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1 Introduction

(1.1) Background. The background for the present communication is Kakutani’s famous dichotomy
theorem [10], viz.: if (Ωn, Fn) is a sequence of measurable spaces and Pn and Qn are probability measures
on (Ωn, Fn) such that Qn is absolutely continuous with respect to Pn for all n, then either the product
measure ⊗Qn is absolutely continuous with respect to the product measure ⊗Pn, or else these two
measures are mutually singular. The first case occurs if and only if

∏

n

∫

(dQn/dPn)1/2dPn > 0.

It is interesting to ask, and for certain applications useful to know, whether the strong indepen-
dence assumptions underlying Kakutani’s theorem can be weakened. An indication that this is possible
is provided by the Brown–Moran–Peyrière dichotomy theorem for Riesz products, [4], [12] and the au-
thor’s generalization [14] of this theorem. In these papers, independence is replaced by group–theoretic
dissociativity as introduced by Hewitt–Zuckerman [7]; see also [6]. Other results of this genre are the
Jessen–Wintner purity law [9] (see also [19], p. 89 and [17], p. 98), its generalizations by Brown–Moran
[3] and Kanter [11], and the results on extremal measures in Skorochod [16], §23. These theorems use
ergodicity instead of independence.

The Brown–Moran–Peyrière theorem is proved by presenting a sufficient condition for equivalence
and other condition for mutual singularity. If the set of Riesz products is suitably restricted, the criteria
become complementary, thus yielding a dichotomy theorem for this set of measures. In contrast to this,
the other theorems mentioned above are intrinsic dichotomy theorems, their proofs making essential use
of 0–1 laws.

Brown [2] showed that certain Riesz products are ergodic. On the other hand it is well known that
the dichotomy behavior of infinite products of measures can be derived from Kolmogorov’s 0–1 law. As
infinite products of measures as well as Riesz products are infinite products of functions in the sense of
(2.4), it is natural to ask if one can find a dichotomy theorem for infinite products of functions, using 0–1
laws. We here give an affirmative answer to this question. We will deal with pure dichotomy statements
as well as with necessary and sufficient conditions for the occurence of both cases. Some related topics
are also taken up.

Kakutani’s theorem and other related theorems, such as the Feldman–Hajek dichotomy theorem for
Gaussian measures (see e.g. [16]) are proved by studying certain martingales arising from the projective
system of the finite dimensional distributions of the measures. This method does not apply in our case
of infinite products of functions since they are not projective limits in general. We have recourse to a
different method using tail properties of infinite products of functions.

Most of the material presented here is couched in terms of infinite products of continuous functions
on a compact space. It is possible to generalize almost all the results to the nontopological case. A
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discussion of this point is given in (7.8) and a sample theorem is stated in (7.9). This theorem contains
Kakutani’s theorem as a special case.

Applications, in particular to Riesz products and generalized Riesz products, will be given in a forth-
coming paper [15].

The author thanks Prof. Robert Blumenthal for stimulating conversations and also for Counterex-
ample (2.5). He also thanks Prof. K. Krickeberg for a number of useful comments.

(1.2) Outline. Section 2 introduces the notion of an infinite product of uncorrelated functions. In Sects.
3 and 4, we deal with sufficient conditions for two such products to be absolutely continuous or mutually
singular. In Sect. 5, we prove a fairly general dichotomy theorem for measures on measurable spaces.
Section 6 is devoted to an application of this theorem to infinite products, while Sect. 7 deals with criteria
for orthogonality and absolute continuity in the case of dichotomy of infinite products.

2 Infinite Products of Uncorrelated Functions

(2.1) Definitions. Let (Ω, F, P ) be a probability space, let A be an index set, let E be the net of all finite
subsets of A, and let (fα)α∈A, (gα)α∈A, and (fα,l)α∈A (1 ≤ l ≤ n) be families in L1(P ) such that the
integrals in (a)–(d) make sense.

(a) We will say that (fα) is (P -)uncorrelated, if, for all Φ ∈ E, we have

∫

∏

α∈Φ

fαdP =
∏

α∈Φ

∫

fαdP.

(b) We will say that (fα,1), . . . , (fα,n) are jointly (P -)uncorrelated, if, for all Φ ∈ E and all mappings
τ : Φ → [1, n], we have

∫

∏

α∈Φ

fα,τ(α)dP =
∏

α∈Φ

∫

fα,τ(α)dP.

(c) We will say that (fα) is square (P -)uncorrelated, if (fα) and (f2
α) are jointly uncorrelated.

(d) We will say that (fα) and (gα) are jointly square (P -)uncorrelated, if (fα), (gα), (f2
α), (g2

α), and
(fαgα) are jointly uncorrelated.

(2.2) Examples. (a) Examples of (square) uncorrelated families that are not independent occur in a
natural way in Fourier analysis. If ∆ is a dissociate subset in the dual group X of a compact Abelian
group G, and if (aχ)χ∈∆ and (bχ)χ∈∆ are two families of complex numbers such that |aχ| ≤

1
2 and |bχ| ≤

1
2 ,

then the families (fχ)χ∈∆ and (gχ)χ∈∆, where fχ := (1 + aχχ + āχχ−1) and gχ := (1 + bχχ + b̄χχ−1),
are jointly square uncorrelated with respect to Haar measure on G. More generally, if (Tα)α∈A is a
1–dissociate system (see [14]) in X and if (fα)α∈A, (gα)α∈A are two families of continuous functions on

G such that the supports of the Fourier transform f̂α and ĝα are contained in Tα for all α ∈ A, then the
families (fα) and (gα) are jointly uncorrelated with respect to Haar measure on G.

(b) Affine transforms of jointly (square) uncorrelated families are jointly (square) uncorrelated. More
explicitely, let (fα,1), . . . , (fα,n) be n jointly uncorrelated families and let lα,k have the form

lα,k = bα,k,1fα,1 + · · · + bα,k,nfα,n + cα,k

for α ∈ A and k ∈ [1, t], where the bα,k,l’s and cα,k’s are complex numbers. Then the families
(lα,1), . . . , (lα,t) are jointly uncorrelated. Furthermore, let (fα) and (gα) be two jointly square uncor-
related families and let mα,k have the form

mα,k = aα,kfα + bα,kgα + cα,k

for α ∈ A and k ∈ {1, 2}. Then the two families (mα,1) and (mα,2) are jointly square uncorrelated. The
first of these propositions is proved by a straightforward computation, while the second one follows from
it.
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(c) There is an intimate connection between (strongly) multiplicative systems (see e.g. [17]) and
(square) uncorrelated families. Every (strongly) multiplicative system is (square) uncorrelated. On the
other hand, it follows from (b) that (fα) is (square) uncorrelated if and only if (fα −

∫

fα) is (strongly)
multiplicative.

