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Abstract we do not useositionsof special objects on the chromo-
some, such as its darkest band or its centromere, as features

The most accurate methods for automatic classification The detection of these objects is often unsafe; a serious out
of chromosomes under a light microscope today extract nu-lier usually results if the position of a different objectis
merical features from band-pattern profiles along theirlon roneously used for a measurement. In particular, we do not
gitudinal axes. The construction of a reliable axis is a cru- try to explicitly detect the position of the centromere fer d
cial step in this process. We propose a new way based ortermining polarity. It is, however, implicitly contained i
the dominant points of the contour and cubic splines. Thethe shape profile, cf. Sect. 3.2.
dominant points serve as candidates for the tips of the chro- A prerequisite for feature extraction is recognition of the
mosome or its chromatids. Ambiguities are dissolved by theshape of the chromosome. Itis now classical [3] to use dom-
recently proposed method of variants for object identifica- inant points and longitudinal axes. But, contrary to more
tion. A Voronoi diagram decomposes the chromosome intraditional methods, we avoid taking an early decision on
slices for profile extraction. The method improves the cur- the shape unless this decision is safe. We rather resos to th

rently best classification results significantly yieldinteat- recently proposed method of variants that lays the grounds
set error rate of 0.6% applied to a data set of the band level for an efficient Bayesian classifier, the Simple Constrained
200. Classifier—Selector, cf. Sect. 4 and [9].

_ 2. Longitudinal axes
1. Introduction

- _ 2.1. Dominant points
Classification of the chromosomes of a eukaryotic cell
under a light microscope in their biological classes is a
clear—cut task that lends itself to automation on computers
In the last decade, feature—oriented classification meathod
in combination with the Bayesian paradigm have turned out
to attain error rates approaching those of the human expert, - extraction of the object boundary and the associated

At first on our way to profiles and features we try to re-
cognize the oblong shape of the chromosome. To do this,
we use its tips which we estimate in four steps; these are

cf. [2, 8, 7, 10]. This progress is mainly due to the applica- contourby a standard contour-following algorithm,
tion of three principles:«) exploitation of prior knowledge,

(8) precise data modeling including proper outlier handling - estimation of theontour curvaturedy local deflection
and robust parameter estimatiory) proper application of angles and triangular smoothing,

Marr’s [4] "Principle of Least Commitment.”

Main steps to feature extraction are (i) identification of
the, usuallyoblong, shapeof the chromosome; (ii) rep-
resentation ofband patternand shapeby so-calledpro-

- computation of théessential” maximaof the contour
curvature, and

- determination oflominant pointselated to the essen-

ﬁles ie., uni\{ariate functions al_ong the axis; (iii) e_xtrac- tial maxima.

tion of numeric featuredy applying methods from signal

processing (Fourier or other coefficients) to the univariat Intuitively, an essential maximunfil0] of a function
profiles. f:Z — R is the highest peak lying between two suffi-

Unlike methods of local band and shape description [1], ciently deep valleys. By duality, agssential minimuns



0.6 L L B A of dominant points constructed in Sect. 2.1. Our method

0.5 ] normally results in two, three or four dominant points. If
0.4 1 k = 2 then we construct a longitudinal axis in the following
8; : way. We run fromD; to D, along both sides of the chro-

0:1 i mosome at constant speed so as to arrive at the destination
0 ! Dy at the same time. We mark the Euclidean midpoints of
0.1k D, ] the contour points simultaneously reached. A subsequence

0.2+ 4 of them serves asupporting pointdor transition to a plane
-0.3 RN Y [ N S E— cubic spline which we extend tangentially and linearly be-
0 20 40 60 80 100 120 140 160 yond both ends. This is the (extended) longitudinal axis

required.

