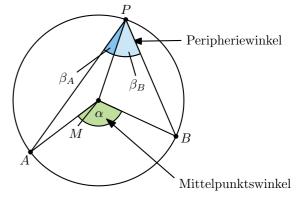
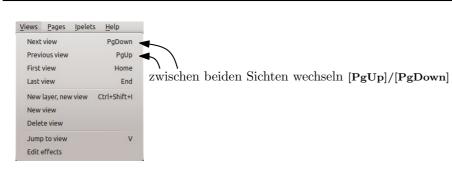
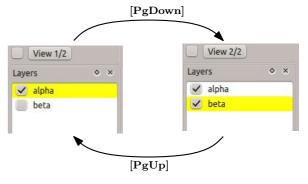
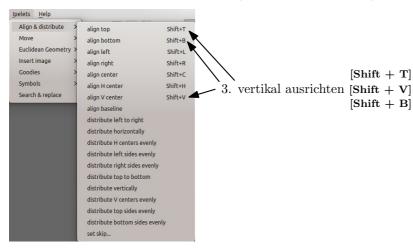

neue Ebene (layer) mit neuer Sicht (view) [Ctrl + Shift + I]

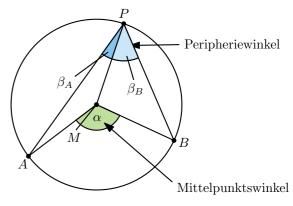


Theorem 1. Der Mittelpunktswinkel ist doppelt so groß wie ein zugehöriger Peripheriewinkel ($\alpha = 2\beta$).

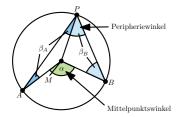

neue Elemente einfach obendrauf malen




Theorem 1. Der Mittelpunktswinkel ist doppelt so groß wie ein zugehöriger Peripheriewinkel ($\alpha = 2\beta$).

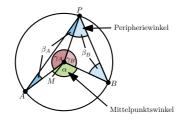

• Strecke MP teilt β in zwei Teile β_A und β_B

- 1. Boxen einfügen [B] (in den Hintergrund: [Ctrl + B])
 - 2. Boxen auswählen [S] ([Shift] gedrückt halten)



Theorem 1. Der Mittelpunktswinkel ist doppelt so groß wie ein zugehöriger Peripheriewinkel ($\alpha = 2\beta$).

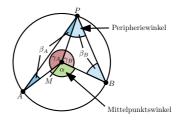
• Strecke MP teilt β in zwei Teile β_A und β_B


weitere Schritte bis zum fertigen Beweis

Theorem 1. Der Mittelpunktswinkel ist doppelt se groß wie ein zugehöriger Peripheriewinkel ($\alpha = 2\beta$).

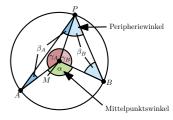
- Strecke MP teilt β in zwei Teile β_A und β_B
- Dreiecke AMP & BMP sind gleichschenklig.

für die Winkel: nutze Hilfskreis [O] (und natürlich Snapping)

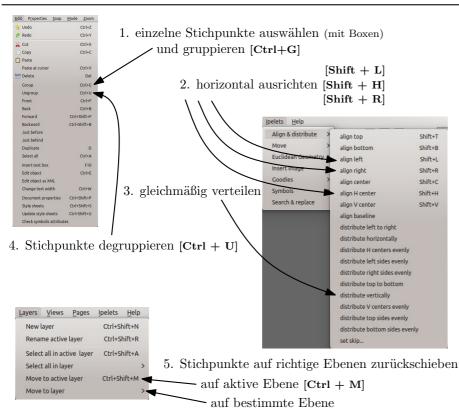


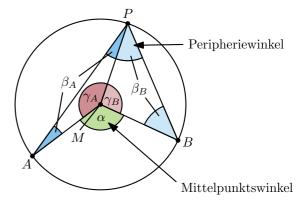
Theorem 1. Der Mittelpunktswinkel ist doppelt so groß wie ein zugehöriger Peripheriewinkel ($\alpha = 2\beta$).