(d) Let (Tn)n≥0 be a decreasing sequence of sub–σ–algebras of F and let (fn)n≥0 and (gn)n≥0 be
two sequences in L

+
1 (P ) adapted to (Tn). Suppose that Ep(fn | Tn+1) = 1 = Ep(gn | Tn+1) for all

n ≥ 0. (The symbol Ep indicates the conditional expectation with respect to the measure P .) Then the
sequences (fn) and (gn) are jointly uncorrelated. There is a similar example with an increasing instead
of a decreasing sequence of sub–σ–algebras.

(2.3) Notation. For the sake of simplicity we will restrict matters mainly to the case of a compact space K
with its Borel σ–algebra B and a normed Radon measure P on K. By the standard extension procedure
P will be considered a regular Borel measure on K. C(K) will mean the space of all continuous functions
on K and we define

C
+
1 (K) := {f ∈ C(K) | f ≥ 0,

∫

fdP = 1}.

M
+
1 (K) will denote the set of all normed Radon measures on K. Throughout, we will consider weak*

topology on M
+
1 (K).

If (fα) is a family of complex–valued functions on K and if Φ ∈ E, we will write fΦ :=
∏

α∈Φ fα.

Now suppose that (fα) is an uncorrelated family in C
+
1 (K). Then fΦP is obviously a normed Radon

measure on K.

(2.4) Definition. Let (fα) be an uncorrelated family in C
+
1 (K). Each weak* cluster point of the net

(fΦP )Φ∈E ⊆ M
+
1 (K) will be called an infinite product generated by the family (fα).

(2.5) Counterexample. In general, the weak* limit of (fΦP ) does not exist, not even in the independent
case. The following example is due to R. Blumenthal (oral communication). I am grateful to him for
permitting me to include it here.

Consider a P–independent sequence (fn) ⊆ C
+
1 (K) such that the sequence (

∏n
l=0 fl) converges to 0

P–a.e. (this is true if
∏∞

l=0

∫

f
1

2

l dP = 0). It follows that this sequence is not uniformly integrable and
there exists a measurable set B such that the sequence

(

∫

B

n
∏

l=0

fldP

)

≥ 0 (1)

diverges as n goes to infinity (see e.g. [5], 4.21.1). We now define K ′ := K × {0, 1} and two mappings
θ : K → K ′ and δ : K ′ → K by θ(χ) := (x, 1B(x)) and δ(χ, y) := χ. We carry the structure on K over to
K ′ by putting P ′ := P0 and f ′

n = fn ◦ δ. As δ ◦ θ(χ) = χ(χ ∈ K), the sequence (f ′
n) is P ′–independent.

On the other hand, φ : K ′ → R defined by φ(χ, y) := y is a continuous function on K ′, we have φ◦θ = 1B,
and therefore

∫

φ
n
∏

l=0

f ′
ldP ′ =

∫

B

n
∏

l=0

fldP

diverges in view of (1), i.e. (
∏n

l=0 f ′
l ) P ′ does not converge in the weak* sense.

We will make constant use of the following properties of the supports of infinite products.

(2.6) Lemma. (a) Let (fα) be uncorrelated and let Qf be an infinite product generated by (fα). Then,
for any Φ ∈ E,

(i) Qf{fΦ < ε} ≤ ε and

(ii) the set {fΦ > 0} is a support of Qf .
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(b) Let (fα) and (gα) be jointly uncorrelated and let Qf be an infinite product generated by (fα). Then
we have for any Φ ∈ E

(iii) Qf{fΦ/gΦ < ε} ≤ ε.

(Here fΦ

gΦ
is defined as 0 where fΦ and gΦ vanish.)

Proof. Let Qf = limσ fΦσ
P . Then (i) follows from the estimates

Qf{fΦ < ε} ≤ lim inf
σ

∫

{fΦ<ε}

fΦσ
dP ≤ lim inf

σ

∫

{fΦ<ε}

fΦfΦσ\ΦdP ≤ ε, (1)

while (ii) is an immediate consequence of (i). In order to prove (iii), one proceeds as in the proof of (1)
to show that

Qf{0 < fΦ/gΦ < ε} ≤ ε. (2)

Estimate (iii) then follows from (2) and (ii).

(2.7) Definition. Let Qg be an infinite product generated by an uncorrelated family (gα)α∈A and let
Φ ∈ E. Any cluster point R of gΨτ\ΦP )τ , where (Ψτ ) is any subset of E such that Qg = limτ gΨτ

P , will
be called a tail measure for Qg and Φ.

(2.8) Remarks. (a) It is plain that Qg is absolutely continuous with respect to R with Radon–Nikodym
derivative gΦ. In particular, any other tail measure R′ for Qg and Φ coincides with R on the set {gΦ > 0}.

(b) Now let Φ ∈ E and suppose that we have S{gΦ = 0} = 0 for all infinite products S generated by
(gα)α∈A\Φ. Any tail measure R for Qg and Φ is then supported by the set {gΦ > 0} and, by (a), there
is only one such measure R. R is equivalent to Qg. If Qg = limτ gΨτ

P , then R = limτ gΨτ\ΦP .

(2.9) Notation. The uniquely defined tail measure in (2.8.b) will be denoted by Rg,Φ.

(2.10) Lemma. Let (fα) and (gα) be jointly uncorrelated, let Φ ∈ E, and suppose that

(α) S{gΦ = 0} = 0 for all infinite products S generated by (gα)α∈A\Φ. Then we have

(i) (fΦ/gΦ)Qg = fΦRg,Φ and

(ii)
∫

fΦ/gΦdQg = 1.

Proof. Using (2.8.a) we may write
fΦQg = fΦgΦRg,Φ.

Equality (i) now follows from (2.6.ii) and (α), while (ii) follows from (i).

(2.11) Remarks. (a) We will repeatedly use the inequality
∫

fΦ/gΦdQg ≤ 1, which holds without assuming
(2.10.α).

