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Abstract: Automatic classification of the chromosomes of a metaphase eukaryotic cell under
a light microscope into their biological classes is usually done in three steps: First, their cen-
tromeres are estimated in order to find their polarities, next a number of features are extracted
from profiles of the oriented chromosomes, and finally the feature sets are assigned to classes.
The first step is prone to errors since it is often not easy to detect the centromere. If it is deter-
mined on the wrong half of the chromosome then polarity is false leading to erroneous features
in the second step and often to a misclassification. We reduce the error rate by applying the
recently developed Bayesian method of variants to the profiles; this method uses two feature
sets for each chromosome, one for each polarity.

We also take another look at feature extraction from profiles further reducing the error rate.
Applied to the profiles of the Edinburgh MRC chromosome analysis system the most accurate
methods reported here achieve cross-validation error rates below 1%.

Key words: Automatic chromosome classification, karyotyping, diagnostic classification, Bayesian
classification, method of variants.

1 Introduction

This communication deals with the problem of automatic classification of metaphase chromo-

somes under a light microscope. As in classification of handwritten numerals or characters,
the goal is recognition of non-standardized objects in the plane. This means that the objects
contain randomness and automation calls for application of methods from data and discriminant
analysis.

A normal, nucleated human cell contains 46 chromosomes consisting of 22 matching pairs of
homologous autosomal chromosomes and two sex chromosomes. The autosomal classes are
numbered 1. .22 and the sex chromosomes are X X in female and X Y in male cells, respectively.
During the metaphase of the cycle of cell division the chromosomes appear as separated objects
and can, after suitable preparation, be observed under a light microscope, cf. Figure 1. This
allows the detection of numerical and structural anomalies of the cell.

Optical distinction of the 24 classes 1, . . . , 22,X and Y is possible since the introduction of suit-
able staining techniques in the 1970’s. Staining displays a band pattern along the chromosome
axis characteristic of its class, cf. the schematic representation of chromosome classes shown in
Figure 2.
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Figure 1: Metaphase human cell under a light microscope
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Figure 2: Schematic representation of chromosome classes and band structures
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The centromere of a chromosome is the region where the two longitudinal halves (chromatids)
of the double-stranded chromosome are joined together. It is usually visible as a constriction.
The polarity of a chromosome representative of its class is defined so that, if put in vertical
direction, its centromere is located on its upper half. The parts above and below the centromere
are then called the short and the long arms, respectively. A representation of the chromosomal
complement of a cell showing class structure and polarity is called a karyotype, cf. Figure 3.            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure 3: The karyotype of a male human cell

Producing a karyotype from an image of a metaphase cell is a complex, clear-cut, and highly
specific image recognition task which is mainly based on chromosome size, the position of the
centromere, and the band pattern. It is performed by a human expert at the speed of 15 min/cell
and, depending on the quality of the cell image, at the low error rate between one and three
misclassifications among 1000 chromosomes, cf. Lundsteen et al., [10], p. 88, Granum [5], p.
380, and Kleinschmidt et. al. [8], p. 314; this amounts to roughly 2–7% of misclassified cells.
First attempts to automate chromosome classification date back to the early 1960’s, cf. Ledley
and Ruddle [9]. The problem was later taken up by many working groups. One objective of our
research is the design of statistical algorithms for this classification task; in particular, we study
to what extent algorithms can approach human performance in this field. This is a question
of artificial intelligence. As such, the problem bears interesting aspects of high-dimensional
multivariate statistics and of combinatorial optimization.

A reduction of the error rate of automatic chromosome classification has also significance for
cytogenetics. In order to facilitate the detection of structural anomalies in a eukaryotic cell,
the operator usually starts an analysis by arranging its metaphase chromosomes in a karyotype.
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Automation of this process at an error rate close to the expert’s would eliminate much repetitive
work in chromosome analysis. For more information on the biological and cytogenetical back-
ground of karyotyping we refer the interested reader to the monographs [24] and [6], Chapter 8,
to the survey article [14], and to [7] and [16], Section 3.1, for brief overviews.

Automatic classification of chromosomes on the basis of microscopic grey-level images of stained
metaphase cells usually follows a number of consecutive steps.

(a) Removal of background noise, stains, and other objects in the image different from chromo-
somes.

(b) Segmentation of the image into its individual chromosomes and the background.

(c) Extraction of primitive numeric features like area, total “mass”, and mean grey value from
each chromosome.

(d) Recognition of the oblong shape. This is done by constructing an axis along each chromo-
some.

(e) Estimation of the location of the centromere for determining polarity.

(f) Representation of band pattern and shape by so-called profiles, i.e., univariate functions
along the axis. Piper and Granum [13] describe three kinds of profiles: the density profile, a
representation of the grey-value distribution along the axis, the modulus of its “derivative,”
called the gradient profile, and the so-called shape profile. Figure 4 shows a chromosome,
its axis, and the associated density profile.            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 4: A chromosome with its axis and its density profile

(g) Extraction of numerical features from the profiles by integration against weight functions.
Piper and Granum [13] use, e.g., piecewise linear functions.

(h) Normalization of features, cf. Section 2.

(i) Selection and identification of a suitable statistical model of feature sets by methods of
statistical data analysis.

(j) Classification of chromosomes in their biological classes on the basis of their feature sets, cf.
Section 3.

The steps (a) and (b) are often carried out interactively. Details on the steps (c), (d), (e), and
(f) are found in [13]. Step (i) was the subject of close investigation in [19], [17], and [16]. The
present communication contributes to the remaining steps (g), (h), and (j).

