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Probabilistic clustering via Pareto solutions and significance tests

Abstract: The present paper proposes a new strategy for probabilistic (often called model-
based) clustering. It is well known that local maxima of mixture likelihoods can be used to
partition an underlying data set. However, local maxima are rarely unique. Therefore, it
remains to select the reasonable solutions, and in particular the desired one. Credible parti-
tions are usually recognized by separation (and cohesion) of their clusters. We use here the
p-values provided by the classical tests of Wilks, Hotelling, and Behrens–Fisher to single out
those solutions that are well separated by location.

It has been shown that reasonable solutions to a clustering problem are related to Pareto
points in a plot of scale balance vs. model fit of all local maxima. We briefly review this theory
and propose as solutions all well-fitting Pareto points in the set of local maxima separated by
location in the above sense.

We also design a new iterative, parameter-free cutting plane algorithm for the multivariate
Behrens–Fisher problem.
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Mathematics Subject Classification: Primary 62H30, Secondary 62–07

1 Introduction: The classical setup.

Many data sets x = (x1, . . . , xn), xi ∈ R
d, occurring in practice originate from different causes

or situations. Examples are provided by biology when data comes from organisms of different
subspecies or under different conditions. When causes are known, discriminant analysis may
be used for classifying new objects. If not, literature knows many methods based on the
observed data to cluster the objects and to detect and describe the causes. This task is not
easy, in particular when the data clusters that originate from the various causes substantially
overlap. The present paper offers a strategy for resolving these cases.

Let Nm,V stand for the d-variate normal distribution with mean vector m and covariance
matrix V . A popular model for cluster analysis is the normal mixture model on the sample
space R

d,

g∑

j=1

πjNmj ,Vj
. (1)

Here, g ≥ 2 is its number of components, π = (π1, . . . , πg), πj > 0,
∑

πj = 1, stands for its
mixing rates, m = (m1, . . . ,mg) is its g-tuple of mean vectors in R

d, and V = (V1, . . . , Vg)
that of its positive definite covariance matrices. We will assume throughout that the pairs
(mj , Vj) are pairwise distinct. There exists a number of monographs devoted to this subject.
We mention Lindsay [26], McLachlan and Peel [29], Böhning [6], Frühwirth-Schnatter [16],
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and Ritter [32]. The preferred tool for estimating the parameters of (1) is the joint likelihood
function

f(x;π,m,V) =
n∏

i=1

g∑

j=1

πjNmj ,Vj
(xi) (2)

at the data x. By a result of Yakowitz and Spragins [39], the normal mixture model (1) is
identifiable up to label switching. This allows us in principle to estimate its parameters when
n is large enough. The data set x can subsequently be partitioned in clusters by Bayesian
discriminant analysis based on the estimated parameters πj , mj , Vj of the mixture.

However, the standard maximum likelihood paradigm cannot be applied right away – the
likelihood function (2) is unbounded as noted by Kiefer and Wolfowitz [22]. It is sufficient
to set m1 = x1 and to let V1 = εId with ε → 0. Eq. (2) has, thus, no maximum. As a
resort, local likelihood maxima are used. In fact, there is the following result originally due to
Kiefer [23] and Peters and Walker [31]. Their theorems refer to the univariate case. A proof
in the multivariate case is contained in Ritter [32]. To avoid degeneracies, we will assume
throughout that the data set has at least d+1 points and is in general position, that is, the
affine space spanned by any d+1 data points is the whole R

d. This is almost surely the case
when data is sampled independently from a distribution with a Lebesgue density such as a
normal mixture.

1.1 Theorem Let the sampling distribution be a normal mixture (1) with parameters (π,m,V).

(a) There exists an open neighborhood U of (π,m,V) such that the n-fold likelihood func-
tion (2) of the normal mixture model possesses a.s. exactly one local maximum Tn in U
for eventually all n.

(b) The sequence (Tn)n is strongly consistent at (π,m,V).

Thus, if we are given a sequence x1, x2, . . . sampled from (1), then Part (b) says that the
sequence of local maxima Tn ∈ U will a.s. converge to the original parameters (π,m,V) as
n→∞. Therefore, local likelihood maxima are interesting candidates for a solution. However,
Day [10] noted that local maxima are not unique. Unfortunately, Theorem 1.1 does not tell
us which one to choose. Literature knows several remedies to this problem.

(i) Generating all, or at least many, local maxima with repeated runs of the EM algorithm
(see McLachlan and Peel [28]) and using the largest one, excepting “spurious” solutions,
that is, solutions with an unusually small eigenvalue of one of its covariance matrices.
But there is no generally accepted definition of what “unusually small” should mean.

(ii) Starting the EM iteration from an initial solution obtained with another, usually simpler,
algorithm. One then obtains a single solution. Popular initial algorithms are hierarchical
methods or k-means. This is fast, and acceptable if the initial algorithm leads us close
to the desired solution. The EM algorithm serves here as a refinement of the initial
solution. This is the viewpoint of Fraley and Raftery’s [14] MCLUST.

(iii) Introducing a bound on all eigenvalue ratios of the covariance matrices and maximizing
the likelihood function under these constraints. This is the TCLUST approach taken
by Fritz et al. [15], who also design an algorithm for constrained optimization. This has
the disadvantage that the bound is a priori unknown and has to be guessed.
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(iv) Gallegos and Ritter [17, 18] select as solutions extreme points near the left lower corner
of the convex hull of the so-called SBF plot (scale balance vs. fit) of local likelihood
maxima; see also Section 4. However, there are sometimes other interesting solutions.

We will improve in Section 4 strategy (iv). The new strategy has the advantage of needing
no prior assumptions. Cluster analysts face, of course, more problems than unboundedness
of the likelihood function and multiplicity of solutions. Two are robustness in the presence
of contaminated data and the so-called p≫n-problem. We do not deal with these problems
here. There is, however, a large body of literature on both subjects and we refer the interested
reader to Ritter [32].

A probabilistic model competing with mixtures is the so-called normal MAP classification
model

log f(x; C,π,m,V) =
∑

j

∑

i∈Cj

log
(
πjNmj ,Vj

(xi)
)
. (3)

Here, C = {C1, . . . , Cg} is some partition of the index set 1 . . n in g subsets (called clusters)
and the other parameters are as defined in Eqs. (1) and (2). If nj = |Cj | ≥ d + 1 for all j,
1 ≤ j ≤ g, then partial unconstrained maximization w.r.t. πj , mj , and Vj is possible, leading
to the MAP determinant criterion,

−1
2

g∑

j=1

nj log detSj − nH
(
n1

n , . . . ,
ng

n

)
. (4)

It depends only on the partition, namely via the scatter matrices S1, . . . , Sg of its g clusters
C1, . . . , Cg. It contains the entropy H

(
n1

n , . . . ,
ng

n

)
= −

∑g
j=1

nj

n log
nj

n of the cluster propor-
tions nj/n which makes up for unequal cluster sizes. The idea is to produce partitions with
large values of the determinant criterion, (4). However, its maximization is often not useful
and may miss the desired solution. A strategy similar to that announced for the mixture
model works in this case, too. Like the mixture model, the MAP criterion (4) is sensitive,
having the power to adapt to arbitrary locations, scales, and cluster sizes.