(b) In the context of sequences instead of families of functions it is suitable to slightly restrict the
notion of an infinite product. By an infinite product Qg generated by an uncorrelated sequence (gn)n≥0

in C
+
1 (K) we mean any weak* cluster point of the sequence (g[0,n[P )n≥0.

Let m ≥ 0. Any cluster point R of (g[m,nτ [P )τ , where (nτ ) is any subset of N such that Qg =
limτ g[m,nτ [P , will be called a tail measure for Qg and m. If we have S{g[0,m[ = 0} = 0 for all infinite
products S generated by (gn)n≥m, it is plain that any tail measure R for Qg and m is then supported by
the set {g[0,m[ > 0} and there is only one such measure R (cf. (2.8)); it will be denoted by Rg,m·Rg,m is
equivalent to Qg and if Qg = limτ g[0,nτ [P , then Rg,m = limτ g[m,nτ [P .
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3 Absolute Continuity of Infinite Products

(3.1) Explanation. In this section we compile some results about absolute continuity of infinite products
that can be proved by well known methods. (fα) and (gα) will denote two jointly uncorrelated families
in C

+
1 (K). Qf and Qg will denote two infinite products generated by (fα) and (gα), respectively.

(3.2) Lemma. Suppose that

(α) limΦ,Ψ

∫

(fΨ\Φ/gΨ\Φ)1/2dQg = 1.

Then the net (fΦ/gΦ)1/2 converges in L1(Qg) to a function h ∈ L2(Qg).

Proof. We use the Cauchy–Schwarz inequality and (2.11.a) to estimate for Ψ ⊇ Φ

[

∫

|(fΦ/gΦ)1/2 − (fΨ/gΨ)1/2|dQg]
2 =[

∫

(fΦ/gΦ)1/2|1 − (fΨ\Φ/gΨ\Φ)1/2|dQg]
2

≤2(1 −

∫

(fΨ\Φ/gΨ\Φ)1/2dQg).

Hence (fΦ/gΦ)1/2 is a Cauchy net in L1(Qg) by (α). Again making use of (2.11.a) we see that this net
is bounded in L2(Qg). The rest now follows from weak compactness of the unit ball in L2(Qg).

(3.3). We now deal with a sufficient condition for Qf to be absolutely continuous with respect to Qg.
The method of its proof goes back to Kakutani [10] and has been applied to many other cases.

(3.4) Proposition. (a) Suppose that (fα), (gα) and Qg satisfy either the hypothesis

(α) limΦ,Ψ

∫

(fΦ/gΦ)(fΨ\Φ/gΨ\Φ)1/2dQg = 1

or the hypotheses

(β) limΦ,Ψ

∫

(fΨ\Φ/gΨ\Φ)1/2dQg = 1

and (fΦ/gΦ) is uniformly Qg–integrable.

Then the net (fΦ/gΦ) converges in L1(Qg).

(b) If the net (fΦ/gΦ) converges in L1(Qg) then the following three statements are equivalent.

(i) Qf is absolutely continuous with respect to Qg and has Radon–Nikodym density limΦ fΦ/gΦ;

(ii) limΦ(fΦ/gΦ)Qg = Qf ;

(iii) there exists a subnet (Φσ) of E such that limσ(fΦσ
/gΦσ

)Qg = Qf .

Proof. We use (2.11.a) to estimate for Ψ ⊇ Φ

∫

((fΦ/gΦ)1/2 − (fΨ/gΨ)1/2)2dQg ≤ 2(1−

∫

(fΦ/gΦ)(fΨ\Φ/gΨ\Φ)1/2dQg.

Hence hypothesis (α) is equivalent to the convergence of the net (fΦ/gΦ)1/2 in L2(Qg). But as all our
functions are ≥ 0, this is equivalent to the convergence of (fΦ/gΦ) in L1(Qg).

If (β) is satisfied then, by Lemma (3.2), the net (fΦ/gΦ)1/2 converges Qg–stochastically. Hence
(fΦ/gΦ) converges Qg–stochastically and the assertion follows from uniform integrability.

Part (b) of the proposition is evident.

(3.5) Remarks. (a) Statement (3.4.iii) is of course satisfied when all the gα’s are 1.
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(b) It may happen that the net (fΦ/gΦ) converges in L1(Qg) and its limit is not the Radon–Nikodym–
density of Qf with respect to Qg . To obtain an example it is sufficient to consider a family (fα) = (gα)
that generates two infinite products Qf and Qg (cf. (2.5)).

(c) It may occasionally be tedious to verify Assumption (3.4.α) or (3.4.β). There is an “additive”
condition for absolute continuity that is more convenient for applications. In some cases, this condition
is equivalent to the “multiplicativite” condition (3.4.α), but it is weaker in general. This is in particular
the case when the families of real numbers (infχ(fα + gα)(χ))α and (supχ(fα + gα)(χ))α are not bounded
away from the marginal values 0 and ∞ respectively; see Brown–Moran [4] for a discussion of this point.
Analogous criteria were given by Brown–Moran [4], Peyrière [13], and the author [14] for Riesz–products
and generalized Riesz–products. The following proposition is proved in a similar way as [14], Satz 4.4,
using tail measures. We will omit the details. ‖ ‖u stands for the uniform norm.

(3.6) Proposition. Suppose that

(α)
∑

α∈A ‖fα − gα‖2
u/ inf(fα + gα) < ∞.

Then the net (fΦ/gΦ) converges in L1(Qg).

(3.7) Remark. If the families (fα) and (gα) are jointly square uncorrelated (2.1.d), one can replace (3.6.α)
by the weaker condition

(α)
∑

α∈A ‖fα − gα‖2
2/ inf(fα + gα) < ∞,

where ‖ ‖2 is computed with respect to the measure P . The proof uses (2.2.b) and is the same as the
proof of [4], Satz (4.4).

4 Mutual Orthogonality of Infinite Products

(4.1) Explanation. As in Sect. 3, (fα) and (gα) will mean two jointly uncorrelated families in C
+
1 (K) and

Qf and Qg will denote two infinite products generated by (fα) and (gα), respectively.

We will now deal with a general condition for mutual singularity of two infinite products.

