New layer with new view $[\mathbf{C t r l}+\mathbf{S h i f t}+\mathbf{I}]$

Theorem 1. The center angle is twice as large as an associated peripheral angle $(\alpha=2 \beta)$.

Draw new objects on top

Theorem 1. The center angle is twice as large as an associated peripheral angle $(\alpha=2 \beta)$.

- Line-segment $M P$ divides β into two parts β_{A} and β_{B}

1. Insert boxes $[\mathbf{B}]$ (into the Background: $[\mathbf{C t r l}+\mathbf{B}]$)
2. Select boxes [S] ([Shift] hold)

Theorem 1. The center angle is twice as large as an associated peripheral angle $(\alpha=2 \beta)$.

- $M P$ divides β into two parts β_{A} and β_{B}

further steps to the finish the proof

Theorem 1. The center angle is twice as large as an associated peripheral angle ($\alpha=2 \beta$).

- Line $M P$ divides β into two parts β_{A} and β_{B}
- Triangles $A M P \& B M P$ are isosceles.
for the angles: use Circle [\mathbf{O}]
(and of course Snapping)

Theorem 1. The center angle is twice as large as an associated peripheral angle ($\alpha=2 \beta$)

- Line MP divides β into two parts β_{A} and β_{B}
- Triangles $A M P$ \& $B M P$ are isosceles.
- From sum of angles in a triangle follows $2 \beta_{A}+\gamma_{A}=180^{\circ}$ $2 \beta_{B}+\gamma_{B}=180^{\circ}$
do not forget:
Align boxes

Theorem 1. The center angle is twice as large as an associated peripheral angle ($\alpha=2 \beta$).

- Line $M P$ divides β into two parts β_{A} and β_{B}
- Triangles $A M P$ \& $B M P$ are isosceles
- From sum of angles in a triangle follows $2 \beta_{A}+\gamma_{A}=180^{\circ}$ $2 \beta_{B}+\gamma_{B}=180$
- Summary: $2\left(\beta_{A}+\beta_{B}\right)+\gamma_{A}+\gamma_{B}=360^{\circ}$ $\Leftrightarrow 2\left(\beta_{A}+\beta_{B}\right)=360^{\circ}-\left(\gamma_{A}+\gamma_{B}\right)$

Theorem 1. The center angle is twice as large as an associated peripheral angle ($\alpha=2 \beta$).

- Line MP divides β into two parts β_{A} and β_{B}
- Triangles $A M P \& B M P$ are isosceles.
- From sum of angles in a triangle follows:
$2 \beta_{A}+\gamma_{A}=180^{\circ}$
$2 \beta_{B}+\gamma_{B}=180^{\circ}$
- Summary: $2\left(\beta_{A}+\beta_{B}\right)+\gamma_{A}+\gamma_{B}=360^{\circ}$ $\Leftrightarrow 2\left(\beta_{A}+\beta_{B}\right)=360^{\circ}-\left(\gamma_{A}+\gamma_{B}\right)$

5. Pushing the objects to the right levels
to active layer $[\mathbf{C t r l}+\mathrm{M}]$
to a specific layer

Theorem 1. The center angle is twice as large as an associated peripheral angle $(\alpha=2 \beta)$.

- Line MP divides β into two parts β_{A} and β_{B}
- Triangles $A M P \& B M P$ are isosceles.
- From sum of angles in a triangle follows:

$$
\begin{aligned}
& 2 \beta_{A}+\gamma_{A}=180^{\circ} \\
& 2 \beta_{B}+\gamma_{B}=180^{\circ}
\end{aligned}
$$

- Summary: $2\left(\beta_{A}+\beta_{B}\right)+\gamma_{A}+\gamma_{B}=360^{\circ}$

$$
\begin{gathered}
\Leftrightarrow 2\left(\beta_{A}+\beta_{B}\right)=360^{\circ}-\left(\gamma_{A}+\gamma_{B}\right) \\
=\beta
\end{gathered}=\alpha
$$

The most important shortcuts

Layer:

- new layer with new view
$[\mathrm{Ctrl}+$ Shift I $]$
- neue layer $[$ Ctrl + Shift +N$]$
- push to active level $[$ Ctrl + Shift +M$]$
- rename layer
$[\mathrm{Ctrl}+$ Shift +R$]$
View:
- previous view
[PgUp]
- next view
[PgDown]
- first view
[Pos1]
- last view
[Ende]
- overview of all views
- new page
$[\mathrm{Ctrl}+\mathrm{I}]$
- cut page
$[\mathrm{Ctrl}+$ Shift +X$]$
- copy page
$[\mathrm{Ctrl}+$ Shift +C$]$
- paste page
$[\mathrm{Ctrl}+$ Shift +V$]$
- title of the page
$[\mathrm{Ctrl}+\mathrm{P}]$

Align objects:

Move objects: (Direction corresponds to position on the numeric keypad)

- around 1 pt .
. .
[Ctrl + Num $]$
- around 0.1 pt
[Alt + Num $]$
- around 10 pt
$[\mathrm{Ctrl}+\mathrm{Alt}+\mathrm{Num}]$ Num $\in\{1 \ldots 9\} \backslash\{5\}$

