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Abstract: We propose a heuristic method of parameter estimation in mixture models for data
with outliers and design a Bayesian classifier for assignment of m objects to n ≥ m classes under
constraints.

This method of outlier handling combined with the classifier is applied to the well–known prob-
lem of automatic, constrained classification of chromosomes into their biological classes. We
show that it decreases the error rate relative to the classical, normal, model by more than 50%.
When applied to the Edinburgh feature data of the large Copenhagen image data set Cpr our
best classifier yields an error rate close to 1.3% relative to chromosomes; 4 out of 5 cells are
correctly classified.
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1 Introduction

The contribution of this paper is application of an idea from modern statistics to classification
problems: outliers. The method is applicable to general classification problems with numerical
features; it is mainly motivated by our goal to reduce the error rate of automatic chromosome
classification.

Experience shows that almost all real data contain outliers in the sense that (at least one of)
their features differ dramatically from what may be expected. There does not seem to be a
rigorous and unified concept of outlier to date; there are two vague notions instead. The first
one is (a) that of a ’spurious’ observation obeying no statistical law. There might even exist
data consisting solely of such outliers which would render these data intractible for statistics.
If an experiment containing such outliers is repeated then anything can happen: fewer or more
outliers and they may look similar or very different.

The other (b) refers to a distributional model of the data, in most cases a member of some
parametric family like the normal, the elliptically-contoured (elliptically-symmetric), or the ex-
ponential family, and is the subject of our interest here. This notion means observations that
obey some statistical law but appear more often than the assumed distribution allows. If there are
(b1) only one or very few outliers in the data (‘few’ relative to the total number of observations)
then these outliers might be rare events with respect to the distribution and do not necessarily
indicate an inappropriate distributional assumption on the data. If there are (b2) many outliers,
10% say, then they must be attributed to an inaccurate choice of the distribution. This notion
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is often associated with ’heavy tails’. When an experiment in a situation involving such outliers
is repeated then the outliers will look similar in number and characteristic.

In cases (a) and (b1) the best thing a statistician can do is

- identifying the outliers and rejecting them in order to restore the characteristics of the
data, or

- applying robust methods of estimation.

These methods try to eliminate or at least reduce the influence of outliers and to model the
regular observations, only. Therefore, if one applied these methods in case (b2) one would loose
genuine and useful statistical information on the population.

The usual parametric families are not flexible enough to serve as proper statistical models of
populations with outliers of type (b2) in the sense that one of their members fits the ’regular’
objects and the outliers at the same time. Besides the regular objects one has to model the
outliers as well. This can be done by

- modelling the population by means of a mixture of two distributions, one fitting the regular
observations and the other the outliers.

The mixture distribution should be chosen in such a way as to minimize the number of observa-
tions among the given data that appear as outliers. In this sense, appropriate model selection is
synonymous with absence of outliers in the data. It seems that the existing literature has con-
centrated mainly on estimating parameters of the regular populations, giving up the outliers for
the purpose of inference. In this paper we try to accommodate the outliers by carefully adapting
the distribution. In this way we consider outliers to be, albeit inconvenient, members of their
populations. This method is subsequently applied to discriminant analysis.

Bayesian discriminant analysis compares certain linear combinations of posterior densities of
a feature vector with respect to the classes considered. Statistical decision theory shows that
this classification method has minimal loss. Since posterior densities are products of likelihood
functions, i.e., class-conditional densities, and prior probabilities this optimality can only be ex-
ploited if accurate models of likelihood functions are used. Deviation from the class-conditional
densities means transition to a suboptimal classifier. The more accurate the model of the like-
lihood functions the better the classification. In the context of classification one must classify
all members of the population, including outliers. If these are not adequately modelled then
there is a high risk of their misclassification. This is the reason why we advocate modelling the
populations to precision in discriminant analysis, adapting class–conditional distributions also
to outliers of type (b2). Stated in other terms, we must find class–conditional distributions that
represent all observations including the potential outliers. The low error rate that we achieve in
our application to chromosome classification supports this rationale.

The outlines of the paper are as follows. In Section 2, we propose a trimming method for
estimating, besides the parameters of the regular population, the parameters of the outliers,
too, thus identifying the mixture model of data with outliers. This, however, presupposes a large
data set so that sufficiently many outliers are present to allow identification of their model.

In Section 3 we discuss a Bayesian method for assigning m objects to n (≥ m) classes where
classes may consist of several categories, e.g., regular and outlier objects. In Sections 4 and 5, this
method is applied to the well-known problem of automatic classification of human chromosomes
into their 24 biological classes.
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Classification of the suitably-stained chromosomes of a eukariotic cell under a light microscope
in their classes is a well-defined problem which is carried out by a human expert in about
10 minutes and at an error rate of 0.3% with respect to chromosomes (clinical applications).
Attempts to automate this task go back to the late fifties, cf. Ledley and Ruddle [1966]. For a
survey we refer the reader to Granum [1982] and Piper et al. [1980]. The task consists of

(i) selecting a metaphase cell under the microscope,

(ii) segmenting the cell in its chromosomes,

(iii) finding the medial axes of chromosomes,

(iv) computing shape and density profiles along the axes,

(v) extracting a number of numerical features, such as area, length, density, centromeric index,
number of profile maxima, shape, and band pattern from each chromosome, and

(vi) classifying the feature sets obtained by applying methods of discriminant analysis.

