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Abstract. By an admissible order on a finite subset Q of Q" we mean the restriction 
to Q of a linear order on Q" compatible with the group structure of Q" and such 
that N" is contained in the positive cone of the order. We first derive upper and 
lower bounds on the number of admissible orders on a given set Q in terms of 
the dimension n and the cardinality of Q. Better estimates are possible if the set 
Q enjoys symmetry properties and in the case where Q is a discrete hyperbox of 

n 

the form 1-[ [1,d~]. In the latter case, we also give asymptotic results as 

min dk-~ ~ for fixed n. We finally present algorithms which compute the set of 
l ~ k < _ n  

admissible orders that extend a given binary relation on Q and their number. The 
algorithms are useful in connection with the construction of universal Gr6bner  
bases. 

Keywords: Term order, Separating hyperplane, Gr6bner  basis, Universal Gr6bner  
basis 

1. Introduction 

During the last years, the method of Gr6bner  bases (cf. Buchberger [2]) has been 
well established as one of the most useful and versatile tools in the algorithmic 
theory of polynomial ideals and of polynomial equations. Let R = K [X1, . . . ,  X , ]  
be a multivariate polynomial ring over a field K. The construction of a Gr6bner  
basis G ~ R from a finite set F of polynomials in R depends in an essential way 
on a term order < on the set T of terms (i.e., power products of the indeterminates 
X1 . . . .  , X,) in R. On the one hand, the complexity of the construction of G from 
F is crucially influenced by the choice of the order < to the extent that computat ion 
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times may vary between a few minutes and several days. On the other hand, many 
applications of Gr6bner  bases require a specific (e.g. lexicographic) term order that 
may be a bad choice from the point of view of complexity. This raises the problem 
of choosing an appropriate term order for every given input F and the given 
application. 

Whereas there are a continuum of different such term orders < (cf. Robbiano 
[8] or Weispfenning [12]) every single Gr6bner  basis construction uses only the 
restriction of < to a finite set T'  of terms involved in the construction. In fact, T'  
depends only on the order < ,  the number n of indeterminates, and the finite set 
T(F) of terms occurring in the polynomials of the set F. The restriction of < to 
T' can be conveniently described by a linear form with positive rational coefficients 
(see Subsect. 2.3). 

In fact, there is a much stronger result (cf. Schwartz [9], Weispfenning [13], 
Mora and Robbiano [7]), viz.: For  given n and T(F) there are finitely many rational 
linear forms describing partial term orders such that any Gr6bner  basis calculation 
from F with respect to an arbitrary term order < is identical with a Gr6bner  
basis computation from F with respect to one of these partial term orders. As a 
consequence, one can construct from F a universal Gr6bner basis, i.e., a finite set 
G ~ R that is a Gr6bner  basis for all term orders on T. The crux of this construction 
is the following problem: 

Given a finite set T' of terms, determine a set LF(T') of rational linear forms that 
make up a system of distinct representatives for all restrictions to T' of term orders 
on T. 

The solution of this problem is also of interest from the point of view of 
combinatorial geometry: Notice that a term t - - X ~  .. . . . .  X,~"~ T is determined by 
its n-tuple e = (el . . . . .  e,) ~ Rq" of exponents and any term order < on T induces a 
linear order ~ on l~l" with least element 0; we will call these orders on Dq" 
admissible. Now, any nonzero linear form a = (al . . . . .  a,) ( a i ~ )  on the space Q" 
partitions Q" into a hyperplane and two halfspaces. Let us call the halfspace 
H a = {x~(I~:a.x > 0} the positive halfspace associated with a. Given a subset Q of 
~l" (Q corresponds to the set T' above), we call two linear forms a # 0 and b 4:0 
whose associated hyperplanes intersect Q - Q:= {y - x:x, y~Q} at the origin only 
equivalent with respect to Q if 

(Q - Q) :~Ha = ( Q  - Q):~ Hb. 

Let LF.  denote the set of all linear forms in n variables with positive, rational 
coefficients. We will show that the original problem above is equivalent to the 
following problem of combinatorial geometry: 

Let Q be a finite subset of~q ~. Determine a subset LF,(Q) of LF , that forms a system 
of distinct representatives for LF, with respect to the above equivalence relation 
induced by Q. 

In more intuitive terms the problem is to determine all different "cuts" of Q - Q 
induced by hyperplanes H with H n (Q - Q) = {0} that are represented by linear 
forms in LF,. 

The present paper is divided into two parts where we deal with the following 
two problems. 
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1. We compute upper and lower bounds on the number L F  (T'). 
2. We describe algorithms for computing LF(T ' )  from n and T'. 

In the first, analytical, part we actually deal with the more general situation where 
Q is a finite, nonempty subset of Q" (Sect. 4); in the second, algorithmic, part  we 
treat the even more general case where additional side conditions are specified 
(Sect. 5). Our main technique is an inductive step that reduces the n-dimensional 
problem to one in n - 1  dimensions (Proposition 2.8). A different approach 
appears in Schwarz [-10]. 

In the analytical part we use this step recursively to derive first an upper bound 
for the number ~(Q) of distinct representatives in terms of #Q and the dimension 
n; it is given in Theorem 4.6. For a general set Q the only lower bound in these 
terms is 1 (cf. the remark preceding Lemma 4.7). We therefore restrict matters to 
Cartesian products of one-dimensional, point-symmetric sets in this case and derive 
lower bounds in terms of the cardinalities of the factors and the dimension n. 

More precise estimates are possible in the case of an n-dimensional lattice 
n 

hyperbox Q =  I ]  [1,di] (di>2). For m ~ { 1  . . . . .  n}, # m = r ,  let ~p(r, dM) be the 
i = 1  

number of relatively prime n-tuples in the discrete hyperbox [ I  [1, dl]. We derive 
iEM 

upper and lower bounds for ~(Q) in terms of the numbers ~p(r, dM) (M ~ {1 . . . .  ,n}) 
and the dimension n (Theorem 4.13 and Lemma 4.10(c)). Using the asymptotic 
result for ~p(n,d) given in Proposition 3.2 we also obtain asymptotic results for 
~(Q) as rain d k ~  ~ ,  n fixed (Theorem 4.15). Here, the Riemann ~-function plays 

l ~ k < n  

a certain r61e. 
In the algorithmic part we will deal with the following situation: Besides the 

finite subset Q of@" let there be given a binary relation 4' on Q. Then the algorithms 
will determine a set of linear forms on Q" that uniquely represent all admissible 
extensions of ~ on Q. 

This is exactly the problem that arises in any construction of a universal 
Gr6bner basis G when one attempts to generate the necessary partial term orders 
efficiently: Indeed, during the construction of G, the finite set T' of terms on which 
one wants to determine all term orders will grow, say, from T' to T". Instead of 
recomputing the term orders on T" from scratch it is more efficient to find all 
extensions of the term orders on T' since these have already been computed. 

The corresponding problem for the exponents reads as follows: Suppose we 
are given finite subsets Q c Q of @n and a set L F  of distinct representatives in 
S(Q) of H(Q) (cf. Subsect. 2.3). Compute from LF a set of distinct representatives 
LF-  in L,°(Q) for H(Q). Using our more general algorithms, this problem can be 
solved in the following manner: For a linear form a e L F ,  let cg a be the admissible 
order on Q induced by the linear form a. Then it suffices to determine for each 
a ~ L F  a set LF a of linear forms on Q" that uniquely represent all admissible 
extensions of ~ on Q and to define LF-  as the union of all these sets L F  a. 

2. Term Orders and Admissible Orders 

2.1 Explanations. Let R = K [ X  1 . . . . .  X, ]  be the polynomial ring in n indeter- 
minates X1 . . . . .  X,  over a field K. A term in R is a power product t = X~ ....  X:" 
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(elaN) of the n indeterminates. The set T of all terms forms a monoid under 
0 0 multiplication with neutral element 1 = X 1 . . .X, .  A term order < on the set T is 

a linear order that turns T into an ordered monoid with smallest element 1. In 
other words, < is a linear order on T such that, for all s,t, usT,  we have 

(i) 1 __< s, 

(ii) s < t ~ s . u < t . u .  

By passing to exponents any term order can be regarded as a linear order M on 
the additive monoid N" satisfying the conditions 

(iii) 0 ~ x, 
(iv) x ~ y ~ x + z ~ y + z  

for all x, y, z ~ N n. 
Any such order has a unique extension to a linear order on the additive groups 

Z" and Qn satisfying the conditions 

(v) 0 ~ x  for all x ~ Q + : = { ( y l  . . . .  ,y,)~Q"'yk>O (1 <k<n)} ,  

(vi) x - < y ~ x + z - < y + z  for al lx,  y, zCQ". 

