
⁄
0047-259X/01 $35.00

© 2001 Elsevier Science
All rights reserved.

Journal of Multivariate Analysis
doi:10.1006/jmva.2001.2009, available online at http://www.idealibrary.com on

Bayesian Object Identification: Variants1

1 Research supported by Deutsche Forschungsgemeinschaft Grant Ri477/4.

Gunter Ritter2 and Marı́a Teresa Gallegos

2 E-mail: ritter@fmi.uni-passau.de.

Universität Passau, D-94 030 Passau, Germany

Received April 19, 1999

We present a Bayesian theory of object identification. Here, identifying an object
means selecting a particular observation from a group of observations (variants),
this observation (the regular variant) being characterized by a distributional model.
In this sense, object identification means assigning a given model to one of several
observations. Often, it is the statistical model of the regular variant, only, that is
known. We study an estimator which relies essentially on this model and not on the
characteristics of the ‘‘irregular’’ variants. In particular, we investigate under what
conditions this variant selector is optimal. It turns out that there is a close relation-
ship with exchangeability and Markovian reversibility. We finally apply our theory
to the case of irregular variants generated from the regular variant by a Gaussian
linear model. © 2001 Elsevier Science
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1. INTRODUCTION

The subject of this paper is a Bayesian theory of object identification.
Suppose that we are given a statistical model and various (in general mul-
tivariate) observations; exactly one of the observations belongs to the
model. The task is to decide which one it is. The observations may either
emanate from different physical objects or they may be different mea-
surements from the same one. In the latter case, the observations foreign to
the model may be considered as (deterministic or random) perturbations of
the correct observation of the object.
We call the various observations at hand variants and the observation

belonging to the model the regular variant. Two problems arise from the
consideration of variants: selection of the regular variant from the set of
observations and classification of an object into one of several classes in the



presence of variants of the object. We deal here with the former problem; it
is also a building block for the solution of the latter [6, 5] which will be
treated in more detail in future communications. An application of the
Bayesian paradigm to the present situation immediately shows that it
requires the joint distribution of all variants, cf. 2.1. This, however, is often
unknown. The reason for this lack of information is the fact that irregular
variants may be spurious and different trials may even produce different
numbers of them. The whole scenario may be too complex and uncertain.
We, therefore, focus on a simple estimator that depends mainly on the
distribution of the regular variant alone.
Let x1, ..., xb ¥ E be the measurements of b variants 1..b in some

unknown order, let frZ1 be the density function (with respect to some
reference measure r on E) of the random features Z1: WQ E of the regular
variant, and let qh be the prior probability for each position h ¥ 1..b to be
that of the regular variant. We are not given the densities of the other
variants, let alone the joint densities of all variants. The task consists in
selecting the position of the regular variant. It is tempting to choose an
index h for which the product frZ1 (xh) qh is maximal, i.e., to use the
estimator

SSr(x1, ..., xb)=argmax
h

frZ1 (xh) qh.

We call such an estimator a simple (variant) selector. The simple selector
may, however, be grossly misleading and it is the purpose of the present
communication to give and study conditions which guarantee its optimality
or, in other words, to investigate when the Bayesian selector just depends
on the reduced set of quantities. We will show that there do exist interest-
ing situations where this is the case, cf. also Discussion 4.7(c). Besides
having an algorithmically simple form the simple selector does not require
the full statistical model and, thus, admits safer parameter estimation with
less noise. We will, however, not deal with the issue of estimating the
function frZ1 here.
We see an analogy between simple variant selection and statistical suffi-

ciency. In sufficiency, partial information on the observations suffices to
optimally identify a model. Simple selectors need partial information on
the model and we study conditions so that this partial information allows
to optimally estimate the regular observation.
Variant selection must not be confused with classification (or object

recognition), tests of hypotheses, and goodness-of-fit tests. In some sense,
variant selection is even converse to classification since, in the former case,
several observations compete for one statistical model and in the latter
case, several statistical models compete for an observation. A test of
hypotheses needs statistical models of both hypotheses and is in this sense
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similar to classification. Finally, a goodness-of-fit test compares two
models with each other, one of them being accessible through realizations,
only.
In Section 2 we introduce simple selectors and relate them to the

(optimal) Bayesian selector. As to be expected, the latter cannot always be
represented as a simple selector with respect to some reference measure,
Example 2.4.2. However, in Section 3, we find sufficient conditions for
simple selectors to be optimal. In particular, we point out a relationship
with exchangeable measures and the equation of detailed balance known
from the theory of Markov processes. Finally, in Section 4, we apply the
theory of Section 3 to the case of irregular variants arising from the regular
one as linear, Gaussian perturbations.
In connection with segmentation problems in optical character recogni-

tion, the idea of variants has been known for some time as a heuristic
method; cf. the survey article [2], pp. 698. In fact, the consideration of
variants marks one of the main achievements in this field in the last
decades. In the engineering literature, segmentation variants are often
called ‘‘segmentation hypotheses’’ but we prefer the term ‘‘variant’’ to
‘‘hypothesis’’ since the latter has a different meaning in statistics. To the
best of our knowledge, variant selection in our sense has not yet been
analyzed from a mathematical–statistical point of view and, in fact, it
seems that the question of its optimality has never been raised. This
communication is meant as a first step towards a Bayesian analysis.
Furthermore, we noticed that variants, viewed from their natural level of

generalization, have a much broader range of application than just seg-
mentation. The idea may be used, e.g., to handle ambiguities in the process
of feature extraction from an object in pattern recognition. A typical
example is this: Often, the shape of a geometric object cannot unam-
biguously be recognized at the low level of image processing. It may then
depend on internal features of the object but, usually, these features can
only be extracted after the object’s shape is recognized. A way out of this
vicious circle is the consideration of variants, i.e., the extraction of several
feature sets, one for each reasonable shape assignment. By selecting the
feature set that fits the model best it is then possible to determine
the ‘‘true’’ shape. In this way shape recognition amounts to object iden-
tification.
Recently, we successfully applied variants in various contexts to ‘‘auto-

matic classification of chromosomes’’. The correct polarity of a chromo-
some under a light microscope is not a priori given, a situation giving rise
to considering two variants, i.e., one feature set for each polarity. After
collecting information at a higher level, the most prospective of them is
selected. The resulting ‘‘polarity free’’ classification method reduces the
error rate by about 25% [7]. Some methods of automatic chromosome
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classification require the extraction of longitudinal axes for feature
measurement. In the case of a severely bent, badly shaped, or small
chromosome the axis (and, hence, the shape) is not easily determined and
a way of handling this uncertainty is the simultaneous consideration of
various possible axes [8, 9]. Variants thus help to attain the presently
worldwide lowest error rate of 0.6% in this field.

General notation. The pair (W, P) denotes a probability space and E a
Polish state space with its Borel s-algebra B(E). Given another measurable
space (F, B(F)), a Markov kernel N: E×B(F) Q [0, 1], and a measure r
on E, r é N stands for the measure r(dx) N(x, dy) on E×F. The expres-
sion né n denotes the n-fold tensor product on En of some distribution n
on E. If m is any measure on F and j any measurable mapping from F to
another measurable space, mj denotes the induced measure. Given two
measures m, n on E, the notation m° n means absolute continuity of m
with respect to n while ’ means their equivalence, i.e., mutual absolute
continuity. The symbol N(m, V) denotes the (uni- or multi-variate) normal
distribution with expectation m and variance V; n(m, V) stands for its
density function with respect to Lebesgue measure. For details on measure
spaces and kernels the interested reader is referred to Bauer [1].
Let b ¥ N. The symbol Sb denotes the symmetric group of b elements

and Sb, h the set of all permutations p ¥Sb such that p(h)=1. The
notation (j, k) ¥Sb stands for the transposition of j, k ¥ 1..b. Given a
random variable Z: WQ Eb and p ¥Sb, Zp stands for the random variable
(Zp(1), ..., Zp(b)) and PZp=P(Zp). A hat on top of an index set I ı 1..b indi-
cates missing entries in an array: Given x=(x1, ..., xb) ¥ Eb we write
xÎ=(xi)i ¨ I ¥ EoI; in particular,

xĥ=(x1, ..., xh−1, xh+1, ..., xb) ¥ Eb−1.

Given a real-valued function g: FQ R on a finite set F, argmaxh ¥F g(h)
(argminh ¥F g(h)) denotes the set of its maximal (minimal) arguments.

