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Abstract Statistical clustering criteria with free scale parameters and unknown cluster sizes
are inclined to create small, spurious clusters. To mitigate this tendency a statistical model for
cardinality–constrained clustering of data with gross outliers is established, its maximum likelihood
and maximum a posteriori clustering criteria are derived, and their consistency and robustness are
analyzed. The criteria lead to constrained optimization problems that can be solved by iterative,
alternating trimming algorithms of k–means type. Each step in the algorithms requires the solution
to a λ–assignment problem known from combinatorial optimization. The method allows to estimate
the numbers of clusters and outliers. It is illustrated with a synthetic and a real data set.
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1 Introduction

Clustering means subdividing data sets into separated, cohesive subsets. Two statistical models
are customary for this task: the classification or clustering model and the mixture model. While
grouping of data is the main aim of the former which, to this end, makes explicit use of class
labels, the latter serves primarily for estimating parameters and mixing rates and classification is
secondary; for a comparison see [22], Remark (b) on pp. 354, 355. We apply here the maximum
likelihood (ML) and maximum a posteriori (MAP) paradigms to the classification model. If class-
conditional distributions are normal then homoscedastic and heteroscedastic models are customary.
The former have equal scale parameters and the latter arbitrary ones. Moreover, both models can
be endowed with spherical, diagonal, and full scale parameters so that we have at our disposal six
normal models with spherical or elliptical cluster shapes. In these cases much progress towards an
automatic data analysis has been made in the past 40 years. In the 1960’s, the following cluster
criteria, optimal for uncontaminated, normal data and applicable in the case of a known number of
clusters of about equal size, had been established: 1. The pooled trace criterion, Ward Jr. [63]. It is
the ML criterion for the homoscedastic, spherical normal model, see Scott and Symons [54]. 2. The
pooled determinant criterion, Friedman and Rubin [19], the ML criterion for the homoscedastic,
full normal model, Scott and Symons [54]. 3. The heteroscedastic determinant criterion, an ML
criterion for general normal populations, Scott and Symons [54].

By that time it was well understood how criteria could be created based on other normal submod-
els, e.g. with independent features (the “diagonal” case), and on different cross–cluster constraints.
Symons [57] noticed that subtracting the entropy of the cluster proportions from the log–likelihood
could in some sense optimally handle unknown and unequal cluster sizes. His criterion may be
derived from an MAP model with mixing rates as parameters.

Jancey [32] proposed an efficient algorithm for minimizing Ward’s criterion. The algorithm was
reinvented many times and had earlier been proposed by Steinhaus [56] for partitioning physical
masses. It is now called the “k–means” algorithm, a name coined by MacQueen [38] who proposed
and analyzed a similar algorithm in a somewhat different situation. The method consists essentially
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of an alternating application of ML parameter estimation and ML discriminant analysis. Except for
this method it took some time until dedicated algorithms suitable for efficiently reducing the other
criteria mentioned above became known. Indeed, Schroeder [52] realized that all criteria could be
optimized by similar, alternating algorithms. In the case of general normal populations, e.g., it is
sufficient to replace the Euclidean distance used in k–means with the Mahalanobis distance.

The criteria and algorithms designed for the homoscedastic cases, in particular the pooled trace
criterion and k–means, are popular for their stability, at least if applied to uncontaminated data
sets. This is due to their known properties. MacQueen [38] obtained convergence of the pooled
variance if the k–means algorithm is applied to a sequence of data points distributed iteratively
amongst g clusters. Hartigan [29] proved for dimension d = 1 convergence of the cut points and
their asymptotic normality. Pollard extended Hartigan’s results to Euclidean data. In [46], he
proved that Ward’s criterion consistently estimates the optimal g cluster centers obtained from
the related criterion for the underlying mixture if they are unique. However, these cluster centers
differ from the means of the g original populations so that, contrary to the mixture model, the latter
are not consistently estimated in the normal clustering case, neither with the ML nor with the
MAP approach. The reason is the hard assignment intrinsic to the classification model: no matter
how well the populations are separated, e.g. in the case of g = 2 clusters, the proportions in the
tails on the opposite side of the separating hypersurface are assigned to the wrong cluster. Thus,
the variances are under-estimated and the distance between the mean values is over-estimated in
the limit as the size of the data set tends to infinity. If the data set is small, anything can happen.
However, the better the populations are separated, the more closely the estimated means approach
the population means since there is less overlapping. Pollard [47] gives conditions on the mixture
under which its g cluster centers are asymptotically normal.

Now, the cluster structure of most real, grouped data sets is heterogeneous and application of
homoscedastic models to such data sets may yield absurd results. This is the main reason why
heteroscedastic models are of major interest. Some of their properties are elementary. It is easy
to see that Scott and Symons’s heteroscedastic determinant criterion is equivariant w.r.t. affine
transformations. The heteroscedastic criteria do not consistently estimate normal population pa-
rameters just as described in the homoscedastic case above. Unfortunately, the heteroscedastic
determinant criterion encounters some problems that make it unstable and that are of major con-
cern. The first is the non-existence of an optimal solution since likelihood and posterior density are
unbounded if no suitable constraints are applied. Therefore, the algorithms are inclined towards
singular solutions with spurious, small clusters. Such solutions are undesirable and we know of
three remedies in the normal cases:

(i) bounding the covariance matrices,

(ii) relaxed homoscedasticity as in Hathaway [30] in the case of the mixture model, and

(iii) bounding cluster sizes below so that small clusters cannot appear, see Rocke and
Woodruff [48], Woodruff and Reiners [65].

The reason for the stable performance of k-means (with a possibly unacceptable solution) is that
it implicitly assumes (ii) (even spherical homoscedasticity) and (iii) (even approximate equality of
all cluster sizes).

Besides existence and consistency, also robustness and algorithmic treatment need close attention.
The classical criteria and algorithms are not robust against outliers. It is well known that the
asymptotic breakdown points of the classical methods stated at the beginning even vanish. An
effective way of dealing with the related problem of robust parameter estimation is Rousseeuw’s [50]
minimum–covariance–determinant criterion (MCD). Rousseeuw and Van Driessen [51] proposed
an efficient heuristic for its computation. Like k–means, this algorithm is alternating. Our paper
can be viewed as an extension of MCD to robust clustering.
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In the spirit of Pollard’s [46] result, Cuesta-Albertos et al. [14] define a trimmed homoscedastic
criterion and a trimmed extension of the k–means algorithm for g spherical clusters showing con-
sistency in Pollard’s sense. Rocke and Woodruff [49], see also Woodruff and Reiners [65], proposed
on heuristic grounds a trimmed extension of Scott and Symons’s heteroscedastic determinant
criterion which they called MINO. In [22], we proposed a homoscedastic statistical model for clus-
tering grouped data with outliers deriving from it a pooled cluster criterion and a related trimming
algorithm. We also computed some breakdown points thus showing robustness of criterion and al-
gorithm. Recently, Garćıa-Escudero et al. [24] designed a constrained heteroscedastic classification
model, studied existence of solutions and convergence, and proposed an algorithm. The authors
use eigenvalue constraints of the form (i) above that confine the deviation of the scale parameters
from sphericity and from equality. This makes their model equivariant w.r.t. multiplication by
a scalar but excludes full affine equivariance. However, the constraints guarantee existence of an
optimal solution and consistency in Pollard’s sense. Finally the authors design an iterative trim-
ming algorithm that uses polar decomposition in order to rescue iterations that eventually violate
the constraints. More recently, Gallegos and Ritter [23] designed and analyzed a robust, affine
equivariant, heteroscedastic classification model with trimming based on constraints of the form
(ii) above.

We present here a heteroscedastic classification model with arbitrary populations and outliers and
an algorithmic method that uses lower bounds on cluster sizes as in (iii) above in order to avoid
singular partitions in the heteroscedastic case from the outset. From this model we derive trimmed
cluster criteria, Section 2. The size constraints on the clusters guarantee the existence of optimal
solutions. They can also be used in order to implement a priori knowledge on cluster sizes. The
model extends both Scott and Symons’s heteroscedastic normal model and the statistical model
with “spurious” outliers established in [22]. In the case of normal ML estimation we retrieve Rocke
and Woodruff’s MINO. Since we allow unconstrained parameters our model is affine equivariant.
As with any classification model, the population parameters are not consistently estimated but
we offer a relaxed version of consistency as separation of components increases, Theorems 2.1 and
2.2. The theorems imply also robustness in situations where they apply.

Optimizing the heteroscedastic criteria is not easy and we present monotone, alternating algo-
rithms for this task, the single–point and the multipoint algorithms, Section 3 and Proposition 3.1.
We show that the latter, interestingly, leads to a famous problem from combinatorial optimization:
λ–assignment. Its solutions automatically satisfy the size constraints. We finally show how to use
the algorithms for estimating the numbers of clusters and outliers, Section 4, and report on our
experience with two data sets.

The present algorithmic method serves mainly for avoiding singularities in the course of the itera-
tive process. If size constraints are adequately chosen it can produce reasonable solutions by itself.
Otherwise, it can be combined to advantage with parameter constraints, e.g., of the form (i) or
(ii) above.

2 Statistical model and constrained cluster criteria with

trimming

We consider a very general parametric statistical clustering model of n data points with at least
r ≤ n regular observations from g ≥ 1 populations (classes) in an arbitrary sample space E.
The remaining n− r observations may, but do not have to, be (gross) outliers, observations that
do not conform to the posited statistical model. In the framework of automatic clustering, only
formal definitions are useful. We know of three: according to Barnett and Lewis [5], an outlier
comes from a distribution different from the regular distribution. Davies and Gather [15] treat
outliers as observations in the “tail” of a distribution. Both concepts are informative requiring a
parent distribution. In [22], we introduced another concept: “spuriousness”. Spuriousness handles
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observations that are unpredictable in the sense of obeying no statistical law in a statistical
framework. It assumes that each outlier i comes from its own Bayesian statistical model with
parameter space Ψi and a prior measure τi on it. Since each model is observed only once we
cannot, and do not wish to, estimate their parameters ψi ∈ Ψi. We, therefore, consider them
nuisances to be integrated out requiring the integral of the likelihood function to be constant.
The density function of any random variable X : Ω → E w.r.t. some reference measure on E,
conditional on a parameter ψ, is denoted by fX [ ··· | ψ]. (The reference measure on E is arbitrary
but kept fixed.) The following is the main assumption on the “spurious outliers”.