Often the phases (i) and (ii) are carried out interactively. We deal here with the last one of these
six successive phases, more specifically with statistical classification methods.

In our earlier paper Ritter et al. [1995] we designed a series of Bayesian classifiers, called
IECnormal, IECexponential, IECPareto, and IECempirical. They are all based on the statisti-
cal assumptions of independence of chromosomes in a cell and of elliptical symmetry (cf. Fang et
al. [1990]) of the feature set of each chromosome. The first of these assumptions is classical while
the second one is an extension of the classical assumption of normality and is new in the context
of chromosome classification. The subscript stands for the type of the radial function. In the
present paper we proceed a step further applying the outlier method of Section 2 to chromosome
analysis.

We use the Edinburgh feature data of the large Copenhagen image data set consisting of 2
804 human cells. These data contain outliers. There are chromosomes which are severely bent,
cf. Fig. 1(b), or overlapped by other chromosomes, cf. Fig. 1(c). In the first case, the image
processing involved in phase (iii) is likely to miss the correct medial axis

Fig. 1: (a) Regular, straight chromosome; (b) U-shaped chromosome; (c) overlapped chromo-
somes

Fig. 2: (a) Histogram of a feature exposing outliers. (b) Histogram of feature ‘area’ with only
few outliers.

of the chromosome so that profiles cannot be properly extracted, a confusion resulting in erro-
neous mesurements of most features of this chromosome. Nevertheless, the features ‘area’ and
‘density’, not depending on the medial axis, are still reliable. In the second case at least the
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band pattern, providing usually a set of very characteristic and discriminating features, is con-
taminated; yet, the features ‘area’ and ‘length’ are still reliable. Such chromosomes, while being
perfectly normal from a biological and medical point of view, will appear as outliers from their
classes with respect to any member of the known parametric models although they contain
some information on their classes. Since there are a large number of them they can be consid-
ered as outliers of type (b2). We, therefore, use the trimming method described in Section 2,
decomposing each class into two categories, a regular and an outlier category. Assuming again
that the feature sets of both the regular and the outlier populations are elliptically contoured,
we obtain mixture models of the classes which we can identify. Feeding the mixture densities
into the constrained classifiers of Section 3 we obtain a series of new classifiers IECOϕψ, the
letter I standing for independent chromosomes, EC for elliptically contoured, and O standing
for outlier; the subscripts ϕ and ψ indicate types of radial functions of the regular and outlier
densities, respectively. In order to take account of numerical abberations we design a classifier
for cells containing 46 chromosomes and two classifiers for cells with one missing and one extra
chromosome (trisomy), respectively.

The constrained classifiers take into account the correct number of chromosomes in each bio-
logical class. Thus, the classes estimated are not the 24 biological classes but essentially the
permutations of the chromosomes in the cell which means a classification problem with more
than 1051 classes. Tso and Graham [1983] showed how it can be efficiently solved.

We show experimentally that the new classifiers substantially improve classification results. The
best previous classifier known to us is due to Kleinschmidt et al. [1994]; it has been identified in
Ritter et al. [1995] as the MAP classifier for the Pareto–tailed elliptically–contoured statistical
model of chromosomes and we called it IECPareto in our taxonomy. Since such a distribution
has a heavy tail (relative to the normal distribution) it tolerates outliers with respect to normal
data and can be considered as a robust method of classification. Yet, our currently best classifier
IECOnorPar, applied to the same feature data, reduces its cross–validation error rate by more
than 30%; cf. the comparison of MAP classifiers under various distributional assumptions shown
in Table 5.1. A reduction by 26% is due to the method of outlier handling which is the main
subject of this paper and another 6% to more admissible and robust estimation of covariance
matrices, cf. Subsection 2.3. The new classifier attains an error rate of 1.32%, cf. Table 5.1(b).
This error rate is relative to all cells in the data set.

Our algorithms were implemented in the Programming Language C. Classification of a cell on
a SUN workstation SPARC 10 takes about 0.4 seconds.

An abstract of this paper was published as a conference report Gallegos and Ritter [1996].

2 Populations with outliers

2.1 A statistical outlier model

Not much is known about outlier treatment in the multidimensional case. As explained in the
introduction, we assume that the whole, contaminated, population consists of a mixture of
two populations, a regular population with distribution µREG and an outlier population with
distribution µOUT :

µPOP = (1 − α)µREG + αµOUT .

Here, α is the prior probability of appearance of an outlier. Such mixture models of data with
outliers go back to Dixon [1953] and Tukey [1960]; cf. also Barnett and Lewis [1994], p. 46
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(iii). The point which seems to be new in our approach is that we identify not only µREG, but
also µOUT for establishing a closer statistical model of µPOP for the purpose of classification.
Our experiments in Section 5 show that this procedure is superior to applying merely robust
methods.

If the distributions µREG and µOUT are assumed to be members of given parametric families
then there exist Bayesian algorithms for estimating their parameters, cf. Mardia et al. [1979],
Ch. 13.2. A popular method is the EM algorithm studied in Dempster et al. [1977]. It is also
possible to apply clustering algorithms; for an overview see Bock [1996]. Another method for
detecting the regular observations is the minimum–volume– ellipsoid estimator, cf. Rousseeuw
[1987], p. 258. One might also assume that there are more outlier classes than just one. These
may, however, sometimes become too small for reliable estimation of their parameters. A related
algorithm, derived from the EM algorithm, which has the advantage of estimating also the
number of classes is designed in Cheeseman et. al. [1988]. Some of these algorithms are not
efficient enough to allow application to very large data sets and/or high–dimensional feature
spaces.