2. BAYESIAN AND SIMPLE SELECTION OF
THE REGULAR VARIANT

2.1. The Statistical Model

We first cast the selection problem in a Bayesian framework. Let
Zi: (W, P) Q E, i ¥ 1..b, be b \ 1 random variants, Z1 being the regular
one. We observe a realization x=(x1, ..., xb) ¥ Eb of X=(X1, ..., Xb)=
(ZT(1), ..., ZT(b))=ZT, a random permutation T: WQSb of the b-tuple
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Z=(Z1, ..., Zb). Our task is to estimate the unknown random position
H: WQ 1..b of the regular variant 1, i.e., the position H so that xH
emanates from Z1. Clearly, we have T(H)=1, H=T−1(1), and the
assertions T(h)=1 and H=h are synonymous. We assume that the random
permutation T is independent of Z.
The related statistical model is the quadruple

(X, (PZp )p ¥Sb
, D, G).

Here, the symmetric group Sb is the parameter set, the interval D=1..b is
the decision set, and we define our gain function G: Sb ×(1..b) Q R as

G(p, h)=˛
1, if p(h)=1,

0, otherwise.

For all h ¥ 1..b, let qh :=P[T(h)=1] denote the prior probability of the
regular variant to occupy site h. Without loss of generality we assume
qh > 0 for all h ¥ 1..b. We will call any estimator S: Eb

Q 1..b of the regular
variant a selector.
The Bayesian selector BS for the statistical model at hand is the subset of

1..b defined by

BS(x)=argmax
h ¥ 1..b

E[G(T, h) | X=x]=argmax
h ¥ 1..b

P[T(h)=1 | ZT=x].(1)

This set is nonempty and uniquely defined for PZT -a.a. x ¥ Eb. Let m be
some s-finite measure on Eb such that PZT ° m. By Bayes’ formula,
P[T(h)=1 | ZT=x] equals the density

P[ZT ¥ dx, T(h)=1]
P[ZT ¥ dx]

=
P[ZT ¥ dx, T(h)=1]

m(dx)
; P[ZT ¥ dx]

m(dx)
.(2)

This implies for PZT -a.a. x

BS(x)=argmax
h ¥ 1..b

P[ZT ¥ dx, T(h)=1]
m(dx)

.(3)

This selector needs information on the joint distribution of all variants.
However, complete knowledge of the characteristics of the irregular
variants, let alone the joint distribution of all variants, will often not be
available. This is one reason why we introduce another selector, the simple
selector, which we next define in a more formal way.
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2.2. Notation

Let r be any s–finite reference measure on E such that PZ1 ° r and let
frZ1 denote some version of the density dPZ1/dr. For all x ¥ Eb, let

P(x)={h ¥D/qhf
r
Z1 (xh) > 0}.

Let us note that P(x) is nonempty for PZT -a.a. x ¥ Eb. Indeed, let
N (l)={x ¥ Eb/qlf

r
Z1 (xl)=0}. This set is of the form N (l)=E l−1×Nl ×Eb−l

where Nl={x ¥ E/qlf
r
Z1 (x)=0} and we have {x ¥ Eb/P(x)=”}=

4l N (l). Now,

P[ZT ¥ 3
l

N(l)]=C
h

P[ZT ¥ 3
l

N(l), T(h)=1] [C
h

P[ZT ¥ N(h), T(h)=1]

=C
h

P[Z1 ¥ Nh, T(h)=1]=C
h

qhP[Z1 ¥ Nh]=0.

If Z1 is discrete then frZ1 (x)=P[Z1=x]/r(x) and P(x)=
{h ¥D/qhP[Z1=xh] > 0}, the set of all h such that xh belongs to the
support of PZ1 (recall qh > 0).
Contrary to the Bayesian selector, which does not depend on the

measure m on Eb, the following simple selector depends on the reference
measure r.

2.3. Definition: Simple Selector

If P(x) ]”, we define the simple selector associated with the reference
measure r as

SSr(x)=argmax
h ¥P(x)

frZ1 (xh) qh.

The simple selector SSr is defined PZT -a.s. on Eb since P(x) is nonempty
for PZT -a.a. x. The reference measure r may be replaced with its absolutely
continuous part with respect to PZ1 , PZ1/frZ1 , without changing the simple
selector. It may, thus, be assumed to be equivalent to PZ1 . The main objec-
tive of this paper is to reveal reference measures r such that SSr is optimal,
i.e., equals the Bayesian selector, SSr(x)=BS(x) for PZT -a.a. x. We first
take a look at some instructive examples.

2.4. Examples

2.4.1. Two normally-distributed variants. By way of illustration let us
consider the case of b=2 univariate variants Z1 and Z2. We assume that
the joint vector (Z1, Z2): (W, P) Q R2 is normally distributed N((0, m), V)
with m > 0 and V :=(1k

k
1), k ¥ ]−1, 1[. Thus, both variants have variance

1, the regular variant being standard normal; the parameter m is the
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expectation of the second variant and k ¥ ]−1, 1[ is their coefficient of
correlation. Moreover, we assume q1=q2=1/2.
We study the Bayesian selector and the two simple selectors associated

with Lebesgue measure l and the Gaussian measure n=N(a, 1), a > 0,
respectively, as reference measures. We prove the following assertions, valid
for x=(x1, x2) ¥ R2:

(a) BS(x)={h ¥ 1..2/xh [ x3−h};
(b) (i) SSl(x)={h ¥ 1..2/x2h [ x23−h},

(ii) SSl(x) ı BS(x) if and only if x1+x2 > 0 or x1=x2 and, in
this case, we have SSl(x)=BS(x);

(c) (i) SSn(x)={h ¥ 1..2/xh [ x3−h},
(ii) SSn=BS.

Proof. (a) The Bayesian selector for b=2 variants is a standard
discriminant rule between two classes, the identity permutation and the
transposition. Both classes are normally distributed: the identity according
to (Z1, Z2) ’ N((0, m), V) and the transposition according to (Z2, Z1) ’
N((m, 0), V). Hence, we have h ¥ BS(x) if and only if

(xh, x3−h −m) V−1(xh, x3−h −m)T [ (xh −m, x3−h) V−1(xh −m, x3−h)T.

Now, V−1=1/(1−k2)( 1
−k

−k
1 ) and a simple computation shows Claim (a).

(b) According to 2.3, we have h ¥ SSl(x) if and only if flZ1 (xh) \
flZ1 (x3−h), i.e.,

n(0, 1)(xh) \ n(0, 1)(x3−h).

This is plainly equivalent to having x2h [ x23−h.
By (a) and (i) we have SSl(x) ı BS(x) if and only if, for all h,

(xh −x3−h)(x1+x2) [ 0 implies xh −x3−h [ 0. The first half of Claim (ii)
now follows from considering the three cases x1+x2 > , < , and =0 and
the second half is immediate.

(c) In this case, fnZ1 (x)=n(0, 1)(x)
n(a, 1)(x)=c·e−ax with a constant c > 0.

Recalling a > 0, we have h ¥ SSn(x) if and only if xh [ x3−h which proves
Claims (i) and (ii). L

Part (b)(ii) shows that, no matter how large m is, i.e., how well the dis-
tributions are separated, the simple selector may not be optimal. On the
other hand, Part (c) shows that, in the present normal case, there always
exist reference measures r such that the simple selector is optimal for all
observations x! We will see in Section 4 that this is no coincidence. The
following example shows that the situation may be worse.
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2.4.2. Functional dependence. Let us show that there need not exist r
such that the simple selector is Bayesian given full information on Z1 and
Z2 even if Z2 is a function of the regular variant Z1.
Let E=Z/3Z, let b=2, let Z1 be uniformly distributed on E, and let

Z2=Z1+1 (mod 3). The prior probabilities are q1=q2=1/2. The only
possible observations are (0, 1), (1, 0), (1, 2), (2, 1), (2, 0), and (0, 2). The
Bayesian selector is always correct. Now, for any reference measure r on E,
r > 0 on E, we have

SSr(x)=argmin
h ¥ 1..2

r(xh);

this establishes a preference ordering on E and, hence, the simple selector
SSr cannot always be contained in the Bayesian selector.

