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Abstract

We establish a mixture model with “spurious” outliers and derive its maxi-
mum likelihood estimator, the maximum trimmed likelihood estimator MTLE.
It may be computed with a trimmed version of the EM algorithm which we
call the EMT algorithm. We analyze its properties and compute various
breakdown values of the estimator for normal mixtures thereby proving ro-
bustness of the method.
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1 Introduction

1.1. History, background, and outline. Multimodal distributions occur
in important applications of statistics, e.g., in pattern recognition, image
processing, speech recognition, classification, and clustering. They arise in
particular when data emanate from different causes. Some examples are
offered in the literature cited in the Introduction of Redner and Walker
(1984). Mixture models are useful for modeling such distributions and their
decomposition in components plays a major role in the examples above.
The maximum likelihood paradigm is nowadays the preferred approach to
estimating their parameters.

Some issues related to the m.l.e. such as existence, efficient computa-
tion, and statistical properties such as consistency, asymptotic normality,
and robustness have been investigated in the past. Day (1969), Sect. 7,
notes that the heteroscedastic normal model always fails to possess an m.l.e.
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in the strict sense. It is sufficient to center one component at one data
point and have its variance tend to zero to see the unboundedness of the
likelihood function. On the other hand, under regularity conditions and in
the presence of sufficiently many data a strongly consistent and asymptot-
ically efficient local maximum always exists, see Peters and Walker (1978)
and Kiefer (1978) and the literature cited there. The situation is simpler
in the normal homoscedastic case (common covariance matrix). Day (1969)
states that solutions to the homoscedastic likelihood equations exist if the
data set is not too small. If mixture components are poorly separated then
the solution is almost always not unique. Hathaway (1985) circumvented
the non-existence in the heteroscedastic, univariate, normal case by assum-
ing that the variances v1, . . . , vg of the g components satisfy the constraints
vj ≥ cvℓ for some constant c > 0 and all j, ℓ ∈ 1..g. He refers to Den-
nis (1982) who, in turn, gives credit to Evelyn Martin Lansdowne Beale and
James R. Thompson. On account of this origin and since they play a key rôle
in our communication, we call them the Hathaway-Dennis-Beale-Thompson
constraints (HDBT). Hathaway points out that they avoid also many of
the spurious local maxima. Moreover, he proves strong consistency of the
properly constrained m.l.e. The m.l.e. is equivariant w.r.t. affine transforma-
tions. An important problem is that of selecting the number of components.
Kéribin (2000) studied conditions that ensure consistency of certain model
selection criteria. The Bayesian information criterion, BIC, turns out to be
a consistent maximum penalized likelihood estimator for normal mixtures.
If clusters are not well separated it needs, however, many data.

Hasselblad (1966) and Day (1969) designed alternating algorithms for
computing the m.l.e. in the hetero- and homoscedastic cases. Dempster et
al. (1977) noticed that they were special cases of a general concept for ML
estimation in complex models if the distributions can be conveniently repre-
sented by “hidden” variables. They named it the EM algorithm. Chrétien
and Hero (2000) embedded EM in the general scheme of PPA algorithms,
Martinet (1970) and Rockafellar (1976). Ma and Fu (2005) discuss acceler-
ations of the EM algorithm.

Parameter estimation can be severely affected by outliers. This is in
particular true for mixture models. A cluster of remote outlying observations
will, as a rule, want to establish a component of its own. If the weight of the
component is small, an estimate of the mixture itself may still be close to the
original w.r.t. a suitable metric on the convex set of probability measures,
cf. Toma (2007). But the estimate of the parameters of one component goes
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astray. This fact makes robust parameter estimation in mixture models a
difficult problem. It has been taken up mainly in recent years.

• McLachlan and Basford (1988) propose robust estimation of the pa-
rameters of the components, e.g., by means of Huber’s (1981) robust
M-estimators.

• McLachlan and Peel (1998, 2000) use mixtures of t-distributions (or
Pearson’s type VII distributions) instead of normal mixtures.

• Fraley and Raftery (2002) propose an additional component uniform
on the convex hull of the data in order to accommodate outliers.

Hennig (2004), p. 1326, analyzes the performance of these methods with
known and unknown numbers of components on data sets with outliers and
inliers. He notices that all are ineffective in the presence of gross outliers,
at least if the number of components is known and fixed. In fact, one such
outlier causes one mean to break down in all three methods. As a remedy,
he proposes to

• modify Fraley and Raftery’s approach by an additional component
with a certain improper uniform distribution.

Hennig (2004), Theorem 4.11, shows for one-dimensional data that his method
adds breakdown robustness to the m.l.e.. Besides a lower bound on the vari-
ances which has to be carefully chosen, Hennig’s estimator needs the coef-
ficient of the improper uniform distribution, b, as a second parameter. He
does not transform his ideas to an implementable algorithm.

We take here a different approach to robust parameter estimation in
mixture models following in Section 2.1 our statistical model of “spurious”
outliers, see Gallegos and Ritter (2005, 2010). It leaves the primary rôle to
the regular populations and allows to derive trimming algorithms. We use it
here again in order to establish a mixture model with outliers and r retained
observations. The likelihood function of this model is the trimmed likelihood,
Neykov and Neytchev (1990). It uses only the retained observations. For
its maximization we design an algorithm that consists of the alternating
application of EM and trimming steps, the EMT algorithm. In Sections 2.3
– 2.9, we study its properties.

Denoting the positive-semidefinite (Löwner) ordering on the space of
symmetric matrices by �, we reformulate the HDBT constraints for the
multivariate, normal model with covariance matrices V1, . . . , Vg as



Trimmed ML estimation of mixtures 167

Vj � cVℓ for all j, ℓ ∈ 1..g. (1.1)

The constant c is necessarily ≤ 1. While restricting the relationships
between sizes and shapes of the g scale parameters Vj, they impose no re-
striction on their absolute values. In other words, V1 may be any positive-
definite matrix. Two choices of the constant c are of particular interest:
c = 1 specifies homoscedasticity and the constrained heteroscedastic case
with c ≪ 1 allows much freedom between scale parameters. We show in
Proposition 2.13 that the trimmed ML criterion for the HDBT-constrained
normal model possesses a maximum.

In general, the constant c is not a priori given and, in Section 2.14,
we address its estimation. The HDBT ratio (Gallegos and Ritter, 2009) of
the g-tuple V = (V1, . . . , Vg) is the largest constant c such that all HDBT
constraints (1.1) are satisfied. It is a measure of balance of the g components
and can be computed as

rHDBT(V) = max{c | Vj � c Vℓ for all j, ℓ} = min
j,ℓ,k

λk
(
V

−1/2
ℓ VjV

−1/2
ℓ

)
,

(1.2)
where λ1(A), . . . , λd(A) denote the d eigenvalues of a symmetric d by d
matrix A. The larger the HDBT ratio of a mixture is the more similar
component scales are. In many applications, the solutions with the largest
likelihoods, i.e., with the highest fit, are spurious and undesirable suffering
from low balance. The desired solution often does not enjoy the best fit but
is much more balanced. We are thus facing a biobjective optimization prob-
lem: seek a fitting and balanced solution. In Section 2.14, we propose an
exploratory method for simultaneously estimating the HDBT ratio and de-
termining the trimmed m.l.e. for HDBT-constrained, heteroscedastic normal
mixtures, the (constrained) normal MTLE.

The aim of trimming is robustness. We compute in Sections 3 and 4
various (replacement) breakdown points of the normal MTLE. It turns out
that the constraints do not only guarantee existence of a solution but also
its robustness. Theorem 3.2 says that the normal MTLE of the covari-
ance matrices tolerates even more outliers than there are trimmed elements,
as long as at least half of the data set is regular. This implies a strictly
positive asymptotic breakdown point. Unfortunately, the (usual universal)
breakdown value of the estimates of the means is almost zero, Theorem 3.5:
whereas the criterion resists one gross outlier in any data set, there are data
sets such that one mean breaks down if two observations are replaced with
special outliers. One reason for this misbehavior is the stringency of the
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universal breakdown point. It requires proper performance of the estima-
tor even when it is applied with an inappropriate number of components.
For instance, one cannot expect breakdown robustness in a clear structure
of two components if three components are assumed. We, therefore, follow
here again a concept already introduced and investigated by Gallegos and
Ritter (2005, 2009), in the framework of clustering, the restricted breakdown
point. We show in Theorem 4.4 and its corollary that the asymptotic break-
down value of the normal MTLE of the means applied to data sets with
well-separated clusters is strictly positive if their natural number of clusters
is used. Not surprisingly, the better the components are separated, the more
uniform the mixing rates are, and the larger the HDBT constant c is, the
more robust the estimator turns out to be; see the comment before Theorem
4.4.

1.2 General notation. Given two integers m ≤ n, the symbol m. . n
designates the set of integers k s.th. m ≤ k ≤ n. The set of all r-element
subsets of a set M is denoted by

(
M
r

)
. The symbol ∆g−1 denotes the (g−1)-

dimensional unit simplex, that is, the set of all probability vectors of length
g. The convex hull of a subset T ⊆ R

d is denoted by conv T .

We are given a data set D = {x1, . . . , xn} of n points xi in a measurable
sample space E, often d-dimensional Euclidean space R

d. Given a subset
R ⊆ D, we denote the elements of R written as a tuple by xR and x =
xD = (x1, . . . , xn). Parameter spaces of statistical models are metric. We
denote them by the upper case Greek letters Γ, Ψ, and Θ and parameters
by the corresponding lower case letters γ, ψ, θ, and ϑ. If a random variable
X : Ω → E is distributed according to a probability measure µ we write
X ∼ µ. Its density function w.r.t. some (fixed) reference measure on E is
denoted by fX or fµ. The conditional density of X given the parameter γ
is fγ(x) = fX [x | γ]. We assume that it is a continuous function of γ.

1.3 The EM algorithm. The EM algorithm computes the ML (or MAP)
estimate of the parameter ϑ ∈ Θ of a complex statistical model X ∼ µϑ by
representing it as a measurable function X = Φ(Y ) of a so-called complete-
data model Y ∼ νϑ that is easier to handle. At its heart is the so-called Q-
functional, the conditional expectation of the complete-data log-likelihood
ln fνθ

given the observation w.r.t. the “current” fit ϑ

Q(ϑ, θ) = Eνϑ
[ln fνθ

| Φ = x].

Intuitively, one wishes to maximize the function θ 7→ ln fY [y | θ]. Since it
is not observed, the EM algorithm recursively maximizes Q(ϑ, ·) if possible,
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i.e.,
ϑ← argmax

θ
Q(ϑ, θ).

One step in this process is called an EM-step. Dempster, Laird, and Ru-
bin (1977) showed that each iteration of an EM-step increases the observed
likelihood (in the sense ≥) and if the iterations stall then, under regularity
conditions, they do so at a critical point of the observed likelihood function.

More recently, Chrétien and Hero (2000) derived the properties of the
EM algorithm from those of a proximal point algorithm (PPA), see Martinet
(1970) and Rockafellar (1976), with the conditional Kullback-Leibler diver-
gence as the penalty function. To this end they introduce the difference of
the observed log-likelihood and the Kullback-Leibler divergence of the com-
plete model w.r.t. the current complete distribution νϑ conditional on the
observation,

H(ϑ, θ) = ln fX [x | θ]−D(ϑ, θ). (1.3)

Assume that the divergence

D(ϑ, θ) =

∫
νϑ[ dy | Φ = x] ln

fνϑ
[y | Φ = x]

fνθ
[y | Φ = x]

is finite and jointly continuous. A simple algebraic transformation shows
that the difference between the functionals Q and H does not depend on
the variable θ. Therefore, the EM algorithm may also be represented by the
PPA recursion

ϑ← argmax
θ

H(ϑ, θ)

from which its properties flow.

For a parameter ϑ, the statements ϑ ∈ argmaxθQ(ϑ, θ) and ϑ ∈ argmaxθ
H(ϑ, θ) are equivalent. Such a parameter ϑ is called a fixed point (of H or
of Q).

1.4 EM for mixtures. Among other things, Dempster, Laird, and Rubin
(1977) applied the EM algorithm to estimating the parameters ϑ = (u, γ) ∈
∆g−1 × Γ of a mixture with density

fu,γ(x) =
∑

j

ujfγj (x), (1.4)

mixing rates u = (u1, . . . , ug) ∈ ∆g−1, and population parameters γ =
(γ1, . . . , γg) ∈ Γ ⊆ Γ1× · · · × Γg, Γj being the parameter space of some fam-
ily of distributions on E. The random variable X ∼ fu,γ is a simple function
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of a model that is more easily accessible. It is sufficient to take g random
variables Z(j) ∼ fγj , j ∈ 1..g, and a stochastically independent random label
L ∼ u with values in 1..g, the hidden variable. By the formula of total prob-
ability, Z(L) is distributed according to the mixture (1.4), i.e., Z(L) ∼ X.
The complete variable associated with the observation X is the joint vari-
able Y = (L,X). In the case of n observations D = {x1, . . . , xn} from inde-
pendent random variables X1, . . . ,Xn one obtains with X = (X1, . . . ,Xn),
Y = (Y1, . . . , Yn), and ℓ = (ℓx)x∈D

fX [x | u, γ] =
∏

x∈D

∑

j

ujfγj (x) and

fY [ℓ,x | u, γ] =
∏

x∈D

ulxfγℓx
(x) =

∏

j

∏

lx=j

ujfγj (x).

A further simple computation shows that, with another pair of parameters
θ = (v, η) ∈ ∆g−1 × Γ, the functional Q becomes

Q((u, γ), (v, η)) =
∑

j

(∑

x

wj(x)
)

ln vj +
∑

j

∑

x

wj(x) ln fηj (x), (1.5)

the weight wj(x) being the posterior probability of the observation x to come
from component j w.r.t. the parameters u and γ. By Bayes’ formula,

wj(x) = P [Li = j | Xi = x] =
ujfγj (x)∑
ℓ uℓfγℓ

(x)
. (1.6)

The weights sum up to 1 w.r.t. j, i.e., w = (wj(x))x,j is a stochastic matrix.
The entropy inequality allows to optimize Eq. (1.5) w.r.t. v. The maximum
is

unew,j =
1

n

∑

x∈D

wj(x) = wj(D)/n, (1.7)

where we have used the abbreviation wj(T ) =
∑

x∈T wj(x), T ⊆ D. The
EM-step is thus split into an E-step and an M-step:

E-step: Compute wj(x) from the current parameters u and γ,
cf. Eq. (1.6);

M-step: set unew,j = wj(D)/n and maximize
∑

j

∑
x wj(x) ln fηj(x),

cf. (1.5), w.r.t. η = (η1, . . . , ηg) to obtain the parameter
γnew.
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The EM algorithm, a suite of EM-steps, is iterative and alternating. If
started from an M-step with a stochastic weight matrix w(0), it proceeds as
follows:

w(0) → (u(1), γ(1))→ w(1) → (u(2), γ(2))→ w(2) → (u(3), γ(3))→ · · · .

The sequence of target values converges often to a local maximum even if the
m.l.e. exists. The latter is always the case if components are homoscedastic
normal.

