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Abstract: The method of variants has proved a powerful method for re-
ducing the error rate in Bayesian pattern recognition. The method serves
to recover from ambiguities often not avoidable during the early stage of
processing. Applications of this method to object identification, supervised
classification, and clustering are discussed.
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1 Introduction

Pattern recognition is the classification of an object in one of a number of
classes. This is opposed to discriminant analysis or statistical clustering both
of which deal with feature data rather than with more complex objects. By
an object we mean a complex entity that is not further decomposed during
the recognition process and is the basis for extraction of one set of features.
The objects may be optical or acoustical or of another nature, such as textual
documents or social and economic agents. Their formal representations may
need discrete, continuous or mixed data structures.

Classification of an object is essentially a stepwise process of complexity
reduction; it is usually performed in a number of consecutive steps:

- Identification of the standard representation of the object.
- Extraction of features from the standard representation.
- Supervised or unsuprevised classification of the feature set.

Each of these steps means a coarsening of the information describing the ob-
jects and the transition to a partition in the whole population. The first step

1 Research supported by Deutsche Forschungsgemeinschaft, Ri477/4



is the most critical and at the same time the least understood. It means the
application of an equivalence relation inherent to the structure of the objects.
As an example, congruent geometric figures are often (but not always, cf. the
cyphers 9 and 6) considered as being equivalent. In many cases, the algorithm
for feature extraction cannot deal with any member of an equivalence class
but needs a standard representation as its input. The rules for producing a
standard representation are often ambiguous. Here are two examples.

The standard representation of a spoken word is a sequence of phonemes.
It is not unambigously clear at the beginning of the recognition process at
which point in time one phoneme ends and the next one begins. However,
it is very important to identify these points since they allow to extract the
features of the phonemes to some precision. A similar problem arises when
features are extracted from geometrical objects. Feature extraction from fig-
ures such as the triangles in Fig. 1 often requires previous recognition of
orientation and shape. It is only then that the standard representation of a
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Fig. 1. Two geometric figures (left) and their standard representations (right).
Internal features are number and location of stripes; they can be easily determined
by vertical cuts if the object is present in its standard representation. A means for
producing a standard representation of the object is the analysis of its contour and
the dominant points of the contour (vertices in this case). This will, however, yield
ambiguous information here since the figures are equilateral triangles.

figure is identified and features can be safely extracted. In both cases, the
rules do not describe a mapping from object space to representation space,
but rather a relation between the two spaces. As a cure, one may process
all reasonable representations. We will deal with the problem of selecting the
standard representation and, hence, extracting the correct features, in Sect.
2. The remaining two sections are devoted to supervised classification, Sect.
3, and clustering, Sect. 4, under such ambiguities.

2 Variants as a response to the Principle of Least

Commitment

2.1 Variants and variant selection

As explained in the introduction, a necessary prerequisite for feature mea-
surement is the correct standard representation of the given object. Obtaining



this representation is often not possible at the early stage of processing since
it may need the yet unknown internal features, cf. Fig. 1; it is only at the
end of the whole pattern recognition process that the necessary information
is available. In other words, we face the vicious circle that feature extraction
needs the standard representation and establishing the standard representa-
tion may need internal features of the object. A wrong decision in this first
step would be disastrous for feature extraction and for the remaining steps
since features extracted under wrong assumptions are meaningless. Marr [3]
postulates the Principle of Least Commitment : never take a decision in a
process of recognition or identification unless this decision is safe. Otherwise,
it may later have to be undone. A way out of this vicious circle is appli-
cation of the recently proposed method of variants [4], [5]: It processes all
reasonable representations (variants) of the object taking the decision on the
correct (“regular”) variant only when sufficient information is accumulated.
Here, we assume that there is exactly one regular variant.