We found that the simple, heuristic trimming method described in the following subsection is
sufficient for a substantial reduction of the error rate. We do not claim that this is the best
method to search for an appropriate mixture–model structure of class–conditional distributions
and comparison of different methods for identifying mixture models is not the purpose of this
paper. We rather compare various statistical models of class–conditional distributions like the
normal, the elliptically–symmetric, and mixture models for classification and give evidence that
application of mixture models can improve classification results to a considerable extent.

2.2 Parameter estimation in mixture models with outliers

Let the feature space be denoted by S and let M be a family of distributions on S. Let there
be given a scalar indicator χ : M×S → R which discriminates sufficiently well between regular
objects and outliers with respect to M: If χ(µ,x) exceeds some specific cutoff then an object
with features x ∈ S is classified as an outlier with respect to the distribution µ ∈ M and
as regular, otherwise. In the case of an elliptically-contoured family M a natural indicator is
the Mahalanobis distance. More generally, moments could be used. Our method of parameter
estimation then proceeds in two steps.

For estimating µOUT we need a method for identifying outliers, cf. Davies and Gather [1993] or
Hawkins [1980]. This, in turn, needs at least an approximation of µREG. In a first step we provide
this by using a modified, multivariate version of Anscombe’s [1960] premium protection rule; it
is related to the ellipsoidal trimming method, cf. Barnett and Lewis [1994], p. 277. Let us denote
the whole, contaminated, population by POP and its estimated distribution by µ̂POP ∈ M. An
observation x ∈ POP is classified as basic if χ(µ̂POP ,x) does not exceed a cutoff cutBAS to be
specified in advance. This value should be chosen in such a way as to qualify the largest part
of POP , say 90%, as basic. Denote the resulting basic population by BAS and its estimated
distribution by µ̂BAS ∈ M. This is the required approximation of µREG. The distributions µ̂POP
and µ̂BAS are assumed to belong to the same parametric family M. Of course, its parameter
set must be small enough to make reliable parameter estimation possible on the basis of the
observations.

The second step needs outlier identification. An observation x ∈ POP is classified as an outlier

with respect to µ̂BAS (or µREG) if χ(µ̂BAS ,x) exceeds another cutoff cutOUT to be specified
in advance. If µREG is assumed to be normal and χ(µ̂BAS , ·) is the Mahalanobis distance with
respect to expectation and variance of µ̂BAS then a reasonable choice of cutOUT is about two
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standard deviations. In practice, cutOUT (and cutREG) will have to be determined by calibration.
Let the resulting outlier population be denoted by the symbol OUT . The populations BAS and
OUT will usually overlap to a certain degree since BAS is determined by µ̂POP and OUT by
µ̂BAS . Let the estimated distribution of the population OUT be denoted by µ̂OUT . This is our
estimation of µOUT . As mentioned above, we use the distribution µ̂BAS as an approximation of
the distribution µREG. This is justified by definition of the outlier population OUT . In short,
we have the following diagram of dependencies:

POP −→ µ̂POP
cutBAS−→ BAS −→ µ̂BAS

cutOUT−→ OUT −→ µ̂OUT .

The process could be iterated. This would not substantially improve the quality of the mixture
model and we prefer to keep the algorithm simple.

2.3 Estimation of covariances: covariance weighting

The quality of the model identified in 2.2 depends on the quality of the estimates of covariances
(and expectations) which are needed for identifying µ̂BAS and µ̂OUT . The obvious estimators
enjoy only asymptotic optimality properties and it is beneficial to apply more admissible and
robust methods also in the present situation. Several heuristic methods exist for improving
estimates of covariances; cf. Friedman [1989]. These mostly come down to either squashing the
eigenvalues, or enlarging the diagonal, or diminishing the off–diagonal entries. Theoretically
well–founded methods can be found in the literature cited in Friedman [1989], beginning of
Section 3. Some of them are derived from the James–Stein estimator; cf. Stein [1956], James
and Stein [1961],

Consider a random vector Y : (Ω, P ) → Ra. It has been known for a long time that the obvious
estimator ϕ(Y ) = Y of EY is (unbiased and) admissible within the classes of all unbiased or
translation–invariant estimators of EY ; i.e., this estimator has minimum square risk within these
classes uniformly for all possible vectors EY ∈ Ra. Stein, loc. cit., showed that, if Y is i.i.d. and
not deterministic, it is inadmissible within all estimators if b ≥ 3. Moreover, James and Stein
[1961], Formula (6), proved that the estimator

ϕJS(Y ) = (1 −
a− 2

Y T V (Y )−1 Y
)Y(1)

has uniformly smaller risk with respect to the quadratic form associated with V (Y )−1 and is
optimal among all estimators of the form (1 − b

Y T V (Y )−1 Y
)Y, b ∈ R. It is a multiple of Y by a

factor c < 1 depending on Y .