A partition is called steady (w.r.t. the classification model) if it results from the Bayesian
(or MAP) discriminant rule w.r.t. the (unconstrained, normal) ML parameter estimates of
its own clusters. Steady partitions are classification analogs of local likelihood maxima in
the mixture model. They are usually computed with an algorithm that alternates between
parameter estimation and cluster assignment and is an extension of the k-means algorithm
to arbitrary locations, scales, and mixing rates. Therefore, Gallegos and Ritter [20] named
it k-parameters algorithm. Like the EM algorithm, it converges. Since there are only finitely
many partitions, this means that its output becomes even stationary (or constant) in the end.
The limit of this iterative algorithm is a steady partition.

Although classification and mixture model are different, both bear some common traits.
Just as the likelihood function of the mixture model is unbounded, the determinant criterion
becomes ∞ if one cluster is deficient, that is, contains ≤ d elements. Moreover, there are
multiple steady solutions. Our experience even teaches us that their number typically exceeds
that of local likelihood maxima of the mixture model. Items (i) – (iv) above apply mutatis
mutandis.

Components of normal mixtures are separated by location, scale, or both. In most real
examples, they are separated by location, which means that their mean vectors do not lie
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too close together. Partitions derived from such mixtures will consist of clusters separated
in the same way. This does not necessarily mean non-overlapping of cluster pairs, that is,
disjointness of their convex hulls. The latter represents an extreme case of separation by
location. In such a case, there will be in general only one reasonable solution for a given
number of clusters and many methods will return it. In this paper, we are rather interested
in strategies that allow us to analyze clustered data sets with overlapping clusters. Such cases
occur very often in practice and we call them complex. An example is the well-known CRABS
data set which will, among others, be used in Section 5 to illustrate the present method.

2 Using the Wilks, Hotelling, and Behrens–Fisher test statis-

tics

Properties that speak for the credibility of a partition are separation and cohesion of its clus-
ters. Cohesion may be viewed as missing separability and so, we concentrate on separation,
here by location. There exist several criteria for assessing cluster separation. One was pro-
posed by Bailey and Dubes [2]. A popular criterion these days is Rousseeuw’s [34] silhouette.
Both produce graphics that are not easily interpreted in general. They depend on prior met-
rics and will work decently when component scales comply with them or when separation is
good. In other cases they yield ambiguous results. The reason is that they utilize distances of
points within and between clusters. These are not generally characteristic for membership of
points in the same or in different clusters. It is sufficient to take a look at two close, parallel,
elongated clusters, a standard counterexample in cluster analysis. We are not the first authors
to criticize the practice of using prior metrics. For instance, Bock [5], p. 95, raises doubts
about the power of a distance-based gap test.

An important principle of statistics is equivariance w.r.t. certain sample space transfor-
mations, see for instance Muirhead [30], Ch. 6. Clustering results should not depend on
conventional quantities such as units of measurement. Sometimes it is a priori known that
components are spherical. Then we wish that the estimator be rotationally equivariant. In
other cases, it may be known that the variables are independent. Then the estimator should
be chosen scale equivariant. In general, nothing is known a priori and the method of choice
is the affine equivariant determinant criterion (4). Separation criteria should meet the same
requirements. Affine equivariant criteria and tests for cluster separation are well known.
Examples are the Kullback–Leibler divergence (or relative entropy) and the Hellinger, Bhat-
tachariya, and Chernov distances of the estimated distributions; see Devroye et al. [11] and
Ritter [32]. Moreover, there are several classical tests for the equality of location parameters
based on samples. Let us consider the null hypothesis

H0 : m1 = · · · = mg

of equality of all means of g normal populations against the alternative of disparity (or gen-
erality). The less likely H0 is, that is, the smaller the p-value obtained from a statistical
test is, the better the separation by location. We prefer p-values of statistical tests to other
separation measures such as the ones above for ranking different solutions since they offer
us an impartial criterion over different partitions, independent of cluster sizes or scales. It
is often not necessary to compute the p-values themselves since test statistics and p-values
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Table 1: Median p-values for two-dimensional data sets sampled from 0.5Nm1,I2+0.5Nm2,I2 partitioned
in two clusters with k-means; see also the text.

‖m2 −m1‖ 8 6 4 2 1 0

Hotelling (Wilks) 2.6·10−134 9.8·10−105 1.7·10−69 9.8·10−39 3.5·10−28 1.3·10−26

Behrens–Fisher 4.0·10−105 2.0·10−87 5.3·10−64 5.8·10−39 2.2·10−28 1.4·10−26

often produce the same ranking. Special tests derive from the likelihood ratio (LR) and union
intersection paradigms. We mention Wilks’ [37] Λ test, Hotelling’s T 2 test, and Behrens’ [3]
and Fisher’s [12, 13] test. Their test statistics and p-values can actually be considered as
measures of separation by location.

Before continuing, we have to interject an important remark. When a partition is obtained
from a clustering algorithm then the null hypothesis H0 of equality of means will in general
be strongly rejected, even if the parent means are the same. Nevertheless, the strength of the
rejection, that is, the size of the p-value, contains information on the separation of the mixture
components. Table 1 shows the small p-values for the Hotelling and Behrens–Fisher tests for
partitions of six two-dimensional data sets in two clusters, each, obtained with k-means. The
data consists of 140 samples, each, from six mixtures 1

2Nm1,I2 +
1
2Nm2,I2 with equal weights

1/2 of two bivariate, standard normals with ‖m2−m1‖ = 8, 6, 4, 2, 1, and 0. The first mixture
is very well separated in two components, the last one is actually a two-dimensional standard
normal (no separation). The table shows median p-values among 21 random replications. If
we had tested samples from the two components, we would have obtained much larger p-
values, in particular for the small values of ‖m2−m1‖. Nevertheless, the table shows that the
strength of the rejection contains information on the degree of separation of the underlying
mixture components. The p-value 10−28 is after all one hundred billion times larger than
10−39. We may therefore conclude that a p-value of 10−39 indicates stronger separation than
10−28 does, although both mean strong rejection of the null hypothesis. This reasoning allows
us to rank all solutions w.r.t. separation based on p-values obtained from the tests. We next
elaborate on the tests.