2.5. Error Probability

It is easy to compare the error probabilities of the Bayesian selector and
the simple selector in the case of two variants and a continuous distribution
PZ. In this case the position of the regular variant uniquely defines the
permutation. Let tr be the transposition ¥S2. The Bayesian selector
chooses Position 1 if fZ(X) > fZtr (X) and commits an error when the true
position is 2, i.e., T=tr; it chooses Position 2 if fZ(X) < fZtr (X) and
commits an error when T=id. Thus, its error probability is

errBS=P[T=tr, fZ(X) > fZtr (X)]+P[T=id, fZ(X) < fZtr (X)]

=P[T=tr, fZ(Ztr) > fZ(Z)]+P[T=id, fZ(Z) < fZtr (Z)].

Now, fZ(ztr)=fZtr (z) and, hence, errBS equals

P[T=tr, fZtr (Z) > fZ(Z)]+P[T=id, fZ(Z) < fZtr (Z)]

=P[fZ(Z) < fZtr (Z)].

Denoting ABS={z ¥ E2/fZ(z) < fZtr (z)}, we have errBS=P[Z ¥ ABS].
The simple selector chooses Position 1 if frZ1 (X1) > frZ1 (X2) which is an

error when T=tr; it chooses Position 2 if frZ1 (X2) > frZ1 (X1) committing
an error when T=id. Thus, its error probability is

errSSr=P[T=tr, frZ1 (X1) > frZ1 (X2)]+P[T=id, frZ1 (X2) > frZ1 (X1)]

=P[T=tr, frZ1 (Z2) > frZ1 (Z1)]+P[T=id, frZ1 (Z2) > frZ1 (Z1)]

=P[frZ1 (Z1) < frZ1 (Z2)].
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FIG. 1. The error sets ABS and ASSl for the selectors BS and SSl of Example 2.4.1.
Horizontal hatching, ABS; vertical, ASSl.

Letting ASSr={(z1, z2) ¥ E2/frZ1(z1) [ frZ1(z2)} we have errSSr=P[Z ¥ ASSr].
A graphical illustration is presented in Fig. 1.

3. SUFFICIENT CONDITIONS FOR OPTIMALITY

In this section, we derive general sufficient conditions for the Simple
Selector to be Bayesian. We need some preliminaries. Conditioning on the
event Z1=x is defined for PZ1 -a.a. x ¥ E, only. Therefore, the following
definitions need some care if r is not equivalent to PZ1 .

3.1. Notation and Remarks

(a) The space E being Polish there is an extension of the conditional
distribution P[Z1̂ ¥ dy | Z1=x] to a Markovian kernel K: E×B(Eb−1) Q
[0, 1], i.e.,

K(x, dy)=P[Z1̂ ¥ dy | Z1=x](4)

for PZ1 -a.a. x ¥ E. Let m be a s-finite measure on Eb such that

r(dxh) K(xh, d(xp −1)1̂) ° m(dx)(5)
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for all p ¥Sb and all h ¥ 1..b such that p(h)=1. Note that any such
measure satisfies PZp ° m for all p ¥Sb and hence PZT ° m. The measure

m(dx)=C
b

h=1
C

p: p(h)=1
r(dxh) K(xh, d(xp −1)1̂)(6)

= C
p ¥Sb

r(dxp −1(1)) K(xp −1(1), d(xp −1)1̂),

e.g., has the property (5).
(b) Central tools for our analysis are the Markov kernels Kh:

E×B(Eb−1) Q [0, 1] defined by

Kh(xh, dxĥ) :=
1
qh

C
p: p(h)=1

K(xh, d(xp −1)1̂) P[T=p], h ¥ 1..b.(7)

It follows from (5) that r é Kh ° m. For each h ¥ 1..b, let us choose a
version Dr( · , h) of the m-density d(r é Kh)/dm,

Dr(x, h)=
r(dxh) Kh(xh, dxĥ)

m(dx)
.

This density function depends on K, r, m, and h; it is unique up to
m-equivalence.
We will need the following measure-theoretic lemma.

3.2. Lemma

Let L: E×B(F) Q [0, 1] be a Markov kernel, let b and m be s-finite
measures on E and E×F, respectively, and let a be a probability measure
on E. If a° b and b é L ° m then a é L ° m and, m-a.s.,

da é L
dm

=
da
db

·
db é L

dm
.(8)

Proof. Integrating a measurable function f: E×F Q R+, using the
identity

F g
do
dn

dn=F g do,(9)
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and using Fubini’s theorem twice we may compute

F
E×F
m(dx, dy)

a(dx)
b(dx)

·
b é L(dx, dy)
m(dx, dy)

f(x, y)

=F
E×F
b é L(dx, dy)

a(dx)
b(dx)

f(x, y)

=F
E
b(dx)

a(dx)
b(dx)

F
F

L(x, dy) f(x, y)=F
E
a(dx) F

F
L(x, dy) f(x, y)

=F
E×F
a é L(dx, dy) f(x, y).

This being true for all such functions f, the lemma follows. L

3.3. Lemma

(a) For all h ¥ 1..b and PZ1 -a.a. x ¥ E, we have

Kh(x, dy)=P[(ZT)ĥ ¥ dy | Z1=x, T(h)=1].

(b) For all h ¥ 1..b, we have

P[ZT ¥ dx | T(h)=1]=P[Z1 ¥ dxh] Kh(xh, dxĥ).

Proof. (a) By independence of Z and T, we obtain from (7) and (4)

Kh(xh, dxĥ)=
1
qh

C
p: p(h)=1

P[Z1̂ ¥ d(xp −1)1̂ | Z1=xh] P[T=p]

=
1
qh

C
p: p(h)=1

P[(Zp)ĥ ¥ dxĥ | Z1=xh] P[T=p]

=
1
qh

C
p: p(h)=1

P[(Zp)ĥ ¥ dxĥ | Z1=xh] P[T=p | Z1=xh]

=
1
qh

P[(ZT)ĥ ¥ dxĥ, T(h)=1 | Z1=xh]

=P[(ZT)ĥ ¥ dxĥ | Z1=xh, T(h)=1].
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(b) Use independence of Z and T and (a) in order to compute for
h ¥ 1..b

P[ZT ¥ dx, T(h)=1](10)

=P[(ZT)ĥ ¥ dxĥ, Z1 ¥ dxh, T(h)=1]

=P[(ZT)ĥ ¥ dxĥ | Z1=xh, T(h)=1] P[Z1 ¥ dxh] P[T(h)=1]

=P[Z1 ¥ dxh] Kh(xh, dxĥ) P[T(h)=1].

Hence, Part (b) follows. L

We next formulate two conditions which turn out to be sufficient for
optimality of the simple selector.

Conditions (Hr
x) and (Crx).

(Hr
x) SSr(x) ı argmaxh ¥P(x) Dr(x, h);

(Crx) the function Dr(x, · ) is constant on the set P(x).

3.4. Theorem

(a) Condition (Crx) implies (Hr
x).

(b) For PZT -a.a. x ¥ Eb, Condition (Hr
x) (or (Crx)) implies SSr(x)=

BS(x).

Proof. (a) If (Crx) is satisfied then

SSr(x) ıP(x)=argmax
h ¥P(x)

Dr(x, h).

(b) By Lemma 3.3(b), we have

P[ZT ¥ dx, T(h)=1]=P[Z1 ¥ dxh] Kh(xh, dxĥ) qh.

By (5), Lemma 3.2 is applicable to F=Eb−1, L=Kh, a=PZ1 , and b=r.
Hence, for m-a.a. x ¥ Eb and for all h ¥P(x), we have

P[ZT ¥ dx, T(h)=1]
m(dx)

=
P[Z1 ¥ dxh] Kh(xh, dxĥ)

m(dx)
qh(11)

=
r(dxh) Kh(xh, dxĥ)

m(dx)
frZ1 (xh) qh

=Dr(x, h) frZ1 (xh) qh.
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This representation, together with (3) and Condition (Hr
x), shows the

inclusion SSr(x) ı BS(x) for PZT -a.a. x ¥ Eb. (Note that both BS and SSr

are defined PZT -a.s. .)
For the converse, first note that for PZT -a.a. x ¥ Eb there exists h ¥P(x)

such that Dr(x, h) > 0. Indeed, by (11), we have

PZT (dx)
m(dx)

=C
h

qhf
r
Z1 (xh) Dr(x, h)

and, hence,

PZT{x ¥ Eb/Dr(x, h)=0 for all h ¥P(x)}

=PZT{x ¥ Eb/qhf
r
Z1 (xh) Dr(x, h)=0 for all h ¥ 1..b}

=PZT 3x ¥ Eb;C
b

h=1
qhf

r
Z1 (xh) Dr(x, h)=04

=0.

