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Introduction

In 1963, the late Elliott and the late Morse published a paper [4] in which several related product measures
were constructed for an arbitrary family of measures on an arbitrarily large set of measurable spaces.
We will call measures of this type Elliott–Morse measures (Definition 1.5). This paper was written in
the explicit but terse and uncompromising style, more easily accessible by a computer than by a human
mind, that has become known as “morse code.” Few people have apparently read it. This is a pity, as
the paper contains a wealth of information.

By contrast, Kakutani’s [11] famous dichotomy for product probabilities has a long history. It was
specialized to measures on product groups (Hora [10]) and Gaussian measures on Hilbert space with
identical correlation operators (Grenander [6], cf. also Skorohod [17]); it was extended to Gaussian
measures with nonidentical correlation operators (Segal [16], Hajek [7], Feldman [5], Rozanov [15]), to
product states on W ∗–algebras (Bures [3]), to σ–finite “restricted” product measures (Hill [9], cf. also
Yamasaki [18]), and to certain nonproduct measures (Ritter [13, 14]).

The question naturally arises whether a similar purity law as Kakutani’s dichotomy can be obtained
for a product probability with respect to Elliott–Morse measures. We show in this paper that the answer
is affirmative in the case of the two Elliott–Morse measures considered here. There is, however, a major
difference between the classical and the present case: In general, Elliott–Morse measures are not σ–finite
and in the decomposition theorem of a probability with respect to a general measure, besides a singular
part and a part with a density function, a third part appears on the scene which we will call (relatively)
diffuse (Definition 2.2). Correspondingly, our main theorems say that a product probability may be
either diffuse or singular, or it may possess a density function with respect to the two Elliott–Morse
measures considered in this paper. (Theorems 3.3 and 3.8). As an application of this trichotomy, we
are able completely to classify the Elliott–Morse measures according to their finiteness, σ–finiteness, and
non–σ–finiteness (Theorem 3.10).

We conclude the paper with a number of applications; unfortunately, these exhibit the fact that in
many interesting situations the diffuse and singular cases have the edge over the density case, thus limit-
ing the practical applicability of Elliott–Morse measures to a high degree. We also discuss Elliott–Morse
measures on Hilbert space in the light of Oxtoby’s [12] theory of translation–invariant Borel measures on
Polish groups.

1 Elliott–Morse measures

1.1. Elliott and Morse [4] developed several methods to define arbitrary Cartesian products of arbitrary
(nonnegative) measures, thus extending the classical notion of a product probability measure to arbitrary
measures. We will now sketch two of their constructions. Central to their method is the notion of a special

product, the plus–product
∏+

of a countable family of nonnegative real numbers.

1Dedicated to the memory of John Oxtoby
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1.2. Definition. Let I be an at most countable index set and let (an)n∈I be a family of extended real
numbers an ∈ [0,∞]. Put J := {k ∈ I | ak ≤ 1}. Thus the (finite or infinite) products

∏

k∈J ak and
∏

k/∈J ak are well defined. Define
∏+

k∈I

ak := (
∏

k∈J

ak)(
∏

k/∈J

ak).

Here we agree that 0 · ∞ = ∞ · 0 = 0 (and, of course, a · ∞ = ∞ · a = ∞ if a > 0) and that the
empty product is 1. In contrast to the usual classical product, the plus–product attributes a value to
any sequence (ak)k∈I of extended real factors ≥ 0; manipulations with the plus–product are easy enough
to make it a handy instrument in measure theory. We now compile some of its properties needed in the
sequel.

1.3. Properties of the plus–product
∏+

.

(i) For a finite index set I , the plus–product
∏+

coincides with the usual product.

(ii) If ak = 0 for one k, then
∏+

ak = 0.

(iii) If bk ≥ ak for all k, then
∏+

bk ≥
∏+

ak.

(iv)
∏+ √

ak =

√

∏+
ak.

(v) If (Iα)α∈A is a decomposition of I , where A is a finite index set, then

∏+

k∈I

ak =
∏

α∈A

(
∏+

k∈Iα

ak).

(This property breaks down for infinite A as the example I = A = N, ak = 2(−1)k

and Iα =
{2α− 1, 2α} shows. In particular, it is generally not true that

∏+
(akbk) = (

∏+
ak)(

∏+
bk) or (

∏+
ak)(

∏+
1/ak) = 1.)

We, however, have

(vi) If 0 < ak < ∞ and the product
∏

ak exists in the classical sense (as a positive real number), then
∏+

(akbk) = (
∏

ak)(
∏+

bk).

Now let (Xk, Ak, ηk)k∈I be an at most countable family of measure spaces. (In this paper “measure”
means an arbitrary σ–additive function on a σ–algebra with values in [0,∞].) Following Elliott and
Morse, loc.cit., p. 253, we define

1.4. Definition. (a) A box for (Xk, Ak)k∈I is a Cartesian product
∏

k∈I Bk such that Bk ∈ Ak.

(b) The volume (with respect to (ηk)) of a box B =
∏

k∈I Bk is the extended real number

vlm(B) :=
∏+

ηk(Bk).