Several problems arise from the consideration of variants: The most basic
is selection of the regular variant from the set of variants. Two others are
classification of an object into one of several given classes and clustering
of objects in the presence of variants of the objects. An application of the
Bayesian paradigm immediately shows that all require the joint distribution
of all variants, cf. Eq. (1). This, however, is often unknown. Therefore, in [4]
and [5], algorithms for selection and classification were designed which need
essentially the statistical model of the regular variant alone.

Variant selection must not be confused with (supervised) classification,
hypothesis testing, or goodness-of-fit tests. In some sense, variant selection is
even opposed to classification since, in the former case, several observations
(variants) compete for one statistical model and in the latter case, several
statistical models compete for an observation. A test of hypotheses needs
statistical models of both hypotheses and is in this sense similar to classifi-
cation. Finally, a goodness-of-fit test compares two models with each other,
one of them given by realizations.

2.2 The Simple Selector and its optimality

A Bayesian framework for the selection problem is as follows. Let (Ω, P )
denote a probability space, let E be a Polish state space with its Borel σ–
algebra B(E), and let Zi : (Ω, P ) → E, i ∈ 1..b, be b ≥ 1 variants of an object,
Z1 being the regular one. We observe a realization x = (x1, · · · , xb) ∈ Eb

of X = (X1, · · · , Xb) = (ZT (1), · · · , ZT (b)) = ZT , a random permutation
T : Ω → Sb of the b-tuple Z = (Z1, · · · , Zb). The task is estimation of
the unknown random position H : Ω → 1..b of the regular variant, i.e.,
the position H so that xH emanates from Z1. Clearly, we have T (H) = 1,
H = T−1(1) and the assertions T (h) = 1 and H = h are synonymous. We
assume that the random permutation T is independent of Z.



The related MAP model is the quadruple (X, (PZπ
)π∈Sb

,D, G). Here, the
parameter set is the symmetric group Sb, the decision set D is the interval
1..b, and the gain function G : Sb × (1..b) → R is

G(π, h) =

{

1, if π(h) = 1,
0, otherwise.

For all h ∈ 1..b, let qh := P [T (h) = 1] denote the prior probability of the
regular variant to occupy site h. Without loss of generality we assume qh > 0
for all h ∈ 1..b. We call any estimator S : Eb → 1..b of the regular variant a
selector.

2.3 Lemma

Let µ be some σ-finite measure on Eb such that PZT
is absolutely continuous

with respect to µ. The Bayesian selector BS for the statistical model at hand
is

BS(x) = argmaxh∈1..b

P [ZT ∈ dx/T (h) = 1]

µ(dx)
qh, (1)

PZT
–a.a. x ∈ Eb.

Proof. The Bayesian selector BS for the above statistical model is de-
fined by

BS(x) = argmaxh∈1..bE[G(T, h)/X = x]

= argmaxh∈1..bP [T (h) = 1/ZT = x].

This set is nonempty and uniquely defined for PZT
-a.a. x ∈ Eb. By Bayes’

formula, P [T (h) = 1/ZT = x] equals the density

P [ZT ∈ dx, T (h) = 1]

P [ZT ∈ dx]
=

P [ZT ∈ dx, T (h) = 1]

µ(dx)
/
P [ZT ∈ dx]

µ(dx)
.

This implies the claim. 2

This selector needs information on the joint distribution of all variants.
There is usually one correct (regular) variant, but there may be many un-
known causes for incorrect, spurious variants. In these cases, complete knowl-
edge about all variants, let alone their joint distribution, will not be available.
This is one reason why the simple selector was proposed. For its description
we need some more notation. Let ρ be some σ–finite reference measure on E
and let fρ

Z1
be the density of the random features Z1 : Ω → E of the regular

variant. We wish to select the position of the regular variant with the aid
of fρ

Z1
and qh. It is tempting to choose an index h for which the quantity

fρ
Z1

(xh) qh is maximal, i.e., to use the



Simple (Variant) Selector associated with the reference measure ρ,
[4], [5]:

SSρ(x1, · · · , xb) = argmaxh∈1..bf
ρ
Z1

(xh) qh.