Now, the function h W Dr(x, h) frZ1 (xh) qh has all its maxima in the
(nonempty) set P(x) since they are strictly positive. By (Hr

x), the set of
these maxima coincides with SSr(x). Thus, the inclusion BS(x) ı SSr(x)
follows from (3) and (11). L

3.5. Examples

For the sake of illustration we take a look at two examples. The first one
is elementary.

3.5.1. Disjoint variants. If the random variants Zi, i ¥P(x), are
pairwise disjoint, i.e., if their distributions are mutually singular then we
have (Crx) with respect to any reference measure r such that PZ1 ° r.
Indeed, for any observation x ¥ Eb the set P(x)={h ¥D/qhf

r
Z1 (xh) > 0}

contains at most one element, hence the claim.
Let us next resume Example 2.4.1 with its notation.

3.5.2. Two normally distributed variants.

(a) Condition (Hl
x) is satisfied if and only if 0 < x1+x2 [

2m
1−k or

x1=x2.
(b) Condition (Hn

x) is satisfied if and only if a [ m
1−k or x1=x2.

Proof. In order to prove Claim (a) we put m=l2= the two-dimen-
sional Lebesgue measure and note that P(x)=D for all x ¥ R2. Using [4],
Theorem 3.2.4, we first determine the right side of Condition (Hl

x).
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argmax
h

P[Z2 ¥ dx3−h | Z1=xh] l(dxh)
m(dx)

=argmax
h

n(m+kxh, 1−k2)(x3−h)

=argmin
h

(x3−h−m−kxh)2.

This is the set of all sites h such that

(x3−h −m−kxh)2−(xh −m−kx3−h)2 [ 0

or, equivalently,

1 (x1+x2)−
2m

1−k
2 (xh −x3−h) \ 0.

A comparison with 2.4.1(b)(i) shows Claim (a).
In order to prove (b) we use again the formula above and deal first with

the right side of Condition (Hn
x).

argmax
h

P[Z2 ¥ dx3−h | Z1=xh] n(dxh)
m(dx)

=argmax
h

n(m+kxh, 1−k2)(x3−h) n(a, 1)(xh)

=argmin
h

(x3−h−m−kxh)2+(1−k2)(xh−a)2.

This is the set of all sites h such that

(x3−h −m−kxh)2+(1−k2)(xh −a)2 [ (xh −m−kx3−h)2+(1−k2)(x3−h −a)2

or, equivalently,

1 m
1−k

−a2 (xh −x3−h) [ 0.

A comparison with 2.4.1(c)(i) shows Claim (b). L

This example shows, among other things, that Condition (Hr
x) is not

necessary for optimality of a simple selector SSr. In Case (a) the set of x’s
such that (Hl

x) is satisfied is a strict subset of the set where SSr and BS are
equal, cf. 2.4.1(b)(ii); in Case (b) it coincides with this set (i.e., the whole
plane) if a is small enough.
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In the following, our aim is to study the Condition (Crx); we will for-
mulate a number of criteria equivalent with and conditions sufficient for its
validity. By Theorem 3.4(b), each of them entails optimality of the simple
selector.

3.6. Theorem

(a) The following are equivalent.
(a) There exists r± PZ1 such that Condition (Crx) is satisfied for

m-a.a. x;
(b) there exists a PZ1 -a.e. strictly positive, measurable function

f: E Q R such that
(i) f(xh) P[ZT ¥ dx | T(k)=1]=f(xk) P[ZT ¥ dx | T(h)=1] for

all h, k ¥ 1..b;
(c) there exists a PZ1 -a.e. strictly positive, measurable function

f: E Q R such that
(ii) f(xh) P[ZT ¥ dx | T(1)=1]=f(x1) P[ZT ¥ dx | T(h)=1] for

all h ¥ 1..b;
(d) there exists a s-finite measure n on Eb such that, for all h ¥ 1..b,

P[ZT ¥ · |T(h)=1] ° n and the density function

P[ZT ¥ dx | T(h)=1]/n(dx)=g(xh)

depends on xh alone.
(b) In this case, we have f=g=frZ1 .

Proof. Let Eh={x ¥ Eb/f(xh) > 0}, h ¥ 1..b, where f is given by the
context.
Assume first (a) and put f=frZ1 . For any measurable subset B ı Eb and

any h, k ¥ 1..b, we deduce from (Crx)

F
B

f(xh) P[Z1 ¥ dxk] Kk(xk, dxk̂)=F
B5Eh 5Ek

f(xh) f(xk) r(dxk) Kk(xk, dxk̂)

=F
B5Eh 5Ek

f(xk) f(xh) r(dxh) Kh(xh, dxĥ)

=F
B

f(xk) P[Z1 ¥ dxh] Kh(xh, dxĥ).

Statement (i) now follows from 3.3(b). This proves (b) with f=frZ1 .
Assume next (b). By assumption and by independence of Z and T,

P[ZT ¥ Eh | T(h)=1]=PZ1[f > 0]=1.(12)
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Thus, the expression

nh(dx) :=
1

f(xh)
P[ZT ¥ dx | T(h)=1]

defines a s-finite measure nh on Eh and it follows from (i) that nh=nk on
Eh 5 Ek. Therefore, there is a joint extension n of all measures nh to Eb.
Using again (12), we see that the n-density of P[ZT ¥ dx | Th=1] equals f
both on Eh and off Eh, where both sides vanish. This is (d) with g=f.
We next show that (d) implies (c). Integrating the equality

P[ZT ¥ dx | T(h)=1]=g(xh) n(dx)

over Eb−1 with respect to dxĥ we obtain, using independence of Z and T,

P[Z1 ¥ dxh]=P[ZT(h) ¥ dxh | T(h)=1]=g(xh) nh(dxh),

where nh is the projection of n onto the hth factor of Eb. It follows that nh is
s-finite on the set F={x ¥ E/g(x) > 0} and that g is strictly positive
PZ1 -a.s. . Now, the assumption implies

g(x1) P[ZT ¥ dx | T(h)=1]

=g(x1) g(xh) n(dx)=g(xh) P[ZT ¥ dx | T(1)=1]

which is (ii) with f=g.
It remains to prove that (c) implies (a). Putting r=PZ1/f, we show that

Dr(x, h)=Dr(x, k) for m-a.a x ¥ Eh 5 Ek which will imply Condition (Crx)
for m-a.a x ¥ Eb. (Here, as always, m is as in (5).) By 3.3(b) and (ii), we have

f(x1) P[Z1 ¥ dxh] Kh(xh, dxĥ)=f(x1) P[ZT ¥ dx | T(h)=1]

=f(xh) P[ZT ¥ dx | T(1)=1]

=f(xh) P[Z1 ¥ dx1] K1(x1, dx1̂).

Applying this equality to k instead of h and using (ii) again, we obtain

f(xh) f(x1) P[Z1 ¥ dxk] Kk(xk, dxk̂)=f(xh) f(xk) P[Z1 ¥ dx1] K1(x1, dx1̂)

=f(xk) f(x1) P[Z1 ¥ dxh] Kh(xh, dxĥ)

and, thus,

f(xh) P[Z1 ¥ dxk] Kk(xk, dxk̂)=f(xk) P[Z1 ¥ dxh] Kh(xh, dxĥ)(13)
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for all h and k. This means that, for x ¥ Eh 5 Ek, we have

r(dxk) Kk(xk, dxk̂)=
1

f(xk)
P[Z1 ¥ dxk] Kk(xk, dxk̂)

=
1

f(xh)
P[Z1 ¥ dxh] Kh(xh, dxĥ)=r(dxh) Kh(xh, dxĥ);

this is the claim. L

The equivalence of Parts (a) and (d) in Theorem 3.6 indicates how to
construct a reference measure r from a suitable measure n on Eb. We
propose two different approaches to verify Statement (d). The first is
exchangeability and the second regularity of T as introduced below. A
measure on a product space En is exchangeable if it remains unchanged
under any permutation of the n coordinates.

3.7. Corollary

Let n be an exchangeable measure on Eb such that PZ ° n (e.g. n=m in
(6)). If PZ(dx)/n(dx)=g(x1) is a function of x1 alone then we have (Crx)
with r=PZ1/g for m-a.a. x ¥ Eb.