We shall call these orders on 7/," and Q" admissible. 

2.2 Representation of Admissible Orders by Linear Forms. By the results in [8] 
and [12], admissible orders on Q" can be characterized by linear forms: Let 
S = P,[Z]  be the ordered polynomial ring over IR in the indeterminate Z ordered 
in such a way that r < Z for all r~lR. Then any n-tuple a = ( a l , . . . , a , ) e  S" with 
(strictly) positive and rationally independent entries ai induces an admissible order 
-< on Q" in the following way: 

(i) x -<y  ~=~ a . x < a . y  (x, yeQn), 

where a .x  = ~ xial (eS) (x=(x l , . . . , x , ) zQ")  and on the right hand side the 
i = 1  

order is taken in S. Conversely, any admissible order on S is induced by such a linear 
form. Moreover, the mapping Q n ~ S  defined by x ~ a - x  is an embedding of the 
admissibly ordered group Q" into the ordered polynomial ring S. In particular, Q" 
and a-Q" = {a-x:x~Q"} are isomorphic qua linearly ordered groups. 

2.3 Characterization of Finite Restrictions of Admissible Orders by Positive 
Blocks. We will deal with restrictions of admissible orders to finite, nonempty 
subsets Q of Q". We refer to such a restriction as an admissible order on Q and 
denote the set of all admissible orders on Q by d(Q).  By the results in [7] and 
1-123, any admissible order on a finite subset Q of Q" is characterized as above in 
2.20) by a linear form a = (a~ . . . . .  an) on Q" with (strictly) positive, rational 
coefficients a~ satisfying the condition of weak independence a . z # 0  for all 
0 # z z Q -  Q. We denote the set of these linear forms a by LP(Q). Similarly as in 
2.2, any linear form aeLP(Q) induces an embedding Q~x ~ a ' x e Q  of the linearly 
ordered set Q into the ordered group Q. In particular, the admissibly ordered set 
Q is isomorphic with its image a.Q = {a.x:xeQ} ~ Q. 

For a linear form aeSe(Q) let H ,  be the open, positive half space 
{xeQn:a.x > 0}. For  any finite, nonempty subset Q of Qn and any linear form 
a~5~(Q) we define the positive block r c . ( Q ) ~ Q - Q  as the intersection 
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ft,(Q) = (Q - Q)c~H~, that  is, 

n,(Q) = {zeQ - Q : a . z  > 0}; 

we denote the set of all these positive blocks by H(Q). Notice that  

{z,(Q), -~t~(Q), {0}} is a part i t ion of Q -  Q. 

We will repeatedly use the following e lementary propert ies  of aeLf(Q)  and ~,(Q), 
somet imes without  mentioning:  

(a) If Qo ~ Q then aeL-~(Qo). 
(b) if  ( ~  Q is finite then a E ~ ( Q )  can be modified to ~eSa((~) in such a way that  
rc.(Q) = ~ . (Q) .  

(First represent  z ,  by a linear form with rat ionally independent  coefficients and 
then approx imate  it by a linear form h~Lf(0)  with the same positive block in 
Q-Q.) .  

2.4 Proposition. For any positive block 7r~H(Q) let -<~ be the binary relation on Q 
defined by x -<~y-e~y - xErc; .['or any admissible order -< on Q let 7r< be the subset 
of Q - Q defined by re< = { y -  x :x ,y~Q,  x-< y}. Then we have 
(a) -<~¢(Q) and 7z<~H(Q). 
(b) The maps II(Q)~ d(Q) and ~ ( Q ) ~  H(Q) defined by 7r ~ -<~ and -<-~Tz_<, 
respectively, are mutually inverse bijections. 

Proof. Any positive block 7rcH(Q) is of the form 7z = ~a(Q) for some linear form 
a e S ( Q ) .  It follows from 2.2(i) that  the relation -<~ is the admissible order  on Q 
induced by this linear form, hence -<~,~¢(Q). On the other  hand, any order  
-<~,~¢(Q) is induced by a linear form a~ CS(Q). Then, by the definition of re< and 
by 2.2(i), we have 7z.< = z,(Q)~H(Q). In order  to show Par t  (b), notice that  any 
admissible order  on Q represented by the linear form a is determined by the 
positive block Zca(Q). Using this fact it is now easy to see that  the two maps  are 
mutual ly  inverse. []  

2.5 Projections of Admissible Orders. Let the projection IR n ~ IR n 1 of an n-tuple onto 
its first ( n -  1) coordinates  be denoted by a prime, i.e., (al . . . . .  an) ' =  (al . . . . .  an 1)- 
The objective of this section is to determine,  from any finite subset Q of I/)", a 
finite subset Q* of Q" i such that, roughly speaking, any admissible order on Q 
can be reconstructed in a perspicuous way from its projection regarded as an 
admissible order on the projection Q' of Q on (1) n- 1. Recall f rom 2.3 that, for any 
linear form a c f ( Q ) ,  ~,(Q) denotes its positive block in Q Q. Central  to our  
investigation are the two subsets Q1,Q2 of (1~" 1 defined for any finite subset 
Q ~ Q ,  as follows: 

Q1 = { z t : z ~  Q,Z. = 0  } 

Q2 : z c Q  - Q, z .  :~ 0 . 

Notice that  QI is always symmetr ic  in the sense that  - Q 1  = Q1 and that  0cQ1,  
while Q2 and - Q 2  may  differ. 

For  any finite subset R = Q"- ~ and any linear form e on Q" 1 we put as before 
e .R = {e .u :u~R}.  I f d  is another  linear form on Q" 1 we will say that  a~lR and 
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b~-~ realize corresponding cuts in e 'R and d'R, respectively, if 

aq~e.R, b(~d.R and 

e ' u > a  ¢~ d ' u > b  (ueR). 

2.6 Lemma. Let Q be a finite subset ofll~" and let ai, bi > 0 (1 <_ i <__ n). The following 
are eqivalent: 

(a) a, beAe(Q) and rc.(Q) = r%(Q); 
(b) (a'(y - x))(b-(y - x)) > 0 for all x, yeQ, x ~ y; 
(c) (i) (a'-u)(b'-u) > 0 for all ueQl\{0} and 

(ii) (a'-v + a,)(b'.v + b,) > 0 for all wQ2; 
(d) (iii) the origin OeP,~ realizes corresponding cuts in the sets a"(Ql\{0}) and 

b'.(Ql\{o}), 
(iv) the numbers - a .  and - b .  realize corresponding cuts in the sets (a"Q2) and 
(b"Qg. 

Proof. The equivalence of(a) and (b) is plain and (iii) and (iv) are just reformulations 
of the analytic expressions (i) and (ii), respectively. In order to prove the implication 
(b)~(c) let ueQ1, u ¢ 0  be given by n = ( y - x ) '  with x, yeQ, x ¢ y  and x , = y , .  
Then a"n = a . ( y -  x) and b'.u = b . ( y -  x) and (i) ensues from (b). Next, let v~Q2 
be given by v = z', 

\ y ,  -- x~ 

where x,y~Q and x , ~ y , .  Dividing (b) by ( y , - x , )  2 we immediately obtain 
(a"v + a,)(b"v + b,) = (a.z)(b.z) > 0, i.e., (ii). 

Let us now prove the opposite implication (c)~(b) and let x,y~Q, x:~y.  
If x , = y , ,  then n = ( y - x ) ' e Q l \ { 0 } ,  and so, by (i), ( a . ( y - x ) ) ( b - ( y - x ) ) =  (yx) 
(a"u)(b"u)>O. If x . ¢ y .  put z =  ,1 ; then v=z 'eQ2,  and so, by (ii), 

y, x, 
(a'z)(b'z) = (a'.v + a,)(b'.v + b,) > 0; after multiplication by (y, - x,) 2 we obtain 
again (a.(y - x)) . (b.(y-  x)) > 0. [] 

2.7. Notations. For any finite subset Q ~ ~", Q* will stand for the union 

Q*=Q~uQ2 

and for any subset M of ~-~, M_ = {mEM:m < 0} denotes the strictly negative part 
of M. 

