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Abstract

We consider the problem of packing 2-dimensional rectangles in a container of fixed,
integer width, such that no two rectangles overlap, while minimizing the height of the
solution. The problem is NP-hard in the strong sense, as shown in this thesis. It finds
applications in cutting and packing. Furthermore, we examine a relaxation of the
former problem, where we are allowed to cut placed rectangles into unit squares and
move those squares along the y-axis, as long as we keep rectangles from overlapping.
We examine the relation of both problems, with the main focus being the equivalence
of both problems. In particular we show the equivalence for the case, where all
rectangles have a width of at most 2 and the case, where all rectangle have a height
of 1. Furthermore, we propose a counterexample for the general case, where all
rectangle heights and widths are at most 3.

Deutsche Zusammenfassung

Wir beschäftigen uns mit dem überschneidungsfreien Packen von Rechtecken in einem
Behälter von fester ganzzahliger Breite und unbegrenzter Höhe, unter Minimierung
der Höhe. Das Problem ist stark NP-schwer, wie in dieser Arbeit gezeigt wird, und
findet Anwendungen in Packen und Zuschnitt. Neben diesem Packungs Problem
betrachten wir eine Relaxierung des Problems, die es erlaubt, platzierte Rechtecke in
Einheitsquadrate zu zerschneiden und diese entlang der y-Achse zu bewegen, solange
dadurch keine Überschneidungen entstehen. Wir untersuchen den Zusammenhang
beider Probleme, wobei der Hauptfokus auf der Äquivalenz der Probleme liegt.
Insbesondere zeigen wir die Äquivalenz für den Fall, in dem die Breiten der Rechtecke
kleiner gleich 2 sind und den Fall, in dem die Höhen der Rechtecke gleich 1 sind.
Neben den Äquivalenzfällen geben wir auch ein Gegenbeispiel für den allgemeinen
Fall, wobei wir nur Rechtecke mit Breite und Höhe kleiner gleich 3 verwenden.
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1. Introduction

We consider the problem of orthogonally packing 2-dimensional rectangles of integer height
and width, into a container of fixed, integer width, with the goal of minimizing the
required height. We refer to this problem as Box Problem. The Box Problem is known
to be NP-hard in the strong sense [MMV03]. Applications of the Box Problem include,
packing of containers, vehicles and pallets. Further applications include the cutting of
stock material such as textile, paper, leather and metal. It is also known as Strip-Packing
Problem [MMV03], [Ste97]. However unlike some variations of Strip Packing, we do not
allow any rotation. Other problems that are related to the Box Problem include Bin
Packing (cf. [dC99], [MV98], [PS05]), Cutting Stock Problem [KR00] and the Knapsack
Problem [MPT00]. Dyckhoff [Dyc90] provides an overview of similarities, differences and
applications of the aforementioned problems, as well as other related problems.

Furthermore, we consider a relaxation of the Box Problem. The relaxation allows us to cut
rectangles into unit squares, however these squares may only have the same x-coordinates,
as they would, if they were placed as a whole rectangle (cf. Figure 1.1). We can think
of this problem, as a variant of the Box Problem, where overhanging rectangle parts fall
downwards (cf. Figure 1.2). This reduces our solutions from a 2-dimensional (x, y) mapping
for rectangles to a 1-dimensional x mapping for each rectangle. We refer to this relaxation
as Cutting Problem.

The Cutting Problem can be considered as a resource scheduling problem, where the goal
is to minimize the required resources. For this we consider the container width as the
available time, the rectangles as tasks, where the rectangle width is the duration of the
task, and the rectangle height is the amount of required resources. In this form the problem
finds applications in electricity consumption scheduling (see [LBBR15]).
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Figure 1.1: An example of the different ways we can cut rectangles. Of course we are
neither limited to a single type of cut, nor limited to single spaces between the
rectangles.
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1. Introduction

i+ 1
i i+ 2

i+ 1
i i+ 2

Figure 1.2: We can also imagine the cutting of rectangles as rectangle parts falling
downwards.

We examine the relation of the Cutting Problem and the Box Problem, since the Cutting
Problem is a relaxation of the Box Problem it will provide us with a lower bound for the Box
Problem. Furthermore, the Cutting Problem is likely to be easier than the Box Problem,
as solutions are only 1-dimensional as opposed to the 2-dimensional solution in the Box
Problem. Therefore, the equivalence, in relation to the minimal height of placements, is
highly desirable. As such we aim to either show such an equivalence or to find examples
where the minimal height of both problems differs.

During our search for equivalences and counterexamples we examine bounding properties
and geometric properties, as well as the computational complexity of both problems.
Furthermore, we examine the equivalence of both problems for cases where height or width
are limited. In particular, we show the equivalence for the case rectangle height at most 1
and the equivalence for the case rectangle width at most 2. For the latter case we consider
two approaches, first a bounding approach and secondly a construction approach. The
bounding approach seeks to show equivalence through lower and upper bounds, whereas
the construction approach seeks to create an equivalent solution in the Box Problem, based
on an optimal solution in the Cutting Problem. Additionally, we propose a counterexample,
for the general case, where at least one rectangle dimension is 1 and heights and widths
are at most 3. Lastly since we found the two problems to be not equivalent we aim to use
the Cutting Problem, to approximate the Box Problem. For this, we propose an algorithm,
that transforms a placement in the Cutting Problem into a feasible placement in the Box
Problem, by moving overlapping rectangles upwards.
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2. Preliminaries

In this chapter we introduce the problems that we examine. Furthermore, we introduce
some important definitions which we will use throughout the thesis.

Definition 2.1. We consider rectangles r1, ..., rn to be abstract objects. In order to define
rectangle height and width we use functions h : {r1, ...rn} → N for the height of the rectangle
r and w : {r1, ..., rn} → N for the rectangle width of the rectangle r, where r ∈ {r1, .., rn}.

For the sake of convenience and readability we use (a, b), to refer to a rectangle r, where
w(r) = a and h(r) = b.

We consider the bottom left corner of the container to be 0 in both x- and y-coordinates.
Since rectangles have at least width 1, the rightmost coordinate is B − 1, in a container of
width B. Similarly we consider a rectangle’s position to be the position of its lower left
corner.

Furthermore, we consider boxes to be axis-aligned rectangles which have been assigned x-
and y-coordinates. As with rectangles we use the functions h and w for height and width
respectively. In order to identify the position of a box we use the functions x : {r1, .., rn} →
N0 and y : {r1, ..., rn} → N0 for x- and y-coordinates respectively.

The Box Problem is the problem of packing 2 dimensional rectangles of integer height and
width into a container of fixed, integer width and virtually infinite height, such that no
rectangle overlaps with another rectangle, and the height is minimal. However unlike some
other variations of rectangle packing, we are not allowed to rotate rectangles. Furthermore
we only allow integer dimensions for the rectangles and integer sized containers.

Definition 2.2. Let R be a set of rectangles, B ∈ N, h : R → N and w : R → N, then
(B, R, w, h) is a problem instance of Cutting and Box Problem.

Definition 2.3. Let (B, R, w, h) be a problem instance, then (B, R, w, h, x) is a placement
in the Cutting Problem, where x : R→ {0, ..., B − 1}. and (B, R, w, h, x, y) is a placement
in the Box Problem, where x : R→ {0, ..., B − 1} and y : R→ N0.

3



2. Preliminaries

Definition 2.4. A placement in the Box Problem (B, R, w, h, x, y) is feasible, if and only
if, there exists a placement given by functions (x, y) such that x : R → {0, ..., B − 1},
y : R→ N0 and ∀i, j ∈ R with i 6= j:

(x(i) + w(i) ≤ x(j)
∨ x(j) + w(j) ≤ x(i)
∨ y(i) + h(i) ≤ y(j)
∨ y(i) + h(i) ≤ y(i))
∧ 0 ≤ x(i) ≤ x(i) + w(i) ≤ B.

The height of such a placement HBOX(B, R, w, h, x, y) is max
{
y(a) + h(a) | a ∈ R}.

In other words a placement is feasible in the Box Problem, if and only if, the placement is
free of overlaps and all rectangles stay within the bounds of the container.

Definition 2.5. A placement in the Cutting Problem (B, R, w, h, x) is feasible, if and only
if, there is a function x, such that for all i,∈ R:

0 ≤ x(i) ≤ x(i) + w(i) ≤ B,

The height of such a placement HCUT (B, R, w, h, x) is

max
{∑

k∈A

h(k) | i ∈ {0, ..., B − 1}, A = {j ∈ R | x(j) ≤ i < x(j) + w(j)}
}
.

The Cutting Problem is essentially a variant of the Box Problem, where we are allowed to
cut a box b into unit sized boxes s1, ..., sh(b) with x(b) = x(s1), ..., x(sh(b))

The term optimal placement refers to a placement, which is minimal, meaning that no
other placement with lower height exists.

Definition 2.6. Let (B, R, w, h, x) be a placement in the Cutting Problem then

(B, R, w, h, x) is optimal, if and only if

∀x′ ∈ {a | (B, R, w, h, a) is feasible in the Cutting Problem}
: HCUT (B, R, w, h, x) ≤ HCUT (B, R, w, h, x′).

Let (B, R, w, h, x, y) be a placement in the Box Problem then (B, R, w, h, x, y) is optimal,
if and only if

∀(x′, y′) ∈ {(a, b) | (B, R, w, h, a, b) is feasible in the Box Problem}
: HBOX(B, R, w, h, x, y) ≤ HBOX(B, R, w, h, x′, y′).

The function OPTBOX(B, R, w, h) maps a container width B and a set of rectangles R,
with functions h, w for height and width respectively, to the height of the optimal solution
in the Box Problem.

The function OPTCUT(B, R, w, h) maps a container width B and a set of rectangles R,
with functions h, w for height and width respectively, to the height of the optimal solution
in the Cutting Problem.

We consider two placements x for the Cutting Problem and (x, y) for the Box Problem, to
be equivalent if and only if their heights are equal.
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Definition 2.7. Let (B, R, w, h, x) and (B, R, w, h, x′) be placements in the Cutting Prob-
lem, then the placements are equivalent, if and only if

HCUT (B, R, w, h, x) = HCUT (B, R, w, h, x′).

Let (B, R, w, h, x, y) and (B, R, w, h, x′, y′) be placements in the Box Problem, then the
placements are equivalent, if and only if

HBOX(B, R, w, h, x, y) = HBOX(B, R, w, h, x′, y′)

Let (B, R, w, h, y) be a placement in the Box Problem and B(B, R, w, h, x′) a placement in
the Cutting Problem, then the two placements are equivalent, if and only if,

HBOX(B, R, w, h, x, y) = HCUT (B, R, w, h, x′).