Proof. By exchangeability of n and the hypothesis we have for all
h ¥ 1..b

P[ZT ¥ dx | T(h)=1]
n(dx)

=
1
qh

P[ZT ¥ dx, T(h)=1]
n(dx)

(14)

=
1
qh

C
p: p(h)=1

P[Zp ¥ dx]
n(dx)

P[T=p]

=
1
qh

C
p: p(h)=1

P[Z ¥ dxp −1]
n(dxp −1)

P[T=p]

=
1
qh

C
p: p(h)=1

g(xh) P[T=p]=g(xh).

This shows 3.6(d) and the corollary follows from Theorem 3.6. L

The joint random variable Z is exchangeable conditional on Z1 if the
distribution P[Z1̂ ¥ · | Z1=x] on Eb−1 is exchangeable for PZ1 -a.a. x ¥ E.
Since, for any permutation p ¥Sb, 1, we have

P[Zp ¥ dx]=P[(Zp)1̂ ¥ dx1̂ | Z1=x1] P[Z1 ¥ dx1],

the characterization of the conditional probability shows that this
conditional exchangeability is tantamount to equivalence of Zp and Z
for all such permutations. From the assumptions of Corollary 3.7
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it follows PZp (dx)=g(x1) np(dx)=PZ(dx) for all p ¥Sb, 1. Hence Z is
exchangeable conditional on Z1, here.
The last corollary can easily be applied to the following independent

case.

3.8. Corollary

Let all b variants be independent, let Z2, ..., Zb be identically distributed,
and suppose that PZ1 is absolutely continuous with respect to PZ2 . Then
(Crx) is satisfied with r=PZ2 for (PZ2 )

é b-a.a. x ¥ Eb.

Regularity of T. We call the random permutation T regular if the
probability P[T=p] depends on the site p−1(1) of the regular variant,
only. Since simple selectors use mainly the properties of the regular variant,
regularity of T is a natural assumption in the present context. Plainly, T is
regular if and only if PT is uniform on each set Sb, h, i.e., if P[T=p]=
qh/(b−1)! when p(h)=1. Of course, if b=2 then T is always regular.
Let us adapt 3.6(d) to the case of a regular T. Let S: (W, P) QSb, 1

be a uniformly distributed random permutation, independent of Z. By
independence, we have, for all h ¥ 1..b,

P[ZT ¥ dx | T(h)=1](15)

= C
p ¥Sb, h

P[Zp ¥ dx]
P[T=p]

qh
=

1
(b−1)!

C
p ¥Sb, h

P[Zp ¥ dx]

= C
p ¥Sb, 1

P[(Zp)(1, h) ¥ dx, S=p]=P[(ZS)(1, h) ¥ dx].

Therefore, if T is regular then 3.6(i) assumes the simpler form

f(xh) P[(ZS)(1, k) ¥ dx]=f(xk) P[(ZS)(1, h) ¥ dx], h, k ¥ 1..b.

3.9. Corollary

Let T be regular and let n be an exchangeable measure on Eb such that
PZS ° n (e.g. n=m in (6)). If PZS (dx)/n(dx)=g(x1) depends on the first
argument x1 of x alone then we have (Crx) with r=PZ1/g for m-a.a. x ¥ Eb.

Proof. By (15) together with exchangeability of n and the hypothesis,
we have for all h ¥ 1..b

P[ZT ¥ dx | T(h)=1]
n(dx)

=
P[(ZS)(1, h) ¥ dx]

n(dx)
=

P[ZS ¥ dx(1, h)]
n(dx(1, h))

=g(xh).

This shows 3.6(d) and the corollary follows from Theorem 3.6. L
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3.10. Corollary

Let T be regular and assume that the b random variables Z1, ZS(2) , ..., ZS(b)

are independent. If PZ1 ° PZS(2) then (Crx) is satisfied with r=PZS(2) for
(PZS(2) )

é b-a.a. x ¥ Eb.

Proof. We may put n(dx) :=(PZS(2) é PZS(2) é · · · é PZS(b) )=(PZS(2) )
é b

and the claim follows from Corollary 3.9. L

3.11. Examples

(a) Let E be finite or a bounded interval in R and suppose that T is
regular. If the regular variant Z1 is independent of the joint irregular
variants (Z2, ..., Zb), if PZ1 ° PZS(2) , and if (ZS(2), ..., ZS(b)) is uniformly
distributed on Eb−1 then the assumptions of Corollary 3.10 are satisfied.
Corollary 3.8 may not be applicable.

(b) There exist random variables Z1, ..., Zb not of the form (a) such
that the assumptions of Corollary 3.10 are satisfied but Corollary 3.8 fails
to be applicable. Consider the following example: Let b=3, let E=0..1,
and let the regular variant Z1: (W, P) Q E be independent of (Z2, Z3):
(W, P) Q E×E. Furthermore, let the joint distribution of (Z2, Z3) be
defined by

P[Z2=0, Z3=0]=1
2 , P[Z2=1, Z3=0]=0,

P[Z2=0, Z3=1]=`2−1, P[Z2=1, Z3=1]=
3
2
−`2 .

The irregular variants Z2, Z3 are neither independent nor identically dis-
tributed. However, P(ZS(2), ZS(3))=

1
2 [P(Z2, Z3)+P(Z3, Z2)] and simple algebraic

manipulations show that this is the tensor square of the distribution
ZS(2)=(`2 /2, 1−`2 /2).
This concludes our discussion of Theorem 3.6. The following theorem

suggests how to construct a reference measure r such that (Crx) holds
starting from the kernels Kh.

3.12. Theorem

Let r be a s-finite measure on E such that PZ1 ° r. If the measure
r é Kh on Eb is exchangeable and independent of h then we have (Crx) for
m-a.a. x ¥ Eb.
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Proof. Using the assumptions on r é Kh, we infer from 3.1(b)

m(dx) Dr(x, h)=r é Kh(xh, dxĥ)

=r é K1(xh, dxĥ)

=r é K1(x1, dx1̂)=m(dx) Dr(x, 1).

This equality implies Dr( · , h)=Dr( · , 1) m-a.s. establishing (Crx) for m-a.a.
x ¥ Eb. L

Let us next draw some conclusions from Theorem 3.12. We deal first
with conditions guaranteeing existence of a measure r so that the product
r é Kh is exchangeable; we will subsequently deal with the question of
equality of the measures r é Kh, h ¥ 1..b. A Markov kernel N: E×B(E) Q
[0, 1] is reversible with reversible measure r on B(E) if the equation of
detailed balance

r(dx) N(x, dy)=r(dy) N(y, dx)

holds, i.e., if the measure r é N is exchangeable on E×E. Now, given a
kernel M: E×B(Eb−1) Q [0, 1], let us investigate, under what conditions
r é M is exchangeable if b > 2. To this end, we derive from M two more
Markovian kernels. The first, MŒ: E×B(E) Q [0, 1], is the projection of
M defined by

MŒ(x, dy)=M(x, dy×Eb−1), x ¥ E.

Since E is Polish, there is also a Markovian kernel Mr: (E×E)×B(Eb−2)
Q [0, 1] associated with r and M such that

Mr((x, y), dz)=(r é M)[(i3, ..., ib) ¥ dz | i1=x, i2=y];

here, ik is the projection of Eb onto the kth factor. By the product formula
for conditional probabilities, we have

M(x, dy dz)=MŒ(x, dy) Mr((x, y), dz)(16)

for r-a.a. x ¥ E. Note that Mr is essentially a function of M, namely

Mr((x, y), dz)=M(x, · )[(i3, ..., ib) ¥ dz | i2=y].

(Had we defined Mr by this formula, simultaneous measurability of Mr in
x and y would not be guaranteed.) It is these kernels that appear in the
following lemma.
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3.13. Lemma

If b > 2 then the following are equivalent for a s-finite measure r on E.

(a) The measure r é M is exchangeable.
(b) (i) M(x, · ) is exchangeable for r-a.a. x ¥ E;

(ii) the measure r é M is symmetric in its first two coordinates.
(c) (i) M(x, · ) is exchangeable for r-a.a. x ¥ E;

(iii) r is reversible with respect to MŒ;
(iv) Mr((x, y), · ) is symmetric in x and y for r(dx) MŒ(x, dy)-

a.a. (x, y) ¥ E×E.

