied dependencies between orientations of two
adjacent edges. Edge classes introduced in the following definition describe equivalence
classes of edges that can not be oriented independently if we want to receive a transitive
orientation.

Definition 2.12 (Edge classes). Two distinct edges ab and cd of an undirected graph
G belong to the same edge class if and only if there exists a sequence of edges xiyi (i =
1, . . . , n, n ≥ 2) such that x1y1 = ab, xnyn = cd and xjyjΓxj+1yj+1 for every 1 ≤ j ≤ n−1.

Now we define the unique modular decomposition tree T for a graph G = (V,E) such that
for every node µ in T , the children of µ in T are exactly the maximal strong modules of
[µ]G.

Definition 2.13 (Modular Decomposition Tree). For an undirected graph G = (V,E), its
modular decomposition tree T is recursively uniquely defined as follows:

V is the root of T . For every node U of T that is not a singleton set, holds:

• If [U]G is a disconnected graph, then for every connected component of [U]G, the set
of its vertices is a child of U in T .

• If [U]G is disconnected, then for every connected component of [U]G, the set of its
vertices is a child of U in T .

• If [U]G and [U]G are both connected, then the children of U in T are given by the
sets contained in the unique proper decomposition P = {A1, . . . , Aq} of U [Gal67]
with the following properties:

a) For every pair of indices i, j with (1 ≤ i < j ≤ q): If [U]G contains an AiAj-edge,
i.e. an edge where one endpoint belongs to Ai and the other one to Aj, then Ai
and Aj are fully connected.

b) All edges in E that connect two distinct sets Ai and Aj for all i 6= j belong to
the same edge class E′ of G. Every vertex in V is incident to at most one edge
in E′.

c) The edge classes of G, except for E′, are the edge classes of the graphs [Ai]G = Gi
(1 ≤ i ≤ q).

d) The decomposition P is not a refinement of another proper decomposition of V
with the properties a), b) and c).

The following example illustrates the above definition of the modular decomposition tree.

Example 2.14. Consider the following graph G = (V,E):

9

2. Preliminaries

1

42

3

5 6

7

8

9

To get the unique modular decomposition tree T for G, we stepwise apply the recursive
definition given above. The root of T consists of all vertices in V . Since both G and its
complement G are connected, the children of the root are the sets contained in the unique
proper decomposition P = {A1, . . . , An} of G described in Definition 2.13. All edges in G
belonging to the same edge class have the same color in Figure 2.14. We can see that the red
edges build the edge class E′, hence the vertices 4 and 7 both must appear as singleton sets in
the decomposition. The set of the remaining nodes is not a module since for example vertex
7 is not connected to every vertex in {1, 2, 3, 5, 6, 8, 9} but when splitting this set into vertices
adjacent to 7 and vertices adjacent to 4 we get the desired decomposition. In our case
P = {{4}, {7}, {1, 2, 3, 5, 6}, {8, 9}}. Property a) is satisfied, since G does not contain edges
between the pairs of sets ({4}, {7}), ({7}, {8, 9}), and ({4}, {1, 2, 3, 5, 6}) respectively, while
the remaining pairs, namely ({4}, {8, 9}), ({1, 2, 3, 5, 6}, {7}) and ({1, 2, 3, 5, 6}, {8, 9}), are
all fully connected:

8

9

45

3

6

2

7

1

Property b) is satisfied since E′ = {14, 24, 34, 45, 46, 47, 78, 79} (the red edges) is indeed an
edge class of G and every vertex in V is incident to at most one edge in E′. Furthermore,
the additional edge classes of G are {12}, {35, 36} and {89}, which are exactly the edge
classes of {1, 2, 3, 5, 6} and {8, 9}, hence also property c) is fulfilled. Finally, also property
d) is satisfied, since P contains all maximal modules of G.

This leads to the following partial modular decomposition tree:

4 7

1, 2, 3, 4, 5, 6, 7, 8, 9

8, 91, 2, 3, 5, 6

Since the complement of the subgraph [{8, 9}]G is not connected, the children of {8, 9} in T
are the singleton sets {8} and {9}. [{1, 2, 3, 5, 6}]G also is not connected, hence the vertices
of its connected components {1, 2} and {3, 5, 6} respectively, are the children of {1, 2, 3, 5, 6}
in T .

10

2.4. Modular Decomposition

Now, for {1, 2} we get the children {1} and {2}, while {3, 6} and {5} are the set of
vertices of the connected components of [{3, 5, 6}]G and thus the children of {3, 5, 6} in G.
Finally, the children of {3, 6} are {3} and {6}, which gives us the following unique modular
decomposition tree T for G:

4 7

1, 2, 3, 4, 5, 6, 7, 8, 9

8 9

8, 91, 2, 3, 5, 6

1, 2 3, 5, 6

1 2 53, 6

3 6

Let G = (V,E) be an undirected graph and let T be the modular decomposition tree of G.
By childrenT (µ) we denote the family of children of µ in T and [µ]G/childrenT (µ) denotes
the quotient graph whose vertices are the members of childrenT (µ), where node U and Y
are adjacent if and only if every u ∈ U ⊆ V is adjacent to every y ∈ Y ⊆ V in [µ]G. Note
that when referring to a node µ in T unless stated otherwise we mean the set of all vertices
in G that are represented by µ but it is also reasonable to refer to the quotient graph
[µ]G/childrenT (µ). Figure 2.7 illustrates this approach for the modular decomposition tree
of Example 2.14.

For every node µ in T every edge UW in the quotient graph [µ]G/childrenT (µ) represents
a set of edges E′ := {vw ∈ E | v ∈ U,w ∈W}. Every edge e ∈ E is represented by exactly
one edge in one of the quotient graphs in T , namely in the quotient graph [µ]G/childrenT (µ)
such that the endpoints of e appear in two distinct children of µ. Note that µ is the lowest
common ancestor of the two endpoints of e in T . If G is a comparability graph, then in

74

8 9

5

63

1 2

Figure 2.7: A version of the modular decomposition tree from Example 2.14 whose nodes
represent quotient graphs.

11

2. Preliminaries

b

d

a c e f g
(a) A PQ-tree T over the set U =
{a, b, c, d, e, f, g, h}.

abcdefg abcefgd cbadefg cbaefgd
abcdegf abcegfd cbadegf cbaegfd
abcdfeg abcfegd cbadfeg cbafegd
abcdfge abcfged cbadfge cbafged
abcdgfe abcgfed cbadgfe cbagfed
abcdgef abcgefd cbadgef cbagefd

(b) All permutations of the elements in
U represented by T .

Figure 2.8

every transitive orientation of G, the edges represented by one edge connecting module µ1
and µ2 in a quotient graph have to be oriented either all from the endpoint in µ1 to the
endpoint in µ2 or all from the endpoint in µ2 to the endpoint in µ1. Hence the problem
of finding a transitive orientation of G reduces to finding a transitive orientation for the
quotient graph [µ]G/childrenT (µ) for every node µ in the modular decomposition tree T
of G. An orientation −→T of T is an assignment of directions to all edges in every quotient
graph corresponding to a node in T . Such an orientation −→T is transitive, if it is transitive
on every quotient graph corresponding to a node in G. An orientation of G induces an
orientation of T if for all nodes µ1, µ2 in T all edges in E with one endpoint in µ1 and one
endpoint in µ2 are either all oriented towards their endpoint in µ1 or they are all oriented
towards their endpoint in µ2. If so, in the former case the direction −−→µ2µ1, in the latter one
−−→µ1µ2 is induced. An orientation of T also induces an orientation of G. For every directed
edge −−→µ1µ2 in a quotient graph corresponding to a node in T , we orient all edges in E with
one endpoint in µ1 and one endpoint in µ2 towards their endpoint in µ2. An orientation of
G is transitive if and only if it induces a transitive orientation of T . Similarly an orientation
of T is transitive if and only if it induces a transitive orientation of G [Gal67].

A graph G is prime, if there exist exactly two transitive orientations of G where one is the
reverse of the other. A node µ in a modular decomposition tree T is called prime, if the
corresponding quotient graph [µ]G/childrenT (µ) is prime. Analogously µ is called complete
or empty if [µ]G/childrenT (µ) is complete or empty respectively. All quotient graphs in a
modular decomposition tree are either prime, complete or empty [MS99]. In the following
as a convention we assume that in every modular decomposition tree all prime nodes are
labelled with one of the two transitive orientations of the corresponding quotient graph,
referred to as default orientation. Note that with the algorithm presented by [MS99] we
can compute such a default orientation in O(n+m), hence the time we need to compute a
tree in which every prime node is labelled with a default orientation is also not greater
than O(n+m).

2.5 PQ-trees
To achieve a linear runtime for the simultaneous representation problem for comparability
graphs, we need a data structure called PQ-tree that allows us to represents all permissible
permutations of the elements of a set U in which certain subsets S ⊂ U appear consecutively.
PQ-trees were first introduced by Booth and Lueker [BL76]. An example of a PQ-tree over
a set U is given in Figure 2.8. Let U = {a1, a2, . . . , an} be a universal set. Then a PQ-tree
T over that set is a rooted tree whose leaves are elements of U and whose internal nodes
are either so called P - or Q- nodes. A P -node is drawn as a circle, a Q-node as a rectangle.
Booth and Lueker defined a PQ-tree T to be proper if it has the following properties.

1) Every element ai ∈ U appears exactly once as a leaf of T .

12

2.5. PQ-trees

2) Every P -node has at least two children.

3) Every Q-node has at least three children.

The frontier Frontier(T) of a PQ-tree T is given by the order of its leaves from left to
right. Two PQ-trees T and T ′ are equivalent (T ≡ T ′), if and only if T can be transformed
into T ′ by arbitrarily permute the children of arbitrarily many P -nodes and reversing the
order of arbitrarily many Q-nodes. A transformation that transforms T into an equivalent
tree T ′ is called an equivalence transformation. The tree T represents exactly those
permutations that can be obtained from T by equivalence transformations. The set of all
permutations represented by T is denoted by Consistent(T) = {Frontier(T ′) | T ′ ≡ T}.
The PQ-tree that does not have any nodes is called the null tree.

13

3. Related Work

3.1 Extending Partial Representations of Comparability and
Permutation Graphs

Klavík et al. already showed that RepExt(Comp) can be solved in O((n+m)∆) time for
comparability graphs with n vertices, m edges and maximum degree ∆ [KKKW12]. To do
so, they modify the following O((n+m)∆) time recognition algorithm of Golumbic [Gol04].
Let G be an input graph. The recognition algorithm in every step picks an arbitrary
unoriented edge of G = (V,E) and assigns a direction to it, which may force the orientation
of several other edges. If two edges e = uv and f = vw share an endpoint v and e is
oriented towards v, while f is oriented towards w, this implies that the edge uw must be in
E and that it has to be oriented toward w. Else if e is already oriented, say towards v, but
f does not have an assigned direction yet and uw /∈ E, then f has to be oriented towards v.
If we succeed to orient all edges in E without having to reorient an already directed edge,
G is a comparability graph, else it is not. Let now −→E ′ be a partial orientation of G and
assume that G is a comparability graph. For solving the partial representation problem,
we first choose an order e1 < e2 < · · · < em of the m edges in G such that the first k edges
e1, . . . , ek are preoriented by −→E ′. Then we proceed as above with the only difference that
instead of arbitrarily choosing the next edge to be oriented in each step, we always pick the
first non-oriented edge in the chosen ordering. When choosing an edge ei with i ≤ k we
orient it according to −→E ′ otherwise we orient it arbitrarily. This modified algorithm stops
and returns that −→E ′ is not extendible to a transitive orientation of the entire graph G if it
is forced to orient an edge ei with i ≤ k in the opposite direction to the one induced by −→E ′.
In this case,

−→
E′ is not extendible, since the orientation of ei contradicting

−→
E′ was forced by

the orientation of e1, . . . , ei−1. Else the algorithm returns a transitive orientation of G that
contains all orientations predefined by

−→
E′, hence in this case

−→
E′ is indeed extendible.