Of course, the algorithm can only be applied to models fγj that actually
allow maximization in the M-step. The assumed continuity of the likelihood
function implies that this is always the case if Γ is compact. Optimization
is easier if Γ =

∏
j Γj is a g-fold Cartesian product. One then maximizes

the sum
∑

xwj(x) ln fηj (x) separately for each j. If Γ is (locally compact
and) non-compact and if the likelihood function η 7→ fη(x) vanishes for all
x ∈ D as η approaches the Alexandrov point of Γ then the same is true for
the sum

∑
x∈D wj(x) ln fηj (x) and it is again plain that the maximum exists.

In other cases one is interested in special local maxima, Dennis (1982). See
also the discussion of the normal case below.

2 The EMT Algorithm

2.1 A mixture model with spurious outliers and its trimmed likelihood
function. Given a natural number r ≤ n, we now establish an ML estimator
for mixtures which yields reasonable results if the data set contains at least
r regular observations. The remaining ≤ n − r observations may (but do
not have to) be gross, unpredictable outliers which obey no statistical law
and which we call “spurious” (Gallegos and Ritter, 2005, 2009, 2010). We
feel that the best way of handling this idea in a statistical (!) framework
is by assuming that each outlier i comes from its own Bayesian population
with random parameter ψi. The following is the main assumption on the
spurious outliers.

(SVo) A spurious outlier Xi : Ω→ E, i ∈ 1..n, obeys a parametric model
fψi

with parameter ψi ∈ Ψi such that the likelihood integrated w.r.t. some
prior measure τi on Ψi satisfies

∫

Ψi

fψi
(x)τi( dψi) = 1, x ∈ E, (2.1)

i.e., does not depend on x. In some sense, this equality says that the density
of Xi is flat. Since each spurious outlier is obseved only once we cannot,



172 M.T. Gallegos and G. Ritter

and do not wish to, estimate the parameters ψi and will later consider them
nuisances. There are two important and sufficiently general situations where
(SVo) holds.

(A) The sample space is Euclidean, E = R
d, Ψi = E, the outliers obey

a location model
Xi = Ui + ψi

with some (unknown) random noise Ui : (Ω, P ) → E, and τi is Lebesgue
measure on Ψi. Indeed, in this case, the conditional Lebesgue density is
fψi

(x) = fUi(x− ψi) and, hence,
∫
Ψi
fψi

(x) dψi = 1.

(B) The parameter sets Ψi consist of one point, each, and the distribution
of Xi is the reference measure on E so that fXi = 1. This case includes the
idea of irregular objects “uniformly distributed” on some domain.

Each regular observation Xi comes from a mixture of g populations rep-
resented by a density function of the form (1.4). All densities fγj are strictly
positive on E. Popular examples are normal models on Euclidean d-space
with parameter space Γ = R

gd × V and V ⊆ PD(d)g, where PD(d) stands
for the cone of symmetric, positive-definite d by d matrices. The HDBT
constraints (1.1) are characterized by V = Vc := {V ∈ PD(d)g | Vj �
cVℓ for all j, ℓ ∈ 1..g}.

The parameter set of our model is
(D
r

)
×∆g−1 × Γ×∏n

i=1 Ψi,

the set
(D
r

)
of all r-element subsets of D standing for the possible

(n
r

)
subsets

of regular objects. Of course, the parametrization of the mixture model is not
identifiable in the strict sense, see however the discussion in McLachlan and
Peel (2000), Ch. 1. The density function of the ith observation for the pa-
rameters R ∈

(D
r

)
, u = (u1, . . . , ug), γ = (γ1, . . . , γg), and ψ = (ψ1, . . . , ψn)

w.r.t. some fixed reference measure on E is

fXi [x | R,u, γ, ψ] =

{
fu,γ(x), see Eq. (1.4), i ∈ R,
fψi

(x), see Eq. (2.1), i /∈ R.

We assume that the sequence of observations (Xi)
n
i=1 is statistically inde-

pendent but not necessarily i.i.d. unless there are no outliers, n = r. By the
product formula, the joint likelihood for the data set D = {x1, . . . , xn} is

fX [x | R,u, γ, ψ] =
∏

i∈R

fu,γ(xi)
∏

i/∈R

fψi
(xi).
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Considering the parameters ψi of the outliers nuisances to be integrated
out w.r.t. to the prior measures τi we obtain with Eq. (2.1) the trimmed
likelihood

f [xR | u, γ] =
∏

i∈R

fu,γ(xi) =
∏

i∈R

(∑

j

ujfγj (xi)
)
, (2.2)

the ML criterion to be optimized w.r.t. the parameters R ∈
(D
r

)
, u ∈ ∆g−1,

and γ ∈ Γ. We have, thus, statistically justified the idea of trimming the
likelihood (instead of the data) which goes back to Neykov and Neytchev
(1990). It was placed into a broader context by Hadi and Luceño (1997),
and applied to mixtures by Neykov et al. (2007). If, for each R ∈

(D
r

)
, the

m.l.e.’s u∗ and γ∗ of u and γ w.r.t. R exist then, by the principle of dynamic
optimization, the ML estimator of the parameters is the Maximum Trimmed
Likelihood Estimator

argmax
R

max
u,γ

ln f [xR | u, γ] = argmax
R

ln f [xR | u∗, γ∗]. (MTLE)

The numbers g and r are parameters of the model and of the algorithm below.
We comment in Section 2.14 how to exploit them in order to estimate the
numbers of components and of outliers in the data set. Both are unknown
in most applications.

2.2 The EMT-step. Our next aim is generating (local) maxima of the
trimmed likelihood function (2.2) w.r.t. u and γ. We extend the EM algo-
rithm to contaminated mixtures proposing the following EMT-step, a suite
of an E-, an M-, and a T-step. The E- and M-steps are carried out w.r.t. an
r-element subset of D and lead to new parameters while the trimming step
retains the r elements that best conform to the new parameters.

Input : An initial subset R ⊆ D of r elements, mixing
rates (u1, . . . , ug), and initial population parameters
γ1, . . . , γg.

Output : A subset, mixing rates, and population parameters
with improved criterion (2.2), cf. Proposition 2.3.

E-step : compute the weights wj(x) =
ujfγj (x)

P

ℓ uℓfγℓ
(x) , x ∈ R,

j ∈ 1 . . . g;
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M-step : set unew,j = wj(R)/r, 1 ≤ j ≤ g, and maximize∑
j

∑
x∈Rwj(x) ln fγ′j (x) w.r.t. γ′ ∈ Γ to obtain γnew;

(possibly without constraints, see the end of Section
2.11; in the case of a product Γ =

∏
j Γj , each sum∑

x∈R wj(x) ln fγ′j(x), j ∈ 1..g, is maximized sepa-

rately)
T-step : defineRnew to be the set of data points x ∈ D with the

r largest values of funew,γnew(x) =
∑

j unew,jfγnew,j (x).

The EMT algorithm is the iteration of EMT-steps. Like the EM algo-
rithm it is iterative and alternating proceeding as follows

(R(0),w(0))
M-step−→ (u(1), γ(1))

T-step−→ (R(1),u(1), γ(1))
E-step−→ (R(1),w(1))

M-step−→ · · · .

We may start it from the M-step with a randomly or expediently chosen
r-element subset R(0) and a stochastic matrix w(0) as initial quantities. An
elegant procedure for uniform generation of a subset R(0) appears in Knuth
(1981), p.136, ff. The rows of the initial weight matrix w(0) may be chosen
uniformly from the (g− 1)-dimensional unit simplex ∆g−1. An efficient pro-
cedure is OSIMP, see Fishman (1996). An alternative is a set of randomly
sampled unit vectors or the output obtained from some clustering algorithm.
If components are sufficiently separated, the algorithm may also be started
from the E-step with initial parameters (u(0), γ(0)). We assume that all ini-
tial mixing rates are strictly positive. They preserve this property during
iteration. The iteration is successfully stopped as soon as the trimmed like-
lihood (2.2) is close to convergence or with a failure as there is indication
that convergence will not take place. If the m.l.e. exists, see Proposition
2.13, then convergence always takes place.

The remarks after the statement of the EM algorithm for mixtures apply
also to the EMT algorithm. As the likelihood function, its trimmed version
has many local maxima. We next analyze the behavior of the algorithm in
this regard. We say that (R,u, γ) is a halting point of the EMT-step if the
ML criterion (2.2) remains unchanged after an EMT-step starting from it.
The EMT algorithm starting from a halting point has this point as a possible
output and the algorithm is stopped. A limit point (R,u, γ) is a point of
convergence of the EMT algorithm starting from some initial parameters. A
critical point of a differential function is a point where its gradient vanishes.
There are relationships between fixed, halting, limit, critical, and optimal
points. Moreover, the successive values of the target function are monotone
as the following proposition shows.
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2.3 Proposition. Let the statistical model be as described at the begin-
ning of this section.

(a) The EMT-step either improves the trimmed likelihood f [xR | u, γ] or
does not change it.

(b) If (R,u, γ) is optimal then so is (Rnew,unew, γnew) and (R,u, γ) is a
halting point.

Proof. (a) The inequality f [xR | u, γ] ≤ f [xR | unew, γnew] is the well-
known fact that the EM algorithm is monotone, here applied to the data set
R, see Dempster et al. (1977), p. 8. Moreover,

ln f [xR | unew, γnew] =
∑

x∈R

ln
∑

ℓ

unew,ℓfγnew,ℓ
(x)

≤
∑

x∈Rnew

ln
∑

ℓ

unew,ℓfγnew,ℓ
(x)

= ln f [xRnew | unew, γnew]

by maximality of the data points in Rnew.

(b) follows from the increasing property (a).

We need the H-functional (1.3) w.r.t. an r-element subset R ⊆ D,

HR((u, γ), (v, η)) = ln f [xR | v, η]−DR((u, γ), (v, η)),

where DR((u, γ), (v, η)) is the Kullback-Leibler divergence of the complete
model w.r.t. R conditional on [Φ = xR].

2.4 Proposition

(a) If (R∗,u∗, γ∗) is a halting point of the EMT-step then (u∗, γ∗) is a
fixed point w.r.t. R∗ (see Section 1.3.)

(b) If (u∗, γ∗) is the unique fixed point w.r.t. R∗ then (R∗,u∗, γ∗) is a
halting point

Proof. Let us put ϑ∗ = (u∗, γ∗) and ϑnew = (unew, γnew), the output of
the EM-step starting from (R∗, ϑ∗).

(a) If (R∗, ϑ∗) is a halting point of the EMT-step then

HR∗(ϑ∗, ϑnew) = ln f [xR∗ | ϑnew]−DR∗(ϑ∗, ϑnew) ≤ ln f [xR∗ | ϑnew]

≤ ln f [xRnew | ϑnew] = ln f [xR∗ | ϑ∗] = HR∗(ϑ∗, ϑ∗),
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i.e., ϑ∗ is a fixed point w.r.t. R∗.

(b) By assumption, we find ϑnew = ϑ∗ after the EM-step starting from
(R∗, ϑ∗) and the claim follows from the definition of the T-step.

2.5 Proposition. Limit and halting points are the same.

Proof. Let the sequence (Rt,ut, γt) = (Rt, ϑt) converge to (R∗,u∗, γ∗) =
(R∗, ϑ∗). Since we have Rt = R∗ for eventually all t, it is sufficient to con-
sider Rt fixed. Abbreviate θ = (v, η) and ϑt = (ut, γt). From HRt(ϑt, θ) ≤
HRt(ϑt, ϑt+1) for all θ we infer

HRt(ϑ
∗, θ) = lim

t→∞
HRt(ϑt, θ) ≤ lim

t→∞
HRt(ϑt, ϑt+1) = HRt(ϑ

∗, ϑ∗).

This shows that limit points are halting points.

Conversely, if (R∗, ϑ∗) is a halting point then ϑ∗ is a fixed point w.r.t.
R∗. We may, therefore, choose ϑnew = ϑ∗ in the EM-step w.r.t. R∗ and
Rnew = R∗ in the subsequent T-step. This proves that (R∗, ϑ∗) is a limit
point.

The following proposition investigates optimality of the mixing rates. It
applies in particular to fixed points. A face of the simplex ∆g−1 is the convex
hull of a non-empty set of unit vectors in R

g. A subset F ⊆ ∆g−1 is a face
if it is the non-empty intersection of ∆g−1 with some hyperplane H of R

g

such that ∆g−1 \H is convex or again if it is the set of points in ∆g−1 where
some linear form on R

g assumes its minimum. To each non-empty subset
M ⊆ ∆g−1 there is a smallest face that contains it, the face generated by
M . The face generated by a subset that contains an interior point of the
simplex is the whole simplex. The face generated by one point contains this
point in its interior. (This is also true if the point is extremal.)

2.6 Proposition. Let R ⊆ D, |R| = r, let γ ∈ Γ, and let ũ ∈ ∆g−1.

(a) The following statements are equivalent.

(i) The EM-step with input (R, ũ, γ) retrieves ũ;
(ii) the vector ũ is an extreme point of the simplex or a critical point of the
function u 7→ f [xR | u, γ] restricted to the face generated by it;
(iii) the function u 7→ f [xR | u, γ] restricted to the face generated by ũ is
maximal at ũ.

(b) Let the equivalent conditions (i)–(iii) be satisfied. If ũ is an interior
point of the simplex then it is a maximum of the function u 7→ f [xR | u, γ].
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If, moreover, the g vectors

(
fγ1(x)

)
x∈R

, . . . ,
(
fγg(x)

)
x∈R

are affine independent then it is the only maximum.

(c) Any fixed point (ũ, γ) w.r.t. R satisfies the equivalent conditions in
(a).

Proof. Part (a) is immediate if ũ is extremal. Otherwise, assume
without loss of generality ũg 6= 0, let F be the face generated by ũ, and let
w̃ be returned from the E-step with input (R, ũ, γ). Since fγj (x) > 0 by
general assumption, the partial derivative of the function

F → R, u 7→ ln f [xR | u, γ] =
∑

x∈R

ln
[∑

j 6=g

ujfγj(x) +
(
1−

∑

j 6=g

uj
)
fγg(x)

]
,

w.r.t. j 6= g such that ũj 6= 0 shows that ũ is critical if and only if w̃j(R) =
const · ũj for all j. The equivalence of (i) and (ii) now follows from unew,j =
w̃j(R)/r.

In view of the implication (ii)⇒(iii) note that

ln f [xR | θ] =
∑

x∈R

ln
∑

j

ujfγj(x)

is of the form
∑

x∈R ln(Au)x with Ax,j = fγj (x). Assertion (iii) now follows
from concavity A.1 (a) of this function restricted to the mixing parameters
and from (ii). The sense (iii)⇒(ii) is plain.

(b) If ũ is an interior point then the face generated by it is the whole
simplex and the first claim follows from (a). The second claim follows from
Lemma A.1(b).

(c) Let w̃ be defined by (ũ, γ) and let (unew, γnew) be the parameters after
an EM-step starting from (ũ, γ). Since both pairs maximize QR((ũ, γ), ·) and
since w̃j(R) = runew,j, Eq. (1.5) shows

r
∑

j

unew,j lnunew,j +
∑

j

∑

x∈R

w̃j(x) ln fγnew,j(x) = r
∑

j

unew,j ln ũj +

+
∑

j

∑

x∈R

w̃j(x) ln fγj (x).
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The likelihood grows with the EM-step, hence

∑

j

unew,j lnunew,j ≤
∑

j

unew,j ln ũj

and the entropy inequality shows unew = ũ, i.e., (a)(i).