5





3. Properties of Cutting and Box
Problem

In this chapter we examine properties of both Cutting and Box Problem. The chapter is
further divided into section which group the properties into categories. The first section
deals with properties, in relation to upper and lower bounds, while the second section deals
with properties, in relation to increasing the number of rectangles or the available container
width. The third section proposes that certain rectangles have even further properties.
Lastly section 4 examines the computational complexity of the Cutting Problem.

3.1 Bounding Cutting Problem and Box Problem
While lower bounds hold true for any and all solutions in both Cutting and Box Problem,
upper bounds do not necessarily hold true for all solutions. In particular an upper bound
only has to hold true for the optimal solutions. This means we can use the height of any
existing solution as an upper bound for the corresponding problem.

Proposition 3.1. Let (B, R, w, h) be a problem instance, (B, R, w, h, x) a placement in the
Cutting Problem and (B, R, w, h, x, y) a placement in the Box Problem, then x is a feasible
placement in the Cutting Problem, if (x, y) is a feasible placement in the Box Problem and
HCUT (B, R, w, h, x) ≤ HBOX(B, R, w, h, x, y).

Proof. If we compare the definitions of Box Problem (Definition 2.4) and Cutting Problem
(Definition 2.5), we can see that the set of requirements for feasibility in the Cutting
Problem is a subset of those in the Box Problem. Furthermore, (B, R, w, h, x, y) is an
orthogonal placement, therefore the height at every coordinate is at least the sum of
rectangles, hence

HBOX(B, R, w, h, x, y)
≥ max{

∑
k∈A

h(k) | i ∈ {0, ..., B − 1}, A = {r ∈ R | x(r) ≤ i < x(r) + w(r)}}

= HCUT (B, R, w, h, x).

Corollary 3.2. Let (B, R, w, h) be a problem instance, then

OPTCUT(B, R, w, h) ≤ OPTBOX(B, R, w, h)

7



3. Properties of Cutting and Box Problem

Proof. Follows readily from Proposition 3.1.

A basic lower bound for the Cutting Problem is given by the total surface area of all
rectangles, in the given rectangle set.

Lemma 3.3. Let (B, R, w, h) be a problem instance and R = {r1, ..., rk}, then:

OPTCUT(B, R, w, h) ≥ d
k∑

i=1

w(ri) · h(ri)
B

e

Proof. Let (B, R, w, h) be a problem instance and R = {r1, ..., rk}, then the combined
surface area of all rectangles is:

A :=
k∑

i=1
w(ri) · h(ri).

Now if we distribute this surface area evenly over the width B, we end up with height
A/B. Since we are dealing with integer rectangle dimensions we have to round towards
the larger integer, as such we end up with height dA/Be, which is the height of the
smallest bounding box in which we can pack A unit size squares. This means there
will be at least one position in the Cutting Problem with height H ≥ dA/Be. Thus,
OPTCUT(B, R, w, h) ≥ H ≥ dA/Be = d

∑k
i=1

w(ri)·h(ri)
B e.

Another basic lower bound is given by the height of the tallest rectangle.

Proposition 3.4. Let (B, R, w, h) be a problem instance and r ∈ {a ∈ R | h(a) =
max{h(b) | b ∈ R}}, then

OPTCUT(B, R, w, h) ≥ h(r)

Proof. Consider a feasible solution in the Cutting Problem, then there is at least one
x-coordinate where r is active, namely x(r). Therefore, there is at least one x-coordinate
which has at least height h(r) and thus OPTCUT(B, R, w, h) ≥ h(r).

Now we can easily combine the two lower bounds, by using the maximum of both bounds
as a new lower bound.

Corollary 3.5. Let (B, R, w, h) a problem instance, then

OPTCUT(B, R, w, h) ≥ max
(⌈

k∑
i=1

w(ri) · h(ri)
B

⌉
, H

)
,

where H = max{h(k) | k ∈ R}.

Proof. Follows readily, by combining the bounds from Lemma 3.3 and Proposition 3.4.

We can create an upper bound for the Box Problem, by constructing a feasible placement.
In particular a placement which is always possible, if the instance is not infeasible, is
stacking rectangles on top of each other.

Corollary 3.6. Let (B, R, w, h) be a problem instance and R = {r1, ..., rn}, then

OPTBOX(B, R, w, h) ≤
n∑

k=1
h(rk)

8



3.1. Bounding Cutting Problem and Box Problem

Proof. We can create such a placement, by placing rectangles on top of each other at
x-coordinate 0, starting from r1. This means the y-coordinate for the rectangle ri is y(ri) =∑i−1

k=1 h(rk), where i ∈ {1, ..., n}. Therefore, no rectangles overlap and thus we have a feasible
placement in the Box Problem, with height

∑n
k=1 h(rk). Hence, OPTBOX(B, R, w, h) ≤∑n

k=1 h(rk).

We can create another upper bound, by expanding every rectangle, to the largest height
and width, found in the rectangle set. This leaves us with a single rectangle type, which
makes creating bounds much easier.

Lemma 3.7. Let (B, R, w, h) a problem instance, then

OPTBOX(B, R, w, h) ≤ hmax ·
⌈

wmax · |R|
B − (B mod wmax)

⌉
,

where hmax = max{h(a) | a ∈ R} and wmax = max{w(a) | a ∈ R}.

Proof. Let w′(r) = wmax and height h′(r) = hmax for all r ∈ R, then

OPTBOX(B, R, w, h) ≤ OPTBOX(B, R, w′, h′),

as all rectangles in R have at most width wmax and at most height hmax. Furthermore,
OPTBOX(B, R, w, h) ≤ OPTBOX(B − (B mod wmax), R, w, h) and thus

OPTBOX(B, R, w, h) ≤ OPTBOX(B − (B mod wmax), R, w, h).

Now if we have (B, R, w′, h′) as our problem instance, then we can construct a solution in the
Box Problem, by stacking the rectangles from left to right from bottom to top. This means
we end up with height hmax · d |R|

B′/wmax
e = hmax · dwmax·|R|

B′ e = hmax · d wmax·|R|
B−(B mod wmax)e.

Now, since this is a feasible solution it follows that OPTBOX(B′, R, w′, h′) ≤ hmax ·
d wmax·|R|

B−(B mod wmax)e and therefore

OPTBOX(B, R, w, h) ≤ OPTBOX(B′, R, w′, h′) ≤ hmax · d
wmax · |R|

B − (B mod wmax)e.

We can also construct a packing for the Box Problem, by separating the individual rectangle
types and combining the placements, for the individual rectangle types, through stacking.

Lemma 3.8. Let (B, R, w, h) a problem instance, then OPTBOX(B, R, w, h) ≤
∑

(a,b)∈A b ·
d a·c(a,b)

B−(B mod a)e, where A = {(w(k), h(k)) | k ∈ R} and c(a,b) = |{k ∈ R | w(k) = a, h(k) =
b}|.

Proof. Consider the subset R(a,b) = {k ∈ R | w(k) = a, h(k) = b} and

H(a,b) = bd a·|R(a,b)|
B−(B mod a)e, where (a, b) ∈ A, then from Lemma 3.7 it follows, that

OPTBOX(B, R(a,b), h, w) ≤ bd
a · |R(a,b)|

B − (B mod a)e = H(a,b).

Now we can combine these placements by stacking them on top of each other. Since
the rectangles sets R(a,b) are disjoint and cover R, we end up with a placement for the
complete set R, which has a height of

∑
(a,b)∈A H(a,b) and thus OPTBOX(B, R, w, h) ≤∑

(a,b)∈A H(a,b) =
∑

(a,b)∈A bd a·|R(a,b)|
B−(B mod a)e.

9



3. Properties of Cutting and Box Problem

3.2 Further properties of Cutting and Box Problem
Aside from the bounding properties there are also properties in relation to increasing the
available width, adding rectangles and rotation.

Proposition 3.9. Let B ∈ N and R = {r1, ..., rk} be a set of rectangles, then

OPTCUT(B + 1, R, w, h) ≤ OPTCUT(B, R, w, h),
OPTBOX(B + 1, R, w, h) ≤ OPTBOX(B, R, w, h).

Proof. Having a larger container width gives us more space to work with, which means the
optimal solution has potentially less height. An increase in height is impossible, as we can
still construct the same solutions without using the extra width.

Proposition 3.10. Let (B, R, w, h) a problem instance and (B, R ∪ {r}, w′, h′) another
problem instance, which is identical to the first instance in all rectangles but the rectangle
r, ∀a ∈ R : w(a) = w′(a), h(a) = h′(a). Then OPTCUT(B, R, w, h) ≤ OPTCUT(B, R ∪
{r}, w′, h′) and OPTBOX(B, R, w, h) ≤ OPTBOX(B, R ∪ {r}, w′, h′).

Proof. Placing an additional rectangle requires us to utilize more of the available space.
Therefore the height of the solution is at least as tall as the height of the solution without
r.

Another property of the Box Problem is the ability to create solutions for other instances
by rotating the solution.

Proposition 3.11. Let (B, R, w, h) a problem instance and H := OPTBOX(B, R, w, h),
then OPTBOX(H, R, w′, h′) ≤ B, where h′ = w, w′ = h.

Proof. Consider a bounding box r of width B and height H, then the rectangles in R can
be packed within the bounding box r. Now, if we rotate the bounding box r along with
the packing by 90 degrees, we obtain a packing for (H, R, w′, h′), which can be packed into
the rotated bounding box r′. Therefore, OPTBOX(H, R, w′, h′) ≤ B, as the height of r′ is
B.

3.3 Properties of particular rectangles
There are certain rectangles, which have even further properties. In particular rectangles
that are as wide, as the container, have no impact on the rest of the placement, apart from
increasing the height of the solution.

Proposition 3.12. Let (B, R, w, h) be a problem instance, then

OPTCUT(B, R ∪ {r}, w, h) = OPTCUT(B, R, w, h) + h′,

OPTBOX(B, R ∪ {r}, w, h) = OPTBOX(B, R, w, h) + h′.

Proof. Since r has a width of B there is only one x-coordinate, where we can place r. As
such in order to obtain a bound it suffices to examine the height of the optimal solution
without r and increase the resulting height by the height of r, which is h′. As such
OPTCUT(B, R ∪ {r}, w, h) = OPTCUT(B, R, w, h) + h and OPTBOX(B, R ∪ {r}, w, h) =
OPTBOX(B, R, w, h) + h.

Similarly, if we have a rectangle, that is as tall as our placement’s height, then the rest of
the placement fits into a smaller container.

