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Abstract. We show that the Choquet boundary of a convolution algebra of 
measures is contained in the set &generalized characters ofidempotent modulus. We 
then give a number of sufficient conditions for Choquet boundary points and 
determine the Choquet boundary for some examples, including the examples of 
Hewitt-Kakutani and Simon. Finally we state and prove a theorem of Bochner's type 
for L-algebras generated by a single measure. 

1. Introduction 

It is well known that Bochner's theorem on representation of  
normalized, positive definite functions on an abelian, locally compact 
group G may  be deduced from Choquet 's  integral representation 
theorem (see e.g. [12]). However,  as the group algebra k 1 (G) is 
symmetric, its Choquet  and Silov boundaries both coincide with its 
Gelfand space (i. e., the dual group G) and there cannot  be an integral 
representation of  all elements of  the closed convex hull of  the Gelfand 
space (i. e., the normalized, positive definite functions on G) over a 
proper subset of  the Gelfand space. For the same reason, Bochner's 
theorem may  be deduced from Krein-Milman 's  theorem or also from 
uniform density in g0 (G) of  the space of  all Fourier  transforms of  
integrable functions on G (theorem of  Stone-WeierstraB). The 
situation is different if we are dealing with representations of  
functionals on asymmetric L-subalgebras Jr '  o f  the convolution 
algebra M (G) of  all bounded measures on an abelian, locally compact  
group G. Here the Choquet  boundary  of  the Gelfand space A of~gf is 
not even closed in general and we need the full strength of  Choquet 's  
theorem to obtain such representations. It follows from a theorem of  
H. BAUER that the Silov boundary  of  A is the closure of  its Choquet  
boundary  ([2], see also [3]). 
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In view of Choquet's and Bauer's theorems exact knowledge of 
the Choquet boundary of A is of major importance. The Silov and the 
strong boundaries of A have been studied in the past by many authors. 
Yet it seems that there is not much known about its Choquet 
boundary. 

Since TAYLOR [18] has shown that the strong boundary of an L- 
algebra of measures is contained in the set H of generalized characters 
of idempotent modulus and that H itself is a boundary in the sense 
that every Gelfand transform assumes its maximum modulus at an 
element of H, in view of Bauer's Maximum Principle, it is natural to 
ask i f H  contains the Choquet boundary. We answer this question in 
the affirmative (3.1). 

Given a convex embedding (see 2.3), Choquet boundary points 
are closely related to extreme points. The closed convex hull of A in 
Jr is the projective limit of the closed convex hulls of the Gelfand 
spaces of the elementary L-algebras contained in ~ ' .  It is obvious that 
each generalized character which is extreme coordinatewise is also 
extreme. The converse is not true in general. Roughly Speaking it is 
only true that an extreme point can be approximated coordinatewise 
by extreme points (CHOQUET [7], see also D. A. EDWARDS [8]). We deal 
with this question in (3.2)--(3.4). 

We then reduce the problem of deciding if a given h ~ H is in the 
Choquet boundary of A to the same problem on a certain compact 
subset of A, a subset which is itself the Gelfand space of a factor 
algebra of J//(3.11). Our attention has been drawn in this direction by 
BROWN and MORAN'S paper [6]. The reduction (3.11) gives rise to a 
number of sufficient conditions for h~H to be in the Choquet 
boundary, one of them (3.15) purely topological. The others depend 
on the construction of certain Gelfand transforms. In Section 3 we use 
mainly methods from Banach algebra and convexity theory. 

In Section 4 we determine the Choquet boundary for discrete Jg 
and for Hewitt-Kakutani 's  and Simon's examples, it turns out that 
these Choquet boundaries are minimal, i. e., they consist of the set of 
generalized characters of unit modulus. 

Section 5 deals with an application of Choquet' s integral represen- 
tation theorem in the situation of an L-algebra generated by a single 
measure. In particular we obtain essentially an extension of Bochner's 
theorem also in the asymmetric case (5.6). 

We thank G. BROWN for a very useful discussion on the subject 
matter of this paper during his stay in Erlangen. 
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2. Notations and Terminology 

(2.1) L-subalgebras ofM (G). The standard references here are [9] 
and [19]. In what  follows, G will denote a locally compact, abelian 
group with Haar  measure 2 and M (G) the algebra of finite, complex- 
valued, regular Borel measures on G with convolution as multiplica- 
tion. We denote the point mass at x ~ G by ~x. An L-subspace B of 
M (G) is a closed subspace that is hereditary with respect to absolute 
continuity 4 ,  i. e., if # ~ B and r s M (G) s. th. v ~ #, then v s B. An L- 
subspace J# o f M  (G) is called an L-subalgebra, if it is also an algebra 
with respect to convolution. Examples are Mc (G) + C ~0, where Mc 
stands for the continuous measures on G, and the discrete measures 
Md(G) on G. Special L-subalgebras are the elementary L-subalgebras 
U_ 1 ~ )  #, where/~ s M (G), 80 ~ #, and # * # ~ #. If~ s M (G), we denote 
by/#~ the elementary L-subalgebra generated by ~, i. e., M~ = ~_1 (~) 

for # = ~ 2-nvT, ~'1:= [~'l/II [[- If E is an at most countable subset of  
n=0 

M (G), then E is trivially contained in an elementary L-subalgebra 
of  M (G). 