For RepExt(Perm) Klavík et al. presented a O(n3) time algorithm. Let G be a permu-
tation graph whose complement we denote by G and let D′ be a permutation diagram
representing a subgraph H of G. Then we orient every edge e = uv in G or G such that u
and v both are vertices in H, towards the endpoint whose corresponding label along the
upper line of D′ appears to the left of the other. This gives us partial orientations of G
and G. Since G is a permutation graph, both, G and its complement are comparability
graphs. Hence we can run the algorithm for solving RepExt(Comp) for G and G. The
algorithm fails if it is not possible to extend one of the two partial orientations to a

15

3. Related Work

transitive orientation of G or G respectively. Else it returns two transitive orientations−→
E1 of G and −→E2 of G and we can construct a permutation diagram D representing G and
extending D′ by labelling the upper line with −→E1 ∪

−→
E2 and the bottom line with ←−E1 ∪

−→
E2

(where we received ←−E1 by reverting all orientations in −→E1).

3.2 Solving the Simultaneous Representation Problem for
Comparability and Permutation Graphs

Let G1, G2, . . . , Gr be r-sunflower comparability graphs, i.e. r comparability graphs that
pairwise share the same induced subgraph H, and let G := G1 ∪G2 ∪ · · ·Gr. Then by n
we denote the number of vertices in G and m is the number of edges in G. Jampani and
Lubiw presented an O(nm) algorithm to solve SimRep(Comp) for G1, . . . , Gr [JL10]. To
do so, they showed and made use of the following results.

First of all Jampani and Lubiw used the Γ relation for directed edges (see Definition 2.11)
to define a relation Γ′ on the directed edges of G: −→e Γ′−→f if −→e Γ−→f and e and f belong to
the same edge class Ei for an i ∈ {1, . . . , r}. They denote the transitive closure of Γ′ which
is an equivalence relation by Γ′t and call the corresponding equivalence classes composite
classes. If such a composite class C contains an edge of the shared graph H, this class is
called a super class, else C is a base class. For a class of directed edges C, we denote the
set we receive by reverting all orientations of the edges in C by C−1.

An S-decomposition of G = G1 ∪ G2 ∪ · · · ∪ Gr is a partition of the edge set Ê(G) =
B̂1 + B̂2 + · · · B̂i+ Ŝi+1 + Ŝi+2 + · · ·+ Ŝj such that Bk is a base class of G−∪1≤l<kB̂l for all
k ∈ {1, . . . , i}, and for all k ∈ {i+1, . . . , j}, Sk is a super class of G−∪1≤l<iB̂l−∪i+1≤l<kŜl.

Theorem 3.1. [JL10] Let G1 = (V1, E1), G2 = (V2, E2), . . . , Gr = (Vr, Er) be r-sunflower
comparability graphs sharing some vertices H and the edges induced by H. Let G =
G1 ∪ G2 ∪ · · · ∪ Gr and Ê(G) = B̂1 + B̂2 + · · · B̂i + Ŝi+1 + Ŝi+2 + · · · + Ŝj be an S-
decomposition of G. The following statements are equivalent.

1) G1, G2, . . . , Gr are simultaneous comparability graphs.

2) Every composite class of G is pseudo-transitive, i.e. C ∩ C−1 = ∅ for all composite
classes C of G.

3) Every part of the S-decomposition is pseudo-transitive, i.e. Bk ∩ B−1
k = ∅ for

k = 1, . . . , i and Sk ∩ S−1
k = ∅ for k = i+ 1, . . . , j.

Theorem 3.1 implies that we can determine whether r-sunflower graphs G1, G2, . . . , Gr
are simultaneous comparability graphs, by checking whether all composite classes of
G = G1 ∪ G2 ∪ · · · ∪ Gr are pseudo-transitive. If existent, we can compute a pseudo-
transitive orientation, i.e. an orientation of G that is transitive on every Gi for 1 ≤ i ≤ r,
by first stepwise removing the base classes from G and recursively orienting the remaining
graph until no base class is left and then stepwise removing the super classes and again
recursively orienting the remaining graph, until all edges are removed.

To solve SimRep(Perm) in O(n3) time [JL10], Jampani and Lubiw used that r-sunflower
permutation graphs are simultaneous permutation graphs if and only if they are simultane-
ous comparability graphs and simultaneous co-comparability graphs. Hence they apply
their algorithm to solve SimRep(Comp) to the r input graphs and afterwards to their
complements.

16

4. Comparability graphs

In this chapter we give efficient algorithms for solving the partial representation problem
and the simultaneous representation problem for comparability graphs.

4.1 Extending Partial Representations

The partial representation problem for comparability graphs RepExt(Comp) is to decide
for a comparability graph G = (V,E) given a partial orientation −→W , i.e. a transitive
orientation of some of its edges, whether it is possible to orient the remaining edges in
a way that we get a transitive orientation of the entire graph. As we will see this is the
case if and only if for every quotient graph in the modular decomposition tree T of G the
partial orientation induced by −→W can be extended to a transitive orientation of the entire
quotient graph. An oriented edge uv ∈ −→W induces that the edge between the modules U
and V in a quotient graph, such that u ∈ U and v ∈ V , is oriented from U to V . In the
following let G be a comparability graph with n vertices and m edges.

If a vertex v ∈ V is contained in a node µ in the modular decomposition tree T , we denote
the child of µ containing v by repµT (v). Every edge e ∈ E is represented by exactly one
edge e′ in exactly one quotient graph of T . The node corresponding to this quotient graph
in T we denote by repT (e). Note that for e = uv with u, v ∈ V , repT (e) is the lowest
common ancestor of the leaves corresponding to u and v respectively in T . Additionally
to the set of represented vertices of G and the corresponding quotient graph, for every
node µ in a modular decomposition tree T we also want to store the set of edges in E that
are represented by the edges in [µ]G/childrenT (µ). An edge e = uv ∈ E with u, v ∈ V is
represented by an edge in the quotient graph [µ]G/childrenT (µ), if and only if u, v ∈ µ and
u ∈ µ1 6= µ2 3 v for µ1, µ2 ∈ children(µ). This means that µ is the lowest common ancestor
of u and v in T . Tarjan presented an algorithm using the union-find data structure to
compute the lowest common ancestors of all pairs of nodes in a fixed given set [Tar79] and
later proves that this can be done in linear time [GT85]. Applied to our case, this means
that we can compute the lowest common ancestors of every pair of vertices u, v ∈ V such
that there exists an edge e ∈ E whose endpoints are u and v (which are exactly m pairs)
in O(m) time. Now we store for every node µ ∈ T all pairs of nodes uv, i.e. the edges
between those two vertices, such that µ is the lowest common ancestor of u and v in T .
This allows us to determine repT(e) for every e ∈ E in constant time, after the described
preprocessing that takes O(m) time.

17

4. Comparability graphs

Lemma 4.1. Let G be a comparability graph and let −→W be a partial orientation of G.
Then −→W can be extended to a transitive orientation of the entire graph G if and only if
the induced partial orientations for the prime and complete quotient graphs in the modular
decomposition tree for G all can be extended to a transitive orientation of the whole quotient
graph.

Proof. Assume that −→W can be extended to a transitive orientation of the entire graph G and
let −→E denote such a transitive orientation of G. Then −→E induces a transitive orientation −→T
of the modular decomposition tree T for G that consists of transitive orientations for the
complete and prime quotient graphs in T containing the predefined orientations induced
by −→W since −→E is an extension of −→W .

Now assume that −→W induces partial orientations for the prime and complete quotient
graphs in the modular decomposition tree T for G such that all these orientations can
be extended to a transitive orientation of the whole quotient graph respectively. Then
we receive a transitive orientation −→T of T by combining the transitive orientations of the
prime and complete quotient graphs. Note that we do not need to consider the empty
quotient graphs since they do not contain any edge and hence their transitive orientations
are also empty. Since −→T contains the predefined orientations induced by −→W , −→T induces a
transitive orientation of the entire graph G extending −→W .

Theorem 4.2. The problem REPEXT(Comp) can be solved in O(n + m) time for
permutation graphs with n vertices and m edges.

Proof. By Lemma 4.1 to solve REPEXT(Comp) for a comparability graph G it suffices
to solve REPEXT(Comp) for the prime and complete quotient graphs in the modular
decomposition T of G. Let −→W be the given partial orientation of G. For a complete quotient
graph in T we need to find a linear order < of the nodes of the quotient graph that respects
the partial order induced by the edges whose orientation is induced by the given partial
orientation of G. To do so, we extend the induced partial order in O(ni +mi) time with
the method presented by Kahn [Kah62] where ni and mi are the number of nodes and
edges of the complete quotient graph. Recall that every edge in G is represented by exactly
one edge in exactly one quotient graph in T . Since the modular decomposition tree T has
n leaves and thus at most 2n− 1 nodes, in total we need O(n+m) time to compute linear
orders with the desired properties for all complete quotient graphs. Afterwards we orient
the edges in the complete quotient graphs according to the computed linear orders.

A prime quotient graph has exactly two transitive orientations, where one is the reverse
of the other. Therefore we first orient the edges that are induced by −→W and afterwards
choose one of the two transitive orientations of the quotient graph. Now we orient the edges
according to the chosen orientation. If we have to reverse the orientation of a preoriented
edge, we try again with the only other existent transitive orientation of the prime quotient
graph. If both transitive orientations are not compatible with the partial orientation, −→W is
not extendible to a transitive orientation of the entire graph. Else, if we can orient all prime
quotient graphs according to one of their two transitive orientations without reversing an
already oriented edge, the orientations of the quotient graphs together induce a transitive
orientation on the entire graph G that is an extension of −→W . Since we can compute the
modular decomposition tree T in O(n+m) time, in total we can decide whether the partial
orientation −→W is extendible and if so find a corresponding transitive orientation of the
entire graph in the same time.

18

4.2. The Simultaneous Representation Problem

Example 4.3. Consider the following partial orientation −→W of the comparability graph
from Example 2.14.

1

42

3

5 6

7

8

9

Note that we regard a quotient graph with only one edge as complete and not as prime.
Then for the two prime quotient graphs we receive the following extensions of the edges
induced by −→W .

1, 2, 3, 5, 6

8, 9

74 5 63

One of the two complete quotient graphs in the modular decomposition tree of T is already
entirely oriented by −→W . For the other one the induced orientation is empty, hence we may
orient the edge between vertex 1 and 2 arbitrarily.

8 9 1 2

Hence all by −→W induced partial orientations of prime or complete quotient graphs can
be extended to transitive orientations of the entire quotient graph. Thus −→W can also be
extended to a transitive orientation of G, which is induced by the chosen orientations of
the quotient graphs.