10



3.4. Computational Complexity of the Cutting Problem

Proposition 3.13. Let (B, R, w, h) a problem instance and (B, R ∪ {r}, w′, h′) another
problem instance such that ∀a ∈ R : h(a) = h′(a), w(a) = w′(a). Then

OPTCUT(B, R ∪ {r}, w′, h′) = h′(r)⇔ OPTCUT(B − w′(r), R, h, w) ≤ h(r),
OPTBOX(B, R ∪ {r}, w′, h′) = h′(r)⇔ OPTBOX(B − w′(r), R, w, h) ≤ h′(r).

Proof. First let OPTCUT(B, R ∪ {r}, w′, h′) = h′(r), then the height of the optimal so-
lution is the height of the rectangle r. Therefore there cannot be any other rectangle
at an x-coordinate occupied by r. As such the remaining width for the other rectan-
gles is B − w′(r), which means we can pack the other rectangles into a container of
lower width, without exceeding the height h′(r), thus OPTCUT(B − w′(r), R, w, h) ≤
h′(r). Now let OPTCUT(B − w′(r), R, w, h) ≤ h′(r), then we can create a solution for
the instance (B, R, w, h) by dividing the container into two smaller containers, one
of width w′(r) and another one of width B − w′(r). We place r in the container of
width w′(r) and the remaining rectangles in the container of width B − w′(r). The
resulting height will be the maximum of both containers, as such the resulting height
is max{OPTCUT(B − w′(r), R, w, h), OPTCUT(w′(r), {r}, w′, h′)} = max{OPTCUT(B −
w′(r), R, w, h), h′(r)}. Since OPTCUT(B − w′(r), R, w, h) ≤ h′(r), the resulting height is
h(r′). Therefore OPTCUT(B−w′(r), R, w, h) ≤ h′(r) implies OPTCUT(B, R∪{r}, w′, h′) =
h′(r).

We can easily apply the same arguments for the Box Problem, by replacing OPTCUT with
OPTBOX. Thus OPTBOX(B, R, w, h) = h(′r)⇔ OPTBOX(B −W, R) ≤ h′(r).

3.4 Computational Complexity of the Cutting Problem
In this section we examine the computational complexity of the Cutting Problem. We
start by examining whether the Cutting Problem can be solved in polynomial time, by a
non-deterministic Turing machine.

Lemma 3.14. The Cutting Problem is in NP.

Proof. Let (B, {r1, ..., rn}, w, h, x) be a feasible placement in the Cutting Problem. Now
consider sets S1, ..., SB , where Si contains all rectangles that are active at the x-coordinate
i (a rectangle r is active at x(r) up to but not including x(r) + w(r)), where i ∈ {1, ..., B}
we will use these sets as certificate.

First we check whether the certificate contains all rectangles, this can be done by iterating
over all rectangles in all sets. Since sets in a valid certificate will contain at most n
rectangles, we can test the rectangles in a single set in O(n2). Similarly we have at most
B sets in a valid certificate, which means we can test all rectangles in the certificate in
O(n2 ·B),

Now that we know whether the union of sets is equal to the rectangle set, we check whether
rectangles cover their respective width. This can be done by iterating over the sets in
ascending order and tracking how many times each rectangle has been iterated over. We
will use ongoing for rectangles, which have been iterated over less times than they are wide
and finished for rectangles, that have been iterated over as many times as they are wide.
This means if an ongoing rectangle is not contained in the next set, then the certificate
is invalid. Similarly if a finished rectangle occurs in a following set, then the certificate
is also invalid. If a rectangle is not finished after the last set, then the certificate is also
invalid. This iteration can similarly be done O(n2 ·B). Now we check whether the sum of
rectangle heights in each set is at most H:

∀S ∈ {S1, ..., SB} :
∑
a∈S

h(a) ≤ H

11



3. Properties of Cutting and Box Problem

We can check whether a specific set S ∈ {S1, ..., SB} has at most height H in O(log N · n),
where N = max{h(r1), ..., h(rn)} , by summing the heights of the rectangles and comparing
the sum to H. As such we can calculate whether it holds true for S1, ..., SB in O(log N ·n·B).

Since we only require polynomial time for each step, we also only require polynomial time
for the whole process. This means we can verify a solution to the Cutting Problem in
polynomial time. Therefore the Cutting Problem is in NP.

Now that we know that the Cutting Problem is contained within the complexity class NP,
we examine its relation to other problems which are NP-hard.

Lemma 3.15. The Cutting Problem and the Box Problem are NP-Hard in the strong
sense.

Proof. We show that the Cutting Problem is NP-Hard by reducing the 3-Partition Problem,
to the Cutting Problem.

Consider an instance of the 3-Partition Problem, here we have a set of non negative integers
S = {a1, ..., an}. What we want to find are three disjoint subsets S1, S2, S3, such that∑

a∈S1 a =
∑

a∈S2 a =
∑

a∈S3 a. Now consider rectangles r1, ..., rn where the height of the
rectangle h(ri) = ai and the width of a rectangle w(ri) = 1, for all i ∈ {1, ..., n}. Now if
OPTCUT(3, {r1, ..., rn}, w, h) =

∑
a∈S a/3, then the sum of all rectangle heights at each

x-coordinate is exactly OPTCUT(3, {r1, ..., rn}, w, h) which is one third of the surface area.
As such we have the existence of such disjoint subsets namely the sets of rectangle heights at
each coordinate. Similarly if OPTCUT(3, {r1, ..., rn}, w, h) 6=

∑
a∈S a/3, then such subsets

cannot exist. As the existence of such a partition gives us a positioning for the Cutting
Problem, in particular we can use any ordering of the sets as x-coordinates for the rectangle
placement. Now since we can construct the rectangles in polynomial time, it follows that
the Cutting Problem is NP-Hard in the strong sense, as the 3-Partition Problem is strongly
NP-Complete.

Since Cutting Problem and Box Problem are equivalent for rectangles of width 1 (see
Theorem 4.1), the same arguments can be applied to the Box Problem. Hence the Box
Problem is also NP-hard in the strong sense.

Now we know that the Cutting Problem is contained in NP and that it is NP-hard in the
strong sense. Applying the definition of NP-completeness gives use the NP-completeness of
the Cutting Problem.

Theorem 3.16. The Cutting Problem is strongly NP-complete.

Proof. Follows readily from Lemma 3.14 and Lemma 3.15.

12



4. On the equivalence of Cutting
Problem and Box Problem

In this chapter we examine the equivalence of Cutting and Box Problem. We show the
equivalence for several special cases and propose a counterexample, for the general case.

4.1 Rectangles of width 1
The first case we consider is the case where all rectangles have width 1.

Theorem 4.1. Let (B, R, w, h) be a problem instance, where ∀r ∈ R : w(r) = 1, then
OPTCUT(B, R, w, h) = OPTBOX(B, R, w, h).

Proof. The solution to the Cutting Problem provides us with x-coordinates for each
rectangle. We can construct a solution to the Box Problem by stacking rectangles, that
map to the same x-coordinate. Since our rectangles only have width 1, the order does not
matter, as the height will still be the same. This stacking gives us a feasible solution in the
Box Problem that has the same height as our Cutting Problem solution, since the height
at every x-coordinate is the sum of rectangle heights. Therefore, OPTCUT(B, R, w, h) =
OPTBOX(B, R, w, h).

4.2 Rectangles of height 1
Another case we consider is the case where all rectangles have height 1, unlike the previous
case, it is not as apparent from the intuition introduced in the introduction.

Theorem 4.2. Let (B, R, w, h) be a problem instance, where ∀r ∈ R : h(r) = 1, then
OPTCUT(B, R, w, h) = OPTBOX(B, R, w, h).

Proof. Consider an optimal solution S in the Cutting Problem. Then this solution provides
us with x-coordinates for every rectangle in R.

Now consider the partial order set (R,≤), where r1 ≤ r2 if x(r1) + w(r1) ≤ x(r2). Then,
two elements r1 and r2 are not comparable if neither r1 ≤ r2 nor r2 ≤ r1, which is the
case if x(r1) + w(r1) > x(r2) and x(r2) + w(c2) > x(r1). This means two elements are
not comparable, if and only if they overlap on the x-axis. Furthermore, there exists an
antichain, which is a subset of R, where no two elements are comparable. In particular
there exists a largest antichain A.

13



4. On the equivalence of Cutting Problem and Box Problem

• Case 1: A = ∅ then all elements in R are comparable, which means there are no
overlaps in the Cutting Solution. As such we can simply use the Cutting Solution as
a Box Solution, by using 0 as y-coordinate for all rectangles.

• Case 2: A 6= ∅ then since A is an antichain, we can apply Dilworth’s theorem (see
[Die17, p. 52-53]), which tells us that the minimal number of chains to cover R is
H := |A|. This gives us the existence of linear ordered, disjoint subsets X0, ..., XH−1,
which cover R.

This provides us with y-coordinates for the Box Problem, where rectangles in the subset
Xi are placed at height i, for i ∈ {0, ..., H − 1}. Such a placement is free of overlaps, as
rectangles in each set are comparable and rectangles have height 1. Furthermore, the
placement has height H, due to the highest y-coordinate being H−1 and rectangles having
height 1. Now since we know that elements are not comparable, if and only if they overlap
on the x-axis, we also know that S has height |A| = H, as this is the maximum number
of overlaps at any x-coordinate in the solution S. Furthermore OPTCUT(B, R, w, h) = H,
since S is an optimal solution. Thus, OPTCUT(B, R, w, h) = H = OPTBOX(B, R, w, h).

4.3 Equivalence for rectangles of surface area 2
In this section we examine the equivalence of Cutting and Box Problem for rectangles
of size 2, which means we only have (1,2) rectangles and (2,1) rectangles. The chapter
is further subdivided into two approaches, first the bounding approach and secondly the
construction approach. Unlike the bounding approach the construction approach is not
limited by the height of rectangles.

Figure 4.1: A (1,2) rectangle and a (2,1) rectangle.

4.3.1 Bounding approach

We can show the equivalence of Cutting and Box Problem, by showing equivalence of lower
and upper bounds. In this section we use R to refer to which consists solely of (2,1) and
(1,2) rectangles. The number n refers to the number of (1,2) rectangles, the number l refers
to the number (2,1) rectangles and k refers to the total number of rectangles, k = n + l.
All these definition are confined to this section and are valid for all proofs in the section,
unless stated otherwise.

Corollary 4.3. Let (B, R, w, h) be problem instance, then OPTCUT(B, R, w, h) ≤ d2k
B e.

Proof. Follows directly from Lemma 3.3.