(SVo) A spurious outlier Xi : Ω → E, i ∈ 1..n, obeys a parametric model with parameter ψi ∈ Ψi

such that the likelihood integrated w.r.t. some prior measure τi on Ψi satisfies
∫

Ψi

fXi
[x | ψi] τi( dψi) = 1, (1)

i.e., does not depend on x.

Opposed to the first two concepts above, spuriousness is not restrictive at all, we do not even
assume that it contributes much prior statistical information. However, it allows to derive trimming
algorithms and leaves the primary rôle to the regular populations which is its strength. In this
respect, it is akin to Davies and Gather’s [15] view but, instead of a density level, it uses the
parameter r, the number of retained elements. The estimation of the outliers themselves and their
number needs a more informative model and is postponed to a later stage of the analysis where
various values of r have to be examined. There are two important and sufficiently general situations
where (SVo) holds.

(A) The sample space E = R
d is Euclidean, Ψi = E, the outliers obey a location model

Xi = Ui + ψi,

with some (unknown) Lebesgue continuous, centered random noise Ui : (Ω, P ) → E, and τi is flat
on Ψi. Indeed, in this case, the conditional Lebesgue density is fXi

[x | ψi] = fUi
(x − ψi) and,

hence,
∫

Ψi

fXi
[x | ψi] dψi = 1.

(B) The parameter sets Ψi are singletons and the distribution of Xi is the reference measure on E
and so fXi

= 1. This case includes the idea of outliers “uniformly distributed” on some domain.

Each regular observationXi comes from one of g populations represented by a density fγj
, γj ∈ Γj ,

j ∈ 1..g, in some dominated parametric statistical model with parameter set Γj .

A labelling of the n objects is an array ℓ = (ℓ1, . . . , ℓn), ℓi ∈ 0..g, where ℓi = j ∈ 1..g retains
object i assigning it to class j and ℓi = 0 discards it. We put Cj = Cj(ℓ) = {i | ℓi = j} and
nj(ℓ) = #Cj(ℓ), the size of cluster j ∈ 1..g w.r.t. ℓ. A labelling is admissible if each cluster
j ∈ 1..g contains at least bj data points and if the set of discarded elements is of size n − r.
The number r ≤ n is fixed in advance; as to its choice see Section 4.1. Also the natural numbers
bj ≥ 1,

∑

j bj ≤ r, are fixed in advance and may serve two purposes. They may first reflect prior
information on cluster sizes. Second, bj has to be chosen in such a way as to secure ML estimation
of the population parameters. Assume, e.g., the full normal model, Nmj ,Vj

, and general position
of the data, i.e. any d + 1 observations are affine independent. Then, the m.l.e. of (mj and) Vj

exists if and only if #Cj ≥ d + 1 for all j ∈ 1..g so that we need bj ≥ d + 1. Similar statements
can be made for normal submodels. If the Vj ’s are assumed to be diagonal and if xi1,k 6= xi2,k for
any two observations i1 6= i2 and all k ∈ 1..d then it is sufficient that each cluster contains at least
two elements. In the spherical normal model this minimum number even suffices if observations
are only pairwise different. The same can be said about Lebesgue continuous elliptically contoured
models. General position of the data is guaranteed with probability 1 if they arise from Lebesgue
continuous populations.
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Let Λr,b denote the set of all admissible labellings ℓ : 1..n → 0..g of the n objects. Since we have
assumed that there are at least r regular observations there is an admissible labelling that retains
no outlier. The parameter set of our complete model with g classes and at most n− r outliers is
the Cartesian product

Λr,b ×
g

∏

j=1

Γj ×
n

∏

i=1

Ψi.

Since it retains exactly r elements some regular observations will be discarded if there are more
than r of them. This is, however, a lesser problem than the opposite, retaining a bad outlier, which
can even lead to the well–known masking effect, see Davies and Gather [15].

The density of Xi w.r.t. the parameters ℓ = (ℓ1, · · · , ℓn), γ = (γ1, · · · , γg), and ψ = (ψ1, · · · , ψn)
is

fXi
[x | ℓ, γ, ψ] =

{

fγj
(x), ℓi = j ∈ 1..g,

fXi
[x | ψi] as in Eqn. (1), ℓi = 0.

We assume that the sequence of observations (Xi)
n
i=1 is statistically independent. By the product

formula, the classification likelihood for the data set x = (x1, . . . , xn) w.r.t. the product reference
measure on En is thus

fX [x | ℓ, γ, ψ] =

g
∏

j=1

∏

ℓi=j

fγj
(xi)

∏

ℓi=0

fXi
[xi | ψi].

Considering the parameters ψi of the outliers nuisances, we deduce from Eqn. (1) the classification
likelihood integrated w.r.t. all prior measures τi

fX [x | ℓ, γ] =

g
∏

j=1

∏

ℓi=j

fγj
(xi). (2)

Maximizing first w.r.t. all γj ’s and taking the logarithm, we infer that the ML estimate of ℓ is
given by the (size–)constrained trimmed ML criterion

argmax
ℓ∈Λr,b

g
∑

j=1

∑

ℓi=j

ln f
γj(ℓ)

(xi), (3)

where γj(ℓ) is the m.l.e. of the parameter γj ∈ Γj w.r.t. cluster j. In the normal case, the double
sum equals a constant minus 1

2

∑g
j=1 nj(ℓ) ln detSj(ℓ) with the scatter matrices Sj(ℓ) w.r.t. ℓ, so

that the criterion becomes the (size–)constrained trimmed ML determinant criterion

MLℓ(x) = argmin
ℓ∈Λr,b

g
∑

j=1

nj(ℓ) ln detSj(ℓ). (4)

We thus find the heteroscedastic determinant criterion MINO, Rocke and Woodruff [49]. These
criteria are appropriate if it is a priori known that clusters are of (about) the same size. If not,
empirical studies show that they tend to equalize cluster sizes. The reason may be that the assign-
ment, although it is subject to estimation, is not a genuine parameter but rather a (hidden) variable
since it grows with the size of the data set. Another reason is provided by Proposition 3.1(b) below
which implies that the criteria (3) and (4) are improved by alternating parameter estimation and
ML discriminant analysis. The latter is known to be biased. The following model removes this
weakness. We shall see that it replaces ML with MAP discriminant analysis.
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In order to account for unequal cluster sizes, we assume that the populations j ∈ 1..g are “switched
on” independently and with probability 0 < pj < 1,

∑g
j=1 pj = 1, for sampling the regular

observations. The formula of total probability implies that the regular observations are distributed
according to the mixture with density

∑g
j=1 pjfγj

. For this reason, the probabilities pj are called
the mixture rates or mixture proportions. We use a mixed ML and MAP estimator, ML w.r.t. the
mixing rates p = (p1, · · · , pg) and the population parameters γ and MAP w.r.t. the assignment
ℓ ∈ Λr,b, i.e., we maximize the conditional density f [x, ℓ | p, γ] w.r.t. p, γ, and ℓ. Now, the product
formula, independence of (p, ℓ) and γ, and independence of x and p conditional on (ℓ, γ) imply

f [x, ℓ | p, γ] = P [ℓ | p, γ]fX [x | ℓ,p, γ] = P [ℓ | p]fX [x | ℓ, γ]. (5)

The set of all n–tuples in (0..g)n with exactly n − r zeros carries the modified product

Π[ℓ | p] =
(

n
r

)−1 ∏g
j=1 p

nj(ℓ)
j as a probability measure. It is natural to use Π[· | p] conditional

on Λr,b as prior P [· | p]. Since pj > 0 for all j ∈ 1..g, its normalizing constant Π[Λr,b | p] con-
verges to 1 as r → ∞ by the law of large numbers and, thus, P [ℓ | p] is close to Π[ℓ | p] at least for
large r. In order to avoid complex expressions, we use the latter and its optimizer p∗ = (nj(ℓ)/r)j

instead of P [ℓ | p] in Eqn. (5). Taking also partial maxima w.r.t. γ we infer, similarly as in (3),
the (size–) constrained trimmed MAP–criterion

argmax
ℓ∈Λr,b

{

− rH
(n1(ℓ)

r
, . . . ,

ng(ℓ)

r

)

+

g
∑

j=1

∑

ℓi=j

ln fγj(ℓ)(xi)
}

. (6)

In the normal case, we derive in the same way as we derived criterion (4) from (3) the (size–)
constrained trimmed MAP determinant criterion

MAPℓ(x) = argmin
ℓ∈Λr,b

{

rH
(n1(ℓ)

r
, . . . ,

ng(ℓ)

r

)

+
1

2

g
∑

j=1

nj(ℓ) ln detSj(ℓ)
}

. (7)

The ML criteria (3) and (4) and the MAP criteria differ in the entropy of the cluster proportions,

H
(n1(ℓ)

r , . . . ,
ng(ℓ)

r

)

= −∑g
j=1

nj(ℓ)
r ln

nj(ℓ)
r . It discourages equal cluster sizes in which case the

entropy is maximal. Symons [57] was the first author to propose it in the uncontaminated normal
case. On page 38, he notes that its influence may be slightly too large so that spurious, small
clusters may arise; see also Section 4.2. We denote the ML and MAP estimates MLℓ(x) and
MAPℓ(x) of the assignment also by ℓ

∗. The associated estimates of the parameters are γ∗j = γj(ℓ
∗),

m∗
j = mj(ℓ

∗) = xCj(ℓ
∗
) = the sample mean of the cluster Cj(ℓ

∗) (a bar indicates mean values),

and V ∗
j = Sj(ℓ

∗) = SCj(ℓ
∗
) = the scatter matrix of the cluster Cj(ℓ

∗).