(4.2) Proposition. Suppose that for any ε > 0 there exists a set Φ ∈ E such that

(α)
∫

(fΦ/gΦ)1/2dQg ≤ ε.

Then Qf and Qg are mutually singular.

Proof. It follows from Hypothesis (α) that, for any n ≥ 1, there exists a set Φn ∈ E such that
∫

(fΦ/gΦ)1/2dQg ≤ n−2. (1)

Using the Chebyshev–Markov inequality, we deduce from (1)

Qg{fΦn
/gΦn

< n−2} ≥ 1 − n−1. (2)

On the other hand, by (2.6.iii), we have

Qf{fΦn
/gΦn

< n−2} ≤ n−2. (3)

It finally follows from (2) and (3) that the set

U :=
⋂

m∈N

⋃

n≥m

{fΦn
/gΦn

< n−2}
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is a support of Qg, while it is a null set for Qf .

(4.3) Remarks. (α) Hypothesis (4.2.α) implies that the net (fΦ/gΦ)1/2 converges to 0 in L1(Qg). To see
this, let ε > 0 and choose Φ ∈ E such that

∫

(fΦ/gΦ)1/2dQg ≤ ε2. (1)

Given Ψ ∈ E such that Ψ ⊇ Φ, we deduce from Hölder’s inequality, (2.11.a), and (1) the estimates
∫

(fΨ/gΨ)1/2dQg ≤[

∫

(fΨ/gΨ)1/3dQg]
3/4[

∫

(fΨ/gΨ)dQg ]
1/4

≤[

∫

(fΨ/gΨ)1/3dQg]
3/4

=[

∫

(fΨ/gΨ)1/3(fΨ\Φ/gΨ\Φ)1/3dQg ]
3/4

≤[

∫

(fΨ/gΨ)1/2dQg]
1/2[

∫

fΨ\Φ/gΨ\ΦdQg ]
1/4

≤ε.

(b) As in the case of Proposition (3.4) it may be tedious to verify the orthogonality condition (4.2.α).
We will therefore mention three other conditions. The first one will be formulated in terms of sequences
rather than families.

(4.4) Notation. In the following proposition, (Tn)n≥0 denotes a decreasing sequence of σ–algebras
generated by continuous functions such that the sequences (fn) and (gn) are adapted to (Tn) (e.g.
Tn = A{fn, fn+1, . . . ; gn, gn+1, . . . }). Throughout the sequel, the symbol EQ(h/T) will denote the con-
ditional expectation of the function h with respect to the σ–algebra T and the measure Q.

(4.5) Proposition. (a) If for some k ≥ 1 we have

(i)
∏

n≥0 ess supEQg
((fn/gn)1/2/T

n+k) = 0,

then the measures Qf and Qg are mutually singular.

(b) Suppose that the sequences (fn) and (gn) satisfy the conditions

(α) EP (fn/Tn+1) = 1 = EP (gn/Tn+1) (n ≥ 0) and

(β) there are two constants c > 0 and C such that gn ≥ c and fn + gn ≤ C for all n ≥ 0.

Then for any k ≥ 1 (i) is equivalent to each of the following two equalities.

(ii)
∏

n≥0 ess inf EQg
((fn/gn)2/Tn+k) = ∞;

(iii)
∑

n≥0 ess inf EQg
((fn − gn)2/Tn+k) = ∞.

Proof. By (i) there is an integer 0 ≤ l < k such that
∏

n≥0

ess supEQg
((fnk+l/gnk+l)

1/2/T
(n+1)k+l) = 0. (1)

Condition (4.2.α) now follows from (1) and the estimate
∫ r
∏

n=0

(fnk+l/gnk+l)
1/2dQg

≤ ess supEQg
((fl/gl)

1/2/T
k+l)

∫ r
∏

n=1

(fnk+l/gnk+l)
1/2dQg

≤ . . .

≤
r
∏

n=0

ess supEQg
((fnk+l/gnk+l)

1/2/T
(n+1)k+l),
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completing the proof of (a).

In order to prove (b) we first show that

EQg
((fn/gn)/T

n+1) = 1. (2)

Note that (α) implies
EP (g0 . . . gn/T

n+1) = 1 = EP (g0 . . . gn−1fn/T
n+1). (3)

Now let (g0,nτ
P )τ be a subnet of the sequence (g0,nP )n with weak* limit Qg . On account of (3), we may

write for any continuous, T
n+1–measurable function φ (note that gn > 0)

∫

φfn/gndQg = lim
τ

∫

φg0 . . . gn−1fngn+1,nτ
dP

= lim
τ

∫

φgn+1,nτ
dP

= lim
τ

∫

φg0,nτ
dP

=

∫

φdQg ,

i.e., (2) holds (cf.(4.4)).

We now show the equivalence of (i)–(iii). By (2) and by Hölder’s inequality for conditional expectations
we have

1 =EQg
((fn/gn)2/3(fn/gn)1/3/T

n+k)

≤[EQg
((fn/gn)2/T

n+k)]1/3[EQg
((fn/gn)1/2/T

n+k)]2/3.

Thus (ii) holds, if (i) is satisfied.

Now suppose that (ii) is satisfied. Then (iii) immediately follows from the estimate

1 + c−2EQg
((fn − gn)2/T

n+k) ≥1 + EQg
((fn − gn)2/g2

n/T
n+k)

=EQg
((fn/gn)2/T

n+k).

To prove that (iii) implies (i) note that there exists a constant K > 0 such that the inequality

(fn/gn)1/2 ≤ 1 +
1

2
(fn/gn − 1) − K(fn/gn − 1)2

obtains for all n ≥ 0, as (fn/gn) is uniformly bounded by (β). Thus, again using (2) and (β), we have

EQg
((fn/gn)1/2/T

n+k) ≤ 1 − C−2KEQg
((fn − gn)2/T

n+k),

and (i) follows if (iii) is satisfied.

(4.6). There is a second orthogonality condition, like Proposition (4.5), but using ascending instead of
descending sequences of σ–algebras. We leave its obvious formulation to the reader. If the families (fα)
and (gα) are jointly square uncorrelated, one obtains a somewhat better result. It is proved in essentially
the same way as the one given in [14] for 2–dissociate systems and uses a method that goes back to [4]
and [13]. We state it here.

(4.7) Theorem. Suppose that the families (fα) and (gα) are jointly square uncorrelated and that

(α)
∑

α∈A ‖fα − gα‖2
2/ sup(fα + gα) = ∞.

