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Abstract

We study negative definite functions on a Hilbert space H and use their properties to give a proof of the
Lévy—Khinchin formula for an infinitely divisible probability distribution on K.
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1. Introduction

An important branch of probability theory where Fourier analysis plays a major role is the theory of
convergence of suitably normalized sums of independent random variables. The study of the asymptotic
behaviour of such sums leads to infinitely divisible distributions and to their Lévy—Khinchin representa-
tions. These have originally been studied on Euclidean spaces (see Courrége [4]); further research was
then directed towards other structures, in particular there exists now a well-established theory on locally
compact groups and algebraic semigroups (see Berg and Forst [3], Berg, Christensen and Ressel [2]), and
Heyer [10] for an account in these frameworks).

In the last decades, through the influence of quantum physics, in particular quantum field theory, and
stochastic processes the infinite dimensional case has become more and more important, as the charac-
teristics of large scale systems are most clearly understood in the framework of an infinite dimensional
model. Hilbert space has traditionally been considered as an infinite dimensional extension of Euclidean
space appropriate for the solution to many problems (not the only one of course). It was therefore natural
to extend the Lévy—Khinchin formula to this situation. To my knowledge, the first proof of the Lévy-
Khinchin formula on Hilbert space is due to S. R. S. Varadhan [15] (see Parthasarathy [12]). His proof is
based on shift compactness and the concentration function. There is another more probabilistic proof by
Gihman and Skorohod [6]. The purpose of the present note is to clarify the role of negative definiteness
of the generating function of an infinitely divisible distribution in the Hilbert space context and to give
a proof of the formula that uses its properties. We shall not deal with more general situations here, in
particular we shall not consider infinitely divisible distributions on Banach spaces (see however Araujo
[1] and Linde [11] for an account).

I thank Prof. Dr. Gottlieb Leha for a number of discussions on the subject matter of paragraph 2.



2. S—topology, positive definite, and negative definite functions

2.1. In what follows, the symbols N, R, C denote the set of natural numbers, of real numbers and of
complex numbers, respectively; H denotes a real, separable Hilbert space with inner product (z,y) and
norm ||z|| = +/(z, ). The space H will be considered as a topological vector space in three different ways:
with the norm topology, the weak topology, and the S—topology (also called Hilbert—Schmidt topology).
A typical neighbourhood of 0 € H for the third—mentioned topology is the set

Vs :={y € H/|IV5| < 1} = {y € H/(y, Sy) < 1},

where S is a positive selfadjoint, nuclear operator on JH; that is, a positive selfadjoint, compact, linear
operator with a finite trace. (For details about compact operators see Edwards [5], Chapter 9.) Such
an operator is also called an S—operator. S is an S—operator if and only if /S is a positive selfadjoint
Hilbert—Schmidt operator. We will freely use terms like S—continuous, S—convergent, S—neighbourhood
etc.

2.2 PROPOSITION. On an infinite dimensional Hilbert space the S—topology lies strictly between the
strong and the weak topologies.

PROOF. The relationship between the strong and the S—topology is clear. Now let U be a weak
neighbourhood of 0 € H of the form

U={yeH/l(y2)| <1,..,[(,20) <1} (21,-.. 520 € H),

let E be the subspace of H spanned by z1,...,2,, and let Pg be the projection H — E. Since E is finite
dimensional, there exists § > 0 such that

{ye E/llyll <6} CU.
Then for all y € H such that (y, Pry) < 62 we have ||Pry|| < 6|| and hence Pgy € U. Therefore

(v, 26)| = |(Pry, k)| <1

for all k, that is, y € U. S := Pg/é? is an S—operator such that Vs C U. On the other hand, if S is an
S—operator such that (y, Sy) > 0 for all y € H \ {0} then ker S = {0} and the set {y € H/(y,Sy) < 1}
does not contain a weak neighbourhood.

2.3 REMARK. The S—topology and the weak topology coincide on bounded sets. Indeed, if S is an
S—operator then on any bounded set B C H the function

B—=R
y — (v, Sy)

is weakly continuous (this is even true for compact operators S). It follows that S—continuous functions
are weakly sequentially continuous.