In the sequel we will consider a fixed unital (i. e., 60~J~) L- 
subalgebra J# of M (G). We denote the Gelfand space of a commuta- 
tive Banach algebra d by A ( d ) ,  but, i f d  is our fixed J~, we will just 
write d. SREIDER [16] has given a workable representation of  the 
multiplicative, linear functionals on ~/~ as generalized characters on 
G: If  ~ is an L-subspace of  M (G), then ~ is the inductive limit of its 
closed subspaces D_ 1 ~ ) # ,  # ~ .  Therefore the dual space ~ '  o f ~  is 
the projective limit of the dual spaces l_ ~ (~), i. e., each continuous, 
linear functional f on ~ is given via integration f (y)  : =  ~ ~, @ by a 
generalized function z = (Z~)~ ]7 D-~ ~ )  with the properties 

(i) ~ < ~, =,- Z~ = Z~ (rood #),  

(ii) sup II II = Ilf[[ �9 

The multiplicative, linear functionals on the L-algebra ~ are exactly 
those generalized functions Z (called geneeralized characters) that 
satisfy 

(iii) Z~,, (x + y) = Z~ (x) Z, (Y) # @ ~ - -  a. a. (x, y ) .  

From this representation, the following properties of A can easily 
be derived. 
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~) A is a semi-group with coordinatewise and pointwise multipli- 
cation. 

~) z~A ~ 2 : =  @~)~ .  
7) z ~  ~ IzP: = (Iz~lO~A, where Re~ f> 0. 

~) z~A ~z/lzl:= (x./Iz.I)eA (o/o:=0). 
~) z ~  ~ lim Izl":= (limlzAg~A. 

/ ' / - - }  O0 

It is mostly by using these properties that one has tried to unravel the 
structure of  J/ / /and A (J///) ever since. 

A -1 will denote  the group of  invertible elements z~A for the 
semi-group structure of  A, i. e., the generalized characters Z ~ A such 
that I zl = 1 (mod Jr (We will say that a generalized function Z has 
a certain property mod Jr', if  Z~ has this property mod/~ for all #.) 
The symbol H will stand for the generalized characters h of  ~ / w i t h  
idempotent  modulus:  Ih12= [hi (mode ' ) .  

Note that Z/I Z[ ~ H for all Z ~ A. As a consequence of  ~), ~,), and ~), 
each z ~ A possesses a (not necessarily unique) polar decomposit ion 

z = Izl (z/Izl)e~ +" H. 
An L-subalgebra J'/1 o fd ' / i s  called prime, if Jr = {/~ ~ ~ I/z _c v for 

all v ~ ~r is an ideal. There is a 1 - 1 correspondence between prime 
L-subalgebras of  d// and elements in H + :=  {h ~ A I h2 = h mod  Mr} 
(__ H) (see [9], 5.2.2). We denote the Gelfand transform of  iz~J/t 
by fi, ~/g stands for the set of  all Gelfand transforms on A. 

(2.2) Boundaries. Suppose that @ is a separating, additive semi- 
group of  continuous functions u : X ~ [ -  oo, oo[ on a compact  space i" 
that contains the (real) constants. The Bishop boundary, the strong 
boundary, the Choquet boundary, and the Silov boundary of  X with 
respect to @ are defined as follows: 

BieX: = {x~X[ 3 u~@ s. th. u is maximal exactly at x}, 

St e X: = {x ~ X I V U~ q/(x) ~ u ~ @ s. th. u is maximal at x and 
u(y) < u(x)Cv~ c9}, 

S h e X : =  {xeXIV U e q / ( x )  S us@ s. th. u(y) < m a x u ( y r  U)}. 

In order to define the Choquet  boundary  we need the notion of  a 
representing measure : tz e M + ( I )  is said to represent x s X with 
respect to @, if 

u(x) ~ Suds, 
for all u~@. Let M e  be the set of  all measures that represent x. 
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x is said to be in the Choquet boundary of X with respect to ~, if 
M~ = {Ox}, i.e., the only representing measure is the trivial one. 