The following basic proposition reduces any admissible order on Q to an 
admissible order on Q* induced by some linear form e e l ( Q * )  and a cut in the 
finite subset (e'Q2)-__-Q. It is the key to all main results in this paper. If 
a = ( a , , . . . , a , _ l ) E Q " - '  and beQ then a . b  stands for the concatenation 
(al . . . . .  a.-1,  b) ~Q". 

2.8 Proposition. Let Q be a fn i te  subset of ~" and let ClES¢(Q*) (1 <i<= m) be 
complete in ~(Q*)  in the following sense: 

(i) {n¢~(Q*) . . . . .  zr¢~(Q*)} = H(Q*) .  
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Realize every cut Sij in (ei 'Q2)-  (0 < j  < •(ci'Q2)_ ) by a negative, rational number 
- dij and put dij = el* di,j. Then 

(a) dl j e~(Q)  and 

(b) {~I~j(Q): 1 <_ i <_ m, 0 <=j <= #(ci'Q2 )_ } = II(Q). 

Proof. (a) is a consequence of L e m m a  2.6, ( d ) ~ ( a )  with a = b = dij. It remains to 
show that  for any rceH(Q) there exist two indices 1 < i<  m, O < j < # ( c i ' Q 2 ) - ,  
such that  ~d,j(Q) = ~. By 2.3, we may  assume that  ~ = r~a(Q) for some linear form 
a e~'~(Q u Q* x {0}) (cf. 2.3(b)). Since a 'eLf(Q*)  and by Hypothes is  (i), there exists 
some i, 1 _< i < m, such that  rcc,(Q* ) = ga,(Q*). Recall that  0eQ1.  Since a ' , c l e~ (Q1) ,  
no u e Q l \ { 0  } is annihilated by a'  or el and since ~a ' (Q0 = ~c,(Q1), we have 
a'.u > 0-*~ci.u > 0 (ueQ1, u -¢ 0); i.e., 2.6(iii) is satisfied with b' = el. On the other 
hand, since a', eie5~(Q: w {0}),both maps  

(Q2u{0},  < . , ) ~ u - ~ a " u e a ' - ( Q 2 u { 0 } )  and 

(Qzu{0},  < ~,)~n-~ c, 'u~cz'(Q2 w {0}) 

are order isomorphisms,  where < , ,  and <~, stand for the orders on Qzw{0} 
induced by a' and e~, respectively. Since ~,'(Q2 u {0})=  ~ , (Qz  u {0}), these orders 
on Q2 k3 {0} coincide and the map  

(1) a"(Q2 ~ {0})~a'-u --+ci.ueci.(Q 2 W {0}), 

too, is an order isomorphism.  By L e m m a  2.6, applied to b = a, we see that  a,  
realizes a cut in the set a '-Q2. Hence there exists j such that  - a ,  and -d~j  realize 
corresponding cuts in a"Q2 and ci.Q2 , respectively. We have now established 
2.6(d) for the linear forms a and b = dz;; thus 2.6(a) is satisfied, i.e., we have 
7Zdij(Q) = rc,(Q) = re. [ ]  

3. The Number of Relatively Prime Lattice Points 

3.1 Historical Remarks and Notations. In our asymptot ic  analysis of the number  
of term orders we shall need upper  and lower bounds  on the number  ~0(n, d) (n > 2) 
of relatively prime n-tupels x in the lattice hypercube [1,d]" as d ~  oo. For  n = 2, 
a slightly modified prob lem was treated for the first t ime by Dirichlet [3]. Dirichlet 
was interested in the number  ~(d) of relatively prime pairs in the t r iangular  lattice 
{ (x ,y )c~2 : l  <_x<_d, 1 < y < x } ;  he showed, that  

d 2 
2O(d) - = 0(d 7) (d ~ oo), 

~(2) 
so 

where ~(ct)= ~ m ~ (~ > 1) is the Riemann i-function and 7 is the solution of 
m 1 

3 and 2.) Mertens  [6], Problem 1, ~(7) = 2. (Y is a real number  strictly between 
sharpened Dirichlet 's result by proving 

(1) < d(ln d + C + ¼) + 2. 
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Here and in the sequel, C : l i m ( ~ - l n m ) = 0 . 5 7 7 2 1 . . . i s E u l e r ' s c o n s t a n t . , , 4 ®  k=~ 

Of course, since there are no relatively prime pairs on the diagonal of the square 
[1, d] 2 other than (1, 1), the relation between ~b(d) and (p(2, d) is given by 

(2) 2~9(d) = (o(2, d) + 1. 

We now state and prove an analogue of Mertens '  result for n-dimensional lattice 
hyperboxes. For  integers d < e  we let [d,e] denote the discrete interval 
{xe2g:d < x < e} and for d = (d~ . . . . .  d,), e = (e~ . . . . .  e , )eZ",  where dl < ei (1 < k < n), 

n 

[8, e] denotes the n-dimensional lattice hyperbox [d, e] = I1 [di, ei]. qo(n, d) stands 
i = 1  

for the number  of relatively prime n-tuples in the discrete hyperbox [1,d].  
The proof  of Par t  (a) of the following proposi t ion is as in Mertens, loc.cit.; cf. also 

Knuth  [5], Exercise 10, pp. 337 and 595. For  the reader's convenience we reproduce 
it here. # :N- - .  { -  1,0, 1} is the M6biusfunction, i.e., # (k )=  0 if k is divisible by a 
prime square, and #(k) = ( -  1) r if k is the product  of r distinct primes; in particular, 
/~(1) = ( -  1) ° = 1. [ ] denotes the integer part  of a real number. 

3.2 Proposition. We have for n > 1 

(a) q,(n,d)= k~=l #(k)i~=l ; 
(b) q~(1,d)= 1, 

( 1 1 ) (n = 2), 
2 max d i In mind  i + C - 2 + min di 

i ~0(n, d) - ~ '  

i 

in particular, for each n __> 1, we have 

~o(n,d) 1 
(c) ~ as min dl ~ oo. 

[-[ di ~(n) i 
i 

1 ) 
(n - 1)(mindi) "-2 (n > 3); 

Proof. In order  to prove Part  (a) let, for any finite set R of prime numbers, DR 
be the set of n-tupels x e [ 1 , d ]  such that all xj are divisible by all primes in R; of 
course, D ~  = [1, d]. Furthermore,  let 

qS(n, d) = {xe [ l ,  d] : x i . . . . .  x,  relatively prime} 

be the set of all x = (x 1 . . . . .  x,) in the considered hyperbox  such that the only 
common divisor of Xl . . . . .  x,  is 1. Then q,(n,d)= #qS(n,d) and 

~(n,d)=[l'd]/pp~rimeDlp, ; 

hence, by Sylvester Poincar6's sieve formula, we have 

(1) ( p (n , d )=I ] d , -  # ~ DIp~=~(-1)#R#D g. 
i p p r i m e  R 
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Now note that ( -  1) #g = #(%) and #D R = , where % is the product of the 

primes in R (c~ = 1). Part (a) now ensues from (1). 
To obtain the estimate in (b) we start with the identity 

~(k)_ 1 
(2) V 

k~l k ~ ((n) 

(cf. Titchmarsh [11], Formula 1.1.4) and use (a) to write 

(3) q)(lrl ' U d , ] _  [mind i  [ d ! l _ ( U d i ) k ~ > = l ] g ( k ) ~  n 
d ) - ~ n ) - -  ,~,/~(k)OLk j \ ,  

= m~'/~(k)U [ ~ ]  k=2 ( U  d'Ok~2/~(k) k 1" 

1 =<m~"([Ifd~]--l-}, + (Ha , )  Y~ k" 
k = 2  \ i LkJ • \ i  /k>mindi 

l 

The first summand on the right side of (3) is majorized by 

(4) 
m i n d /  di di 

= X  ~ - k i=1 i ~k k=2!  .-= 

] ~ d .  mindl l 

< n min dig 

( '.) I2maxdi  l n m i n d i + C  l + m i n  
< 

[n(:(n l ) 1 ) ~  dk 
mm di 

(n 2), 

(n >_ 3). 

For the last term on the right side of (3) we use the estimate 

1 <  i d x  1 (5) y~ - 
k>~k" x" (n--1)a" t 

valid for all integers a > 1. This concludes the proof of Part (b) and Part (c) ensues 
from it. [] 

In the special case of a lattice hypercube [ l ,d]"  (d > 1) the estimates given in 
Proposition 3.2 can be improved. We formulate this as 

3.3 Proposition. Let n >= 2 and d >= 1 For the number q~(n,d) of relatively prime 
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n-tupels in the discrete hypercube [1, d]" we have the estimate 

~o(n,d)-~) +~(q~(n- l,d)-d"- < ]~(#(n- I)- l)d"-' 

Proof. Applying Identity 3.2(2) again we have 

d + 
r t m  

(n = 2), 

(n > 3). 