The case& = 3 andk = 4 need a more detailed dis-
cussion. The two chromatids of the originally elongated
chromosome begin to split in the late metaphase. Y-shaped
acrocentric and X-shaped metacentric chromosomes with
an essential maximum ef f. In general, an essential max- three and four essential maxima and dominant points, re-
imum of the contour curvature is not yet a precise estimatespectively, are characteristic at this stage, cf. Figs),@&p
of a tip of the chromosome. This may be located at an arbi-and 3(b),(c),(d). In the case dfreedominant pointsD;,
trary point of its associated mountain and we rather proposeD,, D3, we consider six longitudinal axes. The three
the center of this mountain as a dominant point, cf. Fig. 1. “point-to-midpoint” axe(D1, (D2, D3)), (D2, (D1, D3)),

and(Ds, (D1, D)) connect a dominant point with the Eu-
2.2. Axes clidean midpoint of the opposite edge. One of these axes
is correct if the chromosome is Y-shaped. Unfortunately,
other sources of maxima of the contour curvature are arte-
facts such as bent chromosomes, cf. Fig. 2(a). Therefore,
“point-to-point” axes corresponding to the pai®;, D2),
(D1, D3), and(Ds, D3) have to be considered as alternat-
ive axes.

Figure 1. Essential maxima and their domin-
ant points D; and D, determined as the cen-
ters of the two associated mountains.

By the longitudinal axisof a chromosome we mean a
continuous curve connecting the two tips of the chromo-
some thereby dividing it into its two chromatids, the essen-
tially congruent longitudinal halves.

One might expect that the method of Sect. 2.1 yields . . . ) )
mostly two dominant points which may serve as the tips.  Supporting points of a point-to-point axis are com-
But there are various reasons for a number different fromPuted as in the case = 2. A point-to-midpoint axis
two. One reason is biological, other sources are artefacts(D1, (D2, D3)) is computed by simultaneously running
such as bent or circular chromosomes and overlappingsthrough the pathsD;,...,D; and Dy, ..., Dy for con-

For constructing a reliable longitudinal axis it is first eee ~ Structing the supporting points.

sary to understand why and when the various cases of one, The presence ofour dominant pointsD;, D3, Ds,

two, three,... dominant points arise. Biologists divide mi D indicates an X-shaped chromosome; we suggest to use
tosis (the process of nuclear division) into four stagetedal  the “midpoint-to-midpoint” axe$(D;, D2), (Ds, D4)) and
prophase metaphasganaphaseandtelophase At the be-  ((D2, Ds), (D4, D1)) which connect midpoints of oppos-
ginning of the prophase the chromosomes become distincite edges. As in the previous case, artefacts may create
for the first time. They get progressively shorter through a dominant points and we may again consider the point-to-
process of contraction or condensation. Next, in the meta-point axes determined by the opposite poiis, Ds) and
phase, the pairs of sister chromatids begin to separate. ThéD2, D4) and eight point-to-midpoint connections of a ver-
anaphase begins, when the chromatids are separated. THex to a non-incidentedde;, (D2, D3)), (D1, (Ds, D4)),

last stage, the telophase, finishes the process of nuclear di .. . We use the pathB, ..., D; andDy, ..., D3 for con-
vision. structing the supporting points of a midpoint-to-midpoint

For analysis, prophases and metaphases, only, are use@xis((D1, D3), (D3, Dy)).

The reason s that the band pattern blurs when chromosomes In some cases it is sufficient to use a subset of the axes
get shorter and shorter. It is not surprising that chromo- suggested above. In the case of four dominant points, e.g.,
somes of the same cell may be in different phases at thethe two midpoint-to-midpoint axes often suffice. Although
same time. In fact, modern preparation techniques try tovisual inspection of chromosome images shows that the
synchronize the phases of the division process. But applica longest diagonal or a point-to-midpoint axis is sometimes
tion of these methods is restricted and the classifier shouldcorrect, cf. Fig. 3(e),(f), admitting these axes does gt si
be able to handle prophases and metaphases simultaneouslkyificantly improve classification error rates. This mears th

Let (D4,...,Dy) be the increasingly ordered sequence these cases occur only rarely.



2.3. Rules

Sometimes, an early rule-based reduction of the number 3 ‘ul
of dominant points or axes is possible. As a rule for deleting
dominant pointsone may determine local deflection angles ! : nat
at each of the dominant points. In the case 4 we have an . p " ‘. J ‘
indication that the chromosome is in the late metaphase if " . . "
none is far away fror80°, cf. Fig. 3(c),(d). In the opposite (@) (b) (© (d)

case there is a large and a small angle; we may then delete
the dominant point belonging to the largest angle and send

this chromosome to the cakge= 3, cf. Fig. 3(a).