Proof. Part (i) of the implication (a)S (b) follows from conditioning
r é M on the first coordinate and (ii) is immediate. Assume now (b).
Integrating the equality r(dx1) M(x1, dx1̂)=r(dx2) M(x2, dx2̂) over the
last b−2 coordinates we obtain the equation of detailed balance for r and
MŒ; i.e., (iii). In order to prove (iv) we use symmetry (ii) and (16) to
compute

r(dx2) MŒ(x2, dx1) Mr((x2, x1), dx512)

=r(dx2) M(x2, dx2̂)

=r(dx1) M(x1, dx1̂)

=r(dx1) MŒ(x1, dx2) Mr((x1, x2), dx512).

Part (c) now follows from (iii).
Turning to the implication (c)S (a) we let now r be as in (c). By (i), it is

sufficient to prove that r(dxh) M(xh, xĥ) does not depend on h ¥ 1..b. This
follows from the subsequent chain of equations which uses (16), (iv), (iii),
and (i) in this order.

r(dxh) M(xh, dxĥ)

=r(dxh) MŒ(xh, dx1) Mr((xh, x1), dx51h)

=r(dxh) MŒ(xh, dx1) Mr((x1, xh), dx51h)

=r(dx1) MŒ(x1, dxh) Mr((x1, xh), dx51h)

=r(dx1) M(x1, dxh dx51h)

=r(dx1) M(x1, dx1̂). L
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We next propose two different approaches to equality of the measures
r é Kh, h ¥ 1..b, appearing in Theorem 3.12. The first one is exchangea-
bility of K(x, · ) for r-a.a. x ¥ E, cf. 3.13(i), and the second one regularity of
T. From the former condition and (7), we first deduce

Kh(x, · )=K(x, · ), h ¥ 1..b, r-a.a. x.(17)

The next corollary flows directly from this equality and Theorem 3.12.

3.14. Corollary

Let r be a s-finite measure on E such that PZ1 ° r.

(a) If r é K is exchangeable then we have (Crx) for m-a.a. x ¥ Eb.
(b) If b=2 and if the Markovian kernel K is reversible with revers-

ible measure r then we have (Crx) for m-a.a. x ¥ E2. L

Let us define the symmetrized kernel L: E×B(Eb−1) Q [0, 1] of K,

L(x, dy) :=
1

(b−1)!
C

s ¥Sb−1

K(x, dys).(18)

If T is regular as already defined above then the restriction of PT on Sb, h is
uniform; hence, we obtain from Formula (7)

Kh(x, · )=L(x, · ), h ¥ 1..b, r-a.a. x ¥ E.(19)

If b=2 then, plainly, Kh=K=L.
Our next corollaries follow from Theorem 3.12 and (19).

3.15. Corollary

Let T be regular and let r be a s-finite measure on E such that PZ1 ° r
and r é L is exchangeable. Then we have (Crx) for m-a.a. x ¥ Eb.

Another interesting situation related to Theorem 3.12 arises when
the irregular variants are iterated functions of the regular one. Let
Zj+1=j j(Z1), j < b, for some function j: E Q E. The elements in Eb−1

observable for X are then of the form (jp(1)−1(x), ..., jp(b)−1(x)) with some
permutation p ¥Sb and some x ¥ E. If, in addition, jb is the identity function
on E then they are all of the form (y, js(1)(y), ..., js(b−1)(y)) with some
permutation s ¥Sb−1 and y=jp(1)−1(x). If b=2 then j is an involution.

3.16. Corollary

Assume that T is regular. Let Zj+1=j j(Z1), j < b, for some measurable
function j: E Q E such that jb is the identity function, and let r be a
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j-invariant reference measure such that PZ1 ° r. Then, we have (Crx) for
all observable x ¥ Eb such that x1 is off some r-nullset.

Proof. We use the kernel

K(x1, d(x2, ..., xb))=D
b−1

j=1
dj(xj)(xj+1)=D

b−1

j=1
djj(x1)(xj+1)(20)

and its symmetrization (18)

L(x1, d(x2, ..., xb))=
1

(b−1)!
C

s ¥Sb, 1

K(x1, d(xs(2), ..., xs(b)))(21)

=
1

(b−1)!
C

s ¥Sb, 1

D
b−1

j=1
djj(x1)(xs(j+1)).

Invoking Corollary 3.15, we establish 3.13(ii) with M=L, i.e. symmetry of
r é L in the first two coordinates (recall that L(x, · ) is exchangeable).
Indeed, for any bounded, measurable function f: Eb

Q R, (21) first implies

F r(dx1) F L(x1, d(x2, ..., xb)) f(x)(22)

=
1

(b−1)!
C

s ¥Sb−1

F r(dx1) f(x1, js(1)(x1), js(2)(x1), ..., js(b−1)(x1)).

Now, as s runs through all permutations of 1..(b−1), so does the permu-
tation

g=˛
1 W −s(1) mod b,

j W s(j)−s(1) mod b, 2 [ j < b,

Thus, using j-invariance of r and jb= id, we obtain

(22)=
1

(b−1)!
C

s ¥Sb−1

F r(dx1) f(j−s(1)(x1), x1, js(2)−s(1)(x1), ..., js(b−1)−s(1)(x1))

(23)

=
1

(b−1)!
C

g ¥Sb−1

F r(dx1) f(jg(1)(x1), x1, jg(2)(x1), ..., jg(b−1)(x1)).

A comparison of (22) and (23) proves the claim. L
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The counting measure # on E is j-invariant for any bijective j.
Therefore, there is also the following corollary.

3.17. Corollary

Let E be countable. If T is regular and if Zj+1=j j(Z1), j < b, for some
j: E Q E such that jb is the identity function then we have (C#

x ) for all
observable x ¥ Eb. L

3.18. Remarks

(a) Theorem 3.6 and Theorem 3.12 and their corollaries offer ways of
establishing Condition (Crx). Whereas 3.6(d) resorts to the measure n in
order to construct a suitable reference measure r, Theorem 3.12 needs no
such input. It rather indicates how to construct r from the distribution PZT .
Note also that the kernels Kh, K, and L and, hence, the reference measures
r appearing in Theorem 3.12 and its corollaries depend on Z1 through the
requirement PZ1 ° r, only.

(b) It follows from Theorem 3.4(b) that the hypotheses of Theorems
3.6 and 3.12 and of their corollaries all imply the equality SSr=BS, PZT -a.s. .

(c) The function f in Theorem 3.6 and the measures r in Corollary
3.14(a),(b) are related. It is an easy consequence of Lemma 3.3(b) that
f :=dPZ1/dr satisfies 3.6(i). The converse is not true. If f satisfies 3.6(i)

then the measure
PZ1
f é K is not necessarily exchangeable. The support

of PZ1 may be too small. It is sufficient to consider E=0..1, b=2,

PZ=1
2 (d(0, 0)+d(0, 1)), f=1{0}, and K(x, · )=(12 ,

1
2) for x=0, 1. The measure

PZ1
f =d0 violates the equation of detailed balance.

4. IRREGULAR VARIANTS FROM GAUSSIAN NOISE

In this section, we apply Corollary 3.14 and Lemma 3.13(c) to the
Gaussian case. More precisely, we let E=Rd and assume that the irregular
variants arise from the regular variant as affine transformations corrupted
by nondegenerate Gaussian noise, i.e., from the Gaussian linear model

R
Z2

x

Zb

S=m+SZ1+R.(24)
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Here, m ¥ R (b−1) d, S ¥ R (b−1) d×d, R ’ N(0, V) is independent of Z1, and V is
a positive definite (b−1) d by (b−1) d matrix. More generally, we assume

K(x, · ) ’ N(m+Sx, V), x ¥ Rd.(25)

4.1. Lemma

Let KŒ: Rd×B(Rd) Q [0, 1] be the Gaussian transition kernel defined by
KŒ(x, · ) ’ N(m+Sx, V), m ¥ Rd, S, V ¥ Rd×d, V regular. KŒ is reversible if
and only if SV is symmetric. In this case, the reversible measure is unique
up to a factor and has Lebesgue density

e−
1
2 {(x−m)

T V −1(x−m)−(m+Sx)T V −1(m+Sx)}.(26)

Proof. A reversible measure of KŒ has an everywhere strictly positive
Lebesgue density. The lemma now follows from a straightforward compu-
tation. L

The following remark is obvious.