Then Qf and Qg are mutually singular.

(The norm ‖ ‖2 is computed with respect to the measure P .)
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5 A General Dichotomy Theorem

(5.1) Terminology. As a major tool to establish dichotomy theorems for measures we will assume the
validity of a 0–1 law; we will say that a probability measure Q on a σ–algebra F is trivial on a sub–σ–
algebra T of F, if Q(T ) = 0 or 1 for all T ∈ T. Our first dichotomy theorem can be applied to general
probability measures on an abstract measurable space (Ω, F) and reads as follows.

(5.2) Abstract dichotomy theorem. Let (Tn)n≥0 be a decreasing sequence of sub–σ–algebras of F

and let T∞ :=
⋂

n≥0 Tn. Let Q1 be a probability measure and Q2 be a measure ≥ 0 on F. Suppose that

(α) Q1 is trivial on T∞ and

(β) there exists a support L of Q1 such that for any Q2–null set N and any n ≥ 0 there is a representative
vn of the conditional probability Q1(N/Tn) such that

∫

L
vndQ2 = 0.

Then the following statements are equivalent.

(i) Q1 is absolutely continuous with respect to Q2;

(ii) Q1 and Q2 are not mutually singular.

Proof. We only have to show that (ii) implies (i). Suppose that there exists a set N ∈ F such that

Q2(N) = 0 (1)

and
Q1(N) > 0. (2)

Let Nn be the Tn–measurable set
Nn := {vn > 0}, (3)

where vn is a function as in Hypothesis (β). In particular, we have

Q2(Nn ∩ L) = 0. (4)

By definition of vn and Nn we have

Q1(N \ Nn) =

∫

{Nn

1NdQ1 =

∫

{Nn

vndQ1 = 0. (5)

We finally define T := lim infn→∞ Nn. As T ∈ T
∞, we deduce from (2), (5), and Hypothesis (α) that

T ∩ L is a support of Q1, while (4) implies that T ∩ L is a Q2–null set, i.e., Q1⊥Q2.

(5.3) Remarks. (a) Suppose that Hypothesis (5.2.β) is satisfied with L = Ω. Then the set T in the
proof of (5.2) separates Q1 and Q2. As T ∈ T

∞, we have shown that Statements (5.2.i) and (5.2.ii) are
equivalent to the following two statements.

(i) Q1 | T∞ is absolutely continuous with respect to Q2 | T∞;

(ii) Q1 | T∞ and Q2 | T∞ are not mutually singular.
(To show that (5.2.ii) implies (i) use again (5.2.α).)

(b) Let ∆ be a countable group of automorphisms of the measurable space (Ω, F). A probability
measure Q1 on F is said to be ∆–ergodic, if for any ∆–invariant set F ∈ F we have Q1(F ) = 0 or 1. A
measure Q2 ≥ 0 on F is said to be ∆–quasi–invariant, if Q2 is equivalent to all its images δ(Q2)(δ ∈ ∆).
It is well known that in this situation either Q1 is absolutely continuous with respect to Q2, or these two
measures are mutually singular. To see that this result follows from (5.2) let Tn = T be the σ–algebra
of all ∆–invariant measurable subsets of Ω(n ≥ 0). Then triviality of Q1 on T is just ergodicity. On the
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other hand let N be a Q2–null set and define the T–measurable set M :=
⋃

δ∈∆ δ(N). If Q1(N/T) is any
version of the conditional probability, then vn := 1MQ1(N/T) has the properties required in (5.2.β).

(c) In certain cases of measurable groups and vector spaces dichotomy results of ergodic type are
discussed in Brown–Moran [3], Lemma 2, Skorokhod [16], p. 129, Corollary 1, and Kanter [11], Lemma
2.1. These are special cases of (b). All these results contain part of the Jessen–Wintner purity law [9], see
also [17]. Of course the dichotomy statement of Kakutani’s theorem is also contained in (5.2). A similar
result appearing in Jacobs [8] does not seem to be related to tail σ–fields. I thank Prof. K. Jacobs for
pointing out the paper [8] to me.

6 Dichotomy for Infinite Products

(6.1) Explanation. The purpose of this section is to specialize Theorem (5.2) to the case of infi-
nite products. We will return to the setting of Sects. 3 and 4, however, we will consider sequences
rather than families. So let (fn)n≥0 and (gn)n≥0 be two jointly uncorrelated sequences in C

+
1 (K)

adapted to a decreasing sequence (Tn)n≥0 of σ–algebras generated by continuous functions on K (e.g.
T

n = A{fn, fn+1, . . . ; gn, gn+1, . . . }), and let T
∞ :=

⋂

n≥0 T
n be the terminal σ–algebra. For abbreviation

we will write fm,n :=
∏n−1

l=m fl and gm,n :=
∏n−1

l=m gl. Infinite products and tail measures are as defined
in (2.11.b). Qf and Qg will denote two infinite products generated by (fn) and (gn), respectively. We
will write Pn for the measure f0,nP .

(6.2) Counterexample. In general it is, of course, not true that two infinite products Qf and Qg as above
are either absolutely continuous or mutually singular. A counterexample is obtained by considering
K = [0, 1], P = λ (Lebesgue measure), and the two sequences

fn :=







1 + rn on [0, 1
2 [

, gn = 1 (n ≥ 1),
1 on [ 12 , 1]

where rn is the Rademacher function defined by rn(x) = sgn sin(2n2πx). It is clear that (
∏n

l=1 fl) λ
converges to the measure Qf := 1

2ε0 + 1[ 1
2
,1]λ in the weak* sense.

(6.3) Lemma. Let n ≥ 0, let R be a tail measure for Qg and n define Mn := f0,nR. Suppose that
for any c ∈ C(K) there is a continuous version of the conditional expectation EPn

(c/Tn). Then for any
bounded, Borel–measurable function h on K there is a common version of the conditional expectations
EMn

(h/Tn), EQf
(h/Tn), and EPn

(h/Tn).