(a) Wilks’ test. We first consider the homoscedastic case. For all 1 ≤ j ≤ g, let the cluster
Cj consist of nj ≥ d+ 1 draws from some d-variate normal population Nmj ,V with the same
covariance matrix V . Put n =

∑
j nj , C = {C1, . . . , Cg}, and let xj be the mean vector of Cj .

The likelihood ratio test (LRT) for equality of means based on C1, . . . , Cg leads to Wilks’ [37]
classical Λ test. Indeed, the estimate of the common mean vector under the hypothesis is
m∗ = 1

n

∑
njxj , the overall mean vector. The estimate of the common covariance matrix

under hypothesis H0 and alternative are the total scatter matrix S and the pooled scatter
matrix S, respectively. Therefore, with m∗ = (x1, . . . , xg), the LRT statistic is

f1(x; C,m
∗, S)/f0(x; C,m

∗, S) = (detS/ detS)n/2. (5)

Its distribution under H0 is a negative power of Wilks’ Λ with parameters d, n− g, and g− 1,
Λ(d, n− g, g− 1)−n/2; see Mardia et al. [27], where all basic details on this and other tests are
found. Since the distribution is independent of the specific partition, the order of the statistic
is inverse to that of the p-values and so, the latter are not needed here.

Most test statistics used here depend on some Mahalanobis distance. It is, therefore,
comfortable to abbreviate the squared Mahalanobis distance of x and y w.r.t. a positive
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definite matrix B, (x− y)⊤B−1(x− y), by M(x, y,B). It is known that Wilks’ test for g = 2
clusters is equivalent with Hotelling’s two-sample T 2 test

n1n2(n−2)
n2 M(x1, x2, S) ∼ T 2(d, n− 2) (under H0). (6)

It is also known that T 2 is a function of the F distribution; see Mardia et al. [27], 5.3.3 and
Theorem 3.6.1. Hotelling’s two-sample test can also be interpreted as a union intersection
test.

(b) Hotelling test for cluster pairs. The Wilks test for g ≥ 3 clusters will reject
equality if one mean deviates from the others. This may pose problems since a reasonable
partition is characterized by separation of all cluster pairs. We therefore assess a g-cluster
partition {C1, . . . , Cg} (g ≥ 3) also by its least separated cluster pair w.r.t. Hotelling’s test,
characterized by the largest p-value of the squared Mahalanobis distance

njnℓ(nj+nℓ−2)
(nj+nℓ)2

M(xj , xℓ, Sj,ℓ) (7)

w.r.t. T 2(d, nj + nℓ − 2) for all pairs Cj , Cℓ, j 6= ℓ. Here, Sj,ℓ denotes the pooled scatter
matrix of Cj and Cℓ.

Wilks’ and Hotelling’s tests are favorably applied when the true model is indeed ho-
moscedastic. We next turn to tests applicable to the more general heteroscedastic normal
case. They are somewhat more involved.

(c) Behrens–Fisher’s test: Behrens [3] and R.A. Fisher [12, 13] test the hypothesis
H0 under no assumptions on the covariance matrices in hypothesis and alternative. Their
original test is univariate. Its multivariate extension is well studied, too, and called the
multivariate Behrens–Fisher problem; see Belloni and Didier [4], where an account of the
extensive literature on this subject is found. The related p-value can again be considered
as a measure of separation by location. Under the alternative of general parameters, the
heteroscedastic normal classification likelihood w.r.t. C = {C1, . . . , Cg} is

−2 log f1(x; C,m,V) =
∑

1≤j≤g

[
nj log det(2πVj) +

∑

i∈Cj

(xi −mj)
⊤V −1

j (xi −mj)
]
.

Its minimum w.r.t. m = (m1, . . . ,mg) and V = (V1, . . . , Vg) is obtained by considering each
j = 1, . . . , g separately. Let xj be the mean vector of group Cj , let Sj(m) = 1

nj

∑
i∈Cj

(xi −

m)(xi − m)⊤ be its scatter matrix about an arbitrary m ∈ R
d, and let Sj = Sj(xj) be its

usual scatter matrix. Denoting the minimizers of m and V by m∗ and V∗, respectively, we
obtain m∗

j = xj , V
∗
j = Sj , and

−2 log f1(x; C,m
∗,V∗) = nd(1 + log 2π) +

∑

1≤j≤g

nj log detSj .

By assumption, the data is in general position and the group Cj is not deficient, that is, it
has at least d+1 elements. Therefore, Sj is regular and log detSj is well defined.

Twice the negative classification log-likelihood with common mean vector m and general
covariance matrices V = (V1, . . . , Vg) is

−2 log f0(x; C,m,V) =
∑

1≤j≤g

[
nj log det 2πVj +

∑

i∈Cj

(xi −m)⊤V −1
j (xi −m)

]
. (8)
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Its minimum w.r.t. m and V exists. Indeed, we have the lower bound

−2 log f0(x; C,m,V) = nd log 2π +
∑

1≤j≤g

nj

[
log detVj + trSj(m)V −1

j

]

≥ nd log 2π +
∑

1≤j≤g

nj

[
log detVj + trSjV

−1
j

]
.

It is well known from classical normal analysis that the jth summand on the right-hand side
increases to∞ as Vj approaches the boundary of the set of all positive definite matrices (that
is, an eigenvalue vanishes or approaches ∞). It follows that (8) has a minimum which can,
however, not be represented in closed form, not even in the univariate case. In Section 3, we
will resort to an iteration.

Let m∗ and Ṽ∗ =
(
Ṽ ∗
1 , . . . , Ṽ

∗
g

)
minimize Eq. (8). Again by classical normal analysis

applied to the jth summand in (8), Ṽ ∗
j = Sj(m

∗). We thus obtain the LRT statistic of the
multivariate Behrens–Fisher problem,

BF(C) = 2
(
log f1(x; C,m

∗,V∗)− log f0(x; C,m
∗, Ṽ∗)

)

=
∑

1≤j≤g

nj

[
log detSj(m

∗)− log detSj

]
=

∑

1≤j≤g

nj log
(
1 + (xj −m∗)⊤S−1

j (xj −m∗)
)

=
∑

1≤j≤g

nj log
(
1 +M(xj ,m

∗, Sj)
)
. (9)

The last but one equality follows from Sj(m
∗) = Sj + (xj − m∗)(xj − m∗)⊤ along with a

well-known identity for rank-one perturbed determinants; see Muirhead [30], Theorem A3.5,
or Ritter [32], Lemma A6(c). By a theorem due to Wilks [38] and Aitchison and Silvey [1]
(see also Cox and Hinkley [9] or Silvey [35]), BF(C) is asymptotically distributed under H0 as
χ2
(g−1)d with (g−1)d degrees of freedom. If all clusters are large enough, the latter distribution

can, therefore, be used to compute approximate p-values. Since χ2 depends only on the
number of clusters and not on the partition itself, BF(C) creates among several partitions the
inverse ranking of the approximate p-values. The degree of separation of g clusters thus turns
to the weighted sum (9) of g logarithms of squared Mahalanobis distances.