Our next proposition discusses the population parameters and the set of
retained observations of a halting point.

2.7 Proposition. Let (R∗,u∗, γ∗) be a halting point of the EMT-step.

(a) Assume that Γ is an open subset of some Euclidean space, that fγ(x)
is differentiable w.r.t. γ for all x, and that the (conditional) Kullback-Leibler
divergence DR(ϑ, θ) = D(νϑ[· | Φ = xR], νθ[· | Φ = xR]) is differentiable
w.r.t. θ at each point of the diagonal θ = ϑ for all R. Then γ∗ is a critical
point of the function γ 7→ f [xR∗ | u∗, γ].

(b) R∗ is consistent with the output (unew, γnew) of the EM-step starting
from (R∗,u∗, γ∗).

Proof. Let ϑ∗ and ϑnew be as defined at the beginning of the proof
of Proposition 2.4. From that proposition, we know already that ϑ∗ is a
fixed point w.r.t. R∗. The point u∗ is interior to the face F generated by
it. Therefore, ϑ∗ lies in the interior of F × Γ. The fixed point ϑ∗ maximizes
the H-functional θ 7→ HR∗(ϑ∗, θ) and minimizes the (conditional) Kullback-
Leibler divergence θ 7→ DR∗(ϑ∗, θ) since it vanishes there. By interiority of
ϑ∗, the gradients of both functions restricted to F × Γ vanish at this point.
Thus, the gradient of the restriction to F × Γ of the observed log-likelihood

θ 7→ ln f [xR∗ | θ] = HR∗(ϑ∗, θ) +DR∗(ϑ∗, θ),

too, vanishes at ϑ∗, this representation being valid at least near θ = ϑ∗. This
completes Claim (a).

Claim (b) follows directly from the estimate f [xRnew | ϑnew] = f [xR∗ |
ϑ∗] ≤ f [xR∗ | ϑnew].

The EMT algorithm often converges. The following corollary, a conse-
quence of Propositions 2.5 – 2.7, summarizes properties of the limit.

2.8 Corollary. Let the assumptions of Proposition 2.7 (a) hold and
assume that the sequence of successive outputs of the EMT algorithm con-
verges with limit (R∗,u∗, γ∗). Then Propositions 2.6(b), (c) and 2.7(a), (b)
apply to (R∗,u∗, γ∗).
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log-likelihood u m v

–8.39821 0.5, 0.25, 0.25 –3.00000, 2.07741, 3.92258 0.57442

–8.44833 0.5, 0.5− α, α –2.99999, 2.99999, 2.99999 1.00007

–10.2809 1− α− β, α, β 0, 0, 0 10

Table 1: Halting points for the data set −4,−2,2,4 and the homoscedastic
normal model with three components.

2.9 Remarks. (a) In general, the trimmed likelihood function has sev-
eral or many local maxima. Here is a simple, one-dimensional, normal ex-
ample with an infinite number of halting points. The data set consists of
the four points −4,−2, 2, 4. It has two obvious clusters. Running the EM
algorithm (no outliers) with the homoscedastic model and g = 3 we find
the halting points shown in Table 1. The first is the global maximum. It
essentially uses the two negative observations for one component and each
of the two positive ones for the remaining components. The second line rep-
resents a continuum of halting points corresponding to the natural solution
with two components and means close to −3 and 3. One of the components
is split in two very similar parts. These halting points lie in a region that
is very flat in two directions, two eigenvalues of the Hessian being close to
zero. The last line describes a two-dimensional manifold of halting points
with equal log-likelihoods. The positive semi-definite Hessian is the same at
each point and has four vanishing eigenvalues. In the first line, the mixing
rates are unique by Proposition 2.6(b). Each of the first two lines induces a
number of symmetrical, equivalent solutions.

(b) Modifications to the M-step are possible. It is not necessary to go
to the maximum in the M-step. Each improvement in the M-step or in the
T-step improves the observed likelihood.

(c) If Γ is not open as required in Proposition 2.7(a) and if γ∗ is at the
boundary of Γ then it is only true that directional derivatives of γ 7→ f [xR∗ |
u∗, γ] at γ∗ must be ≤ 0 in all interior directions.

(d) There are the following relationships between the various interesting
parameters.

optimal

limit
halting

critical

fixed2.3

2.5

2.4

2.6,2.7
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2.10 Normal components. In the normal case, E = R
d is d-dimensional

Euclidean space so that D ⊆ R
nd. The symbol Nm,V designates the d-

variate normal distribution with mean m and covariance matrix V and also
its Lebesgue density. The normal model is characterized by γ = (m,V), m =
(m1, . . . ,mg), V = (V1, . . . , Vg), and the trimmed likelihood (2.2) becomes
the trimmed normal-mixture likelihood

f [xR | u,m,V] =
∏

x∈R

g∑

j=1

ujNmj ,Vj(x). (2.3)

In the homoscedastic case, V1 = · · · = Vg = V , and the HDBT-constrained
heteroscedastic case is characterized by V ∈ Vc with c < 1.

Besides the full model, two submodels specified by shape and orientation
of the populations are customary in each of the two cases, diagonal covariance
matrices Vj = diag(vj,1, . . . , vj,d) and spherical covariance matrices Vj =
vjId.

We make the standard assumption that the data points D are in gen-
eral position. This concept has different meanings for the three normal
sub-populations mentioned above. In the spherical case it means pairwise
difference of all data points, in the diagonal case pairwise difference of all
d entries of any two data points, and in the full case affine independence of
any k ≤ d + 1 points in D. We also assume throughout r ≥ gd + 1 in the
“full” case and r ≥ g + 1 in the “diagonal” and “spherical” cases.

We have to introduce some notation. Given a subset T ⊆ D, the symbols
xT , WT , and ST designate the sample mean vector, the SSP matrix, and the
scatter matrix of T , respectively. We also need weighted analogs of these
statistics w.r.t. a weight vector w = (w(x))x∈T of real numbers w(x) ≥ 0
(in most cases w = wj, the j’th column in a stochastic weight matrix w =
(wj(x))x∈T,j∈1..g,

∑
j wj(x) = 1 for all x ∈ T ). Writing w(T ) =

∑
x∈T w(x),

cf. the definition after Eq. (1.7), we define them, respectively, as

xT (w) =
1

w(T )

∑

x∈T

w(x)x (= 0, if w(T ) = 0),

WT (w) =
∑

x∈T

w(x)(x − xT (w))(x − xT (w))T , and

ST (w) =
1

w(T )
WT (w) (= Id, if w(T ) = 0).
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The pooled weighted SSP matrix and the pooled weighted scatter matrix w.r.t.
a stochastic weight matrix w are, respectively,

WT (w) =
∑

j

WT (wj) and ST (w) =
1

|T |WT (w).

If weights are binary then w defines in a natural way a partition of T and
WT (w) and ST (w) reduce to the ordinary pooled quantities.

We will repeatedly use the MAP partition {T1, . . . , Tg} of some subset
T ⊆ D w.r.t. some stochastic weight matrix w = (wj(x))x∈T,j∈1..g : x ∈
Tℓ ⇔ ℓ = argmaxj wj(x). The obvious estimate

wj(x) ≥ 1/g for all x ∈ Tj (2.4)

and Steiner’s formula A.3 imply for all j

WT (wj) �
∑

x∈Tj

wj(x)(x− xT (wj))(x− xT (wj))
T � 1

g
WTj . (2.5)

2.11 The M-step in the constrained normal cases. As with all distribu-
tional models, the optimal mixing rates uj in the M-step can be directly
computed by the analytical expression (1.7) applied with R instead of D. A
routine argument using Steiner’s identity A.3 shows that, with the notation
above, the estimates of the location parameters in the M-step with input w

and R are in all cases
mj = xR(wj). (2.6)

In the homoscedastic, normal case, c = 1, the estimate of the common scale
parameter V , too, can be represented in closed form in the M-step. Normal
estimation theory shows that the minimizer of the scale parameter given R
and w is here

V = SR(w) (full), vk = V (k, k) (diagonal), v =
1

d

∑

k

vk (spherical),

(2.7)
k ∈ 1 . . . d. Furthermore, the trimmed likelihood (2.3) of a fixed point
(u∗,m∗, V ∗) w.r.t. R of the homoscedastic EM algorithm assumes the form

ln f [xR | u∗,m∗, V ∗] = cd,r + r

g∑

j=1

u∗j lnu∗j −
g∑

j=1

∑

x∈R

wj(x) lnwj(x)

− r

2
ln detV ∗, (2.8)
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with cd,r = −dr
2 (1 + ln 2π) and wℓ(x) =

u∗ℓ Nm∗
ℓ

,V ∗(x)
Pg

j=1 u
∗
j Nm∗

j
,V ∗(x)

. Just insert m∗

and V ∗ from Eqs. (2.6) and (2.7), respectively, into Lemma A.2, note that
wℓ(R) = ru∗j , see Proposition 2.6(c), and apply standard matrix analysis.
The equality applies in particular to any halting point (R,u∗,m∗, V ∗) of the
EMT algorithm, see Proposition 2.4(a).

The HDBT-constrained heteroscedastic case is less obvious. The routine
argument above shows that the parameter V ∈ Vc returned from the M-step
with input w is the solution to the minimization problem

argmin
V∈Vc

∑

j

wj(R)
(
ln detVj + trSR(wj)V

−1
j

)
. (2.9)

However, for c < 1, we do not know a representation of the Vj ’s as in
the homoscedastic formulae (2.7). In general, it depends on the unknown
constant c which must be estimated. We will deal with this question in
Section 2.14 using free, i.e., unconstrained, local minima. The estimates of
the scale parameters in the free heteroscedastic case are known to be

Vj = SR(wj) (full), vj,k = Vj(k, k) (diagonal), vj =
1

d

X

k

vj,k (spherical), (2.10)

j ∈ 1 . . . g, k ∈ 1 . . . d. The equivalent to Eq. (2.8) for a free fixed point
(u∗,m∗,V∗) w.r.t. R is

ln f [xR | u∗,m∗,V∗] = cd,r + r

g∑

j=1

u∗j lnu∗j −
g∑

j=1

∑

x∈R

wj(x) lnwj(x)

− r

2

∑

j

u∗j ln detV ∗
j

where, w is the matrix of posterior probabilities defined by Eq. (1.6) for u∗

and γ = (m∗,V∗).

It depends on the situation, whether constraints between mixture com-
ponents such as the HDBT constraints (1.1) should be used in the M-step. If
constraints are unknown (e.g., an unknown constant c in (1.1)) then we rec-
ommend free parameter estimation in the M-step resorting to Section 2.14 in
order to estimate the HDBT ratio together with the mixture. If constraints
are known and if there is a computationally efficient way of computing the
constrained maximum in the M-step then use them. An example is the
homoscedastic normal model where the estimate of the covariance matrix
is the pooled weighted SSP matrix given by Eq. (2.7). If they are known
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but there is no computationally efficient method for constrained parameter
estimation then we recommend to disregard the known constraints in the
M-step and to use from all replications the largest local maximum that sat-
isfies the constraints. This avoids universal optimization paradigms such as
gradient descent, the Metropolis algorithm, etc. which would lead to very
slow overall algorithms.

The following lemma is crucial for our theoretical analyses. It makes up
for the missing representation of the minimizer of (2.9).

2.12 Lemma. Let R be some data set in R
d of cardinality r and let

V ∈ Vc.

(a) With wℓ(x) =
uℓNmℓ,Vℓ

(x)
Pg

j=1 ujNmj,Vj
(x)

, x ∈ R, 1 ≤ ℓ ≤ g, we have for all j

2 ln f [xR | u,m,V] ≤ −r ln det 2πcVj − c trWR(w)V −1
j .

(b) If |R ∩D| ≥ gd + 1 and if D is in general position, there is a constant
K > 0 that depends only on D such that, for all j,

2 ln f [xR | u,m,V] ≤ −r ln det 2πcVj − cK trV −1
j . (2.11)

Proof. (a) By Lemma A.2, the HDBT constraints, and Steiner’s for-
mula A.3 we have

2 ln f [xR | u,m,V] ≤ 2
∑

ℓ

∑

x∈R

wℓ(x) ln Nmℓ,Vℓ
(x)

=−
∑

ℓ

∑

x∈R

wℓ(x)
(
ln det 2πVℓ + (x−mℓ)

TV −1
ℓ (x−mℓ)

)

≤−
∑

ℓ

∑

x∈R

wℓ(x)
(
ln det 2πcVj + c(x−mℓ)

TV −1
j (x−mℓ)

)

=− r ln det 2πcVj − c tr
∑

ℓ

∑

x∈R

wℓ(x)(x−mℓ)(x−mℓ)
TV −1

j

≤− r ln det 2πcVj − c trWR(w)V −1
j .

(b) Let {R1, . . . , Rg} be the MAP partition of R w.r.t. w in (a). By as-
sumption on |R ∩ D| there is a subset Rℓ that contains at least d + 1
elements of D. By general position, WRℓ

is regular and, by Eq. (2.5),
WR(w) � WR,ℓ(w) � 1

gWRℓ
� KId with some constant K > 0 that de-

pends only on D. The claim therefore follows from (a).
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We next show that an m.l.e. for the trimmed, constrained normal model
exists.

2.13 Proposition. If D and r satisfy the standard assumptions made
in Section 2.10 then the HDBT-constrained trimmed normal-mixture likeli-
hood (2.3) possesses a maximum w.r.t. R, u, m, and V ∈ Vc.

Proof. We prove the existence of a maximum for every subset R ⊆ D.
Let us first show that it is sufficient to consider mean values mj in the
convex hull convR. Let Vj ∈ PD(d), m ∈ R

d \ convR, and let m′ be the

Euclidean projection of V
−1/2
j m on the compact, convex set V

−1/2
j convR.

Then V
1/2
j m′ ∈ convR and we have for x ∈ R

(x− V 1/2
j m′)TV −1

j (x− V 1/2
j m′) = ‖V −1/2

j x−m′‖2

< ‖V −1/2
j (x−m)‖2

= (x−m)TV −1
j (x−m).

In view of the trimmed normal likelihood (2.3), this proves the first claim.

Now fix R and apply Lemma 2.12(b). The well-known behavior of the
upper bound (2.11) as a function of Vj and the HDBT constraints imply
that the mixture likelihood vanishes at the boundary of PD(d)g uniformly
for all u and m. The proposition follows since there are only finitely-many
sets R.

We call the maximizing parameters R∗, u∗, m∗, V∗ ∈ Vc for any constant
c the Maximum Trimmed Normal Likelihood Estimates, (normal MTLE’s).
Note that the expression “normal MTLE” includes in the present paper the
HDBT constraints.