We start out with a very simple case, the case where we limit ourselves to only (1,2)
rectangles. While this case is already covered by the more general case of width 1 (see
Theorem 4.1), it provides us with a lower bound which will be useful later on.

Lemma 4.4. Let (B, R, w, h) be a problem instance, where R consists solely of (1,2)
rectangles, then OPTCUT(B, R, w, h) ≥ 2dk/Be.

14



4.3. Equivalence for rectangles of surface area 2

Figure 4.2: An example of a packing, where the different rectangle types are packed
separately.

Proof. Since the height in the Cutting Problem is the sum of rectangles, which are active
at a specific coordinate and our rectangles have only width 1, we can take a look at the
problem instance of the same rectangle number, where we only have unit squares and
scale the resulting solution, thus multiplying the resulting height by 2. The Lemma 3.3
gives us the minimal height for unit size squares, which is dk/Be. Now through scaling
we obtain the minimal height for problem instances with only (1,2) rectangles which is
2dk/Be. Hence, OPTCUT(B, R, w, h) ≥ 2dk/Be

Now we limit ourselves to an even container width. This allows us to create an upper
bound for the Box Problem by introducing a way of packing, which consists of packing (1,2)
rectangles and (2,1) rectangles separately. In the following B refers to an even container
width, unless stated otherwise.

Lemma 4.5. Let (B, R, w, h) be problem instance, then OPTBOX(B, R, w, h) ≤ d2l
B e +

2d n
B e.

Proof. We can split this problem into two smaller problems by examining the height of the
solutions for each rectangle type. If we combine the heights of the solutions we get the
height of a solution containing both types. First let us take a look at the (1,2) rectangles.
If we place these rectangles from left to right, then we end up with bn/Bc fully filled rows
and possibly one partially filled row resulting in dn/Be rows, of (1,2) rectangles. Since
these rectangles have height 2, we end up with a height of 2dn/Be Now let us take a
look at the (2,1) rectangles. These have width 2, meaning that we can only fit B/2 of
these rectangles in a single row. Thus, if we stack these from left to right we end up with
l/(B/2) = 2l/B rows, which means we end up with a height of d2l/Be. We can create a
solution that includes both types by stacking these partial solutions on top of each other,
resulting in a height of d2l/Be+ 2dn/Be. Thus, OPTBOX(B, R, w, h) ≤ d2l/Be+ 2dn/Be.
(Figure 4.2 provides an example of such a separated packing.)

Now that we have a basic upper bound for the Box Problem we can easily show the
equivalence in the case where the container width divides the number of (1,2) rectangles.

Lemma 4.6. Let (B, R, w, h) be a problem instance, where n mod B = 0. Then

OPTCUT(B, R, w, h) = OPTBOX(B, R, w, h).
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4. On the equivalence of Cutting Problem and Box Problem

Figure 4.3: A new and improved packing strategy. The gray area is free space in the case
of an uneven number of (1,2) rectangles.

Proof. From Lemma 4.5 we know that there exists a solution in the Box Problem, such
that the height is d2l

B e+ 2d n
B e. Since n mod B = 0 it follows that:

d2l

B
e+ 2d n

B
e = d2l

B
e+ 2 n

B

= d2l

B
+ 2n

B
e

= d2k

B
e

Corollary 4.3 tells us that the optimal Cutting Problem solution has at least height d2k/Be
and since every Box Problem solution is a valid solution for the Cutting Problem (see
Proposition 3.1), it follows that OPTCUT(B, R, w, h) = OPTBOX(B, R, w, h).

Now we introduce a new packing strategy (see Figure 4.3), which is inspired by the separate
packing of Figure 4.3, but utilizes the space left on the last row of (1,2) rectangles.

Using this new packing strategy we obtain an upper bound for the case where the (2,1)
rectangles fit into the space.

Lemma 4.7. Let (B, R, w, h) be a problem instance, where (n mod B) 6= 0 and l ≤ a :=
B − (n mod B)− (n mod 2). Then OPTBOX(B, R, w, h) ≤ 2d n

B e

Proof. If we stack the (1,2) rectangles from left to right we end up with 2 bn/Bc completely
filled rows of (1,2) rectangles and two partially filled rows, as (1,2) rectangles have height
2. These partially filled rows are filled to width n mod B, as such there is a free space of
B − n mod B width and height 2. Since this free space might not be of even width we
are going to consider the free space to be of width a := B − (n mod B)− (n mod 2). This
means that we can fit a/2 (2,1) rectangles in width in this free space, however since the
space has height 2 we can actually fit two such rows in there, as such we can fit 2 · (a/2) = a
(2,1) rectangles in the free space. Since l ≤ a we can fit all (2,1) rectangles, without
increasing the height any further. This means our height is only determined by the (1,2)
rectangles and thus ends up being 2dn/Be. Hence, OPTBOX(B, R, w, h) ≤ 2dn/Be.

Now we can use the simple case we considered at the beginning of this chapter to show
equivalence for another special case, namely the case where we limit ourselves to a small
number of (2,1) rectangles.

Lemma 4.8. Let (B, R, w, h) be a problem instance, where l ≤ B− (n mod B)− (n mod 2)
and n mod B 6= 0. Then OPTCUT(B, R, w, h) = OPTBOX(B, R, w, h).
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4.3. Equivalence for rectangles of surface area 2

Proof. As Lemma 4.7 tells us OPTBOX(B, R, w, h) ≤ 2dn/Be. Furthermore, Lemma 4.4
tells us that OPTCUT(B, R′, w, h) ≥ 2dn/Be, where R′ is the subset of R without the
(2,1) rectangles, R′ = {r ∈ R | h(r) = 2}. Since the height can only increase with more
rectangles, it follows that OPTCUT(B, R, w, h) = OPTBOX(B, R, w, h).

Using the new packing strategy we can introduce a new upper bound. Since we have
already shown the case where we only have a few (2,1) rectangles, we now consider the
case where we have a minimum of such rectangles.

Lemma 4.9. Let (B, R, w, h) be a problem instance, where l > a := B − (n mod B) −
(n mod 2) and n mod B 6= 0. Then OPTBOX(B, R, w, h) ≤ d2l−2a

B e+ 2d n
B e.

Proof. If we stack the (1,2) rectangles from left to right we end up with bn/Bc completely
filled rows of (1,2) rectangles and one partially filled row. This partially filled row is filled
to a width of n mod B, as such there is a free space of B − (n mod B) width and height 2.
Since this free space might not be of even width we are going to consider the free space to
be of width B−(n mod B)−(n mod 2) =: a, reducing the space to even width. This means
that we can fit a/2 of the (2,1) rectangles, in width, in this free space, however since the
space has height 2 we can actually fit two such rows in there, as such we can fit a total of
2·(a/2) = a of the (2,1) rectangles in the free space. So we are left with l−a (2,1) rectangles,
which we stack from left to right, creating d2l−2a

B e rows of (2,1) rectangles. Thus, the height
ends up being d2l−2a

B e+ 2d n
B e. Hence, OPTBOX(B, R, w, h) ≤ d2l−2a

B e+ 2d n
B e.

Both lower bound and upper bound increase by 2 for every B of the (1,2) rectangles and
by 1 for every B/2 of the (2,1) rectangles, as long as we have a certain minimum of (2,1)
rectangles. This means we can use induction to show the equivalence of both bounds.

Lemma 4.10. For every n, l, B ∈ N, with B, n even, n mod B 6= 0, l > a := B −
(n mod B)− (n mod 2) and k = n + l, we have d2l−2a

B e+ 2d n
B e = d2k

B e.

Proof. In the following we use induction, since we have two variables which are relevant
to the induction, we use two inductive steps, one for n and one for l, to prove our claim.
First we begin with the base case, which is: 0 < n < B, a < l < B, then

d2l − 2a

B
e+ 2d n

B
e = d2l − 2(B − (n mod B)− (n mod 2))

B
e+ 2d n

B
e

= d2l − 2(B − n− n mod 2)
B

e+ 2(1)

= d2l − 2B + 2n

B
+ 2e

= d2l + 2n

B
e

= d2k

B
e

Now let us continue with the first inductive step. Assume for an arbitrary n′, that
d2l−2a

B e+ 2dn′

B e = d2k
B e, is true.
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4. On the equivalence of Cutting Problem and Box Problem

We will show that d2l−2b
B e + 2dn′+B

B e = d2k+2B
B e, where b := B − ((n′ + B) mod B) −

((n′ + B) mod 2).:

d2l − 2b

B
e+ 2dn

′ + B

B
e

= d2l − 2 (B − ((n′ + B) mod B)− ((n′ + B) mod 2))
B

e+ 2dn
′ + B

B
e

= d2l − 2(B − n′ mod B − (n′ + B) mod 2)
B

e+ 2dn
′ + B

B
e

= d2l − 2(B − n′ mod B − n′ mod 2)
B

e+ 2dn
′ + B

B
e

= d2l − 2a

B
e+ 2dn

′ + B

B
e

= d2l − 2a

B
e+ 2dn

′

B
+ 1e

= d2l − 2a

B
e+ 2dn

′

B
e+ 2

= d2k

B
e+ 2

= d2k

B
+ 2e

= d2k + 2B

B
e

We continue with the second inductive step. Here we assume for an arbitrary l′, that
d2l′−2a

B e+ 2d n
B e = d2k

B e, is true.

We will show that d2(l′+B)−2a
B e+ 2d n

B e = d2k+2B
B e.:

d2(l′ + B)− 2a

B
e+ 2d n

B
e = d2l′ + 2B − 2a

B
e+ 2d n

B
e

= d2l′ − 2a

B
+ 2d n

B
e

= d2l − 2a

B
e+ 2d n

B
e+ 2

= d2k

B
e+ 2

= d2k

B
+ 2e

= d2k + 2B

B
e

Thus, it follows that d2l−2a
B e + 2d n

B e = d2k
B e is true for all n, l, B ∈ N, with n, B even,

n mod B 6= 0 and l > a

Now if we compile our previous results we obtain the equivalence for the case where both
the container width and the number of (1,2) rectangles are even.

Lemma 4.11. Let (B, R, w, h) be a problem instance, where l > a := B − (n mod B) −
(n mod 2) and n is even. Then OPTCUT(B, R, w, h) = OPTBOX(B, R, w, h).