4.2. Remark

A transition kernel K(x, · ) of the form (25) is exchangeable for all x ¥ Rd

if and only if m, S, and V are of the form

m=Rmx
m

S , m ¥ Rd,(27)

S=R
S

x

S

S , S ¥ Rd×d,(28)

V=R
V U · · · U

U z z x

x z z U

U · · · U V

S ,(29)

where U ¥ Rd×d symmetric (i.e., V is block circulant). We will need the
following lemma on block-circulant matrices.
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4.3. Lemma

Let r \ 2 be a natural number, let V and U be two d by d matrices and
let V be an rd by rd block-circulant matrix

V=R
V U · · · U

U z z x

x z z U

U · · · U V

S .
(a) The determinant of V is given by

det V=det[V−U]r−1 det[V+(r−1) U].(30)

(b) V is regular if and only if both matrices V−U and V+(r−1) U
are regular and then the inverse of V is

V−1=R
B C · · · C

C z z x

x z z C

C · · · C B

S ,(31)

where

B=
1
r

([V+(r−1) U]−1+(r−1)[V−U]−1),(32)

C=
1
r

([V+(r−1) U]−1−[V−U]−1).(33)

Moreover, we have

B+(r−1) C=[V+(r−1) U]−1,(34)

B−C=[V−U]−1.(35)

Letting G=−(B+(r−1) C)−1 C, we have also

U=G[V−U],(36)

G+I=V[B−C],(37)

V−1−GTV−1G=B+rCG.(38)

(c) Equalities (32)–(35) subsist after swapping V for B and U for C.
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Proof. The representation of the determinant det V appears in [3],
Theorem 8.9.1, that of V−1 with the Equalities (32) and (33) is verified by a
direct computation. Equalities (34) and (35) follow from (32) and (33).
According to (33), (34), and the definition of G, we have

[V+(r−1) U]−1 G=
1
r

([V−U]−1−[V+(r−1) U]−1).

This can be rewritten as

V+(r−1) U=(I+rG)[V−U],

i.e., (36).
Equation (37) follows directly from the identity I=(V−U)(B−C) and

(36). In order to obtain (38), use the formula GTV−1=B−C−V−1, cf. (37),
and the definition of G to compute

I−VGTV−1G−VB−rVCG=I−V(B−C−V−1) G−VB−rVCG(39)

=I−V(B+(r−1) C) G+G−VB

=I+G−V[B−C]

=0,

again by (37). The claim follows from regularity of V. L

4.4. Proposition

Let K be of the form (25).

(a) There exists a s-finite measure r on Rd such that r é K is
exchangeable if and only if m, S, and V are of the form (27), (28), (29),
respectively, and if

˛SV is symmetric, if b=2,

U=S[V−U], if b \ 3.
(40)

In this case, r is unique up to a factor and has Lebesgue density (26).
(b) If Z1 possesses a Lebesgue density and if (27), (28), (29), and (40)

are satisfied then we have (Crx) for Lebesgue a.a. x ¥ Rbd.

Proof. Let us first note that (40) implies symmetry of SV also in the
case b \ 3. Indeed, in this case, Condition (40) is equivalent to (S+I)(V−U)
=V and, hence, to V−1S=(V−U)−1−V−1. Since both matrices V and U
are symmetric, so is V−1S and, hence, also SV.
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We apply Corollary 3.14 in order to prove (a). Let us verify 3.13(c)
with M=K. We have already remarked that 3.13(i) is equivalent to the
validity of (27), (28), and (29). Now, KŒ(x, dy)=P[Z2 ¥ dy | Z1=x]=
N(m+Sx, V)(dy). Hence, by Lemma 4.1, Condition 3.13(iii) is equivalent
to symmetry of SV; uniqueness and the representation (26) of r follow as
well. We have thus proved Part (a) in the case b=2 and it remains to show
that 3.13(iv) is equivalent to (40) if b \ 3 and if (27), (28), and (29) are
valid. Let us first show that (40) is necessary for having 3.13(iv). We have

r(dx) K(x, dy dz)=e−
1
2 r(x)e−

1
2 {((

y
z)−m−Sx)T V −1((yz)−m−Sx)} dx dy dz,

where r(x) is the expression in curly brackets appearing in (26). Hence,
3.13(iv) says that the expression

r(x)+11y
z
2−m−Sx2

T

V−1 11y
z
2−m−Sx2(41)

is symmetric in x and y for all z ¥ R (b−2) d. The terms containing x, zi and
y, zi in this polynomial are −2 (0, zT) V−1Sx and 2 (0, zT) V−1(y0), respec-
tively. Now,

(0, zT) V−1=zT R
C B C ... C

x z z z x

x z z C

C ... ... C B

S ,
cf. (31). A necessary condition for the symmetry of this polynomial in x
and y is, therefore,

(B+(b−2) C) S=−C,(42)

i.e., that S be the matrix G introduced in Lemma 4.3. Equation (36) now
implies (40).
We finally show that the conditions (27), (28), (29), and (40) are also

sufficient for symmetry of (41) in x and y. Let us start with Equation (42)
instead of (40); it is equivalent to

V−1S=−C :=−(C, ..., C)T ¥ R (b−1) d×d,
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an equality that we use in order to reformulate (41) as

r(x)+11y
z
2−m2

T

V−1 11y
z
2−m2−(b−1) xTCSx+2xTCT 11y

z
2−m2 .

(43)

The term containing x and y in this polynomial is −2xTCy; it is sym-
metric since C is. The term containing the powers of x is

xTV−1x−2mTV−1x−xTSTV−1Sx−2mTV−1Sx−(b−1) xTCSx−2(b−1) mTCx

and the one containing the powers of y is

yTBy−2mT(B+(b−2) C) y.

Symmetry of these terms finally follows from (38) and (37). Claim (b) is
now a consequence of Corollary 3.14. L

4.5. Corollary

Let Z=(Z1, ..., Zb) ’ N(m, W) with m=(m1, m2, ..., m2) ¥ Rbd and a
nonsingular covariance matrix of the form

W=R
W HT · · · · · · HT

H M L · · · L

x L z z x

x x z z L

H L · · · L M

S=RW HT

H M
S ¥ Rbd×bd(44)

(in particular, L is symmetric). If

˛HW−1(M−HW−1HT) is symmetric, if b=2,

HW−1(M+HT)=(I+HW−1) L, if b > 2,
(45)

then we have SSr(x)=BS(x) for Lebesgue-a.a. x ¥ Rbd and some Lebesgue
absolutely continuous measure r on Rd. Moreover, with the notations

A=(W−HTM−1H)−1,(46)

B=
1

b−1
([M+(b−2) L−(b−1) HW−1HT]−1+(b−2)[M−L]−1),(47)

C=
1

b−1
([M+(b−2) L−(b−1) HW−1HT]−1−[M−L]−1),(48)
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we have

frZ1 (x)=e−
1
2 x

T(A−B) x+mT1 (A−C) x+m
T
2 (C−B) x.(49)

Proof. It follows from [4], Theorem 3.2.4, that

P[Z1̂ ¥ · | Z1=x]=N(m+Sx, V)=K(x, · ),

where S is of the form (28) with S=HW−1, V=M−HW−1HT is block
circulant of the form (29) with diagonal blocks V=M−HW−1HT and off-
diagonal blocks U=L−HW−1HT since L is symmetric, and where m is of
the form (27) with m=m2 −Sm1. Now, Condition (40) follows immediately
from (45) and Proposition 4.4 applies.
Let r be the measure on Rd with Lebesgue density (26). It remains to

show that

frZ1 (x)=e−
1
2 {(x−m1)

T W−1(x−m1)−(x−m)
T V −1(x−m)+(m+Sx)T V −1(m+Sx)}(50)

has the representation (49). To this end we need a few preliminaries.
Lemma 4.3 shows that V−1 is of the form (31) with B and C given by (47)
and (48), cf. (32) and (33). It also follows that S is the matrix G introduced
in Lemma 4.3, i.e., we have (42). A simple computation shows the well-
known fact that the inverse of W is of the form

W−1=R
A DT

D V−1
S ,(51)

with A and V as above and

D=−V−1HW−1=−V−1S=C ¥ R (b−1) d×d,(52)

cf. (42).
Now, the matrix A has also the representation

A=W−1+W−1HTV−1HW−1=W−1−DTS=W−1−(b−1) CS

by (52) and (42). Hence, by (38),

W−1−V−1+STV−1S=A+(b−1) CS−B−(b−1) CS=A−B.(53)

We already know from (37) that V−1(I+S)=B−C. Adding this to (53),
we obtain finally
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A−C=W−1−V−1+STV−1S+V−1+V−1S

=W−1+(I+ST) V−1S

=W−1+STV−1(I+S)

since SV is symmetric. These equalities, together with HW−1=S, show
that the expression in curly brackets in (50) equals, up to an additive
constant,

xT(W−1−V−1+STV−1S) x−2mT
1W

−1x+2mTV−1(I+S) x

=xT(W−1−V−1+STV−1S) x

−2mT
1 (W

−1+STV−1(I+S)) x+2mT
2V

−1(I+S) x

=xT(A−B) x−2mT
1 (A−C) x−2mT

2 (C−B) x.