The criteria include a number of special cases. First, any state space E is allowed, be it discrete
or continuous. Second, various statistical models on E may be used. It is not necessary that each
population should belong to the same model. Third, there may be spurious outliers in which case
one has to estimate their number, e.g., by varying the value of r, see Section 4.1. One may also
collect noise elements in one cluster by choosing a particular model for them, e.g. a distribution
uniform on the convex hull of the data, cf. Fraley and Raftery [18]. In this case choose r = n.
The special case with g = 1 and the normal distribution is Rousseeuw’s [50] robust parameter
estimator MCD.

We conclude this section with two consistency and robustness properties for normal populations
that shed some light on the behavior of the size–constrained, trimmed criteria. Contrary to Pol-
lard [46] and Garćıa-Escudero et al. [24], we are here interested in the population parameters as
opposed to the parameters obtained from “clustering” the mixture in g parts, see also the discus-

sion in our introduction. Let (U
(k)
i )i≥1, 1 ≤ k ≤ g, be g sequences of centered, standard spherical,

normal random vectors, let mk and Vk, 1 ≤ k ≤ g, be vectors and positive definite matrices, re-

spectively, and put X
(k)
i =

√
VkU

(k)
i +mk. Of course, X

(k)
i ∼ Nd(mk, Vk). Furthermore, let X

(0)
i ,

i ≥ 1, be outliers as in (SVo). All vectors U
(k)
i and X

(0)
i are supposed to be independent so that

all X
(k)
i ’s are independent, too.
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Let the random cluster sizes,

N = (N1, . . . , Ng) : (Ω, P ) −→ {(n1, n2, . . . , ng) ∈ N
g | n1 + . . .+ ng = r, nk ≥ bk},

be independent of the sequences
(

X
(0)
i

)

i
, . . . ,

(

X
(g)
i

)

i
and multinomial with parameters r, g, and

(p1, · · · , pg), pk > 0,
∑

k pk = 1, conditioned on Nk ≥ bk, k ∈ 1..g. We consider the data

set X = (X1, . . . , Xn) =
(

X
(1)
1 , . . . , X

(1)
N1
, X

(2)
1 , . . . , X

(2)
N2
, . . . , X

(g)
1 , . . . , X

(g)
Ng
, X

(0)
1 , . . . , X

(0)
n−r

)

of

r “regular” observations (X1, . . . , Xr) =
(

X
(1)
1 , . . . , X

(g)
Ng

)

and (n− r) “outliers” (Xr+1, . . . , Xn) =

(X
(0)
1 , . . . , X

(0)
n−r).

For ℓ ∈ Λr,b, we denote the (random) mean vector, SSP matrix, and scatter matrix of Cj(ℓ) by
Xj(ℓ), Wj(ℓ), and Sj(ℓ), respectively, j ∈ 1..g.

2.1 Theorem

Let the statistical setup be normal as described above. Assume bj ≥ (g + 1)d+ 1 (and r ≥ ∑

bj).

(a) P–a.s., the estimates ℓ
∗
(r) = MLℓ(X) (or ℓ

∗
(r) = MAPℓ(X), cf. (4) and (7)) of the assignment

for fixed r are eventually correct as

(i) ‖mj −mk‖ → ∞, 1 ≤ j < k ≤ g,

(ii) ‖mj −X
(0)
i ‖ → ∞, j ∈ 1..g, i ∈ 1..(n− r), and

(iii) the d–dimensional volume spanned by any d+ 1 outliers diverges to infinity.

(b) For all j ∈ 1..g, we have P–a.s.

lim
r→∞

lim
(i),(ii),(iii)

(mj(ℓ
∗
(r)) −mj) = 0, lim

r→∞
lim

(i),(ii),(iii)
Vj(ℓ

∗
(r)) = Vj .

(c) If there are no outliers, r = n, then it is sufficient to require bj ≥ gd+ 1 and (ii) and (iii) are
dropped.

Proof. For all j ∈ 1..g, k ∈ 0..g, let Cjk = Cjk(ℓ) denote the subset of Cj(ℓ) consisting of

observations of the form X
(k)
1 , . . . , X

(k)
Nk

, k ≥ 1, or of outliers if k = 0. By Xjk(ℓ) and Sjk(ℓ)
we denote the (random) mean vector and scatter matrix, respectively, of Cjk(ℓ) if this set is not
empty. The proof of the theorem is based on the following identity of Steiner’s type, the special
case of [22], Lemma A.3, applied to the partition

{

Cj1, . . . , Cjg, {i}i∈Cj0

}

of Cj .

Wj(ℓ) =

g
∑

k=0

∑

i∈Cjk

(

X
(k)
i −Xj(ℓ)

)(

X
(k)
i −Xj(ℓ)

)T

=
∑

k∈1..g:#Cjk>0

#CjkSjk(ℓ)

+
∑

1≤k<l≤g

#Cjk(ℓ)·#Cjℓ(ℓ)>0

#Cjk · #Cjℓ

#Cj
(Xjk(ℓ) −Xjℓ(ℓ))(Xjk(ℓ) −Xjℓ(ℓ))

T (8)

+
∑

1≤k≤g:#Cjk(ℓ)>0

i∈Cj0

#Cjk

#Cj

(

Xjk(ℓ) −X
(0)
i

)(

Xjk(ℓ) −X
(0)
i

)T

+
∑

{h,i}∈(Cj0
2 )

1

#Cj

(

X
(0)
h −X

(0)
i

)(

X
(0)
h −X

(0)
i

)T
.

(a) If the assignment ℓ generates the “natural” partition then the criteria to be maximized in (4)
and (7) are finite and remain unchanged as (i), (ii), and (iii). It is therefore sufficient to show
that the criteria of all other partitions diverge to ∞ as (i), (ii) and (iii). From the assumption on
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bj , we first infer that each cluster contains at least d + 1 objects from some population or d + 1
outliers. From this fact and the distributional assumptions, it follows by a standard argument
that the determinants of the scatter matrices of all clusters are bounded away from zero, P–a.s..
By the heteroscedastic determinant criterion (4) it remains, thus, to show that, for each non–
natural partition, the determinant of some cluster diverges to ∞ as (i), (ii), and (iii). By what we
mentioned before, these partitions are of three types:

- some cluster contains at least d+ 1 elements of some population together with at least one
element of another;

- some cluster contains at least d+ 1 elements of some population together with at least one
outlier;

- some cluster contains at least d+ 1 outliers.

In the first case, let Cj be a cluster such that #Cjk ≥ d+ 1 for some population k ∈ 1..g and at

least one element from population ℓ 6= k. By definition of X
(j)
i , we have

Xjk(ℓ) −Xjℓ(ℓ) =
√

Vk U jk(ℓ) +mk −
√

Vℓ U jℓ(ℓ) −ml, (9)

where U jk(ℓ) is the mean vector of all U
(j)
i ’s with X

(j)
i ∈ Cjk. The distributional assumptions

imply that Sjk(ℓ) is positive definite, P -a.s.. Note that Sjk(ℓ), U jk(ℓ), and U jℓ(ℓ) remain in a
bounded set independent of the location parameters m. As a first consequence, if the differences
mk −ml tend to infinity then so do the differences Xjk(ℓ)−Xjℓ(ℓ), P -a.s.. Moreover, the first two
sums on the right of Eq. (8) imply (the symbol � denotes the Löwner or positive semi–definite
ordering on the space of symmetric matrices)

Wj(ℓ) �#Cjk

(

Sjk(ℓ) +
#Cjℓ

#Cj
(Xjk(ℓ) −Xjℓ(ℓ))(Xjk(ℓ) −Xjℓ(ℓ))

T
)

�Sjk(ℓ) +
1

r
(Xjk(ℓ) −Xjℓ(ℓ))(Xjk(ℓ) −Xjℓ(ℓ))

T ,

so that the estimate det(A+ yyT ) ≥ (detA)(1 + yTA−1y) yields

detWj(ℓ) ≥ detSjk(ℓ)
(

1 +
1

r

(

Xjk(ℓ) −Xjℓ(ℓ)
)T
Sjk(ℓ)−1

(

Xjk(ℓ) −Xjℓ(ℓ)
)

)

, P–a.s..

Hence, from (9)

lim
‖ml−mk‖→∞

1≤l<k≤g

detSj(ℓ) = ∞, P–a.s..

This is the claim in the first case.

In the second case, let Cj be a cluster that contains ≥ d + 1 elements from population k and at

least one outlier X
(0)
i . The first and third sums on the right of (8) show

Wj(ℓ) � #Cjk

(

Sjk(ℓ) +
1

#Cj
(Xjk(ℓ) −X

(0)
i )(Xjk(ℓ) −X

(0)
i )T

)

.

By (ii), the difference mk −X
(0)
i is unbounded. As in the first case, one shows that Xjk(ℓ)−X

(0)
i ,

too, is unbounded. This fact implies again detSj(ℓ) → ∞.

In the third case, let cluster Cj contain d + 1 outliers. From (iii) and [22], Lemma 4.1, we infer
that the determinant of their scatter matrix diverges to ∞ and, by the last sum on the right of
(8), we have again detSj(ℓ) → ∞. This proves Claim (a).