(~p(n,d)-~(~)) +n2 (~o(n - 1 , d ) -  d "-1) (1) 

= 

--< L - +2LkJ +d ~#.. k = 2  k > d  

In order to estimate the first term on the right side of(l) we use the convex inequality 
p 

/~"-~'=nlx" ldx__<~(/~-~)(/~'-t +~'-'), 
ct 

valid for all real numbers n > 2 ,  0 < ~ < f l ,  and infer from 0 < d _  | a |  < l r _ - ,  
LkJ 

# - # 2LkJ  = 2 \ k J  

Therefore, the first term on the right side of (1) is majorized by 

d / d l n d + C - 1  + (n = 2), , < ( ;) 
(2) 

l 2 k 2 
~(~(n - 1 ) -  Dd "-1 (n __> 3). 

k n . 1  = 

The estimates (1), (2), and 3.2(5), now imply the proposition. [] 

Summarizing the results of Propositions 3.2 (n > 3) and 3.3 (n = 2) we obtain 
in the case of a lattice hypercube the following 

3.4 Corollary. 

~p(n, d", I d(lnd + C + 1) (n= 2), 
d ) -  < d [ n(((n-1)-l)d" 1 + _ _  (n=>3). 

n - 1  

3.5. Discussion. (a) For a hypercube of dimension n > 3 sharper estimates than 
those given in 3.4 can be derived from Proposition 3.3, at least for large values of 

~p(n, d) d" d; e.g., the coefficient of d"- 1 in the bound for - ~ ]  is no greater than 
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(b) In the case n = 2, the estimates given in Proposition 3.3 is slightly sharper than 
Mertens' estimate 3.1(1). Indeed, by 3.1(2), we have 

2 O ( d ) - ~ )  < q~(2, d ) + l -  (d~) = ¢p(2, d ) + q 0 ( 1 , d ) - ~ )  

< d(lnd + C +  1)+ 1. 

(c) The asymptotic in 3.2(c) also holds if (p(n, d) is interpreted as the number of 
relatively prime lattice points in a shifted hyperbox x + [1,d], where the xi's are 
nonnegative integers. 
(d) The results in this section can be given a probabilistic interpretation, viz.: If 
one conducts n independent Laplace experiments by picking random integers 
Xl~[1 ,d l ]  . . . . .  X ,~ [ l , d . ]  then the probability of obtaining a relatively prime 

1 
n-tupel (XI . . . . .  X,) is, asymptotically as m~ndi~oo,~in) .  Indeed, by it,~depen- 

dence and since the random integers X1 . . . . .  X, are uniformly distributed on 
[1, dl] . . . . .  [1,d,], respectively, the joint random lattice point (X I . . . . .  X,)e[1,d],  
too, is uniformly distributed on [1, d], i.e. the probability of relative primitivity of 

(X1 . . . . .  X,) is given by the relative frequency #qS(n, d) = ~o(n, d). Similar statements 
#[1 ,d]  [ Id i  

i 

are true also for other distributions on ;g" than the uniform distribution on [1, d] 
but we shall not go into details here. 
(e) Let (di)~> 1 be any sequence of integers > 2 and let (Xi)~>l be an independent 
sequence of uniformly distributed random integers X~:(X2,P)-~[1,di]. For each 
prime factor p of X1 there is P-a.s. an index i > 2 such that p does not divide X~; 
i.e., P-almost surely, the sequence (Xi) does not possess a common prime factor. 
Moreover, since n(~(n)-1) 0(2-"), Proposition 3.2(b) provides the asymptotic 
result 

p [ ( x  I 1 =0(2-"). . . . . .  X,) is relatively prime] ~(n) 

4. Upper and Lower Bounds for the Number of Term Orders 

We combine now the results of Sects. 2 and 3 to give proofs of the main results 
stated in Sect. I. For any finite subset Q m Q,, we denote by c~(Q) the number of  
admissible orders on Q. We need the following special classes of subsets Q of I1~". 

4.1 Definition. We call the set Q point symmetric if 

Q = - Q  

and we call Q symmetric: with respect to all coordinates, ![ 

(x, . . . . .  - x i  . . . . .  x , ) e Q  

Jor all (Xl . . . . .  xi . . . . .  x , )~Q and all indices i. 
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4.2 Remarks. (a) Symmetry with respect to all coordinates is inherited by Q1, Q2, 
and a fortiori, by Q* from Q. 
(b) IfQ is symmetric with respect to all coordinates then Q is also point symmetric. 

We first deal with upper estimates and infer from Proposition 2.8 the following 
reductive step. 

4.3 Corollary. Assume #Q >= 2. 
(a) We have e (Q)< c~(Q*) (#Qz + 1). 

/ l ' - -  I I  ~ --I N 

(b) l f  Q 2 ispoint  symmetric then we have ~(Q)< ~(Q*) /L~22J  + 1). 

Proof. By Proposition 2.8 and with the notation there we have at most as many 
admissible orders on Q as there are n-tuples dij. But the number of cuts in (ei" Q2)- 

i s a t m o s t ( # Q 2 + l ,  i n t h e g e n e r a l c a s e a n d a t m o s t  [ # 2 Q 2 ] + l i f Q 2 i s p o i n t  

symmetric. [] 

We next estimate the cardinalities of Q1, Q2, and Q*. As in 2.5, Q' denotes the 
projection of Q ~ R" to IR"- 1. 

4.4 Lemma. (a) #Q1 =< #Q'(#Q'- 1)+ 1; 

(b) #Q2 < (#2Q); 

(c) #Q* < + + 1 < # Q ( # Q -  1)+ 1. 

Proof. Claim (a) is obvious. In order to prove Claims (b) and (c) let 11 = 
{(x,y)~QZ:x, =y ,}  and 12 = { ( x , y )~QZ:x , .~y , } .  The obvious surjection I 2 ~ Q 2  
maps the two elements (X, y), (y, x)~I z to the same element in Q2, whence we have 

(1) #I2 > 2#Q2 

and Claim (b). 
The obvious surjection 11 ~ Q1 maps all #Q elements of the diagonal of Q2 to 

the zero vector, hence we have 

(2) #I1 >#Q1 + # Q -  1. 

Noting that Q2 is the disjoint union of 11 and 12 and using (a), (2), and (1), we 
finally obtain 

2#Q* < 2#Q1 + 2 # Q 2  < # Q ' ( # Q ' -  1)+ 1 + # 1 1 - # Q  + 1 + # I 2  

= #Q' (#Q'  - 1) + # Q ( # Q  - 1) + 2, 

i.e., Estimate (c). [] 

4.5 Sharpness of  the Estimates in Lemma 4.4. In order to assess sharpness of the 
estimates in Lemma 4.4 we let u o < ... < uq_ 1 be a rationally independent q-tupel 
of real numbers. Then, by rational independence, all differences uj - u i (i ./:j) are 
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pairwise different; moreover  all quotients 

U j  - -  U i 

3 k _ 3  h ( j > i , k > h )  

U s ~ U r _ Uj - -  U i 
are pairwise different: If  3 w -  3 v 3k 3h (S > r, w > v) then, again by rational 

independence, we must have s = j  and r = i and hence 3w- -3v=3k- -3  h. But each 
integer has a unique representation as a linear combinat ion  of powers 3 i with 
coefficients in the set { + 1, 0}. It follows that we have also w = k and v = h. N o w  
approximate (u o . . . . .  Uq_ 1) by a q-tupel (Uo . . . . .  ~iq_ 1) of rational numbers  so that 
the differences 0j - ui and the quotients (~j - ~i)/(3 k - 3 h) are still pairwise different 
and consider n = 2 and the set Q = {~i o ...... ~iq_, } x {1,3, 3 2  . . . . .  3 q 1} ~ Q2. In this (q/ case, #Q =q2, #Q, = q  and, as shown above, #Q1 =q(q 1)+ 1 and #Q2 = 2  + 1; 

thus the coefficients of the highest powers of q in #Q1, #Q2, and #Q* coincide with 
those in the estimates of 4.4. This example can be extended to n dimensions with the 
same sharpness of bounds. 

