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1. Introduction

(1.1) Background. Riesz products are very useful for the construction of singular measures on compact,
Abelian groups. Under some circumstances, two Riesz products are either equivalent or singular in the
measure–theoretic sense. Exact knowledge of these circumstances has been of major interest ever since
the 1930s, when Riesz’s famous example [8] was recognized as a fertile source of examples of singular
continuous measures. Zygmund [11] showed that any Riesz product over a Hadamard dissociate subset of
N is either a square integrable function or singular with respect to Lebesgue measure. Hewitt–Zuckerman
[4] generalized these products to all compact, Abelian groups, introducing the notion of a dissociate subset.
They extended Zygmund’s result in certain cases. The next major step was taken by Brown–Moran [3]
and Peyrière [6], [7], who showed that two Riesz products

µa =
∏

n≥0

(1 + anχn + anχn) and µb =
∏

n≥0

(1 + bnχn + bnχn)

are mutually singular if

(α)
∑
n≥0 |an − bn|2 = ∞.

The author [9] has improved another result of Brown–Moran [3] by showing that µa and µb are equivalent
if

(β)
∑
n≥0 |an − bn|2/(1 − |an + bn|) <∞.

He also extended these results to more general infinite products of functions. It follows from [3], proposi-
tion 2, that (α) and (β) are essentially the best possible conditions using the coefficients an and bn alone.
However, it is still not known whether two Riesz products on the circle over a general dissociate set are
either equivalent or mutually singular.

We consider here dichotomy theorems for Riesz products and generalized Riesz products possessing
a factorization property first considered by Peyrière [6]. As an application we give an affirmative answer
to the question mentioned above in certain cases including the case of two Riesz products on the circle
over a dissociate set of the form {rk | k ≥ 0} (r ≥ 3). We also give necessary and sufficient conditions
for the occurrence of either case.

The results presented here are based on the author’s extension [10] of Kakutani’s dichotomy theorem
[5]. This extension uses a 0-1 law as a major tool to establish dichotomy and to obtain necessary and
sufficient criteria for absolute continuity and mutual orthogonality. Consequently, the main part of the
present communication consists in establishing 0–1 laws for infinite products of functions (Section 3).
The 0–1 laws used here are similar to the ergodic assumption appearing in [2] and [1], but do not require
the countability condition occurring in their definition of ergodicity.

(1.2) Notation and terminology. G will be a compact, Abelian group, B the σ–algebra of its Borel
sets, and λ normalized Haar measure on G. X denotes the (discrete) character group of G. M

+
1 (G) will

be the set of all probability measures on (G,B), endowed with its weak* topology. C+
1 (G) stands for the
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space of all continuous functions ≥ 0 on G with λ–integral 1. A+
1 (G) denotes the subspace of all functions

in C+
1 (G) with absolutely summable Fourier series. For f ∈ A+

1 (G), we will write

f ′ := |f̂ |∨(=
∑

χ∈X

|f̂(χ) | χ).

I+
1 (G) means the set of all elements f ∈ A+

1 (G) such that f̂ ≥ 0. Denoting by P+
1 (G) the set of all

functions in C+
1 (G) such that f̂ ≥ 0, we obtain the inclusions

P+
1 (G) ⊆ I+

1 (G) ⊆ A+
1 (G) ⊆ C+

1 (G).

Let (Tn)n≥0 be a sequence of symmetric subsets of X containing the character 1. A sequence (χn)n≥0

such that χn ∈ Tn for all n and χn = 1 for almost all n will be called a (Tn)–word (or simply word, if no
confusion seems possible). For m ≥ 0, Ωm will stand for the set of all words of length m, i.e. all words of
the form (χ0, χ1, . . . , χm−1, 1, 1, . . . ). Given χ ∈ X, Ωm(χ) will stand for the set of all words in Ωm such
that

m−1∏

k=0

χk = χ

(the words in Ωm that represent χ), and Ω(χ) will mean the set of all words that represent χ. The
sequence (Tn) will be called 1–dissociate, if the only word representing 1 is the trivial word (1, 1, . . . ) and
it will be called 2–dissociate, if each character in X has at most one representation as a word. A sequence
(χn)n≥0 ⊆ X \ {1} will be called 1–dissociate (dissociate), if the sequence ({1, χn, χ̄n})n≥0 is 1–dissociate
(2–dissociate).

