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Abstract – We introduce a statistical model of a metaphase cell consisting of independent chromosomes with
elliptically symmetric feature vectors. From this model we derive the ML–classifier for classification in the 24
chromosomal classes, taking into account the correct number of chromosomes in each class. Experimental results
show that error rates of the best of these classifiers are less than 2% with respect to chromosomes if applied to the
large Copenhagen data set Cpr. Simulation studies suggest that there should be even more information contained
in the features of this data set.
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1. INTRODUCTION

In a normal, nucleated human cell there are 44 autosomal chomosomes and two sex chromosomes, X, X
in females and X, Y in males. The 44 autosomal chromosomes can be decomposed into 22 classes 1..22
each of which consists of a matching pair of two homologous chromosomes; also the two X chromosomes
in female cells are homologous. A representation of the chromosomal complement showing this class
structure is called a karyotype. Producing a karyotype of a cell is of practical importance since it much
facilitates the detection of abnormalities in chromosome structure. Readers interested in the biological
and cytogenetical background of karyotyping are referred to the survey article of Piper et al. [15] and
Habbema [7].

Karyotyping is a well–specified problem the solution of which by hand is well understood. It can be carried
out by a human expert on normal cells at a speed of 15 min/cell and, depending on the quality of the
image of the cell, at a low error rate between 1 and 3 misclassifications among 1000 chromosomes which
amounts roughly 2-7% of misclassified cells (cf. Lundsteen et al.[11], Granum [5], cf. also Zimmerman et
al. [19]). It was one of the first problems to be tackled by the methods of automatic pattern recognition
in the early 1960s. This automation problem is interesting in at least four respects:

(1) It is of clinical relevance since a satisfactory solution would relieve cytogeneticists from the routine of
karyotyping in most cases normal cells by hand and allow them to concentrate on detecting abnormalities;

(2) it is a challenging task of artificial intelligence and automatic pattern recognition;

(3) it bears interesting aspects of high–dimensional multivariate statistics; and of

(4) combinatorial optimization.

Automated pattern recognition usually consists of four phases; viz.: digitization of analogue images,
segmentation, feature extraction and classification. In the case of karyotyping the analogue image is a
microscopic image of the suitably stained chromosomes of a metaphase cell. By staining the chromosomal
band structure becomes visible, thus enabling classification of chromosomes in 24 classes. Figure 1 shows
a schematic representation of this band structure and Fig. 2 a photographic image of a stained metaphase
cell. The task of classification, whis is the subject we are interested in here, consists in arranging the 46
chromosomes in such a way that their classes are
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in the female and male cases, respectively. The upper and lower arrays in a karyotype are called haploids.

Classification can be carried out by the methods of Bayesian discriminance analysis, the individuals to be
classified being chromosomes or cells. Accordingly, there exist two techniques of assigning chromosomes
to classes:            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure 1: Schematic representation
of chromosome classes and band
structures

(1) Chromosome–by–chromosome or context–free allocation. In
this, earlier, approach the individuals classified are chromosomes
in isolation. This method can be modified by a subsequent
(context–sensitive) amendment so that the numbers of chromo-
somes in the various classes (one or two) are correct. Assessments
of methods based upon this approach are contained in Piper [13]
and Kirby et al.[8] Error rates for the most accurate of these meth-
ods and with the features used so far amount to about 5% relative
to chromosomes.

(2) Context–sensitive allocation. Here, the individuals classified
are cells. By this we mean that the optimization contained in the
Bayesian classifier is constrained by the correct numbers in the
classes 1, . . . , 22, X and Y . Using the constraints in this straight–
forward way was suggested already by Habbema [6, 7] and Slot
[16]. However, the first efficient algorithm was described by Tso
and Graham [18] who considered classification into the 10 Denver
groups and pointed out that the optimization problem involved,
in the case of their method of classification, is a Hitchcock trans-
portation problem. Later, Tso et al.[17] applied this method of
classification to karyotyping and designed an algorithm applicable
to incomplete cells.