Piper et al. [1994] apply the James–Stein estimator to the off-diagonal entries of covariance
matrices deriving from it a method of improved covariance estimation which they call covariance

weighting. Covariance weighting means multiplication of the off-diagonal elements of a covariance
matrix by a factor c < 1. This factor will be called Stein factor. In the context of chromosome
classification, Piper [1987] noticed that, if the data set is small, even the factor c = 0 can
sometimes be optimal. In our case, the error rate decreases, even with the large data set used,
by about 6% if the factor c = 0.9 is applied; cf. Table 5.1.

It is interesting to discuss the effect of covariance weighting on the eigenvalues. First, since the
diagonal is not affected, the sum of the eigenvalues remains invariant. For the next argument
we restrict matters to the case of a positive-definite matrix V with a constant diagonal with
entries v since a more general investigation would lead us too far afield; the eigenvalues of V
are scattered around v. In this case, V c = (1 − c)vI + cV is the matrix obtained from V by
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covariance weighting. From this representation it is clear that the eigenvalues of V c are the
convex combinations (1− c)v+ cλ of v and the eigenvalues λ of V . Hence, the smaller the factor
c the smaller the scatter of the eigenvalues of V c around v.

3 Bayesian estimation of assignments of objects to mixed classes

3.1 Statistical decision problem and decision set

We now design a Bayesian classifier for the optimal assignment of m objects i ∈ 1..m to n classes
j ∈ 1..n, m ≤ n, where each class j consists of several categories in Cj. (In our application
to chromosome classification there are the two categories ’regular’ and ’outlier’, and the two
categories of sex. Eight additional categories are needed for the extra class in a trisomy cell.)
Each class may appear only once and categories within classes may be chosen according to given
prior probabilities. We also consider the case where one or more classes are not represented by
objects, i.e., the object classes make up some unknown subset M ⊂ 1..n,#M = m < n.

To make things precise assume that the model of an object of class j ∈ 1..n and of category
k ∈ Cj is a random variable Zkj : (Ω, P ) → S in a state space S. Introducing the random
categories Kj : (Ω, P ) → Cj we observe a random variable X = (X1, . . . , Xm) : (Ω, P ) → Sm,

a permutation of (Z
Kj

j )j∈M for the unknown subset M of classes. The task consists in finding

the class of the object i with observation Xi. To this end, let I
(n)
m be the set of all assignments

(injective mappings) 1..m→ 1..n. We ask for the assignment ϕ ∈ I
(n)
m such that

(Xi)
m
i=1 ∼ (Z

Kϕ(i)

ϕ(i) )mi=1.

Thus, a possible decision set of the present statistical decision problem is I
(n)
m .

3.2 Likelihood function

For determining the likelihood function Lx(ϕ), ϕ ∈ I
(n)
m , of the above statistical classification

problem posed in Subsection 3.1 we introduce the random injective mapping Φm : (Ω, P ) → I
(n)
m .

It is natural to assume that the random variables Zk
j , j ∈ 1..n, k ∈ Cj,Φm, and Kl, l ∈ 1..n, are

all independent. If the density of Zkj with respect to some given reference measure ρ on S is fZk
j

then the likelihood function of the classification problem is given by

Lx(ϕ)

= P [X1 ∈ dx1, . . . , Xm ∈ dxm/Φ = ϕ]/ρ⊗m(dx)

= P [Z
KΦ(1)

Φ(1) ∈ dx1, . . . , Z
KΦ(m)

Φ(m) ∈ dxm/Φ = ϕ]/ρ⊗m(dx)

= P [Z
Kϕ(1)

ϕ(1) ∈ dx1, . . . , Z
Kϕ(m)

ϕ(m) ∈ dxm]/ρ⊗m(dx)

=

m
∏

i=1

f
Z

Kϕ(i)
ϕ(i)

(xi),(2)

x = (x1, . . . , xm) ∈ Sm, ϕ ∈ I
(n)
m . The prior probability of membership of an object of class j to

category k ∈ Cj will be denoted by pj,k = P [Kj = k]; of course,
∑

k∈Cj
pj,k = 1 for all j. By the
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formula of total probabilities the ρ-density of Z
Kj

j is the mixture

f
Z

Kj
j

(x) =
∑

k∈Cj

pj,kfZk
j
(x),(3)

j ∈ 1..n, x ∈ S, of the density functions fZk
j
, k ∈ Cj .

3.3 Prior probabilities of missing objects

We next establish a statistical model of the distribution of Φm. As usual, the symmetric group

of m elements is denoted by Sm. Note that any injective mapping ϕ ∈ I
(n)
m is specified by its

image Imϕ and its permutation Per ϕ := ι−1 ◦ ϕ ∈ Sm, where ι : 1..m → Imϕ is the order
isomorphism. We make the following assumptions on ImΦm and PerΦm:







(i) there are numbers αj ≥ 0, 1 ≤ j ≤ n, such that, for all M ⊆ 1..n,
#M = m, we have P [ImΦm = M ] = cm

∏

j /∈M αj and

(ii) PerΦm is uniformly distributed on Sm.