1

42

3

5 6

7

8

9

4.2 The Simultaneous Representation Problem
Let G be a comparability graph and let H = (V,E) be an induced subgraph of G. For the
graph G we define a modular decomposition tree T reduced to the vertices in V as follows:
Let B be the modular decomposition tree for G. Then we get the desired reduced tree by
first removing all nodes µ from B that contain only vertices that do not belong to the
subgraph H, i.e. µ ∩ V = ∅. If the resulting tree contains nodes that only have one child,

19

4. Comparability graphs

we may delete this nodes from the tree and append their children to their parent nodes.
In a second step we remove all vertices from the remaining nodes that are not contained
in V . This means every node µ is replaced by µ ∩ V . For a node µ in T let ν ∈ B be the
lowest common ancestor of all vertices contained in µ. Note that by construction ν \µ only
contains vertices not in H. Furthermore the children of µ are the children of ν that contain
vertices in H reduced to ν ∩ µ. Hence the quotient graph [µ]G/childrenT (µ) is an induced
substructure of [ν]G/childrenB(ν). In particular if [ν]G/childrenB(ν) is complete or empty,
then the same holds for [µ]G/childrenT (µ). If [ν]G/childrenB(ν) is prime, [µ]G/childrenT (µ)
can be an arbitrary graph. All nodes labelled as prime in B are also treated as prime in T
and labelled with one of the two transitive orientations of the corresponding quotient graph
reduced to the remaining nodes. We also reduce the set that contains all edges represented
by the quotient graph of µ to the edges in E for every µ in the reduced tree. The resulting
tree whose leaves are exactly the singleton sets of the vertices in V we denote by T .

Example 4.4. Let G be the following graph.

4 1 5

2 3

Then the modular decomposition tree B is given by:

1, 2, 3, 4, 5

1, 2, 3, 54

1 2, 3, 5

52, 3

2 3

The following tree is the modified modular decomposition tree reduced to the subgraph induced
by the vertices 1, 2, 3 and 4.

1, 2, 3, 4

1, 2, 34

1 2, 3

2 3

20

4.2. The Simultaneous Representation Problem

An orientation −→E of the subgraph H of G is induced by the reduced modular decomposition
tree T if and only if there exists a transitive orientation −→T of T such that for every
directed edge −→uv in −→E , −→T contains the corresponding directed edge

−−−−−−−−−−−→
repµT (u)repµT (v) where

µ = repT (uv) is the lowest common ancestor of u and v in T .

Lemma 4.5. All orientations of H induced by T are also transitive.

Proof. Let −→E be an orientation of H = (V,E) induced by T . Let u, v, w be three vertices
in V such that uv, vw ∈ E. Assume that −→E contains −→uv and −→vw. Let µ ∈ T be the lowest
common ancestor of u, v and w. Now we distinguish several cases. First let us assume that
repµT(u) 6= repµT(v), repµT(u) 6= repµT(w) and repµT(v) 6= repµT(w). Since −→E contains −→uv and
−→vw, there exists a transitive orientation −→µ of [µ]H/childrenT (µ) that contains the directed
edges

−−−−−−−−−−−→
repµT(u)repµT(v) and

−−−−−−−−−−−→
repµT(v)repµT(w). Since −→µ is transitive, it contains also the edge

−−−−−−−−−−−→
repµT(u)repµT(w), which implies that also uw ∈ E and −→uw ∈ −→E .

Next we assume repµT(u) = repµT(w). This leads to a contradiction since to induce −→uv and −→vw,
the orientation −→µ of µ must contain

−−−−−−−−−−−→
repµT(u)repµT(v) and

−−−−−−−−−−−→
repµT(v)repµT(w) =

−−−−−−−−−−−→
repµT(v)repµT(u).

Hence we consider the case repµT(u) 6= repµT(w), repµT(u) = repµT(v). To induce −→vw our
transitive orientation of µ must contain

−−−−−−−−−−−→
repµT(v)repµT(w) =

−−−−−−−−−−−→
repµT(u)repµT(w) which implies

that also uw ∈ E and −→uw ∈ −→E . The last case repµT(u) 6= repµT(w), repµT(v) = repµT(v) is
analogue to the previous one.

Lemma 4.6. Let G be a graph with modular decomposition tree B and let H = (V,E) be
an induced subgraph of G. The reduced modular decomposition tree T induces exactly those
transitive orientations of the subgraph H, that can be extended to a transitive orientation
of the entire graph G.

Proof. The modular decomposition tree B of G induces exactly the transitive orienta-
tions of G. For every node µ in T let ν be the lowest common ancestor of the vertices
in µ in B. By construction of T we know that the quotient graph [µ]G/childrenT (µ) is
an induced substructure of [ν]G/childrenB(ν). We already know that [ν]G/childrenB(ν)
can be either prime, complete or empty. In the latter case [µ]G/childrenT (µ) and the
corresponding transitive orientation are also empty. Thus we only have to distinguish
the cases in which [ν]G/childrenB(ν) is prime or complete. If [ν]G/childrenB(ν) is com-
plete, any transitive orientation of [µ]G/childrenT (µ) can be extended to a transitive
orientation of [ν]G/childrenB(ν), since [µ]G/childrenT (µ) is also a clique. In the case when
[ν]G/childrenB(ν) is prime, by construction [µ]G/childrenT (µ) is also labelled as prime
with the default orientation of [ν]G/childrenB(ν) reduced to [µ]G/childrenT (µ). Hence
every transitive orientation of [µ]G/childrenT (µ) induces a partial transitive orientation
of [ν]G/childrenB(ν) that is contained in its default orientation and hence this partial
orientation can be extended to a transitive orientation of [ν]G/childrenB(ν). Thus every
transitive orientation of the quotient graphs in T induces a partial orientation of B that can
be extended to a transitive orientation of B. On the other hand every transitive orientation
of H that can be extended to a transitive orientation of G induces a partial orientation of
B that in turn induces a transitive orientation of T .

Let S be the modular decomposition tree for H. The aim is now to examine which
constraints a transitive orientation of the quotient graphs in S must fulfil in order to induce
a transitive orientation on H that can be extended to a transitive orientation of G. An
orientation of an edge ν1ν2 in a quotient graph of S induces an orientation of all edges in

21

4. Comparability graphs

H that are represented by ν1ν2, i.e. one of their endpoints is contained in ν1, the other
one in ν2. Recall that a transitive orientation of all quotient graphs corresponding to S
induces a transitive orientation of H.

Lemma 4.7. Let −→T be a transitive orientation for T . Then −→T induces a unique transitive
orientation of S.

Proof. By construction of T we know that −→T can be extended to a transitive orientation−→
B of the modular decomposition tree B for G. The transitive orientation −→B induces a
transitive orientation −→EG of G that is in particular transitive on the induced subgraph H.
Hence −→EG reduced to H induces a transitive orientation of S.

Let µS be a complete node in S with childrenS(µS) = {ν1, ν2, . . . , νk} and let µT be a node
in T . Now we show that, if µT contains vertices belonging to two different children of µS ,
then µT already contains all vertices in these two children.

Lemma 4.8. Let µS be a complete node in S with childrenS(µS) = {ν1, ν2, . . . , νk}. Then
for every µT ∈ T and every 1 ≤ i ≤ k, if µT ∩ νi 6= ∅ and there exists a j ∈ {1, 2, . . . , k}
with j 6= i and µT ∩ νj 6= ∅, then νi ⊆ µT .

Proof. Let µS ∈ S with ν1, ν2 ∈ children(µS) and let u ∈ ν1 and v ∈ ν2 be two vertices
of the subgraph H. Furthermore let µT be the lowest common ancestor of u and v in T .
Assume that there exists a vertex w ∈ ν1 such that w /∈ µT . Let µ be the lowest common
ancestor of u and w in T . Then we know that µ1 := repµT (u) = repµT (v) 6= repµT (w) =: µ2.
Since S is complete [µT]H/childrenT (µT) contains an edge between repµT

T (u) and repµT
T (v).

Furthermore [µ]H/childrenT (µ) also contains an edge between µ1 and µ2. By Lemma 4.7
any transitive orientations of T induces a transitive orientation of S. But there exists a
transitive orientation of [µT]H/childrenT (µT) that contains

−−−−−−−−−−−−→
repµT

T (u)repµT
T (v) and we can

transitively orient [µ]H/childrenT (µ) such that the edge between µ1 and µ2 is directed
towards µ2. This orientation can not be mapped to µS since all edges between vertices in
ν1 and ν2 either have to be all oriented towards their endpoint in ν1 or they are all oriented
towards their endpoint in ν2. Hence we have w ∈ µT for every w ∈ ν1.

Let µS be a complete node in S and let µT be the lowest common ancestor in T of all
vertices contained in µS . Then we denote the subtree of T with root µT by T [µT]. For
every inner node ν in T [µT] let Mν ⊆ children(µS) be the set that contains exactly those
children µi of µS such that µi ∩ ν 6= ∅. If |Mν | > 1, by Lemma 4.8 every µi ∈Mν is fully
contained in ν. We say that a transitive orientation −→µS of [µS]H/childrenS(µS) fulfils the
consecutiveness constraints, if −→µS induces an orientation of [µT]H/childrenT (µT) such that
for every node ν in T [µT] the edge between a node νS ∈ children(µS) \Mν and a node in
Mν are either all oriented towards their endpoint in Mν or they are all oriented towards
νS . This term comes from the fact that if −→µS fulfils the consecutiveness constraints, in the
total order of the children of µS induced by −→µS , for every node ν in T [µT] all nodes in Mν

appear consecutively.

Lemma 4.9. A transitive orientation −→µS of a complete node µS in S induces a partial
orientation of T if and only if −→µS fulfils the consecutiveness constraints.

Proof. Let ν be a node in T [µT] and let ν1, ν2, ν3 ∈ children(µS) such that ν1, ν2 ∈Mν but
ν3 /∈Mν . Let −→µS be a transitive orientation of [µS]H/childrenS(µS) containing the directed

22

4.2. The Simultaneous Representation Problem

edges −−→ν1ν3 and −−→ν3ν2. Then −→µS does not fulfil the consecutiveness constraints. Let u1 ∈ ν1,
u2 ∈ ν2 and u3 ∈ ν3 be vertices in H. Since µS is complete we have u1u2, u2u3, u1u3 ∈ E.
The partial orientation −→E of H induced by −→µS contains −−→u1u3 and −−→u3u2. We already know
that ν1, ν2 ⊆ ν and ν3 * ν. Hence the lowest common ancestor ν ′ in T of ν1 and ν3 is also the
lowest common ancestor of ν2 and ν3 and repν′

T (u1) = repν′
T (u2). Since u1u3 ∈ E the quotient

graph [ν ′]H/childrenT (ν ′) contains an edge repν′
T (u1)repν′

T (u3) = repν′
T (u2)repν′

T (u3). Now
−→
E induces both

−−−−−−−−−−−−−→
repν′

T (u1)repν′
T (u3) and

←−−−−−−−−−−−−−
repν′

T (u1)repν′
T (u3). Hence the transitive orientation

−→µS can not be mapped to T .

Now assume that −→µS fulfils the consecutiveness constraints. Let ν1, ν2 ∈ children(ν) for a
node ν in T [µT], such that the quotient graph [ν]H/childrenT (ν) contains an edge ν1ν2.
Then for i ∈ {1, 2} every edge between a node µi not in Mνi and the nodes in Mνi in
[µS]H/childrenS(µS) are either all oriented towards µi or they are all oriented towards
their endpoint in Mνi . This especially holds for µ1 ∈ Mν2 and µ2 ∈ Mν1 . Hence in total
we get that the edges in [µS]H/childrenS(µS) between a node in Mν1 and a node in Mν2

are either all oriented towards their endpoint in Mν1 or they are all oriented towards their
endpoint in Mν2 . Since this holds for every ν1, ν2 ∈ children(ν) for a node ν in T [µT], such
that the quotient graph [ν]H/childrenT (ν) contains an edge ν1ν2, the transitive orientation
−→µS induces a partial orientation of T .