(c) A box B is basic (for the family (ηk)) if it has finite volume; it is null if its volume vanishes.

Note that an at most countable intersection of boxes is again a box, and it is basic or null if at least
one of these boxes is basic or null, respectively. If a box B is basic and nonnull, then the volume of B is

the classical product
∏

ηk(Bk). A box is null if and only if the subproduct
∏+

ηk(Bk)<1

ηk(Bk) vanishes. Let

A be the product of the σ–algebras Ak on the product space X =
∏

k∈I Xk.
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1.5. Definition. We call Elliott–Morse measure (for the family (ηk)) any measure η on the measurable
space (X, A) such that

η(B) = vlm(B)

for all (ηk)–basic boxes B.

In general, Elliott–Morse measures are not uniquely specified by their restrictions to all basic boxes.
In their paper [4], Elliott and Morse constructed three outer measures, denoted by cpm, cnm, and prm,
whose restrictions to A share the property of Definition 1.5. We will deal with their first two measures
only and we now sketch their constructions.

1.6. First Elliott–Morse measure, η(1). The first outer measure, cpm, is the Hausdorff outer measure
generated by the system of (ηk)–basic boxes and their volumes, i.e., for Q ⊆ X

cpm(Q) := inf
∞
∑

n=1

vlm(Bn),

where the infimum is extended over all at most countable sequences (B(n)) of (ηk)–basic boxes sucht that
Q ⊆ ∪B(n) (cf. [4],6.1.8). (If there is no such covering of Q, the infimum is defined as ∞). By [4], Theorem
6.23, cpm(B) = vlm(B) for all (ηk)–basic boxes B ⊆ X . Therefore, Part 1 of the proof of [4], Theorem
6.7 shows that all one–dimensional cylinders A × ∏k 6=i Xk, A ∈ Ai, i ∈ I are cpm–measurable. Since
the system of cpm–measurable subsets of X is a σ–algebra, the same holds for all product measurable
sets. Define η(1) as the restriction of cpm to the σ–algebra A of product measurable subsets of X . η(1)

is an Elliott–Morse measure in the sense of Definition 1.5. We will call it the first Elliott–Morse measure
generated by the family (ηk).

The measure η(1) may possess many measurable subsets of X which are trivial in the sense that
they contain no subsets of positive, finite η(1)–measure (cf. Example 1.8 in combination with Lemma
1.11 below). This defect suggests also looking at the essential measure associated with η(1). We will,
however, not follow this idea, but will content ourselves with considering a related construction, the
second Elliott–Morse measure.

Elliott and Morse [4] point out (cf., e.g., their introduction) that, in the case of an uncountable index
set I (which we do not consider here), cpm suffers from another, more serious defect: Fubini’s theorem
does not hold for integrable functions (cf. Bledsoe and Morse [2]) and binary splitting of the product
space in general. In the case of a countable index set, this defect is not present as the interested reader
may verify. Befor stating Example 1.8, we fix some notations.

1.7. Notations and terminology. For J ⊆ I we put XJ =
∏

k∈J Xk, we denote the product–σ–algebra on

XJ by AJ , and we denote the first Elliott–Morse measure for the subfamily (ηk)k∈J by η
(1)
J . A nilcylinder

N for (ηk)k∈I is a subset of X of the form N = N ′ × XCJ , where J ⊆ I , N ′ ∈ AJ , and η
(1)
J (N ′) = 0 (cf.

[4], 6.1.12 and 5.1.5).

1.8. Example. There exists a nilcylinder N such that η(1)(N) = ∞. In order to construct such a nilcylin-
der we use the index set I = N. For k ≥ 3, let Xk = {0, 1} be endowed with the finest σ–algebra and
let ηk = # be the counting measure. Furthermore, let X1 = X2 be the real interval [0, 1] endowed with
the Borel σ–algebra B, and let η1 = η2 be Lebesgue measure λ on B. It turns out that the nilcylinder
N = D × ∏k≥3 Xk ⊆ X , where D is the diagonal in [0, 1] × [0, 1], cannot be covered by an at most

countable family of basic boxes and, thus, has infinite η(1)–measure.

1.9. Second Elliott–Morse measure, η(2). For a countable product Elliott and Morse’s second outer
measure, cnm, is defined starting from cpm by punching out the nilcylinders;

(1) cnm(Q) := inf
C

cpm(Q \ C) (Q ⊆ X),

where C runs through all countable unions of (ηk)–nilcylinders (the interested reader may want to com-
bine ([4] 6.15.11, 6.15.10, 6.4.5, 6.15.7, 3.1.15, 3.1.14, and 2.1.11)). (In [4] besides the nilcylinders, the
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so–called nilsets are also punched out; in the case of a countable index set I , any nilset is a countable
union of boxes of volume zero and does not have to be taken into consideration). Define the second
Elliott–Morse measure η(2), generated by the family (ηk) as the restriction of cnm to the σ–algebra A of
all product measurable subsets of X .

1.10. Remarks. (a) For any (ηk)–basic box B, we have

η(2)(B) = vlm(B);

moreover, any set A ∈ A is cnm–measurable. In particular, η(2) is an Elliott–Morse measure in the sense
of Definition 1.5.