2.14 The favorite solution: estimation of the HDBT ratio and of the
numbers of outliers and components. We next use the parameters r ang g
appearing in the trimmed likelihood (2.2) and in the EMT-step 2.2 together
with the HDBT ratios (1.2) of limit points of the EMT algorithm in order
to estimate the unknown numbers of outliers and components, an HDBT
constraint, and the mixture. Let us first determine a constant c together with
a solution keeping r and g fixed. Hathaway (1985) states that the HDBT-
constrained m.l.e. consistently estimates the parameters of the mixture if
their HDBT ratio exceeds the constant c. Unfortunately, application of
his theorem requires this constant. What is more, constrained optima are
not easily computed although any free halting point (2.10) that satisfies
the HDBT constraints is a constrained halting point. We, therefore, rather
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recur to the theorems of Peters and Walker (1978) and Kiefer (1978). Their
results say that a strongly consistent free local maximum of the trimmed
likelihood (2.2) exists and this is what we seek. Often, it is not the largest
one, see Section 2.14. Selecting it from all local maxima needs a further
assumption.

As already stated in the introduction, we expect the sizes and shapes of
the scale parameters not to deviate excessively from each other. In most
normal cases it is not only good fit, i.e., a large trimmed likelihood, but also
sufficient balance, i.e., a large value of the HDBT ratio (1.2) that charac-
terizes a reasonable solution. We wish to find the best-fitting among the
well-balanced solutions. In order to solve this biobjective optimization prob-
lem, we propose the following graphical procedure which was introduced
by Gallegos and Ritter (2009) in the related context of statistical cluster-
ing. We replicate the algorithm starting from many different randomly or
expediently generated parameters in order to find a good number of (uncon-
strained) local maxima. One of them is the favorite solution. In order to
select it, we create a negative double-logarithmic plot of the HDBT ratios
of their covariance matrices vs. their likelihoods. The left and lower parts
of the convex hull of all points often form a knee. The extreme points close
to its bend are candidates for the favorite solution. Sometimes this solution
is even unique. The plot provides also some guidance about the number
of replications needed: run the EMT algorithm until the convex hull has
stabilized.

The favorite solution can be detected with the aid of a criterion. Since
it belongs to an extreme point in the left lower part of the convex hull of
the plot, it is found by touching the point set in the plot from below with a
supporting line of (non-unique) negative slope. A suitable slope depends on
the data set. Let (−σ, 1), σ > 0, be a vector in the direction of the support
line pointing northwest. The graphical method is equivalent to maximizing
the criterion

log f [xR∗ | u∗,m∗,V∗] + σ log rHDBT(V∗) (2.12)

w.r.t. all limit points (R∗,u∗,m∗,V∗) of the EMT algorithm. In the ho-
moscedastic case, the theoretical HDBT ratio is 1 and the second term is
omitted in criterion (2.12).

By way of illustration, Figure 1 shows a data set of 20 points sampled
from the normal mixture 1

2N−2e1,I2 + 1
2N2e1,I2, e1 = (1, 0). The framed three-

point constellation defines one component of the largest local maximum of
the (unconstrained) likelihood function for r = n, g = 2; see also the caption.
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Figure 1: A synthetic data set of 20 points randomly sampled from the normal
mixture 1

2N
−2e1,I2 + 1

2N2e1,I2 . There are no outliers. The framed point triple
generates one of the two components of the solution with the smallest local minimum
of the negative log-likelihood. It is 60.93 whereas that of the favorite local minimum
close to the sampling distribution is 65.93. The HDBT ratio (1.2) of the former is
as small as 1/66,562 whereas that of the latter is 1/1.71.
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Figure 2: Synthetic data set of Fig. 1: Negative double-logarithmic HDBT-ratio-
likelihood plot for a number of local minima with two components and no discarded
elements. The favorite solution close to the sampling distribution is encircled.

This solution, however, is undesirable. Figure 2 shows the negative double-
logarithmic HDBT-ratio-likelihood plot. The favorite solution close to the
sampling population is the best-fitting among the well-balanced ones. Its es-
timated parameters are u1 = 0.501, u2 = 0.499, m1 = (2.039,−0.790), m2 =
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(−1.743,−0.493), and V1 =

(
0.476
−0.034 0.817

)
, V2 =

(
0.808
−0.082 1.310

)
,

its negative log-likelihood is 65.93 and its HDBT ratio 1/1.71. By con-
trast, the estimated parameters of the best-fitting but spurious solution are
u1 = 0.851, u2 = 0.149, m1 = (0.362,−0.880), m2 = (−1.096, 0.721), and

V1 =

(
3.649
−0.143 0.885

)
, V2 =

(
5.666
0.532 0.050

)
, its negative log-likelihood

being 60.93 and its HDBT ratio as low as 1/66,562. The smaller component
is generated by the framed almost collinear point triple in Figure 1. As Fig-
ure 2 shows, there are nine other solutions that fit better than the favorite
one, but with much inferior balance. They are generated by other almost
collinear constellations in the data set.

Up to now, the parameters r and g were fixed. They can be used for
model selection, i.e., for estimating the numbers of outliers and of compo-
nents in the data set. A first option is the application of validation tech-
niques, e.g. based on goodness of fit of the mixture estimated for the pa-
rameter pair; see the literature cited in Redner and Walker (1984), p.202,
and McLachlan and Peel (2000), Sect. 3.5. The parameter g allows us to
estimate the number of components, e.g., by means of Gallegos and Ritter’s
(2010) corrected BIC. It is based on the model selection criterion BIC, see
Kéribin (2000). A way of estimating both numbers simultaneously was re-
cently proposed by Neykov et al. (2007), the trimmed BIC. The method
uses a table of BIC values for solutions indexed by g and r returning the
parameter values where the minima w.r.t. g stabilize. In Table 2, it is ap-
plied to optimal solutions w.r.t. criterion (2.12). No matter what criterion is
used, the method requires solutions close to the optimum since otherwise the
stabilizing point may not be clear. In real-world applications this generally
poses a serious problem.

3 Universal Breakdown Points

3.1 Breakdown points. The finite-sample breakdown value of an estima-
tor, Hodges (1967) and Donoho and Huber (1983), measures the minimum
fraction of gross outliers that can completely spoil the estimate. Two types
of breakdown points are customary, the addition and the replacement break-
down point. The former refers to the addition of n− r arbitrary elements to
a data set of r regular observations and the latter to n− r replacements in a
data set of n regular observations. The former needs a sequence of estimators
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since the addition increases the number of objects. The latter needs only
the estimator for the given number of objects. We deal with replacements.

Let δ : A → Θ be a statistic on its natural domain of definition A ⊆ En.
In the context of a normal m.l.e., A is defined by the standard assumptions.
Given a natural number m ≤ n, we say that M ∈ A is an m-modification
of D ∈ A if it arises from D by modifying m entries in an (admissible but
otherwise) arbitrary way. An estimator δ “breaks down with the (n-element)
data set D under m replacements” if the set

{δ(M) |M is m-modification of D} ⊆ Θ

is not relatively compact in Θ.1 The individual breakdown point for D is
the number

β(δ,D) := inf
1≤m≤n

{m
n
| δ breaks down with D under m replacements

}
.

If there is such an m then it is the minimal fraction of replacements in D
that may cause δ to break down, otherwise ∞. The individual breakdown
point is not an interesting concept per se since it depends on a single data
set. It tells the statistician how many gross outliers the data set M under his
or her study may contain without causing excessive damage if the imaginary
“clean” data set that should have been observed were D.

Donoho and Huber’s breakdown point is the universal breakdown point

β(δ) = min
D∈A

β(δ,D).

This concept depends solely on the estimator. We cannot always expect the
universal breakdown point to be large. An example is provided in Sect. 4.
We therefore introduced the restricted breakdown point (Gallegos and Ritter,
2005) of δ w.r.t. some subclass K of admissible data sets. It is

β(δ,K) := min
D∈K

β(δ,D).

The restricted breakdown point depends on δ and on the subclass K. It
provides information about the robustness of δ if the hypothetic “clean”
data set D that should have been observed instead of the contaminated data
set M had been a member of K. The restricted breakdown value may be
seen as a relaxed version of the universal since we have the estimates

β(δ) ≤ β(δ,K) ≤ β(δ,D), D ∈ K.
1Of course, no breakdown is possible if Θ is compact.
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Plainly, β(δ) = β(δ,A). The asymptotic breakdown point of δ is
lim infn→∞ β(δ).

In order to compute breakdown points in special situations one has to
know the system of compact subsets of the target space of the statistic. We
deal here with breakdown points of the means and of the covariance matrices.
The relatively compact subsets of the parameter space R

d of the means are
the bounded ones. A subset of PD(d) is relatively compact if it is bounded
above and below by positive-definite matrices in the positive-definite (or
Löwner) ordering � on the vector space of symmetric matrices. This is
equivalent to saying that the eigenvalues of all its members are uniformly
bounded and bounded away from zero.

We first show that the MTLE’s of the covariance matrices for the con-
strained normal models described in Sect. 2.10 are robust and compute their
individual breakdown point.

3.2 Theorem. (Individual breakdown point of the normal MTLE’s of
the covariance matrices.)

(a) Assume 2r ≥ n+ g(d + 1) in the “full” case and 2r ≥ n+ 2g in the
“diagonal” and “spherical” cases. (Note that these assumptions imply the
standard assumptions on r made in Sect. 2.10.) The normal MTLE’s of the
covariance matrices remain in a compact subset of PD(d) that depends only
on D as at most n − r + g − 1 data points are replaced in an arbitrary but
admissible way.

(b) The covariance matrices returned from any M-step break down as
n− r + g data points are suitably replaced.

(c) Under the assumption of (a) the individual breakdown value of the
normal MTLE’s of the covariance matrices is for all data sets D

βCov(n, g, r,D) =
1

n
(n − r + g).

Proof. We give proofs in the “full” case; the others are similar.

(a) We first show that, no matter what the modified data set M is, the
maximum trimmed likelihood remains bounded below by a strictly positive
constant. The constant is determined by a simple solution that is sufficient
for our purpose. We choose as R the remaining n − (n − r + g − 1) =
r − g + 1 original observations and g − 1 of the replacements. Without loss
of generality, let the original data be x1, . . . , xr−g+1 and the replacements
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y1, . . . , yg−1. Let u1 = · · · = ug = 1
g , m1 = 0, mj = yj−1, j ∈ 2..g, and

Vj = Id. The trimmed likelihood is

r−g+1∏

i=1

1

g

{
(2π)−d/2e−‖xi‖2/2 +

g−1∑

j=1

(2π)−d/2e−‖xi−yj‖2/2
}

×
g−1∏

i=1

1

g

{
(2π)−d/2e−‖yi‖

2/2 +

g−1∑

j=1

(2π)−d/2e−‖yi−yj‖
2/2

}

≥
r−g+1∏

i=1

1

g

{
(2π)−d/2e−‖xi‖

2/2
} g−1∏

i=1

1

g
(2π)−d/2 ≥ (2π)−dr/2g−re−‖D‖2/2 = CD,

a strictly positive constant.

Now, by assumption, any r-element subset R of the modified data set
contains at least r− (n− r+ g− 1) = 2r−n− g+1 ≥ gd+1 original points.
Therefore, Lemma 2.12(b) may be applied and we have thus shown

2 lnCD ≤ 2 ln f [xR | u∗,m∗,V∗] ≤ −r ln det 2πcV ∗
j −KD tr

(
V ∗
j

)−1

for 1 ≤ j ≤ g, with some constant KD that depends only on D. It is
well known that the set of matrices Vj ∈ PD(d) for which the right side is
bounded below is compact.

(b) Let M be the data set D modified by n − r + g replacements and
let (R1, . . . , Rg) be the MAP partition of the r-element subset R ⊆ M as-
sociated with the stochastic matrix w input to the M-step. By assumption,
R contains at least g replacements. Hence, either one cluster contains at
least two replacements or each cluster contains at least one replacement, in
particular some cluster with ≥ d+ 1 elements. In any case the partition has
a cluster Rℓ containing a replacement y and some other element x. Eq. (2.5)
implies

WR(wℓ) �
1

g
WRℓ

�1

g

(
(y − 1

2
(y + x))(y − 1

2
(y + x))T + (x− 1

2
(y + x))(x − 1

2
(y + x))T

)

=
1

2g
(y − x)(y − x)T .
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Now, let (u,m,V), V ∈ Vc, be the parameter computed from w in the
M-step. Since also 2V ∈ Vc, minimality (2.9) of (u,m,V) implies

0 ≤
∑

j

wj(R)
{

ln det 2Vj + trSR(wj)(2Vj)
−1 − ln detVj − trSR(wj)V

−1
j

}

=rd ln 2− 1

2

∑

j

trWR(wj)V
−1
j ≤ rd ln 2− 1

2
trWR(wℓ)V

−1
ℓ

≤rd ln 2− 1

4g
(y − x)TV −1

ℓ (y − x).

The estimate (y−x)TV −1
ℓ (y−x) ≤ 4grd ln 2 obtained proves that the small-

est eigenvalue of V −1
ℓ approaches zero arbitrarily closely if the replacements

are chosen in such a way as to be far away from all original data and from
each other.

Part (c) follows from (a) and (b).

It is interesting to remark that the normal MTLE’s of the covariance
matrices withstand g − 1 more outliers than there are discarded elements,
n − r. The constraints effect that outliers that are spread out may each
create a component of their own and outliers located close together may
create a common component. In each case the covariance matrices of the
optimal mixture do not completely break down.

3.3 Corollary (a) The maximal number of outliers that the normal
MTLE’s of the covariance matrices can resist is

⌊n− g(d− 1)

2

⌋
− 1 (full),

⌊n
2

⌋
− 1 (diagonal and spherical).

The parameter r has to be set to
⌈n+g(d+1)

2

⌉
and

⌈
n
2

⌉
+ g, respectively.

(b) The asymptotic breakdown point in each case is 1/2.

Proof. (a) We are asking for the largest integer n− r+ g− 1 under the
constraint 2r ≥ n+ g(d + 1) (“full” case) and 2r ≥ n + 2g (“diagonal” and
“spherical” cases). This proves Part (a) and (b) is immediate.

According to Davies (1987), the maximal asymptotic breakdown value of
any affine equivariant covariance estimator is 1/2. Part (b) of the corollary
says that the MTLE’s of the covariance matrices share this value.
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We next prove that, despite constraints and trimming, the universal
breakdown point of the sample mean is small. We first state a lemma.

3.4 Lemma. Let 1 ≤ q ≤ r, and let R = (x1, . . . , xr−q, y1, . . . , yq) consist
of r − q original data points xi and q replacements yi, and let (u,m,V) be
parameters computed in the M-step for R, e.g. a fixed point. Then

max
j
‖mj‖ −→ ∞ as ‖y1‖ → ∞ such that yi − y1, 2 ≤ i ≤ q,

remain bounded.

Proof. Let wj be the weights that induce the parameters. Eq. (2.6)
implies

∑

j

mj

( r−q∑

i=1

wj(xi)+

q∑

i=1

wj(yi)
)

=

r−q∑

i=1

xi+

q∑

i=1

yi =

r−q∑

i=1

xi+qy1+

q∑

i=1

(yi−y1)

and the claim follows since the quantities in parentheses on the left side
remain bounded.

3.5 Theorem. (Universal breakdown point of the normal MTLE’s of
the means.) Let g ≥ 2.

(a) Assume r < n and r ≥ gd + 2 in the “full” and r ≥ g + 1 in the
“diagonal” and “spherical” cases. The normal MTLE’s of all means
remain bounded by a constant that depends only on the data set D as
one observation is arbitrarily replaced.