Let ν be a prime node in T [µT] and let ν1 and ν2 be two children of a complete node µS ∈ S
with u1, v1 ∈ ν1, u2 ∈ ν2. Recall that a transitive orientation of T induces a transitive
orientation of S. All edges in H between vertices in ν1 and vertices in ν2 are represented
by exactly one edge in S. Hence a transitive orientation of the quotient graph of ν induces
a partial orientation of S. As a result no transitive orientation of [ν]H/childrenT (ν) can
contain both

−−−−−−−−−−−−→
repνT (u1)repνT (u2) and

−−−−−−−−−−−−→
repνT (u2)repνT (v1). In other words all edges between the

representative of a vertex in a child ν1 of µS and the representative of a vertex in another
child ν2 of µS are either all oriented towards the representative of a vertex in ν1 or they
are all oriented towards the representative of a vertex in ν2. If we choose a representative
for an arbitrary vertex in every child of µS , they are fully connected in [ν]H/childrenT (ν)
and hence the default orientation of the quotient graph induces a total order on them.

Lemma 4.10. Let µS be a prime node in S and let µT ∈ T be the lowest common ancestor
of all vertices in µS. Then µT is also prime and for every ν ∈ children(µS) there exists a
ν ′ ∈ children(µT) such that ν ⊆ ν ′.

Proof. Note that [µS]H and [µS]H are connected. Since µT is the lowest common ancestor
of the vertices in µS in T , there exists no children µ of µT such that µS ⊆ µ. Hence also
[µT]H and [µT]H are connected, which already implies that µT is prime. Recall that the
edges in H represented by the edges in a prime quotient graph [µT]H and [µT]H all belong
to the same edge class and the remaining edge classes of [µT]H are exactly the edge classes
of the subgraphs induced by the children of µT . Since [µS]H is an induced subgraph of
[µT]H , edges belonging to the same edge class in [µS]H also belong to the same edge class
in [µT]H . Hence vertices belonging to the same child of µS also belong to the same child of
µT .

Now, we want to label each complete node µS in S with a PQ-tree Bµ whose leaves are the
nodes in the quotient graph [µS]H/childrenS(µS) such that Bµ represents all total orders
inducing partial transitive orientations of H that can be extended to transitive orientations
of G. Additionally we construct a 2-Sat-formula ϕG that synchronizes these PQ-trees
with each other and the orientations of the prime quotient graphs in S. Initially ϕG

23

4. Comparability graphs

contains the constraint (−→νT ⇔ −→νS) for every prime node νS in S such that νT is the lowest
common ancestor of the vertices contained in νS in T and −→νS is the default orientation
of the corresponding quotient graph νS is labelled with, while −→νT is the orientation of
[νT]H/childrenT (νT) containing −→νS . Note that by Lemma 4.10, µT is labelled as prime.
In case −→νT is not the default orientation of νT , we label νT with −→νT . Note that to add a
constraint of the form (a⇔ b) to a 2-Sat-formula we add the clauses (a∨¬b) and (¬a∨ b).

Let µT be the lowest common ancestors in T of the vertices in µS . To construct BµS consider
T [µT] and modify it as follows. First we remove all nodes ν from the tree that do not share
a represented edge in H with µS . Afterwards we append to every leaf in the resulting tree
the children of µS that are endpoints of edges in [µS]H/childrenT (µS) representing an edge
that is also represented in the quotient graph of the currently considered node in T [µT].
Now we replace all inner nodes whose corresponding quotient graph is complete or empty
by a P -node. All remaining inner prime nodes ν of T [µT] become Q-nodes qν and their
children are appended according to the total order on the elements of Mν induced by the
default orientation of ν. Additionally we add the constraint (−→ν ⇔ qν) to the 2-Sat-formula
ϕG, where the variable qν represents the default order of the children of qν .

Lemma 4.11. A transitive orientation −→S of S induces transitive orientations for all
quotient graphs [µT]H/childrenT (µT) for all prime-labelled nodes µT in T if and only if all
prime and complete quotient graphs corresponding to nodes in S are oriented according to
a solution of the 2-Sat-formula ϕG.

Proof. Assume that the transitive orientation −→S induces transitive orientations for all
quotient graphs [µT]H/childrenT (µT) for all prime-labelled nodes µT in T . Then the
orientations of the prime and complete quotient graphs corresponding to nodes in S that
induce a direction for an edge in such a [µT]H/childrenT (µT) either all induce directed edges
contained in the default orientation of [µT]H/childrenT (µT) and no edge in the reverse
default orientation or the other way round. By construction of ϕG the variable assignment
induced by −→S and the resulting orientation for [µT]H/childrenT (µT) is satisfying.

Now assume that all prime and complete quotient graphs corresponding to nodes in S are
oriented according to a solution of the 2-Sat-formula ϕG. Then by construction of ϕG the
orientation −→S induces either the default orientation of [µT]H/childrenT (µT) or its reverse,
which are both transitive.

Lemma 4.12. Let µT be a complete node in T and let µS ∈ S be the lowest common
ancestor of all vertices in µT . Then µS is also complete and for every ν ∈ children(µT)
there exists a ν ′ ∈ children(µS) such that ν ⊆ ν ′.

Proof. Note that [µT]H is connected but [µT]H is not. Since [µT]H is a subgraph of [µS]H
and µS ∈ S is the lowest common ancestor of the vertices in µT , we know that µS is not
empty. Recall that µT is a module in H, hence all vertices not in µT are either adjacent
to all vertices in µT or to none of them. If µS would contain a vertex v not adjacent to
any vertex in µT , then µS would be disconnected and all vertices of µT would belong to
the same child of µS . This contradicts the fact that µS is the lowest common ancestor
of all vertices in µT . Hence all vertices in µS \ µT must be adjacent to all vertices in µT .
Thus the nodes of [µT]H/childrenT (µT) are also connected components of [µT]H and all
connected components of [µS]H are fully connected in [µS]H .

Theorem 4.13. Let −→S be a transitive orientation of S. Then −→S induces a transitive
orientation of the subgraph H that can be extended to a transitive orientation of the entire

24

4.2. The Simultaneous Representation Problem

graph G, if and only if every complete quotient graph in S is oriented according to a total
order induced by the corresponding PQ-tree and the orientation of all non-empty quotient
graphs are compatible with a solution of the 2-Sat-formula ϕG.

Proof. Assume that −→S induces a transitive orientation −→EH of the subgraph H that can be
extended to a transitive orientation −→EG of the entire graph G. Then −→EH in turn induces a
transitive orientation of T . In particular −→S induces a transitive orientation for all prime
and all complete quotient graphs corresponding to nodes in T . By Lemma 4.9 for every
complete node µS in S, −→S reduced to the quotient graph [µS]H/childrenS(µS) fulfils the
consecutiveness constraints. This means that [µS]H/childrenS(µS) is oriented according to
a total order induced by the corresponding PQ-tree. By Lemma 4.11 we also know that all
prime and complete quotient graphs corresponding to nodes in S are oriented according to
a solution of the 2-Sat-formula ϕG.

For the other direction assume that −→S contains for every complete quotient graph in
S an orientation according to a total order induced by the corresponding PQ-tree that
is compatible with a solution of the 2-Sat-formula ϕG. Again let −→EH be the transitive
orientation of subgraph H induced by −→S . By Lemma 4.12 we know that for every complete
quotient graph [µT]H/childrenT (µT) there exists a complete node µS in S such that for
every edge e in H with repT (e) = µT , we have repS(e) = µS . Hence every transitive
orientation of S induces a transitive orientation on the complete quotient graphs of T .
Since by Lemma 4.9 the transitive orientation −→S reduced to the prime quotient graphs
induces a partial orientations of the quotient graphs in T , −→S induces transitive orientations
for all complete quotient graphs corresponding to nodes in T . By Lemma 4.11 −→S induces
transitive orientations for all quotient graphs [µT]H/childrenT (µT) for all prime-labelled
nodes µT . Thus in total S induces a transitive orientation of T which means that −→EH can
be extended to a transitive orientation of the entire graph G.

Let us now consider r-sunflower graphs G1, G2, . . . , Gr and let H be the induced subgraph
shared by them. Furthermore let ϕi be the 2-Sat-formula corresponding to Gi for every
1 ≤ i ≤ r and let G := G1 ∪ G2 ∪ · · ·Gr. With the procedure described above for every
complete node µ in S we get r PQ-trees, each representing the constraints a transitive
orientation of µ must fulfil to induce a transitive orientation of H that can be extended
to a transitive orientation of Gi. Hence we label µ with the intersection of all these r
PQ-trees and denote the intersection tree by Bµ. If two Q-nodes q1 and q2 appearing in
ϕi’s are merged during the intersection process, the resulting new Q-node gets new variable
q and every occurrence of q1 and q2 in any ϕi is replaced by q. Finally, we can define the
2-Sat-formula ϕG := ∧

1≤i≤r ϕi.

Definition 4.14. Let G1 = (V1, E1), . . . , Gr = (Vr, Er) be r-sunflower comparability graphs
and let G = G1 ∪G2 ∪ · · · ∪Gr. Then an orientation W of G is pseudo-transitive, if W is
transitive on every Gi for i ∈ {1, . . . , r}.

Note that r sunflower comparability graphs are simultaneous comparability graphs if and
only if there exists a pseudo-transitive orientation of G = G1 ∪G2 ∪ · · · ∪Gr [JL10].

Theorem 4.15. Let −→S be a transitive orientation of S. Then −→S induces a transitive
orientation of the subgraph H that can be extended to a pseudo-transitive orientation of
G = G1 ∪ G2 ∪ · · · ∪ Gr, if and only if every complete quotient graph in S is oriented
according to a total order induced by the corresponding PQ-tree and the orientation of all
non-empty quotient graphs are compatible with a solution of the 2-Sat-formula ϕG.

25

4. Comparability graphs

Proof. Assume that −→S induces a transitive orientation of the subgraph H that can be
extended to a pseudo-transitive orientation of G = G1 ∪G2 ∪ · · · ∪Gr. Then in particular−→
S induces a transitive orientation of the subgraph H that can be extended to a pseudo-
transitive orientation of Gi for every i ∈ {1, . . . , r} and hence by Theorem 4.13 every
complete quotient graph in S is oriented according to a total order induced by the
corresponding PQ-tree Bi

µ and the orientation of all non-empty quotient graphs are
compatible with a solution of the 2-Sat-formula ϕi. Since this holds for ever i ∈ {1, . . . , r},
every complete quotient graph in S is oriented according to a total order induced by the
intersection of the Bi

µs, namely Bµ, and the orientation of all non-empty quotient graphs
are compatible with ϕG.

Now assume that every complete quotient graph in S is oriented according to a total order
induced by the corresponding PQ-tree and the orientation of all non-empty quotient graphs
are compatible with a solution of the 2-Sat-formula ϕG. Then in particular for every
i ∈ {1, . . . , r} every complete quotient graph in S is oriented according to a total order
induced by the corresponding PQ-tree Bi

µ and the orientation of all non-empty quotient
graphs are compatible with a solution of the 2-Sat-formula ϕi. Hence by Theorem 4.13−→
S induces a transitive orientation of the subgraph H that can be extended to a pseudo-
transitive orientation of every Gi. Thus

−→
S induces a transitive orientation of the subgraph

H that can be extended to a pseudo-transitive orientation of G = G1 ∪G2 ∪ · · · ∪Gr.