The statistical model applied by many research groups postu-
lates independence and normality of the feature vectors of chromo-
somes∗ which necessitates estimating expectations and covariances
of features within chromosomes. Classification is then carried out
by minimizing the sum of the squared Mahalanobis distance of
feature vectors of chromosomes to class centers over all permuta-
tions. Some simplifications of this model are also considered in
the literature. One of these simplifications is the assumption of

independent features (cf. Piper [12]) supported by the fact that chromosomes are mixtures of the (inde-
pendent) ancestors of the individual; another one is that of equal correlation matrices of feature vectors
of chromosomes (cf. Kirby et al. [8]). It was even found that, besides the effect of speedup, simplification
of the first–mentioned kind decreases the error rate if the training set is small so that postulating uncor-
relatedness of features proves superior to relying on unsafe estimates of correlation coefficients. For large
training sets, however, the inclusion of covariance coefficients within chromosomes reduces the error rate
(cf. Piper [13]). The error rate of the best of these methods is at about 3% relative to chromosomes and
38% relative to cells.

The starting point of the present communication is the observation that the joint distribution of the
features of chromosomes has a tail as compared with the normal distribution and outliers resulting from
this tail are responsible of a large amount of misclassified chromosomes. We show that dropping the
assumption of normality while retaining that of independence substantially reduces the error rate. In-
stead of normality we assume that feature vectors of chromosomes are elliptically symmetric (elliptically
contoured). Thus, the joint distribution of the feature set of a random chromosome is characterized by
a mean value, a variance matrix, and a radial function (cf. Subsection 2.1). We denote the resulting
(optimal) ML–estimator in the context–sensitive setting by IECγ . The acronym IEC means “indepen-
dent and elliptically contoured chromosomes” and the subscript γ stands for the radial function or its
shape; a formal definition appears in Subsection 3.1. Many of the estimators found in the literature are
special cases for various choices of γ (cf. 3.2). If the empirical radial function is used for γ the resulting

∗When talking about the distribution of the feature vectore of a chromosome we actually mean the distribution of the
feature vector conditioned on the chromosome class.
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Figure 2: Microscopic view of stained metaphase cell

estimator has an error rate of about 1.9% relative to chromosomes and 26% relative to cells if applied to
the large Cophenhagen data set Cpr consisting (to date) of 2804 cells.

The outlines of the paper are as follows. In Section 2 we describe the statistical assumptions on the
feature vectors of chromosomes used here, in particular the assumptions of independence and elliptical
symmetry. Section 3 contains the ML–estimators derived from these statistical models and algorithms
for computing them. In Section 4 we present experimental results using the holdout and resubstitution
methods for classification. Possible sources of misclassification, exceeding the Bayes error for the present
feature set, are missing independence, missing elliptical symmetry of feature vectors, and errors in the
estimated parameters. In order to assess the statistical model used this section also contains simulation
studies. Here we generate artificial cell data with the use of several elliptically symmetric distributions
(differing in their radial distributions) and classify these cells with respect to their population parameters
and the holdout and resubstitution methods. In this way we obtain some information about the error
rates to be expected if one of these distributions were the true one and thereby about the quality of the
statistical assumptions made.

We will adhere to the following notation. The symbol R denotes the real line and R+ the set of real
numbers ≥ 0. We will write ‖ ‖ for the Euclidean norm on a Euclidean space R

m and a superscript T
means transposition of a vector or matrix. For a random vector X : Ω → R

m possessing the necessary
moments, EX and V X = E(X−EX)(X−EX)T denote its expectation and variance matrix, respectively,
and fX denotes its density function. The permutation group of m elements will be denoted Sm.

2. THE STATISTICAL MODEL OF A CELL

We now introduce our statistical model of a cell. This will be used in Section 3 in order to derive various
optimal estimators in different situations. For definiteness, we deal with human cells, mutatis mutandis,
the methods may, however, be applied to any other species and, in fact, to any classification problem of
independent, random objects subject to suitable constraints.
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2.1. Elliptical symmetry

A random vector S0 : Ω → R
d possessing a density function fS0

is called spherically symmetric (cf.
Dempster [2] and Fang et al. [3]), if fS0

is of the form

fS0
(x) = ϕ(‖x‖) (x ∈ R

d) (1)

with a radial function ϕ : R+ → R+ specifying the distribution of S0. The radial function models a
specific tail behaviour of S0. Moreover, the norm ‖S0‖ has a density which, by spherical symmetry,
equals

f‖S0‖(r) = ωd−1r
d−1ϕ(r), r ≥ 0. (2)