Concerning the choice ddixes the crux is to decide
whether three or more dominant points are caused by a
late metaphase or by artefacts. Assuming a rectangular

"'
...
»

shape, a crude estimate of the mean width of the chromo-

some, based on are& and boundary lengtV, is w =

(N —+/N? —16A4)/4. The mean width of a chromosome

in a cell is almost independent of its class. Hence, the-arith Figure 3. Four dominant points. (a) Bent chro-

metic mean of these widths across a cell is a stable estimate mosome; (b) X-shaped chromosome; (c) rect-

of @. If an edge is short and its length is of the order of the angular chromosome; (d) almost quadratic

mean width its midpoint is likely to lie on the correct axis, chromosome; (e) point-to-point axis correct;

cf. Figs. 2(c),(d) and 3(c). _ _ (f) acro- and metacentric chromosomes with
We finally try to detect point-to-point axes in the case  gjmjlar shapes

k = 3. A bentchromosome, cf. Fig. 2(a), often meets

the requirements of this case. It is indicated by the exist-

(e) M

ence of a deep essential minimum which suggests to deletesentric chromosome in late metaphase, cf. Fig. 2(b). In both
the opposite dominant point. But some caution is in order. cases, deletion would be wrong. Let us point out that the
If the remaining two dominant points define a short edge choice of these rules depends on the specific preparations
then the chromosome might be bent and in the process ofand cell types (amnion, chorion, blood, and bone marrow).
division, cf. Fig. 2(c). Otherwise, it could also be an acro- Of course, the more wrong cases the rules can exclude the

(@) (b)

!.
®.

(d)

Figure 2. Three dominant points.

)

(a) Bent

(e

chromosome; (b) acrocentric chromosome in
late metaphase; (c) bent chromosome in late
metaphase; (d) triangle with a short edge;

(e) almost equilateral triangles

better the classification results will be, provided the eotr
axis is still there.

As stated above, our method normally results in two,
three or four dominant points. A different number may be
created by strange artefacts such as overlappings and oc-
curs only rarely. In the case of one dominant point, we use
the opposite point as the most prospective complement. Fi-
nally, in the case of five or more, we remove all points but
the ones corresponding to the four largest essential maxima
and proceed with the cage= 4.

We have thus defined our axes for further processing.

3. Profile and feature extraction
3.1. Slices

Profiles are univariate functions along a longitudinal axis
obtained from local measurements. They are constructed
by dividing the chromosome in slices of equal width per-
pendicular to the longitudinal axis. As a first step, we
subdivide this axis by a sé¥f of equidistant subdivision
points. For the next step, let us denote byhe set of
pixels making up the chromosome image. We now e



to construct the Voronoi diagrad : M — 2! defined Data set year tissue # cells

by &(m) = {zel/mingen|y—zll=Im-=z|}, _
m € M. The Voronoi set®(m) are the slices required; Cpr[5] 1988-90 amnion 2804
their union isI. Pki 1999 amnion, chorion, blood 971

3.2. Profiles and features Table 1. Data sets for comparative studies

group [8, 7] designed various MAP—estimators based on
the statistical models mentioned above attaining erresrat

down to 1.2%. The present method of profile and feature
extraction further reduces this rate to 0.8%. It turned out

Following Piper and Granum [6], we extract up to three
profiles: Thedensity profiledescribes théocal massclose
to each point on the axis. It assigns the sum of the gray val-

?he:élﬁgfh S:Ef(;etczslt\s/;#pr?;rst'ngiEgénghg:'jéivgr\;e;f&g that a good number of “errors” of the automatic classifiers
Yy P y y were due to erroneous manual classifications. Therefore,

mosome p|xels_, aSS|gneq to the su_bdmsmn points fIUCtuatethe manual classification of Cpr was corrected by an ex-
heavily, in particular if slices are thin. Just as the cuvat

function. the density profile. too. is smoothed with a tri perienced cytogeneticist. The error rate of the best of our
’ NSty P . ) ) MAP—classifiers applied to this data set is the currently bes
angular kernel in order to eliminate noise. Tgeadient

fleis th qul ¢ diff f the densit il error rate of 0.6%, cf. [10].
profiie s the modulus of differences ot the densily proliie. The band level of Cpr lies between 150 and 200 and does
Information on the position of the centromere is contained