Theorem 4.15 directly implies the following corollary.

Corollary 4.16. G1, G2, . . . , Gr are simultaneous comparability graphs if and only if for
every complete node µ in S the PQ-tree Bµ is not the null tree and the 2-Sat-formula ϕG
is satisfiable.

Let G1, G2, . . . , Gr be simultaneous comparability graphs. Then we choose an arbitrary
solution of ϕ and orient every complete quotient graph of S according to a total order
induced by the corresponding PQ-tree that is compatible with the chosen solution of
ϕ (i.e. the children of every Q-node are ordered according to the solution of ϕ). For a
prime quotient graph of node µ we choose the default orientation if the chosen solution of
ϕG contains −→µ and the reverse orientation otherwise. Together, all these orientations of
quotient graphs in S induce a transitive orientation on H and by applying the algorithm
from Chapter 4 to solve RepExt(Comp) to every input graph, we get a pseudo-transitive
orientation of G = G1 ∪G2 ∪ · · · ∪Gr.

Example 4.17. Consider the following graphs G1 and G2.

1

2 3

64

5

(a) G1

4 1 7

2 3

(b) G2

The two input graphs share the following induced subgraph H.

4 1

2 3

26

4.2. The Simultaneous Representation Problem

Now we construct the (reduced) modular decomposition trees S, T1 and T2.

1, 2, 3, 4

1, 2, 34

1 2 3

µ

(a) S

1, 2, 3, 4

1 2 3 4

P
−→
12
−→
13
−→
32

(b) T1

1, 2, 3, 4

1, 2, 34

1 2, 3

2 3

(c) T2

We first consider T1 and compute the corresponding PQ-tree B1
µ for the only complete node

in S and the 2-Sat-formula ϕ1. Initially B1
µ is the following tree.

1 2 3

The lowest common ancestor of the vertices in µ in tree T1 is the prime root P with
MP = {1, 2, 3} and the default orientation induces 1 < 3 < 2. Hence we get the following
tree for Bµ.

1 3 2

Q

Additionally we add the constraint (−→P ⇔ Q) to ϕ1, i.e. ϕ1 = (−→P ∨ ¬Q) ∧ (¬−→P ∨Q). The
decomposition tree T2 gives us the following PQ− tree for µ.

1

2 3

Intersecting the two PQ-trees gives us the PQ-tree we received from T1. Since ϕ2 = ∅,
ϕG = ϕ1. A satisfying solution is for example {−→P ,Q}. Since Bµ is not the null tree and
ϕG is satisfiable we already know that G1 and G2 are simultaneous comparability graphs.
The default orientation of P directly gives us a transitive orientation of H that is compatible
with Bµ and a solution of ϕG. Extending this gives us the following simultaneous transitive
orientations for G1 and G2.

1

2 3

64

5

(a) G1

4 1 7

2 3

(b) G2

27

4. Comparability graphs

Theorem 4.18. SimRep(Comp) can be solved in O(n+m) time for r-sunflower compa-
rability graphs G1 = (V1, E1), G2 = (V2, E2), . . . , Gr = (Vr, Er) where n = ∑r

i=1 |Vi| and
m = ∑r

i=1 |Ei|.

Proof. Let ni := |Vi| and mi := |Ei| for all 1 ≤ i ≤ r. We have seen that to solve
SimRep(Comp) first we need to compute the modular decomposition trees of the input
graphsG1, G2, . . . , Gr and the shared graphH. This can be done inO(ni+mi) time for every
input graph Gi [MS99] for 1 ≤ i ≤ r. Hence in total we need ∑r

i=1O(ni +mi) = O(n+m)
time to construct all r modular decomposition trees. Additionally we have to construct
the modular decomposition tree S of the shared graph H which also takes O(n+m) time
since H has at most n vertices and m edges. To reduce a modular decomposition tree Bi
to the vertices of H we have to process every node µ in Bi once to remove all vertices
not in H from µ. We visit the nodes from bottom to top such that all children of µ are
processed before µ to be able to remove empty and degree-one nodes directly from the tree.
Since every Bi has ni leaves and thus in total at most 2ni − 1 nodes, the reduction of all r
modular decomposition trees can be done in O(∑r

i=1 ni) = O(n) time.

To compute the PQ-tree Bi
µ for a complete node µ in S we have to consider at most as

many nodes in Ti as the number of edges in H represented by edges in [µ]H/childrenS(µ).
Hence the computation of all PQ-trees for every complete node in S with regard to Ti can
be done in O(mi + ni) time and thus we need O(n+m) time to construct all r PQ-trees
for all complete nodes in S. Every PQ-tree Bi

µ for a complete node µ in S is a PQ-tree on
the set children(µ) and hence their intersection can be computed in O(|children(µ)|) time
[Boo75] which means that all needed intersections can be computed in total in O(n) time.

The construction of the 2-Sat-formula ϕi and their combination ϕG takes constant time.
By [APT79] we can solve ϕG in O(n′ +m′) time where n′ is the number of variables in ϕG
and m′ is the number of clauses in the formula. Every ϕi contains one variable for every
prime node in Ti and S which are less than 4ni and one variable for every Q-node in a
PQ-tree Bi

µ for a complete node µ in S. Note that we only get Q-nodes in Bi
µ if there exists

a prime node µ′ in Ti such that there exists an edge in [µ′]H/childrenT (µ′) that represents
an edge of H that is also represented by an edge in [µ]H/childrenS(µ). Hence in total all
Bis can contain at most mi Q-nodes. By construction ϕG contains not more variables than
all ϕis together. Thus ϕG contains at most 4n+m variables. Furthermore we know that
every ϕi contains exactly two clauses for every Q-node and exactly two clauses for every
prime node in S, hence O(ni +mi) in total. Thus by construction ϕG contains O(n+m)
clauses and can be solved in O(n+m) time.

28

5. Permutation graphs

In this chapter we give efficient algorithms for solving the partial representation problem
and the simultaneous representation problem for permutation graphs.

5.1 Extending Partial Representations
Applied to the class of permutation graphs, the problem RepExt(Perm) asks, whether
given a permutation graph G = (V,E) and a permutation diagram D′, representing an
induced subgraph H of G, it is possible to extend D′ to a representation of the entire graph
G, such that D restricted to the vertices in H is isomorphic to D′.

RepExt(Perm) was already shown to be solvable in cubic time [KKKW12]. The algo-
rithm presented by Klavík et al. applies their O((n + m)∆) algorithm for solving the
partial representation problem for comparability graphs to both, the input graph and its
complement, and if existent constructs the desired extended permutation diagram out
of the two extended transitive orientations. Here we will give an algorithm that solves
RepExt(Perm) in linear time using modular decomposition. To do so, we need the
following definitions and observations:

Let σ be a permutation of a set S of size n. A subset H ⊆ S is an interval of σ, if the
elements of H occur consecutively in σ [HP10].

Definition 5.1. A set S of elements is a common interval of a set of permutations Σ, if
in each permutation σ ∈ Σ, the elements of S form an interval of σ.

S is called a strong common interval, if for every distinct common interval S′ of Σ, we
either have S ⊆ S′, S′ ⊆ S or S ∩ S′ = ∅.

Lemma 5.2 ([Mon03]). Let G = (V,E) be a permutation graph and D be a permutation
diagram representing G. We denote the upper horizontal line of D by L1 and the lower
line by L2. Furthermore, let Li(V) denote the order of vertices induced by the labelling of
Li for i ∈ {1, 2}. A set of vertices M ⊆ V is a strong module if and only if M is a strong
common interval of L1(V) and L2(V).

Corollary 5.3. Let G be an undirected permutation graph and let T be its modular
decomposition tree. Then for every µ ∈ T , the quotient graph [µ]G/childrenT (µ) is also a
permutation graph.

29

5. Permutation graphs

Proof. Let R be a representation of G and let µ ∈ T . Since all children X of µ in T are
strong modules by definition of the modular decomposition tree, the vertices of G they
contain, appear as strong common intervals along both, the upper and the lower line of
R. Hence, to construct a permutation diagram for [µ]G/childrenT (µ), we first delete all
labels and chords in R that do not belong to vertices in µ and afterwards, along both
parallel lines, replace for every node X ∈ childrenT (µ) the labels corresponding to vertices
contained in X (which form a strong common interval) by a single new label for X. As a
last step, we connect all labels along L1 to their corresponding label along L2.

In the following, let G = (V,E) be a permutation graph with n vertices and m edges
and let D′ be a corresponding partial representation of a subgraph H = (V ′, E) of G.
Furthermore, let T be the modular decomposition tree for G and let µ ∈ T be a module.
Then a permutation diagram Dµ of the quotient graph [µ]G/childrenT (µ) respects the order
of the vertices induced by D′, if for every pair of distinct vertices i, j ∈ µ ∩ V ′, they either
both belong to the same child of µ or the labels corresponding to the children that contain
i and j, appear in the same order along both horizontal lines of Dµ as i and j appear along
both horizontal lines of D′. We shall see with the next Lemma that every permutation
diagram for a permutation graph G induces a permutation diagram for every quotient
graph [µ]G/childrenT (µ).

Lemma 5.4. Let G = (V,E) be a permutation graph with n vertices and m edges and let
D′ be a corresponding partial representation of a subgraph H of G. Furthermore, let T be
the modular decomposition tree for G. Then D′ is extendible to a permutation diagram D
representing the entire graph G if and only if for every inner node µ in T , there exists a
permutation diagram Dµ for the quotient graph [µ]G/childrenT (µ) that respects the order
of the vertices induced by D′.

Proof. Assume that D′ is extendible to a permutation diagram D representing the entire
graph G, such that D restricted to H is isomorphic to D′. Then for every inner node
µ in the modular decomposition tree T , we get the permutation diagram Dµ for the
quotient graph [µ]G/childrenT (µ) that respects the order of the vertices induced by D′,
by ordering the endpoints of the segments corresponding to vertices in childrenT (µ) along
both horizontal lines according to their order in D. This is well- defined, since all modules
µ ∈ T are strong by definition and by Lemma 5.2, we know that for every strong module,
all labels corresponding to vertices contained in µ appear as consecutive sequence along
both the upper and the lower horizontal line of every representation D for G.

Now, assume that for every inner node µ in T , there exists a permutation diagram Dµ

for the quotient graph [µ]G/childrenT (µ) that respects the order of the vertices induced
by D′. Then we can use all the Dµ’s to construct a permutation diagram D for G that
extends D′. We start with the representation of G/childrenT (G) and replace for every
X ∈ childrenT (G) the corresponding endpoints along the two horizontal lines with the
order of the vertices of [X]G/childrenT (X) induced by DX . Then we connect all pairs of
labels corresponding to the same node and proceed with the same procedure for every
X ′ ∈ childrenT (X), until every segment of the representation corresponds to a single vertex
of G.

The construction described in the proof above can be done in linear time: Assume that for
every permutation diagram D we store two double linked lists that contain the labels in
the order they appear along L1 and L2 respectively. Then we may start with the list for
L1 of a representation for G/childrenT (G) and traverse it from left to right. If we meet
a label corresponding to a node µ in T , we replace the current entry with the linked list

30

5.1. Extending Partial Representations

corresponding to the upper horizontal line of a representation Dµ of [µ]G/childrenT (µ) and
afterwards proceed our traversing at the leftmost entry of the inserted sublist. We continue
in the same way until we reach the right most entry of the list and no further replacements
are necessary. Then we proceed similarly for the list storing the labels of L2. It remains to
show that the total number of list entries we have to look at is linear in n, denoting the
number of nodes in G. Therefore we first have to prove the following assumption:

Assume we reach a list entry µ that contains a set of k nodes and has a right neighbour ν.
If we replace it as described above, we visit at most 2k − 1 entries (including µ) until we
reach the former right neighbour ν.