(b) Assume r ≥ g + 2 and r ≥ gd + 1 in the “full” case. There is a data
set in general position such that the normal MTLE of one mean breaks
down as two particular observations are suitably replaced.

(c) Under the assumptions of (a), we have βmean(n, g, r) = 2
n .

Proof. We restrict ourselves again to considering full covariance matri-
ces, the other cases being similar.

(a) Let M = (x1, . . . , xn−1, y) be a modification of D by one admissible
replacement y. We show that the optimal solution (R̃, ũ, m̃, Ṽ) for M with
r < n under the condition that y is not discarded is inferior to some solution
which discards y if y is sufficiently distant. Let d̃j denote the Mahalanobis

distance induced by Ṽj, i.e., d̃j(u, v) =
√

(u− v)T Ṽ −1
j (u− v), let d̃j(u,D) =
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minv∈D d̃j(u, v) and d̃j(D) = maxu,v∈D d̃j(u, v) denote the distance between

u and D and the diameter of D w.r.t. d̃j, respectively.

Without loss of generality, R̃ = (x1, . . . , xr−1, y). Let R = (x1, . . . , xr)
and let

mj =

{
xr, if d̃j(m̃j ,D) > d̃j(D),

m̃j , otherwise.

We now show that the solution (R̃, ũ, m̃, Ṽ) is inferior to (R, ũ,m, Ṽ) if y
is such that d̃j(y,D) > 3d̃j(D) for all j. Comparing the trimmed likelihood
of the former

( r−1∏

i=1

g∑

j=1

ũjN
emj ,eVj

(xi)
) g∑

j=1

ũjN
emj ,eVj

(y)

termwise with that of the latter

( r−1∏

i=1

g∑

j=1

ũjNmj ,eVj
(xi)

) g∑

j=1

ũjNmj ,eVj
(xr),

we see that it is sufficient to show d̃j(xi, xr) < d̃j(xi, m̃j), i < r, if j is such

that d̃j(m̃j,D) > d̃j(D) and d̃j(xr, m̃j) < d̃j(y, m̃j) in the opposite case.

Now, if d̃j(m̃j ,D) > d̃j(D) then d̃j(xi, xr) ≤ d̃j(D) < d̃(m̃j,D) ≤
d̃j(xi, m̃j); if d̃j(m̃j ,D) ≤ d̃j(D) then

d̃j(y, m̃j) ≥ d̃j(y,D)− d̃j(m̃j ,D)

> 3d̃j(D)− d̃j(m̃j ,D)

≥ d̃j(D) + d̃j(m̃j ,D)

≥ d̃j(xr, m̃j).

In order to prove that the means remain bounded, we still have to prove that
the locations of the replacement y where it is not necessarily discarded are
bounded by a constant that depends only on D. (Note that Ṽj and, hence,

the distance d̃j depends on y!) In other words, we have to show that the

sets {y | d̃j(y,D) ≤ 3d̃j(D)} are bounded by constants that depend only

on D. To this end we next show that Ṽj is bounded below and above by
positive-definite matrices Lj and Uj that depend only on D.



194 M.T. Gallegos and G. Ritter

Indeed, the optimal parameters (R̃, ũ, m̃, Ṽ) are superior to the param-
eters

(
R̃,

(
1
g , . . . ,

1
g

)
, (0, . . . , 0, y), Id

)
, i.e.,

f [x
eR
| ũ, m̃, Ṽ] ≥ f [x

eR
| (1/g, . . . , 1/g), (0, . . . , 0, y), Id]

=g−r
∏

i<r

(∑

j<g

N0,Id(xi) + Ny,Id(xi)
)(∑

j<g

N0,Id(y) + Ny,Id(y)
)

≥g−r
( ∏

i<r

∑

j<g

N0,Id(xi)
)
N0,Id(0) =: cD.

The constant cD does not depend on y. Since r ≥ gd+2, R̃ contains at least
gd+ 1 original elements and Lemma 2.12(b) shows

2 ln cD ≤ 2 ln f [x
eR | ũ, m̃, Ṽ] ≤ −r ln det 2πcṼj −KD tr Ṽ −1

j ,

i.e., the right side is bounded below by a constant that depends only on
D. Its behavior as a function of Ṽj provides two matrices Lj and Uj as
required. Denoting the Mahalanobis distances w.r.t. Lj and Uj by dLj and
dUj , respectively, the claim finally follows from

dUj (y, x1) ≤ d̃j(y, x1) ≤ d̃j(y,D) + d̃j(D) ≤ 4d̃j(D) ≤ 4dLj (D).

(b) We proceed in several steps.

(α) Construction of data sets D and M :

Let F := {x1, . . . , xr−g} be a set of data points in general position. We
complete F to a data set D by points which we control by a constant K1 > 0
and we control the two replacements by another constant K2 > 0. Both
constants are specified later. Using Lemma A.6, it is possible to inductively
add points z1, . . . , zn−r+g−2 to F such that

(i) ‖zℓ − zk‖ ≥ K1 for all ℓ 6= k;

(ii) ‖xi − zk‖ ≥ K1 for all i ∈ 1..(r − g) and all k ∈ 1..(n − r + g − 2);

(iii) WH � cF Id for all H ∈
(F∪{z1,...,zn−r+g−2}

d+1

)
,

with some constant cF that depends only on F . The set of x’s and z’s is
of size n − 2 ≥ d + 1. (For d = 1 this estimate follows from r ≥ g + 2 and
for d ≥ 2 it follows from r ≥ gd + 1.) Thus, (iii) implies general position of
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the points constructed so far. The data set D is completed by two arbitrary
points q1, q2 in general position. In order to obtain our modified data set

M := F ∪ {z1, . . . , zn−r+g−2} ∪ {y1, y2}

we use again Lemma A.6 replacing the two points q1 and q2 with a twin pair
y1 6= y2 such that

(iv) ‖y1 − y2‖ = 1;

(v) ‖u− yk‖ ≥ K2 for all u ∈ F ∪ {z1, . . . , zn−r+g−2} and for k = 1, 2;

(vi) WT � cF Id for all T ∈
(
M
d+1

)
that contain at least one yk.

Conditions (iii) and (vi) taken together implyWT � cF Id for all d+1-element
subsets T ⊆M . The idea was to place the points zℓ and the replacements yk
in directions that guarantee general position as homotheties are applied. In
view of Lemma 3.4, we will show that the optimal solution does not discard
the outliers y1 and y2 if K1 and K2 are chosen large enough.

(β) The maximum of the trimmed likelihood for the modified data set
M is bounded below by a constant that depends only on F , g, and r:

It is sufficient to construct a subset R ⊆ M and a parameter set with
likelihood bounded below by a function of F , g, and r. We let R = F ∪
{z1, . . . , zg−2} ∪ {y1, y2}, uj = 1/g, mj = zj , 1 ≤ j ≤ g − 2, mg−1 = 0,
mg = y1, and V = Id. Using g ≥ 2 and (iv) we have

f [xR | u,m, V ]

=

r−g∏

i=1

1

g

g∑

j=1

Nmj ,Id(xi)

g−2∏

i=1

1

g

g∑

j=1

Nmj ,Id(zi)

2∏

i=1

1

g

g∑

j=1

Nmj ,Id(yi)

≥ g−r
r−g∏

i=1

N0,Id(xi)

g−2∏

i=1

Nzi,Id(zi)
2∏

i=1

Ny1,Id(yi)

≥ g−r(2π)−
gd
2 e−

1
2

r−g∏

i=1

N0,Id(xi)

as required.

The assumptions of the combinatorial Lemma 4.2 by Gallegos and Ritter
(2005) are satisfied, so any partition R of any subset of M of size r in g
clusters has either the form
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R = {{x1, . . . , xr−g}, {y1, y2}, g − 2 one-point clusters from the zk
′s} or

there is a cluster Rℓ ∈ R, |Rℓ| ≥ 2, which contains some pair {xi, yh} or
some zk.

(γ) The MAP partition R associated with the weight matrix w of an op-
timal solution (R,u∗,m∗,V∗) is of the first kind if K1 and K2 are sufficiently
large:

Assume on the contrary that R is of the second kind. Choose Rℓ con-
taining a pair xi, yh or zk, u with some u 6= zk. By (i), (ii), and (v), Rℓ
contains two distant elements so that Eq. (2.5) implies

g trWR(w) ≥ g trWR(wℓ) ≥ trWRℓ
−→

K1,K2→∞
∞. (3.1)

Moreover, by r ≥ gd + 1 there exists j such that |Rj | ≥ d + 1 and we infer
from Eq. (2.5), (iii), and (vi)

gWR(w) � gWR(wj) �WRj � cF Id. (3.2)

Now, Lemma 2.12 (a), (β), and Eq. (3.2), show that the quantities

2 ln f [xR | u∗,m∗,V∗] ≤− r ln det 2πcV ∗
j − c trWR∗(w)(V ∗

j )−1

≤− r ln det 2πcV ∗
j − const tr(V ∗

j )−1

all remain bounded below by a constant that depends only on F . The second
estimate shows that V ∗

j lies in a compact subset of PD(d) that is independent
of the choice of the points zk and of the replacements. Therefore, the first
estimate shows that trWR(w) is bounded above by a constant that depends
only on F . This contradiction to Eq. (3.1) proves (γ).

Finally choose K1 and K2 so large that the MAP partition of any optimal
solution is of the first kind. In particular, the solution does not discard the
replacements. According to Lemma 3.4, at least one mean breaks down as
K2 →∞.

(c) follows from (a) and (b).

3.6 The case g = 1 In the case of one component, the criterion (2.2)
reduces to Rousseeuw’s (1985) maximum covariance determinant, MCD, for
robust estimation of location and scatter. If α < 0.5 then its asymptotic
breakdown point with parameter r = ⌈(1 − α)n⌉ is known to be α, see
Rousseeuw (1985), p.291. This is in harmony with our result on the scatter
matrices, Theorem 3.2. For g = 1, reduction of the parameter r has the effect
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that breakdown of the mean occurs at a much higher number of outliers
compared with the case g > 1 stated in Theorem 3.5. The reason is that, in
the case g > 1, the outliers may establish a component of their own if they
are close to each other, thus causing one mean to diverge.

For g = 1, not only the criterion but also the algorithm is known. The
weights are all 1 so that the E-step is trivial. The M- and T-steps of EMT
reduce to Rousseeuw and Van Driessen’s (1999), Theorem 1, alternating
C-step for computing the MCD.

4 Restricted Breakdown Point of the Means

Theorem 3.5 and the preceding remark state that the asymptotic break-
down value of the normal MTLE’s of the means is zero, an at first sight
disappointing result for a trimming algorithm. It is, however, not the esti-
mator that has to be blamed but the stringent universal breakdown point.
Besides allowing any kind of contamination it makes a statement about any
data set, even it is unlikely to emanate from a g-component model. Garćıa-
Escudero and Gordaliza (1999) conjectured from simulations in the classi-
fication framework that it is hard to break down “clear” cluster structures
if the natural number of clusters is chosen as the parameter g. Robustness
of the means depends also on the structure of data set. This phenomenon
was mathematically analyzed by us (Gallegos and Ritter, 2005, 2009) in the
cases of homo- and heteroscedastic normal clustering. We transfer this result
to the heteroscedastic normal mixture model under the HDBT constraints
by considering the restricted breakdown value w.r.t. a subclass of data sets
with an inherent cluster structure, see Sect. 4.3.

We need more notation. Let P = {P1, . . . , Pg} be a partition of D and
let ∅ 6= T ⊆ D. The partition P ∩ T = {P1 ∩ T, . . . , Pg ∩ T} is the trace
of P in T . Let g′ ≥ 1 be a natural number and let T = (T1, . . . , Tg′)
be a partition of T . The common refinement of P and T is denoted by
P ⊓ T = {Pj ∩ Tk | j ≤ g, k ≤ g′}, a partition of T ; some clusters may
be empty. The pooled SSP matrix

∑
kWTk

of T is denoted by WT and the
pooled scatter matrix of T is ST = 1

|T |WT . We denote the set of all stochastic

matrices over the index set T × (1..g′) by M(T, g′). For a data set T and
α ∈ M(T, g′), WT (α) =

∑
k≤g′ WT (αk) is the pooled weighted SSP matrix,

cf. Section 2.10. Given a partition Q = {Q1, . . . , Qg} of some subset Q ⊆ D,
we also define

WQ(α) =
∑

j≤g

WQj(α) =
∑

j≤g

∑

k≤g′

WQj(αk).
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If α is binary then WQ(α) is the pooled SSP matrix of the common refine-
ment of Q and the partition defined by α. The proof of the theorem of this
section depends on lemmas which we next state and prove. The following
one states a basic condition which implies robustness of the means. In Theo-
rem 4.4, we will see that it actually means a separation property of the data
set.

4.1 Lemma. Let g ≥ 2 and r < n, assume r > gd + 1 in the full
and r > g + 1 in the diagonal and spherical normal cases, and let q ∈
max{2r−n, gd+1} . . (r− 1) (full case) and q ∈ max{2r−n, g+1} . . (r− 1)
(diagonal and spherical cases). Assume that the data set D possesses a
partition P in g clusters such that for all T ⊆ D, q ≤ |T | < r, and all
α ∈M(T, g − 1)

detWT (α) ≥ g2 max
R∈(D

r ),R⊇T
det

1

c2
WP∩R (full and diagonal) (4.1)

trWT (α) ≥ g2/d max
R∈(D

r ),R⊇T
tr

1

c2
WP∩R. (spherical)

Then the individual breakdown point of the normal MTLE’s of the means
satisfies

βmean(n, g, r,D) ≥ 1

n
(r − q + 1).

Proof. in the “full” case. Let M be any data set obtained from D
by modifying at most r− q elements. Let (R∗, (u∗j )

g

j=1
, (m∗

j )
g

j=1
, (V ∗

j )g
j=1

) be

an optimal solution for M and let w∗ = (w∗
j (x))x,j be the related posterior

probabilities. We will show that the means m∗
j are bounded by a number

that depends solely on the original data D. Our proof proceeds in several
steps. We write xP∩R = (xP1∩R, . . . , xPg∩R).

(α) f [xR∗ | u∗,m∗,V∗] ≥ max
R∈(M∩D

r )
f [xR | g−1,xP∩R, SP∩R].

Since q ≥ 2r − n there exists a subset R ⊆ M ∩D of size r and the claim
follows from optimality of (R∗,u∗,m∗,V∗).

Now let R∗ = (R∗
1, . . . , R

∗
g) be an MAP partition of R∗ w.r.t. the optimal

solution and let

λmin := min{λ | λ eigenvalue of WC , C ⊆ D, |C| = d+ 1},

a constant > 0 that depends only on the data set D.
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(β) The matrices V ∗
j , j ∈ 1 . . . g, are bounded above and below by

positive-definite matrices that depend only on D, not on the replacements:

Since |R∗| = r, R∗ =
⋃g
j=1R

∗
j has at least q ≥ gd + 1 original observations.

By the pigeon hole principle, there exists j ∈ 1..g such that |R∗
j ∩D| ≥ d+1.

By Eq. (2.5), this implies the lower estimate

WR∗(w∗) �WR∗(w∗
j ) �

1

g
WR∗

j
� λmin

g
Id.