(b) Part (a) implies that, for fixed r ≥ ∑

j bj and all j ∈ 1..g, the optimal assignment ℓ
∗
(r) satisfies

P–a.s. eventually as (i), (ii), and (iii)
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mj(ℓ
∗
(r)) = Xj(ℓ

∗
(r)) =

1

Nj

Nj
∑

i=1

X
(j)
i , (10)

Vj(ℓ
∗
(r)) = Sj(ℓ

∗
(r)) =

1

Nj

Nj
∑

i=1

(

X
(j)
i −Xj(ℓ

∗
(r))

)(

X
(j)
i −Xj(ℓ

∗
(r))

)T
. (11)

Let j ∈ 1..g. The strong law implies limr→∞
Nj

r = pj (> 0) and, hence, limr→∞Nj = ∞, P−a.s..
From Eqns. (10) and (11), it follows again by the strong law

lim
r→∞

(mj(ℓ
∗
(r)) −mj) = lim

r→∞
(Xj(ℓ

∗
(r)) −mj) = 0 and

lim
r→∞

Vj(ℓ
∗
(r)) = lim

r→∞
Sj(ℓ

∗
(r)) = Vj ,

P–a.s.. This is Claim (b). �

Condition 2.1(a)(iii) says that we have actually outliers and not “inliers”.

In the normal case, the criteria (4) and (7) work if bj ≥ d+ 1. In the theorem we need, however,
the more stringent condition bj ≥ (g + 1)d + 1. The reason is that under the milder condition
spurious clusters composed of d + 1 elements of different populations in or close to a hyperplane
cannot be avoided under (i), (ii), and (iii). These would appear in an optimal partition rendering
Parts (a) and (b) of the theorem incorrect. However, the requirement on bj may be relaxed at the
cost of restricting the statistical model. This is the content of the following theorem.

2.2 Theorem

Assume bj ≥ d+1, κ > 0, U
(j)
i as above, mj pairwise different, X

(j)
i =

√

VjU
(j)
i +κmj, 1 ≤ j ≤ g,

and let X
(0)
i = κU

(0)
i + ψi with Lebesgue continuous random vectors U

(0)
i .

(a) P–a.s., the estimates ℓ
∗
(r) = MLℓ(X) (or ℓ

∗
(r) = MAPℓ(X), cf. (4) and (7)) for fixed r are

correct if κ is large enough.

(b) For all j ∈ 1..g, we have P–a.s.

lim
r→∞

lim
κ→∞

1

κ
mj(ℓ

∗
(r)) = mj , lim

r→∞
lim

κ→∞
Vj(ℓ

∗
(r)) = Vj .

Proof. A simple geometric argument based on the P–a.s. affine independence of d+1 of the U
(j)
i ’s

shows that the d–dimensional volume of d + 1 mixed observations or of d + 1 outliers diverges
to ∞ as κ → ∞. Therefore, an application of [22], Lemma 4.1, shows that the determinants of
the scatter matrices of mixed clusters or of clusters composed solely of outliers diverge P–a.s.
to ∞ as κ → ∞. On the other hand, those of clusters composed of a single population are
independent of κ and P–a.s. > 0. Therefore, an optimal partition must P–a.s. be natural if κ is
large enough. This proves Part (a) and the proof of Part (b) is similar to that of Theorem 2.1(b).�

Note that Parts (a) of the theorems make a statement on the robustness of the constrained trimmed
criteria: if separation is good and if the outliers are sufficiently spread out then they are detected
and discarded by the criteria.

3 Clustering algorithms

In some rare cases there are simple algorithms for computing the ML estimates of the parameters
γj given the admissible assignment ℓ. Popular examples are the normal and coin tossing models
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where ML estimation reduces to simple summation, see e.g. Criterion (4). Even then, maximizing
the Criteria (3) and (6) w.r.t. the combinatorial structure of all admissible assignments Λr,b is not a
simple task. Only for the MCD estimator was it recently shown that optimization can be carried out
in polynomial time. In fact, Bernholt and Fischer [7] designed an algorithm of complexity O(nv),
v = d(d+3)/2+1, based on elliptical separability of regular objects and outliers. In general, one has
recourse to general optimization schemes such as local descent methods combined with multistart
or MCMC algorithms, cf. the discussion in [49], Section 3.1 and [65]. A shortcoming of these
methods is the need to update the parameters with each move, even the unsuccessful ones. More
efficient dedicated algorithms detect whether a move will be successful before the parameters are
updated. They consist of the iteration of so–called reduction steps. Each reduction step combines
ML estimation of the parameters γj based on the current assignment with the subsequent removal
of misfits based on the new parameters. The following proposition states a practicable condition
for a new assignment to improve the criterion. It extends a result of Schroeder’s [52] to (spurious)
outliers and arbitrary cluster sizes. A version for the m.l.e. in the pooled normal case appears in
[22].

3.1 Proposition

Let ℓ and ℓnew be two admissible labellings such that

g
∑

j=1

∑

i:ℓnew,i=j

(

lnnj(ℓ) + ln fγj(ℓ)(xi)
)

>

g
∑

j=1

∑

i:ℓi=j

(

lnnj(ℓ) + ln fγj(ℓ)(xi)
)

. (12)

(a) Then ℓnew strictly improves the MAP–criterion (6) w.r.t. ℓ.

(b) The same holds for the ML criterion (3) after dropping the summand lnnj(ℓ) on both sides
of Estimate (12).

Proof. We give the proof for Case (a), Case (b) is similar. Applying (12), the entropy inequality,
and ML estimation in this order, we have the following chain of estimates.

− rH

(

(nj(ℓ)

r

)

j

)

+
∑

j

∑

i:ℓi=j

ln f
γj(ℓ)

(xi)

=
∑

j

∑

i:ℓi=j

(

ln
nj(ℓ)

r
+ ln fγj(ℓ)(xi)

)

<
∑

j

∑

i:ℓnew,i=j

(

ln
nj(ℓ)

r
+ ln fγj(ℓ)(xi)

)

=
∑

j

nj(ℓnew) ln
nj(ℓ)

r
+

∑

j

∑

i:ℓnew,i=j

ln fγj(ℓ)(xi)

≤
∑

j

nj(ℓnew) ln
nj(ℓnew)

r
+

∑

j

∑

i:ℓnew,i=j

ln fγj(ℓ)(xi)

≤
∑

j

nj(ℓnew) ln
nj(ℓnew)

r
+

∑

j

∑

i:ℓnew,i=j

ln fγj(ℓnew)(xi)

= −rH
(

(nj(ℓnew)

r

)

j

)

+
∑

j

∑

i:ℓnew,i=j

ln fγj(ℓnew)(xi). 2

The fact that both sides in the hypothesis of Proposition 3.1 contain the current population
parameters γj(ℓ) substantially reduces the complexity of the optimization. The proposition may
be exploited for designing several reduction steps depending on the transitions from ℓ to ℓnew
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employed. The simplest one is defined by elementary moves, the change of an object from a
cluster with a surplus of elements to another or the swap of two objects,

(c) i : ℓi → j, ℓi, j ∈ 1..g, li 6= j, if the size of cluster ℓi is > bℓi
;

(s) i : li → j, k : j → li, li ∈ 0..g, li 6= j = ℓk ∈ 1..g.

Both moves conserve admissibility. Combined they make the configuration space Λr,b a connected
graph. Denote the assignment resulting from move (c) or (s) by ℓnew. The difference between the
left and right sides of (12) is easily computed. We have

u(c)(i, j) = ln
nj(ℓ)

nℓi
(ℓ)

+ ln fγj(ℓ)(xi) − ln fγℓi
(ℓ)(xi), and

u(s)(i, j, k) =

{

ln fγj(ℓ)(xi) − ln fγj(ℓ)(xk), li = 0,

ln fγj(ℓ)(xi) − ln fγℓi
(ℓ)(xi) + ln fγℓi

(ℓ)(xk) − ln fγj(ℓ)(xk), li 6= 0.

If the difference is strictly positive for some admissible move then the proposition asserts that the
move improves the MAP–criterion (6). For the ML criterion (3) the term involving the cluster
sizes is omitted. This leads to the following reduction step.

3.2 The single–point reduction step

// Input: An admissible labelling ℓ;
// Output: an admissible labelling ℓnew with larger criterion or the response “stop”.

1. Compute the parameters γj(ℓ) w.r.t. ℓ, using update formulae if possible;

2. determine the (admissible) move (c) or (s) with maximal value of u(c) or u(s);

3. if this maximum is > 0 then update ℓ accordingly and return the updated labelling;
else respond “stop”.

It is possible to stop the maximization in step 2 as soon as some value u(c) > 0 or u(s) > 0 is
found.

The proposition suggests also a multipoint reduction step for improving the MAP–criterion. It
often outperforms the single–point reduction step w.r.t. speed. A naive version is this: Given a
labelling ℓ, compute the sizes nj(ℓ) and the parameters γj(ℓ) and assign each observation xi to the
cluster j = ℓnew,i with maximum value lnnj(ℓ) + ln fγj(ℓ)(xi). If the sum of the largest r of these

numbers exceeds the sum for the original labelling then the proposition assures us that the new
labelling ℓnew has larger MAP–criterion (6) provided it is admissible. A similar statement is true for
the ML criterion (3) (drop the numbers nj(ℓ)). This is the main scheme of an efficient estimation
procedure. As an advantage over a single–point reduction step it allows to explore the whole data
set without updating the parameters after each successful reassignment of a single point. Since
nj(ℓ)

r fγj(ℓ)(xi) is just the posterior density given the parameters of the current labelling used in

discriminant analysis, the step is intuitively appealing since it assigns each observation to the class
determined by the MAP (or ML) discriminant rule w.r.t the current parameters.