4.6 Theorem. Let n > 1 and let Q ~= ~" be finite and such that #Q > 2. 
(#Q)2,,-2 

(a) We have c~(Q) < 
n - -  1 

(b) I f  in addition, Q is symmetric with respect to all coordinates then 

~(Q) < (#9_)2° 2 

4 n 1 

Pro@ We proceed by induction on n and prove first Part  (a). Note  that 4.4(b) 
and # > Q = 2 together imply 

(1) # Q 2  + 1 _< (#0)2 . 
- 2 

For  n = 1 we clearly have a (Q)=  1. For  n > 1, we distinguish between the two 
cases #Q* = 1 and #Q* > 2. In the former case we have by Corol lary 4.3(a) 

~(Q) ~ ~(Q*)(#Q2 + 1) < c~(Q*)(#Q* + 1) = 2 _< 21 n22"-2 <= ( # Q ) 2 -  2 
2 n 1 

In the latter case, Corol lary 4.3 (a), the inductive assumption, (1), and Lemma 
4.4(c) yield 

c~(Q) _< c~(Q*)(#Q2 + 1) 

2 n g 2 . . . .  2 1) 2 ( # 0 )  ( # 0 2  Jr- 

< 21 .(#Q)2,, 4(#(2)2 . 

Turning to the proof  of Part  (b) we first note that 4.4(b) and #Q > 2 together imply 
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To carry out the inductive step we suppose n > 1 and note that, by 4.2, Q= is point 
symmetric and hence 4.3(b) is applicable. We distinguish again between the two 
cases #Q* = 1 and #Q* > 2. In the former case we may estimate 

In the latter case observe that the assumptions of Part (b) are satisfied with n 
replaced by n - 1 and Q replaced by Q* (cf. Remark 4.2(a)). We may therefore use 
Corollary 4.3(b), the inductive assumption, (2), and Lemma 4.4(c) to estimate 

(#Q)2 
=<42-.(#Q)2--4 . [] 

4 

We next deal with lower estimates. Considering the subset Q = (1 . . . . .  q)~Q", we see 
that the only lower estimate of c~(Q) valid for a general, finite subset Q __c ~ ,  and 
based solely on the number of Q is e(Q) > 1. Therefore, in order to obtain nontrivial 
lower estimates we require that Q satisfy additional assumptions. Similar to the 
reductive step for the upper bound given in Corollary 4.3 we have for the lower 
bound the following 

4.7 Lemma. Let n >= 2 and let Q be a finite subset of ~" such that 
(5) Q2 is point symmetric and 
(~) for all x' ,y '~Q' there exists z ~  such that (x',z), (y',z)~Q. 

) Then  et(Q) > c~(Q' + 1 . 

Proof. Let H(Q') = {n 1 . . . . .  nr} with pairwise different ni's and choose ci~Lf(Q* u Q') 
such that ni=nc,(Q' ) for 1 <i<-r. Let dlj, 1 <=i<r, O<j<#(ci 'Q2)_,  be defined 
as in Proposition 2.8. Then, as in 2.8(a), we have dljcS°(Q). Moreover, by 
Hypothesis (5) and since •(ei.Q2 ) = #Q2  (cf. 2.3), we have 

#{d i / l  < i < r ,  O < j < # ( c i ' Q z ) - } = r ' ( [ # ~ - l +  1), 

and plainly r=ct(Q') .  It suffices therefore to show that nd,:(Q)=~ndhk(Q) if 
(i,j) --/: (h, k). If i ¢  h then ni and n h are distinct and there exist elements x ' ,y 'eQ'  
such that (e i - (y ' -x ' ) ) (eh ' (y ' -  X'))< 0. By Hypothesis (13) the ( n -  1)-tupels x' and 
y' can be extended to x, yeQ such that x, = y,, whence (di.j'(y - x)) (dh,k'(y -- x)) < 0. 
If i = h, then j ¢ k, and hence dlj and dig realize different cuts in (el.Q2)_ and, a 
fortiori, in Ci'Q2. Thus, by Lemma 2.6, nd,j(Q) ¢ nahk(Q). [] 

Using the foregoing lemma we can derive a lower bound for Cartesian products 
Q of symmetric subsets of Q. Since such a set Q satisfies the hypotheses of Theorem 
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4.6(b), we can also give an upper bound.  Both bounds  are in terms of  the 
cardinalities of the factors of Q. 

4.8 Theorem. Let R k ~ Q be point symmetric and finite and contain at least two 

elements (1 _< k _< n, n > 1). Then for the Cartesian product Q = [ I R k  we have 
k = l  

( # Q ) 2 " - 2  

( I  (#g~)k- 1 __< ~(Q) 4"- k = 2  

(Note that the best lower bound is achieved by arrangin9 #R 1 . . . . .  #R,  in increasing 
order.) 

Proof. The set Q is symmetric with respect to all coordinates; hence Theorem 4.6(b) 
establishes the upper bound. In order to prove validity of the lower estimate we 
first show 

# ' ~  , (1) c~(Q) __> ( ( 2 )  ((?) 

if n > 2. Let a s be the smallest element of R, with respect to the natural  order  of 
n 1 

Q and let b, eR,, b, # a,. For  any element x ' e Q '  = H Rk we have (x', _+ bn)eQ and 
k = 1 X t a ~ 

we also have (a', +_a,)eQ, where a ' = ( a l  . . . . .  an 1)" Hence we have + GQ2. 
The minimal property of a' implies that the subsets - b, - a, 

x '~ Q' and - bn 2 a, 
a n 

of Q2 are disjoint and we have thus found 2 # Q ' -  1 distinct elements of Q2. Notice 
that the set Q satisfies the hypotheses of Lemma 4.7. We therefore obtain 

~(Q) > ct(Q')([ Q21+ I ) > c~(Q')(#Q') 

as desired. 
n 1 

Induct ion on n with the aid of( l)  now shows that c~(Q) > ]q  (#Rk)"-k. The upper 
k - 1  

bound in the statement of the theorem is obtained by reversing the order of the 
sets Rk. [] 

In the case of a discrete hyperbox Q = [1, d] Theorem 4.8 states that 

d ~- ~ < ~((?) < 
k = 2  k ~ ~ 4 n - - I  

and for a discrete hypercube Q = [1, d]" (d > 2) we obtain 

d n ( 2  ,, - 2) 

d(.2 .~/2 __< c~(Q) < 
4" 1 

We can, however, say more in these special cases by applying the results of 
Sect. 3 which we are now going to take up. 
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4.9 Notations. Let n=>2, 0__<dEZ" and let Q = [ 0 , d ] .  For every subset 
M =  {1, . . . ,n} containing n, M = {i 1 . . . . .  i,} with r__> 1, il < ... < ir = n, we let 

d M = (dil . . . . .  di . )~Z r. 

The number ~p(n, d) is defined as in Subsect. 3.1 as the number of  relatively prime 
n-tupels in the discrete hypercube [-1, d]. For 1 <= d~Z,  the number ~p(n, d) is defined 
as in Subsect. 3.1 as the number o f  relatively prime n-tupels in the discrete hypercube 
El,d]". 

4.10 Lemma.  Let n >= 2, 1 =< dEZ ~ and let Q = [0,d].  Then 

(a) Q1 = Q2, Q* = Q2; 
(b) Q* is symmetric with respect to all coordinates; 

n 

(c) #Q2:  Z 2'-~ ~ ~(r, dM)::a(n,d). 
r = l  c ~  M_,~ l,...,n} 

nEM,#M=r  

Proof. Claim (a) follows from Q~ = [ - d ' , d ' ]  and the fact that any element 
z E [ - d ' , d ' ]  can be represented in the form 

x ' ' y '  
Z - -  ~ Q 2 ~  

Xn -- Yn 

: : (z + z + ~] w h e r e x  (z + , l ) e Q a n d y = ( z  , 0 ) s Q ( z  -+ , f , . . . ,  2 -1- .  
Claim (b) follows from (a) and the representation 

(1) Q2 = " x e [ - d , d ] ,  x,  > 1 . 

In order to prove Par t  (c) we put  

Q3 := { x 6 [ - d , d ] : x ,  > 1 and gcd(xl . . . . .  x,)  = 1}. 

X '  
Now (1) implies that the m a p x ~  provides a bijection between the sets Q3 and 
Q2; we hence have x.  

(2) #Q2 = •Q3- 

For  every subset M = {1 . . . . .  n} containing n we let 

Q3M:= {x~Q3:support  (x) = M} 

a n d  
+ . 

Q3M .=  {x6Q3M:X > 0}. 