Proof. Lemma 4.9 gives us OPTBOX(B, R, w, h) ≤ d2l−2a
B e+ 2d n

B e. Lemma 4.10 shows us
that this is equal to d2(n+l)

B e. While Corollary 4.3 tells us that OPTCUT(B, R, w, h) ≥
d2(n+l)

B e. Since OPTCUT ≤ OPTBOX, it follows that

OPTCUT(B, R, w, h) = OPTBOX(B, R, w, h).
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4.3. Equivalence for rectangles of surface area 2

4.3.2 Construction approach

Rather than showing equivalence through bounds we can also show equivalence by con-
structing a Box Solution based on an optimal Cutting Solution. The Figure 4.4 visualizes
the method used.

We use the x-coordinates of an optimal solution in the Cutting Problem and construct an
equivalent Box Solution by ordering rectangles, in a way that is free of overlaps. We achieve
such an ordering, by placing width 2 rectangles first and alternating between bottom-up
and top-down on even and odd x-coordinates respectively. Since this construction is not
dependent on the rectangle height being at most 2, we can expand our case to any set of
rectangles where the widths are at most 2.

Bi

Ai

Ai+1

Bi+1
Bi−1

Figure 4.4: An example of the construction. The rectangles Ai, Ai+1 are bounding boxes
for the width 1 rectangles placed at x-coordinates i and i + 1 respectively. The
rectangles Bi−1, Bi, Bi+1 are bounding boxes for the width 2 rectangles placed
at x-coordinates i− 1, i and i + 1 respectively. Furthermore, the coordinate i is
even and therefore its rectangles are placed bottom-up, the coordinates i− 1
and i + 1 are uneven and thus their rectangles are placed placed top-down.

Theorem 4.12. Let (B, R, w, h) be a problem instance, such that all rectangles have at
most width 2, ∀r ∈ R : w(r) ≤ 2. Then OPTCUT(B, R, w, h) = OPTBOX(B, R, w, h).

Proof. Consider an optimal placement x in the Cutting Problem, we can partition R
into disjoint subsets S0, ..., SB−1, such that each subset Si contains the rectangles with
x-coordinate i, Si = {k ∈ R | x(k) = i}, where i ∈ {0, ..., B − 1}. We can completely
cover R with the union of these subsets S0 ∪ ... ∪ SB−1 = R, as every rectangle has an
x-coordinate in {0, ..., B − 1}. Furthermore the sum of rectangle heights in each subset
is at most OPTCUT(B, R, w, h), ∀i ∈ {0, ..., B − 1} :

∑
r∈Si

h(r) ≤ OPTCUT(B, R, w, h),
as Si is a subset of the set of active rectangles Ci := {r ∈ R | x(r) ≤ i < x(r) + w(r)},
for every i ∈ {0, ..., B − 1} and the Cutting Problem height is the largest sum of active
rectangles max{

∑
r∈Ci

h(r) | i ∈ {0, ..., B − 1}} (cf. Definition 2.5 ).

Furthermore we want to separate the width 2 rectangles from the width 1 rectangles, hence
consider A′i = {k ∈ Si | w(k) = 1} and B′i = {k ∈ R | w(k) = 2}, then A′i and B′i are not
only disjoint subsets of Si, but they also cover Si, for i ∈ {0, ..., B − 1}.

Consider rectangles Ai and Bi (cf. Figure 4.4) with w(Ai) = 1, h(Ai) =
∑

k∈A′
i
h(k),

w(Bi) = 2 and h(Bi) =
∑

k∈B′
i
h(k). Lemma 3.8 tells us that we can pack every rectangle

in A′i into Ai. Similarly we can apply the same argument to B′i, since every rectangle in B′i
has width 2, which means we can pack every rectangle in B′i into Bi.

Now consider the placement (as outlined in Figure 4.4) y(Bi) = 0, y(Ai) = y(Bi) + h(Bi),
if i is even and y(Bi) = OPTCUT(B, R, w, h)−h(Bi), y(Ai) = y(Bi)−h(Ai), if i is odd, for
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4. On the equivalence of Cutting Problem and Box Problem

i ∈ {0, ..., B−1}. By construction it follows that Ai and Bi do not overlap (cf. Definition 2.4).
Furthermore the definition of y ensures, that y(Ai) + h(Ai) ≤ OPTCUT(B, R, w, h) and
y(Bi) + h(Bi) ≤ OPTCUT(B, R, w, h), for all i ∈ {0, ..., B − 1}. Now assume that there are
A, B, which overlap, then without loss of generality B = Bi and A = Ai+1. We distinguish
the cases odd and even, since y(Ai) and y(Bi) are defined differently depending on whether
i is even or odd.

• Case 1: i is even, then i + 1 is odd and thus y(Ai+1) = y(Bi+1) − h(Ai+1). Then
the two rectangles overlap, if y(Bi) + h(Bi) > y(Ai+1), which holds true if and only
if h(Bi) + h(Ai+1) + h(Bi+1) > OPTCUT(B, R, w, h), which contradicts x being an
optimal placement in the Cutting Problem.

• Case 2: i is odd, then i + 1 is even and thus y(Ai+1) = h(Bi+1). Similarly the two
rectangles overlap, if y(Ai+1) + h(Ai+1) > y(Bi+1), which holds true if and only if
h(Bi+1) + h(Ai+1) + h(Bi+1) > OPTCUT(B, R, h, w), which contradicts x being an
optimal placement in the Cutting Problem.

Therefore, there are no overlaps, and we can pack the blocks of rectangles within height
OPTCUT(B, R, w, h), since we can pack the individual rectangles into the larger blocks,
we can also pack the smaller rectangles into the same height. Now, since the Cutting
Problem is a lower bound to the Box Problem, it follows that OPTCUT(B, R, w, h) =
OPTBOX(B, R, w, h).

4.4 Counterexample

Our previous results in equivalence might give rise to the notion that both problems are
equivalent. However as it turns out the Cutting Problem and Box Problem are in fact not
equivalent in the general case.

Lemma 4.13. There exists a problem instance (B, R, w, h), such that

OPTCUT(B, R, w, h) 6= OPTBOX(B, R, w, h)

Proof. We divide this proof into two parts, first we present an instance and show that it is
feasible in the Cutting Problem. Then we demonstrate that the same instance is infeasible
in respect to the same height in the Box Problem. Figure 4.5 visualizes both the instance
and the placement in the Cutting Problem.

Let B = 5, R = {b1, c1, c2, c3, d1, d2, e1, e2, e3, e4}, with

f(b1) = (1, 1), f(c1) = (1, 2),
f(c2) = (1, 2), f(c3) = (1, 2),
f(d1) = (1, 3), f(d2) = (1, 3),
f(e1) = (3, 1), f(e2) = (3, 1),
f(e3) = (3, 1), f(e4) = (3, 1),

where f(i) = (w(i), h(i)).

Consider the following placement in Table 4.1, as per Definition of the Cutting Problem
(Definition 2.5) the height of the placement is the maximum of the heights, of the individual
x-coordinates. The height of a specific x-coordinate i is the sum of all rectangles which cover
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x-coordinate rectangles
0 d1, e1, e2
1 c1, e3
2 b1, e4
3 d2
4 c2, c3

Table 4.1: The placement of the rectangles in the Cutting Problem.

the coordinate i. The following equations illustrate that the height at each x-coordinate is
indeed 5. ∑

k∈{k′∈R|x(k)≤0<x(k′)+w(k′)}
h(k) = h(d1) + h(e1) + h(e2) = 3 + 1 + 1 = 5

∑
k∈{k′∈R|x(k)≤1<x(k′)+w(k′)}

h(k) = h(c1) + h(e1) + h(e2) + h(e3) = 2 + 1 + 1 + 1 = 5

∑
k∈{k′∈R|x(k)≤2<x(k′)+w(k′)}

h(k) = h(b1) + h(e1) + h(e2) + h(e3) + h(e4) = 5 · 1 = 5

∑
k∈{k′∈R|x(k)≤3<x(k′)+w(k′)}

h(k) = h(d2) + h(e3) + h(e4) = 3 + 1 + 1 = 5

∑
k∈{k′∈R|x(k)≤4<x(k′)+w(k′)}

h(k) = h(c2) + h(c3) + h(e4) = 2 + 2 + 1 = 5

Since every x-coordinate has height 5, the maximum height is also 5 and thus

OPTCUT(B, R, w, h) = 5

e1

e2

d1
c1

e3

b1

e4

d2

d2

c2

c3

Figure 4.5: A solution which can only be constructed in the Cutting Problem. The gray
area is a (1,3) rectangle, which is cut according to the Cutting Problem

0 1 2 3 4 5

Figure 4.6: The different ways we can place (3,1) rectangles over a strip of width 5. Notice
how all rectangles overlap on one x-coordinate.

Now assume that there exists a solution in the Box Problem with height 5. Then this solution
cannot contain any free space as the total area of the rectangles is

∑
r∈R h(r) · w(r) = 25,

which is also the surface area of the 5 by 5 bounding box imposed by the Cutting Problem.
Furthermore, we know that the rectangles d1 and d2 have different x-coordinates, as
h(d1) + h(d2) > 5 and that e1, e2, e3, e4 have at least one x-coordinate in common, as none
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4. On the equivalence of Cutting Problem and Box Problem

Figure 4.7: A placement, where the (3,1) rectangles share two x-coordinates. The gray
rectangle represents an empty space resulting from such a placement.

Figure 4.8: The (3,1) rectangles all occupy the same x-coordinates. The gray rectangle
represents an empty space resulting from such a placement.

of the aforementioned rectangles can be placed at the same y-coordinate, due to having a
larger width, than B/2.

There are only three x-coordinates where we can place the rectangles e1, e2, e3, e4 (cf. Figure
4.6), namely 0, 1 and 2, as placing any of these rectangles on coordinates 3, 4 or 5 violates
the bounds of the container (cf. Definition 2.4). Therefore, at least two of the rectangles
are placed at the same x-coordinate. Since there are four (3,1) rectangles and only three
coordinates ,where e1, e2, e3 and e4 can be placed. Furthermore, the rectangles e1, e2, e3
and e4 may only overlap at one x-coordinate. As overlapping on at least two x-coordinate
results in height 4 on more than 1 x-coordinate, however the only other height 1 rectangles
is b2, which only has a width of 1 (cf. Figure 4.7). Now this coordinate is x(b2) = 2, since
all of the (3,1) rectangles e1, e2, e3, e4 overlap with x-coordinate 2 (cf. Figure 4.6) and since
the x-coordinate has to have a height of 5 the only option is to place the rectangle b2 as
x-coordinate 2. Now we examine the individual cases of how many (3,1) rectangles have
the same x-coordinate.

3

0

1

2

3

4

5

Figure 4.9: The two rectangles are three coordinates apart.

• Case 1: e1, e2, e3, e4 have the same x-coordinate.