Unfortunately, in the present heteroscedastic case, the naive procedure just described does not
guarantee admissibility of the new assignment, in particular if there is a small cluster or if the
constraints bj are large. This is contrary to the homoscedastic case where deficient or even empty
clusters do not prevent a partition from being admissible. This fact renders the above procedure
often unstable. In order to ensure admissibility, the multipoint reduction step actually requires
solving the following constrained optimization problem.
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3.3 The multipoint optimization problem

For given numbers nj and parameters γj , maximize
∑

i:ℓi 6=0

(

lnnℓi
+ln fγℓi

(xi)
)

over all admissible
labellings ℓ = (ℓ1, . . . , ℓn), i.e., subject to the constraints

#{i ∈ 1..n | ℓi = j} ≥ bj , j ∈ 1..g, and

#{i ∈ 1..n | ℓi = 0} = n− r.

This looks like a difficult problem at first sight. Yet it belongs to the class of problems known to be
tractable in computer science. In fact, we will show in Appendix A that finding the labelling ℓ may
be transformed to finding some binary assignment matrix z by means of a certain λ–assignment
problem which we now describe. The parameters of the problem are the weights

ui,j = lnnj + ln fγj
(xi), i ∈ 1..n, j ∈ 1..g, (13)

and the constraints bj, j ∈ 1..g. The transformed problem uses an artificial (g + 1)th class with
associated weights

ui,g+1 = max
j∈1..g

ui,j .

This class serves to accommodate the excess members w.r.t. the constraints ≥ bj of the g natural
classes. The discarded elements do not need weights ui,0; they could be put to any constant value
if necessary, e.g. 0. The announced λ–assignment problem is

(λA)

n
∑

i=1

g+1
∑

j=1

ui,jzi,j maximal over all matrices z ∈ R
n×(g+2) subject to the constraints



































∑

j zi,j = 1, i ∈ 1..n,
∑

i zi,0 = n− r,
∑

i zi,j = bj, j ∈ 1..g,
∑

i zi,g+1 = r − ∑

bj ,

zi,j ≥ 0, i ∈ 1..n, j ∈ 0..(g + 1).

A matrix z that satisfies the constraints of (λA) will be called feasible. Contrary to an admissible
solution, a feasible solution is defined by equalities instead of inequalities.

According to Appendix A, (λA) has a binary solution z∗ with exactly one entry 1 in each line,
a fact that justifies the name assignment matrix. Moreover, we show in Appendix A that the
assignment matrix z∗ induces a solution ℓ

∗ to the multipoint optimization problem, namely

ℓ∗i =

{

j, if z∗i,j = 1 and j ≤ g,

the natural class of i, if z∗i,g+1 = 1;
(14)

here, the “natural class” of object i is argmaxj∈1..g ui,j .

Appendix B is devoted to a survey on efficient algorithms for solving (λA). We note that simulta-
neous lower and upper constraints bj ≤ nj ≤ cj , and hence equality constraints, can be treated in
a similar way.

Using ℓ
∗ = (ℓ∗1, . . . , ℓ

∗
n) as ℓnew in Proposition 3.1, we obtain the following multipoint reduction

step.

3.4 The multipoint reduction step

// Input: An admissible labelling, its parameters γj(ℓ), and its criterion;
// Output: an admissible labelling ℓnew with its parameters and (larger) criterion

or the response “stop”.
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1. solve the λ–assignment problem (λA) with weights
{

ui,j = lnnj(ℓ) + ln fγj(ℓ)(xi), j ∈ 1..g,

ui,g+1 = maxj∈1..g ui,j ,
i ∈ 1..n;

2. determine the optimal assignment according to Eqn. (14);

3. compute parameters and criterion of this assignment;

4. if the criterion has improved, return it together with this solution and its parameters;
else “stop”.

A reduction step is the combination of parameter estimation and discriminant analysis. In this
sense, the multipoint reduction step may be viewed as a combination of parameter estimation and
constrained discriminant analysis. The transportation problem in connection with constrained
discriminant analysis appears already in Tso et al. [62]. These authors deal with automatic chro-
mosome classification using the constraints to ensure the correct number of chromosomes of each
class in a biological cell. An application of λ–assignment to a constrained, least–squares clustering
problem with fixed cluster centers and sizes appears in Aurenhammer et al. [4].

3.5 Overall algorithms

Reduction steps receive a labelling and improve it according to Proposition 3.1. Their iteration
thus gradually increases the criterion. Since there are only finitely many labellings the iteration
must stall after a finite number of steps with the “stop” signal. This process takes typically a few
or a few tens of reduction steps. The returned partition is one proposal for the requested solution.
It is self–consistent in the sense that it reproduces its parental parameters. While an optimum of
the criterion shares this property, the solution obtained from a single iteration does, in general,
not optimize the criterion. In fact, clustering is known to be NP–hard, see Garey and Johnson [25],
and we cannot expect to find an optimal solution at all except in simple cases. All we can seek
is a solution with a large value of the criterion in the time available. In many cases this is even
sufficient. It can be achieved by application of the multistart method, e.g. with random initial
labellings. Of course, the number of replications that lead to a solution near the optimum depends
heavily on the size and structure of the data set, on the initial labellings, on the parameters g and
r, and on the statistical model chosen. As a rule of thumb, we begin with a minimum number of
replications, say 1000, dynamically extending this number to at least ten times the number needed
for the last record. So, if the last record among the first 1000 replications was at replication 30, we
stop at 1000 hoping that no new record will appear later. If it was at 900, we run the algorithm
for at least 9000 replications, and so on. If this procedure does not stop in the time available then
use the last record.

A word is in order concerning the choice of the lower bounds bj which appear as additional
parameters of the algorithm. In order to reduce the number of parameters, we set all bj ’s to the
same value, b. The value for b itself must be detected by experiment. Starting with a low value,
say d+ 1, we raise b until the size of the smallest cluster is substantially larger than b. Solutions
ℓ satisfying minj nj(ℓ) = b are in most cases forced and undesirable. This method will, of course,
not detect small clusters which are then found among the discarded elements.

Reduction steps can also be based on heuristics, cf. App. B.2. However, since they need not improve
the criterion, they do not necessarily terminate at a self–consistent solution. Iteration of single–
point or (heuristic or exact) multipoint reduction steps thus gives rise to three stable optimization
methods for fixed numbers of clusters and discarded elements. They produce reasonable solutions
even if a cluster tends towards becoming too small by the end of an iteration. The multipoint is
superior to the single–point algorithm w.r.t. speed. In complex situations, it is useful to refine the
result of a multipoint search by single–point steps or local search.
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Each series of reduction steps needs an initial solution to begin with. We pick a subset of size
r uniformly at random, the retained elements. There exists a simple but sophisticated algorithm
that accomplishes just this in one sweep through the data, see Knuth [35], p.136 ff. Moreover,
we assign the objects of this set to g clusters again uniformly at random. The clusters must be
large enough to allow estimation of their parameters. In general, this requirement does not pose
a problem unless g is large. In this way, the clusters will be of about equal size with very high
probability. It follows that the entropy of the mixing rates is large at the beginning making it
easier to fulfill Hypothesis (12) of Proposition 3.1. Coleman et al. [12] compare the effectiveness
of some initial solutions.

4 Number of clusters and number of outliers

4.1 Methods

Application of our method needs the parameters g and r. The first is the “number of clusters” and
the second the number of retained elements which we are now going to use in order to estimate the
“number of outliers.” There is no unanimous concept of “cluster” or “outlier” and these notions
are even overlapping – outliers may be traded for clusters: a sufficient number of “outliers” may
give rise to a cluster and it may sometimes even be reasonable to assume the absence of outliers. In
the present statistical model, outliers either originate from a rare class of which bj elements have
not been observed (Rocke and Woodruff [49], Section 4) or they constitute a set whose structure,
e.g. shape, is not in harmony with the posited populations. In the first case, the outliers may find
some extreme cluster members that complement them to a sufficiently large cluster. The model
often accommodates also clusters whose structures do not conform with its populations. Therefore,
in both cases, the numbers of clusters and outliers are subject to interpretation.

Nevertheless, intervals containing the two numbers can be a priori given. The parameter estimates
may break down under the influence of a single remaining gross outlier and a missing cluster
generally forces the algorithm to unite two clusters. It is therefore important to explore sufficiently
small values of r and sufficiently large values of g. As a first step, establish a table of the optimal
solutions w.r.t. the constrained trimmed ML or MAP criterion, see (3) and (6), for all (reasonable)
numbers of clusters, g, and all (reasonable) numbers of discarded elements, n− r. In subsequent
steps, reduce these solutions to the one or the few that seem most promising. If, for a given value
of g, the number r is only inessentially smaller than the optimal then each cluster will just loose a
few extreme members but the parameters will not be too much affected. It is therefore justified to
use a lacunary subset of values r for each g; see also Rousseeuw and Van Driessen’s [51], Section
5, discussion about the choice of r. If one assumes one or two more clusters than there actually
exist then empirical observations show that clusters of minimal sizes bj are split off the natural
ones by the MAP method without much changing the estimated parameters of the latter.

We have so far reduced the original clustering problem to analyzing a table of potential solutions
indexed by the chosen pairs (g, n − r). This is a substantial reduction of the complexity of the
problem but not yet its solution. If the optimal partition ℓ

∗ for a pair (g, n− r) contains outliers
then they must show up in at least one cluster. In order to single out those pairs that do not
contain outliers we use a multiple-testing procedure. Let X(j) be the random variable from which
Cj(ℓ

∗) is sampled and consider a simple test for the hypotheses Hj
0 : X(j) ∼ γCj(ℓ

∗
) = the ML

estimate of γ for Cj(ℓ
∗), j ∈ 1..g. It is natural to delete all pairs (g, n− r) for which the composite

hypothesis H0 =
⋂

j H
j
0 is rejected. According to Roy’s union intersection test, see Mardia et

al. [39], Section 5.2.2, this means rejecting Hj
0 for some j at some level of significance, say α = 0.1.