It remains to compute the optimal common mean vector m∗. We will propose a cutting
plane algorithm for this problem in Section 3.

(d) Behrens–Fisher test for cluster pairs: When g ≥ 3, we may again consider sepa-
ration of all cluster pairs for a ranking. Thus, let Cj and Cℓ be two clusters of C. By Eq. (9),
the Behrens–Fisher LRT statistic for equality of their mean vectors is

BF({Cj , Cℓ}) = nj log
(
1 +M(xj ,m

∗
j,ℓ, Sj)

)
+ nℓ log

(
1 +M(xℓ,m

∗
j,ℓ, Sℓ)

)
,

where m∗
j,ℓ is the optimal common mean vector in Eq. (9) computed for the pair C =

{Cj , Cℓ}, j 6= ℓ. Again, the asymptotic χ2 distribution is independent of clusters and sizes if
they are large enough. Therefore, p-values under H0 are ordered inversely to the test statistic
and partitions C = {C1, . . . , Cg} may be ranked according to the separation criterion

min
1≤j<ℓ≤g

BF({Cj , Cℓ}). (10)
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We propose the Wilks (5), Hotelling for cluster pairs (7), Behrens–Fisher (9), and pairwise
Behrens–Fisher (10) tests for ranking all local likelihood maxima (EM algorithm) or steady
solutions (k-parameters algorithm). The pairwise Behrens–Fisher test utilizes Procedure 3.1
below in order to compute the vectors m∗

j,ℓ and the pairwise LRT statistic (10). All present
ranking criteria are affine equivariant. In order to handle extremely small p-values in connec-
tion with large data sets, we use their logarithms. They can be computed directly from the
statistics.

3 Computing the Behrens–Fisher test statistic

Despite the simple appearance of Eqs. (8), (9), and (10), computing their minima is not easy
because of possible local minima. It has a long history. An early proposal is due to Mardia
et al. [27]. They use the iteration

m ←
(∑

j=1,2 njSj(m)−1
)−1(∑

j=1,2 njSj(m)−1xj
)
.

As above, Sj(m) = Sj +(xj−m)(xj−m)⊤ is the scatter matrix of Cj about m. The iteration
is repeated until convergence. It can be shown that this occurs at a critical point m∗ of (9), in
most cases a local minimum. However, if the initial m is a local maximum, then the iteration
stays there. Since local minima are not unique, the process has to be repeated from several
initial values so that we can be (almost) sure to have finally attained the global minimum.
This is the main disadvantage of Mardia’s method.

An effective and efficient more recent approach in one sweep for g=2 by Belloni and Di-
dier [4] uses convex analysis. Their algorithm needs a computational parameter. We modify
it here so that no parameter is needed. Instead of Eq. (8) it is possible to minimize Eq. (9)
w.r.t. m since both differ just by the constant 2 log f1(x; {C1, C2},m

∗,V∗). It is a simple and
well-known trick to reduce minimization of Eq. (9) for m to that of

h(u1, u2) = n1 log(1 + u1) + n2 log(1 + u2) (11)

for (u1, u2) subject to the constraints

u1 ≥M(x1,m, S1), u2 ≥M(x2,m, S2).

Let Qm be the right, upper quadrant with the left lower vertex
(
M(x1,m, S1),M(x2,m, S2)

)
∈

R
2
+ in the plane. The following subset of the plane plays a key role in theory and algorithm:

K =
⋃

m∈Rd

Qm. (12)

In Lemma 7.1 of the Appendix it will be shown that it is closed in R
2 and convex. Since h

increases with u1 and u2, the minimum of h on K is attained on its lower Pareto boundary

{(u1, u2) | 0 ≤ u1 ≤M(x2, x1, S2), u2 = min{v | (u1, v) ∈ K}.

This is also the set of extreme points of K and also the graph of the function g defined by

g(u1) = min{u2 | (u1, u2) ∈ K} = min
m : M(x1,m,S1)=u1

M(x2,m, S2), (13)
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A

B

O
Figure 1: Schematic view of the graph of g and some tangents.

u1 ∈ [0,M(x2, x1, S2)]. By convexity of K, the function g : [0,M(x2, x1, S2)]→ R+ is convex.
Using a Lagrange multiplier λ, it will be shown in Lemma 7.2 that g is even strictly convex
and real-analytic, and that g′ = −λ. These three properties open a way to approximating
the constrained minimum of the function h defined by Eq. (11). The problem is known as
convex programming and favorably solved by the cutting plane method; see, for instance,
Bonnans et al. [7]. The cutting plane method assumes that the target function is defined on
a neighborhood of a compact, convex set. It surrounds the set with a sequence of polygons
whose edges touch the set. The minimum of h on each polygon is assumed at a vertex. Each
polygon is constructed as a refinement of its predecessor. The refinement takes place at the
current minimal vertex which is replaced with two new ones. More precisely, the algorithm
iterates the following procedure.

3.1 Cutting plane procedure

// Input: The ordered list V of the vertices of a convex polygon and the vertex v ∈ V that
minimizes h on V .

// Output: Updated list and minimizing vertex.

1. Let e1 and e2 be the edges of the polygon adjacent to v and let s1 and s2 be the abscissas
of the points where they touch the graph of g. Construct the tangent l to the graph of
g at the midpoint of s1 and s2;

2. intersect l with e1 and e2 to obtain two points v1 and v2;

3. insert v1 and v2 in place of v into V to obtain Vnew;

4. determine the minimizer vnew ∈ Vnew of h on Vnew.

A computer program favorably stores more information on the tangents in order to avoid
multiple recomputations. It is also favorable to replace the midpoint in step 1 with a convex
combination in the direction of the smaller touching point, for instance,

[h(s, g(s))t+ h(t, g(t))s]/[h(s, g(s)) + h(t, g(t))].

The cutting plane algorithm iterates the procedure starting from the polygon V = {B,O,A}
(see Figure 1) and the origin O as the current minimizing vertex. It produces a sequence of
polygons and minimizing vertices of h. The minima increase to the minimum value on the
graph of g and we have the following theorem. Its proof is deferred to the appendix.
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3.2 Theorem (a) Any cluster point of the sequence of minimizing vertices solves the con-
strained minimization problem (11).