Proof. Let c′ be a continuous version of the conditional expectation EPn
(c/Tn) for c ∈ C(K) and let

R = limτ gn,nτ
P , Qg = limτ g0,nτ

P . For any continuous, Tn–measurable function φ on K, we then have

∫

c′φdMn = lim
τ

∫

c′φf0,ngn,nτ
dP

= lim
τ

∫

cφf0,ngn,nτ
dP

=

∫

cφdMn. (1)

As these functions φ generate Tn (6.1), (1) signifies that c′ is a version of EMn
(c/Tn); analogously, c′ is

also a version of EQf
(c/T

n).

Now let (ck) be a sequence in C(K) converging to h in L1(Mn), L1(Qf ), and L1(Pn). Passing to a
subsequence we may suppose that c′k converges to EMn

(h/Tn), EQf
(h/Tn), and EPn

(h/Tn) Mn–, Qf–,
and Pn–a.e., respectively. The function h′ defined by

h′(x) :=

{

limk→∞ c′k(x) where the limit exists,

0 else
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has the required properties.

Combining (5.2) and (6.3) we obtain the following theorem.

(6.4) Dichotomy Theorem for Infinite Products. Suppose that

(α) Qf is trivial on T∞,

(β) for any c ∈ C(K) and any n ≥ 0 there is a continuous version of the conditional expectation
EPn

(c/Tn), and

(γ) S{g0,n = 0} = 0 for all n ≥ 0 and all infinite products S generated by (gk)k≥n.

Then either Qf is absolutely continuous with respect to Qg or else these two measures are mutually
singular.

Proof. We have to show that Hypotheses (β) and (γ) imply (5.2.β) for the measures Q1 := Qf and
Q2 := Qg. The set L :=

⋂

n≥0{fn > 0} is a support of Qf (see (2.6.ii)).

Let N be a Qg–null set and let vn be a common version of the conditional probabilities Mn(N/Tn)
and Qf (N/T

n) according to Lemma (6.3). We may then write
∫

L

vndQg ≤

∫

vng0,n/f0,ndMn

=

∫

vnEM,n((g0,n)/f0,n/T
n)dMn

=

∫

N

EMn
((g0,n/f0,n)/T

n)dMn

=

∫

N

EMn
((g0,n/f0,n)/T

n)f0,ndRg,n. (1)

As Rg,n is absolutely continuous with respect to Qg by hypothesis (γ) (cf. (2.11.b)), we obtain
∫

L vndQg =
0 as desired.

(6.5) Explanation. T. Tjur’s theory [18] on conditional distributions can be applied to our situation. We
obtain a sufficient condition for (6.4.β). We briefly outline one of his results. Suppose Tn is generated
by the set {φι | ι ∈ In} of continuous functions on K. Let Ln be the product space Xι∈In

φι(K) and let
tn : K → Ln be the canonical mapping defined by tn(x) : (φι(x))ι∈In

. For y ∈ tn(supp Pn), let Ny be the
net

Ny := {(U, V ) | U open neighborhood of y, V open subset of U such that V ∩ tn(supp Pn) 6= ∅},

ordered by the relation
(U1, V1) ≤ (U2, V2) if and only if U2 ⊆ U1.

Finally, let Dn be the set of all y ∈ tn(supp Pn) such that the weak* limit

P y
n := lim

(U,V )∈Ny

[Pn(t−1
n (V ))]−11t−1

n (V )Pn

exists in M
+
1 (K). Then the following result holds.

(6.6) Proposition. Suppose that Dn = tn(supp Pn) for some n ≥ 0. Then for any c ∈ C(K) there exists
a continuous version of the conditional expectation EPn

(c/Tn).

Proof. By hypothesis and an account of [18] (21.1), (20.5), and (20.3) the mapping

y →

∫

c(x)Qy
n(dx) (1)

is continuous on tn(supp Pn) and a version of the conditional expectation EPn
(c/tn) of c under the

hypothesis tn there. Let dn be an extension of the mapping (1) to a continuous mapping on Ln. Then
dn ◦ tn is a version of the conditional expectation EPn

(c/Tn).
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7 Criteria for Absolute Continuity and Orthogonality in the

Case of Dichotomy

In this section general hypotheses are as described in (6.1). We will now deal with criteria for orthogo-
nality and absolute continuity in the case of dichotomy. We first need some lemmas.

(7.1) Lemma. Suppose that

(α) limm,n

∫

(fm,n/gm,n)1/2dQg = 1 and that

(β) there exists a real number γ < 1 such that for all m ≥ 0 we have Qg{f0,m = 0} ≤ γ.

Then the function h of Lemma (3.2) (in the case of sequences) is not a Qg–null function.

Proof. We proceed by contradiction. Suppose that we have
∫

hdQg = 0. (1)

By (α) there exists an m such that for all n ≥ m we have

∫

(fm,n/gm,n)1/2dQg >
1

2
(1 + γ1/2), (2)

and by (β) there exists a strictly positive ε such that

[Qg{f0,m/g0,m < ε}]1/2 ≤ γ1/2 +
1

4
(1 − γ1/2). (3)

Using (1) we may choose an index n ≥ m such that

∫

(f0,n/g0,n)1/2dQg ≤
1

4
ε1/2(1 − γ1/2). (4)

Using the Cauchy–Schwarz inequality, (4), (3), and (2.11.a), we now estimate as follows.

∫

(fm,n/gm,n)1/2dQg =

∫

{f0,m/g0,m≥ε}

+

∫

{f0,m/g0,m<ε}

≤ε−1/2

∫

(f0,n/g0,n)1/2dQg + [Qg{f0,m/g0,m < ε}]1/2[

∫

fm,n/gm,ndQg ]
1/2

≤
1

4
(1 − γ1/2) + γ1/2 +

1

4
(1 − γ1/2)

=
1

2
(1 + γ1/2).

This contradicts (2) and proves the lemma.

The following lemma replaces Fatou’s lemma in the case of a stochastically convergent net of integrable
functions. We formulate it in the setting of an abstract probability space (Ω, F, P ).

(7.2) Lemma. Suppose that the net (hσ) in L
+
1 (P ) converges P -stochastically to a limit h ∈ L

+
1 (P ).

Then we have
∫

hdP ≤ lim inf
σ

∫

hσdP.

Proof. We have for all δ > 0
∫

(h − hσ)dP =

∫

{h−hσ≤δ}

+

∫

{h−hσ>δ}

≤ δ +

∫

{h−hσ>δ}

hdP. (1)
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As (hσ) converges stochastically to h, (1) implies

lim sup
σ

∫

(h − hσ)dP ≤ 0.