(b) For the second Elliott–Morse measure η(2) the Fubini theorem holds for all η(2)–integrable functions
and any binary splitting of the product space. The interested reader will find proofs of the two foregoing
remarks by combining ([4] 6.25, 6.15.11, the remark preceding Theorem 6.5, and Part 1 of the proof of
Theorem 6.7).

(c) Fubini’s theorem does not hold for infinite splitting in general: Consider Xk = {1, 2, 3, 4}, ηk = 1
2#,

and B := {1}×X2 × {1}×X4 × . . . . Then B is a basic box of volume zero, but cnm({1} ×Xk) = 1 for
all k.

We will need the following sharpening of 1.10(a) in Sect. 3; it is also interesting by itself.

1.11. Lemma. Let A ∈ A have finite η(1)–measure. Then η(2)(A) = η(1)(A).

Proof. We first show that the claim is true if A =
⋃n

k=1 B(n) is a finite union of basic boxes. Let N
be a countable union of nilcylinders. Putting for abbreviation C(n) := B(n) \ N , the sieve formula of
Sylvester–Poincaré allows us to write

(2) η(1)

(

n
⋃

k=1

(B(n) \ N)

)

= −
n
∑

j=1

(−1)j
∑

η(1)(CF ),

where the inner sum is extended over all subsets F ⊆ [1, n] with j elements and CF =
⋂

k∈F C(k). But

CF = BF \ N , where BF =
⋂

k∈F B(k) is a basic box. Hence, by 1.10(a), we have

η(1)(BF ) ≥ η(1)(CF ) ≥ η(2)(BF ) = vlm(BF ) = η(1)(BF ).

Therefore, we obtain from (2) by another application of the sieve formula

η(1)

(

n
⋃

k=1

(B(n) \N)

)

= −
n
∑

j=1

(−1)j
∑

η(1)(BF ) = η(1)

(

n
⋃

k=1

B(n)

)

.(3)

The equality (3) implies η(2)(A) = η(1)(A) if A is a finite union of basic boxes. By σ–continuity, the same
is true if A is a countable union of basic boxes.

If A has finite first Elliott–Morse measure, then there is an at most countable family (B(n)) of basic
boxes such that A ⊆ ∪B(n) and η(1)(A) ≥∑n vlmB(n) − ε. Therefore, we have

η(2)(∪B(n) \A) ≤η(1)(∪B(n) \ A) = η(1)(∪B(n)) − η(1)(A)

≤
∑

n

vlmB(n) − η(1)(A) ≤ ε.

Using this estimate and the first part of this proof, we finally obtain

η(2)(A) = η(2)(∪B(n)) − η(2)(∪B(n) \ A) ≥ η(1)(∪B(n)) − ε ≥ η(1)(A) − ε.

The lemma now follows since ε was arbitrary.
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2 A decomposition theorem

2.1. Explanation. Let µ be a probability measure and let η be an arbitrary (nonnegative) measure on
a measurable space (X, A). µ and η are called mutually singular if there is a measurable subset A ⊆ X
such that µ(A) = 1 and η(A) = 0. An A–measurable function f : X → R+ is called a density function of
µ with respect to η if

µ(A) =

∫

A

fdη

for all measurable subsets A ⊆ X . As is usual, we write µ = fη in this case. If η is σ–finite, then by
Radon–Nikodym’s theorem, the existence of a density function is equivalent with absolute continuity of
µ with respect to η, µ � η, i.e., µ(A) = 0 when η(A) = 0. If η is not σ–finite, then µ � η does not
imply the existence of a density function; a standard example is provided by Lebesgue measure µ and
the counting measure η = # on the real interval [0, 1]. In this case, the measure µ is not only absolutely
continuous but even diffuse with respect to η in the sense of the following definition.

2.2. Definition. µ is diffuse with respect to η(µ ≪ η) if µ(A) = 0 whenever η(A) < ∞ (or, equivalently,
when η is σ–finite on A).

This notion of diffuseness of µ w.r.t. η must not be mixed up with diffuseness of a measure, which
means that no point carries µ–measure. The latter notion of diffuseness of a measure µ means diffuseness
of µ w.r.t. counting measure in our sense.

There is the following sharpening of Lebesgue’s classical decomposition theorem. It shows in partic-
ular that the absolutely continuous part in Lebesgue’s theorem has a unique decomposition into a part
with a density and a diffuse part. The proof is routine and we omit it.

2.3. Theorem. The probability measure µ has a unique decomposition as the sum

(i) µ = µ⊥ + fη + µd,

where µ⊥ and η are mutually singular, f is a nonnegative and η–integrable function, and µd is diffuse
with respect to η.

3 Trichotomy

3.1 Explanations. To avoid trivial discussions, we restrict matters to the case of a countable index set I
from here on.

Let notation be as set up in Sect. 1 and suppose that for each k ∈ I µk and νk are probability measures
on the measurable space (Xk, Ak) such that µk = fkνk for some νk–integrable function fk ≥ 0 on Xk. Let
µ = ⊗µk and ν = ⊗νk be the (uniquely defined) product probability measures of the sequences (µk) and
(νk) on the product space X =

∏

Xk. S. Kakutani [11] discovered the remarkable fact that, relative to
Lebesgue’s decomposition theorem, µ must be of pure type with respect to ν (cf. also Hewitt–Stromberg
[8], p. 453, Theorem 22.36).