Note that the Simple Selector depends on the reference measure ρ. This is
contrary to the Bayesian selector (1) which does not depend on the measure
µ on Eb. It is easy to see that the set {h ∈ 1..b/f ρ

Z1
(xh) qh > 0} is nonempty

for PZT
-a.a. x ∈ Eb. Therefore, maxh∈1..b fρ

Z1
(xh) qh is strictly positive for

PZT
–a.a. x ∈ Eb.
The Simple Selector may, however, be grossly misleading. Nevertheless,

one can give conditions which guarantee its optimality, i.e., conditions ensur-
ing that the Bayesian selector BS just depends on the reduced set of quan-
tities. Moreover, there do exist interesting situations where these conditions
are satisfied. The following general sufficient condition for optimality of the
Simple Selector appears in [5]. We need some preliminaries. Conditioning on
the event Z1 = x is defined for PZ1

-a.a. x ∈ E, only. However, since E is
Polish, the conditional distribution P [Z1̂ ∈ dy/Z1 = x] may be extended to
a Markovian kernel K on E×Eb−1 such that K(x, dy) = P [Z1̂ ∈ dy/Z1 = x]
for PZ1

–a.a. x ∈ E. Here, x
ĥ

stands for (x1, · · · , xh−1, xh+1, · · · , xb) ∈ Eb−1,
x = (x1, · · · , xb) ∈ Eb, h ∈ 1..b. Let us say that a selector is optimal if it
equals the Bayesian Selector for PZT

–a.a. x ∈ Eb.

2.4 Theorem

If PZ1
is absolutely continuous with respect to ρ and if ρ ⊗ K is exchange-

able then the Simple Selector SSρ is optimal. Moreover, fρ
Z1

= dPZ/d(ρ⊗K).

Proof. First, exchangeability of ρ⊗K implies exchangeability of K(x, ·)
for ρ–a.a. x ∈ E. Hence, we have for all h and π ∈ Sb such that πh = 1

P [Zπ ∈ dx] = P [Zπh ∈ dxh, Z
πĥ

∈ dx
ĥ
] = P [Z1 ∈ dxh, Z1̂ ∈ dxπ−1 1̂]

= PZ1
(dxh)K(xh, dxπ−1 1̂) = PZ1

(dxh)K(xh, dx
ĥ
)

= PZ1
⊗ K(dxh, dx

ĥ
).

From statistical independence of Z and T it follows

P [ZT ∈ dx/Th = 1] = PZ1
⊗ K(dxh, dx

ĥ
). (2)

Using again exchangeability of ρ ⊗ K, we obtain

P [ZT ∈ dx/Th = 1]

ρ ⊗ K(dx)
=

PZ1
⊗ K(dxh, dx

ĥ
)

ρ ⊗ K(dxh, dx
ĥ
)

= fρ
Z1

(xh)

for ρ ⊗ K–a.a. and, hence, PZT
–a.a x ∈ Eb and the first claim follows from

(1).



The second claim follows from the definition of K:

PZ(dx) = P [Z1̂ ∈ dx1̂/Z1 = x1]PZ1
(dx1) = PZ1

⊗ K(dx)

= fρ
Z1

(x1)(ρ ⊗ K)(dx). 2

This theorem entails a number of corollaries, cf. [4], [5].

2.5 Corollary

Let all b variants be independent, let Z2, · · · , Zb be identically distributed,
and suppose that PZ1

is absolutely continuous with respect to PZ2
. Then the

Simple Selector SSρ with ρ = PZ2
is optimal.

Proof. We may put K(x, ·) := (PZ2
)⊗(b−1), x ∈ E. The claim follows

from Theorem 2.4 since ρ ⊗ K is a product measure with equal factors and,
hence, exchangeable. 2

2.6 Corollary

Let b = 2 and assume that the Markovian kernel K has the reversible measure
ρ. If PZ1

is absolutely continuous with respect to ρ then the Simple Selector
SSρ is optimal.