(b) If the minimizer is unique then it is the limit of the cutting plane algorithm.

We finally note that the constrained minimization problem (11) is equivalent to minimizing
the function u1 7→ n1 log(1 + u1) + n2 log(g(1 + u1)), u1 ≥ 0. Since g is analytic, this can
be carried out by the Newton–Raphson algorithm. Since g′ = −λ, the second derivative of
g w.r.t. u1 can be computed with the aid of Eq. (16) in the appendix. Convergence will,
however, take place to any critical point close to the initial point and so, Newton–Raphson
has to be replicated from many random initial points. It has thus the same disadvantage as
the algorithm of Mardia et al. mentioned above.

4 Scale balance, fit, and Pareto solutions

In [17] and [18], we introduced the concept of SBF plot of local likelihood maxima and steady
solutions, respectively, as an aid to select the desired solution in mixture and cluster analysis;
see also item (iv) in Section 1. We will use it again as a major tool in the sequel. Its definition
needs the HDBT ratio of g scale matrices. (The acronym HDBT stands for Hathaway, Dennis,
Beale, and Thompson; see Gallegos and Ritter [18] or Ritter [32].) The positive semi-definite
(or Löwner) order of two symmetric matrices A,B ∈ R

d×d is defined by “A � B if and only
if B − A is positive semi-definite.” The order is total if and only if d = 1, in which case the
matrices are numbers and the order coincides with the usual order on the real line. An HDBT
constant for g positive definite matrices Vj is any number c such that the relations

cVj � Vℓ

are satisfied for all indices j, ℓ = 1, . . . , g. Necessarily, c ≤ 1. In order to asses the heterogeneity
of the g matrices, we use the HDBT ratio rHDBT, the largest HDBT constant. It can be easily

computed as rHDBT(V) = minj,ℓ,k λk

(
V

−1/2
ℓ VjV

−1/2
ℓ

)
, where λ1(A), . . . , λd(A) denote the d

eigenvalues of a d× d matrix A; see Ritter [32], A.10. An alternative formula is rHDBT(V) =
minj,ℓ,k λk

(
V −1
ℓ Vj

)
. Although the matrix V −1

ℓ Vj is not necessarily symmetric, its eigenvalues

are all real and equal to those of V
−1/2
ℓ VjV

−1/2
ℓ . HDBT constants and ratios are bounded

above by 1. The HDBT ratio is a measure of balance of the component scales. The larger
the HDBT ratio is, the larger the balance and the less the heterogeneity. The homoscedastic
case V1 = · · · = Vg is easily characterized by maximum scale balance, rHDBT(V) = 1.

We apply the HDBT ratio to the scale matrices of mixture and classification models. A plot
of − log rHDBT vs. the negative logged values of all local likelihood maxima (mixture model)
or negative log-criteria of all steady solutions (classification model) for a data set is called SBF
plot. It depends on the data and on the number of clusters, g. In practice, the plot points are
generated by repeated runs of the algorithm from random starting points. We use the SBF
plot as a major tool for selecting the favorite solution. Two SBF plots for the synthetic data
of Section 5.1 are presented in Figure 2. Part (a) shows the SBF plot for 1500 runs of the EM
algorithm and Part (b) presents the left half of the SBF plot of all steady solutions obtained
with 1500 runs of the k-parameters algorithm. Note the larger number of steady solutions for
the same number of runs. These plots contain often hundreds or thousands of points leaving
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Figure 2: (a) SBF plot for the synthetic data of Section 5.1 w.r.t. the mixture model and (b) the left
half of that for the classification model.

us at a loss which solution to choose. The problem occurs in particular with sensitive and
flexible models such as normal mixtures or the classification model with full scales.

In order to appreciate the importance of HDBT ratios and SBF plots, we recall the consis-
tency theorem for mixtures, Theorem 1.1. Hathaway [21] stated and proved another theorem
for scale constrained mixture models. Its presentation needs some preparation. Let

◦

∆g−1 =
{
π = (π1, . . . , πg) |πj > 0,

∑
j πj = 1

}

be the open, g –1-dimensional unit simplex. Let Vc stand for the set of all finite collections
(tuples or sets) of positive definite d by d matrices with HDBT ratio at least c. The set Vc
increases with decreasing c. We consider a constrained, normal, g-component mixture model
with HDBT constraint (or constant) c and parameter space

Θg,c =
◦

∆g−1 ×
{
(m,V) ∈ R

gd × Vc | (mj , Vj), j ∈ 1 . . g, pairwise distinct
}
.

Its covariance matrices do not deviate too much from each other, depending on c. The
advantage of HDBT constraints over other scale constraints is their affine equivariance. For
example, the popular constraint “all eigenvalues of all Vj ’s ≥ ε for some ε > 0” does not enjoy
this property. After these preliminaries, we can state a multivariate version of Hathaway’s
theorem on the HDBT constrained MLE. It is a corollary of Ritter [32], Theorem 1.27, which
treats the more general case of constrained, multivariate, elliptical mixtures.

4.1 Theorem Let the sampling distribution be a g-component, normal mixture with param-
eters (π,m,V), (mj , Vj) pairwise distinct.

(a) For any 0 < c ≤ 1, a constrained ML estimate Tn exists in Θg,c for eventually all n, a.s..

(b) Let c ≤ rHDBT(V) and let (Tn)n be any sequence of ML estimates in Θg,c. A representative

T̃n of Tn w.r.t. label switching can be chosen for each n in such a way that the sequence
(T̃n) is strongly consistent at (π,m,V) w.r.t. the Euclidean metric on Θg,c.
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Theorem 1.1 in Section 1 suffers from the problem that it doesn’t betray us the desired local
maximum. Hathaway’s theorem 4.1, too, cannot be applied right away. While its Part (b)
tells us that an arbitrarily small HDBT constant c is possible asymptotically as n → ∞, the
solution for a finite data set depends on the constant, in particular when the data set is
small. The theorem does not reveal a suitable constant c, which appears as another unwanted
parameter in the estimation process. As a result, neither of the two theorems determines a
single solution to the clustering problem, even if there is a true one.