This is Claim (49). L

4.6. Corollary

If all hypotheses of Corollary 4.5 are fulfilled and if m1=m2 then there
exists a Lebesgue absolutely continuous reference measure r on Rd such
that SSr(x)=BS(x) for Lebesgue-a.a. x ¥ Rbd. With respect to this r we
have

frZ1 (x)=e−
1
2 (x−m1)

T (A−B)(x−m1).(54)

4.7. Discussion

(a) In the univariate case, Condition (40) is satisfied throughout if
b=2. If H is symmetric then Condition (45), b=2, is satisfied if and only
if the matrix HW−1M is symmetric. This is guaranteed, e.g., if H, W, and
M commute pairwise or if two of these matrices are equal. If W+H
(equivalently I+HW−1) is nonsingular then (45), b > 2, is equivalent to

L=H(W+H)−1 (M+HT).(55)

This is restrictive but not unreasonable. Note also that, since there are only
finitely many variants, selectors enjoy robustness to small changes of the
model. We do not go into details, here.

(b) Note that the ‘‘obvious’’ simple selector in the situations of
Corollary 4.5 or Corollary 4.6,

SSl(x)=argmax
h

qhe−
1
2 (xh −m1)

T W−1(xh −m1),
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is not optimal for all x, cf. Example 2.4.1(b). It corresponds to the density
function flZ1 with Lebesgue measure l as the reference measure. In
Corollary 4.6, the matrix W−1 needs a correction term V−1−STV−1S as
Formula (53) reveals! On the other hand, the conditions given in the
Gaussian case are far from being necessary as Example 2.4.1(c) shows.

(c) A simple selector needs, besides the distribution PZ1 of the regular
variant, the reference measure r. In general, there does not exist a reference
measure r such that SSr equals the Bayesian selector, cf. Example 2.4.2.
However, the statements in this and the previous section expose interesting
situations where such r does exist. In these cases, variant selection can be
optimally performed by means of the density frZ1 which needs only partial
knowledge on the joint distribution of all variants, cf. Theorems 3.6 and
3.12 and their corollaries, and 4.4–4.6. In the case of Proposition 4.5 it
needs the symmetric matrix A−B and the vectors mT

1 (A−C) and
mT
2 (C−B) instead of the matrices A, B, C and the vectors m1 and m2 and

Corollary 4.6 just needs A−B. In the case of Example 3.5.1 the qualitative
information of disjointness is sufficient. In Corollary 3.8 the density
function of PZ1 with respect to PZ2 is required and Corollary 3.17 just needs
the distribution of the regular variant. Often there is also some freedom as
to the choice of r, cf. Example 2.4.1(c). Another advantage of simple
selectors is that they reduce selection to function evaluation on E instead of
Eb.

It is interesting to ask what the assumption (45) appearing in Corollary
4.5 means in terms of the random variables Zi. Here is an answer.

4.8. Proposition

Let Z=(Z1, ..., Zb) ’ N(m, W) with m ¥ Rbd and a nonsingular
covariance matrix W. Assume that

(i) for all p ¥Sb, 1, we have Zp ’ Z, i.e., Z is exchangeable con-
ditional on Z1;

(ii)

˛ the random variables Var[Z2 | Z1=0](Var Z1)−1 Z 1

and Z 2 are exchangeable, if b=2,

Cov(Var[Z2 −Z3 | Z1=0](Var Z1)−1 Z1, Z2)

=2 Cov[Z2, Z3 | Z1=0], if b > 2.

Then the hypotheses of Corollary 4.5 are satisfied.
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Proof. It follows from (i) that

m=R
EZ1

EZ2

x

EZ2

S
and that W is of the form (44) with

W=Var Z1, M=Var Z2, H=Cov(Z2, Z1),(56)

and LT=L=Cov(Z2, Zj), if b \ j \ 3.

It is well known (cf. [4], Theorem 3.2.4) that, for b \ j \ 3,

Var 5R
Z2

Zj

S;Z1=06

=Var R
Z2

Zj

S−Cov 1Z1, R
Z2

Zj

S2T (Var Z1)−1 Cov 1Z1, R
Z2

Zj

S2

=R
M L

L M
S−R

H

H
SW−1(HTHT)

=R
M−HW−1HT L−HW−1HT

L−HW−1HT M−HW−1HT
S ;

hence,

Var[Zi | Z1=0]=M−HW−1HT, i \ 2,(57)

Cov[Z2, Zj | Z1=0]=L−HW−1HT, j > 2.(58)

If b > 2 then, (57) and (58) imply

Var[Z2 −Z3 | Z1=0](59)

=Var[Z2/Z1=0]+Var[Z3 | Z1=0]−Cov[Z2, Z3 | Z1=0]

−Cov[Z3, Z2 | Z1=0]

=2(M−HW−1HT)−2(L−HW−1HT)

=2(M−L).
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This equality, (56), (ii), and (58) combine to show

(M−L) W−1HT=1
2 Var[Z2 −Z3 | Z1=0](Var Z1)−1 Cov(Z1, Z2)

=Cov[Z2, Z3 | Z1=0]

=L−HW−1HT,

i.e., (M+H) W−1HT=L(I+W−1HT). This is (45) in the case b > 2.
If b=2 then, from (57) and (56), we infer

(M−HW−1HT) W−1HT=Var[Z2 | Z1=0](Var Z1)−1 Cov(Z1, Z2)

=Cov(Var[Z2 | Z1=0](Var Z1)−1 Z1, Z2).

Assumption (ii) shows the symmetry of this matrix, i.e. (45) in this case.

ACKNOWLEDGMENT

We thank the referee for carefully reading the manuscript and for improving its presenta-
tion by constructive comments.

REFERENCES

1. H. Bauer, ‘‘Probability Theory and Elements of Measure Theory,’’ Academic Press, San
Diego, 1981.

2. R. G. Casey and E. Lecolinet, A survey of methods and strategies in character segmen-
tation, IEEE Trans. Pattern Anal. Mach. Intel. 18 (1996), 690–706.

3. F. A. Graybill, ‘‘Matrices with Applications in Statistics,’’ second edition, Wadsworth,
Belmont, CA, 1983.

4. K. V. Mardia, J. T. Kent, and J. M. Bibby, ‘‘Multivariate Analysis,’’ Academic Press,
San Diego, 1979.

5. G. Ritter, Classification and clustering of objects with variants, in ‘‘Data Analysis’’
(W. Gaul, O. Opitz, and M. Schader, Eds.), pp. 41–50, 2000.

6. G. Ritter and M. T. Gallegos, A Bayesian approach to object identification in pattern
recognition, in ‘‘Proc. 15th Int. Congress on Pattern Recognition, Barcelona 2000’’
(A. Sanfeliu et al., Eds.), Vol. 2, pp. 418–421, 2000.

7. G. Ritter and Ch. Pesch, Polarity-free automatic classification of chromosomes, Comput.
Statist. Data Anal. 35 (2001), 351–372.

8. G. Ritter and G. Schreib, Profile and feature extraction from chromosomes, in ‘‘Proc. 15th
Int. Congress on Pattern Recognition, Barcelona 2000’’ (A. Sanfeliu et al., Eds.), Vol. 2,
pp. 287–290, 2000.

9. G. Ritter and G. Schreib, Using dominant points and variants for profile extraction from
chromosomes, Pattern Recognition 34 (2001), 157–172.

34 RITTER AND GALLEGOS


	1. INTRODUCTION
	2. BAYESIAN AND SIMPLE SELECTION OF THE REGULAR VARIANT
	FIG. 1

	3. SUFFICIENT CONDITIONS FOR OPTIMALITY
	4. IRREGULAR VARIANTS FROM GAUSSIAN NOISE
	ACKNOWLEDGMENT
	REFERENCES