In other words, a pair (g, n− r) and its optimal solution ℓ
∗ is kept in this phase if the test rejects

none of its clusters. There is a plethora of tests available for the simple hypothesesHj
0 . We mention

tests for goodness of fit of the densities fγj(ℓ
∗
) with the clusters Cj(ℓ

∗), j ∈ 1..g, normality tests,
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see Mecklin and Mundfrom’s [41] extensive survey article, and methods for outlier detection or
identification, see Becker and Gather [6]. If g admits an acceptable pair (g, n − r), keep the one
with maximum r as a candidate. There now remains at most one entry per line in the table so
that the complexity of the problem is again reduced.

If this procedure leaves no solution at all then the assumptions on the regular populations or the
basic assumption that the data set in hand is composed of clusters and outliers is questionable.
Otherwise, there are essentially three approaches for selecting the favorite number g, cf. [42, 27],
cluster validation, the so-called elbow criterion, and model selection criteria. Cluster validation
may be divided in two branches: tests and validity measures. The classical test, due to Wolfe [64],
is a likelihood ratio test for the hypothesis of k clusters against (k− 1) clusters. Bock [9] discusses
some significance tests for distinguishing between the hypothesis of a homogeneous population vs.
the alternative of heterogeneity. Chen et al. [11] propose a modified likelihood ratio test for g = 2
vs. g ≥ 3. Validity measures are functionals of partitions and usually measure the quality of cluster
separation and of cluster cohesion (or “compactness”); see, e.g., Bezdek et al. [8]. Often, the total
within–cluster sum of squared distances about the centroids is used as a measure of cohesion and
the total between–cluster sum of squared distances for separation; cf. Milligan and Cooper [42]
and the abridged presentation of their work by Gordon [27]. The elbow criterion identifies the
number of clusters as the location where the decrease of some cluster criterion flattens markedly.
For a recent refinement of this method we refer the reader to Tibshirani et al. [58].

Maximum likelihood and maximum a posteriori estimation tend towards a large number of clus-
ters. A model selection criterion counteracts this tendency by subtracting a penalty term from
the maximum of the log–likelihood or of the posterior log–density. Schwarz [53] proposed his pop-
ular Bayesian Information Criterion (BIC) for exponential families. In the uncontaminated case,
its penalty term is q

2 · lnn, q being the total dimension of the parametric model. There is some
practical evidence that supports BIC as a means for estimating the number of clusters of mix-
ture models, too; see the discussion in McLachlan and Peel [40], Ch. 6. Moreover, Kéribin [33]
described a family of penalty terms, among them BIC, which asymptotically as n → ∞ neither
over– nor underestimate the correct number of components of a mixture model

∑

i

∑g
j=1 pj ln fγj

if
the class–conditional populations satisfy certain regularity conditions and the parameters certain
constraints. Her interesting result is applicable, e.g., to Gaussian families if the mean values are
bounded and if the covariance matrices are bounded below in the Löwner ordering by a positive
multiple of the identity matrix. In the case of a mixture, q = q(g) is g − 1 (for the mixing rates)
plus the sum of the dimensions of the g population models.

BIC with this value of q may be applied also to the MAP Criterion (6) for normal classification
if separation is sufficiently good. Indeed, let ℓ

∗ be the optimal MAP–assignment and let p∗ and
γ∗ be the optimal mixing rates and population parameters of a mixture model under suitable
constraints as in Kéribin’s theorem. For any g, the optimal value of Criterion (6) is no larger than
that of the mixture model: Assuming without loss r = n, we have

−nH
(n1(ℓ

∗)

n
, . . . ,

ng(ℓ
∗)

n

)

+

g
∑

j=1

∑

ℓ∗
i
=j

ln fγj(ℓ
∗
)(xi) =

∑

i

{

ln
nℓ∗

i
(ℓ∗)

n
+ ln fγℓ∗

i
(ℓ

∗
)(xi)

}

= ln
∏

i

nℓ∗
i
(ℓ∗)

n
fγℓ∗

i
(ℓ

∗
)(xi) ≤ ln

∏

i

∑

j

nj(ℓ
∗)

n
fγj(ℓ

∗
)(xi) ≤ max

p,γ
ln

∏

i

∑

j

pjfγj
(xi)

= ln
∏

i

∑

j

p∗jfγ∗
j
(xi). (15)

On the other hand, if the data set is well separated in g clusters then, at least in the normal

case, fγ∗
j
(xi) ≪ fγ∗

ℓ∗
i

(xi) for all j 6= ℓ∗i , 1 ≤ i ≤ n, fγ∗
ℓ∗
i

(xi) ≈ fγℓ∗
i
(ℓ

∗
)(xi), and p∗j ≈ nj(ℓ

∗
)

n for all

j ∈ 1..g, cf. Theorems 2.1 and 2.2. Hence, the third and the last terms in the above chain almost
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meet so that we have, for this g and with γj = (mj , Vj),

−nH
(n1(ℓ

∗)

n
, . . . ,

ng(ℓ
∗)

n

)

+

g
∑

j=1

∑

ℓ∗
i
=j

ln fγj(ℓ
∗
)(xi) ≈ ln

∏

i

∑

j

p∗jfγ∗
j
(xi). (16)

The combination of Kéribin’s result with the estimate (15) and the aproximation (16) supports
BIC as a penalty term also for MAP–partitioning in the case of large data sets and good separation.

Since the number rg of observations retained in the favorite partition for g clusters depends on
g, it needs to be normalized, e.g. to n. The optimal value of the MAP–criterion (6) increases
approximately linearly with the number r, asymptotically, at least in the normal case if there is
sufficient separation. Indeed, if p1, . . . , pg are the mixing proportions then, P–a.s., by Theorem 2.1
or 2.2 and by the law of large numbers,

−H
(

(nj(ℓ
∗)/r)j

)

+

g
∑

j=1

1

r

∑

ℓ∗
i
=j

ln fγj(ℓ
∗
)(xi) −→

r→∞
−H

(

(pj)j

)

+

g
∑

j=1

lim
r→∞

1

r

∑

ℓ∗
i
=j

ln fγj
(xi)

= −H
(

(pj)j

)

+

g
∑

j=1

pj

∫

fγj
(x) ln fγj

(x) dx = −H
(

(pj)j

)

− d

2
−

g
∑

j=1

pj

2
ln det 2π Vj .

Therefore, we propose as model selection criterion with trimming the corrected BIC

argmax
g

{

− nH
(n1(ℓ

∗)

n
, . . . ,

ng(ℓ
∗)

n

)

+
n

rg

g
∑

j=1

∑

ℓ∗
i
=j

ln fγj(ℓ
∗
)(xi) −

q(g)

2
lnn

}

. (17)

We finally note that Neykov et al. [43] recently proposed a simple method that estimates both
parameters at a time, the trimmed BIC. They establish a table of BIC values indexed by g and r
proposing to use the parameter values where the minima w.r.t. g stabilize. Although their criterion
is proposed for the mixture model it can be applied to the MAP–criterion as well.

4.2 Experimental studies

We finally illustrate the methods presented in Sections 3.5 and 4.1 with a synthetic, contaminated
data set, MLNG, and Anderson’s [3] famous four–dimensional Iris Data Set.

Means (0, 0, 0) (−6, 3, 6) (6, 6, 4)

Covariance
matrices

diagonal
(9.0, 4.0, 1.0)





4.0
−3.2 4.0
−0.2 0.0 1.0









4.0
3.2 4.0
2.8 2.4 2.0





Eigenvalues 9.0 4.0 1.0 7.20 1.07 0.73 9.11 0.88 0.016
Cardinalities 200 50 50

Table 1: Structures of the three 3D normal populations from which Data Set MLNG is sampled. The
eigenvalues of the covariance matrices are also shown. The data set contains 30 additional “outliers”
uniformly distributed in the cube [−15, 15]3.

The three-dimensional Data Set MLNG is sampled from the three normal populations with pa-
rameters specified in Table 1. The corresponding mixture appears in McLachlan and Peel [40], p.
218. To this basic data set we add 30 outliers uniformly distributed in the cube [−15, 15]3. We
set the minimal size constraints bj = d + 1 = 4. The clustering according to the trimmed MAP
determinant criterion (7) with known numbers of classes and outliers is essentially the original
one. The estimated parameters for these input values are shown in Table 2.
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Means (0.09, 0.13,−0.02) (−5.94, 2.94, 5.95) (6.38, 6.40, 4.28)

Covariance
matrices





9.1
0.4 3.7
0.2 0.0 1.0









4.0
−2.3 2.7
−0.5 −0.0 1.2









3.4
2.6 3.0
2.5 2.0 1.8





Eigenvalues 9.1 3.7 1.0 4.0 1.4 1.0 3.4 1.1 0.02
Cardinalities 202 51 47

Table 2: Data Set MLNG: parameters estimated with known numbers of clusters and outliers (30). This is
also the partition obtained with the χ2–goodness-of-fit test and model selection criterion BIC, Eqn. (17).
See also the text in Section 4.2.