Now let (Tn) be 1–dissociate and let (fn) be a sequence in C+
1 (G) such that

supp f̂n := {χ ∈ X | f̂n(χ) 6= 0} ⊆ Tn

for all n. We will write

fm,n :=

n−1∏

k=m

fk.

1–dissociativity of (Tn) implies that
∫
fm,ndλ = 1 for all m,n such that m ≤ n; any weak* cluster point

of the sequence (f0,nλ) will be called a generalized Riesz product generated by the sequence (fn). If (fn) is
a sequence in I+

1 (G), then the weak* limit exists (see [9]). Let µ be a generalized Riesz product generated
by (fn) and let m ≥ 0. Then any cluster point ρ of the net (fm,nτλ)τ , where (nτ )τ is any subset of N

such that
µ = lim

τ
f0,nτλ,

will be called a tail measure for µ and m. We have µ = f0,mρ.

If fn has the form fn = 1 + anχn + ānχ̄n for all n, where (χn) is a 1–dissociate sequence and the
an’s are complex numbers of modulus ≤ 1

2 , then µ is called a Riesz product. Since, in this case, we have

fn ∈ I+
1 (G), the sequence (fn) generates exactly one Riesz product µ = limn f0,nλ and tail measures are

uniquely defined.

Given a probability space (Ω,F, P ) a sub–σ–algebra T of F, and a function f ∈ L1(P ), the symbol
EP (f | T) denotes the conditional expectation of f with respect to T and P . P will be called trivial on
a sub–σ–algebra T ⊆ F, if P (T ) = 0 or 1 for all T ∈ T.

2. A previous result

In [10], theorem 7.7, we extended Kakutani’s dichotomy theorem [5] on product measures to a non–
independent case. The following theorem is a specialization of this result and is the basis for our main
dichotomy theorems (4.2 and 4.4) for Riesz products. Let (Tn) be a decreasing sequence of sub–σ–algebras
of B generated by continuous functions on G and let T∞ :=

⋂
n≥0 Tn.

(2.1) Theorem. Let (fn) and (gn) be two sequences in C+
1 (G) adapted to (Tn) and let µf and µg be

generalized Riesz products generated by (fn) and (gn), respectively. Suppose that
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(α) µg is trivial on T∞,

(β) Eλ(fn | Tn+1) = 1 = Eλ(gn | Tn+1) for all n ≥ 0,

(γ) σ{g0,n = 0} = 0 for all n ≥ 0 and all generalized Riesz products generated by (gk)k≥n, and that

(δ) there exist two subnets (mσ) and (nτ ) of N such that limτ g0,nτλ = µg and

lim
σ,τ

f0,mσgmσ,nτλ = µf .

(a) The following statements are equivalent.

(i) µf is absolutely continuous with respect to µg;

(ii) µf and µg are not mutually singular;

(iii) there is a ε > 0 such that, for all n ≥ 0, we have
∫
(f0,n/g0,n)

1

2 dµg ≥ ε;

(iv) limm,n→∞

∫
(fm,n/gm,n)

1

2 dµg = 1.

(b) If the equivalent statements (i)–(iv) hold, then the sequence (f0,n/g0,n) converges in L1(µg) to the
Radon–Nikodym density dµf/dµg.

3. Zero–one laws

In order to apply Theorem (2.1) to Riesz products and generalized Riesz products we need a 0–1 law for
these measures. We first give a simple but general 0–1 law that extends Kolmogorov’s 0–1 law in the
product case.