Applying 2.12(a) to the optimal solution, we infer from (α) that the expres-
sion − r

2 ln det 2πcV ∗
j − c

2λmintr(V
∗
j )−1 remains bounded below by a constant

which depends solely on D, n, g, and r. The well-known behavior of this
function of V ∗

j implies that the matrices V ∗
j , j ∈ 1 . . . g, remain bounded

above and below in the Löwner ordering.

(γ) If R∗
j contains some original observation then m∗

j is bounded by a
number that depends only on D:

Let x ∈ R∗
j ∩D. We have WR∗(w∗) � 1

g (x−m∗
j)(x−m∗

j)
T and, hence, ‖x−

m∗
j‖2 ≤ g trWR∗(w∗). Part (γ) will be proved if we show that trWR∗(w∗)

has an upper bound that does not depend on the modifications. By Lemma
2.12,

c trWR∗(w∗)(V ∗
j )−1 ≤ −r ln det 2πcV ∗

j − 2 ln f [xR∗ | u∗,m∗,V∗],

and the claim follows from (α) and (β).

(δ) If R∗
j contains some replacement then ‖m∗

j‖ → ∞ as the replacement
tends to ∞:

This is proved like (γ) with x replaced by the replacement.

It follows from (γ) and (δ) that, in the long run, each setR∗
j consists solely

of original observations or solely of modifications, i.e., either R∗
j ∩D = ∅ or

R∗
j ∩ (M \D) = ∅.

(ǫ) If R∗
j contains some replacement then w∗

j (x) → 0 for all x ∈ R∗ ∩D
as the replacement tends to ∞:
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Let x ∈ R∗
ℓ ∩ D. By Eq. (2.4), we have u∗ℓ = 1

r

∑
z∈R∗ w∗

ℓ (z) ≥ 1/gr and,
hence,

w∗
j (x) =

u∗j (detV ∗
j )−1/2e−

1
2
(x−m∗

j )T (V ∗
j )−1(x−m∗

j )

∑
k u

∗
k(detV ∗

k )−1/2e−
1
2
(x−m∗

k)T (V ∗
k )−1(x−m∗

k)

≤ gr
√

detV ∗
ℓ

detV ∗
j

e−
1
2
(x−m∗

j )T (V ∗
j )−1(x−m∗

j )

e−
1
2
(x−m∗

ℓ )T (V ∗
ℓ )−1(x−m∗

ℓ )
.

The claim follows from (β), (γ), and (δ).

(ζ) ln f [xR∗ | u∗,m∗,V∗] ≤ cd,r − dr ln c− r
2 ln detSR∗(w∗):

By 2.12(a),

2 ln f [xR∗ | u∗,m∗,V∗]

≤ −dr ln 2πc2 −
[
r ln det(V ∗

1 /c) + tr(V ∗
1 /c)

−1WR∗(w∗)
]

≤ −dr ln 2πc2 −min
A�0

[
r ln detA+ trA−1WR∗(w∗)

]
.

Now, standard normal estimation theory shows that the function

A 7→ r ln detA+ trA−1WR∗(w∗), A ≻ 0,

attains its minimum at 1
rWR∗(w∗) with value r

[
ln det WR∗(w∗)

r + d
]
. This is

the claim.

(η) There is K > 0 such that R∗ contains no modification y, ‖y‖ > K:

Assume on the contrary that, for all K > 0, there is y ∈ R∗ \D, ‖y‖ > K,
y ∈ R∗

g, say. Let ε > 0 and let K be so large that w∗
g(x) ≤ ε for all

x ∈ R∗ ∩D, cf. (ǫ). Putting α∗
j(x) =

w∗
j (x)

1−w∗
g(x) , x ∈ R∗ ∩D, j < g, we have

α
∗ ∈M(R∗ ∩D, g − 1) and

WR∗(w∗) �
g−1∑

j=1

∑

x∈R∗∩D

w∗
j (x)(x−m∗

j)(x−m∗
j)

T

� min
x∈R∗∩D

(1− w∗
g(x))

g−1∑

j=1

∑

x∈R∗∩D

α∗
j (x)(x−m∗

j )(x−m∗
j )

T

�(1− ε)
g−1∑

j=1

WR∗∩D(α∗
j ) = (1− ε)WR∗∩D(α∗)
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by Steiner’s formula A.3. We modified at most r−q elements and R∗ contains
at least one modification. Hence, q ≤ |R∗ ∩ D| < r and we may apply
Hypothesis (4.1) to continue

detWR∗(w∗)

≥ (1− ε)d detWR∗∩D(α∗) ≥ (1− ε)dg2 max
R∈(D

r ),R⊇R∗∩D
det

1

c2
WP∩R.

Since ε is arbitrary we conclude

detWR∗(w∗) ≥ g2 max
R∈(D

r ),R⊇R∗∩D
det

1

c2
WP∩R

and

2d ln c+ ln detSR∗(w∗) ≥ 2 ln g + max
R∈(D

r ),R⊇R∗∩D
ln detSP∩R.

Now, for all R ⊆ D,

ln f [xR | g−1,xP∩R, SP∩R]

=

g∑

ℓ=1

∑

x∈Pℓ∩R

ln
1

g

g∑

j=1

(det 2πSP∩R)−1/2e
−1/2(x−xPj∩R)TS−1

P∩R(x−xPj∩R)

> −r ln g − r

2
ln det 2πSP∩R −

1

2

g∑

ℓ=1

∑

x∈Pℓ∩R

(x− xPℓ∩R)TS−1
P∩R(x− xPℓ∩R)

= cd,r − r ln g − r

2
ln detSP∩R.

The last two estimates and Part (ζ) combine to show

max
R∈(M∩D

r )
ln f [xR | g−1,xP∩R, SP∩R] > cd,r − r ln g − r

2
min

R∈(M∩D
r )

ln detSP∩R

≥ cd,r − r ln g − r

2
max

R∈(D
r ),R⊇R∗∩D

ln detSP∩R

≥ cd,r − dr ln c− r

2
ln detSR∗(w∗)

≥ ln f [xR∗ | u∗,m∗,V∗],

a contradiction to (α). This proves Claim (η).

Finally, (η) shows that the meansm∗
j are convex combinations of elements

from D and replacements in the centered ball of radius K. This proves the
lemma.
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In order to remove the dependence on α in Lemma 4.1 we need a defini-
tion. Assume g ≥ 2, let ̺ > 0, and let u ≤ n/g be an integer. We define the
real number

qu,̺ =

{
max

{
2r − n, (g − 1)gd + 1, n−u1−̺

}
(full)

max
{
2r − n, (g − 1)g + 1, n−u1−̺

}
(diagonal and spherical).

Plainly
qu,̺

(g−1)g > d in the case of full covariance matrices and > 1 in the
diagonal and spherical cases. Before stating the separation property we
prove a combinatorial lemma. One of its assumptions is qu,̺ ≤ r − 1. This
is equivalent to n > r > (g− 1)gd+ 1 and n− (1− ̺)(r− 1) ≤ u. Combined
with u ≤ n/g the last estimate implies also ̺ ≤ 1/g.

4.2 Lemma. Assume qu,̺ ≤ r−1. Let P = {P1, . . . , Pg} be a partition of
D in clusters of size ≥ u, let T ⊆ D such that qu,̺ ≤ |T | < r (the assumption
on qu,̺ implies the existence of such a subset T ), and let T = {T1, . . . , Tg−1}
be a partition of T ; some Tk’s may be empty. Then:

(a) For all j, we have |Pj ∩ T | ≥ ̺|T |.
(b) There are clusters Tk and Pj such that |Tk ∩ Pj | ≥ qu,̺

(g−1)g .

Proof. (a) Assume on the contrary that |Pℓ ∩ T | < ̺|T |. From D ⊇
T ∪ Pℓ we infer

n ≥ |T |+ |Pℓ| − |Pℓ ∩ T | > |T |+ u− ̺|T | = u+ (1− ̺)|T |
≥ u+ (1− ̺)qu,̺ ≥ u+ n− u

by definition of qu,̺, a contradiction.

(b) The observations in T are spread over the (g−1)g disjoint subsets of
the form Tk ∩ Pj . If (b) did not hold, we would have |T | = ∑

k,j |Tk ∩ Pj | <
qu,̺, a contradiction.

Define

κ̺ =

{
(1− ̺)̺, g = 2,

̺/2, g ≥ 3.

Given two subsets S, T ⊆ R
d, d(S, T ) denotes their Euclidean distance and

d(S) the Euclidean diameter of S.

4.3. The separation property. Assume qu,̺ ≤ r−1 and let c be the HDBT
constant. We denote by Lu,̺,c the system of all d-dimensional admissible
data sets D of size n with the following separation property:
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D possesses a partition P in g subsets of size at least u such that, for all
subsets T ⊆ D, qu,̺ ≤ |T | < r,

1 + κ̺ min
sh ∈ conv Ph ∩ T

ℓ 6= j

(sℓ − sj)
T

S
−1
P∩T (sℓ − sj) (full and diagonal2 cases)

(4.2)

≥ g
2
max

R∈(D
r ),R⊃T

det 1
c2

WP∩R

detWP∩T

n

1 +
g − 2

2d(g − 1)
max

s, s′ ∈ Pj

1 ≤ j ≤ g

T

(s − s
′)TS

−1
P⊓T (s − s

′)
od

,

1 + κ̺
minℓ 6=j d2(conv(Pj ∩ T ), conv(Pℓ ∩ T ))

trSP∩T
(spherical case)

≥ g
2/d

max
R∈(D

r ),R⊃T
tr 1

c2
WP∩R

trWP∩T

n

1 +
g − 2

2(g − 1)

max1≤j≤g d2(Pj ∩ T )

minT trSP⊓T

o

.

where T runs over all partitions of T in g− 1 clusters. Lemma 4.2(b) shows
that the inverse matrices appearing in Eq. (4.2) exist. The factor on the
right hand side of (4.2) may be replaced with the expression

exp
{ g − 2

2(g − 1)
max

s, s′ ∈ Pj
1 ≤ j ≤ g
T

(s− s′)TS−1
P⊓T (s− s′)

}
,

a number independent of dimension d. The partition P appearing in the
separation property plays the role of a partition of the data set in well-
separated clusters. Note that condition (4.2) is affine equivariant. The set
Lu,̺,c increases with decreasing u and increasing ̺ ≤ 1/2 and c.

Roughly speaking, a data set D has the separation property if it is com-
posed of well separated clusters. Moreover, it helps if population shapes are
balanced, i.e., the HDBT ratio c is close to 1, and if cluster sizes are bal-
anced, i.e., u is large so that κ̺ and ̺ may be chosen large. Note, however,
that κ̺ is bounded since ̺ ≤ 1/g.

If a data set has the separation property, then the normal MTLE’s of
the means are much more robust than predicted by the universal breakdown
value in Theorem 3.5.

2In the diagonal case a similar estimate can also be given by working with the compo-
nents of R

d separately.
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4.4. Theorem. (Restricted breakdown point of the normal MTLE’s of
the means) Let g ≥ 2, r < n.

(a) Assume r ≥ (g−1)gd+2 in the full and r ≥ (g−1)g+2 in the diagonal
and spherical cases, respectively, and let u ∈ N s.th. n−(1−̺)(r−1) ≤
u ≤ n/g (hence ̺ < 1/g by n > r). Then the restricted breakdown
value of the normal MTLE’s of the means w.r.t. Lu,̺,c satisfies

βmean(n, g, r,Lu,̺,c) ≥
1

n
(r + 1− qu,̺).

(b) The individual breakdown point of any data set D satisfies
βmean(n, g, r,D) ≤ 1

n(n− r + 1).

(c) Let 2r − n ≥ (g − 1)gd+ 1 in the full and 2r− n ≥ (g − 1)g + 1 in the
diagonal and spherical cases, assume 2(n− r) ≤ n/g− 1. Let u ∈ N be

s.th. 2(n− r) < u ≤ n/g and put ̺ = u−2(n−r)
2r−n . Then

βmean(n, g, r,Lu,̺,c) =
1

n
(n− r + 1).

(d) If the hypotheses of (a) are satisfied and if the data set is of the class
Lu,̺,c then the normal MTLE of R discards all replacements that are
large enough.

Proof. (a) The assumptions imply qu,̺ ≤ r − 1. Let T ⊆ D such that
qu,̺ ≤ |T | < r and let α ∈M(T, g− 1). In order to shorten notation we use
the abbreviation

d(h, j, k, ℓ) := xPj∩T (αh)− xPℓ∩T (αk).

For j ≤ g such that |Pj ∩ T | > 0 let

AT,j(α) =
1

|Pj ∩ T |
∑

1≤h<k<g

αh(Pj ∩ T )αk(Pj ∩ T )d(h, j, k, j)d(h, j, k, j)T .

Applying Lemma A.5 with g′ = g − 1, we obtain WPj∩T = WPj∩T (α) +
AT,j(α) and

WP∩T = WP∩T (α) +
∑

j

AT,j(α) = WP∩T (α) +AT (α). (4.3)
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For k < g such that αk(T ) > 0 let

BT (αk) =
1

αk(T )

∑

1≤j<ℓ≤g

αk(Pj ∩ T )αk(Pℓ ∩ T )d(k, j, k, ℓ)d(k, j, k, ℓ)T .

Applying Lemma A.4 with w(x) = αk(x) and Tj = Pj ∩ T , we have for
αk(T ) > 0 the identity WT (αk) = WP∩T (αk) +BT (αk) and hence

WT (α) = WP∩T (α) +
∑

k:αk(T )>0

BT (αk). (4.4)

According to Gallegos and Ritter (2005), Lemma A.1(b), det(A+
∑

h yhy
T
h ) ≥

(1+
∑

h y
T
h A

−1yh) detA for all A ∈ PD(d). Applying this estimate, and using
Eqs. (4.4) and (4.3), we infer

detWT (α)

≥ detWP∩T (α)
(
1 +

∑

k:αk(T )>0

1

αk(T )

∑

1≤j<ℓ≤g

αk(Pj ∩ T )αk(Pℓ ∩ T )×

d(k, j, k, ℓ)W−1
P∩T d(k, j, k, ℓ)

T
)

= detWP∩T (α)(1 + rT (α)). (4.5)

We next estimate the two factors in (4.5) rendering them devoid of α. Since∑
k
αk(T )
|T |

αk(Pj∩T )
αk(T ) =

∑
k
αk(Pj∩T )

|T | =
|Pj∩T |
|T | ≥ ̺ according to Lemma 4.2 (a),

Lemma A.8(b) may be applied to the expression

∑

k:αk(T )>0

1

αk(T )

∑

1≤j<ℓ≤g

αk(Pj ∩ T )αk(Pℓ ∩ T )

= |T |
∑

k:αk(T )>0

αk(T )

|T |
∑

1≤j<ℓ≤g

αk(Pj ∩ T )

αk(T )

αk(Pℓ ∩ T )

αk(T )

implying

rT (α) ≥ κ̺|T | min
sh ∈ convPh ∩ T

ℓ 6= j

(sℓ − sj)TW−1
P∩T (sℓ − sj). (4.6)

Next use Lemmas A.8(a) and A.9 to estimate
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trW
−1
P∩T (α)AT (α)

=
X

j≤g

1

|Pj ∩ T |

X

1≤h<k<g

αh(Pj ∩ T )αk(Pj ∩ T )trW−1
P∩T (α)d(h, j, k, j)d(h, j, k, j)T

=
X

j≤g

1

|Pj ∩ T |

X

1≤h<k<g

αh(Pj ∩ T )αk(Pj ∩ T )d(h, j, k, j)TW
−1
P∩T (α)d(h, j, k, j)

≤
|T |

2

g − 2

g − 1
max

s, s′ ∈ Pj

1 ≤ j ≤ g

(s − s
′)TW

−1
P∩T (α)(s − s

′)

≤
|T |

2

g − 2

g − 1
max
T

max
s, s′ ∈ Pj

1 ≤ j ≤ g

(s − s
′)TW

−1
P⊓T (s − s

′). (4.7)

The identity det(A+B) = detA ·det(Id+A
−1/2BA−1/2) and the arithmetic-

geometric inequality detC ≤
(

1
dtrC

)d
, valid for A ≻ 0, B ∈ R

d×d, and C �
0, yield the inequality det(A + B) ≤ detA

(
1 + 1

d trA
−1B

)d
. Its application

to Eq. (4.3) shows together with Eq. (4.7)

detWP∩T ≤ detWP∩T (α)
{

1 +
1

d
trW−1

P∩T (α)AT (α)
}d

(4.8)

≤ detWP∩T (α)
{

1 +
1

2d

g − 2

g − 1
max
T

max
s, s′ ∈ Pj
1 ≤ j ≤ g

(s− s′)TS−1
P⊓T (s− s′)

}d
.