. . . . not meet modern medical requirements. We also began to
in the so—calledhape profile It is defined as thenoment d 9

-~ . . ) .. collect a new data set of clinical cells which we name “Pki”,
of inertia of each normalized slice relative to the tangential . .
L o ; . > cf. Table 1. Presently, it consists @f1 pro— or metaphases
direction of the longitudinal axis at the relative subdiors

point. Again, suitable smoothing is crucial. at the band level 350-450; it is likely to grow. Here, our

Piper and Granum [6] propose a set of 30 features,mmhOdS attain an error rate of 1.8%.
mainly certain linear functionals of the profiles above. We
adopt these features with minor changes. In particular, REferences
we use Fourier coefficients instead of “wdd"—coefficients.

Their numbers were determined by calibration. [1] F. C. Groen, T. K. ten Kate, A. W. M. Smeulders, and I. T.
Young. Human chromosome classification based on local
band descriptorsPatt. Rec. Letf.9:211-222, 1989.

4. Classification [2] P.Kleinschmidt, I. Mitterreiter, and J. Piper. Impralehro-
mosome classification using monotonic functions of Ma-
Each spline constructed in Sect. 2 yields two feature sets, halanobis distance and the transportation meth@®R—
one for each polarity. This results in between two and 12 Math. Meth. Oper. Res40:305-323, 1994.

feature sets per chromosome due to unknown polarity and [3] R. S. Ledley, H. A. Lubs, and F. H. Ruddle. Introduction
shape information. The “Simple Constrained Classifier— tlogt;gromosome analysisComput. Biol. Med.2:107-128,
lSe.IeCtor [9]”IS a I?]ayelsu’;m est!mator for thE shape, the pOI- [4] D. Marr. Vision Freeman, San Francisco, 1982.

arity, as well as the ¢ a.SS assignment at the §ame time. . t [5] J. Piper. Variability and bias in experimentally measiir
uses all feature sets as inputs and can be applied in combin- "~ ¢|assifier error ratesPatt. Rec. Lett.13:685-692, 1992.

ation with all statistical models that have proved to beuisef  [6] J. Piper and E. Granum. On fully automatic feature meas-

such as elliptical symmetry, quadratic asymmetry, and mix- urement for banded chromosome classificatiGgtometry

ture models with outliers, cf. [8, 7]. Moreover, it is effioie 10:242-255, 1989.

since it amounts to solvinglditchcock problem [7] G. Ritter and K. Gaggermeier. Automatic classificatidn o
Let us finally compare the error rates of some statistical chromosomes by means of quadratically asymmetric statist-

ical distributions.Pattern Recognition32:997-1008, 1999.

classifiers applied to the two data sets Cpr and Plaast [8] G. Ritter and M. T. Gallegos. Outliers in statistical teah

rectly segmentedells described in Table 1. Both data sets recognition and an application to automatic chromosome
consist of everyday clinical human cells and all classifiers classification Patt. Rec. Lett.18:525-539, 1997
areconstrainedto the correct number of chromosomes in 9] G. Ritter and M. T. Gallegos. A Bayesian’approach to objec

each of the 24 biological classes. Kleinschmidt et al. [2] identification in pattern recognition. In A. S. et al., edjto
fed an ML-estimator based on the normal density function Proceedings of the 15th International Conference on Patter
with the features described in [6] extracted from Cpr and Recognitionvolume 2, pages 418-421, Barcelona, 2000.
achieved an error rate of 3.1% relative to chromosomes. In[10] G. Ritterand G. Schreib. Using dominant points andarsts
the same paper, they also applied an ML—classifier with a fpr profile extraction from chromosome#®attern Recogni-
modified likelihood function to the same feature sets im- tion, 34:923-938, 2001.

proving the error rate to 2.0%. Subsequently, our work