The number ωd−1 = 2πd/2/Γ(d/2) is the surface of the (d − 1)–dimensional unit sphere. We will call
f‖S0‖ the radial density of S0. From (2) it follows that a measurable function ϕ : R+ → R+ is the radial
function of a spherically symmetric random vector S0 if and only if

ωd−1

∫ ∞

0

rd−1ϕ(r)dr = 1. (3)

If E‖S0‖ = ωd−1

∫ ∞

0 rdϕ(r) dr < ∞ then the expectation ES0 of S0 exists and vanishes. If E‖S0‖2 =

ωd−1

∫ ∞

0 rd+1ϕ(r) dr < ∞ then its variance matrix V S0 = E[S0S
T
0 ] exists, is finite, and must be a

multiple αI of the identity matrix I . The factor α is determined by the equality

d · α = trace V S0 = E‖S0‖2 = ωd−1

∫ ∞

0

rd+1ϕ(r) dr. (4)

A random vector S : Ω → R
d is called elliptically symmetric (elliptically contoured) if it is the affine

image of some spherically symmetric random variable S0; i.e., there exists a vector c ∈ R
d and a matrix

A ∈ R
d×d such that S = c + AS0. By spherical symmetry of S0, the matrix A may be assumed to be

symmetric and positive. If S possesses a density function fS (which we will assume) then A may be
assumed to be positive definite. In this case, the elliptically symmetric random vector is specified by the
vector c ∈ R

d, the positive definite matrix A ∈ R
d×d, and the radial function ϕ of S0. If E‖S‖2 < ∞, or

equivalently E‖S0‖2 < ∞, we may and do suppose that S0 is normalized, i.e.,

V S0 = I and α = 1.

We next show how to compute these three parameters from the distribution of S in the latter case. As
a consequence of symmetry of S0 we first have

c = ES; (5)

moreover, V S = A(V S0)A = A2, i.e.,

A =
√

V S. (6)

It follows that
S0 = (V S)−1/2(S − ES), (7)

the Mahalanobis transform of S. Concerning the radial function ϕ it is useful to introduce the Mahalanobis
distance of x, y ∈ R

d with respect to a positive definite matrix V . This is the number

mV (x, y) :=
√

(x − y)T V −1(x − y). (8)

Since ‖S0‖ = mV S(S, ES) by (7) and (8), from (2) it follows that

ϕ(r) = r1−dfmV S(S,ES)(r)/ωd−1. (9)

Formula (9) is the basis for the radial function ϕ via an estimate of the radial density fmV S(S,ES), i.e.,
the distribution of the random Mahalanobis distance mV S(S, ES) = ‖S0‖.
Using an integral transformation, (7) and (1), the density fS may be written in terms of ES, V S, ϕ, and
mV S as

fS(x) = (det(V S)−1/2)fS0
((V S)−1/2(x − ES))

=(det(V S)−1/2)ϕ(‖(V S)−1/2(x − ES)‖)
=(det(V S)−1/2)ϕ(mV S(x, ES)). (10)
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This relation will be needed for representing the joint distribution of the random karyotype in 2.4. For
more details on elliptically symmetric distributions the interested reader is referred to Dempster [2] and
Fang et al. [3].

2.2. The configuration set

For ease of exposition we first deal with female cells; in Subsection 3.3 male cells will be treated in a similar
way. Neglecting incomplete cells with fewer than 46 chromosomes as well as cells with extra chromosomes
a female cell consists of 23 matching pairs of two homologous chromosomes belonging to the classes 1..23.
Given an arbitrary numbering of the chromosomes by the set 1..46 there are 223 permutations σ ∈ S46

(S46 represented as the group of bijective mappings 1..46 → 1..46) such that chromosome i is of class σ(i)
mod 23.∗ We will call the (uniquely defined) induced mapping

σ̃ : 1..46 → 1..23
i → σ(i) mod 23

the configuration of the cell. Each of these permutations σ represents the same configuration σ̃. The
classification problem consists in estimating this configuration σ̃, i.e. one of the correctly classifying
permutations σ. Hence, the decision set of the statistical decision problem under consideration is the
configuration set {σ̃/σ ∈ S46} consisting of 46!/223 ≈ 6.56 · 1050 mappings 1..46 → 1..23, where each
value is taken on exactly twice. A particular configuration is the karyotypic configuration κ̃ induced by
the identity permutation κ. A cell in configuration κ̃ is present in its karyotype.