(3.1) Lemma. Let (Ω,F, P ) be a probability space, let T be a sub–σ–algebra of F, and let C be a total
subset of L2(P ). The following two statements are equivalent.

(a) P is trivial on T;

(b)
∫
ψEP (ψ̄ | T)dP ≤ |

∫
ψdP |2 for all ψ ∈ C.

Proof. We only have to show that (b) implies (a). By the Cauchy–Schwarz inequality, we have

|

∫
1EP (ψ | T)dP |2 ≤

∫
EP (ψ | T)EP (ψ̄ | T)dP

=

∫
ψEP (ψ̄ | T)dP. (1)

It follows from (b) that equality holds in (1). Thus EP (ψ | T) is constant P–a.e. for all ψ ∈ C. Since C

is total in L2(P ), we see that EP (f | T) is constant P–a.e. for all f ∈ L2(P ), i.e., P is trivial on T.

We will next apply Lemma (3.1) to Riesz products and generalized Riesz products. To do this, we
need a definition that goes back to Peyrière [6] in the case of dissociate sets.

(3.2) Definition. Let (Tn)n≥0 be a sequence of symmetric subsets of X such that 1 ∈ Tn for all n ≥ 0.
We will say that the sequence (Tn) is factorizing, if

(i) Tn ∩ 〈
⋃
m>n Tm〉 = {1} for all n ≥ 0.

(b) We will say that a sequence (χn)n≥0 in X is factorizing, if the sequence of subsets ({1, χn, χ̄n})n≥0

is factorizing. (The symbol 〈Y〉 indicates the subgroup generated by a subset Y ⊆ X.)

(3.3) Examples. (a) Let (Gn)n≥0 be a sequence of compact Abelian groups and let

G =
∏

n≥0

Gn
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be the product group. Let Xn be the dual group of Gn. Then Tn := Xn can be considered as a subgroup
of the dual group X =

⊕
n≥0 Xn of G. The sequence (Tn) is factorizing.

(b) The archetype of a factorizing sequence (rn) in Z is given by

rn =

n∏

k=1

lk,

where the lk’s are integers ≥ 2.

We now introduce some notations.

(3.4) Notation and terminology. In what follows, (Tn) will denote a factorizing sequence of symmetric
subsets of X such that 1 ∈ Tn for all n. We will write T

n for the subgroup 〈
⋃

m≥n Tm〉 of X and Hn for
the annihilator A(G,Tn) of T

n in G (n ≥ 0). (Hn) is an increasing sequence of compact subgroups of G.
λn will denote Haar measure on Hn. In the obvious way, λn will also be considered as a Borel measure
on G. T

n
stands for the sub–σ–algebra of B consisting of all Hn–invariant Borel sets in G, Tn ⊆ T

n

stands for the sub–σ–algebra of B generated by T
n, and T

∞
and T∞ denote the σ–algebras

⋂
n≥0 T

n
and⋂

n≥0 Tn, respectively.

(3.5) Lemma. (a) Let (χn) be a word such that
∏m−1
k≥0 χk ∈ T

m for an m ≥ 0. Then χk = 1 for
k < m.

(b) (Tn) is 1–dissociate.

Proof. (a) Suppose that there exists an index k < m such that χk 6= 1. Let l be the least among these
indices. Then we have ∏

k≥l

χk ∈ T
m and χl ∈

∏

k>l

χ̄kT
m ⊆ T

l+1.

This contradicts the factorization property. Part (b) is an immediate consequence of (a).

(3.6) Explanation. Let (gn) be a sequence in C+
1 (G) such that supp ĝn ⊆ Tn for all n ≥ 0. Let µ be a

generalized Riesz product generated by (gn) (see (1.2) and (3.5(b))). The following lemma says that tail
measures for µ are uniquely defined and gives a representation of tail measures.

(3.7) Lemma. Let m be an integer ≥ 0.