As a way out of the dilemma, Ritter [32], Section 4.1, combined the two consistency the-
orems. Theorem 1.1 shows that the mixture model contains information on a consistent
solution in the form of a local maximum without recurring to constraints. Combined with
Theorem 4.1, it teaches us that, in our search for a consistent solution, we may confine our-
selves to (unconstrained) local likelihood maxima with an HDBT ratio above some constraint
c. They are the candidates for the consistent solution. It is shown in [32] and easy to see
that they just belong to the minima w.r.t. the product order in the SBF plot, the so-called
lower Pareto points. They can also be defined as the collection of all points such that the
left lower quadrants emanating from them do not intersect any other point in the plot or,
again, as the minimum set of points such that the right upper quadrants emanating from
them cover all points. Pareto points are solutions to biobjective optimization problems, here
the joint optimization of scale balance and fit represented by HDBT ratio and likelihood,
respectively. They are rarely unique and the present situation is no different. In fact, there
often exist multiple reasonable solutions to clustering problems. This is one item that makes
cluster analysis difficult in practice. The solutions corresponding to Pareto points are called
Pareto solutions. They render constrained optimization as required by Hathaway’s theorem
unnecessary. The above reasoning establishes large HDBT ratio (scale balance) as a second
principle complementary to large likelihood 2 or determinant criterion (4) (fit). Both assets
of the solutions are equally important. Generally, algorithms that monitor exclusively the
likelihood function should be refused in cluster analysis.

The two consistency theorems are asymptotic statements. There is a risk that, due to
randomness of the finite data, the desired solution is masked by an undesired one which
happens to have larger scale balance and likelihood. As an additional idea, we counteract
this risk by performing the tests of Section 2 before extracting Pareto points, thus, first
cleaning the SBF plot from solutions that are unsuitable because of insufficient separation.
We obtain the following overall clustering strategy w.r.t. the classification model (3) and the
k-parameters algorithm with a fixed number of components, g.

4.2 Clustering strategy

// Input: A data set and a natural number g ≥ 2.
// Output: A set of solutions.

1. Use the k-parameters algorithm to generate as many steady partitions as possible;

2. extract all sufficiently well separated partitions using the p-values under H0 of one or all
statistics (5), (7), (9), (10); if no partition passes the test, this indicates that the number
of clusters, g, is too large.

3. determine the Pareto points in the SBF plot established with these solutions;

4. return all Pareto solutions with sufficiently large determinant criterion (4) and rank them
by p-values.
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The strategy is also applicable to mixture models. The k-parameters algorithm in 1 is then
replaced with the EM algorithm followed by the Bayesian discriminant rule to partition the
data set. Strategy 4.2 is necessarily fuzzy and not an algorithm, as will now be explained.

(i) In item 1, “as many ... as possible” refers to the available computing time and memory.

(ii) “Well separated” in item 2 means in general p-values below 10−15 or even 10−20. It
depends on the size of the data. The solution with the least p-value is not necessarily
favored by the above strategy nor does it always represent the desired solution.

(iii) Pareto points are derived from (asymptotic) consistency theorems. For a finite data
set, log-HDBT ratio and log-likelihood are subject to random fluctuations which may
be controlled by confidence regions. Therefore, the analyst may also consider in item
3 separated solutions that become Pareto after a slight left or downward shift (“nearly
Pareto solutions”). It turns out that several (nearly) Pareto points could in principle
represent the true solution.

(iv) Computation of Pareto points in item 3 can be done online during the generation of
local likelihood maxima by a general algorithm called list updating in computer science;
see Ritter [32], Procedure 4.4.

(v) The solution with the maximum criterion (maximum local likelihood) is always Pareto.
Sometimes it has a very small HDBT ratio which usually indicates a spurious solution.
Nevertheless, it could be the desired solution since the data set could, in principle, have
been sampled from it (for instance, in a simulated data set). In real-world applications,
we would rather doubt that it is reasonable. However, a comprehensive strategy has to
return this solution, too.

(vi) On the other hand, the steady solution with the largest HDBT ratio (scale balance),
too, is always a Pareto solution. If its determinant criterion is poor, it is again not likely
to be reasonable. Partitions with poor criteria should be rejected.

To summarize, in our search for the desired solution, it is sufficient to focus on (nearly) Pareto
solutions in the set of separated solutions that fit the data well. On the other hand, each of
these solutions could be the sought one. Note, however, that the best solutions might not be
good. It is, therefore, necessary to validate all partitions obtained. There are some refined
methods such as visualization, other separation indices, normality tests, and cluster stability;
see, for instance, Chapter 4 of Ritter [32].

When the number of clusters, g, is unknown, the procedure is repeated for all reasonable
numbers. Again, validation indicates reasonable numbers of mixture components. Another
simple and convenient although crude way for assessing this number is the BIC. The reader
should bear in mind that data sets with overlapping clusters often admit neither a unique
solution, even for a fixed number of components, nor do they in general disclose unambiguously
their parental number of components. What’s more, the data in our hands might not bear
any cluster structure at all.

5 Three examples

In order to illustrate the methods of Sections 2 and 4 we will now analyze a synthetic and
two real data sets.
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Figure 3: (a) Synthetic data set; (b) true partition in three clusters; (c) Wilks, pairwise Hotelling,
and pairwise Behrens–Fisher (Pareto) solution recovered by the mixture model (β in Figure 2(a)) and
Behrens–Fisher (Pareto) solution of the classification model (γ); (d) second Pareto solution for the
mixture model (α).

5.1 Synthetic data set

Our first example is the two-dimensional synthetic data set shown in Figure 3(a). At first
glance, it might seem to be composed of two or, maybe, four components. It was however
sampled from three normal components with mean vectors (0,0), (-2.6,7), and (2.2,7), respec-
tively. The lower component is diagonal with variances 9 and 1, the covariance matrices of

the other two components are

[
2.2 −0.37
−0.37 0.79

]
and

[
4 0.04

0.04 0.68

]
, respectively. The original

partition in clusters of sizes 99, 32, and 67 is presented in Figure 3(b). The plot exhibits a
small overlap of the two upper clusters. We wish to estimate the original components.

The SBF plot of the fifteen local maxima of the mixture likelihood shown in Figure 2(a)
results from thousand replications of the normal mixture EM algorithm for three components.
Figure 3(c) shows the local maximum with the best Hotelling (7) and Behrens–Fisher (10)
separation criteria for cluster pairs. This solution belongs to the Pareto point (β) in Fig-
ure 2(a). It is, therefore, our favored solution. It belongs indeed to the solution closest to
the original partition among all local likelihood maxima, enjoying the largest adjusted Rand
index. Note that it has poorer fit (likelihood) but larger scale balance (HDBT ratio) compared
with the solution associated with Pareto point (α). The latter is shown in Figure 3(d). Two
of its components are separated by scale, only, forming a cross. The example shows that it is
not always fit that matters most. Sometimes it is even the Pareto solution with the least fit
that turns out to be the desired one.
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The more interesting (left) half of the SBF plot for the classification model and the k-
parameters algorithm is shown in Figure 2(b). We obtain a common optimal solution for
the Hotelling and Behrens–Fisher criteria for cluster pairs and another one for the Wilks
criterion. The negative MAP determinant criterion of the former is 972 (in the right-hand
half, not shown) and that of the latter 875.3. For reasons of fit we accept the Wilks solution.
It is again the partition shown in Figure 3(c) and belongs to the (extreme) Pareto point γ in
Figure 2(b).