The following lemma is a weakening of Proposition (3.4).

(7.3) Lemma. Let (fn), (gn), Qf , and Qg satisfy the following three conditions.

(α) limm,n

∫

(fm,n/gm,n)1/2dQg = 1;

(β) there exists a real number γ < 1 such that for all m ≥ 0 we have Qg{f0,m = 0} ≤ γ;

(γ) there exists a subnet (mσ) of N such that

lim
σ

(f0,mσ
/g0,mσ

)Qg = Qf .

Then Qf and Qg are not mutually singular.

Proof. By Lemma (3.2) the sequence (f0,m/g0,m)1/2 converges in L1(Qg) to a function h ∈ L2(Qg). It
follows that the sequence (f0,m/g0,m) converges to h2 QG–stochastically. Hence, using Lemma (7.2) and
(γ), we may estimate for any positive, continuous function φ on K

∫

φh2dQg ≤ lim inf
σ

∫

φ(fmσ
/gmσ

)dQg =

∫

φdQf ,

i.e., h2Qg ≤ Qf . As h2Qg is different from zero (7.1), Qf and Qg are not mutually singular.

We now come to the key lemma of this section.

(7.4) Lemma. Suppose that

(α) Qg is trivial on T∞,

(β) there exists a real number p > 1 such that for all Φ ∈ E there exists an integer n ≥ 0 with the
property EQg

((gΦ/fΦ)/Tn) ∈ Lp(Qg), and

(γ) there exists a real number γ < 1 such that for all m ≥ 0 there is a finite subset Φ ⊆ [m,∞[ such
that

(i)
∫

(gΦ/fΦ)1/2dQg < γ.

Then for all ε > 0 and all m ≥ 0 there is a finite subset Ψ ⊆ [m,∞[ such that

(ii)
∫

(fΨ/gΨ)1/2dQg < ε.

Proof. It is sufficient to prove (ii) for ε = γ(2p−1)/p. Choose Φ ⊆ [m,∞[ such that (i) holds. As the
sequence

EQg
((fΦ/gΦ)1/2/T

l)l≥n (1)

is a backward martingale with respect to (Tl), it converges to

EQg
((fΦ/gΦ)1/2/T

∞) (2)

Qg–a.e. As Qg is trivial on T∞, (2) is equal to
∫

(fΦ/gΦ)1/2dQg Qg–a.e. Hypothesis (β) implies by
Jensen’s inequality that EQg

((fΦ/gΦ)1/2/T
n) ∈ L2p(Qg). Hence (1) is uniformly integrable in L2p(Qg),

i.e., (1) converges to
∫

(fΦ/gΦ)1/2dQg in L2p(Qg) as l → ∞. Thus, by (i), there exists an index l > max Φ
such that

‖EQg
((fΦ/gΦ)1/2/I

l)‖2p,Qg
< γ. (3)
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Again applying (γ) we may now choose a finite subset Λ ⊆ [l,∞[ such that

∫

(fΛ/gΛ)1/2dQg < γ. (4)

Observing (2.11.a) and (4) and applying Hölder’s inequality we estimate

∫

(fΛ/gΛ)p/(2p−1)dQg

=

∫

(fΛ/gΛ)1/(2p−1)(fΛ/gΛ)(p−1)/(2p−1)dQg

≤[

∫

fΛ/gΛdQg]
1/(2p−1)[

∫

(fΛ/gΛ)1/2dQg]
(2p−2)/(2p−1)

≤γ(2p−2)/(2p−1). (5)

We finally put Ψ := Φ ∪ Λ and apply Hölder’s inequality, (3), and (5) to obtain

∫

(fΨ/gΨ)1/2dQg =

∫

(fΦ/gΦ)1/2(fΛ/gΛ)1/2dQg

=

∫

EQg
((fΦ/gΦ)1/2/T

l)(fΛ/gΛ)1/2dQg

≤γ(2p−1)/p.

This proves Lemma (7.4).

We combine (4.2), (6.4), (7.3), and (7.4) to prove the following result. As in Sect. 6, Pn stands for
the measure f0,nP .

(7.5) First Dichotomy Criterion for Infinite Products. Suppose that

(α) both measures Qf and Ag are trivial on T∞,

(β) for any c ∈ C(K) and any n ≥ 0 there is a continuous version of the conditional expectation
EPn

(c/Tn),

(γ) S{g0,n = 0} = 0 for all n ≥ 0 and all infinite products generated by (gk)k≥n,

(δ) there exist two subnets (mσ) and (nτ ) of N such that limτ g0,nτ
P = Qg and limσ,τ f0,mσ

gmσ,nτ
P =

Qf , and

(ε) there exists a real number p > 1 such that for all Φ ∈ E there exists an integer n ≥ 0 with the
property EQg

((fΦ/gΦ)/Tn) ∈ Lp(Qg).

Then the following four statements are equivalent.

(i) Qf is absolutely continuous with respect to Qg;

(ii) Qf and Qg are not mutually singular;

(iii) there is an ε > 0 suth that for all n ≥ 0 we have

∫

(f0,n/g0,n)1/2dQg ≥ ε;

(iv) limm,n→∞

∫

(fm,n/gm,n)1/2dQg = 1 and there exists a real number γ < 1 such that Qg{f0,m = 0} ≤
γ for all m ≥ 0.
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Proof. Statements (i) and (ii) are equivalent by (6.4). If (iii) does not hold, then Qf and Qg are mutually
singular by (4.2). Now suppose that (iii) holds. Then we deduce from Hölder’s inequality and (2.11.a)
for any integer n ≥ 0 and any subset Ψ ⊂ [0, n[

ε2 ≤[

∫

(f0,n/g0,n)1/4(f0,n/g0,n)1/4dQg ]
2

≤[

∫

(f0,n/g0,n)1/3dQg ]
3/2

=[

∫

(fΨ/gΨ)1/3(f[0,n[\Ψ/g[0,n[\Ψ)1/3dQg]
3/2

≤

∫

(fΨ/gΨ)1/2dQg .

Hence (7.4.ii) does not hold, i.e. (7.4.γ) fails; thus the first half of (iv) is proved. On the other hand, we
have for all m ≥ 0 by the Cauchy–Schwarz inequality and by (2.11.a)

ε2 ≤ [

∫

1{f0,m>0}(f0,m/g0,m)1/2dQg ]
2 ≤ Qg{f0,m > 0}.