(a) There is only one tail measure ρm for µ and m.

(b) ρm = µ ∗ λm.

Proof. Note that ĝ0,m(χ) = 0, if χ is not represented by a word in Ωm. We thus obtain by (3.5(a)).

ĝ0,m(χ)λ̂m(χ) = ĝ0,m(χ)1Tm(χ) =

{
1 χ = 1,

0 χ 6= 1,
(1)

i.e.
g0,m ∗ λm = 1. (2)

Since the functions gl such that l ≥ m are Hm–invariant, (2) implies for n ≥ m and x ∈ G

g0,n ∗ λn(x) =

∫
g0,m(x− y)gm,n(x− y)λm(dy),

=gm,n(x)(g0,m ∗ λm)(x),

=gm,n(x).

If µ = limτ g0,nτλ, then (3) shows that

lim
τ
gm,nτλ = lim

τ
g0,nτ ∗ λm = µ ∗ λm.

This proves the lemma.

We now obtain a representation of the conditional expectation occurring in (3.1(b)).

(3.8) Lemma. For any bounded, Borel–measurable function h on G and any m ≥ 0 we have
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(i) Eµ(h | T
m

) = (hg0,m) ∗ λm.

Proof. We use Lemma (3.8) to compute for E ∈ T
m

∫
1Ehdµ =

∫ ∫
1E(x+ y)h(x+ y)g0,m(x+ y)µ(dx)λm(dy)

=

∫
1E(x)[

∫
h(x+ y)g0,m(x+ y)λm(dy)]µ(dx)

=

∫
1E [(hg0,m) ∗ λm]dµ.

Since (hg0,m) ∗ λm is T
m

–measurable, the lemma follows.

We finally obtain a 0–1 law for generalized Riesz products in the case of factorization.

(3.9) Proposition. Let (gn) be a sequence in C+
1 (G) such that supp ĝn ⊆ Tn for all n and let

µ = lim
τ∈D

g0,nτλ

be a generalized Riesz product generated by (gn). The following two statements are equivalent.

(a) µ is trivial on T
∞

;

(b) limσ∈D limτ∈D

∑
χ∈ψTnσ

χ6=ψ

ĝ0,nσ(χ)ĝ0,nτ (χ̄) = 0 for all ψ ∈ X.

Proof. We will show that (b) is equivalent to (3.1(b)) for (Ω,F, P ) = (G,B, µ), T = T
∞

, and C = X.
By (3.8), we have

∫
ψEµ(ψ̄ | T

∞
)dµ =lim

m

∫
ψEµ(ψ̄ | T

m
)dµ

=lim
m

∫
ψ[ψ̄g0,m ∗ λm]dµ

=lim
m

lim
τ

∫
ψ[ψ̄g0,m ∗ λm]g0,nτ dλ. (1)

Using the identity
[ψ̄g0,m ∗ λm]∧(χ) = 1Tm(χ)ĝ0,m(ψχ), (2)

we obtain
∫
ψ[ψ̄g0,m ∗ λm]g0,nτ dλ =

∑

χ∈Tm

ĝ0,m(ψχ)

∫
ψχg0,nτ dλ

=
∑

χ∈Tm

ĝ0,m(ψχ)ĝ0,nτ (ψχ). (3)

It follows from (1) and (3) that

∫
ψEµ(ψ̄ | T

∞
)dµ = lim

σ∈D
lim
τ∈D

∑

χ∈ψTnσ

ĝ0,nσ (χ)ĝ0,nτ (χ̄)

=µ̂(ψ)µ̂(ψ̄) + lim
σ∈D

lim
τ∈D

∑

χ∈ψTnσ

χ6=ψ

ĝ0,nσ(χ)ĝ0,nτ (χ̄). (4)