2.3. Feature vector and parameter set

Let 1..46 be the numbers of the chromosomes of a cell in karyotypic configuration, more specifically, let
the two haploids be numbered 1, . . . , 23 and 24, . . . , 46. To each chromosomes i ∈ 1..46 there is associated
a random, real, d–dimensional feature vector Zi : (Ω, P ) → R

d. Therefore, the measurements of the two
haploids are modeled by random, real 23 · d–dimensional feature vectors

(Z1, . . . , Z23), (Z24, . . . , Z46) : (Ω, P ) → R
23·d.

What we actually observe with an unclassified cell is not the “karyotype” Z = (Z1, . . . , Z46) but this
joint vector Z in disorder: A vector x ∈ R

46·d will be considered as being composed of 46 vectors
x1, . . . , x46 ∈ R

d, i.e., xi is the ith block of length d in x. Each permutation σ ∈ S46 induces in a
natural way an isomorphism πσ ∈ GL(46 · d) defined by πσx := (xσ(i))1≤i≤46. This isomorphism maps

the subspace of R
46·d belonging to the ith block of length d onto the subspace belonging to the σ−1(i)th

block of length d. What we observe with an unclassified cell is the vector πσZ for some σ ∈ S46; then σ̃
is the configuration of the cell.

2.4. The joint distribution of the random karyotype

We assume that the random variables Z1, . . . , Z46 are independent and elliptically symmetric with pa-

rameters ei = EZi, Vi = V Zi, and ϕi, the radial function of the Mahalanobis transform V
−1/2
i (Zi − ei)

of Zi [cf. 2.1(7)]. Moreover, we assume that feature vectors of homologous chromosomes are statistically
identical, i.e., in a female cell, we have

ei+23 = ei, Vi+23 = Vi, ϕi+23 = ϕi

for all i, 1 ≤ i ≤ 23. In other words, the parameters ei, Vi and ϕi depend on classes only.

The assumption of independence is questionable. Habbema [7], reasoned that correlation between chro-
mosomes in one cell may be caused by a “common history of culture, preparation, staining, and photog-
raphy” and suggested that using the whole cell as an entity should be beneficial to error rates. Another
source of dependence is normalization of features across the chromosomes of a cell. Nevertheless, this
assumption turned out to be useful in the past and we shall stick to it here.

∗Contrary to usual convention in mathematics and computer science we represent integers mod m as elements of the
set 1..m here. In particular, 23 mod 23 and 46 mod 23 are represented by the number 23. In this way, class numbers of
chromosomes are those used in cytogenetics.
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The joint distribution of the random karyotype Z = (Z1, . . . , Z46) is now completely specified by the
parameters ei, Vi, ϕi (1 ≤ i ≤ 23) of chromosome classes and, by 2.1(10), we have for x = (x1, . . . , x46) ∈
R

46·d

fZ(x) =
46∏

i=1

fZi
(xi) =

46∏

i=1

(det V
−1/2
i )ϕi(mVi

(xi, ei)) = const
46∏

i=1

ϕi(mi(xi)); (1)

here, we used the notation
mi(y) = mVi

(y, ei) 1 ≤ i ≤ 46, y ∈ R
d. (2)

3. THE CLASSIFIERS

3.1. The ML–estimator

We now derive the optimal estimate of the configuration σ̃ of a cell from the observation X(ω) = πσZ(ω) =
x ∈ R

46·d (cf. 2.2 and 2.3). The statistical decision model (X, (µσ)σ∈S46
) of this classification problem

consists of the random observation X = πσZ : Ω → R
46·d of the (disordered) cell, the parameter set S46,

and the probability distributions µσ(σ ∈ S46),

µσ(dx)

dx
= fπσZ(x) = fZ(πσ−1x) =

46∏

i=1

fZi
(xσ−1(i)) = const

46∏

i=1

ϕi(mi(xσ−1(i))) (1)

[cf. 2.4(1)]. Since µσ depends on σ̃ only, it is not important to distinguish between σ and σ̃. From (1)
we infer that the negative log–likelihood function lx : S46 → R of the statistical decision model is (up to
an additive constant) given by

lx(σ) =
46∑

i=1

− ln ϕi(mi(xσ−1(i))).