Eqs. (4.5) and (4.6), the separation property, and Eq. (4.8) finally combine
to show Eq. (4.1) and Claim (a) follows from Lemma 4.1,

(b) Let M be a set obtained from D by replacing n−r+1 of its elements
with a narrow and distant cluster. M contains only r−1 original observations
so that each r-element subset of M contains one modification, in particular,
each optimal set R∗. Let {R∗

1, . . . , R
∗
g} be an associated MAP partition.

Then some R∗
j contains at least one modification and Lemma 3.4 shows

that the norm of m∗
j tends to infinity together with the compact cluster of

replacements.

(c) The general assumption r < n yields the estimate 2r − n ≤ r − 1
which in turn shows that the first condition in (a) is fulfilled and that the
given ̺ satisfies 1− ̺ = (n− u)/(2r − n) ≥ (n − u)/(r − 1). It follows that
the second condition in (a), too, is satisfied and that ̺ is the largest number
s.th. qu,̺ = 2r − n. The claim on βmean now follows from (a).

Claim (d) follows from Part (η) of the proof of Lemma 4.1.
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The following corollary is a consequence of Theorem 4.4. We formulate it
in the case of full covariance matrices. Combined with Cor. 3.3 it says that
EMT is asymptotically robust on data sets with a well-separated, balanced
cluster structure if the natural parameter g is used.

4.5 Corollary. Let g ≥ 2, let 0 < η < δ < 1
g , let r =

⌈
n
(
1− 1

2g + δ
2

)⌉
,

let u =
⌈
n
(

1
g − η

)⌉
, and let ̺ = δ−η

1−1/g+δ . Then, asymptotically,

βmean(n, g, r,Lu,̺,c) −→
n→∞

1

2

(1

g
− δ

)
.

4.6 Remarks. (a) The inequality n − (1 − ̺)(r − 1) ≤ u required in
Theorem 4.4(a) implies u ≥ n − r + 2. That is, the sizes of the natural
clusters must exceed the number of discarded elements in Theorem 4.4(a).
Moreover, the assumptions of Part (c) imply that these sizes exceed twice
the number of discarded elements.

(b) Although we have formulated the trimmed likelihood function and
the EMT algorithm for general statistical models, we have stated and proved
our robustness results only for various normal models. Extensions to other
models are possible but not straightforward, in general. The proofs in the
present paper depend on the crucial Lemma 2.12. We sketch how this lemma
and much of the robustness theory can be extended to a whole family of
elliptical distributions including the normal case leaving the details to the
interested reader.

Denote the d-variate elliptical density function with radial function
ϕ : R+ → R>, mean vector m ∈ R

d, and scale parameter V ∈ PD(d) by

fϕ,m,V (x) =
1√

detV
ϕ
(
(x−m)TV −1(x−m)

)
, x ∈ R

d,

In the normal case, ϕ(s) = (2π)−d/2e−s/2. Lemma 2.12 remains valid if
the normal densities Nmj ,Vj are replaced with elliptical densities fϕ,mj ,Vj

provided that

(i) ϕ is strictly decreasing and logarithmically concave.

This condition implies lims→∞ stϕ(s) = 0 for all t ∈ R. We infer
that Proposition 2.13 holds true, i.e., a maximum of the HDBT-constrained
trimmed likelihood function exists. Under (i), Theorem 3.2(a) remains also
true for the estimates of the scale parameters. The estimated means returned
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Figure 3: (a) The data set D and (b) its modification shown at the critical distance
a = 12.42 where transition between robustness and breakdown occurs.

from any M-step lie in the convex hull of R. Theorem 3.5, too, remains valid
under the condition (i).

Any concave function is differentiable from the right and, from (i), we
infer lims→∞ s(lnϕ)′(s) = −∞. This is needed to show also the robustness
results stated in Theorem 3.2(b) and (c) for the estimates of the scale pa-
rameters. Finally, Lemma 4.1 (full case) remains true if the inequality (4.1)
is replaced with

min
A∈PD(d)

`

ln detA − 2 lnϕ
`

tr
˘

WT (α)A−1¯´´

≥ max
R∈(D

r ),R⊇T

h

ln g
2 det

1

c2
WP∩R −

2

r

g
X

j=1

X

x∈Pj∩R

ln ϕ
`

(x − xP∩R,j)
T

S
−1
P∩R(x − xP∩R,j)

´

i

.

In the normal case, this inequality reduces to inequality (4.1). Examples
where the condition (i) is satisfied are light-tailed elliptical distributions
with ϕ(s) = c1 · e−c2·s

p
, p ≥ 1, c2 > 0.

4.7 Illustrations. Theorem 4.4 requires well-separated components in
order to guarantee robustness. We give first an example which shows that
such an assumption is necessary. Consider the two-dimensional data set D
consisting of the n = 17 regular points
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displayed in Fig. 3(a). As expected, the classical ML estimate with the full
homoscedastic model and g = 3 determines the left, the middle, and the
right components. Now assume that the two stars * in Fig. 3(a) have been
grossly mismeasured as shown in Fig. 3(b). Their mutual distance is now
1. Then for a ≥ 12.43, the homoscedastic EMT algorithm with g = 3 and
r = 15 produces a reasonable estimate discarding both outliers. However for
a ≤ 12.42, it discards the two (original) observations interior to the convex
hulls of the right and middle clusters thus producing as MTLE two slim
horizontal components complemented by a component determined by the
two outliers. Its negative log-likelihood is 73.3324 whereas that of the natural
solution is 73.3355. Using upper and lower bounds on the Mahalanobis
distance square appearing on the left side of Eq. (4.2) we estimated that the
lower bound of values a for which the separation property is satisfied lies
between 1763 and 3841. For the spherical model this interval is [60, 61].

This special and contrived example represents the worst case. First, the
two replaced elements are purposefully chosen. Second, they are replaced
with two close outliers aligned horizontally. Third, a further removal of two
points makes the remaining original points two narrow horizontal clusters
which determine the solution if there is not enough separation between the
three original clusters.

The MTLE may be robust also w.r.t. the means even when applied to
substantially overlapping components. To underpin this contention, we ran-
domly generate in a second experiment 54 four-dimensional data sets of
150+100+50 regular data points, each, randomly drawn from N0,I4 , N3e1,V2 ,
and N6e2,V3 , respectively, where

V2 =




1
−1.5 4
−1 −2 9
0 −1 3 16


 , V3 = diag(1, 16, 9, 4).
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n− r 0 1 2 3 4 5 6 7 8
g

1 222.1 219.4 216.1 212.6 208.5 205.4 202.4 199.4 195.8
2 227.8 228.6 210.9 207.0 203.9 200.9 197.7 194.8 191.4

3 229.4 225.7 217.3 213.8 211.8 208.1 206.2 201.9 199.4
4 238.9 235.5 227.7 222.5 219.8 216.1 212.4 209.0 207.0

Table 2: Table of trimmed BIC values for various numbers of components and of
discarded elements. The boldface numbers mark the columnwise minima. They
stabilize at the values g = 2 and n− r = 2.

To each data set we add 30 “outliers” randomly drawn from N0,104I4. It turns
out that the normal MTLE (best among 500 replications of the EMT algo-
rithm) with full covariance matrices subject to the HDBT constraints (1.1)
with c = 200 and with the parameters g = 3 and r = 300, 295, 290, 285, 280
correctly identifies all outliers in all 270 runs. These findings plead again
for its robustness. The assumption of too many outliers is not harmful. Of
course, we must not assume less than 30 outliers.

It is hardly possible to predict the number of replications necessary to
achieve the optimum. In most cases, the optimum among the 500 replications
appears during the first 50 trials, often earlier, sometimes substantially later.
One replication consists on the average of about 50 EMT-steps for which our
C++ implementation of the algorithm needs 0.04 sec on a 2 GHz processor.

Mixture modelling is also used for the purpose of data clustering. As
our last illustration, we randomly draw 60 samples from the normal mix-
ture 0.8N2e1,Id + 0.2N−2e1,Id and add two outliers at the points (7, 0.1) and
(7,−0.1) in order to discuss the effect of different choices of the number of
discarded elements. Moreover, we compare the clusterings created by EMT
and by Fraley and Raftery’s (2002) MCLUST.

We first determine the favorite solution according to Section 2.14. Table
2 shows the BIC values for the optimal solutions w.r.t. criterion (2.12). The
minima in each column stabilize at the value g = 2 and this takes place at
n−r = 2. We conclude that the data set was sampled from a two-component
mixture and contains two outliers. Figure 4 presents the MAP clusterings
for the optimal mixtures obtained with g = 2 components and zero, one,
two, and eight discarded elements (asterisks). The first two images reveal
a marked instability as long as the number of outliers exceeds the number
of discarded elements. Everything can happen. Whereas the clustering
that retains all elements looks reasonable, although the outliers could not
be recognized, the clustering that discards one element is in disorder. The
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Figure 4: Sixty data points randomly sampled from 0.8 N2e1,I2 + 0.2 N
−2e1,I2 with

two additional outliers. The images show five clusterings determined by MAP
discriminant analysis on the basis of estimated heteroscedastic, full normal mixtures.
First two rows: mixtures estimated with the present EMT, two components and
zero, one, two, and eight discarded elements shown as asterisks. The left image
in the second row belongs to the favorite solution selected with trimmed BIC, see
Table 2, according to Section 2.14. Bottom: a typical mixture estimated with
mclustBIC (VVV) for two components plus noise (asterisks). There is a spurious
component and the solution clearly overestimates the number of noise elements.

retained objects are separated by a horizontal line instead of a vertical one.
The situation changes suddenly as the number of discarded elements reaches
the number of outliers, second row, left. This solution is correct. Increasing
the number of discarded elements further does not dramatically change the
clustering, see the second row, right. The method of Section 2.14 returns a
reasonable result although we discard eight elements while there are actually
only two outliers. It just discards also a few extreme elements in each cluster.

The procedure mclustBIC of the MCLUST package (Version 3.3.1) im-
plements EM algorithms for various normal models and has three main char-
acteristics: (i) it initializes the EM algorithm with a partition obtained from
normal ML-clustering optimized by hierarchical agglomeration; (ii) it pro-
vides an additional uniform component for handling noise; (iii) it uses the
BIC to determine the number of components. We replicated mclustBIC 100
times with two full normal components (VVV) and with random initializa-
tions of the outliers at a Bernoulli rate of 3.2% (the true value). All MAP
clusterings contain spurious clusters similar to that in the image on the
bottom of Figure 4. Obviously, the algorithm gets trapped in unbalanced
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solutions containing small, elongated components, a result of the overfitting
m.l.e.. Gross outliers usually do not conform to a statistical model, not
even to the uniform one. This is another reason why mclustBIC does not
recognize the correct two clusters taking instead a large number of regular
observations for noise (asterisks).

4.8 Summary and Discussion. The design of automatic methods for
data analysis is still considered a true challenge, in particular in view of
real applications. Dougherty and Brun (2004) write: “Although used for
many years, data clustering has remained highly problematic – and at a
very deep level.” We believe that methodological progress in data analysis
will arise from statistical models and assumptions by means of statistical
paradigms. Algorithms designed for homoscedastic models are stable but
should be applied only when it is a priori known that the underlying data-
generating mechanism enjoys this property. Most of the data analytic world
is heteroscedastic and here the phenomenon of spurious solutions appears.
Although it has been known for a long time, algorithms have essentially
ignored it.

The present communication focuses on two main topics: spurious so-
lutions in connection with heteroscedastic models and gross outliers. We
solve the first problem by proposing a compromise between model fit mea-
sured by the likelihood and model balance measured by the HDBT ratio.
This leads to a method that does not primarily seek a large likelihood. The
examples and illustrations clearly show its advantage. Our theorems in Sec-
tions 3 and 4 show that balance offers also a solution to the second problem,
outlier robustness. A main characteristic of many outliers is that they do
not conform to any statistical population, see also the discussion of outlier
types by Ritter and Gallegos (1997). Otherwise, they could be modeled with
an additional component of the mixture. Trimming the likelihood offers a
simpler and more effective way of dealing with gross contaminations than
mixture models with outliers do. Our main Theorems 3.2 and 4.4 state that
the HDBT-constrained MTLE provides substantial protection against gross
outliers while being at the same time affine equivariant.

The weakness of our method is the high time consumption of EMT which
it shares with the EM algorithm. Real applications of only medium size re-
quire hundreds of thousands of replications of EMT runs. Although the EM
algorithm, mainly due to its elegance, has superseded all other optimization
paradigms since its appearance in mixture estimation the question still re-
mains whether there is no computationally more efficient tool. Finally, our
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method could be sharpened by other population models than the normal,
such as heavy-tailed or asymmetric ones. But this would be at the cost of
an even higher time consumption.

A Appendix

A.1 Lemma. Let A ∈ R
r×g be a matrix with all entries ≥ 0.

(a) The function Ψ : ∆g−1 → R∪{−∞}, Ψ(u) =
∑

i ln(Au)i, is concave.

(b) If no row of A vanishes and if the g columns of A are affine indepen-
dent then Ψ is real valued and strictly concave in the interior of ∆g−1.

Proof. (a) Each of the summands u 7→ ln(Au)i is concave as a function
with values in R ∪ {−∞} and so is their sum.

(b) Under the first assumption of (b) all summands u 7→ ln(Au)i are
finite in the interior of ∆g−1 and so is their sum Ψ. Under the second the
mapping u 7→ Au is one to one. Hence, if u 6= v then there is an index i
such that (Au)i 6= (Av)i and, by strict concavity of the logarithm, we have
lnA

{
1
2u+ 1

2v
}
i
= ln

{
1
2(Au)i+

1
2(Av)i

}
> 1

2

{
ln(Au)i+ln(Av)i

}
and Claim

(b) follows.