2.4. The symbol B will stand for the o—algebra of Borel subsets of H and M, (B) is the convex cone
of bounded, positive measures on B. By M (B) we mean the convex subset of probability measures
(distributions) on B. The Dirac probability at the point z € H will be denoted by §,. The space M (B)
(and MY (B)) will be endowed with the topology of weak convergence, that is, the coarsest topology such
that all functions

u—>/}cfdu

are continuous, where f runs through the space Cy(H) of complex—valued, bounded, norm—continuous
functions on H. With this topology, M. (B) becomes a separable, completely metrizable topological
space (cf. Parthasarathy IL.6 [12]).



The convolution of two measures u, v € M, (B) is the Borel measure u * v defined in the usual way:

uxv(B):= /,u(B — z)v(dz).

Convolution makes M, (B) a metric, commutative semigroup; in particular convolution is a jointly weakly
continuous mapping M (B) x M4 (B) — M, (B) (see Linde [11]). The set M’ (B) is a weakly closed
subsemigroup of M (B) and compactness in the space M, (B) is well understood by Prokhorov’s now
classical theorem [13].

The Fourier transform of the measure p € ML (H) is the function fi : H — C defined by

Aly) = /H SN udn) (€ ).

As in the locally compact case, this Fourier transform is a useful tool for the characterization of measures
(uniqueness theorem), for establishing criteria of weak compactness in M (B), and for the construction
of measures (Minlos—Sazonov theorem).

2.5. We will need the following criterion for relative compactness in M, (B) (see Gihman—Skorohod
[6]). A subset M C M, (B) is weakly relatively compact, if and only if the set of its Fourier transforms
satisfies the two conditions

(i) sup,enr B(0) < 00;

ii) there exists a family (S, ,)(e > 0, u € M) of S—operators such that
i
(a) for some orthonormal basis (ey,) of H

lim sup Z (ek, Se,uer) =0
™ opeM =0,

for alle > 0, and
(B8) 1(0) — Refi(y) < €, whenever (y, S ,y) < 1.

2.6. A function ¢ : H — C is called positive definite, if for all choices y1, ...,y € H the matrix

(e(ye — ¥1))ka
is positive Hermitean. The important theorem of Minlos—Sazonov reads: A function ¢ : H — C is the
Fourier transform [ of some measure y € M (B) if and only if
(i) @ is positive definite and

(ii) ¢ is S—continuous (or Rey is S—continuous at 0 € H).

A function ¢ : H — C is called negative definite if for all choices of y1,...,y, € H the matrix

(W(ye) + (Y1) — Y (yk — wi))rka

is positive Hermitean. The real part Re of a negative definite function is also negative definite and
hence Re ¢ > 0. For further properties of negative definite functions see Berg and Forst [3]. The two most
important facts about negative definite functions are their algebraic relationship with positive definite
functions (Schoenberg’s theorem, see Berg and Forst [3]) and subadditivity of 1/[¢[, which implies the
quadratic growth property, crucial in the construction of a Lévy measure:

2.7 PROPOSITION. Let ¢ : H — C be a negative definite function, S—continuous at the origin and
vanishing there. Then, given € > 0, there exists an S—operator Se such that

W) <e+(y,Sy) (y€H).



ProoF. By subadditivity of /|| one obtains

[ Q2y)| < 4l¥()l (v € H).

Choose an S—operator such that | (y)| < € whenever (y, Sy) < 1. It is now possible to apply Parthasarathy
[12], p. 172 to obtain the desired estimate, but for the reader’s convenience we include here the (short)
argument. Let y € H be fixed. If (y,Sy) < 1, any S; will do. Otherwise, choose n = n(y) € N in such a
way that + < (27", 5(27"y)) < 1. We estimate

[(y)] = 92727 y)| < 4™(27"y)| < 47e < 4e(y, Sy),

and we may put S¢ := 4e8§.

3. Generating functions of infinitely divisible distributions
and their characterization and representation

3.1. A convolution semigroup of probability measures is a family (m;):~¢ of probability distributions
such that
Mg % Mg = Mgt

for all s,t > 0. (m) is called weakly continuous if () b 8o weakly. The mapping ¢ — 7; is then
oo

continuous. A measure 7 € ML (B) is called infinitely divisible if for any n € N there exists a measure
on € ML (B) such that o = 7 (nth root). Each member 7; of a semigroup of probability measures is
clearly infinitely divisible. The Fourier transform of an infinitely divisible measure 7 vanishes nowhere on
JH; see Guichardet [7], p. 57. By a standard argument of function theory there exists a unique function
¥ : H — C such that

(i) ¥(0)=0,

(ii) ¢ is continuous,

(iii) T = e ¥,
(see Linde [11]). The function ¢ is often called the generating function of the infinitely divisible prob-
ability measure 7. (This terminology seems to appear for the first time in Hazod [8] and Heyer [9] in
connection with locally compact groups.) The nth root o, is infinitely divisible and, by uniqueness of

%, its generating function is —t/n; in particular o, is unique. There is the following characterization of
generating functions.