3.2. Dichotomy theorem (Kakutani [11]). (a) Either

(i) µ and ν are mutually singular or

(ii) µ = fν for some ν–integrable function f ≥ 0 on X.

(b) (iii) The first case occurs if and only if the infinite product

(1)
∏

k∈I

∫

Xk

√

fkdηk

vanishes.

(iv) The second case occurs if and only if (1) is positive.

5



(c) In the second case, the density function f is obtained as an L
1(ν)–limit of the net of finite partial

products (
∏

k∈E fk)#E<∞.

In the sequel, we will replace the basis measure ν by the first and second Elliott–Morse measures η(1)

and η(2) and extend Kakutani’s theorem to these measures. Thus let ηk be a nonnegative measure on
the measurable space (Xk, Ak) such that µk = fkηk for some ηk–integrable function fk ≥ 0 on Xk. We
first deal with the first Elliott–Morse measure η(1) generated by the sequence (ηk)k (cf. 1.6).

3.3. Trichotomy theorem (for the first Elliott–Morse measure). (a) Exactly one of the following cases
occurs.

(i) µ is diffuse with respect to η(1),

(ii) µ and η(1) are mutually singular,

(iii) µ = fη(1) for some η(1)–integrable function f ≥ 0 on X.

(b) (iv) The first case occurs if and only if µ(B) = 0 for all (ηk)–basic boxes B.

(v) The second case occurs if and only if there is a basic box B =
∏

k∈I Bk for (ηk) such that µ(B) > 0
and the infinite product

(1)
∏+

k∈I

∫

Bk

√

fkdηk

vanishes.

(vi) The third case occurs if and only if there is a basic box B =
∏

k∈I Bk for (ηk) such that µ(B) > 0
and the infinite product (1) is positive.

Proof. For abbreviation we will write η := η(1); we also identify the index set with the set N of natural
numbers in this proof. We proceed along the following selfexplanatory logic tree.

∀B : µ(B) = 0 ∃B : µ(B) > 0

µ <<< η(1)

(i)

vlm(B) = 0 vlm(B) > 0

(1) = 0
µ⊥η(1)

(ii)

(1) = 0 (1) > 0

µ⊥η(1) µ = fη(1)

(ii) (iii)

Figure 1:

Let us deal first with case (i) and suppose that µ(B) = 0 for all (ηk)–basic boxes B. Let A be in A

and finite for η. The set A can be covered by a countable family (B(n))n∈N of (ηk)–basic boxes. By our
hypothesis, we have

µ(A) ≤ µ(
⋃

n∈N

B(n)) ≤
∑

n∈N

µ(B(n)) = 0.

That is, µ is diffuse with respect to η.

Both cases (ii) and (iii) materialize when there is an (ηk)–basic box B =
∏

k∈N
Bk for which η(B) is

positive. We suppose first that
∏+

ηk(Bk) =vlm(B) = 0. Since
∏

k∈N
µk(Bk) = µ(B) > 0, we must
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have µk(Bk) > 0 and (by absolute continuity) ηk(Bk) > 0 for all k ∈ N, and so
∏+

ηk(Bk) converges to

0, but all finite partial products are positive; in particular
∏+

k>n

ηk(Bk) = 0 for all n. By an elementary

property of infinite products, we have

(2) lim
n→∞

∞
∏

k=n

µk(Bk) = 1.

Next define B(n) as
∏

k≤n Xk×
∏

k>n Bk. Plainly we have B(n) ⊆ B(n+1) and, by (2), limn→∞ µ(B(n)) =
1. Note finally that

vlm(B(n)) =
∏

k≤n

ηk(Xk) ·
∏+

k>n

ηk(Bk).

Since
∏+

k>n

ηk(Bk) = 0 we have vlm(B(n)) = 0 for all n, and so µ(
⋃

n∈N
B(n)) = 1 and η(

⋃

n∈N
B(n)) = 0.

That is, µ and η are mutually singular. We also have by the Cauchy–Schwarz inequality and by 1.3

∏+

k

∫

Bk

√

fkdηk ≤
∏+

k

√

ηk(Bk)

∫

Bk

fkdηk ≤
∏+

k

√

ηk(Bk) =
√

vlm(B) = 0.

Suppose next that vlm(B) > 0: As B is a basic box, we have vlm(B) < ∞ by definition. Consequently,
we must have 0 < ηk(Bk) < ∞ for all k. We define two probability measures on X . For k ∈ N, let νk be
the probability measure on Xk such that

νk(A) =
µk(A ∩ Bk)

µk(Bk)
for A ∈ Ak.

Let θk be defined similarly by

θk(A) =
ηk(A ∩ Bk)

ηk(Bk)
.