(4)

Assuming now that ImΦm and PerΦm are independent we obtain for the prior probabilities

µm(ϕ) = P [Φm = ϕ] = c′m
∏

j /∈Imϕ

αj , ϕ ∈ I(n)
m ,(5)

where αj ≥ 0 for j ∈ 1..n. In Subsection 4.3, we will need the case m = n− 1. Here, (4) reads







(i) there are numbers αj ≥ 0, 1 ≤ j ≤ n, such that, for all j ∈ 1..n, we
have P [j /∈ ImΦn−1] = αj and

(ii) PerΦn−1 is uniformly distributed on Sn−1.
(6)

The distribution (5) arises in a natural way: First toss a coin for each j ∈ 1..n, coin j with
probability of failure gj < 1. Let the random set N : (Ω, P ) → 21..n consist of those elements in
1..n for which the toss was a success. Then perform a random permutation of N with uniform
distribution and independent of the coin tossings in order to derive a random injective mapping

Φ : (Ω, P ) →
⋃

m≥0 I
(n)
m from N . It is clear that Φ satisfies (4)(ii) conditional on #N = m.

Moreover, for M ⊆ 1..n, #M = m, we have by construction

P [ImΦ = M/#ImΦ = m]

=
P [ImΦ = M ]

P [#ImΦ = m]

= c′′m
∏

j∈M
(1 − gj)

∏

j /∈M

gj(7)

= c′′′m

n
∏

l=1

(1 − gl)
∏

j /∈M

gj
1 − gj

.

This expression is of the form (4)(i) with αj =
gj

1−gj
. Thus, the distribution of Φm is the

distribution of Φ conditional on #ImΦ = m.
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3.4 MAP estimator

By (2) and (5) the MAP estimator of classes is of the form

MAP (x)

= argmaxϕLx(ϕ)µ(ϕ)(8)

= argmaxϕ

m
∏

i=1

f
Z

Kϕ(i)
ϕ(i)

(xi)
∏

j /∈Imϕ

αj .

Let us define a permutation σ of 1..n by putting σ(i) = ϕ(i) for i ∈ 1..m and by denoting the
elements of 1..n \ Imϕ in their natural order, say, by σ(m+ 1)..σ(n). It follows

MAP (x) = argmaxσ

m
∏

i=1

f
Z

Kσ(i)
σ(i)

(xi)
n

∏

i=m+1

ασ(i).(9)

Putting

ci,j :=

{

−ln
∑

k∈Cj
pj,kfZk

j
(xi), i ≤ m,

−ln αj, i > m,
(10)

we obtain from (9), (3), and (10)

MAP (x) = argminσ

n
∑

i=1

ci,σ(i),(11)

a standard linear assignment problem. Although the size of the solution space is of the order
of n! this problem can be efficiently solved by the Hungarian method, cf. Papadimitriou and
Steiglitz [1982], or by Balinski’s [1985] algorithm. The connection between linear assignment and
constrained Bayesian classification was discovered by Tso and Graham [1983] and developped
to an instrument of karyotyping by Tso et al. [1991].

If S = Rd and if the random variables Zkj are elliptically symmetric the resulting classifiers
are extensions of the classifiers IECϕ based on the assumptions of independent objects and
elliptically-contoured feature vectors introduced in Ritter et al. [1995]. We call the new classifiers
IECOϕψ, the letter O standing for outlier and the subscripts ϕ and ψ indicating types of radial
functions of the regular and outlier densities, respectively.

The most useful radial functions are the functions ϕnormal(r) = βnor e
−r2/2, ϕexponential(r) =

βexp e
−
√
d+1 r, and ϕPearsonV II

(r) = βPear (1+r2/η)−λ/2; they belong to the normal distribution,
the spherically–symmetric distribution with exponential tail, and distibutions with asymptotic
Pareto tails β r−λ like the Pearson-VII distribution, respectively. In the latter distibutions the
exponent λ > d+ 2 is a free parameter and η depends on it. For a more detailed description of
radial functions we refer the interested reader to Ritter et al. [1995], Subsection 3.2.

If, after estimation of the class σ(i) of object i, we wish to estimate its category a possible
estimator is argmaxkpσ(i),kfZk

σ(i)
(xi). The estimator of class and category obtained in this way

is, however, not the Bayesian estimator.
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4 Application to automatic chromosome classification

We finally apply the foregoing material to automatic classification of human chromosomes in
the presence of outliers where each chromosome is represented by d numerical features.

4.1 Possible numerical aberrations

A normal human cell contains 46 chromosomes, 44 of which consist of 22 matching pairs of
autosomal chromosomes 1..22 1..22 and the sex chromosomes XY and XX in male and female
cells, respectively. However, some cells represent abnormal constellations and sometimes there
are artifacts of preparation and culture. These aberrations usually cause a cell to contain fewer
or additional chromosomes.

A biologically pathological constellation with one missing chromosome is Turner’s syndrome

1..22X1..22. Other cases of missing chromosomes are usually artifacts; here the missing chromo-
some may be of any class. Extra chromosomes are contained in cells with autosomal trisomies or
pathological constellations of sex chromosomes. The main trisomies are Down’s syndrome (triple
21), Edward’s syndrome (triple 18), Pätau’s syndrome (triple 13), and the trisomies triple 14,
triple 15, triple 16; they occur in both males and females. The pathological constellations of sex
chromosomes are XXX, XYX, and XY Y . Other syndromes, which are usually not viable up
to the 12th week, are not considered here.

From this discussion it is clear that we need three classifiers: One for cells with 46 chromosomes
and two classifiers for cells with one missing and one extra chromosome, respectively. We now
turn to the design of these classifiers.