Proof. For k = 1 the claim holds, since in this case we do not replace anything and reach
ν directly in the next step. If k = 2 we replace µ by two new list entries both containing
singleton sets that we do not have to replace themselves. This means we have to look at
µ and the two new entries before reaching ν, which makes 3 = 2 · 2 − 1 visited entries
in total. Now for k > 2, we divide µ into 2 ≤ j ≤ k disjoint subsets l1, . . . , lj such that∑j
i=1 |li| = k. Then we know that to completely dissolve li into singleton sets we need

to visit at most 2|li| − 1 list entries. Hence, in total, to dissolve µ we look at at most∑j
i=1 2|li| − 1 = (∑j

i=1 2|li|)− j = 2(∑j
i=1 |li|)− j = 2k − j < 2k − 1 list entries.

Now, let n be the number of nodes in G and let n′ be the number of nodes in G/childrenT (G).
Then the original lists corresponding to the horizontal lines ofDG representingG/childrenT (G)
each have n′ < n entries k1, . . . , kn′ with ∑n′

i=1 |ki| = n. The above assumption implies that
for every horizontal line of DG we need to visit at most ∑n′

i=1 2|ki|− 1 = 2(∑n′
i=1 |ki|)−n′ =

2n− n′ ≤ 2n list entries to get a list that only contains singleton sets.

The following example illustrates the construction of D given D′.

Example 5.5. In this example we will see, how we may construct a representation for the
graph G in Example 2.14 from the representations of its quotient graphs. To do so, we
start with a representation DG for G/childrenT (G):

1, 2, 3, 5, 6 7 4 8,9

4 1, 2, 3, 5, 6 78,9

For the next step, we choose µ = {1, 2, 3, 5, 6}, which is a child of V in the modular
decomposition tree T . The following permutation diagram Dµ represents [µ]G/childrenT (µ):

1, 2

1, 2

3, 5, 6

3, 5, 6

Now, we replace in DG the label corresponding to X along the upper line by the labels
appearing in Dµ along the upper line. The labels along the lower line of Dµ replace the
label corresponding to µ along the lower line of DG and afterwards each pair of matching
labels is connected via a new segment:

31

5. Permutation graphs

1, 2 7 4 8,9

4 78,9

3, 5, 6

1, 2 3, 5, 6

In the next step we proceed similarly for the node {1, 2} in T and get the following modified
permutation diagram:

1 7 4 8,9

4 78,9

3, 62 5

2 1 5 3, 6

After replacing the labels {3, 6} and {8, 9} with the new labels induced by the representations
of their corresponding quotient graphs and connecting the matching labels, we get the
following linear representation of the entire graph G:

1 7 4 8

4 7

32 5

2 1 5

6 9

3 6 9 8

Now we are able to prove that the presented algorithm has a linear runtime.

Theorem 5.6. The problem REPEXT(PG) can be solved in O(n+m) time for permu-
tation graphs with n vertices and m edges.

Proof. Let G = (V,E) be a permutation graph with n vertices and m edges and let D′ be
a corresponding partial representation of a subgraph H = (V ′, E) of G. By McConnell
and Spinrad [MS99], it is possible to compute the modular decomposition tree T of G in
O(n+m) time.

Then by Lemma 5.4 D′ is extendible to a permutation diagram D representing the entire
graph G, such that D restricted to X is isomorphic to D′, if and only if for every inner node
µ in T , there exists a permutation diagram Dµ for the quotient graph [µ]G/childrenT (µ)
that respects the order of the vertices induced by D′.

Let µ ∈ T be a node of the modular decomposition tree. It is already known that the
quotient graph [µ]G/childrenT (µ) is either, complete, empty or prime [MS99] and by
definition, µ and all its children represent a subset of vertices of G that are a strong module
of the graph. In the first two cases, we can choose an arbitrary total order of the children
of µ that respects the order induced by the upper line of D′, for the upper line L1 and
reverse this order along the lower line, to represent a complete graph, or choose the same
order for L2, to represent an empty graph. Such an order always exists, since for every
child ν of µ, we know that ν ∩ µ is a strong module of H, and hence, by Lemma 5.2, ν ∩ µ
is a strong common interval on both, the lower and the upper line of D′.

Since by Corollary 5.3 every quotient graph is a permutation graph, if existent, we
may compute the representation with the desired properties of a prime quotient graph

32

5.2. The Simultaneous Representation Problem

[µ]G/childrenT (µ) in time that is linear in the sum of the sizes of nodes and edges of
[µ]G/childrenT (µ)[MS99]. For every prime graph, there exist exactly two transitive orienta-
tions, where each one is the reverse of the other [Gol04]. Thus, if the computed orientation
does not respect the order of the vertices induced by the upper horizontal line of D′, we
reverse it and check again. If the new transitive orientation still does not have the desired
property, we know that D′ is not extendible to a representation D for the entire graph G.

To obtain a representation D that represents the entire graph G and extends D′, if
existent, we proceed as in the proof of Lemma 5.4, i.e. starting with the representation of
G/childrenT (G) we stepwise replace every non-singleton module µ by its corresponding
representation Dµ. We have seen that this can be done in linear time.

5.2 The Simultaneous Representation Problem
5.2.1 Simultaneous Representations for Sunflower Permutation Graphs

The simultaneous representation problem for r-sunflower permutation graph G1, G2, . . . , Gr
sharing an induced subgraph H deals with the question whether there exist permutation
diagrams D1, D2, . . . , Dr such that Di represents Gi for every 1 ≤ i ≤ r and all Di’s are
isomorphic on the shared vertices of H. In this section we show that SimRep(Perm) can
be solved in quadratic time using modular decomposition and the property, that every
permutation graph and its complement are comparability graphs. To do so, we first need
to prove the following lemma.

Lemma 5.7. Let G1 = (V1, E1), G2 = (V2, E2), . . . , Gr = (Vr, Er) be permutation graphs.
Then G1, . . . , Gr are simultaneous permutation graphs if and only if they are simultaneous
comparability graphs and simultaneous co-comparability graphs.

Proof. Assume that G1, . . . , Gr are simultaneous permutation graphs. Then there exist
permutation diagrams D1, . . . , Dr such that for every i ∈ {1, . . . r} Di represents Gi and
all Di’s are the same on the shared subgraph H, i.e. the vertices of H appear in the same
order along the upper and the lower line of every Di. Let <i be the total order of the
vertices in Ei induced by their order along the upper line L1 of Di such that for two vertices
u and v we have u <i v if and only if u appears to the left of v along L1. By Pneuli et al.
[PLE71] we get transitive orientations −→Ei of Gi and

−→
Ei

C of the complement Gi if we orient
every edge towards the greater vertex according to <i. Since for all Gi’s the vertices in
H appear in the same order along the upper horizontal line of Di, the edges induced by
them are oriented in the same way in every orientation −→Ei. Since the same holds also for−→
Ei

C , G1, . . . , Gr are simultaneous comparability graphs and simultaneous co-comparability
graphs.

For the other direction we assume that G1, . . . , Gr are simultaneous comparability and
co-comparability graphs. Then there exists a pseudo-transitive orientation −→W of G =
G1∪G2∪· · ·∪Gr such that −→W is transitive on every Gi. There also exists a pseudo-transitive
orientation

−→
W ′ of G′ = G1 ∪ G2 ∪ · · · ∪ Gr such that

−→
W ′ is transitive on every Gi. By

orienting every Gi with the directions induced by −→W and Gi with the directions induced
by
−→
W ′, and considering the resulting directed complete graph, we receive an induced total

order <i of the vertices in Vi. Since the subgraph H and its complement I are oriented
simultaneously in every Gi and Gi respectively, the total order <i reduced to the vertices in
H is the same for every 1 ≤ i ≤ r. Now we construct a simultaneous permutation diagram
Di for every Gi such that they are the same on the shared subgraph H as follows. First

33

5. Permutation graphs

we label the upper line L1 of Di with the vertices in Vi in ascending order according to <i.
Then we orient the complete graph that contains all vertices in Vi according to

−→
W ′ and

the reverse of −→W which we denote by ←−W . The total order induces by this orientation we
denote by <′i. Again we know that <′i reduced to the vertices in H is the same for every
1 ≤ i ≤ r. Hence if we label the bottom line L2 of Di with the vertices in Vi in ascending
order according to <′i and connect the vertices on L1 to their counterpart on L2 with a line
segment, we receive a permutation diagram representing Gi. By construction all Di’s are
the same on the shared subgraph H, hence G1, G2, . . . , Gr are simultaneous permutation
graphs.

Now we are able to show the desired quadratic runtime to solve SimRep(Perm).

Corollary 5.8. The problem SimRep(Perm) can be solved in O(n2) time for r-sunflower
permutation graphs G1, G2, . . . , Gr, where n is the number of vertices in G := G1 ∪G2 ∪
· · · ∪Gr.

Proof. By Lemma 5.7 to solve SimRep(Perm) for G1, G2, . . . , Gr it suffices to solve
SimRep(Comp) for G1, G2, . . . , Gr and also for the complement graphs G1, G2, . . . , Gr.
In Section 4.2 we have seen that SimRep(Comp) can be solved in O(n + m) time for
r-sunflower comparability graphs G1, G2, . . . , Gr with G := G1 ∪ G2 ∪ · · · ∪ Gr, where n
is the number of vertices in G and m denotes the number of edges in G. The union of
the complements G′ := G1 ∪G2 ∪ · · · ∪Gr has also n nodes. The number of edges in G′
we denote by m′. Hence SimRep(Comp) for G1, G2, . . . , Gr can be solved in O(n+m′)
time. Since m + m′ = n2 to solve SimRep(Perm) in total we need O(n2) time. The
corresponding simultaneous representations we get as described in the proof of Lemma
5.7.

Example 5.9. This Example shall illustrate how we get the simultaneous permutation
diagrams from the simultaneous transitive orientations of the input graphs and their
complements of a SimRep(Perm)-instance. Consider an instance of the simultaneous
representation problem for r-sunflower permutation graphs G1, . . . , Gr such that the input
graphs are simultaneous comparability and simultaneous co-comparability graphs. Assume
that we get the following orientations for G1 after applying the algorithm presented in
Section 4.2 to solve SimRep(Comp).

2

3 4

1

(a) G1

2

3

1

4

(b) G1

Then these two orientations induce a the following transitive on the complete graph G1∪G1
that in turn induces the total order 3 < 4 < 1 < 2.

2

3

1

4

34

5.2. The Simultaneous Representation Problem

After reversing all orientations of the edges in G1 the new orientation of G1∪G1 induces the
total order 4 < 2 < 3 < 1. Hence we receive the following permutation diagram representing
G1.

3 4 1 2

4 2 3 1

5.2.2 Simultaneous Representations for general Permutation Graphs
Now we come back to the general case where the r graphs G1, G2, . . . , Gr pairwise share
an arbitrary set of vertices and edges induced by them. Then for permutation graphs
G1, . . . , Gr the simultaneous representation problem turns out to be NP-complete.
Let G1 = (V1, E1), . . . Gk = (Vk, Ek) be arbitrary permutation graphs. The problem
SimRep(Perm) is to decide whether there exist linear permutation diagrams R1, . . . , Rk,
such that for every 1 ≤ i ≤ k, Ri represents Gi and for every j, l ∈ {1, . . . k} the order of
the labels corresponding to vertices in Vj ∩ Vl along the upper and lower line respectively
is the same in both Rj and Rl.