Let ν =
⊗

k∈N
νk and θ =

⊗

k∈N
θk. Write gk = ηk(Bk)

µk(Bk)fk, so that νk = gkθk.

Kakutani’s dichotomy theorem shows that either ν and θ are mutually singular, or ν = gθ, where g
is the limit in L

1(θ) of the finite products
∏n

k=1 gk. Singularity occurs if and only if the product

(3)
∏+

k∈N

∫

Bk

√
gkdθk =

∏

k∈N

∫

Bk

√
gkdθk

vanishes and absolute continuity if and only if it is positive. (Observe that all factors in (3) are less than
or equal to (1).) The product (3) is equal to

(4)
∏+

k∈N

1
√

µk(Bk)ηk(Bk)

∫

Bk

√

fkdηk.

Since
∏

k∈N
µk(Bk) and

∏+

k∈N

ηk(Bk) are positive and finite, (4) is equal to

1
∏

k∈N

√

µk(Bk)
· 1
∏+

k∈N

√

ηk(Bk)

∏+

k∈N

∫

Bk

√

fkdηk

=µ(B)−1/2vlm(B)−1/2
∏+

k∈N

∫

Bk

√

fkdηk .

Thus (3) is equal to a positive constant times (1).

We must now extend the dichotomy ν⊥θ or ν = gθ to the original measures µ and η. To this end, we
construct an increasing sequence B(n) of basic boxes containing B for which

(5) lim
n→∞

µ(B(n)) = 1.
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First choose a strictly increasing sequence (kn)n∈N of positive integers such that

(6)
∏

k≥kn

µk(Bk) ≥ 1 − 1

n
.

For k ≥ kn, let B
(n)
k := Bk. For k < kn, use µk = fkηk to choose Ak–measurable sets B

(n)
k such that

(7) B
(n+1)
k ⊇ B

(n)
k ⊇ Bk,

(8) ηk(B
(n)
k ) < ∞,

and

(9)
∏

k<kn

µk(B
(n)
k ) ≥ 1 − 1

n
.

Define B(n) as
∏∞

k=1 B
(n)
k . By (7) we have B(n+1) ⊇ B(n); by (8) each B(n) is an (ηk)–basic box; by (9)

and (6), (5) holds. Now define ν
(n)
k , θ

(n)
k , ν(n), θ(n), and g

(n)
k for the sequence (B

(n)
k )k∈N as νk, θk, ν,

θ, and gk were defined for the original sequence (Bk)k∈N. A well–known uniqueness theorem for finite
measures (see, e.g., Bauer [1], p.34, Satz 5.5) shows that ν(n) is equal to 1

µ(B(n))
µ | B(n). An analogous

statement holds for the relationship between the measures θ(n) and η | B(n).

Now observe that, by µk(Bk) > 0, all integrals
∫

Bk

√
fkdηk are positive. Hence, if the product (1)

vanishes, then

∞
∏+

k=1

∫

B
(n)
k

√
fkdηk = 0 for all n. Thus if the product (1) vanishes, Kakutani’s theorem

shows that µ | B(n) and η | B(n) are mutually singular for all n. The inequalities (6) and (9) imply that
limn→∞ µ(B(n)) = 1. Since η and µ are singular on B(n), they are singular on

⋃∞
n=1 B(n), which is to

say that µ and η are singular.

Finally, we deal with the case in which the product (1) is positive. By the aforementioned relationship

between (3) and (4), all of the products
∞
∏

k=1

∫

B
(n)
k

√

g
(n)
k dθ

(n)
k are positive. Once again Kakutani’s theorem

shows that ν(n) � θ(n) and so µ | B(n) � η | B(n) for all n. It follows that µ � η | ⋃∞
n=1 B

(n)
k . As

⋃∞
n=1 B(n) is σ–finite with respect to η, there is a density function f such that µ = fη.

3.4. Remarks. (a) The proof of Theorem 3.3 shows that the criterion (v) for case (ii) can also be cast as
follows (cf. the logic tree at the beginning of the proof of Theorem 3.3):
Singularity occurs if and only if one of the following holds:

(v’) there is an (ηk)–basic box B such that µ(B) > 0 and vlm(B) = 0;

(v”) there is an (ηk)–basic box B =
∏

k∈I Bk such that µ(B) > 0, vlm(B) > 0 and the infinite product
3.3(1) vanishes.

(b) If µ and η(1) are mutually singular, then the infinite product

(1)
∏+

k∈I

∫

Ck

√

fkdηk

vanishes for all (ηk)–basic boxes C =
∏

k∈I Ck such that µ(C) > 0. (If we had (1)> 0 for one such box,
then we would be in case (iii) of Theorem 3.3.) A similar argument shows

(c) If µ = fη(1), then the infinite product (1) is positive for all (ηk)–basic boxes C =
∏

k∈I Ck such that
µ(C) > 0.

3.5 We turn now to the second Elliott–Morse measure η(2) generated by the family (ηk)k of measures on

Xk (cf. 1.9). For a subset J ⊆ I , we again write η
(i)
J for the ith Elliott–Morse measure on XJ defined by

8



the subfamily (ηk)k∈J of (ηk)k∈I . In a similar way, we define the subproduct µJ of the product probability
µ.