4.2 Cells containing 46 chromosomes

A cell containing 46 chromosomes will be assumed to be a normal male or female cell. In the
female case it consists of 23 matching pairs of homologous chromosomes, the 23rd pair consisting
of two X-chromosomes. In a male cell one X-chromosome is replaced by a Y-chromosome. Thus
there are 24 classes, namely 1 to 22 and X,Y which will be identified with classes 23 and 24,
respectively. For the sake of applying the estimator of Subsection 3.4, where only one object per
class is allowed, we introduce the 46 (virtual) classes 1..46, classes j and j + 23 being identical
for j ∈ 1..23 in the female case and for j ∈ 1..22 in the male case. Therefore, m = n = 46
here. We assume that chromosomes of each class may be of two qualities: regular (REG) or
outlier (OUT ). Each chromosome is represented by d real-valued features, i.e., S = Rd and ρ is
d-dimensional Lebesgue measure λd.

We illustrate the range of the MAP-estimator 3.4(10),(11) by handling, besides classes, also
outliers and sex. Classes 1..45 are divided into two categories, namely the qualities REG and
OUT , class 46 possesses the four possible categories of quality and sex f or m,

Cj =

{

{REG,OUT}, 1 ≤ j ≤ 45,
{REG,OUT} × {f,m}, j = 46.

In Ritter et al. [1995], we have shown that the elliptically-symmetric family, cf. Fang et al. [1990],
is a successful type of class–conditional distributions for chromosome classification. Thus, we
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assume

fZk
j

=























f
(q)
j , 1 ≤ j ≤ 23, k = q,

f
(q)
j−23, 24 ≤ j ≤ 45, k = q,

f
(q)
23 , j = 46, k = (q, f),

f
(q)
24 , j = 46, k = (q,m),

(12)

with

f
(q)
j (z) =

1

2
ln det V

(q)
j − ln ϕ

(q)
j ((z − e

(q)
j )T (V

(q)
j )−1/2(z − e

(q)
j )),(13)

1 ≤ j ≤ 24, q ∈ {REG,OUT}, z ∈ Rd. The parameters e
(q)
j ∈ Rd, V

(q)
j ∈ GL(d), and

ϕ
(q)
j : R+ → R+ are the expectations, the variances, and the radial functions of the biological

classes j of quality q, respectively.

We also need the prior probabilities pj,REG and pj,OUT = 1 − pj,REG of a chromosome of class
j ∈ 1..46 to be regular or an outlier and the probabilities p46,(q,s) = p46,qps, q ∈ {REG,OUT},
s ∈ {f,m}, cf. Subsection 3.2. No αj ’s for missing classes are needed here.

4.3 Cells containing 45 chromosomes

We assume that a cell containing 45 chromosomes is a normal female or male cell with one chro-
mosome of any class missing. Therefore, the parameters of Subsection 4.2 apply here, too, in par-
ticular, there are the probabilities pj,q, 1 ≤ j ≤ 46 and p46,(q,s) = p46,qps, q ∈ {REG,OUT}, s ∈
{f,m}. All cases of missing classes could be covered by assuming that one of the classes 1..23
is missing. However, this approach would not permit to introduce the correct prior probability
of Turner’s syndrome. We, therefore, open class 46, too, as a possibly missing class arranging
matters so that the constellation 1..22 1..22Y is reflected by the missing class 23 and Turner’s
syndrome by missing class 46.

Therefore, the difference between the present case and that described in Subsection 4.2 is m = 45
and the appearance of parameters αj , j ∈ 1..23∪{46}, to be chosen in such a way that the random
mapping Φn−1 appearing in 3.3(6) satisfies P [j /∈ ImΦn−1] = αj . This means that αj is the
probability of absence of class j if j ∈ 1..22, the overall probability of constellation 1..22 1..22Y if
j = 23, and the overall probability of constellation 1..22X 1..22 (Turner’s syndrome or artifact)
if j = 46. Denoting by p23 the probability of the missing X-chromosome in a male cell, we have
α23 = p23pm and denoting by pT the probability of occurrence of the constellation 1..22X 1..22
in a female cell, we also have α46 = pT pf .

Leaving aside qualities in the following discussion there are three assignments competing for
Turner’s syndrome, namely

i → 23, 46 → (46, f),
i → 23, 46 → (46,m), and
46 → 23, i → (46, f).

The weights contributed by chromosome i and the dummy chromosome 46 are

−(ln f23(zi) + ln α46 + ln p46,f ),
−(ln f23(zi) + ln α46 + ln p46,m), and
−(ln f23(zi) + ln α23 + ln p46,f ),

respectively. Since α46 > α23 and p46,m > p46,f , both inequalities for biological reasons, the
second one will always be chosen.
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4.4 Cells containing 47 chromosomes

We assume that a cell containing 47 chromosomes belongs to either one of the known tri-
somies (Down, Edwards, Pätau, 14, 15, 16) or one of the constellations XXX, XYX, XY Y
(cf. Subsection 4.1). We handle these situations by putting m = n = 47. Classes 1..46
and categories Cj , j ∈ 1..46, are as before and class 47 consists of the categories C47 =
{REG,OUT} × {13, 14, 15, 16, 18, 21, X, Y }. Likelihood functions are, mutatis mutandis, as de-
scribed in (12). There are no classes missing and hence no αj ’s. The prior probabilities p47,(q,t),
(q, t) ∈ C47 can be represented as products p47,qqt, where qt is the probability of occurrence of
a trisomy t relative to all trisomies, if t ∈ {13, 14, 15, 16, 18, 21}, qX is the relative probability
of occurrence of the XXX constellation, and qY is the relative probability of occurrence of the
XY Y constellation. Instead of relative probabilities one can take overall probabilities (i.e., ith
respect to all cells).