5.2 CRABS data
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Figure 4: CRABS: SBF plots for (a) the mixture model and (b) the MAP classification model with
four components.

CRABS is a real data set contained in the MASS package of the R documentation. It was
compiled at Fremantle, W. Australia, and first cluster analyzed by Campbell and Mahon [8].
The data describes five morphological measurements, “frontal lobe size,” “rear width,” “cara-
pace length,” “carapace width,” and “body depth,” all in mm, on 50 crabs, each, of four
classes of Leptograpsus variegatus. The classes are all four combinations of the two species
“blue” and “orange” and the two sexes. Visual inspection of pairs of features indicates a
voluminous data set. This suggests application of the present methods.

The SBF plot for the mixture model after 1200 replications of the EM algorithm (Fig-
ure 4(a)) exhibits a multitude of local likelihood maxima. We make the only Pareto point (δ)
our favorite solution. Its fit, scale balance, and pairwise Behrens–Fisher p-value (1.37 · 10−19)
are superior to all others. Comparison with the known true solution shows 15 misclassifica-
tions.

The results for the classification model are as follows. The SBF plot after 1000 replications
of the k-parameters algorithm is shown in Figure 4(b). The best pairwise Behrens–Fisher
solution (p = 8.5 · 10−28) after 100 000 replications is marked by the letter ε (1233,2.49). It
is not a Pareto point, but nearly. The best pairwise Hotelling solution is at (1260,2.51). Its
likelihood is smaller and the point is located farther away from Pareto points and therefore
rejected. The best Wilks solution (p = 3.2 · 10−160) is marked with ζ (1229,2.23). This is a
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Pareto point. We therefore select the first and the third solution as our favorites. Comparison
with the known true solution results in 9 and 17 errors, respectively. The contingency tables
for the three favorite solutions w.r.t. the true one are displayed in Table 2. Cluster order is
BM, BF, OM, OF.

5.3 SPIKE SORTING

Understanding the computational mechanism of the mammalian brain has been greatly pro-
moted by the advent of dense microfabricated electrode arrays with many closely spaced
recording sites. They allow simultaneous recording of the signals issued by large numbers of
neurons. The signal of each electrode consists of noise superposed by firing events, so-called
spikes. These local spatiotemporal events indicate mental activity. The task of assigning the
different spikes to neurons is called spike sorting in the diction of neurophysiologists.

Spike sorting proceeds in three steps. The firing pattern of each neuron is first separated
from noise by methods of signal processing and pattern recognition. The extracted waveforms
of all spikes are then summarized by feature vectors, typically using principal component
analysis. In a third step, feature vectors are divided into groups corresponding to putative
neurons. It is here, where cluster analysis comes in.

We apply our clustering strategy to a subsample of data recorded from rat neocortex with
32-channel shank electrodes compiled by Kenneth Harris and his group at University College
London; see Rossant et al. [33]. The SPIKE DATA used here consists of 19 756 data points
in 32 · 3 =96 variables (three principal components were extracted for each channel). We
visually removed the 65 variables with elliptical pairwise scatter plots. Visual inspection shows
that the data contains many outliers. These are known to heavily distort clustering results.
We, therefore, applied the k-parameters clustering algorithm with combinatorial trimming
for outlier protection proposed by Gallegos and Ritter [19]. It contains as parameters the
numbers of clusters and of discarded elements. We combined it with the present pairwise
Behrens–Fisher and Hotelling tests.

The plot w.r.t. variables 16 and 79 suggests that there are at least six clusters; see Fig-
ure 5(a). The algorithm was, therefore, run with g = 6, 7, 8, · · · clusters up to the first number
where all steady solutions found failed the separation test, and with 5, 10, 15, and 20 percent
of discarded elements. The number g = 18 was the first number where a cluster was split.
Hence our estimate of the number of clusters is 17. Of the four numbers of discards, 15% was
the smallest one where the clusters obtained appeared sufficiently clean (visual inspection).
This is our estimated percentage of outliers. The SBF plot for 17 clusters and 15% of discards
is shown in Figure 5(b). We chose as final solution the Pareto partition with best separation

Table 2: CRABS: Contingency tables of the favorite solutions for the mixture (left) and the MAP
classification model.

39 11 0 0 49 1 0 0 37 13 0 0
0 49 0 1 5 45 0 0 0 50 0 0
0 0 50 0 0 0 50 0 0 0 50 0
0 0 3 47 0 0 3 47 0 0 4 46

(δ) (ε) (ζ)
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Figure 5: SPIKES: (a) Projection of the data set to two coordinates displaying structure; (b) SBF
plot of steady solutions for the MAP classification model with 17 clusters; (c)-(e) projections of the
three cluster pairs with poorest separation in directions that optimally exhibit the separation; (f) good
separation. The SBF plot (b) and the data plots (c)–(f) refer to the final partition with 17 clusters
after removing 15% of outliers.

w.r.t. the pairwise Behrens–Fisher test, η. The sizes of its clusters are 3019, 2641, 1833, 1489,
1290, 923, 815, 792, 645, 611, 441, 429, 410, 377, 366, 348, and 327. Figure 5(c)-(f) displays
the separation of some cluster pairs by projections to pair-specific planes which contain the
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vector from Fisher’s linear discriminant analysis; see also Ritter [32], Section 4.4.3. This
projection exhibits their separation best. Plots (c)-(e) display the pairs with poorest sepa-
ration; most cluster pairs look like plot (f). The maximum Behrens–Fisher p-value for any
two clusters to come from two normal populations with the same mean vector is 6.39 · 10−26

(Figure 5(e)).

Visual inspection shows that the assumption of normality of components was appropriate.
We finally mention that partition θ in Figure 5(b) enjoys better minimum separation having
a maximum p-value of 5.54 · 10−110 (pairwise Behrens–Fisher) and 1.97 · 10−182 (Hotelling)
over all cluster pairs. It is not nearly Pareto and therefore not acceptable as a solution.