A number of paradigms are nowadays in use for supervised classification. They are the maximum

likelihood (ML) discriminant rule, the Bayesian paradigm, discriminant functions such as linear
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forms, polynomials or neural networks, support vector machines, k-nearest-neighbor classifiers,
partitioning classification, decision trees, and ensemble classifiers (mixtures of experts). The
special appeal of the Bayesian paradigm is its mathematically proven optimality. As in the
earlier communications [17], and [16] we prefer to use Bayesian discriminant analysis in the form
of the maximum-a-posteriori (MAP) classifier here, too.

For assigning chromosomes to biological classes, discriminant analysis can be done in the context-

free or the context-sensitive (constrained) way. In the former, earlier, approach the individuals
classified are chromosomes in isolation. Here, the possible allocations of one cell are in a one-to-
one correspondence with the more than 3 · 1063 mappings 1. .46 → 1. .24. The latter approach
takes into account the known number of chromosomes in each class reducing this number to
46!/223 + 462 · 44!/222 ≈ 2 · 1051 assignments and yielding, therefore, better results. Using this
prior information in this straightforward way was suggested already by Habbema [7] and Slot
[21]. Tso and Graham [22] describe the first efficient algorithm for constrained ML-classification
into 10 “Denver” groups3 pointing out that the optimization problem involved is a Hitchcock
transportation problem. The authors note that it can also be applied to cells with missing or
extra chromosomes such as trisomies.

Context-sensitive classification needs the joint distribution of the feature vectors of all chromo-
somes in a cell. We adopt the assumption of independence of feature vectors made by many
research groups so that the joint distribution is the product of the single distributions. The op-
timality of Bayes’ method can only be exploited if accurate distributional models are employed.
The classical “normal” model makes the assumption that feature vectors are normally dis-
tributed. However, the challenge in automatic chromosome classification today is proper outlier
handling. Therefore, besides the classical model, a number of well-known and new parametric
distributional families were employed [19], [17], and [16]. These are the elliptically contoured

(elliptically symmetric) [3] and the quadratically asymmetric [15] families and mixture models
with outliers based upon them. Quadratic asymmetry is an extension of elliptical symmetry.
Whereas the latter reflects location, scatter, and heavy or light tailedness of data, quadratic
asymmetry also models asymmetries. Moreover, a robust method of covariance estimation pro-
posed by Piper, Poole, and Carothers [14], called covariance weighting, was applied. This led
to a series of robust statistical classifiers for automatic chromosome classification, named IEC,
IECO, IQA, and IQAO. In all acronyms, the letter “I” stands for the assumption of statisti-
cal independence of chromosomes, “EC” means elliptically contoured and “QA” quadratically
asymmetric, and “O” stands for a mixture model with outliers. The most accurate of these
classifiers is IQAO; all the others are special cases of it.

Applied to the Edinburgh features [13] of the large Copenhagen image data set Cpr [12], [17] con-
sisting of 2804 metaphase human cells the classifier IQAO achieves a test-set (cross-validation)
error rate of 1.22% with respect to all chromosomes in the data set, [16]. To our knowledge,
this is the lowest previously achieved error rate. It means a reduction by a factor of 2.4 com-
pared with the classifier based on the normal model; the improvement is mainly due to the more
precise data model. The error rate includes in particular trisomy cells and cells with missing
chromosomes. These classification results are based solely on feature data and do not presuppose
any knowledge about their origin.

All profile-dependent features based on asymmetric weight functions, such as odd cosines, are
sensitive to polarity of chromosomes since profiles are asymmetric. The degree of asymmetry
depends on chromosome class, cf. Figure 5. Therefore, the customary approach to automatic
chromosome classification needs the position of the centromere at an early stage. However,

3The Denver groups [2] are subgroups of the 24 classes distinguishable by size and position of centromere; they
were in use before introduction of staining techniques.
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Figure 5: Density profiles of the chromosomes shown in Figure 3
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sometimes the centromeric constriction is not clearly visible, cf. [13]. The reason may be other
constrictions along the chromosome; moreover, in some classes such as the first, the centromere
is almost in the middle of the chromosome making it hard to decide from the shape of the
chromosome alone, on which side it lies. One weakness of the approach proposed in [13] and
of the classifiers IEC, IECO, IQA, and IQAO mentioned above is the fact that they rely on
polarity for feature extraction. We will call such classifiers polarity dependent. In fact, one
source of classification errors is estimation of centromeres on the wrong side of the chromosomes
thus giving rise to erroneous features. According to [13], polarity errors amount to between 5
and 10% in the mean and rise as high as 30% in class 1.

Instead of trying to guess the position of the centromere prematurely from the chromosome’s
shape, thereby estimating its polarity, we use here a general concept for handling ambiguities

of objects set forth in Ritter and Gallegos [18]: variants, cf. Section 3. In the present case,
ambiguous interpretations of a chromosome result from its unknown polarity, the two possible
polarities of the profile giving rise to two competing feature sets which are the variants here. In
Gallegos and Ritter [4] it is investigated under what conditions optimal constrained classification
is possible despite the presence of variants. This theory can be applied to polarities. In Section 3,
we develop two such algorithms; they employ both variants in a symmetric way. For each
statistical model above they give rise to Bayesian classifiers in the presence of variants. We call
the new classifiers polarity free and name them VIEC, VIECO, VIQA, and VIQAO, respectively.