We next estimate the numbers of outliers and clusters using the optimal solutions ℓ
∗ of the trimmed

MAP determinant criterion (7) for various parameters g and r with the multiple-testing procedure
explained in in Section 4.1. We have to specify a simple test for the hypothesesHj

0 : X(j) ∼ Nm∗
j
,V ∗

j

with the estimated mean vectors m∗
j = xCj(ℓ

∗
) and covariance matrices V ∗

j = SCj(ℓ
∗
). We use a

χ2–goodness–of–fit test with Yates’ correction. Its ten cells are the elliptical layers defined by the

Mahalanobis distance square ϕj(x) = (x−m∗
j )

T
(

V ∗
j

)−1
(x−m∗

j ), x ∈ R
d, and the k/10-quantiles

qk, 1 ≤ k < 10, of the χ2
d–distribution as division points. Under the hypothesis Hj

0 , the random
variable X(j) is approximately χ2

d–distributed so that the cells {x ∈ R
d | qk−1 ≤ ϕj(x) < qk},

k ∈ 1..10, q0 = 0, q10 = ∞, are about equiprobable. Since there are nine degrees of freedom the
level of significance α = 0.1 means a value of the χ2–test statistic of ≥ 14.7. The test does not
reject the solutions with 3 clusters and between 30 and 40 discarded elements and so we accept the
one with 30 as the solution for g = 3, cf. Table 3. Its sizes are 202, 51, and 47. Two solutions for
g = 4 are also not rejected, the one which retains the whole data set and the one which discards 15
elements. The first solution accepts the outliers as a cluster and is the proposed partition for g = 4
since it retains more objects. The second solution removes extreme elements in the corners of the
cube and accepts the rest as a cluster. The values of the corrected BIC (17) are −2150 (g = 3)
and −2418 (g = 4). We, thus, accept the former solution. It is close to the original partition.

Between five and fifty replications of (exact) multipoint iterations 3.4 with randomly selected
initial partitions were sufficient to reach the final result for one pair (g, n − r). Each iteration
consisted of about ten reduction steps. Our C++ implementation takes about 3 · 10−4 sec on a 2
GHz processor for one reduction step.

The Iris Data Set has served for demonstrating the performance of many clustering algorithms,
beginning with Fisher [17]; for a recent study see Li [37]. It consists of 50 observations of each

g n− r MLNG

3 25 20.1 14.3 10.9
3 30 12.5 11.6 11.0
3 35 11.1 7.5 3.5
3 40 11.3 7.5 3.1
3 45 15.9 15.0 2.5
3 50 19.1 15.1 2.5
3 55 22.8 19.1 2.5
3 60 37.7 20.8 3.7

g n− r MLNG

4 0 12.5 11.0 10.7 9.3
4 5 23.2 12.5 11.0 9.3
4 10 21.9 12.5 11.0 9.3
4 15 14.2 13.2 12.1 3.5
4 20 15.8 12.5 11.0 8.5

g n− r Iris

3 0 13.3 3.7 5.0
3 5 11.9 7.8 5.0
3 10 6.2 8.5 1.8
3 15 9.1 8.5 4.2
3 20 11.4 7.6 4.2
3 25 16.5 9.1 3.8
3 30 20.7 11.6 7.1

Table 3: Yates corrected χ2–goodness–of–fit test with nine degrees of freedom for estimating the number
of outliers. The rows show the values of the test statistic for the Data Sets MLNG and Iris and clustering
results with g clusters and n − r discarded elements. The minimum constraints bj = 4 were applied to
MLNG and the constraints bj = 20 to Iris. See also the text.
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of the three subspecies setosa, versicolour, and virginica with at most few outliers. Its entries are
of the form *.* with only two digits of precision preventing general position of the data. The
observations 102 and 143 are even equal. Since this is a deficiency of the data we add a number
uniformly distributed in the interval [−0.05, 0.05] to each entry, thus trying to “restore” their
numerical character, although not faithfully. But the noise added is negligable compared with the
natural variation of the data. Since the entries are positive, we take their logarithms.

bc

bc
bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc
bc

bc
bc

bc bcbc

bc

bcbc bc
bc

bc

bc

bc
bc

bcbc

bc
bc

bc

bc bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

rs
rs rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs
rs

rs

rs
rs

rs
rs
rs
rs

rs
rs

rs

rsrs

rs rsrs

rs rs

rs

rs

rs
rs

rs

rs

rs

rs
rs rs rs

rs

rs

r

r

ut

ut

ut

ut
ut
ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut
ut

ut

ut

ut

ut

ut

ut

ut

utut

ut
ut ut

ut ut

ut

utut
ut

utut
ut

ut

ut utut

ut

ut ut

ut

ut

ut

ut

utu

Figure 1: The Iris data projected to the plane spanned by the three cluster centers estimated with
ML. Left I. setosa, center I. versicolour. The errors are shown solid.

The known, correct partition of Iris is essentially reproduced by the ML determinant criterion (4)
with three clusters, no discarded elements, and minimal cardinalities bj = b = d + 1 = 5, just
two versicolour plants are placed in the virginica cluster and one virginica plant is falsely assigned
to the versicolour cluster. The same result was obtained by Scott and Symons [54] with their
homoscedastic model and by Li [37]. Fig. 1 presents a scatter plot of the projection of the data
onto the plane spanned by the three cluster centers. The optimal clustering according to the MAP
determinant criterion (7) with three clusters, no discarded elements, and b = 5 unites I. versicolour
and I. virginica identifying only two major clusters and a small spurious cluster of minimal size
five close to some hyperplane. Up to b = 19, the optimal solution still contains a cluster of or
close to the minimum size b. But from b = 20 on, up to 46, it returns a solution with cardinalities
50, 46, 54 close to the correct one. The χ2–goodness–of–fit test presented on the right of Table 3
indicates that Iris does not contain many outliers, if any.

Here, it takes on the average 16 000 replications of (exact) reduction step iterations 3.4 (of length
about ten, each) with random initial labellings in order to reach the (conjectured) optimum.
Standard deviation of the number of replications is 12 000. Our C++ implementation needs 1.5
seconds for 1000 replications on a 2 GHz processor.

Appendices

A Combinatorial optimization and λ–assignment problem

In this appendix we transform the multipoint optimization problem 3.3 to the λ–assignment
problem (λA). A linear optimization problem of the form

(TP)
∑

i,j

uijzij maximal over all matrices z ∈ R
n×m subject to the constraints











∑

j zij = ai, i ∈ 1..n,
∑

i zij = bj, j ∈ 1..m,

zi,j ≥ 0,

is called a transportation or Hitchcock problem, a problem surprisingly equivalent to the circulation
and to the min–cost flow problem (for minimization instead of maximization), see [45]. Here, (ui,j)
is a real n by m matrix of weights and the “supplies” ai and “demands” bj are real numbers ≥ 0
such that

∑

ai =
∑

bj . Plainly this condition is necessary and sufficient for a solution to exist.
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z1,0

z2,0

zi,0

zn,0

z1,1

z2,1

zi,1

zn,1

z1,j

z2,j

zi,j

zn,j

z1,g

z2,g

zi,g

zn,g

z1,g+1

z2,g+1

zi,g+1

zn,g+1

i

j

∑

= 1

∑

=
n− r

∑

= bj
∑

=
r − ∑

bj

Figure 2: Table of assignments of objects to classes in the assignment problem associated with the binary
linear optimization problem (BLO).

If the supplies are unitary, (TP) is called a λ–assignment problem. Note that Problem (λA) in
Section 3.3 is of this kind. Its demands are n− r, b1, · · · , bg, and r−∑

bj as illustrated in Fig. 2.
Note also that the hypothesis on the supplies and demands for a transportation problem to be
solvable is satisfied so that (λA) possesses an optimal solution.

In order to explain the transformation, it is suitable to first cast Problem 3.3 in a form common
in combinatorial optimization. A labelling ℓ may be represented by a zero–one matrix y of size
n× (g+1) by putting yi,j = 1 if and only if ℓi = j, i.e., if ℓ assigns object i to cluster j. A zero–one
matrix y is admissible, i.e., corresponds to an admissible labelling, if it satisfies the constraints
∑

j yi,j = 1 for each i (each object has exactly one label),
∑

i yi,0 = n−r (there are n−r discarded
elements) and

∑

i yi,j ≥ bj for all j ≥ 1 (each cluster j contains at least bj elements). Using this
matrix and the weights uij defined by (13), we may reformulate the multipoint optimization
problem 3.3 as a binary linear optimization problem, cf. Papadimitriou and Steiglitz [45], in the
following way.

(BLO)

n
∑

i=1

g
∑

j=1

ui,jyi,j maximal over all matrices y ∈ R
n×(g+1) subject to the constraints



















∑

j yi,j = 1, i ∈ 1..n,
∑

i yi,0 = n− r,
∑

i yi,j ≥ bj , j ∈ 1..g,

yi,j ∈ {0, 1}.

Our (BLO) problem is not yet a λ–assignment problem for two reasons: first, the constraints
contain also an inequality and, second, λ–assignment is not restricted to binary solutions. The
introduction of the dummy class g+1 in (λA), Section 3.3, is a trick to overcome the first problem.
Fortunately, the second turns out to be a free lunch: the constraints of (λA) are integral. By the
Integral Circulation Theorem, Lawler [36], Theorem 12.1, or Cook et al. [13], Theorem 4.5, there
is an optimal solution z∗ to (λA) with integral entries. The first constraint then implies that it is
even binary thus representing an assignment.
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With the optimal solution z∗ we associate a solution y∗ ∈ R
n×(g+1) to (BLO) as in (14): in each

line i of z∗, move the excess members collected in cluster g + 1 to their natural class. We claim
that y∗ optimizes (BLO). Indeed, let y be admissible for (BLO). Define a feasible matrix z by
moving excess members i from the classes to the artificial class g + 1. By definition of ui,g+1, the
value of y w.r.t. (BLO) is smaller than that of z w.r.t. (λA) and, by optimality, the latter value
is smaller than that of z∗ w.r.t. (λA) which, again by definition of ui,g+1, equals that of y∗ w.r.t.
(BLO). Hence, y is inferior to y∗ and y∗ is an optimal solution to the original problem (BLO).

Optimal solutions to (λA) and (BLO) are actually equivalent. Given an optimal solution to (BLO),
move any excess elements in classes 1, . . . , g to class g+1. Note that any class that contains excess
elements contains no forced elements since they could choose a better class. Therefore, the new
assignment creates the same total weight.