- Strecke MPteil
t β in zwei Teile β_A und β_B
- \bullet Dreiecke $AMP\ \&\ BMP$ sind gleichschenklig
- Aus Winkelsumme im Dreieck folgt: $2\frac{\beta_A}{2\beta_B} + \frac{\gamma_A}{\gamma_B} = 180^{\circ}$ $2\frac{\beta_B}{2\beta_B} + \frac{\gamma_B}{\gamma_B} = 180^{\circ}$


nicht vergessen:

Boxen ausrichten


Theorem 1. Der Mittelpunktswinkel ist doppelt so groß wie ein zugehöriger Peripheriewinkel ($\alpha = 2\beta$).


- Strecke MP teilt β in zwei Teile β_A und β_B
- Dreiecke AMP & BMP sind gleichschenklig.
- Aus Winkelsumme im Dreieck folgt:
- Summe: $2(\beta_A + \beta_B) + \gamma_A + \gamma_B = 360^\circ$ $\Leftrightarrow 2(\beta_A + \beta_B) = 360^\circ - (\gamma_A + \gamma_B)$

Theorem 1. Der Mittelpunktswinkel ist doppelt so groß wie ein zugehöriger Peripheriewinkel ($\alpha = 2\beta$).

- Strecke MP teil
t β in zwei Teile β_A und β_B
- Dreiecke AMP & BMP sind gleichschenklig.
- Aus Winkelsumme im Dreieck folgt: $2\frac{\beta_A}{2\beta_B} + \frac{\gamma_A}{\gamma_B} = 180^{\circ}$ $2\frac{\beta_B}{2\beta_B} + \frac{\gamma_B}{\gamma_B} = 180^{\circ}$
- Summe: $2(\beta_A + \beta_B) + \gamma_A + \gamma_B = 360^\circ$ $\Leftrightarrow 2(\beta_A + \beta_B) = 360^{\circ} - (\gamma_A + \gamma_B)$ $= \beta$

Theorem 1. Der Mittelpunktswinkel ist doppelt so groß wie ein zugehöriger Peripheriewinkel ($\alpha = 2\beta$).

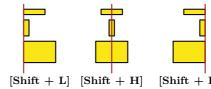
- Strecke MP teilt β in zwei Teile β_A und β_B
- Dreiecke AMP & BMP sind gleichschenklig.
- Aus Winkelsumme im Dreieck folgt:

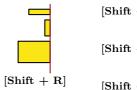
$$2\frac{\beta_A}{\beta_B} + \frac{\gamma_A}{\gamma_B} = 180^{\circ}$$
$$2\beta_B + \frac{\gamma_B}{\gamma_B} = 180^{\circ}$$

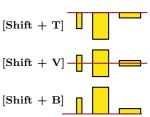
• Summe:
$$2(\beta_A + \beta_B) + \gamma_A + \gamma_B = 360^\circ$$

 $\Leftrightarrow 2(\beta_A + \beta_B) = 360^\circ - (\gamma_A + \gamma_B)$
 $= \beta$

Die wichtigsten Shortcuts

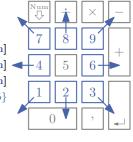

Ebenen (layers):


- neue Ebene mit neuer Sicht [Ctrl + Shift I] • neue Ebene [Ctrl + Shift + N]
- auf aktive Ebene schieben . . . [Ctrl + Shift + M]
- Ebene umbenennen [Ctrl + Shift + R]


Sichten (views):

- vorherige Sicht [PgUp] • nächste Sicht [PgDown] ullet letzte Sicht [Ende] • Uberblick über alle Sichten [V] Seiten (pages):
- neue Seite [Ctrl + I]
- Seite ausschneiden [Ctrl + Shift + X]
- Seite kopieren [Ctrl + Shift + C]
- Seite einfügen [Ctrl + Shift + V]
- Seitentitel [Ctrl + P]

Elemente ausrichten:



Elemente verschieben:

(Richtung entspricht Position auf dem Ziffernfeld)

- um 1pt [Ctrl + Num]
- um 0.1pt [Alt + Num]
- um $10pt \dots [Ctrl + Alt + Num]$ $\mathbf{Num} \in \{1 \dots 9\} \setminus \{5\}$