We take also another look at feature extraction from profiles using cosines and at normalization,
cf. Section 2. Test-set (cross-validation) and training-set error rates based on the new features
demonstrate the superior performance of the new classifiers and features, Section 4. In fact,
to the best of our knowledge, this paper presents the first automatic classifiers achieving cross-
validation error rates below 1% for classification of human chromosomes into their 24 classes on
the basis of a correctly segmented, everyday, clinical image data set without manual orientation
of chromosomes, cf. Table 3(a).

2 Features and their normalization

The results obtained in [19], [17], and [16] were based on 24 of the 30 features of the Edinburgh
MRC chromosome analysis system; 28 of them are described in [13], two more were added
later on. These 24 features are size (a mixture of area and length), density = mass/area, area
centromeric index = the area of the long arm divided by the total area of the chromosome,
coefficient of variation of the density distribution (cvdd), normalized square root of squared
density differences (nssd), number of bands = number of density profile maxima, and six so-called
wdd-features (weighted density distribution) from each of the three profiles. The remaining 6
features are either redundant or contain too many outliers to be useful.

Whereas we use again basically the features described in [13] we propose some modifications of
which we show in Table 3(b) that they reduce classification error rates. First, we truncate each
density profile at both ends at 27.5% of the mean value of all density profiles in the data set
and subtract the minimum of the resulting profile. This shortening of the tips of profiles results
in a better centering.

Let us describe next how profiles are converted to features. For the sake of clarity we assume
first that a profile is a function [0, 1] → R defined on the unit interval. Let p1, . . ., pm be the raw
profiles of one kind (density, gradient, or shape) of all chromosomes 1. .m in a cell. (In a normal
human cell m = 46.) Effects of culture, staining, and microscopy cause the images to be darker
or lighter. Therefore, the profiles contain a (random) factor independent of the chromosomes in
the cell (but depending on the cell). This random “darkness index” does not contain information
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on the chromosomes. Since it increases the scatter and correlates the chromosomes, it has to
be removed. This is done by normalizing the sum of the integrals of all profiles p1, . . ., pm to
1. Unfortunately, this normalization introduces new correlation between chromosomes. By the
strong law of large numbers, which is already applicable to the number m = 46 of chromosomes,
the normalizing sum depends only weakly on the chromosomes (however, it depends on the cell).
Therefore, normalization renders the chromosomes only weakly correlated and the assumption
of independence is barely hurt. Let p̄1, . . . , p̄m : [0, 1] → R be the so normalized profiles.

Now consider an arbitrary profile p among p1, . . ., pm and its normalization p̄. A characteristic
quantity leading to a first feature is the integral of p̄,

∫ 1

0
p̄(t) dt =

∫ 1
0 p(t) dt

∑n
j=1

∫ 1
0 pj(t) dt

. (2.1)

Turning to the extraction of band-pattern information from p̄ we normalize p̄ across the chro-
mosome by putting

=
p =

p̄
∫ 1
0 p̄(t) dt

=
p

∫ 1
0 p(t) dt

.

Attaching a copy of
=
p to

=
p in reverse direction yields a symmetric profile

≡
p : [−1, 1] → R

≡
p(t) =

{

=
p(t), if t ≥ 0,
=
p(−t), otherwise,

which may be considered as an absolutely continuous, 2-periodic function on R. The Fourier

coefficients Fk of
≡
p are

Fk
≡
p =

1

2

∫ 1

−1

≡
p(t) exp(πikt) dt =

∫ 1

0

=
p(t) cos(πkt) dt

=

∫ 1
0 p(t) cos(πkt) dt
∫ 1
0 p(t) dt

, k = 1, 2, . . . .

(2.2)

Like p, p̄,
=
p, and

≡
p these Fourier coefficients, too, contain the whole information on the band

pattern. By absolute continuity, they are of order o(k−1) as k −→ ∞.

In practice we are given the discrete profiles hi defined by hi(ℓ) =
∫ (ℓ+1)/Li

ℓ/Li
pi(t) dt, 0 ≤ ℓ < Li,

1 ≤ i ≤ m, where Li is the length of hi. Letting h be an arbitrary discrete profile among h1,
. . ., hm, letting L be its length, and discretizing (2.1) and (2.2) we obtain the features

a =
1
L

∑

ℓ<L h(ℓ)
∑

j
1

Lj

∑

ℓ<Lj
hj(ℓ)

(2.3)

and

ak =

∑

ℓ<L h(ℓ) cos (πk(ℓ + 1
2)/L)

∑

ℓ<L h(ℓ)
, k = 1, 2, . . . . (2.4)

By uniqueness of the (discrete) Fourier transform, the discrete and normalized profile values
h(k)/

∑

ℓ<L h(ℓ) are linear functions of the coefficients a1, . . ., aL−1; hence, so are the coefficients
aL, aL+1, . . . and it suffices to consider the features a1, . . ., aL−1. In fact, because of noise
contained in the profiles, only the first few of them are useful.

We extract 29 features from each chromosome which we now describe. Let us denote the
truncated (discrete) density profile of chromosome i by di, by gi its gradient profile, and by
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mi its shape profile. Let Li be the length of the density profile, let Di =
∑

ℓ<Li
di(ℓ), Gi =

∑

ℓ<Li−1 gi(ℓ), Mi =
∑

ℓ<Li
mi(ℓ), and let D′

i = Di/Li, G′
i = Gi/(Li−1), M ′

i = Mi/Li. The first
four features of the following list are adopted from [13], the remaining ones are modifications of
features presented there.

1. The size of the chromosome. This is the mean of its area normalized at the 60% fractile
across the cell and its length, again normalized at the 60% fractile.

2. The density of the chromosome. This is the quotient of the sum of the grey values over all
its pixels divided by its area; the sum of these quotients is normalized to 1 across the cell.