3.6. Example. We will see that trichotomy also holds for the second Elliott–Morse measure η(2) (cf. 3.8).
It is, however, not true that µ ≪ η(2), µ⊥η(2) or µ = fη(2) if the same relation holds with respect to η(1).
Let us show that it is possible to have µ ≪ η(1) and µ⊥η(2) at the same time. Consider Xk = {0, 1} for
all k ∈ Z, the coin-tossing probability µ on {0, 1}Z, and

ηk :=

{

δ0 + δ1, (k ≤ 0)

(1 − α)δ0 + αδ1 (k > 0)

where 0 < α < 1 and α 6= 1
2 . A subset B =

∏

k∈Z
Bk is a basic box for (ηk)k if #Bk ≤ 1 for all but finitely

many k ≤ 0 or if #Bk ≤ 1 for infinitely many k > 0. In both cases, #{k ∈ Z/#Bk ≤ 1} = ∞ and hence
µ(B) = 0. By Theorem 3.3, µ ≪ η(1). On the other hand, by Kakutani’s dichotomy, the subproducts µN

and ηN are mutually singular probability measures. Let A′ be a measurable subset of
∏

k>0 Xk such that

µN(A′) = 1 and ηN(A′) = 0. Then the subset A := (
∏

k≤0 Xk)×A′ is an (ηk)–nilcylinder and η(2)(A) = 0.

But µ(A) = 1 and hence µ and η(2) are mutually singular. This case, however, is the only exception as
we will now see. We precede the next theorem with a short lemma.

3.7. Lemma. Suppose that no subset J ⊆ I exists for which µJ⊥η
(1)
J . Then µ(N) = 0 for all (ηk)–

nilcylinders N .

Proof. Assume on the contrary that µ(A′ × X) > 0 for some nilcylinder A′ × XCJ , A′ ⊆ XJ . Since

µ = µJ ⊗ µCJ , we have µJ(A′) > 0 and of course η
(1)
J (A′) = 0. This denies the relation µJ � η

(1)
J .

Applying the Trichotomy Theorem 3.3 to the measures µJ and η
(1)
J , we obtain µJ⊥η

(1)
J – a contradiction

to our hypothesis.

Using this lemma the interested reader can verify the following

3.8. Trichotomy theorem (for the second Elliott–Morse measure) (a) Exactly one of the following
cases occurs.

(i) µ is diffuse with respect to η(2),

(ii) µ and η(2) are mutually singular,

(iii) µ = fη(2) for some η(2)–integrable function f ≥ 0 on X.

(b)(iv) The first case occurs if and only if µ ≪ η(1) and there exists no (infinite) subset J ⊆ I such that

µJ⊥η
(1)
J .

(v) The second case occurs if and only if there exists an (infinite) subset J ⊆ I such that µJ and η
(1)
J

are mutually singular.

(vi) The third case occurs if and only if µ = fη(1) for some f ∈ L
1
+(η) and, in this case, f is also a

version of the density function of µ with respect to η(2).

The trichotomy theorems make it easy to classify the Elliott–Morse measures according to their finite-
ness, σ–finiteness, or non–σ–finiteness. We first state a lemma without proof.

3.9. Lemma. Let Ck ∈ Ak, ηk(Ck) < ∞ for all k ∈ I, C =
∏

k∈I Ck. Then

(a) η(1)(C) = η(2)(C) =vol(C);

(b) If vol(C) = ∞ then C is not σ–finite for η(1) and η(2).

9



A measure η on a measurable space (X, A) is called semi–regular if, for all A ∈ A, we have η(A) =
sup η(C), where the supremum runs over all C ∈ A, C ⊆ A with finite η–measure; equivalently, η is semi–
regular if any measurable set of infinite measure possesses a measurable subset of finite, positive measure.
If a measure η is not semi–regular, then X contains a measurable subset A of infinite η–measure such
that any measurable subset C of A with finite η–measure is η–null. Using Lemma 3.10 and distinguishing
the cases where all ηk’s are semi–regular and the contrary one can prove the following

3.10. Theorem. Let I0 := {k ∈ I | ηk is finite}, I1 := {k ∈ I | ηk is σ–finite and nonfinite}, and
I2 := {k ∈ I | ηk is non–σ–finite}.

(a)(i) η(1) = 0 if and only if
∏+

k∈I0

ηk(Xk) = 0;

(ii) η(1) is finite and nonvanishing if and only if 0 <
∏+

k∈I0

ηk(Xk) < ∞ and I1 = I2 = ∅;

(iii) η(1) is σ–finite and nonfinite if and only if 0 <
∏+

k∈I0
ηk(Xk) < ∞, I1 is finite and nonvoid, and

I2 = ∅.

(b) The same statements hold with η(1) replaced by η(2).

4 Examples

The previous theorems are illuminated by three examples. The first two serve to illustrate trichotomy;
the second demonstrates the bad behavior that an Elliott–Morse measure may exhibit; the last example
is concerned with invariant measures on Hilbert space.