3.2 THEOREM. (a) A function ¢ : H — C generates an infinitely divisible probability distribution if
and only if it has the following three properties:

(i) ¥(0) =0,
(ii) ¢ is S—continuous (or Rev) is S—continuous at 0 € H),

(iii) v is negative definite.

(b) In this case there exists a unique weakly continuous semigroup of probability measures m; such that

%t = €_t¢.

ProoF. If the function ¢ generates an infinitely divisible probability distribution m, then (i) is part
of the definition of ¢; moreover, this function is S—continuous since 7 is. As all the functions e~%/" are
transforms of measures and therefore positive definite assertion (iii) is satisfied by Schoenberg’s theorem.
On the other hand, if the function ¢ satisfies (i)—(iii), then the functions p; := e~*¥ are positive definite
(again by Schoenberg’s theorem) and S—continuous, so that there exists a family of measures 7, € M} (B)



such that ¢; = 7; (2.6). The semigroup property now follows from the equality ¢s¢; = ws4: and 2.5 in
combination with uniqueness of the Fourier transform may be applied to show weak continuity.

3.3 REMARK. A.V. Skorohod [14], p. 11 claims that characteristic functions are weakly continuous.
This claim is true in the sequential sense only. If S is a nondegenerate S—operator (that is, all eigenvalues
are strictly positive) then S is not weakly continuous (see the proof of 2.2). Hence the characteristic
function of the centered Gauss measure with covariance S is not weakly continuous.

3.4. A finite dimensional subspace V C H of dimension n will be identified with R™ via the isomor-
phism

n
R* -V (21,...,%,) — kaek
k=1

where (e1,...,ey,) is an orthonormal basis of ¥V with respect to the inner product of H. It is then clear
what Lebesgue measure on V' means and integrals fv dz make sense since these notions are independent
of the choice of the orthonormal basis. Note that

/ P ——
vV

Define the auxiliary function g : H — R by
g(z) = e lel*/4,

The function (1 — g) will serve as a density function. Any function that is bounded, positive outside
the origin, and behaves like c||z||> near the origin would be possible here, but the chosen function is the
handiest for the present purposes. A classical function is ||z||2/(1 + ||z||?). We will need the following

3.5 LEMMA. Let S be an S—operator. Then for all finite dimensional subspaces of V.C H of dimension
n we have

\ 1
7r_n/2/ e~ 1217 (2, 82)dz < ~trace S.
v 4

PROOF. Let Sy := Py SPy. Then Sy is a positive selfadjoint operator on V such that trace Sy < trace
S. Let (e1...,ey,) be an eigenbasis of Sy with eigenvalues Ay,..., )\, and let 2z, be the kth component
of a vector z with respect to this basis. We may compute

% / e 1217 (2, S2)dz =n—"/2 / e~ 127 (2, PSPy z)dz
14 14

n/2

The integral has the value %ﬂ' , whence the desired estimate.

3.6 REMARK. To my knowledge, the first proof of the Lévy—Khinchin representation in the case of
a Hilbert space was given by Varadhan [15] (see Parthasarathy [12]). His proof is analytic; it is based
on shift compactness and the concentration function. Other more probabilistic constructions of the Lévy
measure are now also available (see Gihman and Skorohod [6]). I shall give a proof here that exploits
the properties of the generating function stated in Theorem 3.2. The core of any proof of the Lévy-
Khinchin formula is the construction of the Lévy measure. This can be done by letting ¢ — 0 in the net
(1— g)m/t. In the infinite dimensional case also the approximation by finite dimensional subspaces plays
a role. Contrary to other proofs of the Lévy—Khinchin formula, we shall first let the parameter ¢ go to
zero and then go to the dimensional limit; this approach seems to give better insight into the difference
between the finite and the infinite dimensional cases.

3.7 THEOREM (Lévy-Khinchin—Varadhan). (a) A function ¢ : H — C generates an infinitely divisible
probability distribution if and only if it can be written as

W) = i)+ Sy = [ 7 1 i)l AEL (v e 50,

F0\{0} 1-g(z)



Here a € H, S is an S-operator and p € M, (H).
(b) The representation (a, S, u) of ¥ is unique.