3. The number of density maxima relative to the cell.

4. nssd =
√

∑

ℓ<Li−1 g2
i (ℓ)/Di.

5. The mean of the density profile normalized across the cell, D′
i/
∑

j D′
j , cf. (2.3).

6. The mean of the gradient profile normalized across the cell, G′
i/
∑

j G′
j , cf. (2.3).

7. The mean of the shape profile normalized across the cell, M ′
i/
∑

j M ′
j , cf. (2.3).

8. – 13. The first six cosine coefficients of the density profile,
1

Di

∑

ℓ<Li
di(ℓ) cos

(

πk(ℓ + 1
2)/Li

)

, k ∈ 1. .6, cf. (2.4).

14. – 21. The first eight cosine coefficients of the gradient profile,
1

Gi

∑

ℓ<Li−1 gi(ℓ) cos
(

πk(ℓ + 1
2 )/(Li − 1)

)

, k ∈ 1. .8, cf. (2.4), standardized as described be-
low.

22. – 29. The first eight cosine coefficients of the shape profile,
1

Mi

∑

ℓ<Li
mi(ℓ) cos

(

πk(ℓ + 1
2)/Li

)

, k ∈ 1. .8, cf. (2.4).

The numbers of cosines used were determined by calibration. Note that the odd cosine coeffi-
cients depend on the polarity of the profile. In the case of polarity-free classification, we consider
both polarities of the chromosome. Hence, for each polarity, we obtain a set of 29 features. These
two sets are handled by the method of variants, described below in Section 3.

In polarity-dependent estimation, the eight cosine coefficients of the gradient profiles are stan-
dardized across the cell, i.e. the mean value of all coefficients in the cell is subtracted and the
result is divided by the standard deviation. Polarity-free estimators need two sets of features
for each chromosome. Which set corresponds to the correct polarity is not known at this stage
in the classification process. (It is, of course, known and used in the process of parameter es-
timation.) Therefore, we can standardize only those features which are identical in both sets.
These are the (symmetric) even cosine coefficients. The odd coefficients are left unchanged.

Finally, features are rescaled to a handy size for better numerical control. The centromeric index
was never explicitly used as a feature, not even in the case of polarity-dependent classifiers, since
it generates too many outliers. (The polarity-dependent classifiers use it, of course, for the sake
of orientation.) It should, however, be pointed out that the centromeric index is contained
implicitly in the shape profile and, hence, in the eight features extracted from it. This concludes
the description of features.
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3 Variants

In Ritter and Gallegos [18], variants are introduced as a Bayesian model for handling ambiguities
in recognition and identification problems. Formally, variants are different observations of the
same object leading to different interpretations. In general, each object may have its own number
of variants, one of which is the regular variant yielding the correct interpretation. The other
variants can be understood as perturbed observations of the object. In the present application,
the variants are the two feature sets resulting from the two possible polarities of the chromosome.
The regular variant corresponds to the correct, biologically defined polarity. Unfortunately, as in
the present case, it is often unknown which of the variants is the regular one. Then, selection of
the regular variant and classification of the object in the presence of variants both are interesting
problems.

3.1 The Simple Constrained Classifiers

We establish two algorithms for optimal polarity-free, constrained classification of chromosomes
using the methods of [4]. In order to ease the exposition we restrict matters to classification of
normal human cells, i.e., human cells without missing or extra chromosomes; other species and
cells with numerical anomalies can be handled in a similar way, cf. also [17] and [16]. Because
of the pairwise homologies stated at the beginning of the introduction we follow [17] and [16]
introducing virtual classes. These are defined by doubling homologous classes. Normal female
and male human cells can be handled by introducing the virtual classes 1. .47; the virtual classes
j and j + 23, j ∈ 1. .22, are identified with the biological class j, the virtual classes 23 and 46
with the biological class X, and the virtual class 47 with the biological class Y .

In the present case, we observe 46 chromosomes (objects) 1. .46 belonging to 47 (virtual) classes

1. .47 with the identifications stated above. No class is covered more often than once. Our
state space E is the Cartesian product R

d, d = 29 being the number of features. Let Zj,1,
Zj,2 : (Ω, P ) → E, j ∈ 1. .47, be the two random variants (polarities) of an object of (virtual)
class j, Zj,1 being the regular variant. Let I47 ⊆ S47 denote the set of permutations σ of 1. .47
such that σ(47) ∈ {46, 47}. We represent an assignment of chromosomes to (virtual) classes by
an element σ ∈ I47. An object i ∈ 1. .46 is assigned to class σ(i) and σ(47) is the indicator of
sex: σ(47) = 47 if the cell is female (“σ is female”) and σ(47) = 46, otherwise (“σ is male”).
We observe a realization x = (x1,1, x1,2; x2,1, x2,2; . . . ; x46,1, x46,2) ∈ E2·46 of the random array

X = (X1,1,X1,2; X2,1,X2,2; . . . ; X46,1,X46,2)

= (ZΦ(1),V1
, ZΦ(1),3−V1

; . . . ; ZΦ(46),V46
, ZΦ(46),3−V46

)

=: ZΦ,V .

Here, xi,h and Xi,h stand for the observation at site h ∈ 1. .2 of the object i ∈ 1. .46, Φ: (Ω, P ) →
I47 is a random assignment, and Vi : (Ω, P ) → 1. .2 stands for the unknown variant at the
first site of object i. We also let Hi : (Ω, P ) → 1. .2 denote the (unknown) site of the regular
variant (correct polarity) of object i. We have plainly Hi = Vi here. We assume that the pairs
(Z1,1, Z1,2), . . ., (Z47,1, Z47,2), the random permutation Φ, and the sites H1, . . ., H46 are all
statistically independent.