Proof. Indeed, if b = 2 then exchangeability of ρ⊗K is just reversibility
of ρ. 2

Any measurable function ϕ : E → E induces the Markov kernel K(x, ·) =
δϕ(x) on E × E. If ϕ is involutive then µ + µϕ is ϕ–invariant and, hence,
reversible with respect to any nonzero measure µ on E. In this case, we have
Z2 = ϕ(Z1) and the elements in E × E observable for X are of the form
(x, ϕ(x)). There is the following corollary.

2.7 Corollary

Let b = 2, let Z2 = ϕ(Z1) for some measurable involution ϕ : E → E, and let
ρ be a ϕ–invariant reference measure such that PZ1

is absolutely continuous
with respect to ρ. Then the Simple Selector SSρ is optimal.

3 Supervised classification with variants

Variant selection can be combined with (supervised) classification. Suppose
that an object having several variants x1, · · · , xb is to be assigned to one
of several given classes j ∈ 1..n. Let the regular variant Zj,1 of class j be



absolutely continuous relative to some reference measure ρ on E and let the
density function be designated by fρ

Zj,1
. Let qj,h be the prior probability for

j to be the correct class and for position h to be that of the regular variant.
There are two related problems, namely optimal assignment of the object to
its class with and without simultaneous selection of the regular variant. The
following classifier, designed for the former case, is due to M.T. Gallegos and
the author.

Simple Classifier–Selector. The Simple Classifier–Selector associated
with the reference measure ρ is defined as

SCρ(x) = argmaxj max
h∈1..b

fρ
Zj,1

(xh) qj,h, x = (x1, . . . , xb), (3)

and the estimate of the position of the regular variant is the maximal h ∈ 1..b.

The Simple Classifier–Selector uses all variants of the object and decides
at the same time on the class and the regular variant. The point is that the
Simple Classifier–Selector needs the densities f ρ

Zj,1
of the regular variants

Zj,1 of all classes j, only, and not the densities of the irregular variants for
estimating the class of x. Yet, it can be shown that it equals the Bayesian
estimator given the whole statistical information if the joint distribution of
all variants satisfies one of the the conditions stated in Corollaries 2.5–2.7.
If the class, only, is to be estimated then maximization over 1 ≤ h ≤ b in
(3) is replaced with summation. The resulting classifier is called the Simple

Classifier. It implicitly uses the regular variant for classification.

3.1 Applications of the Simple Classifier

Recently, a constrained version of the Simple Cassifier was successfully ap-
plied in various contexts to the “automatic classification of chromosomes”
[6–8]. Feature extraction from the oblong metaphase chromosomes under a
light microscope needs their correct polarities. These are not a priori given,
a situation giving rise to considering two variants for each chromosome, one
feature set for each polarity. After collecting information at a higher level, the
Simple Classifier implicitly selects the most prospective of them using it as
its basis for classification. The resulting “polarity free” classification method
reduces the error rate by about 25% [6].

Some methods of feature measurement on chromosomes require the ex-
traction of longitudinal axes along the chromosomes. These define suitable
standard representations in the sense of the introduction. In the case of a
severely bent, badly shaped, or small chromosome the axis (and, hence, the
shape) is not easily determined and a way of handling this ambiguity is the
simultaneous consideration of various possible axes [7], [8]. Variants thus help
to attain the presently worldwide lowest error rate of 0.6% in this field. Ap-
plications to automatic image, document, and speech processing also lend
themselves.



4 Clustering with variants

Clustering differs from supervised classification in that the class conditional
distributions are unknown. Like supervised classification, clustering of objects
can be treated in the presence of variants as well.