Similarly as in the case of a missing chromosome there is ambiguity concerning the constellation
XYX. Again leaving aside qualities, it can be represented by two assignments

i1 → 23, i2 → (46,m), i3 → {47, X} and
i1 → 23, i3 → (46, f), i2 → {47, Y }.

The weights contributed by i1, i2, i3 are

−(ln f23(zi1) + ln f24(zi2) + ln p46,m + ln f23(zi3) + ln qX)

in the first case and

−(ln f23(zi1) + ln f23(zi3) + ln p46,f + ln f24(zi2) + ln qY )

in the second case. If p46,mqX > p46,fqY , which we assume, then the second assignment causes
the larger total weight and does not appear as a minimal solution and the first leads to the
correct weight of this constellation.

5 Experimental results

We have implemented the algorithms described in Sections 4 and 3 in the Programming Language
C on a SUN workstation SPARC 10. IEC works at a speed of about 4 cells/sec. By (10), the

IECO-models require both likelihoods f
(REG)
j (xi) and f

(OUT )
j (xi), cf. (13), for computing one

entry ci,j, i ≤ m, of the table of weights; hence, the new method takes almost twice as long.

5.1 Data set

For our experiments we used the Edinburgh feature data of the large Copenhagen data set
Cpr; cf. Piper [1992]. It consists to date of 2,804 karyotyped metaphase amnion cells 1,344 of
which are female and 1,460 are male, i.e., contain a Y-chromosome. These 2,804 cells consist of
2,740 cells with 46 chromosomes, there is one chromosome missing in 26 cells, 37 cells possess
one extra chromosome, and one cell contains 48 chromosomes. Besides these normal cells and
’normal aberrations’ there are also strange constellations. There are, e.g., cells containing 46
chromosomes but only one chromosome of some autosomal class and a trisomy. (Since these do
not contribute substantially to the overall classification error we did not consider them as possible
cases in our classifiers although this could be done.) Among the cells with a missing chromosome
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there are 8 Turner syndromes, the set of cells with 1 extra chromosome is composed of 15 Down, 7
Edwards, and two Pätau syndromes, one trisomy 15, one trisomy 16, two Klinefelter syndromes,
four XYY-constellations, and five cells containing unclassified chromosomes.

Each chromosome is described by 30 normalized features 0, . . . , 29 extracted by the Edinburgh
MRC chromosome analysis system described in Piper and Granum [1989]. These features contain
information about size, density, convex hull perimeter, centromeric index, shape, and band
pattern; cf. Granum [1982] and Piper et al. [1980] for a description of features. Since features 0,
7, 27 and 4, 26 are highly correlated with features 1 and 3, respectively, and since the last feature
29 shows a tendency to increase error rates, we have worked with the remaining 24 features so
that d = 24.

5.2 Estimation of model parameters

The elliptically-symmetric family, cf. (13), was chosen for µ̂BAS and µ̂OUT . A natural choice for
the indicator of outliers χ, cf. Subsection 2.2, is the Mahalanobis distance. The usual sample
expectations and sample covariances were used as parameters. For classification (but not for pa-
rameter estimation), the variances of both the basic and the outlier populations were multiplied
outside the diagonal by the Stein factors shown in Tables 5.1 and 5.2. Best results are achieved
if µ̂BAS is assumed to be normal. Classification is insensitive to the radial function of µ̂OUT
at low values of r, values smaller than 5, say. It is, however, important to match the empirical
radial function at higher values. Since the graph of the negative logarithm of the empirical radial
function of the outlier population is sigmoidal, radial functions with Pareto tails for µ̂OUT yield
the best classification results; cf. the end of Subsection 3.4.

Properly speaking, the free exponent λOUT of the Pareto tail depends on the outlier population
and hence on the cutoff cutOUT chosen. It, however, turns out that it is only very weakly
sensitive to the cutoff. The exponent can be estimated by plotting the negative logarithm of the
empirical radial function. This, in turn, can be estimated with the aid of the empirical radial
density, cf. Ritter et al. [1995], Subsection 4.2. The exponent λOUT = 30.5 matches the tail
of the outliers best. The empirical radial function, which can be estimated by histogram-and-
smoothing techniques, did not yield better results. The optimal cutoffs are cutBAS = 8.5 and
cutOUT = 7.0; cf. Subsection 2.2. A study of the sensitivity of classification results to these
parameters is shown in Table 5.3.

For the sake of comparison we present in Tables 5.1 and 5.2 also the results for normal and
exponentially–tailed µ̂OUT and also the results for IECϕ. The exponent λ = 28 was chosen in the
case IECPar. This completes the description of the estimates of class–conditional distributions.

As prior probabilities (cf. Subsections 4.2–4.4) we chose pj,REG = 0.95 for all j ∈ 1..46 and, in
accordance with standard cytogenetical tables:

- pm = 0.55, pf = 0.45;

- pj = 1/4, 000, 1 ≤ j ≤ 22, p23 = 1/8, 000, pT = 1/2, 000;

- q13 = 1/5, 000, q14 = q15 = q16 = 1/10, 000, q18 = 1/3, 000, q21 = 1/700, qX = qY =
1/1, 000.