Notice that for any such M ,  # M  = r > 1, we have 

(3) #Q3M : 2r-  l # O  + 3 M "  

By dropping zeros in elements of Q3M ÷ we get a bijection between Q3M ÷ and the set 
{xc[1,  dM]:gcd(Xl . . . . . .  xi.) = 1} whence we have 

(4) #Q3M = q~(r, dM). 

Since Q3 is the disjoint union of all the sets Q3M for n ~ M  ~= {1 . . . . .  n}, Claim (c) 
now follows from (2)-(4). 
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For a discrete hypercube Q = [0, d]" we obtain the following 

4.11 Corollary. Let  n > 2, d > 1, and let Q = [0, d]". Then (:1) 
#Q2 = ~ 2 "-1 ~o(r,d)=:a(n,d). 

r=l 1 

4 . 1 2  L e m m a .  ( a )  1 + - 2 ' 

n - - 1  

(b) 2"- lq~(n,d) < a(n,d) < d. I ]  (1 + 2dk); 

(c) 2"-~q~(n,d) -<_ a(n,d) < d(1 + 2dy-1; 
(d) ~(n,d) 2 . -1  

- - ~ - -  as m i n d i ~  oo; 
l~; di ~(n) i 

a(n, d) 2"-1 
(e) ~ - -  as d ~ ~ .  

d" ~(n) 

Proof. The numbers a(n. d) are odd whence we have Claim (a). The lower estimate 
in (b) is plain and the upper estimate follows from 4.10(c) and 4.10(1). Claim (d) 
follows from Proposition 3.2. Claims (c) and (e) ensue from (b) and (d), respectively. 

We are now ready to prove the main results of this paper. We first deal with 
upper and lower estimates. 

4.13 Theorem. Let n > 2, 1 < d~7Z?, 1 < dc7Z. 
(a) For the number of  admissible orders on the n-dimensional discrete hyperbox [0, d] 
we have the estimates 

[~ (1 + a(r,(d 1 . . . . .  dr))) 
r=2 o(n,d) 2" 1-2(1 +o-(n,d)) 
- -  < ~ ( [ 0 ,  d ] )  < 

2" 1 22,, 3 

(Note that the best lower bound is achieved by arranging the di's in decreasing order.) 
In particular, we have for a rectangle ~([O, dl] × [O, d2])= 1 + ~p(2,d). 
(b) For the number of  admissible orders on the n-dimensional discrete hypercube 
[0, d]" we have the estimates 

I~ (1 + a(r, d)) 

2" 1 

In particular, we have for a square ~([0, d] 2) = 1 + ~p(2, d). 

Proof. The estimates for the cube are direct consequences of those for the box. 
To derive the upper bound in Part (a) we combine Corollary 4.3(b), Lemma 4.10, 
Lemma 4.12(a), and Theorem 4.6(b) to estimate 

1 + o ( n , d )  o(n,d) 2" ' - 2 ( l + o ( n , d ) )  
~ ( [ O , d ] ) < a ( [ O , d ] * )  - -  = - -  

2 4"-2.2 

In order to derive the lower bound put Q:= [0,d] and denote the projection of 
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x~7/" and Q on the first n -  k coordinates by X (k) and Q(k). Using repeatedly 
Lemma 4.7 and Lemma 4.12(a) we estimate 

+ + + 

n - 2  

1] (1 +~(.-k,a~k~)) (I (1 +o(r,d~"-'~)) 
k=O r = 2  

_____ - -  [ ]  
2"- 1 2 . -  1 

4.14. Remark. (a) In the case of a square [0, d] 2 we obtain immediately from 4.13(b) 
and 4.11 

~([0, d] 2) = 1 + ¢p(2, d). 

In this case we obtain for 1 < d < 20 the following list: 

d 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 ~([0, d] 2) 2 4 8 12 20 24 36 44 56 64 84 92 116 128 144 160 192 204 240 256 

(b) In cases where it is not possible to compute  the numbers  a(r, d) (if r or the di's 
are too large) we have recourse to the estimates given in Lemma 4.12(b), (c) and 
to the estimates in Proposi t ions (3.2), (3.4), and in Corol lary 3.5. We will not  
explicitly expose the somewhat  clumsy estimates for 5(I-0, d])  and 5([0, d]") which 
we would obtain. 

We next derive asymptotic  upper and lower bounds as min d~ tends to infinity 
for fixed n. 

4.15 Theorem. Let n >_ 2 and define 

l 1 
b , : -  2~"- 1)(n-2)/2 ((2) n = 2 

FI ' C n ~  2(n-1)2n~l-3n+4 
~(k) n > 3. 

k = 2  ~ e e -  

(a) For any e > 0 we have 

(1 - ~)%.u."-1 1-I dkk < a ( [O,d] )  < ( 1 =  +e)c. dk 
k = l  

/f mind/  is sufficiently large. (The best lower bound is achieved by arranging the 
i 

numbers di in inereasing order.) 
(b) For any ~ > 0 we have 

(1 - e)bod{"2 + "- 2)/2 ~ 5 ( [ - 0 ,  d]") < (1 + e)c,d "~2 . . . .  1) 

for eventually all de~I. 

Proof. Part  (b) follows immediately from Par t  (a). We first deal with the upper 
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estimate in (a). By Theorem 4.13(a) and Lemma 4.12(d) we have 

c~([0,d]) 2(,_1)(2 . . . .  1) 2(n- 1)2 . . . .  3n+4 
< = 

lim sup / "~2 . . . .  1 = 22n_3((n)2 . . . .  1 1-1 rain d k ~  m ( ( g / ) 2 "  

The upper bound in the case n = 2  now follows. For  n > 3  we show that  
((n)2 --1-1 ~ ~ :  For  n = 3 this follows from ((3) > 1.19 > e 1/6. For  n > 4 we have 

2k ]"  > 3 (k > 2). It follows that 
\ 

k + l J  = = 

i.e., 

and 

(5 2"LI=,+Z 
= k>_3 k__>2 k" 

y, 1 >  1 

k > 2 k " = 2 "  3' 

Hence, using (1  + lk) k+~ 

the desired estimate. 

1 
((n) ~ 1 + ...... . 

2" - 3 ( , )2n_2 
=> e, we have ((n) 2 " - 2 >  1 + 2 , _ 3  ] > e, which is 

In order  to derive the lower bound in (a) use 4.12(d) to see that 

11 (1 + a(r , (al  . . . . .  d,))) 
r = 2  2(n 1)(n 2) /2 

(1) - ,  - b .  
2n-ldn-1 ~ dn-r+l h 

r = 2  r = 2  

as mind~ tends to infinity. F rom (1) and Theorem 4.13(a) it follows that 
i 

cf f [0 ,d] )>(1  e)b,d] x h d~ r + l  

r = 2  

if min di is sufficiently large. The lower estimate now follows by reversing the order  

of the numbers d,. [ ]  

4.16 Remark. It is also possible to derive bounds for more  general subsets Q ~ •" 
than those considered so far in this section. I fQ and (~ are subsets ofll)" such that  

Q~=Q~O, 

then plainly 

a(Q) < cffQ) _< e((~), 

i.e., any upper bound of e((~) is also an upper bound of a(Q) and any lower bound  
of c~(Q) is a lower bound for c~(Q). It is therefore sufficient to look for "large" sets 



74 G. Ritter and V. Weispfenning 

Q_ and "small" sets (~ controlled by Theorems 4.8, 4.13, and 4.15. We conclude 
this section with a sample result analogous to Theorem 4.15(b) for sets Q related 
to terms of maximum total degree d. Other sets that could be well treated in this 

mannera renormbal l so f the form xe;g': IxdP<d p forrealnumbersp,  d>O. 
1 

4.17 Corollary. Let n>2,  d > l ,  and let Q= x s Z ~  ~ <__d . For any e>O 
we have the estimates = 

Vdq('2 +,_ 2)/2 
(1 - e )b . / n /  < c~(Q) < (1 +e)c,d "(2 . . . .  1) 

for eventually all d~,I .  (b, and c, are the constants defined in Theorem 4.15.) 

This follows from the inclusion [0,g] ___ Q c__ [0,d] ' ,  where g = / d - ] .  Proof. 
LnA 

5. Algorithms 

5.1 Explanations. In this section we sketch two algorithms for constructing a set 
of distinct representatives in 5¢(Q) for II(Q), where Q is a finite subset of Q". These 
algorithms are based on Proposition 2.8 which provides a recursive method for 
the construction of a finite set of representatives for H(Q). 