4.1 Explanation and Notation

Let

X1 = (X1,1, . . . , X1,b), . . . , Xm = (Xm,1, . . . , Xm,b)

be m objects to be clustered in an a priori given number of classes, each object
being observed by way of b ≥ 1 variants. A statistical model of this situation

uses the following table of n · m random variables Z
(i)
j = (Z

(i)
j,1, . . . , Z

(i)
j,b) :

Ω → Eb, i ∈ 1..m, j ∈ 1..n.

(Z
(1)
1,1 , . . . , Z

(1)
1,b ), . . . , (Z

(i)
1,1, . . . , Z

(i)
1,b), . . . , (Z

(m)
1,1 , . . . , Z

(m)
1,b ),

...
...

...
...

...

(Z
(1)
j,1 , . . . , Z

(1)
j,b ), . . . , (Z

(i)
j,1, . . . , Z

(i)
j,b), . . . , (Z

(m)
j,1 , . . . , Z

(m)
j,b ),

...
...

...
...

...

(Z
(1)
n,1, . . . , Z

(1)
n,b), . . . , (Z

(i)
n,1, . . . , Z

(i)
n,b), . . . , (Z

(m)
n,1 , . . . , Z

(m)
n,b ).

Each of the m joint random variables Z
(i)
j in the jth line represents the

jth class; their distributions are equal. For all i ∈ 1..m, Z
(i)
j,1 represents the

regular and Z
(i)
j,k the kth variant of the generic object of class j ∈ 1..n.

Let L : Ω → (1..n)m stand for an unknown assignment of the m objects
to the n classes and let Ti : Ω → Sb be an unknown permutation of the
b variants of object i ∈ 1..m. We may assume that the random variables

L, T1, . . . , Tm, and all Z
(i)
j are independent of each other. Variants of one

object may (and will in general) be statistically dependent. Writing Z
(i)
j,π =

(Z
(i)
j,π1, . . . , Z

(i)
j,πb) for π in the symmetric group Sb, we observe the random

choice X1 = Z
(1)
L(1),T1

, . . . , Xm = Z
(m)
L(m),Tm

in the above table; i.e., object

Xi is the entry in line L(i) and column i, randomly permuted according to
Ti : Ω → Sb.

Besides the clustering, we wish to estimate the regular variant of each
object. This amounts to estimating the labels L(i) and the sites Hi = T−1

i 1,
i ∈ 1..m. The case b = 1 corresponds to the classical case, cf. H.H. Bock
[1], [2]; here, the maximum likelihood paradigm is a popular method of esti-
mation. One chooses a parametric model with parameter set Θ for the class-
conditional distributions, a suitable reference measure ρ on E and defines the
densities fρ(θ, x), θ ∈ Θ, x ∈ E. With the abbreviation X = (X1, . . . , Xm),



the ML–estimate of θθθ = (θ1, . . . , θn) ∈ Θn and `̀̀ = (`1, . . . , `m) ∈ (1..n)m

given the observation x = (x(1), . . . , x(m)) ∈ Em is

argmaxθθθ,̀`̀

Pθθθ[X ∈ dx/L = `̀̀]

ρ(dx(1)) . . . ρ(dx(m))
= argmaxθθθ,̀`̀

n
∏

j=1

∏

i:`i=j

fρ(θj , x
(i)).

In the presence of variants, we propose a mixture of an ML–estimator for the
distributional parameters and the cluster assignment and an MAP–estimator
for the positions h ∈ (1..b)m of the regular variants. With the notation T =
(T1, . . . , Tm), the relative clustering criterion is, thus,

argmaxθθθ,̀`̀,h

Pθθθ[X ∈ dx, Th = 1/L = `̀̀]

ν(dx(1)) . . . ν(dx(m))
; (4)

here, ν is some reference measure on Eb and x = (x(1), . . . ,x(m)) ∈ Emb. The
symbol 1 stands for the constant vector (1, . . . , 1).