4.1. Finite factors. Let Xk be the two point set {0, 1}, µk = 1
2#, and let ηk = αδ0 +βδ1 where δ0 and δ1

are the Dirac measures on 0 and 1, respectively, and where α and β are positive real numbers such that
α, β ≤ 1 and α + β ≥ 1. By Theorem 3.3, we have in this case

(i) µ ≪ η(1) if α + β > 1,

(ii) µ⊥η(1) if α + β = 1, α 6= β, and

(iii) µ = η(1) if α + β = 1, α = β.

The same is true if η(1) is replaced by the second Elliott–Morse measure, η(2).

4.2. Infinite products of Gauß and Lebesgue measures. Let Xk = R, µk = γ0,vk
be the one–dimensional,

centered Gauß measure with variance vk, let λ be Lebesgue measure on R, and let ηk := αkλ be a positive,
real multiple of λ. Here we have the following fact:

(a) Either µ is diffuse with respect to η(1), or µ and η(1) are mutually singular.

(b) The first case occurs if and only if µ(B) = 0 for all (ηk)–basic boxes B of the form
∏

k[−bk, bk].

In order to prove this fact, by applying homothetic transformations on the factors R, it is sufficient to
deal with the case αk = 1. Let us first suppose that the condition in (b) is satisfied, and let C =

∏

k Ck

be any basic box. By Theorem 3.3, we have to show that µ(C) = 0 in order to show diffuseness of µ
w.r.t. η(1). Defining bk := λ(Ck)/2 we have

vlm
(

∏

k

[−bk, bk]
)

=
∏+

2bk =
∏+

k

λ(Ck) = vlm(C) < ∞,

that is,
∏

k[−bk, bk] is a basic box; we thus have by hypothesis

µ(C) =
∏

k

µk(Ck) ≤
∏

k

µk[−bk, bk] = 0

10



and µ is diffuse w.r.t. η(1). We suppose now that there exists a basic box B =
∏

k[−bk, bk] such that
µ(B) > 0. If

(1) vlm(B) =
∏+

2bk

vanishes, then we have singularity by Remark 3.4(a)(v’). On the other hand, if (1) is positive, we use
3.4(v”) to prove that µ⊥η(1). In order to apply 3.4(v”), it remains to show that the infinite product
3.3(1) vanishes. Since (1) is finite and positive, we have

(2) lim
k

bk =
1

2

and therefore, by µ(B) > 0,

(3) lim
k

vk = 0.

Writing for abbreviation Ik(a, b) :=
∫ b

a

√

fk(x)dx, where

fk(x) =
1√

2πvk
e−x2/2vk

is the density function of γ0,vk
with respect to λ, we show that

(4) ρk :=
Ik(−bk, bk)

Ik(−bk/2, bk/2)
=

Ik(0, bk)

Ik(0, bk/2)

tends to 1 as k → ∞. This is most easily done by proving that

(5)
1

ρk − 1
=

Ik(0, bk/2)

Ik(bk/2, bk)
≥ Ik(0,∞) − Ik(bk/2,∞)

Ik(bk/2,∞)
=

Ik(0,∞)

Ik(bk/2,∞)
− 1

tends to ∞. But Ik(0,∞) = 4
√

πvk/2 and Ik(a,∞) ≤ 2vk
4
√

2πvka
e−a2/4vk ; hence (5) exceeds the number

√
πbk

4
√

vk

eb2
k
/16vk − 1 and (2), (3) show that (5) converges to ∞ and thus (4) converges to 1. Therefore, to

finish the proof, we may choose a subsequence (kn) ⊆ N such that

(6)
∏

n

ρkn
< ∞

and estimate the infinite product 3.3(1) using 1.3, (4), and the Cauchy–Schwarz inequality.

∏+

k

∫ bk

−bk

√

fk(x)dx =
∏+

n

Ikn
(−bkn

, bkn
)
∏+

k/∈{kn}
Ik(−bk, bk)

=
∏+

n

(

ρkn
Ikn

(

−bkn

2
,
bkn

2

))

∏+

k/∈{kn}
Ik(−bk, bk)

=
∏

n

ρkn

∏+

n

Ikn

(

−bkn

2
,
bkn

2

)

∏+

k/∈{kn}
Ik(−bk, bk)

≤
∏

n

ρkn

∏+

n

√

bkn

∏+

k/∈{kn}

√

2bkn

=
∏

n

ρkn

√

∏+

n

bkn

√

∏+

k/∈{kn}
2bkn

.

But the middle factor in the last line, and therefore also the infinite product 3.3(1), vanishes by (2).

4.3. Translation invariant measures on Hilbert space. The infinite product of Lebesgue measures already
used in Part 4.2 may be employed to construct translation invariant Borel measures on Hilbert space.
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Before giving details, we will interrupt the study of Elliott–Morse measures to include some known facts
about translation invariant Borel measures on Polish groups. We thank S. Graf for a discussion of this
subsection.

4.3.1. Translation invariant Borel measures on Polish groups. To our knowledge, Oxtoby [12] was the
first author to study Borel measures invariant under all translations on a Polish group G with its Borel
σ–algebra B. (A topological group is called Polish, if it is separable and if there is a complete metric
that generates its topology.) His results, inter alia, are as follows.