This completes the proof of (iv). The implication from (iv) to (ii) is just Lemma (7.3). Note that (7.3.γ)
follows from (γ) and (δ) by (2.11.b).

(7.6) Remarks. (a) It is easy to see that the conditional expectation appearing in Hypothesis (7.5.ε) for
n = 1 + max Φ is bounded (and (7.5.ε) is satisfied) when ‖EQg

(g−1
k /T k+1)‖∞,Qg

< ∞ for all k ≥ 0. This
is in particular the case when EP (gk/Tk+1) = 1(k ≥ 0); cf. (4.5.2).

(b) Hypothesis (7.5.γ) and (7.5.ε) are trivially satisfied when all the gn’s are strictly positive. Fur-
thermore, Hypothesis (7.5.δ) is satisfied when gn = 1 for all n ≥ 0.

(c) One obtains a slightly better result, if the sequences (fn) and (gn) are not only jointly uncorre-
lated, but satisfy the stronger assumption EP (fn/Tn+1) = 1 = Ep(gn/Tn+1)(n ≥ 0). The proof of our
next theorem makes no use of Theorem (5.2) or Theorem (6.4).

(7.7) Second Dichotomy Criterion for Infinite Products. Suppose that

(α) Qg is trivial on T∞,

(β) EP (fn/Tn+1) = 1 = Ep(gn/Tn+1) for all n ≥ 0,

(γ) S{g0,n = 0} = 0 for all n ≥ 0 and all infinite products generated by (gk)k≥n,

and

(δ) there exist two subnets (mσ) and (nτ ) of N such that limτ g0,nτ
P = Qg and limσ,τ f0,mσ

gmσ,nτ
P =

Qf .

(a) The following four statements are equivalent.

(i) Qf is absolutely continuous with respect to Qg;

(ii) Qf and Qg are not mutually singular;

(iii) there is an ε > 0 such that for all n ≥ 0, we have
∫

(f0,n/g0,n)1/2dQg ≥ ε;

(iv) limm,n→∞

∫

(fm,n/gm,n)1/2dQg = 1.
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(b) If the equivalent statements (i)–(iv) hold, then the sequence (f0,n/g0,n) converges in L1(Qg) to
the Radon–Nikodym density dQf/dQg.

Proof. Statement (iii) follows from Statement (ii) by (4.2). As in the case of Equality (4.5.2), Assumptions
(β) and (γ) imply

EQg
((fΦ/gΦ)/T

n) = 1 (1)

for all Φ ∈ E and n ≥ 1 + maxΦ. Thus, using Lemma (7.4), (α), and (1), we deduce Statement (iv) from
Statement (iii) in the same way as (7.5.iv) from (7.5.iii). Equation (1) and (iv) together imply 3.4.α).
We now use Proposition (3.4) to show the implication from (iv) to (i) and Part (b) of the theorem. Note
that (3.4.iii) follows from (γ) and (δ) by (2.8).

(7.8) Remark. The results of this communication admit the following generalization. Suppose that S

is a (real) algebra and a vector lattice of bounded functions on a set Ω such that 1 ∈ S. Let F be the
σ–algebra generated by S and let M(F) be the set of all finite signed measures on F. It follows from the
monotone class theorem that (S, M(F)) is a separated dual system with respect to integration. Let P be
a probability measure in M(F) and let

S
+
1 := {φ ∈ S | φ ≥ 0 and

∫

φdP = 1}.

Let (fn)n≥0 and (gn)n≥0 be jointly P–uncorrelated families in S
+
1 , adapted to a decreasing sequence

(Tn)n≥0 of σ–algebras generated by functions in S. Suppose for simplicity that g−1
n ∈ S for all n ≥ 0.

By an infinite product generated by (fn) we mean a σ(M(F), S)–cluster point of the sequence (f0,nP )n≥0

in M
+
1 (F). Then, mutatis mutandis, all the foregoing results remain true if (K, B, P ) is replaced by

(Ω, F, P ), C(K) is replaced by S, and weak* topology on M(K) is replaced by σ(M(F), S). In most cases
it is also possible to apply H. Bauer’s representation [1] of abstract integrals by means of Radon measures
to deduce the results in the abstract case from those in the topological case. We state here a sample
result; it corresponds to Theorem (7.5).

(7.9) Theorem. Let notation be as in (7.8) and let Qf and Qg be infinite products generated by the
sequences (fn) and (gn), respectively. Suppose that

(α) both measures Qf and Qg are trivial on T∞,

(β) for any s ∈ S and any n ≥ 0 there is a version of S of the conditional expectation EPn
(s/Tn), and

(γ) there exist two subnets (mσ) and (nτ ) of N such that limτ g0,nτ
P = Qg and limσ,τ f0,mσ

gmσ,nτ
P =

Qf .

Then Statements (7.5.i)–(7.5.iv) are equivalent in this situation.

(7.10) Remark (Kakutani’s dichotomy theorem [10]). Let (Ωn, Fn, Pn)n≥0 be a sequence of probability
spaces and suppose that hn ∈ L

+
1 (Pn) satisfies

∫

hndPn = 1 for all n ≥ 0. Define Ω := XΩn, F := ⊗Fn,
P := ⊗Pn, fn(x0, x1, . . . ) := hn(xn) for (x0, x1, . . . ) ∈ Ω, and gn = 1(n ≥ 0). Let S be the set of all
bounded, F–measurable functions on Ω that depend only on a finite number of coordinates. Then the
sequence (fn)n≥0 generates exactly one infinite product, namely the product measure Qf = ⊗hnPn. Let
Tn(n ≥ 0) be the tail σ–algebras of F. Kolmogorov’s 0–1 law no asserts that P is trivial on T∞, and
Kakutani’s dichotomy theorem follows from the abstract version of Theorem (7.7). Kakutani’s theorem
is also contained in the abstract version (7.9) of Theorem (7.5), as the function

wn(x0, x1, . . . ) :=

∫

. . .

∫

t(y0, . . . , yn−1, xn, xn−1, . . . )

n−1
∏

k=0

hk(yk)P0(dy0) . . . Pn−1(dyn−1)

is a version of EPn
(t/Tn), where t is an arbitrary bounded, F–measurable function on Ω.
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