Since (3.1(b)) in the present case is equivalent to

∫
ψEµ(ψ̄ | T

∞) = µ̂(ψ)µ̂(ψ̄) (5)

by the Cauchy–Schwarz inequality, (4) shows that (3.1(b)) is equivalent to (b).
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(3.10) Remark. If (Tn) is 2–dissociate (see (1.2)) as well as factorizing (3.9(b)) can be rewritten in a
simpler form. In this case, we have for m ≤ n and any χ ∈ X

ĝ0,m(χ)ĝ0,n(χ̄) = |ĝ0,m(χ)|2

(consider the two cases Ωm(χ) = ∅ and Ωm(χ) 6= ∅), and Statement (3.9(b)) is thus equivalent to the
statement

(α) lim
m

∑
χ∈ψTm

χ6=ψ

|ĝ0,m(χ)|2 = 0 for all ψ ∈ X.

We mention two corollaries of Proposition (3.9). For the first corollary note that a sequence (gn) ⊆
I+

1 (G) (see (1.2)) such that supp ĝn ⊆ Tn (n ≥ 0) generates exactly one generalized Riesz product
µ = lim

n
g0,nλ (see [9]).

(3.11) Corollary. Let (gn) be a sequence in I+
1 (G) such that supp ĝn ⊆ Tn for all n and let µ be

the generalized Riesz product generated by (gn). Suppose that

(α)
⋂
m≥0 T

m = {1} and that

(β) µ̂ vanishes at infinity.

Then µ is trivial on T
∞

.

Proof. Let µ′ be the generalized Riesz product generated by the sequence (g′n) (see (1.2)). We put

g′0,n :=
m−1∏

k=0

g′k.

By Lemma (3.8) we have for all m ≥ 0 and all ψ ∈ X (see also (3.9(2)))

∑

χ∈ψTm

|ĝ0,m(χ)| ≤
∑

χ∈ψTm

ĝ′0,m(χ)

=
[
(ψ̄g′0,m) ∗ λm

]
(0)

=Eµ′(ψ̄ | T
m

)

≤1. (1)

Since ĝ0,m ∈ l1(X) and since the sequence (ĝ0,n)n converges boundedly to µ̂, we have for any m ≥ 0

lim
n

∑

χ∈ψTm

χ6=ψ

ĝ0,m(χ)ĝ0,n(χ̄) =
∑

χ∈ψTm

χ6=ψ

ĝ0,m(χ)µ̂(χ̄). (2)

Condition (3.9(b)) now follows from (2), (1), (α), and (β).

The proof of the following corollary uses a refinement of an argument appearing in Brown [1], p. 235.
|E| stands for the cardinal number of a (finite) set E.

(3.12) Corollary. Let (gn) be a sequence in C+
1 (G) such that supp ĝn ⊆ Tn for all n and let µ be a

generalized Riesz product generated by (gn). Suppose that

(α)
⋂
m≥0 T

m = {1},

(β) sup |{(χk) ∈ Ωm | ψ 6=
m−1∏
k=0

χk ∈ ψT
m}| <∞

for all ψ ∈ X, and that

(γ) there is a constant γ < 1 such that ‖ĝn − 1‖∞ ≤ γ for almost all n.
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Then µ is trivial on T
∞

.

Proof. Given a character ψ, we define

Λm :=

{
(χk) ∈ Ωm | ψ 6=

m−1∏

k=0

χk ∈ ψT
m

}

and
lm := min

(χk)∈Λm
|{k | χk 6= 1}| (m ≥ 1).

We will show that
lim
m→∞

lm = ∞. (1)

Let m and n be two integers such that 1 ≤ m ≤ n and let (χ0, . . . , χn−1, 1, 1, . . . ) ∈ Λn. We then have

m−1∏

k=0

χk =
∏

k≥0

χk
∏

k≥m

χ̄k ∈ ψT
n
T
m = ψT

m. (2)

If
∏m−1
k=0 χk were equal to ψ, we would have

ψ
∏

k≥m

χk ∈ ψT
n

and Lemma (3.5(a)) would imply ∏

k≥m

χk = 1,

contrary to ∏

k≥0

χk 6= ψ.