Theorem 5.10. SimRep(Perm) for k permutation graphs where k is not fixed is NP-
complete.

Proof. Let n = max{|V1|, |V2|, . . . , |Vk|}. Given representation Ri of Gi for every 1 ≤ i ≤ k,
to check whether R1, . . . , Rk are a solution of SimRep(Perm), we have to check for every
pair of graphs, whether their common vertices appear in the same order along the upper
and lower line respectively in the corresponding representations. Since such a check can be
done in linear time, in total we can decide in O(k2n) time whether R1, . . . , Rk are valid
simultaneous representations of G1, . . . Gk. Hence, the problem SimRep(Perm) is in NP.
To show the NP-completeness, we reduce the problem TotalOrdering, which is known to
be NP-complete [Opa79], to SimRep(Perm). TotalOrdering is defined as follows: Given
a finite set S and a finite set T of triples of elements in S, decide whether there exists a total
ordering < of S such that for all triples (x, y, z) ∈ T either x < y < z or x > y > z. Let
HT be an instance of TotalOrdering with s = |S| and t = |T |. Furthermore we number
the triples in T with 1, . . . , t and denote the i− th triple by (xi, yi, zi). We construct an
instance HS of SimRep(Perm), consisting of undirected graphs G0, G1, . . . , Gt as follows:

• G0 := (S,E0) is the complete graph with one vertex for each element in S.
• Gi := (Vi, Ei) for 1 ≤ i ≤ t are the graphs with Vi = {xi, yi, zi, ai, bi}, Ei =
{xiai, xiyi, xizi, yizi, zibi} with ai, bi /∈ S (see Figure 5.2)

Example 5.11. Consider the TotalOrdering instance T = {(1, 3, 5), (5, 4, 2)} with
S := {1, 2, 3, 4, 5}. Then the corresponding SimRep(Perm) instance contains the following
three permutation graphs:

1

2

3 4

5

G0

a1

b1

1

5
3

G1

a2

b2

5

2
4

G2

35

5. Permutation graphs

ai

bi

xi

zi
yi

Figure 5.2: The graph Gi corresponding to the i−th triple (xi, yi, zi) of a TotalOrdering
instance

Since G0 is a complete graph, it is a permutation graph. For every 1 ≤ i ≤ t, we
have exactly two transitive orientations of Gi, namely {−−→xiai,−−→xiyi,−−→xizi,−−→yizi,

−→
bizi} and its

reversal. Since the complement graph Gi is isomorphic to Gi (only the labels of the vertices
have switched), the complement of every Gi is a comparability graph as well and hence
G1, . . . , Gt are permutation graphs. We now have to show that HT has a solution if and
only if G0, G1, . . . , Gt are simultaneous permutation graphs.

First, assume that G0, . . . , Gt are simultaneous permutation graphs. Then we know that
these graphs are simultaneous comparability and simultaneous co-comparability graphs.
Hence there exist orientations T0, . . . , Tt and R0, . . . , Rt such that for every 0 ≤ i ≤ t, Ti
is an orientation of Gi and Ri is an orientation of Gi with the following property: For
every j, k ∈ {0, . . . t} every edge in Ej ∩ Ek is oriented in the same way in both Tj and
Tk and every edge in Ej ∩ Ek is oriented in the same way in both Rj and Rk. Then the
orientation of the complete graph G0 implies a total order on the elements of T , where
u < v if and only if the edge uv is oriented from u to v. By construction, there are only
two valid transitive orientations for Gi. The one given above implies xi < yi < zi and for
the reverse orientation we get zi < yi < xi. Hence the received total order satisfies that for
every triple (x, y, z) ∈ T we have either x < y < z or x > y > z.

Now assume that HT has a solution. Then there exists a total order < such that for all
triples (x, y, z) ∈ T either x < y < z or x > y > z holds. We get a transitive orientation Ri
of Gi for 1 ≤ i ≤ t if we orient all edges between the vertices xi, yi and zi towards the greater
element according to the order "<". If xi is the smallest element of the triple, then we choose
−−→xiai and

−→
bizi, else zi is the smallest element and we choose −−→aixi and

−→
zibi. Finally, we orient

the edges in G0 also towards the pairwise greater element according to "<". This gives
us orientations T0, . . . , Tt of G0, . . . , Gt, with the property that for every j, k ∈ {0, . . . t}
every edge in Ej ∩ Ek is oriented in the same way in both Tj and Tk. Hence G0, . . . , Gt
are simultaneous comparability graphs. Furthermore, E0 = ∅ and for every 1 ≤ i ≤ t for
every edge uv ∈ Ei at least one of the endpoints u and v is in {ai, bi}. Hence, G0, . . . , Gt
pairwise do not share any edges and thus they are also simultaneous comparability graphs.
Now Lemma 5.7 implies that G0, . . . , Gt are simultaneous permutation graphs.

Hence the instance HT of TotalOrdering has a solution if and only if the instance HS

of SimRep(Perm) is simultaneous and thus SimRep(Perm) is NP-complete.

36

6. Circular permutation graphs

In this chapter we give efficient algorithms for solving the partial representation problem
and the simultaneous representation problem for circular permutation graphs.

6.1 Extending Partial Representations
The partial representation problem for circular permutation graphs deals with the question
whether it is possible to extend a given circular permutation diagram D′, of a subgraph
H of a circular permutation diagram G = (V,E) to a representation D of the entire
graph G. In this section we show that RepExt(CPerm) can be solved via a reduction to
RepExt(Perm).

Lemma 6.1. Let G be a permutation graph with an isolated vertex v and let Cp be a
circular permutation diagram representing an induced subgraph H of G containing vertex
v. Let Dp be the linear permutation diagram we receive by opening Cp along the chord v̄
corresponding to vertex v which does not intersect any other chord in Cp. Then Cp can
be extended to a circular permutation diagram C representing the entire graph G such
that C and Cp are isomorphic on the vertices of H if and only if Dp can be extended to a
permutation diagram D representing the entire graph G such that D and Dp are isomorphic
on the vertices of H.

Proof. Assume that Cp can be extended to a circular permutation diagram C representing
the entire graph G such that C and Cp are isomorphic on the vertices of H. Then chord v̄
does not intersect any other chord in C and thus we can open C along v̄ and receive a linear
permutation diagram representing G. Since C and Cp are isomorphic on the vertices of H,
the same holds for D and Dp, hence D is an extension of Dp with the desired properties.

Now assume that Dp can be extended to a permutation diagram D representing the entire
graph G such that D and Dp are isomorphic on the vertices of H. Analogously to the
other direction we receive an extension of Cp with the desired properties by transforming
D into a circular permutation diagram C.

Lemma 6.2. Let G be a circular permutation graph and let Cp be a circular permutation
diagram representing an induced subgraph H of G. Let v be a vertex in H and let G′ denote
the graph we receive from G by switching all neighbours of v. Furthermore let C ′p be the

37

6. Circular permutation graphs

circular permutation diagram representing the subgraph of G′ induced by the vertices in H
which we receive by switching all chords corresponding to neighbours of v in Cp. Then Cp
can be extended to a circular permutation diagram C representing the entire graph G such
that C and Cp are isomorphic on the vertices of H if and only if C ′p can be extended to a
circular permutation diagram C ′ representing the entire graph G′ such that C ′ and C ′p are
isomorphic on the vertices of H.

Proof. Assume that Cp can be extended to a circular permutation diagram C representing
the entire graph G such that C and Cp are isomorphic on the vertices of H. Let C ′ be the
circular permutation diagram we obtain by switching all chords corresponding to neighbours
of v in C. Then C ′ represents G′. Note that the switch-operation does not change the
order of the vertices along the inner and the outer circle of a circular permutation diagram
and in both C ′ and C ′p the chords corresponding to vertices not adjacent to v are bent in
the same direction as in Cp, while the chords corresponding to vertices not adjacent to v
are bent in the opposite direction. Hence C ′ and C ′p are isomorphic on the vertices in H.
Since the switch-operation is self-inverse, the other direction follows analogously.

Corollary 6.3. The problem REPEXT(CPerm) can be solved in O(n + m) time for
circular permutation graphs with n vertices and m edges.

Proof. Given a circular permutation graph G and a corresponding partial representation
Cp containing vertex v, we obtain a partial representation C ′p of G′ by switching chord x
for all x that are adjacent to v in G, one at a time in an arbitrary order. Note that by
Lemma 6.2 Cp is extendible if and only if C ′p is extendible. By definition of the switch
operation, vertex v is isolated in G′ and hence the chord v does not intersect any other
chord of C ′p. Thus we can open C ′p along the chord v, which means that we receive a linear
permutation diagram D′p, where the vertices of the inner circle of C ′p are distributed along
the upper and the vertices of the outer circle along the lower line. The leftmost vertex along
both horizontal lines is v, followed by the remaining vertices according to their counter
clockwise order in C ′p. By Lemma 6.1 C ′p is extendible if and only if D′p is extendible. Since
G′ is a permutation graph and D′p is the corresponding partial permutation diagram, if
existent, we get a representation D′ of the entire graph G′ by applying the algorithm to
solve RepExt(Perm) presented in Section 5.1. Now, we can transform D′ back into a
circular permutation diagram C ′. Finally, to obtain a circular permutation diagram C of
G extending Cp, we have to switch all the chords in C ′, belonging to vertices that v is
adjacent to in G.

By Theorem 5.6, RepExt(Perm) can be solved in O(n+m) time for permutation graphs
with n vertices and m edges. For solving RepExt(CPerm), additionally we need to switch
the chords belonging to the vertices in the neighbourhood of vertex v twice, which can be
done in constant time [Sri96], and transform a circular permutation diagram into a linear
permutation diagram and the other way round, which can be done in linear time. Hence in
total, we need O(n+m) time to solve RepExt(CPerm).

Example 6.4. This Example shall illustrate the described reduction of RepExt(CPerm)
to RepExt(Perm). Consider the following graph G and the subgraph H induced by the
blue vertices 1, 2 and 4.

38

6.1. Extending Partial Representations

1

2

3 4

5

Given the following circular permutation diagram Cp representing H we want to examine
whether Cp can be extended to a circular permutation diagram C representing the entire
graph G such that C is isomorphic to Cp on the vertices of the subgraph H.

1

1

2 4

24

Let G′ be the following permutation graph which we receive by switching all neighbours of
vertex 1 in G, namely 2 and 5 one at a time. The blue subgraph induced by the vertices of
H we denote by H ′.

1

2

3 4

5

We get a circular permutation diagram C ′p representing H ′ by switching all chords in Cp
corresponding to vertices adjacent to 1 in H, which is in our case only vertex 2.

1

1

2 4

24

Then Cp can be extended to a circular permutation diagram C representing G with the
desired properties if and only if C ′p can be extended to a circular permutation diagram
C ′ representing G′ such that C ′ is isomorphic to C ′p on the vertices of the subgraph
H ′. To receive such a circular permutation diagram C ′ we first open C ′p along the chord
corresponding to vertex 1 and thus receive a linear permutation diagram D′p representing
H ′.