As we have already noticed, the rectangles e1, e2, e3 and e4 may only overlap on one
x-coordinate. Placing the four rectangles at the same x-coordinate results in them
overlapping at three x-coordinates and thus results in the problem, where we have a
space where no remaining rectangle can be placed (cf. Figure 4.8).

• Case 2: exactly two out of e1, e2, e3, e4 have the same x-coordinate.
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4.4. Counterexample

0 1 2 3 4 5

Figure 4.10: The two (3,1) rectangles cannot be placed at x-coordinate 1 and be 3 spaces
apart, without creating unusable space.

Figure 4.11: The gray areas mark the two spaces we are left with after having placed the
(3,1) rectangles and the (1,1) rectangle.

0 1 2 3 4 5

0

1

2

3

4

5

Figure 4.12: The (1,3) rectangles cannot both be packed into such a structure, as there is
only one space of height 4, where a (1,3) rectangle would fit.
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4. On the equivalence of Cutting Problem and Box Problem

Without any loss of generality let e1 and e2 be the rectangles with the same x-
coordinate a. Then e1 and e2 are either 0 or 3 y-coordinates apart (the height of the
tallest rectangle that could be placed between the rectangles, see Figure 4.9). Since
both a distance 1 and distance 2 create unusable space, between the two rectangles
in the case of distance 1 or at the edge of the bounding box in the case of distance 2,
where the space is either above or below one of the rectangles.

– Case 1: a = 1. As we have noted before e1 and e2 are 0 or 3 y-coordinates apart.
However being 3 coordinates apart creates a structure, where we end up with
a (1,1) space in a corner, due to one of e3 and e4 being adjacent to either e1
or e2 (see Figure 4.10). Such a space cannot be filled by any of the remaining
rectangles, since b2 has to be placed at x-coordinate 2. Therefore, the rectangles
have no y-coordinates in between. Then the block of e1 and e2 is adjacent to
the edge of the bounding box (see Figure 4.12), since any other configuration
results in one of the two rectangle being a distance of 1 away form the edge of
the bounding box resulting in a space of width 3 and height 1, which cannot
be used. Furthermore, the other two rectangles e3 and e4 have to be placed
on opposing sites with one having x-coordinate 1 and the other x-coordinate
2 (see Figure 4.12), to avoid overlapping at more than one x-coordinate. Now
the rectangles e3 and e4 have to be exactly one y-coordinate apart or we end
up with unusable space either at the edge of the bounding box or at the e1, e2
block. However this leads to a packing, where only one space of at least height
3 remains (see Figure 4.12). This means we cannot place both (1,3) rectangles,
as there is only one space of height greater than 2. Hence a = 1 is impossible.

– Case 2: a ∈ {0, 2} Let a′ ∈ {0, 2}, such that a 6= a′, then at least one of e3 and
e4 has a′ as its x-coordinate. As e1, e2, e3 and e4 would overlap at more than
one x-coordinate, if e3 and e4 both have x-coordinate 1 (The case where 3 of the
rectangle have the same x-coordinate is considered as a separate case). Without
any loss of generality let e3 have a′ as its x-coordinate. The rectangles e1 and
e2 are at most three y-coordinates apart, namely when one of them is at the
top and the other at the bottom.
Now assume that the two rectangles are actually three coordinates apart. Then
e3 must be at y-coordinate 2, as coordinates 1 and 3 create a space of height 1
and width 3 between x-coordinate 2. However such a placement of e3 forces e4
into either y-coordinate 1 or 3, which both create the same problem as if we had
placed e3 there. As such we know that e1 and e2 are at most two y-coordinates
apart.
Furthermore we now know that e3 and e4 also have no y-coordinates in between,
as being one coordinate apart creates the same problem where we have an
unusable height 1 space. This in turn means e3 and e4 have the same x-
coordinate (cf. Figure 4.11), as placing the rectangles at different x-coordinates,
yet again results in unusable height 1 space at the lower or upper edge of the
bounding square.
After having placed all b1, e1, e2, e3 and e4 we are left with two spaces of height
3 and width 2 (cf. Figure 4.11). However we cannot place c1, c2, c3 in a single
space of width 2 and height 3, as they are all (1,2) rectangles which create a
height of 4 (see Lemma 4.4).
Now the only remaining option is to pack two of the (1,2) rectangles together
with one (1,3) rectangles. However this is also not possible due to the surface
area bound (see Corollary 4.3). As such there is no way to pack the rectangles
into a 5 by 5 square, if two out of e1, e2, e3, e4 have the same x-coordinate.
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4.4. Counterexample

Figure 4.13: The rectangle in the middle separates the right side into two (2,2) spaces. The
spaces are marked in gray.

Figure 4.14: The gray (2,4) space to the right cannot be filled completely with (1,2) and
(3,1) rectangles.

• Case 3: exactly three out of e1, e2, e3, e4 have the same x-coordinate. Without any
loss of generality let e1, e2, e3 be the rectangles with the same x-coordinate a. Then
a ∈ {0, 2}, as placing e1, e2 and e3 at the x-coordinate 1 causes the rectangles
e1, e2, e3 and e4 to overlap on at least two x-coordinates. Therefore, a ∈ {0, 2}. Now
let a′ ∈ {0, 2}, such that a 6= a′, then a′ is the x-coordinate of a′, x(e4) = a′, since
the case a′ = 1 yet again causes an x-coordinate overlap of at least two.

Now e4 has to be either adjacent to the edge of the bounding box or at y-coordinate
2, as being being 1 y-coordinate from the edge results in a space of width 2 and height
1. Furthermore, b2 has to adjacent to e4, to avoid the creation of a height 1 width
2 space between either two of the rectangles e1, e2, e3 or one of the three rectangles
and the edge of the bounding box. Now we want to examine the cases where e4 is
located on the y-axis. As we have noted before there are two major cases:

– Case 1: y(e4) = 2, then we can no longer place the (3,1) rectangles, as no space
of height 3 remains (see Figure 4.13), due to e4 separating the only remaining
space with at least height 3 into spaces of height 2.

– Case 2: y(e4) ∈ {0, 4}, then it follows that e1, e2 and e3 are stacked, as b1 is
adjacent to e4. This means we end up with a packing where there is a (2,2)
space and a (2,4) space left (see Figure 4.14). While the (2,2) space can be
easily filled by two (1,2) rectangles, the remaining rectangles cannot be placed
inside the (2,4) space, without rotating the (1,2) rectangle, which we do not
allow (see 2.4).

Therefore, there cannot be a Box Solution such that three (1,3) rectangles have the
same x-coordinate.

Now since all cases fail, there cannot be any two (3,1) rectangles which have the same
x-coordinate. However we have four (3,1) rectangles and only three x-coordinates at which
those can be placed. Therefore, there is no solution with height 5 in the Box Problem.
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5. Converting Cutting Solutions into Box
Solution

While it turned out that Cutting Problem and Box Problem are not equivalent, we can
still use the solutions that the Cutting Problem provides. In this chapter we examine
two approaches which convert Cutting Solutions into a Box Solutions. The first approach
considers a simple algorithm, which initially assign 0 as y-coordinate for every rectangle and
then gradually removes overlaps between rectangles, by moving rectangles upwards. The
second approach considers mixed integer linear programming, as a method of conversion.
Furthermore, we propose another mixed integer linear program to actually solve the Cutting
Problem and compare the different approaches using empirical data.

5.1 Rectangle Bubbling
The Cutting Solution provides us with x-coordinates for each rectangle, thus we can
construct a feasible Box Solution by moving rectangles along the y-axis. The first approach
we consider continually moves overlapping rectangles one y-coordinate upwards, in a sense
bubbling overlapping rectangles upwards.

Bubbling rectangles as a way of solving the Box Problem

Consider a feasible solution in the Cutting Problem (B, R, w, h, x). We can transform R
from a set into a tuple, by numbering the rectangles in R. As such we end up with a
rectangle tuple R′ = (r1, ..., rk), where k = |R|. This allows us to distinguish rectangles
even if width, height and x-coordinate are equal. We can construct a solution in the Box
Problem, for the same problem instance, by placing rectangles at the x-coordinate given by
the Cutting Problem solution and y position 0. Naturally this might cause several overlaps
between rectangles which are not allowed in the Box Problem. Therefore, we want to move
overlapping rectangles one y-coordinate upwards. Now there are several ways to decide
which rectangles to move first.

The version we consider first moves rectangles which have the most overlap in relation
to their own surface area. If two overlapping rectangles have the same overlap ratio, we
move the rectangle which has less surface area, if both rectangles have the same surface
area, we move the rectangle which has a lower height. If those are also equal we move
the rectangle which has lower width and as a last resort if rectangles have the exact same
dimension we move the rectangle which has the lower index, or to be more precise for two
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5. Converting Cutting Solutions into Box Solution

rectangles ri, rj we move rm, where m = min(i, j). This way there is no ambiguity as to
which rectangle to move first and we can gradually remove all overlaps. As a result we end
up with a feasible solution to the Box Problem (B, R′′, w, h, x, y), where R′′ =

⋃k
i=1{ri}.

At best this solution is optimal, at worst the solution is equivalent to stacking all rectangles
on top of each other. As there cannot be anymore overlaps between rectangles once no two
rectangle share a height.

An example where bubbling fails to find a good solution

There are cases where the bubbled solution is significantly worse solution than the optimal
solution in the Box Problem.

Consider rectangles r1, ..., rn with heights h(ri) = 1 and widths w(ri) = 2i for each rectangle
ri and x(r1) = 0 and x(ri) = x(ri) + w(ri)− 1, where i ∈ {1, ..., n}.

If we compare the overlap ratio of the rectangles we find that for i ∈ {2, ..., n − 1} the
rectangle ri has an overlap ratio of 2/2i, with r1 and rn having an overlap ratio of 1/21

and 1/2n respectively. Now bubbling a rectangle ri changes the overlap ratio of ri+1 to
1/2i+1, however the overlap ratio of ri+2 is 2/2i+2 = 1/2i+1, where i ∈ {1, ..., n− 3}. This
means that the leftmost rectangle which has an overlap will be bubbled, which in turn
causes the previously bubbled rectangle to also bubble. This creates a stair like pattern,
resulting in height

∑n
k=1 h(rk) =

∑n
k=1 1 = n which is equal to stacking rectangles at the

same x-coordinate.

An optimal solution in the Box Problem can be created by using the same x-coordinates
and placing every second rectangle at y-coordinate 1, which results in a height of 2.

Figure 5.1: An example where bubbling fails to find a good solution. The y-coordinates
reflect the actual placement created by the Bubble-Algorithm.