The following equivalence relation will take care of homologous classes. Let us call two permu-
tations ϕ, σ ∈ I47 equivalent or homologous, ϕ ∼ σ, if they assign all chromosomes to the same
biological classes, i.e., if either both permutations are female and ϕ(i) = σ(i) mod 23 for all i
or if they are both male and ϕ(i) = σ(i) mod 23 for all i such that ϕ(i) ∈ 1. .22 ∪ 24. .45 and
ϕ(i) = σ(i) for ϕ(i) ∈ {23, 47}.
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The following statistical model is designed to optimally estimate the correct classes without

explicitly estimating the polarities, too. Its parameter set is Θ = I47 × (1. .2)46 and its decision
set is I47. It is defined as the quadruplet

((X1,1,X1,2; . . . ; X46,1,X46,2), (Pϑ)ϑ∈Θ, I47, G),

where P(ϕ,v), (ϕ,v) ∈ Θ, is the probability law of

(Zϕ(1),v1
, Zϕ(1),3−v1

; . . . ; Zϕ(46),v46
, Zϕ(46),3−v46

)

and where the gain G is defined by

G((ϕ,v), σ) :=

{

1, if ϕ ∼ σ,
0, otherwise.

That is, there is a gain of one unit for a biologically correct assignment and no gain otherwise.
The Bayesian estimator for the statistical decision model above is the maximum-a-posteriori

(MAP) classifier

MAP(x) = argmax
σ∈I47

E[G((Φ, V ), σ)/X = x]

= argmax
σ∈I47

P [Φ ∼ σ/ZΦ,V = x]

= argmax
σ∈I47

P [ZΦ,V ∈ dx/Φ ∼ σ]P [Φ ∼ σ].

(3.5)

The distributions of Zϕ,V and Zσ,V are equal if ϕ ∼ σ. Hence, by independence, (3.5) reads also

MAP(x) = argmax
σ∈I47

P [Zσ,V ∈ dx]P [Φ ∼ σ]

= argmax
σ∈I47

(

46
∏

i=1

P [(Zσ(i),Vi
, Zσ(i),3−Vi

) ∈ (dxi,1,dxi,2)]

)

P [Φ ∼ σ].
(3.6)

Again by independence, the generic factor in the last product is

P
[

Zσ(i),Vi
∈ dxi,1, Zσ(i),3−Vi

∈ dxi,2

]

=P
[

Zσ(i),1 ∈ dxi,Hi
, Zσ(i),2 ∈ dxi,3−Hi

]

=

2
∑

h=1

P
[

Zσ(i),1 ∈ dxi,h, Zσ(i),2 ∈ dxi,3−h

]

P [Hi = h]

=

2
∑

h=1

P
[

Zσ(i),1 ∈ dxi,h

]

P [Hi = h]

since xi,1 and xi,2 come from the two polarities of the same chromosome. Let qi,h = P [Hi = h],
the prior probability of h ∈ 1. .2 to be the regular polarity of object i, let fj(x) = P [Zj,1 ∈ dx]/dx,
x ∈ E, the density function of the regular polarity of class j, and let pf (pm) be the prior
probability of a cell to be female (male). Assuming that Φ is uniformly distributed conditional
on being female or male, we have

P [Φ ∼ σ] =

{

P [Φ ∼ σ/Φ is female] pf = 223

46! pf , if σ is female,

P [Φ ∼ σ/Φ is male] pm = 222

46! pm , if σ is male.
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In particular, P [Φ ∼ σ] depends on the indicator of sex, σ(47), only, i.e.,

P [Φ ∼ σ] =
223

46!
ασ(47) (3.7)

with α46 = pm/2 and α47 = pf . With these notations, the classifier (3.6) reads

MAP(x) = argmax
σ∈I47

ασ(47)

46
∏

i=1

2
∑

h=1

fσ(i)(xi,h)qi,h

= argmax
σ∈S47

47
∏

i=1

di,σ(i)

(3.8)

with the coefficients

di,j =























∑2
h=1 fj(xi,h)qi,h , i ∈ 1. .46, j ∈ 1. .47,

α46 = pm/2 , i = 47, j = 46,

α47 = pf , i = j = 47,

0 , i = 47, j < 46.

It has been known for some time that constrained, context-sensitive ML-classification of in-
dependent chromosomes of a cell leads to a linear assignment problem; cf. [22], [23]. Ritter
and Gallegos [17] and Ritter and Gaggermeier [16] extended this to MAP-classification. (Their
approach differs somewhat from the present one since they disregarded homologies in the gain
function.) Taking negative logarithms in the expression (3.8) we obtain a linear assignment
problem also in the presence of variants. Its weights are shown in Table 1.

Table 1: Weight matrix of size 47 × 47 for polarity-free assignment of 46 chromosomes to their
classes without estimation of polarities. The density function fj and the probabilities qi,h, pm,
and pf are explained in the paragraph before Eqn. (3.7); xi,h denotes variant h of chromosome
i.

ch
ro

m
os

om
es

i
=

1

.

− ln
∑2

h=1 fj(xi,h)qi,h

.