ProoF. Concerning uniqueness of the representation we refer the reader to Gihman and Skorohod
[6], p- 395. In order to prove part (a) let us first suppose that ¢ : H — C generates the convolution
semigroup (m¢) of probability measures. Fix an ascending system V of finite dimensional subspaces of H
such that |JV is dense in H. For any subspace V € V we write

T,V = Pv(ﬂ't)

for the projection of m; onto V. The family (7 v )s>0 is a convolution semigroup of probabilities on H
for each V. Since the Fourier transform of the measure

(1-9) =L € Me(V)

is the function
e~ t(Y) _ o—td(y—2)

Yy — 7r_"/2/ e~ l=l® dz (yeV),
v t

Lévy’s continuity theorem applies to show that there exists a measure y € M (V) such that

v
(1-g)= 3 uv  weakly

and

Av(y) =72 /V I (ly - 2) - )de (V).

We consider uy also as a measure on B and apply 2.5 to show that the net (uy)vev is relatively compact
in M (B). First let S; be as in Proposition 2.7 for € = 1. We have

Ay (0) =n~"/2 / eI g (2)dz

Vv
<2 / e 141” (1 + (2, $12))dz
Vv

1
<1+ 1 trace S;

<o

for all V by Lemma 3.5; this is 2.5(i). Now note that Re too is negative definite. Applying again
Proposition 2.7, but this time to the function Re 1, we obtain an S—operator S, such that

(1) Ret(y) < e+ ey, Sey)

for all y € H. Since the function \/Re is subadditive and since Re ¢ is symmetric (see Berg and Forst
[3]) we have

VRe(y) — vVRe9(z) < v/Rey(y — z)

and likewise

VRe(2) — VRe(y) < vRet(y - 2)

that is,

lvRe9(2) — v/Red(y)| < v/Rey(y — 2),
whence
(2) Ret(y) + Rey(2) — Rey(y — 2) < 24/Revp(y)y/Re y(2)



for all y, z € H. We may now use (2), (1), and 3.5 to compute for y € H

v (0) = Refiv(s) =n /2 [ e " [Rey(2) + Re w(Pry) ~ Re(Pyy — 2)ldz

52%‘"/2\/Re¢(PVy)/ e_”z”2\/Re¢(z)dz
v
=27""/2,/Re ¢ (Pyy) </ . +/ . )e_||z||2\/Re¢(z)dz

Red <1 Red>1

<2y/Re y(Pry) (1+7r_"/2 / e_”z”2Re¢(z)dz>
14

<2/e+/1+ (Pyy, S Pyy) (1+7r_"/2 / e_||z||2(1+(z,5'1z))dz>
14

1
<2ve/1+ (Pyy,S.Pyy)(2 + Ztrace S1).

The conditions (a) and (8) of 2.5 can now be verified with S, v := Py S.Py. This finishes the proof of
relative compactness of the net (uy). As in the proof of the classical Lévy—Khinchin formula we now
write for y € V

M :/ [emi(@) — 1]7”7%(‘1‘”) —i(arv,y) — (¥, Se.vy)
%

1— g(x) t

with a vector a;vy € V and a positive selfadjoint operator Sy on V. As ¢ — 0, the left-hand side
converges to —¢(y) and by weak convergence the integral converges to

—i . 1 pv (dz)
e @Y 1 4 g(a)(i(z,y) + =(2,y)?)] ——=.
/] o(a)(ie,) + (oL
Hence ias v — iay and Sty — Sy, the former being purely imaginary and the latter real. Extending to
y € H we have obtained the (essentially classical) formula

Y(Pvy) =ilav,y) + (v, PrSv Pvy)
pv (dz)

. 1
— [ 7Y —1 4 g(a)(i(z, ¥) + = (2,y)?)] rr.
/! (@) (i) + 5@ n I
By relative compactness we may assume that the net (uy)y converges weakly to a Borel measure
u € My (B). Then the net ¢(Pyy) converges to ¢(y) and the integral converges, the integrand be-
ing continuous and bounded. It follows that the nets i(ay,y) and (y, Py Sy Pyy) both converge along V.
By the uniform boundedness principle there exists a vector a € H such that

N / [e=i @) — 1 + g(z)(i(z, y) + % (2, y)?] (1- g(m))ﬂt,v(dﬂﬂ)
3

i(a’V7y) - i(a’7 y) (y € J-C)

A similar argument can be applied to the quadratic terms (y, Py Sy Pyy). By polarization we first obtain
pointwise convergence of the symmetric bilinear forms (y,z) — (y, PvSvPyz). Applying the uniform
boundedness principle to the net (Py Sy Py z)y we see that for any z € H there exists a vector S’z € H
such that

(v, PrSvPvz) = (y,5'2)  (y€H).