Figure 5.2: For comparison an optimal solution for the example where bubbling fails.

Bubbling large rectangles first

Since the example where bubbling fails relies on bubbling smaller rectangles first, it might
seem as though bubbling larger rectangles first will solve this problem.

However we can generalize the example to rectangles r1, ..., rn of height 1 and width w(i),
where i ∈ {1, .., n} and w satisfies 1/w(i) ≥ 2/w(i + 1) for i < n.

Now the only case where the rectangle size is actually relevant is 1/w(i) = 2/w(i + 1), as
such we can simply construct an example where the rectangle width w satisfies 1/w(i) >
2/w(i + 1), for i < n.

An example of such a function is w(i) = 4i, as 1
4i > 1

2·4i = 2
4·4i = 2

4i+1 .
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5.2. Conversion using Mixed Integer Linear Programming

5.2 Conversion using Mixed Integer Linear Programming
Consider a feasible placement in the Cutting Problem (B, R, w, h, x). We can construct
a feasible placement in the Box Problem, by assigning y-coordinates to all rectangles,
such that no two rectangles overlap. The problem of finding optimal y-coordinates can be
solved using linear programming. We can bound the overall height and thus the rectangle
y-coordinates with M :=

∑
r∈R h(r), since such a solution always exists. The problem can

be formulated as a linear programming problem as follows.

min H (5.1)
subject to y(r) + h(r) ≤ y(r′) + M · ar,r′ , ∀r, r′ ∈ R : r 6= r′ (5.2)

y(r′) + h(r′) ≤ y(r) + M · br,r′ , ∀r, r′ ∈ R : r 6= r′ (5.3)
x(r) + w(r) ≤ x(r′) + B · cr,r′ , ∀r, r′ ∈ R : r 6= r′ (5.4)
x(r′) + w(r′) ≤ x(r) + B · dr,r′ , ∀r, r′ ∈ R : r 6= r′ (5.5)
y(r) + h(r) ≤ H, ∀r ∈ R (5.6)
y(r) ≥ 0, ∀r ∈ R (5.7)
ar,r′ + br,r′ + cr,r′ + dr,r′ ≤ 3, ∀r, r′ ∈ R (5.8)
ar,r′ , br,r′ , cr,r′ , dr,r′ ∈ {0, 1}, ∀r, r′ ∈ R (5.9)

Parameters : These are given by the feasible Cutting Solution.

B = the width of the container
R = the set of rectangles

h(r) = the height of the rectangle r ∈ R

w(r) = the width of the rectangle r ∈ R

x(r) = the x-coordinate of the rectangle r ∈ R

Decision Variables

Objective Function : Minimize the overall height.

Minimize H

Constraint Set 1 : For every pair of rectangles r, r′, the rectangle r′ is above the rectangle
r, or ar,r′ is greater than 0.

y(r) + h(r) ≤ y(r′) + M · ar,r′ ,∀r, r′ ∈ R : r 6= r′

Constraint Set 2 : For every pair of rectangles r, r′, the rectangle r is above the rectangle
r′, or br,r′ is greater than 0.

y(r′) + h(r′) ≤ y(r) + M · br,r′ ,∀r, r′ ∈ R : r 6= r′

Constraint Set 3 : For every pair of rectangles r, r′, the rectangle r′ is to the right of
the rectangle r, or cr,r′ is greater than 0.

x(r) + w(r) ≤ x(r′) + B · cr,r′ , ∀r, r′ ∈ R : r 6= r′

Constraint Set 4 : For every pair of rectangles r, r′, the rectangle r is to the right of the
rectangle r′, or dr,r′ is greater than 0.

x(r′) + w(r′) ≤ x(r) + B · dr,r′ ,∀r, r′ ∈ R : r 6= r′
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5. Converting Cutting Solutions into Box Solution

Constraint Set 5 : For every rectangle r, the overall height H is at least the height of
the upper end of r.

y(r) + h(r) ≤ H,∀r ∈ R

Constraint Set 6 : For every rectangle r, the y-coordinate is at least 0.

y(r) ≥ 0, ∀r ∈ R

Constraint Set 7 : For every pair of rectangles r, r′, the sum of the binary variables
ar,r′ , br,r′ , cr,r′ , dr,r′ is at most 3. This ensures that at least one of the variables is 0.

ar,r′ + br,r′ + cr,r′ + dr,r′ ≤ 3, ∀r, r′ ∈ R

Constraint Set 8 : For every pair of rectangles r, r′, the variables ar,r′ , br,r′ , cr,r′ , dr,r′ may
only take values 0 and 1.

ar,r′ , br,r′ , cr,r′ , dr,r′ ∈ {0, 1},∀r, r′ ∈ R

Our goal is to minimize the overall height H (cf. Eq. (5.1)), which is the highest end of all
rectangles (cf. Eq. (5.6)). The constraint in Eq. (5.7) ensures that the solution does not
violate the container bounds. In order for two rectangles to not overlap it suffices, to not
overlap on a single axis. Two rectangles do not overlap on the y-axis if the lower edge of
one rectangle r is above or at the same level as the upper edge of the other rectangle r′ (cf.
Eq. (5.2), Eq. (5.3)). Two rectangles do not overlap on the x-axis if the left edge of one
rectangle r is to the right of the right edge of the other rectangle (cf. Eq. (5.4), Eq. (5.5)).
Since only one of the four constraints (Eq. (5.2), Eq. (5.3), Eq. (5.4), Eq. (5.5)) has to
hold true, we use binary variables ar,r′ , br,r′ , cr,r′ , dr,r′ to disable constraints, by adding the
corresponding upper bound to the right hand side of the equation. Thus, fulfilling the
constraint if the respective binary variable is 1. Eq. (5.8) ensures that at least one of the
four orthogonality (Eq. (5.2), Eq. (5.3), Eq. (5.4), Eq. (5.5)) constraints holds true for any
given rectangle.

5.3 Solving the Cutting Problem using Mixed Integer Linear
Programming

Now that we have approaches to convert Cutting Solutions into Box Solutions. We want
to consider actually solving the Cutting Problem. As with the conversion we are trying to
find coordinates for the rectangles. In this case x-coordinates, rather than y-coordinate.
This means we can also use linear programming to solve the Cutting Problem. In this
case our input consists only of a problem instance (B, R, w, h). The following describes the
Cutting Problem as a linear programming problem.

min H (5.10)
subject to x(r) ≥ 0 ∀r ∈ R (5.11)

x(r) + w(r) ≤ B, ∀r ∈ R (5.12)
Hi ≥

∑
r∈R

h(r) · ci,r, ∀r ∈ R, i ∈ {0, .., B − 1} (5.13)

H ≥ Hi, ∀i ∈ {0, .., B − 1} (5.14)
ai,r ·B + x(r) ≥ i + 1 ∀r ∈ R, i ∈ {0, .., B − 1} (5.15)
x(r) + w(r) ≤ i + B · bi,r ∀r ∈ R, i ∈ {0, .., B − 1} (5.16)
ci,r ≥ ai,r + bi,r − 1 ∀r ∈ R, i ∈ {0, .., B − 1} (5.17)
ai,r, bi,r, ci,r ∈ {0, 1} ∀r ∈ R, i ∈ {0, .., B − 1} (5.18)

30



5.3. Solving the Cutting Problem using Mixed Integer Linear Programming

Parameters : These are given by the instance.

B = the width of the container
R = the set of rectangles

h(r) = the height of the rectangle r ∈ R

w(r) = the width of the rectangle r ∈ R

Decision Variables

Objective Function : Minimize the overall height.

Minimize H

Constraint Set 1 : For each rectangle r ∈ R, the x-coordinate is at least 0.

x(r) ≥ 0,∀r ∈ R

Constraint Set 2 : For each rectangle r ∈ R, the sum of x-coordinate and width is at
most B.

x(r) + w(r) ≤ B, ∀r ∈ R

Constraint Set 3 : For each rectangle x-coordinate i, the height of the x-coordinate Hi

is at least the sum of rectangle heights, which overlap with i.

Hi ≥
∑
r∈R

h(r) · ci,r,∀r ∈ R, i ∈ {0, .., B − 1}

Constraint Set 4 : For each x-coordinate i, the overall height is at least the height of
the individual x-coordinates.

H ≥ Hi,∀i ∈ {0, .., B − 1}

Constraint Set 5 : For each pair of rectangle r and x-coordinate i, if the x-coordinate of
a rectangle r is at most i, then the binary variable ai,r must be greater than 0.

ai,r ·B + x(r) ≥ i + 1,∀r ∈ R, i ∈ {0, .., B − 1}

Constraint Set 6 : For each pair of rectangle r and x-coordinate i, if the sum of x-
coordinate and width of a rectangle r is greater than i, then the corresponding binary
variable bi,r must be greater than 0.

x(r) + w(r) ≤ i + B · bi,r,∀r ∈ R, i ∈ {0, .., B − 1}

Constraint Set 7 : For each pair of rectangle r and x-coordinate i, if the binary variables
ai,r and bi,r are 1, then the binary variable ci,r should also be 1. This ensures, that the
height of the rectangle r is added to the coordinate i, if r overlaps with i.

ci,r ≥ ai,r + bi,r − 1, ∀r ∈ R, i ∈ {0, .., B − 1}

Constraint Set 8 : For each pair of rectangle r and x-coordinate i, the variables
ai,r, bi,r, ci,r may only take values 0 and 1.

ai,r, bi,r, ci,r ∈ {0, 1}, ∀r ∈ R, i ∈ {0, .., B − 1}
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5. Converting Cutting Solutions into Box Solution

Again we want to minimize the overall height H (Eq. (5.10)). Which has to be at least
the height of every individual x-coordinate, Hi (Eq. (5.14)). We calculate the individual
heights using the binary variables ci,r, which indicate whether a rectangle r is covers the
x-coordinate i. A rectangle r covers an x-coordinate i, if and only if x(r) ≤ i < x(r) + w(r).
To ensure that the variable ci,r is 1, if r covers i, we use two more binary variables ai,r and
bi,r. The variable ai,r takes the value 1, if x(r) < i + 1 (Eq. (5.15)). Whereas the variable
bi,r takes the value 1, if i < x(r) + w(r) (Eq. (5.16)). Now ci,r takes the value 1, if both
ai,r and bi,r are 1 (Eq. (5.17)). Note that all the binary variables can also have value 1, if
the conditions are not satisfied. However taking value 1, when it is not required only leads
to a worse height. Since our goal is to minimize the overall height, a minimal solution will
only have ci,r be 1, if and only if x(r) ≤ i < x(r) + w(r). The bounds of the container are
ensured by the constraints Eq. (5.11) and Eq. (5.12).