In view of the applications indicated in the introduction, we treat the problem 
in greater generality: Let d (Q ,  cg) be the set of all admissible orders on Q that 
extend a given set ~g ~ Q2 of "side conditions", i.e., d (Q,  cg):= { ~ ~d(Q) :x  ~ y for 
all (x, y)~Cg}, and let H(Q, c£) be the subset of H(Q) corresponding to d (Q ,  cg) by 
Proposition 2.4. The following notion of inconsistency singles out those sets cg for 
which d (Q ,  cg) is void for a trivial reason. Let < denote the componentwise partial 
order on ~". We call c~ ~ (([~n)2 inconsistent, if there exists (x, y ) ~  with y < x. Notice 
that d (Q,  cg) = ~ for inconsistent c~. 

We want to construct a set of distinct representatives in 5e(Q) for H(Q, cg). 
Turning to our first algorithm we now determine a finite subset of Q" such that 
each admissible order on Q is represented by at least one linear form in this subset. 

x 
For a rational number r = - with x, yEZ, y ~ 0, gcd (x, y) = 1, we define the modulus 

Y 
of r by mod (r):= max {[xl, l yl}. For x = (xl . . . . .  x,)~Q',  mod (x):= max {mod (x,): 
1 < i < n) and for a finite subset Q ~ Q',  mod(Q):= max {mod(x):x~Q}. 

The following inequalities are straightforward: 
(i) For any finite subset Q = Q" we have 

mod (Q*) =< 2(mod (Q))4. 

(ii) If c, x~Q" then 

mod (c'x) -_< n(mod (c))"(mod (x))". 

(iii) If x, y s ~ "  then 

mod ½(x + y) _< 2(mod (x))(mod (y)). 
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5.2 Proposition. Define the functions m,:N ~ N (n > 1) recursively by m 1 (q):-- 1, 

(i) m.+l(q) := 22"+1n2qS"m2"(2q 4) (q~N). 

Then: 
(a) For any nonempty, finite subset Q ~= ~" and any positive block ne l l (Q)  there 
exists a linear form cEo,S(Q) representing n and such that 

mod (e) < m.(mod (Q)). 

(b) For all q > 1, n >= 2 we have 

222-- ~(n - a)!q8"- ' ( , -  a)! =< m,(q) <= 232"- 3(n- 1)!q 9n- ~(n- 1)! 

Proof. We first prove Part  (a) and proceed by induction on n. Let  Q be a nonempty,  
finite subset of ~ .+1.  By Proposi t ion 2.8, any positive block ~sFI(Q) for Q can 
be represented by a linear form d = e . d ,  where eeSp(Q*) can be chosen in such 
a way that 

(1) mod (c) < m,(mod (Q*)) 

(inductive assumption) and - d  realizes a cut in the set (e 'Q2)- .  We may take d 
to be the arithmetic mean of two neighbors in the set (e 'Q2)-  w {0, 3-min (e. Q2)- }. 
Therefore, by 5.1(iii) and (ii), 

(2) mod (d) ~< 2 mod (e. Q2) 2 ~ 2n 2 (mod ( e ) )  2n (mod (Q2)) 2n. 

Now, by (1), 5.1(i), and by monotonic i ty  of the function m,, we have 

mod (e) < m,(2(mod (Q))4). (3) 

Furthermore ,  by 5.1(i), 

(4) rood (Q2) < 2 (mod (Q))4. 

Combining (2), (3), and (4) we see that mod (d) is dominated by ran+ l (mod (Q)). To  
conclude the proof  note that 

mod (d) = max {mod (¢), mod (d)} 

and that 

mod  (e) < m(mod (Q*)) < mn(2(mod (O)) 4) < ran+ l (mod (Q)). 

We turn now to the proof  of Part  (b). We proceed again by induction on n and 
verify first the upper estimate. The cases n = 2, 3 are plain since m2(q) = 8q s, and 
m3(q) = 251q 144. By the definition of m,,+l and the inductive hypothesis we have 
for n>_ 3 

(5) m,+ l(q) --< 22n+ lnZqSn[ 232" 3(, 1)!(2q4)9,, 'in-1)!]2n 

= 212n+ 1 + 8 . 3  2,, 3n!]n2q[8n+8"9n- in!] 

Now, for n > 3, we have 2n + 1 + 21dn < 3 a" 3n! and for n >__ 2 we have 8n < 9" in! 
so that (5) is majorized by 232'. ~,!qg,,,!. 

In the lower estimate the case n = 2 is plain. For  n > 2 the inductive hypothesis 
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implies 

m,+ l(q) => mZ"(2q 4) >= [ 22 . . . .  ~,_ 1)!(2q4)8.-1~,_ 1)!]2n 

= 212"22"-3+2"23"-31n!q8"n! ~ 24"22"-3n!q 8"n!. [] 

5.3 Notations.  As before, let Q be a fn i te  subset of Q" and let cg ~= Q2. We put 
5e(Q, cg) = { a ~ ( Q ) : a . x  < a .y  for all (x, y)ECg}. So 5f(Q, cg) consists exactly of the 
linear forms in ~LP (Q) that represent admissible orders on Q which extend cg. We 
also put II(Q, c~) = {Tra(O): aE£~a(Q, cg)}. 

We associate with cg and Q two subsets ~z, c~, of Q2 and three subsets cg~,cg 2 
and ~* of Q~, Q2 and Q*, respectively; the latter sets are formed in analogy to Ql, Q2 
and Q*: 

y' -- x' 
~l = ~(i~n- 1: (x, y)~C~ and 

Yn Xn 

y' -- X' 
~ .  = e Q " - l : ( x , y ) e ~  and 

Yn -- Xn 

x. > Yn }, 

Xn < Yn}, 

~ i  = {(0 ,  y' --  x ' ) ~ ( Q  "-  t)z :(x, y ) ~ ,  x .  = y . } ,  

~ = {(u,v)s(¢~"- m:u~%, w ~ . } ,  

el* = ~ I  u ~ 2 .  

We prove next an analogue of Proposition 2.6. 

5.4 Lemma.  Let Q be a finite subset of Q" and let c# ~= Q2. The followin9 hold: 
(a) If a~q°(Q *) and if b~Q+ is such that a.b6~9°(Q,C#), then 

(i) a~Ce(Q *, c#.) and 
(ii) a.C#~ < - b  < a.Cg,. 

(b) Suppose that a~(Q* ,CK*) ;  then: 

(iii) a-~gl < a. cg, and 
(iv) for any b~Q + such that -b6a .Q2  and a . C g t < - b < a . C # ,  we have 

a* bEZ, e(Q, oK). 

Proof. (a) By hypothesis  a * b E ~ ( Q ,  ~), i.e., if (x, y)6cg then (a* b).x < (a * b).y, and 
so a.(y '  - x') > - b ( y ,  - x,). If  y,  = x,,  this implies a.(y '  - x') > 0 = a '0;  if x.  > y., 

' x' y' - x' 
it implies a. y - < - b, and if x,  < y,, it implies a. > - b. This shows in 

Yn -- Xn Yn -- Xn 
part icular  that  for ueCg~, woK., a .u < a 'v,  and hence that  a ~ ( Q * , C g * ) .  
(b) Let u~Cgt, v~¢g.. Then (u,v)~cgz ~ c#., and so a .u  < a.v. 
Next  let b e Q +  satisfy -bCa.Q2 and a.Cgt < - b  < a.Cg,. Since a~5°(Q*,c# *) = 
5e(Q1 ), 2.6(iii) is satisfied with a '  and b' replaced by a. The  condit ion -bCa.Q2 
implies that  2.6(iv) is satisfied with a. = b,  = b and  a'  = b' replaced by a. L e m m a  2.6 
implies that  a * b ~ ( Q ) .  