Supposing that ϕi = ϕ is independent of i we obtain

lx(σ) =
46∑

i=1

− ln ϕ(mi(xσ−1(i))), x ∈ R
46·d, σ ∈ S46. (2)

It is reasonable to assume that all permutations occur equally likely; thus the (optimal) MAP–estimator
is the ML–estimator defined by

IECϕ(x) = argmin
σ∈S46

lx(σ), x ∈ R
46·d. (3)

The formulae (2), (3) and 2.4(2) combined define the ML–estimators employed here. We illustrate this
with a few examples.

3.2. Examples

(a) (Normal case) If the radial function ϕ is of the form

ϕ(r) = (2π)−d/2e−r2/2 (r ≥ 0) (1)

then feature vectors of chromosomes are normal and, by their independence, the whole cell is normal.
The ML–estimator is

IECnormal(x) = argmin
σ∈S46

46∑

i=1

m2
i (xσ−1(i)).

This estimator was proposed by Habbema [7] and Slot [16].

In Piper [12], there appears a variant of the Estimator IECnormal: if the features within each class are
assumed to be independent then the variances Vi reduce to diagonal matrices. If the training set is small
(up to 200 cells) then this assumption seems to be superior to using estimates of the covariances which
are too unsafe under these circumstances.
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(b) (Exponential case) Let now S0 possess an exponential tail, i.e.,

ϕ(r) = βe−λr (r ≥ 0). (2)

In order to ensure 2.1(3) and α = 1 we have to choose λ =
√

d + 1 and β = λd/Γ(d)ωd−1. According to
Subsection 3.1, the ML–estimator becomes

IECexp(x) = argmin
σ∈S46

46∑

i=1

mi(xσ−1(i)).

(c) (Pareto case) Finally, let S0 possess a Pareto tail, i.e.,

ϕ(r) =

{
βr−λ, r ≥ r0,

0, 0 ≤ r < r0,

for some real number λ > d+2. In order to ensure 2.1(3) and α = 1 we have to put r0 =
√

d(λ − d − 2)/(λ − d)

and β = (λ − d)rλ−d
0 /ωd−1. From 3.1 it follows that the ML–estimator is

IECPareto(x) = argmin
σ∈S46

46∑

i=1

ln mi(xσ−1(i)) (x ∈ R
46·4).

This estimator and the estimator IECexp were introduced by Kleinschmidt et al. [10], who pointed out
their robustness when applied to real data.

A radial function with similar tail behavior is

ϕ(r) =
β

η + rλ
(r ≥ 0)

for some real number λ > d + 2. In order to ensure 2.1(3) and α = 1 one has to put

η =

[
d

(
sin

d + 2

λ
π

)
/

(
sin

d

λ
π

)]λ/2

and

β =

(
η(λ−d)/λλ sin

d

λ
π

)
/(πωd−1).

Again similar is Pearson’s type VII distribution with

ϕ(r) =
β

(1 + r2/η)λ/2

for some real number λ > d + 2 and suitable constants β and η (cf. Fang et al. [3]).

3.3. Male cells

The statistical model in the male case is similar to that in the female case, however, we have to redefine
the notions of configuration and karyotype. A male cell consists of 22 classes of homologous chromosomes
and the nonhomologous chromosomes X and Y to which we assign classes 23 and 24, respectively. We
assume that the first “haploid” (Z1, . . . , Z23) consists of the features of chromosomes of classses 1 to 22
and the X chromosome and the second (Z24, . . . , Z46) consists of those of chromosomes of the classes 1
to 22 and the Y chromosome.