46

sex ind. ∞ − ln pm

2 − ln pf

classes j = 1 . . 22 X 1 . . 22 X Y

We have thus derived algorithm SCC (Simple Constrained Classifier) which realizes the MAP-
classifier for assigning each object to its class without estimating its polarity. It uses the density
function of the regular variant, only; hence the adjective ”simple”. The linear assignment
problems contained in this and the following algorithm can be efficiently solved by the Hungarian
method, cf. Papadimitriou and Steiglitz [11], or by Balinski’s algorithm [1].
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Algorithm SCC

Input: Density functions fj of the regular variants of all (virtual) classes j ∈ 1. .47;
prior probabilities pf , pm, and qi,h for all objects i, and all sites h;
the observation x = (xi,h)i∈1. .46

h∈1. .2

.

Output: Classification of objects into their classes.

begin

foreach (i, j) ∈ 1. .46 × 1. .47 do

ci,j :=



















































− ln
∑2

h=1 fj(xi,h)qi,h , i ∈ 1. .46, j ∈ 1. .47,

− ln(pm/2) , i = 47, j = 46,

− ln pf , i = j = 47,

∞ , i = 47, j < 46.

od

σ̂ := argmin
σ∈S47

47
∑

i=1
ci,σ(i); (∗A linear assignment problem ∗)

return σ̂|1. .46;

end

If a karyotype is to be produced then the Algorithm SCC is not sufficient since, in this case, the
polarities, too, are required. Therefore, we also include Algorithm SCCS (Simple Constrained

Classifier-Selector) which realizes the MAP-estimator for estimating class and polarity. This
time, one uses the decision set I47 × (1. .2)46, the second factor standing for the sites of the
regular variants. The gain function G is defined by

G((ϕ,v), (σ,h)) :=

{

1, if ϕ ∼ σ and v = h,

0, otherwise.

That is, there is a gain of one unit for a biologically correct assignment with all polarities correct
and no gain otherwise. A similar reasoning as above shows that the MAP-estimator is again
based on the solution of a linear assignment problem. Indeed, by independence

E[G((Φ, V ), (σ,h)); X ∈ dx]

=P [Φ ∼ σ, V = h, ZΦ,V ∈ dx]

=P [ZΦ,V ∈ dx/Φ ∼ σ, V = h]P [Φ ∼ σ]P [V = h]

=P [Zσ,h ∈ dx]P [Φ ∼ σ]P [H = h]

=
46
∏

i=1

P [Zσ(i),1 ∈ dxi,hi
]P [Φ ∼ σ]

46
∏

i=1

P [Hi = hi],

Together with (3.7) it follows that the Bayesian estimator for the statistical decision model above
is the MAP-classifier

MAP(x) = argmax
σ,h

ασ(47)

46
∏

i=1

fσ(i)(xi,hi
)qi,hi

.

14



The optimal permutation σ̂ is the maximizer of the expression

ασ(47)

46
∏

i=1

max{fσ(i)(xi,1)qi,1, fσ(i)(xi,2)qi,2}.

By taking negative logarithms, this becomes again a linear assignment problem. The resulting
weights are shown in Table 2. The site ĥi of the regular variant of object i is the maximizer of
fσ̂(i)(xi,h)qi,h, h ∈ 1. .2.

Table 2: Weight matrix of size 47 × 47 for polarity-free assignment of 46 chromosomes to their
classes with estimation of polarities. The density function fj and the probabilities qi,h, pm, and
pf are explained in the paragraph before Eqn. (3.7); xi,h denotes variant h of chromosome i.

ch
ro

m
os

om
es

i
=

1

.

− ln maxh∈1. .2 fj(xi,h)qi,h

.

46

sex ind. ∞ − ln pm

2 − ln pf

classes j = 1 . . 22 X 1 . . 22 X Y

The following algorithm represents the MAP-estimator of the class assignment and the sites of
the regular variants given the observation x = (xi,h)i∈1. .46

h∈1. .2
.

Algorithm SCCS

Input: Density functions fj of the regular variants of all classes j ∈ 1. .47;
prior probabilities pf , pm and qi,h of all objects i, and all sites h;
the observation x = (xi,h)i∈1. .46

h∈1. .2
.

Output: Classification of objects into their classes and the sites of their regular variants.

begin

foreach (i, j) ∈ 1. .46 × 1. .47 do

ci,j :=



















































− ln maxh∈1. .2 fj(xi,h)qi,h , i ∈ 1. .46, j ∈ 1. .47,

− ln(pm/2) , i = 47, j = 46,

− ln pf , i = j = 47,

∞ , i = 47, j < 46.

od

15



σ̂ := argmin
σ∈S47

47
∑

i=1
ci,σ(i); (∗A linear assignment problem ∗)

foreach i ∈ 1. .46 do

hi := argmin
h∈1. .2

− ln
(

fσ̂(i)(xi,h)qi,h

)

;

od

return σ̂|1. .46, h1, . . . , h46;

end

The algorithmic difference between polarity-free and polarity-dependent classification is best
seen in Tables 1 and 2: instead of likelihoods as in [16] the tables contain the weighted sums and
weighted maxima over the likelihoods of the two polarities, respectively. The polarity-dependent
algorithms designed in [17] and [16] for handling cells with missing or extra chromosomes can be
modified in the same way for polarity-free classification. They need in addition prior probabilities
of missing chromosomes and of various trisomies.

3.2 Distributional models

The algorithms above may be combined with the statistical models fj mentioned in the intro-
duction:

(i) Elliptical symmetry. Here, fj is the density of the elliptically symmetric distribution with
expectation ej , variance Vj , and radial function ϕ : [0,∞[ → [0,∞[. We will use the radial

functions ϕnormal(r) = βnore
−r2/2 and ϕPareto(r) ∼ βλr−λ for some λ exceeding the number

of features + 2; for more details cf. [19].