6 Discussion

We have proposed strategies for reducing the large number of locally optimal partitions of the
mixture and classification models. Their generation with the related EM and k-parameters
algorithms needs many replications. This computational load may be considered a disadvan-
tage. We claim that, in general, there is no simple algorithm with comparable reliability.
Moreover, there is a straightforward parallel algorithm. It is sufficient to start the EM (or
k-parameters) algorithm from random partitions on m processors in parallel. The solutions
are fed to another processor for statistical testing and, finally, extraction of Pareto solutions.
This method reduces the processing time by a factor of m.

All present methods are based on normal assumptions. This seems to be rather strict. Two
remedies in literature are more general distributions, such as elliptical symmetries or skewed
distributions, Lee and McLachlan [24, 25], as well as nonparametric setups. All approaches
bear certain risks when applied to cluster analysis. Generally, cluster analysis depends on
the cluster models sought. If classes are actually asymmetric and normal mixtures are used,
then too large a number of components could result. If data is sampled from a mixture of
normals and the model is skew-normal, then some overlapped symmetric components might
be merged. Some nonparametric methods hinge on prior metrics or bandwidths. Their choice
depends on the solution sought.

The proposed testing methods belong to the realm of cluster validation. Some authors
claim that this is the most difficult part of cluster analysis. We agree with this opinion and
note that there are some acceptable, equivariant methods. Some are found in Chapter 4 of
Ritter [32]. Finally, it is a good idea to apply exploratory methods to cluster validation in
order to avoid the deepest pitfalls. According to Tukey [36], “there is no excuse for failing to
plot and look.”

References

[1] J. Aitchison and S.D. Silvey. Maximum-likelihood estimation procedures and associated
tests of significance. J. Royal Statist. Soc., Series B, 22:154–171, 1960.

[2] T. A. Bailey, Jr. and R. C. Dubes. Cluster validity profiles. Patt. Rec., 15:61–83, 1982.

[3] W. U. Behrens. Ein Beitrag zur Fehlerberechnung bei wenigen Beobachtungen. Land-
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Appendix

7.1 Lemma The set K introduced in Eq. (12) is closed in R
2 and convex.

Proof. Let (u
(k)
1 , u

(k)
2 ) be a sequence of pairs in K, convergent to (u1, u2) ∈ R

2. There exists
a sequence m(k) in R

d such that

u
(k)
j ≥M(xj ,m

(k), Sj) (14)

for all k and j = 1, 2. It follows that m(k) is bounded. By Bolzano–Weierstrass, we may
without loss of generality assume that it converges to m ∈ R

d. Closedness of K follows after
passing to the limit as k →∞ in Eq. (14).

In view of convexity of K, let u = (u1, u2), v = (v1, v2) ∈ K and let 0 < λ < 1. By
definition,

uj ≥M(xj ,mu, Sj) and vj ≥M(xj ,mv, Sj)

for j = 1, 2 and two vectors mu,mv ∈ R
d. By convexity of m 7→ M(x,m, S) it follows for

j = 1, 2

(1− λ)uj + λvj ≥ (1− λ)M(xj ,mu, Sj) + λM(xj ,mv, Sj) ≥M(xj , (1− λ)mu + λmv, Sj).

Hence, (1− λ)u+ λv ∈ K. This is the second claim. ✷

We next deal with the properties of the function g defined in Eq. (13).

7.2 Lemma The function g defined in Eq. (13) is real-analytic and strictly convex; moreover
g′ = −λ.

Proof. The function g arises from minimizing the parabolic function M(x2,m, S2) on the set
of all m ∈ R

d such that M(x1,m, S1) = u1. Application of the Lagrange function

M(x2,m, S2) + λ(M(x1,m, S1)− u1)

with multiplier λ leads to the system of equations

{
Dm(m− x2)

⊤S−1
2 (m− x2) + λDm(m− x1)

⊤S−1
1 (m− x1) = 0,

(m− x1)
⊤S−1

1 (m− x1) = u1

for m and the multiplier λ. The multiplier is positive since we require the minimum of a
parabolic function on a convex set. The first equation reduces to

S−1
2 (m− x2) + λS−1

1 (m− x1) = 0. (15)

Without loss of generality we assume from here on that S1 = Id, the identity matrix, and
x1 = 0. Eq. (15) yields m = (Id + λS2)

−1x2. Inserting into the second equation above,
‖m‖2 = u1, we find

‖(Id + λS2)
−1x2‖

2 = u1. (16)
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Since x2 6= 0, the function λ 7→ ‖(Id + λS2)
−1x2‖

2, λ ≥ 0, is strictly positive and strictly
decreasing from ‖x2‖

2 to 0. Since 0 < u1 = ‖m‖2 < ‖x2‖
2, Eq. (16) has a unique solution

λ > 0 which determines the minimizerm = (Id+λS2)
−1x2 and, hence, g(u1) (= M(x2,m, S2)).

Now keep in mind that both solutions λ and m are functions of u1. Equation (16) shows
that λ is real-analytic. Therefore, so are both m and g. In view of the derivative of g, we
deduce from Eq. (15) m⊤S−1

2 (m− x2) = −λ‖m‖
2 = −λu1 and, therefore,

g(u1) = (m− x2)
⊤S−1

2 (m− x2) = m⊤S−1
2 (m− x2)− x⊤2S

−1
2 (m− x2)

= −λu1 − x⊤2S
−1
2 (m− x2).

Hence, g′(u1) = −
dλ
du1

u1 − λ− x⊤2S
−1
2

dm
du1

. Now, m = (Id + λS2)
−1x2 implies

dm
du1

= − dλ
du1

(Id + λS2)
−2S2x2

and

−x⊤2S
−1
2

dm
du1

= dλ
du1

x⊤2S
−1
2 (Id + λS2)

−2S2x2 =
dλ
du1

x⊤2 (Id + λS2)
−2x2 =

dλ
du1
‖m‖2 = dλ

du1
u1.

We conclude g′(u1) = −λ. From Eq. (16), it follows that λ decreases as u1 increases. Hence
g is strictly convex. ✷

7.3 Proof of theorem 3.2. By Bolzano–Weierstrass, the sequence of minimizing vertices of
the cutting plane algorithm has a cluster point in the compact area described by the vertices
B, 0, and A in Figure 1. The construction of the polygons excludes every point u below the
graph of g as a cluster point of the minimizers on the vertices. Hence all cluster points lie
on the graph of g. Denoting the minimum of h there by h∗ and by (ûtk), a subsequence of
minimizing vertices converging to a cluster point, we estimate

h∗ ≤ h(u1, u2) = h(lim
k

ûtk) = lim
k

h(ûtk) ≤ h∗.

The last inequality follows from the fact that the concave function h assumes its minimum
on the convex set described by the polygon at a vertex. Hence any cluster point (u1, u2) of
minimizing vertices is minimal on g and we have also proved part (b). ✷
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