Thus we have
m−1∏

k=0

χk 6= ψ

and (2) implies that (χ0, . . . , χm−1, 1, 1, . . . ) ∈ Λn.

Given an integer m ≥ 1, Assumptions (α) and (β) together imply that there exists an integer n > m
such that Λm ∩ Λn = ∅. The reasoning above now shows that ln > lm, i.e. (1) holds.

Let cψ be the supremum in (β). Using (β) and (γ), we may estimate as follows.

|
∑

χ∈ψTm

χ6=ψ

ĝ0,m(χ)ĝ0,n(χ̄)| ≤
∑

χ∈ψTm

χ6=ψ

|ĝ0,m(χ)|

=
∑

χ∈ψTm

χ6=ψ

∣∣∣∣∣∣

∑

(χk)∈Ωm(χ)

m−1∏

k=0

ĝk(χk)

∣∣∣∣∣∣

≤
∑

(χk)∈Λm

∣∣∣∣∣

m−1∏

k=0

ĝk(χk)

∣∣∣∣∣

≤
∑

(χk)∈Λm

γlm

≤cψγ
lm . (3)

Condition (3.9(b)) now follows from (3) and (1).
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4. Dichotomy of Riesz products

Theorem (2.1) together with Proposition (3.9) and its corollaries give rise to several similar dichotomy
theorems for Riesz products and generalized Riesz products. We will here state two sample results. We
first give a sufficient condition for Assmption (2.1(δ)).

(4.1) Lemma. Let (Tn) be a 1–dissociate sequence of symmetric subsets of X and let (fn) and (gn)

be two sequences in I+
1 (G) such that supp f̂n ⊆ Tn and supp ĝn ⊆ Tn for all n. Let µf and µg be the

generalized Riesz products generated by (fn) and (gn), respectively. Then limm,n f0,mgm,nλ = µf .

Proof. Let χ ∈ X. By [9], (3.3), the family
( ∏

k≥0

f̂k(χk)
)
(χk)∈Ω(χ)

is absolutely summable and

µ̂f (χ) =
∑

(χk)∈Ω(χ)

∏

k≥0

f̂k(χk).

The lemma now follows from the equality

(f0,mgm,n)
∧(χ) =

∑

(χk)∈Ωn(χ)

m−1∏

k=0

f̂k(χk)
n−1∏

k=m

ĝk(χk).

We next give a first dichotomy theorem for generalized Riesz products. Notation is as in (3.4).

(4.2) Theorem. Let (Tn) be a factorizing sequence of symmetric subsets of X containing the character

1 and let (fn) and (gn) be two sequences in I+
1 (G) such that supp f̂n ⊆ Tn and supp ĝn ⊆ Tn for all n.

Let µf and µg be the generalized Riesz products generated by (fn) and (gn), respectively. Suppose that

(α)
⋂
m≥0 T

m = {1},

(β) µ̂g vanishes at infinity, and that

(γ) the functions gn are nowhere zero.

(a) The following statements are equivalent.

(i) µf is absolutely continuous with respect to µg;

(ii) µf and µg are not mutually singular;

(iii) there is an ε > 0 such that, for all n ≥ 0, we have
∫
(f0,n/g0,n)

1

2 dµg ≥ ε;

(iv) limm,n→∞

∫
(fm,n/gm,n)

1

2 dµg = 1.

(b) If the equivalent statements (i)–(iv) hold, then the sequence (f0,n/g0,n) converges in L1(µg) to the
Radon–Nikodym density dµf/dµg.

Proof. Since T∞ ⊆ T
∞

, (2.1(α)) follows from Corollary (3.11), α, and β. By Lemma (3.8) and by

(3.7(2)), we have Eλ(fn | T
n+1

) = fn ∗ λn+1 = 1 and similarly

Eλ(gn | T
n+1

) = 1.