5.3 Estimated probabilities of misclassification

The (optimistic) error rate obtained by using the training set also as test set (in the present
case all cells) is called the resubstitution error rate. For assessing holdout (cross–validation) error
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rates we used the following jackknifing method: We divided the 2,803 cells with at most 47
chromosomes at random into 7 disjoint test sets of 400 or 401 cells each. For each of these test
sets the parameters of the classifiers were estimated by means of the remaining cells. The holdout
error rate is the arithmetic mean of the errors obtained from the 7 test sets. The Bayes error of
the methods can be expected to lie between the holdout and the resubstitution error rates; cf.
Fukunaga [1990]. The overall error rates are displayed in Table 5.1.

Table 5.1. Comparison of overall holdout and resubstitution error rates for the classifiers IEC
and IECO with the Stein factors 0.9 and 1.0; cf. Subsection 2.3. All classifiers are constrained
on the correct number of chromosomes in each class; cf. Sections 3 and 4. The classifiers IEC are
based on the elliptically–contoured distributional models of feature vectors, their types ’normal’,
’exponential’, and ’Pareto–tailed’ being indicated as subscripts, cf. the end of Subsection 3.4.
The new classifiers IECO are based on mixtures of normal and elliptically–contoured distribu-
tions, instead; cf. Subsection 3.4. The expression p/q means that p% of chromosomes and q% of
cells were misclassified. Standard deviation with respect to q is roughly 1. In the mean, there
are between three and four chromosomes misclassified in a misclassified cell. It follows that a
standard deviation with respect to p is roughly 0.1. The table shows that the classifiers IECO
are superior to the classifiers IEC. The best classifier reported here is IECOnorPar with a Stein
factor of 0.9.

(a) IEC

IECnor IECexp IECPar
holdout (%)
Stein factor 0.9

2.68/34.5 2.13/28.8 1.84/25.2

holdout (%)
Stein factor 1.0

2.97/37.3 2.31/30.7 1.94/26.3

resubstitution (%)
Stein factor 0.9

2.55/33.3 1.99/27.3 1.72/24.0

resubstitution (%)
Stein factor 1.0

2.75/35.6 2.12/28.8 1.83/25.1

(b) IECO

IECOnor nor IECOnor exp IECOnor Par
holdout (%)
Stein factor 0.9

1.50/21.4 1.39/20.4 1.32/19.3

holdout (%)
Stein factor 1.0

1.62/22.8 1.50/21.6 1.45/20.9

resubstitution (%)
Stein factor 0.9

1.19/17.9 1.13/17.1 1.09/16.5

resubstitution (%)
Stein factor 1.0

1.21/18.1 1.14/17.3 1.09/16.6

Error rates in the cells containing 45 or 47 chromosomes are about twice as large as the overall
error rates shown in Table 5.1. The numbers of correctly recognized constellations among the 32
pathological constellations with one extra chromosome are shown in Table 5.2. Table 5.3 shows
a study of the sensitivity of classification results to the parameters cutBAS , cutOUT , and λOUT in
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the case of the classifier IECOnorPar. It shows that classification results are almost insensitive
to alterations of cutBAS and λOUT by ±1; an alteration of cutOUT by ±1 increases the error rate
by only 0.1.

Table 5.2. Number of correctly recognized pathological constellations with 47 chromosomes. The
data set Cpr contains 32 pathological constellations with one extra chromosome. By ‘correctly
recognized’ we mean that the three chromosomes determining the particular constellation have
been correctly classified; other chromosomes in this cell may be misclassified. Standard deviation
in Table 5.2 is 2. The table shows that the classifiers described in Subsection 4.4 recognize most
of these constellations correctly.

(a) IEC

IECnor IECexp IECPar
holdout (%)
Stein factor 0.9

27 28 28

resubstitution (%)
Stein factor 0.9

27 28 28

(b) IECO

IECOnor nor IECOnor exp IECOnor Par
holdout (%)
Stein factor 0.9

29 29 29

resubstitution (%)
Stein factor 0.9

30 30 29

Table 5.3. Sensitivity of classification results to the parameters cutBAS , cutOUT , and λOUT , cf.
Subsections 2.2 and 3.4, in the case of the estimator IECOnorPar. The first line represents the
optimal parameters; in the other lines, one parameter differs from the optimal one by at most ±1.
The table shows that classification results are almost insensitive to small deviations of cutBAS
and λOUT from their optimal values and only weakly sensitive to the parameter cutOUT .

cutBAS cutOUT λOUT holdout(%) resubstitution(%)

8.5 7.0 30.5 1.32/19.3 1.09/16.5
8.5 7.0 29.5 1.33/19.6 1.07/16.3
8.5 7.0 31.5 1.33/19.4 1.08/16.3
8.5 6.0 30.5 1.40/20.4 1.19/17.6
8.5 6.5 30.5 1.36/19.6 1.10/16.6
8.5 7.5 30.5 1.37/19.9 1.07/16.3
8.5 8.0 30.5 1.43/20.5 1.07/16.3
7.5 7.0 30.5 1.33/19.2 1.10/16.3
9.5 7.0 30.5 1.33/19.6 1.08/16.4
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