Now let (x,y)Cg. If  y,  = x,  then ( 0 , y ' - x ' ) E C # l  ~ c g .  and so (a * b) . (y - x) = 

y' - x '  
a .  ( y ' -  x') > a .  0 = 0. I f  x .  > y,  (x, < y,) then u = - -  is in cg t (in Cgu) and 

Yn -- Xn 
hence a .  u < - b (a- n > - b); therefore a.  (y' - x') > - b ( y , -  x,), and so (a* b)- x < 
(a*b) .y .  [ ]  
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Our algorithms will use the following unspecified 

5.5 Procedures 
(a) Check: A procedure that checks a finite subset (g =~ (~,)2 for consistency. 
(b) Compare: A procedure that checks whether two blocks tea(Q) and rob(Q) 
generated by linear forms a, b~Sg(Q) coincide. Here, as before, Q is a finite subset 
of Q". 
(c) Reduce: A procedure - based on (b) that takes as input a finite subset Q ___ Q" 
and a finite subset LF ~ LP(Q) and outputs a complete set LF' = Reduce (LF; Q) 
of representatives in LF for {rcb(Q):b~LF}; i.e., LF' is a subset of LF such that for 
a--/: bELF' we have ira(Q)¢ ~b(Q) and such that {~,(Q):a~LF'} = {~zb(Q):b~LF }. 

Our first algorithm is based mainly on Proposition 5.2(a). 

5.6 Algorithm 1: Repr elem (n, Q, cK). 

Input: 1 < n ~ l ,  a finite subset Q ~ ~", and c~ =~ Q2. 

Output: A finite set of distinct representatives in 5('(Q) of II(Q, ~) if H(Q, (g) is 
nonempty, and ~ otherwise. 

BEGIN 
m : =  n;  

q:= mod (Q); 
stack:= ~ ;  
WHILE m > 1 AND consistent (~) DO 

m : =  m - -  1; 

stack:= PUSH(q, stack); 
q:= 2q4; 
(g:= (g* 

END; 
IF inconsistent ((U) THEN repr elem:= ~5 {cf. 5.4(iii)} 

ELSE 
max_list:= (1); 
WHILE m < n DO 

q:= POP(stack); 
max:= CAR(max_list); 
max := 2 2n + 1 n2q8n m a x 2 . ;  

max_list:= CONS(max, max_list); 
m : = m +  l 

END 

/forms:= 1, , . . . ,  :lxil __<max/, 1 ~yi<maxi  

for all 1 ~< i < n, where (max . . . . . .  max1) = max listl; 
3 

repr_elem:= reduce (/forms, Q) 
END 

END. 

5.7 Remark. For n = 2, the variable max, in the above algorithm assumes the 
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value 8(mod(Q)) s and for n = 3 the value 251(rood(Q)) 144. It seems unlikely that 
this algorithm is useful for n > 3 even in the case mod (Q) = 1. We therefore design 
a second algorithm that exploits Proposition 2.8 in a more efficient and direct 
way. Using Lemma 5.4 we first state the following generalization of Proposit ion 2.8. 
Its proof is similar to that of Proposition 2.8, using the additional facts stated in 
Lemma 5.4. 

5.8 Proposition. Let Q be a finite subset of  Q", let cg~= Q2, and let ci~5('(Q*,Cg *) 
(1 < i < m) be such that 

(i) {1tel(Q*) . . . . .  nero(Q*)} = l l (Q*,  cg.). 

Then the following hold: 

(a) ci'¢gl < ei'~u for 1 < i < m. 
(b) For every cut Sit (J~Ji) in (e/'Q2)_ that refines the pair (ei-~ t, e/'~u) pick 
diiEQ+\{0 } such that -di~ realizes the cut Sii and put dij = ei*dij. Then 

(~) dii~5~'(Q, cg) and 
([3) {nd,j(Q): 1 <- i ~ m, J6Ji} = 1-I(Q, c~). 

With the aid of the foregoing proposition we can now outline a more refined 
algorithm that computes for given n, Q, c~, by recursion on n, a set of distinct 
representatives in ~(Q) for II(Q, ~). 

5.9 Algorithm 11: Repr_recur (n, Q, ¢g). 

Input: 1 < n ~ q ,  a finite subset Q = Q", and cg ~ Q2. 

Output: A finite set of distinct representatives in 5a(Q) of II(Q, cg), if II(Q, cg) is 
nonempty, and ~ otherwise. 

BEGIN 
m:= n; 
stack := ~ ;  
WHILE m > 1 AND consistent (~) DO 

m:= m - 1; 
stack := PUSH((Q, Q2, cgt, cg,), stack); 
Q:= Q*; 
cg: = ~ ,  

END; 
IF inconsistent(~) T H E N  repr recur:= ~ {cf. 5.4(iii)} 
ELSE 

/forms:= {1); 
WHILE m < n DO 

(Q, Q2, ~;, c~u):= POP(stack); 
new_/forms: = ~ ;  
WHILE/ fo rms  + ~ DO 

e:= some element of/forms; 
/forms: =/forms\{c};  
D:=  a set of elements d of Q+\{0}, whose negatives 

- d  realize all cuts in (e.Q2)_ with e.Cgz < - d  < e-Cgu; 
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new_ / fo rms :  = new _ / forms  w {c * d:d ~ D} 
END;  
/ forms:  = reduce (new_/forms ,  Q); 
m : = m +  1 

END;  
repr  r e c u r : = / f o r m s  

E N D  
END.  

5.10 Remarks. (a) The two a lgor i thms descr ibed in this sect ion determine,  for a 
given tr iple (n, Q, cg), a set of representat ives  in 5¢(Q) of the system H(Q, cg) of 
posi t ive blocks. If  we are interested in the cardinality of H(Q, Cg) only,  p rocedure  
reduce, which necessi tates  keeping  in st ick all posi t ive  b locks  so far found,  m a y  be 
replaced by certain stochast ic  a lgor i thms for duplicate-free count ing  known  from 
the d o m a i n  of da ta  bases (cf. Ast rahan-  S c h k o l n i c k - W h a n g  [1] for an overview and 
F la jo le t  [4] for a close analysis). These a lgor i thms,  based on hashing procedures ,  
avoid  keeping in stock all posit ive b locks  so far encounte red  and the compar i son  
of new linear forms with all of them. As it is the case with all s tochast ic  a lgor i thms 
the result ing gain in efficiency is at the expense of an a p p r o x i m a t i o n  er ror  and  an 
uncer ta in ty  of the result; er ror  and  uncer ta in ty  can, however,  be cont ro l led  by 
s tochast ic  methods.  The stochast ic  a lgor i thms can be used in an obvious  way in 
Algor i thm I and  in the last inductive step (dimension n - 1) of Algor i thm II. We 
will give more  detai ls  in a for thcoming paper .  

(b) Not ice  that  recursions instead of stacks could be used in bo th  a lgor i thms.  

References 

1. Astrahan, M. M., Schkolnick, M., Whang. K.-Y.: Approximating the number of unique values 
on an attribute without sorting. Inf. Syst. 12, 11 15 (1987) 

2. Buchberger, B.: Gr6bner bases: An algorithmic method in polynomial ideal theory. Chap. 6 
In: Recent trends in multidimensional systcm theory. Bose, N. K. (ed.) Dordrecht: Reide11985 

3. Dirichlet, P. G. L.: Uber die Bestimmung der minleren Werthe der Zahlentheorie. Abhand- 
lungen der Berlin Akademie (1849) 

4. Flajolet, Ph.: On adaptive sampling. INRIA Rapports de Recherche #1025 (1989) 
5. Knuth, D. E.: The art of computer programming, Vol. 2. Addison-Wesley, Reading, MA 1981 
6. Mertens, F.: Uber einige asymptotische Gesetze der Zahlentheorie. J. Reine Angew. Math. 

77, 289 291 (1874) 
7. Mora, T., L. Robbiano: The Gr6bner fan of an ideal. J. Symb. Comp. 6, 183 208 (1988), 
8. Robbiano, L.: Term orderings on the polynomial ring. In EUROCAL '85, Caviness, B. F. 

(ed.) Lecture Notes in Computer Science, vol. 204, pp. 513 517. Berlin, Heidelberg, New York: 
Springer 1985 

9. Schwartz, N.: Stability of Gr6bner bases. J. Pure Appl. Algebra 53, 171 186 (1988) 
10. Schwarz, F.: Monomial orderings and Gr6bner bases. ACM SIGSAM Bulletin 25 (1) 10 23 

(1991) 
11. Titchmarsh, E. C.: The theory of the Riemann zeta-function. 2 "'led., Oxford University 

Press, Oxford, 1986 
12. Weispfenning, V.: Admissible orders and linear forms. ACM S1GSAM Bulletin 21 (2) 16 18 

(1987) 
13. Weispfenning, V.: Constructing Universal Gr6bner Bases. In: Proc. AAECC-5, Menorca, 

1987, Huguet, L., Poll, A. (eds). Lecture Notes in Computer Science, vol. 356, pp. 408 417. 
Berlin, Heidelberg, New York: Springer 1989 