Given an arbitrary numbering of the chromosomes of a male cell by the set 1..46 there are 222 permutations
σ ∈ S46 such that chromosome i is of class σ(i) mod 23 if σ(i) < 46. We call the mapping

σ̃ : 1..46 → 1..24

i 7→
{

σ(i) mod 23, if σ(i) < 46,

24, if σ(i) = 46,
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the configuration of the male cell. Each of these permutations σ represents the configuration σ̃. The
karyotypic configuration κ̃ is induced by the identity permutation κ. The classification problem consists
in estimating σ̃, the decision set containing this time 46!/222 ≈ 1.31 · 1051 configurations.

Again, we assume that feature vectors of chromosomes are independent and elliptically symmetric, their
parameters depending on their classes 1..24. Except for the constant, formula 2.4(1) for the joint density
of features of chromosomes and the estimators in Subsection 3.1 remain unchanged. If the sex of a cell is
unknown then both estimators are applied and the sex is that of the estimator with the smaller negative
log–likelihood value. For another way of dealing with unknown sex cf. the following subsection.

3.4. Optimization

The minimization task in computing ML–classifiers for statistical models with independent feature vectors
of chromosomes reduces to a Hitchcock (transportation) problem as we pointed out by Tso and Graham
[18]. Indeed, for IEC, we have the female case [cf. 3.1(2),(3)]

IECϕ(x) = argmin
σ

lx(σ) = argmin
σ

46∑

i=1

− ln(ϕ(mi(xσ−1(i))))

=argmin
σ

46∑

i=1

46∑

j=1

− ln(ϕ(mi(xj)))δi,σ(j)

=argmin
σ

23∑

i=1

46∑

j=1

− ln(ϕ(mi(xj)))(δi,σ(j) + δi+23,σ(j))

(δij is Kronecker’s delta). Putting cij := − ln(ϕ(mi(xj))) and sij := δi,σ(j) + δi+23,σ(j) (1 ≤ i ≤ 23, 1 ≤
j ≤ 46) the problem reduces to finding natural numbers sij such that

23∑

i=1

46∑

j=1

cijsij is minimal subject to the restrictions
∑

i

sij = 1,
∑

j

sij = 2.

There exist very efficient solution algorithms for the Hitchcock problem, e.g., the extension of the Balinski
algorithm [1] due to Kleinschmidt et al.[9] employed for karyotyping in Tso et al. [17]. The latter paper
also contains a related algorithm for classification into 24 classes independent of the sex of a cell and an
algorithm for karyotyping cells with missing chromosomes. These algorithms are applicable also to the
present statistical model.

4. EXPERIMENTAL RESULTS

We have implemented the algorithms described in Section 3 on a SUN IPX workstation. Our implemen-
tation works at a speed of about 1 cell/s.

4.1. Data set

For our experiments we used the large Copenhagen data set Cpr; cf. Piper [13]. It consists to date of 2804
metaphase amnion cells 1305 of which are complete female cells (and 1428 are complete male cells). Each
chromosome is described by 30 features 0, . . . , 29 extracted by the MRC chromosome analysis system
described in Piper and Granum [14]. These features contain information about size, density, convex hull
perimeter, centromeric index, shape, and band pattern (cf. also Granum [5] and Piper et al. [15] for a
description of features). Since features 0, 7, 27 and 4, 26 are highly correlated with features 1 and 3,
respectively, and since the last feature 29 shows a tendency to increase error rates, we have worked with
the remaining 24 features. As the purpose of this paper is comparison of different statistical models (and
their related ML–estimators) we restricted matters to classifying female cells only and, in addition, we
left aside all cells with missing or extra chromosomes.

4.2. Estimated probabilities of misclassification

It is customary and appropriate to use the leave–out–one cross validation for assessing error rates: The
parameters are computed on the basis of all cells but one and this residual cell is classified; this pro-
cedure is repeated for every single cell. This method would be very time consuming since the matrix
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of covariances would have to be computed and inverted each time anew. We therefore resorted to a
jackknifing method: We subdivided the 1305 complete female cells randomly in ten different ways in
training sets of 1100 cells and the complementary test set of 205 cells. Table 1 shows the error rates
measured with these test sets 0, . . . , 9 using the parameters of the relative training sets for the estimators
IECnormal, IECexp, IECPareto [cf. 3.2(a)–(c)], and IECemp. In all cases the sample expectations êi and

variances V̂i were used in the estimators. The subscript “emp” refers to a smoothed version of the sample