5.4 The Box Problem as Linear Programming Problem
Since we have defined the Cutting Problem and the problem of converting a Cutting
Solution into a Box Solution as linear programming problems, we can easily define the
actual Box Problem as a linear programming problem. In fact the formulation is nearly
identical to the conversion problem, with the addition of the two x bounding constraints
from the Cutting Problem (Eq. (5.11), Eq. (5.12)).

min H

subject to y(r) + h(r) ≤ y(r′) + M · ar,r′ , ∀r, r′ ∈ R : r 6= r′

y(r′) + h(r′) ≤ y(r) + M · br,r′ , ∀r, r′ ∈ R : r 6= r′

x(r) + w(r) ≤ x(r′) + B · cr,r′ , ∀r, r′ ∈ R : r 6= r′

x(r′) + w(r′) ≤ x(r) + B · dr,r′ , ∀r, r′ ∈ R : r 6= r′

y(r) ≥ 0, ∀r ∈ R

y(r) + h(r) ≤ H, ∀r ∈ R

x(r) ≥ 0 ∀r ∈ R

x(r) + w(r) ≤ B, ∀r ∈ R

ar,r′ + br,r′ + cr,r′ + dr,r′ ≤ 3, ∀r, r′ ∈ R

ar,r′ , br,r′ , cr,r′ , dr,r′ ∈ {0, 1}, ∀r, r′ ∈ R

5.5 Empirical Analysis of Linear Programming Models and
the Bubble Algorithm

In the following we compare the Bubble Algorithm and the optimal solutions provided
by the linear program models using empirical data. The test system was an Intel Core
i3-7100U CPU, clocked at 2.4 GHz with 2 cores, 4 threads and 8 GB RAM.

The linear programming models were implemented in C++ using Gurobi, whereas the
Bubble Algorithm was implemented in Haskell. The time measurements for the linear
programming models were taken using the Chrono library. For the Bubble Algorithm, the
measurements were taken using the Criterion Measurement package.

The rectangle widths and heights where chosen randomly from {1, ..., B} using uniform
distribution for width and power-law distribution for height, where B is the container
width. The power-law distribution is a distribution similar to the exponential distribution,
with the decay of the power-law distribution being much slower. As such the power-law
distribution has very few large values, with the majority of the distribution consisting of
smaller values. Like the exponential distribution the power-law distribution also has a
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Figure 5.3: The relative execution time of Box Problem using the bound provided by
Cutting Problem. The execution time of the Cutting Problem was not factored
in for this graph.

parameter, which influences the distribution. In our tests we use −2 as the value for this
parameter.

In the following we use the names Cutting Problem and Box Problem to refer to the
corresponding solver rather than the actual problem. The term Box Conversion refers to
the solver which transforms Cutting Solutions into Box Solutions. Furthermore, we will
occasionally use abbreviations for the different solving methods in order to reduce the size
of the legend in some graphs. The abbreviations are: BC for the Box Conversion solver,
BP for the Box Problem solver, BPC for the Box Problem solver with the bound from the
Cutting Solution provided as parameter, CP for the Cutting Problem solver and lastly BA
for the Bubble Algorithm.

Both resulting heights and execution times were averaged over 20 measurements using
arithmetic mean for each combination of container width and number of rectangles. For
Gurobi the execution time was capped to 30 minutes (1800 seconds). Therefore, the
resulting heights, for instances which exceeded the time limit, are not necessarily optimal,
whereas the execution time without the cap is likely to be significantly higher. For the
Box Conversion solver the height resulting from the Cutting Solution was provided as a
parameter to lower bound the solution. For the Box Problem solver the area bound was
used as a lower bound for the solution. Both solvers were upper bounded by the height of
all rectangles. While the lower bounds are not required for Gurobi to find a solution, they
significantly improve the execution times, allowing larger instances to be solved within the
time cap.

The execution time of the Box Problem can be reduced significantly by providing the height
of the Cutting Problem as a lower bound (cf. Figure 5.3). Though some instances starting
at 30 rectangles still require more time than the limit allows.

Figure 5.4 shows a comparison of the average heights of the Bubble Algorithm and the
linear programming models. The results show that both the height of the Bubble Algorithm
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Figure 5.4: A comparison of the average resulting heights in relation to the number of
rectangles, with the container width being 20 for each instance.

and the height of the linear programming models increases in a similar manner, with the
height of the Bubble Algorithm rising slightly faster, than the linear programming models.
The differences between Box Conversion and Box Problem starting at 30 rectangles are a
possible result of the time cap, since at 30 rectangles some instances for the Box Conversion
hit the time cap, thus not necessarily finding an optimal solution.

The height of the Bubble Solution in relation to the optimal Box Solution is on average
well below 1.5, staying close to 1.4 (cf. Figure 5.5). This means that on average the Bubble
Algorithm is only 40% worse than the optimal solution, despite having no worst case bound
other than the sum of rectangle heights. Whereas the heights of the Cutting Problem and
the heights of the Box Conversion are almost identical to the optimal Box Solution. As
mentioned before the difference between the Box Conversion and the Box Problem that
starts to appear at 30 rectangles is likely a result of the time cap, since the Box Conversion
for some instances at 30 rectangles requires more time than the cap allows.

As one might expect the Box Problem with just the area bound requires significantly more
time to solve, than the combination of Cutting Problem and Box Conversion (see Figure
5.6). In fact solving the Box Problem with just the area bound is only viable for instances
with less than 20 rectangles (cf. Figure 5.7). The Box Problem with the bound provided by
the Cutting Problem however, requires noticeably less time than the Box Problem without
the bound and even less time, than the Box Conversion for instances beyond 20 rectangles.
Despite the lower average execution time of the Box Problem with the Cutting Problem
bound the execution time of the Box Conversion is lower for some rare instances (see Figure
5.7 at 30 rectangles) As expected the Bubble Algorithm is faster than all other solving
methods, that were considered, barely reaching an average of 11 seconds at 50 rectangles.
Similarly the Cutting Problem also requires little computation time, though despite the
short average times, the time limit was exceeded for a single instance at 50 rectangles.

An increase in container width and thus an increase in the average size of the rectangles
usually results in higher solutions height (see Figure 5.8). The reduction in height seen
at container width 50 is a result of the high variance in height at container width 40
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Figure 5.5: A comparison of the height results in relation to the height of the optimal Box
Solution.
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Figure 5.7: The distribution of execution times in relation to the number of rectangles,
with the container width being 20 for each data point.
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Figure 5.8: Comparison of height results in relation to container width, with the number of
rectangles being 20 for each data point. The Box Problem was omitted due to
being identical to the Cutting Problem for all data points. Similarly the Box
Conversion is equivalent to the Cutting Problem in all but the last data point.
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Figure 5.9: The distribution of height results in relation to the container width, with the
number of rectangles being 20 for each data point.

(cf. Figure 5.9), without the outliers the general increase in height becomes much more
apparent. As a result the solution heights increase with the container width, or rather the
size of the rectangles, though much slower than with the number of rectangles.

Unlike with the number of rectangles, there does not seem to be any direct relation between
container width and execution time for the Box Problem and the Box Conversion (see
Figure 5.10). The execution times for most instances are close to 1 second, though some
rare instances take significantly more time for the Box Conversion and the bounded Box
Problem (cf. Figure 5.11). For the Cutting Problem and the Bubble Algorithm however
the relation between the container width and the execution time is very similar to the
relation between the number of rectangles and the execution time (cf. Figure 5.10 and
Figure 5.4).

Solving the Box Problem using linear programming models works well for smaller instances,
however the average required run time increases significantly with each larger instance.
Therefore, for these instances the Bubble Algorithm may be a much better option, if a
slight increase in height is acceptable, due to its low run time requirements. For problems
where optimal or near optimal height is required, the Bubble Algorithm may still serve as
an initial solution, upon which further solutions can be built.
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Figure 5.11: The distribution of execution times in relation to container width, with the
number of rectangles being 20 for each data point.
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6. Conclusion

6.1 Summary
The main objective of this thesis is to examine the relation of the Box Problem and Cutting
Problem. The equality of both problems was proven for the case where all rectangles have
at most height 1 and for the case where each rectangle has at most width 2. For the
latter case, two approaches were considered, first a bounding approach and secondly a
construction approach. While the bounding approach was limited to rectangles of area 2
and only proved effective for cases where the container width is even, it also served as a
cornerstone for the construction approach, providing construction strategies, such as divide
and conquer by rectangle type and combining smaller rectangles into larger rectangles. The
upper bounds where obtained through generalizations of the constructions, with the height
of the construction providing an upper bound for the Box Problem.

The construction approach was based on the idea of constructing a Box Solutions using
x-coordinates from feasible Cutting Solutions. Combined with the idea of merging of
smaller rectangles the approach was ultimately used to show the equality of Cutting and
Box Problem for the case, where all rectangles have at most width 2. The inequality of
both problems was proven for rectangle heights and widths at most 3, with at least one
of the two sides being 1. Thus answering the question of whether the two problems are
equivalent.

Expanding on the idea of constructing feasible Box Solutions from feasible Cutting Solutions
an algorithm was proposed, which at first places all rectangles at the x-coordinate from the
Cutting Solution and y-coordinate 0, then gradually removes overlaps by moving rectangles
upwards. Furthermore, a mixed integer linear programming model was developed to create
optimal Box Solutions based on Cutting Solutions. In order to create optimal Cutting
Solutions another linear programming model was developed to solve the Cutting Problem.
A linear programming model for the Box Problem was obtained by combining the relevant
constraints of both models.

While solving the Box Problem using linear programming models works well for smaller
instances, the required run time increases significantly with each larger instance. For these
instances the Bubble Algorithm may be a much better option, if a slight increase in height
is acceptable, due to its low run time requirements. For problems where optimal or near
optimal height is required, the Bubble Algorithm may still serve as an initial solution, upon
which further solutions can be built.
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6. Conclusion

6.2 Future Work
It would be interesting to see whether or not the Box Problem and the Cutting Problem
are equal for rectangle height at most 2, since the two problems are equal for width at
most 2, height at most 1 and not equal for height and width at most 3. Leaving the case
of rectangle height at most 2 as an open case. Since the case of rectangle height at most
1 already relied on Dilworth’s Theorem it would be very interesting to see how the case
could be proven, if at all.

Another interesting topic may be the improvement of the Bubble Algorithm, for example by
using the spaces created by the algorithm or even different methods of bubbling altogether.
In particular it would be very interesting to see how the worst case bound could be reduced,
by such methods.
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