(ii) Quadratic asymmetry. In this model, fj is the density of the quadratically asymmetric dis-
tribution with expectation ej , variance Vj , quadratic asymmetry Qj , and a radial function
as in (i); for more details cf. [15], and [16].

(iii) Mixture models with elliptically symmetric or quadratically asymmetric outliers. The
density fj of class j is a mixture of two densities, the density of the regular observations of
class j, fj,REG, and the density of the outliers of class j, fj,OUT; i.e., fj = (1 − γ)fj,REG +
γfj,OUT for some (usually small) number γ, 0 < γ < 1. As fj,REG we choose the normal
density with expectation ej,REG and covariance matrix Vj,REG and fj,OUT is either an
elliptically symmetric density with expectation ej,OUT, covariance matrix Vj,OUT, and a
radial function ϕ : [0,∞[ → [0,∞[ or a quadratically asymmetric density with the quadratic
asymmetry Qj,OUT as an additional parameter. More refined models could be used for the
regular distribution but, in both cases, best results are achieved if fj,REG is normal and ϕ
is of Pareto’s type; for more details cf. [17] and [16].

We name the new polarity-free estimators derived from Algorithm SCC VIECϕ, VIQAϕ, VIECOϕ,
and VIQAOϕ, ϕ ∈ {normal,Pareto, . . .}, according to the statistical model of feature sets used.

4 Experimental Results

In this section, we offer test results for the polarity-free classifiers VIECnormal, VIECPareto,
VIECOPareto, and VIQAOPareto and compare them with the previous polarity-dependent esti-
mators IECnormal, IECPareto, IECOPareto, and IQAOPareto. We use again the large Copenhagen
image data set Cpr [12], [17] and the profiles computed by the Edinburgh MRC chromosome
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analysis system [13] as a benchmark. The results pertain to all cells in the data set, also those
with a missing chromosome or containing a trisomy.

Estimate prior
probabilities pf , pm

and probabilities of
occurrence of missing
classes and trisomies
from training cells.

Extract feature sets of
all training chromo-

somes in correct

polarity.
(See Section 2)

Choose a statistical
model of feature sets

and determine its
parameters fj for all

classes j.
(See Section 4.1)

Classify test cell using
parameters, priors, and
the two feature sets.
(See Algorithms SCC

and SCCS)

Extract feature sets of
both polarities of all
chromosomes in the

test cell.

Figure 6: Overview of polarity-free classification

4.1 Parameter estimation

The model parameters (expectation, covariance matrices, quadratic asymmetries, exponents of
radial functions) of polarity-free classifiers are estimated as described in [17] and

[16] except that features are extracted from profiles in correct (i. e., manually determined) po-
larity. Parameters γ of mixture models with outliers were determined by the trimming method
described in [17]. This method requires two cutoffs, cutBAS and cutOUT, for the generation of
the basic and outlier populations. The basic population BAS of each class consists of those
observations whose Mahalanobis distance, with respect to the entire population POP, does not
exceed cutBAS. The outlier population OUT consists of those observations whose Mahalanobis
distance, with respect to the basic population, exceeds cutOUT. The connections are illustrated
by the following diagram.

POP −→
ePOP

VPOP

cutBAS−−−−→ BAS −→
eBAS

VBAS

cutOUT−−−−→ OUT −→
eOUT

VOUT

(QOUT)

For the estimation of parameters, covariance matrices of populations containing outliers were
robustly estimated, i.e., a shrinking factor of 0.9 was applied to their off-diagonal elements,
cf. [14], [17]. These populations are the entire population in all cases and the outlier populations
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needed for estimating the quadratic asymmetries in the cases IQAO and VIQAO but not the
basic populations.

The prior probabilities qi,h are chosen as 0.5. The prior probabilities of a cell to be female or
male, of missing chromosomes, and of various trisomies are those listed in [17], Section 5, and
[16], Section 4.3.

4.2 Classification and test results

In the classification process, the shrinking factor above was applied to all covariance matrices.
Moreover, all quadratic asymmetries were multiplied by another shrinking factor, the Q-factor
≤ 1, cf. [16]. Note that, for classifying a cell, two feature sets are extracted from each of its
chromosomes, one for each polarity.

Let us finally compare the estimated probabilities of misclassification of the new polarity-free
classifiers and new features extracted from the profiles mentioned at the beginning of this section
(Table 3(a)) with those obtained from previous polarity-dependent classifiers applied to the same
feature set (Table 3(b)) and to the feature set of the Edinburgh MRC chromosome analysis
system (Table 3(c)).

In all tables, test-set results refer to the cross-validation (holdout, jackknifing) method described
in [17] whereas training-set results use all cells for training and classification. Roughly speaking,
in Table 3, S.D. is 1 with respect to cells and 0.1 with respect to chromosomes. This comparison
shows that the new feature set has an advantage of 10 to 15% over the previous one; a similar
improvement is due to the polarity-free classifiers.

Our implementation in the Programming Language C on a workstation SUN Ultra 1, Model
140, takes for classification of one cell about 0.08 s in the case IEC, 0.14 s in the case IECO, and
1.1 s in the case IQAO, respectively. Execution times of the polarity-free V -classifiers, needing
two feature sets, are about twice as large as those of the polarity-dependent ones.