Thus (2.1(β)) is satisfied. Since (2.1(δ)) is satisfied by Lemma (4.1), the theorem follows from Theorem
(2.1).

(4.3) Explanation. Theorem (4.2) has only little interest in the case of Riesz products over a dissociate
set. In this case, Assumptions (4.2(β)) and (4.2(γ)) imply infn,x gn(x) > 0, and the Brown–Moran–
Peyrière dichotomy theorem (see (1.1)) applies without assuming factorization. Using Corollary (3.12)
we, however, obtain a theorem that gives new information even in the classical case of Riesz products
over (4k)k≥0.

(4.4) Theorem. Let (Tn) be a factorizing sequence of symmetric subsets of X containing the character

1 and let (fn) and (gn) be two sequences in I+
1 (G) such that supp f̂n ⊆ Tn and supp ĝn ⊆ Tn for all n.

Let µf and µg be the generalized Riesz products generated by (fn) and (gn), respectively. Suppose that
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(α)
⋂
m≥0 T

m = {1},

(β) supm≥1

∣∣∣
{
(χk) ∈ Ωm | ψ 6=

∏m−1
k=0 χk ∈ ψT

m
}∣∣∣ <∞ for all ψ ∈ X,

(γ) there is a constant γ < 1 such that ‖ĝn − 1‖∞ ≤ γ for almost all n, and that

(δ) the functions gn are nowhere zero.

Then Statements (4.2(a)) and (4.2(b)) hold.

Proof. As in the proof of (4.2), (2.1(β)) follows from (3.8) and (3.7(2)). The theorem now follows
from (2.1), (3.12), and Lemma (4.1).

(4.5) Illustrations. (a) Let (rn) be as in (3.3(b)) and let

µa :=
∏

n≥0

(1 + an exp(2πirnt) + ān exp(−2πirnt)),

µb :=
∏

n≥0

(1 + bn exp(2πirnt) + b̄n exp(−2πirnt)) (0 ≤ t < 1)

be two Riesz products over (rn), where (an) and (bn) are sequences of complex numbers of modulus < 1
2 .

Then Theorem (4.4) says that µa is equivalent to µb or these two measures are mutually singular and
give necessary and sufficient conditions for the occurrence of both cases. To show (4.4(β)) note that

m−1∑

k=0

rk ≤
m−1∑

k=0

(rk+1 − rk) < rm,

so that the supremum is at most 2. This result is also a sharpening of Peyrière’s result [7] on Riesz
products over the 1–dissociate sequence (2k)k≥0.

(b) Let λ be Lebesgue measure on [0, 1] and let r1 := sgn sin 2πx (0 ≤ x ≤ 1) be the first Rademacher
function. It is plain that µf := λ and µg := (1 + r1)λ are Riesz products on [0, 1] (identified with the
Cantor group {0, 1}N in the usual way). Since µf is neither absolutely continuous nor singular with respect
to µg , this example shows that Assumptions (4.2(γ)) and (4.4(δ)) may not be omitted. In some cases,
however, these assumptions may be relaxed. Suppose that the sequence (Tn) is 2–dissociate (see(1.2)) as
well as factorizing and replace (4.4(γ)) by the stronger condition

(α) there exist two constants p ≥ 1 and K < 2 such that ‖ĝn‖pp ≤ K almost all n. Satz (5.3) in [9]
then asserts that µg and all its tail measures are continuous. Hence Condition (2.1(γ)) is satisfied if the
sets {gn = 0} are countable, i.e. Theorem (4.4) remains true in this case. In particular, we have

(4.6) Proposition. Any two Riesz products on T over a dissociate set of the form {rn | n ≥ 0} (r ≥ 3)
are either equivalent or mutually singular and the criteria for absolute continuity given in (4.2) are valid.
In this case the ratios (f0,n/g0,n) converge in L1(µb) to the Radon–Nikodym derivative (dµa/dµb).
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