Moreover, S’ : H — H is a symmetric linear map. We obtain the representation

Y(y) =i(a,y) + (v,5'y)

—i(z,y y 1 2 M(dm)
= Y 1 8@ ) + g
Since (dz)
2 H\GT
y — %\{0}9(»’”)(53711) - 9@



is a continuous quadratic form, the above representation can also be written as

: —i(z : dz
V) =i0,) + @ Sy) = [ — 1 igle) a2
F0\{0} - g(z)
with a new symmetric linear map S : H — H. The relation
. Red(ky)
(y,Sy) = lim —7

shows that S is positive. In order to finish this part of the proof it remains to show that S is nuclear.
Indeed, from the representation we see 0 < (y, Sy) < Re(y), hence, by S—continuity of ¢ and by the
equality ¢(0) = 0, the mapping y — (y, Sy) is S—continuous at 0 € H. Consequently there exists an
S—operator S; such that
(y,Sy) <1 whenever (y,S1y) <1
<

Then by bilinearity and positivity it is clear that (y, Sy)
Finally note that the functions

(y,S1y) for all y € H; hence S is nuclear.

y — —i(a,y), y — (y,8y),
and

i) _ . p(dx)
y— o) e 1+ig(@)(= T 75 (@)

satisfy the conditions (i)—(iii) of Theorem 3.2. This is shown as in the classical case (see Courrége [4]).

4. Examples

We study here some semigroups of probabilities of RV that are supported by 12 = {z € RY/||z||? :=
> af < oo}

4.1 The translation semigroup. Let a = (ax)ren be a sequence of real numbers. Of course, the product
measures m; = QkeNOta,, (t > 0) are concentrated on 2 if and only if a € I2. (7;) is then a convolution
semigroup on /2 and its generating function is

P(y) = —i(a,y).
4.2 The Gaussian semigroup. Let
1
l/u(dd}) = \/2——€_w2/2ud$
U

be the centered normal distribution on R with variance v > 0 and let v = (v;) be a sequence of real
numbers > 0. We consider the product probability measure m; = ®genViv,, (t > 0) on RY. It is well
known that the measures 7; are concentrated on {2 if and only if Y ken Uk < 00, that is, if and only if the
matrix

induces a nuclear operator on [2, that is, (v;) € I'. Indeed, denoting for 8 > 0 by hg : RY — R the
function defined by

ha(z) = e Pl=I®,
we have hg 1 1,2 as § ] 0. We compute

1 2 2
hgdmy = / e PR —T/ 20 gy
/ pE 1;[ V2ru Jr k
1/2
- (11 1 /
B 1 4 208vy, '

k




This quantity tends to 1 as 8 | 0 if and only if > v, < co. Since
;r\t — e_% Evkyi7

the generating function is given by %, (y) = 1(y, Sy).

4.3 The Cauchy semigroup. Let
(dz) := %
e " on(z?2 + a?)
be the centered Cauchy distribution on R with parameter o > 0. Let p = (pi) be a sequence of real
numbers > 0 and consider the product measure m; := ®g7yz,, on RY. Using here the function kg : RV 5 R
defined by
1
kglz) = || ———= >0

we obtain [ kgdmy = [[,, 1/(1 + +/Bpx). Letting B | 0 we see that 7, is supported by I? if and only
if 3 pr < 0. Since Y,(u) = e~?I¥, u € R, the generating function ¢, is given by ¥,(y) = (o, |yl),
y € %, where we have put |y| = (|yol,|y1],...). Although the function 1, is well defined for p € {2, it is
S—continuous if and only if p € I*. Indeed, if p € [* then

(o, 1o1)? = (3 Vow/Balue])
< (Z Pk) (Z Pkyi)

=(y, Sy)
where
po 0
S= (Z Pk) P1
0

Conversely, if 4 is S—continuous then it generates an infinitely divisible probability distribution 7 on I2.
The measure in RY induced by the injection > — RY must be a product of Cauchy distributions and
therefore, by what was shown above, > p, < 00.
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