The following formula is found in Hathaway (1986).

A.2 Lemma. Let (R,u, γ) be any parameter triple. With the weight
matrix w defined by Eq. (1.6), we have the representation

ln f [xR | u, γ]
=

∑

ℓ

wℓ(R) lnuℓ −
∑

ℓ

∑

x∈R

wℓ(x) lnwℓ(x) +
∑

ℓ

∑

x∈R

wℓ(x) ln fγℓ
(x).

Moreover, ln f [xR | u, γ] ≤
∑

ℓ

∑
x∈R wℓ(x) ln fγℓ

(x).

Proof. Since
∑

ℓwℓ(x) = 1, Eq. (2.2) implies

ln f [xR | u, γ] =
∑

x∈R

ln

g∑

j=1

ujfγj(x) =
∑

x∈R

∑

ℓ

wℓ(x) ln

g∑

j=1

ujfγj (x)

=
∑

x∈R

∑

ℓ

wℓ(x) ln
uℓfγℓ

(x)

wℓ(x)
.

This is the first claim and the second follows from it by the entropy inequality
applied to the probabilities (wℓ(x))ℓ and (uℓ)ℓ.
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The following lemma is of Steiner’s type. We omit its elementary proof.

A.3 Lemma. Let T be a (finite) data set in R
d, let w = (w(x))x∈T be a

family of real numbers such that w(T ) :=
∑

xw(x) > 0, let b ∈ R
d, and let

x(w) = 1
w(T )

∑
x∈T w(x)x, the weighted mean. Then

∑

x

w(x)(x − b)(x− b)T

=
∑

x

w(x)(x − x(w))(x − x(w))T +w(T ) · (x(w) − b)(x(w) − b)T .

In particular,
∑

xw(x)(x − b)(x− b)T �∑
xw(x)(x − x(w))(x − x(w))T .

Our next lemma reduces a global weighted “within-samples” SSP matrix
to a sum of local weighted “within-samples” SSP matrices and a weighted
“between-samples” SSP matrix. In its proof we use the identity

∑

j,ℓ,t

ajaℓat(mℓ −mj)(mt −mj)
T = A

∑

j<ℓ

aℓaj(mℓ −mj)(mℓ −mj)
T (A.1)

valid for any real numbers at, A =
∑
at, and any vectors mt. Indeed,

exploiting symmetries, we have
∑

j,ℓ,t

ajaℓat(mℓ −mj)(mt −mj)
T

=
∑

j,ℓ,t

ajaℓat(mℓm
T
t −mjm

T
t −mℓm

T
j +mjm

T
j )

=
∑

j,ℓ,t

ajaℓat(mjm
T
j −mℓm

T
j ) = A

∑

j,ℓ

ajaℓ(mj −mℓ)m
T
j

= A
∑

j<ℓ

ajaℓ(mj −mℓ)m
T
j +A

∑

j>ℓ

ajaℓ(mj −mℓ)m
T
j

= A
∑

j<ℓ

aℓaj(mℓ −mj)(mℓ −mj)
T .

A.4 Lemma. Let g ≥ 1, let T be a Euclidean data set, let {T1, . . . , Tg}
be a partition of T , let w = (w(x))x∈T be a family of real numbers s.th.
w(T ) > 0, and put wj = w|Tj

. With the notation agreed upon in Section
2.10 we have

WT (w) =

g
X

j=1

WTj
(wj)+

1

w(T )

X

1≤j<ℓ≤g

w(Tj)w(Tℓ)
`

xTj
(wj)−xTℓ

(wℓ)
´`

xTj
(wj)−xTℓ

(wℓ)
´T

.
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Proof. By Lemma A.3 applied to all subsets Tj ,

WT (w) =
∑

j

∑

x∈Tj

w(x)(x − xT (w))(x − xT (w))T

=
∑

j

WTj (wj) +
∑

j

w(Tj)(xTj (wj)− xT (w))(xTj (wj)− xT (w))T . (A.2)

From
∑

ℓw(Tℓ) = w(T ) we infer

xT (w)− xTj (wj) =
1

w(T )

∑

ℓ

w(Tℓ)xTℓ
(wℓ)− xTj (wj)

=
1

w(T )

∑

ℓ

w(Tℓ)
(
xTℓ

(wℓ)− xTj (wj)
)

and, hence, the second sum on the right of (A.2) equals

1

w(T )2

X

j

w(Tj)
“

X

ℓ

w(Tℓ)(xTℓ
(wℓ) − xTj

(wj))
”“

X

ℓ

w(Tℓ)(xTℓ
(wℓ) − xTj

(wj))
”T

=
1

w(T )2

X

j,ℓ,t

w(Tj)w(Tℓ)w(Tt)(xTℓ
(wℓ) − xTj

(wj))(xTt(wt) − xTj
(wj))

T
.

The claim now follows from Eq. (A.2) and the identity (A.1).

A.5 Lemma. For any nonempty subset U ⊆ D and α ∈ M(U, g′), we
have

WU = WU (α) +
1

|U |

X

1≤h<k≤g′

αh(U)αk(U)
`

xU (αh) − xU (αk)
´`

xU (αh) − xU (αk)
´T

.

Proof. This follows from Lemma A.4 if we put g = g′, Tj = U for all j,
T = the disjoint union of all Tj ’s, and w(x) = αj(x), x ∈ Tj . (The family
w is thus the linearization of the weight matrix α.) It follows w(Tj) =
αj(U), xTj (w) = xU (αj), w(T ) =

∑
x∈T w(x) =

∑
j

∑
x∈Tj

αj(x) = |U |, and

xT (w) = xU , and the claim is a term-by-term translation of Lemma A.4.

A.6 Lemma. Let E = {x0, . . . , xd} be a set of d+ 1 points in R
d. If its

convex hull contains a ball of radius r around its mean vector then WE �
2 r2Id.

Proof. Without restriction let the mean of E be the origin and let WE

be diagonal. By assumption, the centered r-ball Br(0) satisfies

Br(0) ⊆
{ d∑

i=0

λixi | λi ≥ 0,

d∑

i=0

λi = 1
}
.
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Orthogonal projection to the coordinate axes shows [−r, r] ⊆
{∑d

i=0 λixi,k |
λi ≥ 0,

∑d
i=0 λi = 1

}
, 1 ≤ k ≤ d, i.e., the interval [−r, r] is contained in the

convex hull of the set {x0,k, . . . , xd,k}, i.e., mini xi,k ≤ −r, maxi xi,k ≥ r for

all k. This implies WE(k, k) =
∑d

i=0 x
2
i,k ≥ 2 r2.

A.7 Lemma. Let g ≥ 2. For any stochastic matrix (ah,j)h,j ∈ R
(g−1)×g

we have ∑

j

min
h

∑

ℓ 6=j

ah,ℓ ≥ 1.

Proof. For each column j, consider the line h with minimal sum∑
ℓ 6=j ah,ℓ. Since there are g columns but only g − 1 lines, the pigeon hole

principle implies that some line appears for two j’s and the two related sums
cover all elements in this line.

A.8 Lemma. Let g ≥ 2.

(a) The maximum of the function a 7→∑
1≤h<k≤g ahak w.r.t. all vectors

a = (a1, . . . , ag) ∈ [0, 1]g is attained at the point (1/g, . . . , 1/g)
∑

k ak and

has the value g−1
2g

(∑
k ak

)2
.

(b) Let ̺ ≤ 1/g be a nonnegative real number. The minimum of the
expression ∑

1≤k<g

βk
∑

1≤j<ℓ≤g

ak,jak,ℓ

w.r.t. all probability vectors β ∈ R
g−1 and all stochastic matrices A =

(ak,j)k,j ∈ R
(g−1)×g such that βTA ≥ ̺ (pointwise) is assumed at β∗ = (1)

and A∗ = (1− ̺, ̺) if g = 2 and at β∗ =
(1−2̺
g−2 , . . . ,

1−2̺
g−2 , 2̺

)T
and

A∗ =




1 0 0

1 0 0 0
. . . 0 0

0 1 0 0
0 0 · · · 0 1/2 1/2



,

if g ≥ 3. The minimum is the number κ̺ defined before Sect. 4.3.

Proof. (a) It is sufficient to determine the maximum of the sum∑
1≤h<k≤g ahak subject to the constraint

∑
t at = 1. Now, 2

∑
1≤h<k≤g ahak =

( ∑
k ak

)2−‖a‖2 = 1−‖a‖2 and the point on the plane
∑

t at = 1 with min-
imal distance to the origin is (1/g, . . . , 1/g). The claim follows.
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(b) The case g = 2 being simple we let g ≥ 3. Using Lemma A.7 we
estimate

2
∑

1≤k<g

βk
∑

1≤j<ℓ≤g

ak,jak,ℓ =
∑

1≤k<g

βk
∑

j 6=ℓ

ak,jak,ℓ =
∑

j

∑

k

βkak,j
∑

ℓ 6=j

ak,ℓ

≥
∑

j

∑

k

βkak,j min
h

∑

ℓ 6=j

ah,ℓ ≥ ̺
∑

j

min
h

∑

ℓ 6=j

ah,ℓ ≥ ̺ = 2κ̺.

That is, the least upper bound is ≥ κ̺. The remaining claims are plain.

The following lemma frees the estimates from the stochastic matrix α

replacing it with SSP matrices. Part (b) could be proved by the extremal
property of the partitions contained in M(T, g′). The present proof uses a
disintegration technique that provides more insight.

A.9 Lemma. Let P be a partition of D, let T be a nonempty subset of
D, let g′ ≥ 2, and let α ∈M(T, g′).

(a) There exists a finite sequence (rm)tm=1, t ≤ g′|T |, of strictly positive

numbers rm such that
∑
rm = 1 and a finite sequence

(
T (m)

)t
m=1

of parti-

tions T (m) = {T (m)
1 , . . . , T

(m)
g′ } of T in g′ subsets (some may be empty) such

that WP∩T (α) �∑t
m=1 rmWP⊓T (m) .

(b) Assume that, for each m, there exist indices k and j such that |Pj ∩
T

(m)
k | > d. Then

(i) The matrix WP∩T (α) is regular and WP∩T (α)−1 �∑t
m=1 rmW

−1
P⊓T (m) .

(ii) Given y ∈ R
d there exists a partition T of T in g′ clusters such that,

for all α ∈M(T, g′), yTWP∩T (α)−1y ≤ yTW−1
P⊓T y.

Proof. (a) Let r1 be the smallest non-zero entry in the matrix (αk(x)).
In each line x, subtract the number r1 from any of its smallest non-zero
entries to obtain a new matrix α

(1) with entries ≥ 0. All its row sums are
equal and it contains at least one additional zero. Let T

(1)
k =

{
x ∈ T |

α
(1)
k (x) 6= αk(x)

}
, k ≤ g′. Now continue this procedure with α

(1) instead of
α and so on. It stops after at most g′|T | steps with the zero matrix and we
have constructed a representation

αk(x) =

t∑

m=1

rm1
T

(m)
k

(x).
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of α. Moreover,
∑
rm = 1. Define T (m) =

(
T

(m)
1 , . . . , T

(m)
g′

)
. Summing up

over x ∈ T we have

WPj∩T (αk)

=
∑

x∈Pj∩T

αk(x)(x− xPj∩T (αk))(x − xPj∩T (αk))
T

=

t∑

m=1

rm
∑

x∈Pj∩T

1
T

(m)
k

(x)(x − xPj∩T (αk))(x− xPj∩T (αk))
T

=

t∑

m=1

rm
∑

x∈Pj∩T
(m)
k

(x− xPj∩T (αk))(x− xPj∩T (αk))
T

�
t∑

m=1

rm
∑

x∈Pj∩T
(m)
k

(
x− x

Pj∩T
(m)
k

)(
x− x

Pj∩T
(m)
k

)T

by Steiner’s classical formula. Now sum up over j and k to obtain (a).

(b) By assumption, each SSP matrix WP⊓T (m) is regular. Estimate (i)
therefore follows from (a) and monotone decrease and convexity of the matrix
inversion on PD(d), cf. Marshall and Olkin (1979), E.7.c.

(ii) Among the finitely many partitions of T there is some T such that
yTW−1

P⊓T y is maximal. Hence, by (i),

yTW−1
P∩T (α)y ≤

t∑

m=1

rmy
TW−1

P⊓T (m)y ≤ yTW−1
P⊓T y.
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Series A, 62, 49–66.

Kiefer, N.M. (1978). Discrete parameter variation: efficient estimation of a switching
regression model. Econometrica, 46, 427–434.

Knuth, D.E. (1981). The Art of Computer Programming, volume 2. Addison-Wesley.

Ma, J. and Fu, S. (2005). On the correct convergence of the EM algorithm for Gaussian
mixtures. Patt. Rec., 38, 2602–2611.

Marshall, A.W. and Olkin, I. (1979). Inequalities: Theory of Majorization and its
Applications, v. 143 of Mathematics in Science and Engineering. Academic Press,
New York.

Martinet, B. (1970). Régularisation d’inéquations variationnelles par approximations
successives. Rev. Francaise d’Inform. et de Recherche Opérationnelle, 3, 154–179.

McLachlan, G.J. and Basford, K.E. (1988). Mixture Models: Inference and Applica-
tions to Clustering. Marcel Dekker, New York.



220 M.T. Gallegos and G. Ritter

McLachlan, G.J. and Peel, D. (1998). Robust cluster analysis via mixtures of multi-
variate t-distributions. In Advances in Pattern Recognition, Lecture Notes in Com-
puter Science, 1451, 658–666. Springer.

McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. Wiley, New York.

Neykov, N., Filzmoser, P., Dimova, R. and Neytchev, P. (2007). Robust fitting of
mixtures using the trimmed likelihood estimator. Comput. Statist. Data Anal., 52,
299–308.

Neykov, N.M. and Neytchev, P.N. (1990). A robust alternative of the maximum
likelihood estimator. In COMPSTAT 1990 – Short Communications, 99-100.

Peters, B.C. Jr. and Walker, H.F. (1978). An iterative procedure for obtaining max-
imum likelihood estimates of the parameters for a mixture of normal distributions.
SIAM J. Appl. Math., 35, 362–378.

Redner, R.A. and Walker, H.F. (1984). Mixture densities, maximum likelihood and
the EM algorithm. SIAM Rev., 26, 195–239.

Ritter, G. and Gallegos, M.T. (1997). Outliers in statistical pattern recognition
and an application to automatic chromosome classification. Patt. Rec. Lett., 18,
525–539.

Rockafellar, R.T. (1976). Monotone operators and the proximal point algorithm.
SIAM J. Contr. Optim., 14, 877–898.

Rousseeuw, P.J. (1985). Multivariate estimation with high breakdown point. In Math-
ematical Statistics and Applications, (W. Grossmann, G.Ch. Pflug, I. Vincze and
W. Wertz, eds.), 8B, 283–297. Reidel.

Rousseeuw, P.J. and Van Driessen, K. (1999). A fast algorithm for the minimum
covariance determinant estimator. Technometrics, 41, 212–223.

Toma, A. (2007). Minimum Hellinger distance estimators for some multivariate models:
influence functions and breakdown point results. Comptes Rendus Mathematique,
345, 353–358.
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