4.3.2. Theorem. [12], p. 220, Theorem 3. In any nondiscrete Polish group G, there exists a left–
invariant Borel measure ν 6= 0 such that ν({x}) = 0 for all x ∈ G.

4.3.3. Theorem. [12], p. 217, Theorem 2. If G is not locally compact and ν 6= 0 is a left–invariant
Borel measure in G, then any nonempty open set contains a compact set which is the union of uncountably
many disjoint mutually congruent compact sets of (equal) finite positive ν–measure.

In the light of Theorem 4.3.3, it is clear that if G is not locally compact and ν is a left–invariant Borel
measure in G, then no nonempty open set can be σ–finite; moreover there can be no left–invarinat Radon
measure on B different from the measure 0. (A measure ν on B is called a Radon measure, if

(i) ν(K) < ∞ for all compact subsets K ⊆ G,

(ii) ν(D) = sup{ν(K) | K compact ⊆ D} for all D ∈ B.)

If the Polish group G is the Hilbert space `2, invariant measures on the Borel σ–algebra may be con-
structed by using Elliott–Morse measures: Let (αk)α∈N be any sequence of positive numbers and let ηk

be the multiple ηk(dx) := αkdx of Lebesgue measure in the real line. Denote by ν the restriction of the
first Elliott–Morse measure η(1) to the subspace `2 ⊆ R

N. Since the restriction of the product σ–algebra
on R

N (where each factor is endowed with its Borel σ–algebra) to `2 is the Borel σ–algebra on `2, ν is a
Borel measure on `2. Since η(1) is plainly translation invariant, so is ν. In the following proposition, we
will call two Borel measures in `2 equivalent if one is a positive, real multiple of the other.

4.3.4. Proposition. (a) If the sequence (α−1
n )n is square summable, then ν does not vanish.

(b) Two measures, ν and ν̄, generated by two such sequences (αn) and (ᾱn) in the way described above
are equivalent if and only if

(1)
∏+

(αn/ᾱn) ∈]0,∞[.

Proof. (a) If
∑

n
1

α2
n

< ∞ then the (ηk)–basic box B :=
∏

n

[

0, 1
αn

]

is contained in `2. Since η(1)(B) =

vlm(B) = 1, we have ν 6= 0. This proves Part (a).

To prove Part (b), let us suppose first that (1) is satisfied and hence the plus–product in (1) is classical.
If ν̄ is generated by the sequence (η̄k) and if B =

∏

k Bk is an (ηk)–basic box, we may compute, using
1.3(vi),

η(1)(B) =
∏+

k

ηk(Bk) =
∏+

k

αkλ(Bk) =
∏

k

(αk/ᾱk)
∏+

k

ᾱkλ(Bk)

=
∏

k

(αk/ᾱk)η̄(1)(B).

Since this equality is true for all (ηk)–basic boxes, we see that the system of (ηk)–basic boxes coincides
with the system of (η̄k)–basic boxes. As both measures ν and ν̄ are restrictions of first Eliott–Morse

measures, we have in addition ν =
∏+

k
(αk/ᾱk)ν̄.

Suppose now that ν = αν̄ for some α, 0 < α < ∞. Then for the (ηk)–basic box B =
∏

k[0, α−1
k ] we

obtain

1 = ν(B) = αν̄(B) = α
∏+

k

(ᾱk/αk).
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Therefore
∏+

(αk/ᾱk) is the classical product
∏

(αk/ᾱk) and equals α; the proof of Part (b) is finished.

4.3.5. Remarks. (a) Since the first and second Elliott–Morse measures coincide on basic boxes, Proposi-
tion 4.3.4 remains true if ν and ν̄ are interpreted as the restrictions of second Elliott–Morse measures to
`2.

(b) It is interesting to note that non–σ–finiteness of any nonempty ball with respect to ν (which follows
from Oxtoby’s Theorem 4.3.3) can be derived from trichotomy. Indeed, let µk = γ0,vk

be the one–
dimensional Gaussian distribution with mean 0 and variance vk = α−2

k , where α−1
k is square summable

and let ηk(dx) = αkdx. Then we have (vk) ∈ `1, and it is well known that µ is concentrated on `2 (cf.
Skorohod [17], Chap.1, §5). It is therefore sufficient to show that µ is diffuse with respect to η(1). Let B
be any (ηk)–basic box of the form

∏

k[−bk, bk]. In view of 4.2(b), we show that µ(B) = 0. If bk = 0 for
one k, then plainly µ(B) = 0. In the opposite case, we have αkbk ≤ 1 for infinitely many indices k since
vlm(B) < ∞. Denoting by J the subset of these indices k, we therefore have

∑

k∈J

µk(]bk,∞[) =
∑

k∈J

1√
2πvk

∫ ∞

bk

e−t2/2vkdt =
∑

k∈J

1√
2π

∫ ∞

akbk

e−s2/2ds = ∞.

Hence µ(B) ≤∏k∈J µk([−bk, bk]) = 0, i.e., we have verified the criterion for diffuseness given in 4.2(b).
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