It is easy to construct a solution to (BLO) that satisfies all but the third constraint. Just assign
object i to its natural class, argmaxj∈1..g ui,j . If this solution happens to satisfy also the third
constraint then it is plainly optimal. The opposite case needs special attention. The deficient
clusters j in such a solution contain exactly bj objects in an optimal solution. Indeed, if the size
of an originally deficient cluster j were > bj in an optimal solution then at least one of the forced
elements would be free to go to its natural cluster, thus reducing the target function. Although
binary linear optimization is NP–hard, in general, the present problem (BLO) has an efficient
solution.

B Algorithmic considerations

B.1 Algorithms for the λ–assignment problem

The multipoint reduction step requires the solution to a λ–assignment problem. Since reduction
steps are executed many times during a program run, the reader who wishes to implement the
algorithm may be interested in known algorithms for its solution and in their complexities. Both
have been extensively studied in operations research and combinatorial optimization. As a linear
optimization problem and a special case of minimum–cost flow, λ–assignment may be solved by
the simplex method. An instance of the min–cost flow problem is specified by a directed graph,
net flows in its nodes, arc capacities, and cost coefficients. In our application the cost coefficients
are the negative weights. The aim is to determine a flow with minimum overall cost satisfying
the required net flows in all nodes without violating given capacities. Classical adaptations of the
simplex method tailored to the particularities of min–cost flow are the (primal) Augmenting Circuit
Algorithm, cf. Cook et al. [13], 4.2, the Network Simplex Method, Sedgewick [55], and primal–dual
algorithms, cf. Cook et al. [13], 4.2 and 4.3, such as the Out–of–Kilter Method [20, 36]. The
Network Simplex Method seems to be most popular in applications although these algorithms are
exponential in the worst case.

Polynomial algorithms for min–cost flow have also existed for some time. It is common to represent
the weight matrix as the adjacency matrix of a weighted graph (V,E) with node set V of size n and
edge set E of sizem. The first (weakly) polynomial algorithm is due to Edmonds and Karp [16] who
introduced the concept of weight–scaling thus showing that min–cost flow was a low–complexity
problem. Scaling solves a series of subproblems with approximated instance parameters, capacities
or weights or both. Orlin [44] refined their method to obtain a strongly polynomial algorithm of
complexity O

(

n(m + n logn) logn
)

for the uncapacitated min–cost flow problem. In the context
of λ–assignment all row sums in the assignment matrix are equal, and equal to 1. This implies
that the capacities may be chosen unitary so that capacity scaling becomes trivial. An example
is Gabow and Tarjan’s [21] O

(

n(m+ n logn) logU
)

algorithm, logU being the bit length used to
represent network capacities. In the case of λ–assignment, put logU = 1.

Now, the λ–assignment problem has some special features that reduce its complexity compared
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with the general min–cost flow problem. First, its graph is bipartite, its node set being partitioned
in two subsets, the objects i and the clusters j, such that each edge connects an object with
a cluster. For bipartite network flow algorithms it is often possible to sharpen the complexity
bounds by using the sizes of the smaller (k) and the larger (n) node subsets as parameters,
Gusfield et al. [28]. Second, the bipartite network is unbalanced in the sense that the number
of clusters is (at least in our case) much smaller than the number of objects. Bounds based on
the two subsets are particularly effective for unbalanced networks. Third, the capacities may be
defined as 1. As a consequence the algorithms for the lambda assignment problem mentioned at
the beginning become polynomial. E.g., the time complexity of the out–of–kilter method becomes
O(nm) = O(kn2) since m = kn here, see Lawler [36], p. 157.

Algorithms dedicated to the λ–assignment problem are due to Kleinschmidt et al. [34] and
Achatz et al. [1]. Both algorithms have an asymptotic run time of O

(

kn2
)

. The former algo-
rithm uses Hirsch paths for the dual assignment problem and is related to an algorithm of Hung
and Rom’s [31]. The latter is an interior point method.

The algorithms mentioned so far are at least quadratic in the size of the larger node set, n. By
contrast, two weight–scaling min–cost flow algorithms are linear in n: Goldberg and Tarjan’s [26],
Theorem 6.5, algorithm solves the min–cost flow problem on a bipartite network asymptotically
in O

(

k2n log(kC)
))

time, see Ahuja et al. [2], and the “two–edge push” algorithm of the latter

authors needs O
(

(km + k3) log(kC)
)

time. In our application, m = kn. Both estimates contain
the bit length, logC, for representing weights.

A different low–complexity approach is due to Tokuyama and Nakano [59, 61, 60]. These authors
state and prove a geometric characterization of optimal solutions to the λ–assignment and trans-
portation problems by a so–called splitter, a k–vector that partitions Euclidean k–space into k
closed cones. The corresponding subdivision of the lines of the weight matrix describes an optimal
assignment. Tokuyama and Nakano design a deterministic and a randomized strategy for splitter
finding that run in O(k2n lnn) time and O

(

kn+k5/2√n ln3/2 n
)

expected time, respectively. Their

algorithms are almost linear in n and close to the absolute lower bound O
(

kn
)

if k is small, the
case of interest for (λA).

B.2 Heuristic methods for feasible solutions

Besides exact solutions, there are reasons to say a word about heuristic feasible solutions to the
λ–assignment problem. First, they may be used for multipoint reduction steps on their own.
Moreover, some of the graphical methods presented in Section B.1 need initial feasible solutions
for starting or at least profit from good ones. The network simplex method, e.g., needs a primal
feasible solution and the method presented in Achatz et al. [1] needs a dual feasible solution. While
arbitrary feasible solutions are easily produced, good initial feasible solutions can be constructed by
means of greedy heuristics. We propose here two. If the bounds bj are small enough, the heuristics
often produce even optimal solutions.

Each reduction step receives a set of parameters γj from which all weights ui,j , i ∈ 1..n, j ∈ 1..g,
are computed. The first two heuristics construct primal feasible solutions. Both start from the
best unconstrained assignment of the clustering problem which can be easily attained by sorting
the numbers ui = max1≤j≤g ui,j. More precisely:

Basic primal heuristic

1. sort the numbers ui = max1≤j≤g ui,j in decreasing order, i ∈ 1..n;

2. assign the first r objects in the ordered list to the class 1, . . . , g where the maximum is
attained;

3. attach label 0 to the last n− r objects;
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4. if this assignment is admissible then stop (it is optimal);
else

(α) starting from element r in the ordered list and going downwards, reassign surplus ele-
ments to arbitrary deficient classes until they contain exactly bj elements;

(β) assign any remaining surplus elements in the classes to class g + 1.

If an admissible instead of a feasible solution is required, only, then we drop step 4(β). We next
refine the “else” part of step 4. Steps 1 and 2 are as before.

Refined primal heuristic

1. sort the numbers ui = max1≤j≤g ui,j in decreasing order, i ∈ 1..n;

2. assign each of the first r objects to the class 1..g where the maximum is attained;

3. denote the set of the last n− r objects in the ordered list by L;

4. if this assignment is admissible then stop (it is optimal);
else

(α) let D be the set of deficient classes in 1..g and let δ be their total deficiency;

(β) starting from element r in the ordered list and going downwards, move the first δ
elements in surplus classes to L;

(γ) sort the object–class pairs (i, j) ∈ L×D in decreasing order according to their weights
ui,j to obtain an array (i1, j1), (i2, j2), · · · , (i#L·#D, j#L·#D);

(δ) scan all pairs (ik, jk) in this list starting from k = 1 assigning object ik to class jk
unless ik has already been assigned or jk is saturated, until all classes are saturated;

(ǫ) discard the yet unassigned elements of L;

(ζ) assign the smallest remaining surplus elements in classes (1..g) \ D to class g + 1.

In Section A, we exploited the fact that any cluster j with more than bj members in an optimal
solution contained no forced elements. Plainly, both heuristics share this property since such
members could be freely relabelled.

Both heuristics are much faster than any of the solution algorithms while yielding often a large
value of the criterion, the refined heuristic larger than the basic. However, contrary to the exact
solution, the improvements in the sense of Proposition 3.1 they provide are not optimal, in gen-
eral. In most cases, the criterion increases although one may construct examples where this fails:
Consider the data set {−40,−8,−6, 0, 1, 2, 3, 40}, let g = 4 and b1 = b2 = b3 = b4 = 2, and assume
that there are no outliers. Suppose that the parameters are generated from the initial partition
C1 = {−40, 3}, C2 = {−8, 1}, C3 = {−6, 0}, C4 = {2, 40}. They are m1 = −18.5, m2 = −3.5,
m3 = −3.0, m4 = 21.0, and v1 = 462.25, v2 = 20.25, v3 = 9.0, v4 = 361.0. The matrix of negative
weights,

(−ui,j) =









9.91 9.15 9.25 9.65 9.73 9.82 9.91 16.31
71.57 6.78 6.09 6.39 6.78 7.27 7.87 99.23
157.08 7.75 5.97 5.97 6.75 7.75 8.97 210.41
18.97 10.99 10.68 9.88 9.77 9.66 9.56 9.66









T

,

generates the free partition {−40}, {−8, 2, 3}, {−6, 0, 1}, {40} and the refined heuristic modifies it
to {−40, 1}, {−8, 2}, {−6, 0}, {3, 40}. The score of the latter is −39.73 whereas the initial partition
has the larger score −39.67.
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The problem dual to (λA) reads

(λA*)

n
∑

i=1

pi +

g+1
∑

j=0

bjqj minimal over (p,q) ∈ R
n+g+2 subject to the constraints

pi + qj ≥ ui,j , i ∈ 1..n, j ∈ 0..(g + 1).

A simple initial heuristic for this problem is found in Carpaneto et al. [10]:

Dual heuristic qj = maxi ui,j and pi = maxj(ui,j − qj).
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