5 Discussion

Variants possess a large number of applications. We use them in this paper in order to handle
the ambiguity stemming from the two polarities of chromosomes. Other applications to auto-
matic chromosome analysis are possible, for instance to the problems of shape recognition, of
segmentation, and of centromere handling. The polarity-free classifiers remove errors due to
wrong polarities caused by erroneously estimated centromeres. Compared with the previous
features and polarity-dependent classifiers the new polarity-free V -classifiers together with the
modified features remove between 20% and 30% of classification errors depending on their sta-
tistical types. The best error rates attained in this way for the data set Cpr are just below
1%.

The manual error rate contained in this data set was estimated as 0.3% with respect to chromo-
somes [8], p. 314. There are mainly two causes for the difference between the error rate of 0.3%
of the expert and that of our currently best classifiers. The expert uses probably additional fea-
tures and, more importantly, handles outliers in a more flexible way than an automatic system
can do. We believe that most of the remaining errors of our best classifiers are due to remaining
outliers in the data of which there are several causes. These are

(i) wrong medial axes mainly in bent and badly-shaped chromosomes,
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Table 3: Overall test- and training-set error rates for various classifiers and featuers.
The notation p/q means that p% of chromosomes were misclassified in q% of cells. The exponents
λ and λOUT of the Pareto-type radial functions (see 3.2), the parameters cutBAS and cutOUT

(see 4.1) controlling the trimming method, and the Q-factors (see 4.2) for robust estimation of
quadratic asymmetries are indicated where they apply.

(a) Polarity-free classifiers, applied to the new 29 features. The best classifier reported in this
communication is VIQAOPareto applied with robust estimation of variances; cf. the rightmost
test-set result.
(b) Classifiers with polarities determined by estimated centromeres, applied to the new 29 fea-
tures.
(c) Classifiers with polarities determined by estimated centromeres, applied to 24 features from
the Edinburgh MRC chromosome analysis system. Results taken from [17] and [16].

(a)

VIECnormal VIECPareto VIECOPareto VIQAOPareto

λ = 33.0 λOUT = 33.0 λOUT = 34.0

1.94/27.2 1.27/18.3 0.99/14.9 0.92/14.2
test set (%) cutBAS = 10.0 cutBAS = 6.5

cutOUT = 7.3 cutOUT = 7.1
Q-factor = 0.4

1.82/26.0 1.20/17.6 0.76/12.2 0.58/10.1
training set (%) cutBAS = 13.5 cutBAS = 7.9

cutOUT = 8.5 cutOUT = 7.5
Q-factor = 1.0

(b)

IECnormal IECPareto IECOPareto IQAOPareto

λ = 33.0 λOUT = 33.0 λOUT = 33.0

2.16/28.9 1.49/20.8 1.15/16.5 1.10/15.9
test set (%) cutBAS = 8.5 cutBAS = 6.4

cutOUT = 7.0 cutOUT = 7.5
Q-factor = 0.5

2.02/27.6 1.41/19.9 0.85/13.6 0.64/11.1
training set (%) cutBAS = 9.5 cutBAS = 8.7

cutOUT = 8.0 cutOUT = 7.7
Q-factor = 1.0

(c)

IECnormal IECPareto IECOPareto IQAOPareto

λ = 28.0 λOUT = 30.5 λOUT = 29.0

2.68/34.5 1.84/25.2 1.32/19.3 1.22/17.5
test set (%) cutBAS = 8.5 cutBAS = 6.1

cutOUT = 7.0 cutOUT = 6.7
Q-factor = 0.6

2.55/33.3 1.72/24.0 1.09/16.5 0.78/13.3
training set (%) cutBAS = 8.5 cutBAS = 7.5

cutOUT = 7.0 cutOUT = 7.2
Q-factor = 1.0
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(ii) Giemsa stains on or at the chromosome,

(iii) X- or Y -shapedness because of late metaphases,

(iv) overlappings of other chromosomes, and

(v) large structural anomalies such as translocations, deletions, duplications, inversions, or
huge satellites.

A comparison of the classifier VIECnormal (which has no outlier handling potential) with the
classifiers VIECPareto, VIECOPareto, and VIQAOPareto (which have high outlier handling poten-
tials) shows that they can to a certain degree be made up for by methods of statistical data
analysis.

One cause of asymmetries in the feature data previously used were wrong polarities. Table 3(a)
shows that the polarity-free asymmetric classifier VIQAO is still noticeably superior to the
symmetric classifiers VIEC and VIECO. This means that, despite the removal of outliers caused
by wrong polarities, there remains asymmetry in the data.

All three Tables 3(a) – (c) show a large gap between the test-set and the training-set error rates of
the quadratically asymmetric classifiers IQAO and VIQAO. The reason is that the expectations
eOUT and the matrices VOUT and QOUT together make up 1276 (900) real parameters for a
feature set of dimension 29 (24). They have to be estimated on the basis of the outliers which,
in Cpr, amount to about γ ≈ 12% of the whole data set. These fewer than 1000 chromosomes
in each class are not sufficient for reliably estimating such a large number of real parameters
for test-set results. This is also plain from the small Q-factors allowed in the test-set classifiers.
Moreover, the large number of parameters leads to substantial overfitting in the training-set
classifiers. The genuine Bayesian error rate of VIQAOPareto, e.g., will lie somewhere between
the test-set error rate of 0.92% and the training-set error rate of 0.58%. A data set for parameter
estimation even larger than Cpr would diminish this gap.

Approaching the error rate of automatic chromosome classification to that of the expert is not an
easy task and it is not just one idea that will do it. It seems that, with constrained classification,
elliptical symmetry, quadratic asymmetry, mixture models, and variants, the potentiality of
statistical methods is to a high degree exhausted. On the other hand, there is still the possibility
to improve the image processing required for profile extraction. This is the subject of the
communication [20].
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