Simple Clustering Criterion. Let us define the Simple Clustering Cri-

terion associated with the reference measure ρ on E as

argmaxθθθ,̀`̀,h

n
∏

j=1

∏

i:`i=j

(

fρ(θj , x
(i)
hi

) q
(i)
hi

)

. (5)

There is the following theorem on its optimality; the condition (6) appearing
there means that the mechanism generating the irregular variants from the
regular ones is class independent.

4.2 Theorem

Let there be a Markov kernel K on E × Eb−1 such that

P θ[Zj,1̂ ∈ dy/Zj,1 = x] = K(x, dy) (6)

for all j ∈ 1..n, θ ∈ Θ, and PZj,1
–a.a. x ∈ E. Assume that there exists a

σ–finite measure ρ on E such that PZj,1
is absolutely continuous with re-

spect to ρ for all j and such that the product ρ ⊗ K is exchangeable on Eb.
Then the Simple Clustering Criterion (5) equals the clustering criterion (4)
for (ρ ⊗ K)⊗m–a.a. x ∈ Emb.

Proof. Let us first compute

Pθθθ[X ∈ dx/L = `̀̀, Th = 1]

= Pθθθ[X1 ∈ dx(1), . . . , Xm ∈ dx(m)/L = `̀̀, Th = 1]

= Pθθθ[Z
(1)
L(1),T1

∈ dx(1), . . . , Z
(m)
L(m),Tm

∈ dx(m)/L = `̀̀, Th = 1]

= Pθθθ[Z
(1)
`1,T1

∈ dx(1), . . . , Z
(m)
`m,Tm

∈ dx(m)/L = `̀̀, Th = 1]

= Pθθθ[Z
(1)
`1,T1

∈ dx(1), . . . , Z
(m)
`m,Tm

∈ dx(m)/T1h1 = 1, . . . , Tmhm = 1]

= Pθθθ[Z
(1)
`1,T1

∈ dx(1)/T1h1 = 1] . . . Pθθθ[Z
(m)
`m,Tm

∈ dx(m)/Tmhm = 1].



The assumption of exchangeability, the condition (6), and (2) together imply
for all i, j, and h ∈ 1..b the equality

Pθθθ[Zj,Ti
∈ dy/Tih = 1] = Pθθθ

Zj,1
⊗ K(dyh, dy

ĥ
), y ∈ Eb.

From the above, it follows

Pθθθ[X ∈ dx, Th = 1/L = `̀̀]

= Pθθθ
Z`1,1

⊗ K(dx
(1)
h1

, dx
(1)
ch1

) · · ·Pθθθ
Z`m,1

⊗ K(dx
(m)
hm

, dx
(m)
chm

) q
(1)
h1

· · · q
(m)
hm

.

Again by exchangeability, the clustering criterion (4) with ν = ρ ⊗ K now
assumes the form

Pθθθ[X ∈ dx, Th = 1/L = `̀̀]

ρ ⊗ K(dx(1)) · · · ρ ⊗ K(dx(m))
=

m
∏

i=1





Pθθθ
Z`i,1

⊗ K(dx
(i)
hi

, dx
(i)
bhi

)

ρ ⊗ K(dx(i))
q
(i)
hi





=
m
∏

i=1





Pθθθ
Z`i,1

⊗ K(dx
(i)
hi

, dx
(i)
bhi

)

ρ ⊗ K(dx
(i)
hi

, dx
(i)
bhi

)
q
(i)
hi



 =
m
∏

i=1





Pθθθ
Z`i,1

(dx
(i)
hi

)

ρ(dx
(i)
hi

)
q
(i)
hi





=
m
∏

i=1

(

fρ(θ`i
, x

(i)
hi

) q
(i)
hi

)

=
n

∏

j=1

∏

i:`i=j

(

fρ(θj , x
(i)
hi

) q
(i)
hi

)

.

The third equality in this chain is true for (ρ ⊗ K)⊗m–a.a. x ∈ Emb. This
concludes the proof. 2
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