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3: Smoothed version of − ln ϕ̂

radial density: We first computed the histograms
hi (absolute frequency) of the random variables
mbVi

(S, êi), 1 ≤ i ≤ 23, subdividing the positive real

axis in intervals of length 10−2. After adding these
23 histograms, intervals between r = 0 and the mode
with no observations were assigned the value 0.1 in
order to avoid zeroes (the algorithms are only weakly
sensitive to the radial function at low values of r). We
then approximated the resulting histogram h roughly
by a C

1–reference function g on the interval [0, 15].∗

The quotient h/g, which fluctuates around 1, was
smoothed using a triangle function with the varying
breadth (h(r) + 1)−0.3 at r resulting in a function
q : R+ → R+. The smoothed version of the empir-
ical radial density is qg and the sample radial func-
tion ϕ̂ required in 3.1(2),(3) is computed via 2.1(9)
as ϕ̂ = r1−dqg/ωd−1.

Table 2 shows the mean holdout error rates computed from Table 1 and the “optimistic” resubstitution
error rates. The resubstitution method consists in using the whole data set of 1305 cells as training
and test sets. The Bayes error can be expected to lie between the holdout and the resubstitution error
rates (cf. Fukunaga [4]). Since the results in different lines of Table 1 are only weakly correlated we can
conclude that a S.D. in Table 2 (cells) is roughly 1 (using the formula for the uncorrelated case). In the
mean, there are about three to four chromosomes misclassified in a misclassified cell. It follows from the
error rates of Table 2 (cells) that a S.D. in Table 2 (chromosomes) is roughly 0.1.
4.3. Simulations

In order to validate the statistical model described in Section 2 we have generated artificial cells by
means of the three models Znormal, Zexp and ZPareto. Here, Zγ : Ω → R

46·24 consists of 46 independent,
elliptically symmetric components Zγ

l : Ω → R
24 where expectations and variances are those estimated

from the 1305 complete female cells in Cpr and the radial functions are independent of classes and as
described in Examples 3.2(a)–(c). Specifically, for Zexp, from 3.2(b) it follows λ = 5. For ZPareto we
choose ϕ in such a way that the tail of ‖S0‖ approximately coincides with that estimated from Cpr, i.e.,
λ = 28 (cf. also the reference function g in the footnote of Subsection 4.2). From 3.2(c) it follows that
one has to choose r0 =

√
12 and β = 576/ωd−1.

We carried out three different test procedures and the results obtained are shown in Table 3.

(α) (Bayes error rate) We tested 50,000 random realizations of Zγ using the correct parameters of Zγ in
the classifier defined by 3.1(2),(3) and 2.4(2).

(β) (Holdout error rate) We generated 1100 random realizations from Zγ for estimating the empirical

expectations êi, variances V̂i, and the empirical radial function ϕ̂. In order to estimate ϕ̂ we computed
histograms of the random variables mbVi

(S, êi) [cf. 2.1(9)] subdividing the positive real axis in intervals

of length 10−2. After adding the histograms, intervals between r = 0 and the mode with no observations
were assigned the value 0.1 and the resulting histogram was smoothed out using triangle functions of
varying breadth so that in particular all further zeroes lying in the tail of the histogram disappeared.
These parameters were used in the classifier IECγ in order to test 50,000 random realizations sampled
from Zγ different from the 1100 above.

∗The reference function g is defined by g(r) =

8

>

>

>

<

>

>

>

:

0.1, 0 ≤ r < 1.5,

10.753(r − 1.5)5(4 − r) + 0.1, 1.5 ≤ r < 3.4,

0.0052826r12e−0.3778r
2

, 3.4 ≤ r < 4.743,

334503r−5 , r ≥ 4.743.
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Classifier IECnormal IECexp IECPareto IECemp

subdivision
0 272/69 219/60 182/54 186/54
1 279/77 270/73 198/53 194/52
2 255/68 235/61 165/51 159/49
3 271/82 266/77 187/65 183/63
4 286/80 233/64 159/49 161/50
5 321/85 303/77 215/53 218/54
6 287/78 250/67 172/51 172/51
7 296/87 238/73 185/60 183/59
8 284/86 225/75 168/60 166/60
9 237/67 205/56 152/44 150/43

Table 1: Number of errors with respect to chromosomes and cells for 205 classified cells, four different
classifiers, and 10 different subdivisions of data set. The figures m/n mean that a total of m chromosomes
were misclassified in n cells. S.D. with respect to cells is 7 for IECnormal and IECexp and 6 for IECPareto

and IECemp.