1 4 2

1 2 4

39

6. Circular permutation graphs

By applying the algorithm from Section 5.1 we receive a permutation diagram D′ representing
G′ that is isomorphic to D′p on the subgraph H.

1 3 4

1 3 2

5 2

4 5

Now by transforming D′ back into a circular permutation diagram we receive the circular
permutation diagram C ′ representing G′ such that C ′ and C ′p are isomorphic on the vertices
of H.

1

1
3
2 4

5

2

54

3

Hence Cp is extendible to a circular permutation diagram C with the desired properties and
we get C by switching all chord in C ′ corresponding to vertices adjacent to 1 in G, namely
2 and 5.

1

1
3

2 4
5

2

54

3

6.2 The Simultaneous Representation Problem

The simultaneous representation problem for r-sunflower circular permutation graphs
G1, G2, . . . , Gr sharing an induced subgraph H deals with the question whether there exist
circular permutation diagrams C1, C2, . . . , Cr such that Ci represents Gi for every 1 ≤ i ≤ r
and all Cis are isomorphic on the shared vertices of H. This means that the order in
which the vertices of H appear along the inner and the outer circle respectively is the
same for every Ci and the chord v̄ corresponding to v is bent in the same direction in
every Ci. In this section we show that SimRep(CPerm) can be solved via a reduction to
SimRep(Perm).

Lemma 6.5. Let G1, G2, . . . , Gr be r-sunflower circular permutation graphs sharing an
induced subgraph H. Let v be a vertex in H and let G′i be the graph we receive by switching
all neighbours of vertex v in Gi for i ∈ {1, . . . , r}. Then G1, G2, . . . , Gr are simultaneous
circular permutation graphs if and only if G′1, G′2, . . . , G′r are simultaneous permutation
graphs.

40

6.2. The Simultaneous Representation Problem

Proof. We already know that G′1, G′2, . . . , G′r are indeed permutation graphs. Now assume
that G1, G2, . . . , Gr are simultaneous circular permutation graphs. Then there exist circular
permutation diagrams C1, C2, . . . , Cr such that for every 1 ≤ i ≤ r, Ci represents Gi and
all Cis are isomorphic on the shared subgraph H. We get a circular permutation diagram
C ′i representing Gi by switching all chords corresponding to neighbours of vertex v in Ci.
Since the order of the vertices along the inner and outer circle is not affected by the switch-
operation we know that over all C ′is the order in which the vertices of H appear along
the outer and the inner circle respectively is the same. We also know that the bending
direction of every chord corresponding to a vertex in H is the same in all C ′is since the
bending direction of chords corresponding to neighbours of v in H is changed in all C ′is.
Chords corresponding to vertices not adjacent to v in H are not switched. Recall that
after switching all neighbours of chord v̄ in a circular permutation diagram no chord is
intersecting v̄ any more and hence we receive a permutation diagram D′i representing
G′i by opening C ′i along the chord v̄. Then the D′is are also isomorphic on H and hence
G′1, G

′
2, . . . , G

′
r are simultaneous permutation graphs.

For the other direction assume that G′1, G′2, . . . , G′r are simultaneous permutation graphs.
Then there exist permutation graphs D′1, D′2, . . . , D′r such that for every 1 ∈ {1, . . . , r}, D′i
represents G′i and all D′is are isomorphic on the shared subgraph H. Recall that we can
transform every linear permutation diagram D′i into a circular permutation diagram C ′i
representing G′i. Note that the C ′is are also the same on H. Now we receive a circular
permutation diagram Ci representing Gi by switching all chords that correspond to vertices
adjacent to v. Analogously to the other direction the Cis are still isomorphic on H since
the switch operation does not change the order of the vertices along the outer or the inner
circle of a circular permutation diagram and chords corresponding to vertices in H are
either switched in every Ci or in none of them.

Corollary 6.6. The problem SimRep(CPerm) can be solved in O(n2) time for r-sunflower
circular permutation graphs G1 = (V1, E1), G2 = (V2, E2), . . . , Gr = (Vr, Er), where n =∑r

i=1 |Vi|.

Proof. Let v be a vertex in H and let G′i be the graph we receive by switching all
neighbours of vertex v in Gi for i ∈ {1, . . . , r}. By Lemma 6.5 to solve SimRep(CPerm)
for G1, G2, . . . , Gr it suffices to solve SimRep(Perm) for G′1, G′2, . . . , G′r. In Section 5.2.1
we have seen that SimRep(perm) can be solved in O(n2) time for r-sunflower permutation
graphs G′1 = (V1, E

′
1), G′2 = (V2, E

′
2), . . . , G′r = (Vr, E′r) where n = ∑r

i=1 |Vi|. As described
in the proof of Lemma 6.5, if G1, G2, . . . , Gr are simultaneous circular permutation graphs
we get corresponding simultaneous representation by transforming simultaneous linear
permutation diagrams representing G′1, G′2, . . . , G′r into circular permutation diagrams and
switching all chords corresponding to a neighbour of vertex v in H. Since this can be done
in quadratic time and for every Gi we can compute G′i in O(n2) time, in total we also need
O(n2) time to solve SimRep(CPerm) for G1, G2, . . . , Gr.

41

7. Conclusion

In this thesis we examined two already well-studied problems, namely the partial represen-
tation problem and the simultaneous representation problem, for the three graph classes of
comparability, permutation and circular permutation graphs respectively. The problem
whether a given partial orientation of a comparability graph can be extended to transitive
orientation of the entire graph has already been shown to be solvable in O((n+m)∆) time
for comparability graphs with n nodes, m edges and maximum degree ∆ [KKKW12]. The
best know runtime so far to decide whether a given permutation diagram D′ representing a
subgraph of a permutation graph can be extended to a permutation diagram D representing
the entire graph was O(n3) [KKKW12]. We presented O(n+m) algorithm based on the
concept of modular decomposition for both problems and showed that even the partial
representation problem for circular permutation graphs that has not been studied so far, is
solvable in O(n+m) time.

Jampani and Lubiw showed that we can decide in O(nm) time whether for given r-
sunflower comparability graphs sharing an induced subgraph H there exist representations
that are all isomorphic on H [JL10]. To solve the simultaneous representation problem
for permutation graphs they gave an O(n3) algorithm [JL10]. Again with the concept of
modular decomposition we were able to show that the simultaneous representation for
comparability graphs can be solved in O(n+m) time for r-sunflower comparability graphs
where n is the sum of the number of vertices of every input graph. Based on this result we
gave O(n2) algorithms to solve the simultaneous representation problem for r-sunflower
permutation and circular permutation graphs, where n is the sum of the number of vertices
of every input graph. For the non-sunflower case we showed that it is an NP-complete
problem to decide whether for r permutation graphs there exist representations that are
all pairwise isomorphic on the pairwise shared subgraph.

It remains an open problem whether the simultaneous representation problem for r-
sunflower permutation and circular permutation graphs can be solved in less than quadratic
time. Furthermore it would be interesting to examine whether we can solve the partial
representation and the simultaneous representation problem with the concept of modular
decomposition also for other graph classes and thereby maybe achieve better runtimes
than the ones known so far. There may be also other related problems that can be solved
for comparability, permutation and circular permutation graphs with the concept of the
modular decomposition.

43

Bibliography

[APT79] Bengt Aspvall, Michael F Plass, and Robert Endre Tarjan. A linear-time algo-
rithm for testing the truth of certain quantified boolean formulas. Information
Processing Letters, 8(3):121–123, 1979.

[BL76] Kellogg S Booth and George S Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using pq-tree algorithms. Journal of
computer and system sciences, 13(3):335–379, 1976.

[Boo75] Kellogg Speed Booth. PQ-tree algorithms. PhD thesis, University of California,
Berkeley, 1975.

[BR15] Thomas Bläsius and Ignaz Rutter. Simultaneous pq-ordering with applications
to constrained embedding problems. ACM Transactions on Algorithms (TALG),
12(2):1–46, 2015.

[EPL72] Shimon Even, Amir Pnueli, and Abraham Lempel. Permutation graphs and
transitive graphs. Journal of the ACM (JACM), 19(3):400–410, 1972.

[Gal67] Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae
Scientiarum Hungarica, 18(1-2):25–66, 1967.

[Gol04] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier,
2004.

[GT85] Harold N Gabow and Robert Endre Tarjan. A linear-time algorithm for a
special case of disjoint set union. Journal of computer and system sciences,
30(2):209–221, 1985.

[HP10] Michel Habib and Christophe Paul. A survey of the algorithmic aspects of
modular decomposition. Computer Science Review, 4(1):41–59, 2010.

[JL10] Krishnam Raju Jampani and Anna Lubiw. Simultaneous interval graphs. In
International Symposium on Algorithms and Computation, pages 206–217.
Springer, 2010.

[Kah62] Arthur B Kahn. Topological sorting of large networks. Communications of
the ACM, 5(11):558–562, 1962.

[KKKW12] Pavel Klavík, Jan Kratochvíl, Tomasz Krawczyk, and Bartosz Walczak. Ex-
tending partial representations of function graphs and permutation graphs. In
European Symposium on Algorithms, pages 671–682. Springer, 2012.

[KKOS15] Pavel Klavík, Jan Kratochvíl, Yota Otachi, and Toshiki Saitoh. Extending
partial representations of subclasses of chordal graphs. Theoretical Computer
Science, 576:85–101, 2015.

[KKV11] Pavel Klavík, Jan Kratochvíl, and Tomáš Vyskočil. Extending partial rep-
resentations of interval graphs. In International Conference on Theory and
Applications of Models of Computation, pages 276–285. Springer, 2011.

45

Bibliography

[Mon03] Fabien de Montgolfier. Décomposition modulaire des graphes: théorie, exten-
sions et algorithmes. PhD thesis, Montpellier 2, 2003.

[MS99] Ross M McConnell and Jeremy P Spinrad. Modular decomposition and
transitive orientation. Discrete Mathematics, 201(1-3):189–241, 1999.

[Opa79] Jaroslav Opatrny. Total ordering problem. SIAM Journal on Computing,
8(1):111–114, 1979.

[PLE71] Amir Pnueli, Abraham Lempel, and Shimon Even. Transitive orientation
of graphs and identification of permutation graphs. Canadian Journal of
Mathematics, 23(1):160–175, 1971.

[RU82] Doron Rotem and Jorge Urrutia. Circular permutation graphs. Networks,
12(4):429–437, 1982.

[Sri96] R Sritharan. A linear time algorithm to recognize circular permutation graphs.
Networks: An International Journal, 27(3):171–174, 1996.

[Tar79] Robert Endre Tarjan. Applications of path compression on balanced trees.
Journal of the ACM (JACM), 26(4):690–715, 1979.

46

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Comparability Graphs
	2.2 Permutation and Circular Permutation Graphs
	2.3 Partial and Simultaneous Representations
	2.4 Modular Decomposition
	2.5 PQ-trees

	3 Related Work
	3.1 Extending Partial Representations of Comparability and Permutation Graphs
	3.2 Solving the Simultaneous Representation Problem for Comparability and Permutation Graphs

	4 Comparability graphs
	4.1 Extending Partial Representations
	4.2 The Simultaneous Representation Problem

	5 Permutation graphs
	5.1 Extending Partial Representations
	5.2 The Simultaneous Representation Problem
	5.2.1 Simultaneous Representations for Sunflower Permutation Graphs
	5.2.2 Simultaneous Representations for general Permutation Graphs

	6 Circular permutation graphs
	6.1 Extending Partial Representations
	6.2 The Simultaneous Representation Problem

	7 Conclusion
	Bibliography