Classifier IECnormal IECexp IECPareto IECemp

method
Chromosomes
Holdout(%) 2.96 2.59 1.89 1.88
Resubstitution(%) 2.55 2.29 1.63 1.65

Cells
Holdout(%) 38.0 33.3 26.3 26.1
Resubstitution(%) 33.8 30.2 23.6 23.8

Table 2: Holdout and resubstitution error rates with respect to chromosomes and cells for four different
classifiers

(γ) (Resubstitution error rate) 1300 random realizations from Zγ were used as training and test sets. No
smoothing of the radial function was carried out and removal of zeroes as in (β) is not necessary here.
The whole procedure was repeated three times and Table 3 shows the resulting averages.

A S.D. in the first two lines of Table 3 (cells) is roughly 0.07, and in the last line 0.2. Since, on the
average, there are only slightly more than two chromosomes misclassified in a misclassified cell it follows
that a S.D. in the first two lines of Table 3 (chromosomes) is roughly 0.03, and in the last line 0.1.

5. DISCUSSION

The results presented in Tables 1 and 2 show that error rates are reduced by about 35% if an optimal
elliptically symmetric model instead of a normal model of feature vectors of chromosomes is employed.
The new issue arising from this model is the radial function of the associated spherically symmetric
distribution. Basically, one has to distinguish between radial functions whose negative logarithm is
convex, affine or concave. In the case of the Cpr data set the negative logarithm is essentially concave
(Fig. 3) explaining the superior performance of the classifier IECPareto besides IECemp. The advantage
of IECemp over IECPareto is its independence of the particular feature set since the empirical radial
function is used. On the other hand, IECPareto is robust since this estimator does not depend on the
Parameter λ of the Pareto–type radial density [cf. Example 3.2(c)]. Hence it is optimal for a whole class
of distributions.

It is important to hit the correct behavior of the radial function in the domain right after the larger of
the two inflection points of the radial density (which is roughly shaped like a χ–distribution). The Ma-
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Model Znormal Zexp ZPareto

method
Chromosomes
Bayes(%0) 0.72 0.89 0.73
Holdout(%0) 0.77 0.99 0.87
Resubstitution(%0) 0.61 0.91 0.55

Cells
Bayes(%) 1.62 1.99 1.63
Holdout(%) 1.74 2.22 1.96
Resubstitution(%) 1.38 1.97 1.23

Table 3: Simulated error rates with respect to chromosomes and cells for sampling from the statistical
model shown in the top line using the parameters indicated in the first column

halanobis distances of many of the feature vectors of chromosomes fall into this domain and membership
to their classes is already doubtful, at least to an automatic classifier.

The simulation results presented in Table 3 show that holdout error rates lie around 0.1% of chromosomes
and 2% of cells if the correct statistical model is used for classification and with rare exceptions there are
only two classes mixed up in a misclassified cell. Astonishingly, this describes just the performance of an
experienced human operator classifying chromosomal images of good quality; cf. the references cited in
the introduction. This suggests two conclusions:

(1) Although IECPareto and IECemp yield the best results when applied to real data their related sta-
tistical models seem far from being adequate. We conjecture that there is more information contained in
the feature set of the MRC chromosome analysis system than we can presently extract, although it may
take a much larger data set in order to exploit this information.

(2) It seems that a human expert is not only capable of extracting all the relevant features from the
(analogue or digital) images of chromosomes but he or she also possesses some close statistical model
of them and disposes of the means for determining a good approximation to its ML–estimator. Small-
ness of simulated holdout error rates implies that error rates observed with the real data cannot be
caused by insufficient estimation of parameters alone. It follows that future work has to concentrate on
detecting closer statistical models of feature vectors of chromosomes in order to further reduce error rates.
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