As the other three boundaries, the Choquet boundary too may 
be characterized by means of functions. Let C (~) be the convex 
cone generated by (~. Then ChC(~)X=Che(X) and C h e X =  
= {x ~ X [ V U ~ ~//(X) 3 u e C ((~) s. th. u ~ 3, u (x) ~> 2, and u (y) ~ 1 
(y ~ U)}. (The numbers 1, 2, 3 may be replaced by any triplet ~ < ~ < 7 
of real numbers.) It is clear that Bi ___ St ___ Ch and that x ~ Bi if and 
only ifx ~ St and x is G~. BAUER [2] has shown that each u E ~ attains its 
maximum at a point of the Choquet boundary (Bauer's Maximum 
Principle) and that Ch is a dense subset of Sh. 

Given an L subalgebra ~ of M (G) (or a general unital Banach 
algebra), two semigroups of functions on the Gelfand space A 
arise in a natural way: l og l J~ [ '=  {log[i[l~e~,(} and R e J ~ : =  
: = {Rei  I ~ e ~'}.  We would therefore obtain eight boundaries. HOW- 
ever, using the identity Re u = log [eUl, one easily verifies that all 
boundaries for Re J~ are contained in the respective boundaries for 
log I~l. It is even easier to see that the converse inclusions hold for 
the Bishop, the strong, and the Silov boundaries. We will mainly be 
interested in Ch~UA :=  ChRe~?A. A similar reasoning shows that 

Ch~A = {zeA [V U e ~ / / ( Z ) ~ J g  s. th. R e i  ~< 3, R e i ( z )  >~ 2, 

and R e ;  (~0) ~< 1 (~0 ~ U)} 

= {zeA IV U e ~  s. th. Jill ~ 3, [i(z)l ~> 2, 

and [i(~)[ 4 1 (~o~ U)}. 

(Again 1, 2, 3 may be replaced by ~ < ~ < 7 ,  ( ~ > 0  in the last 
expression).) 

If ~3 is a separating, uniformly closed subalgebra of gc (X) that 
contains the constants then BISHOP (see [17]) showed that ChmX= 
= STYX. (His original result is for metrizable X where Bi = St.) 
As the Choquet boundary does not vary when taking uniform 
closures, we obtain in our situation Ch~A = St ~z- A, where ~r  is 
the uniform closure o f -~ .  

(2.3) Convexity. Let now ~ be a separating vector space of 
continuous real-valued functions on a compact space II  that contains 
the constants (e. g. R e ~  on A). A continuous, injective mapping 
q~: X ~ E, where E is a real, locally convex Hausdorff space, is 
called a convex embedding of (Jr, ~), if 
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(i) the closed convex hull c--o-fiV ~0 (X) of q~ (JO is compact, and if 

( i i )  {to lteE'}. 

Such an embedding always exists. Then there is a third (geomet- 
rical) characterization of-the Choquet boundary of X: x ~ C h e X  
if and only if ~ (x) is an extreme point of con-v ~v (X). If d is a 
unital, commutative Banach algebra, two ways of embedding (A (d ) ,  
Re ~ )  are useful: 

~) The natural mapping A ( d ) ~  d '  (we always endow dual 
spaces with their weak* topologies), and 

8) the natural mapping ~ :A ( d ) - ~ ' ,  where ~ carries the 
uniform norm. 

It turns out that ~-6fiVd (A (d ) )  = { L ~ ' I  I ILI[ = 1 = L(1)} = :S~,  
the state space of~r (The inclusion S~ _~ conv ~ (A (d ) )  followsfrom 
the fact that a state extends to a probability measure on A (d) . )  S~ is 
also characterized as the set &all  positive, normalized linem- forms on 

(positive means Re L(d) ~> 0 for all a ~ r  such that Re~ >t 0). 
Let us call a generalized function Z of positive type for J// if 

Re ~ (~) ~> 0 for all/z ~//g whose spectrum is contained in the right 
half plane. S/e may also be identified with the set of all generalized 
functions of positive type for ~{. I f ~ '  is elementary, we will use the 
term essentially bounded function of positive type. 

BROWN--MORAN [5] showed that every invertible element in 
A (JP/) is in the strong boundary. To give the reader a flavor of our 
method, we give a simple proof that it is in Ch~A : If Iz~l --- 1 (rood///) 
then it follows from the definition of an extreme point Z that x is an 
extreme point of the closed unit ball of d/ ' .  Hence X is extreme 
in c--0-6VA ( _  J/f'). Standard references for convexity and integral 
representation are [1], [3], and [12]. 

3. Necessary Conditions and Sufficient Conditions 
for Z cA to Be in the Choquet Boundary 

We fix a unital L-subalgebra ~f  of M (G) and deal first with 
necessary conditions for z sA to be in the Choquet boundary. 
J. L. TAYtOR [18], p. 162, has shown that every Gelfand transform 
assumes its maximum modulus at a point of H. Moreover, he has 
shown that St/CA _ H. In view of Bauer's Maximum Principle [2] (see 
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also [3], Satz 1), the following theorem is a sharpening of  these two 
results. 

(3.1) Theorem. Ch~A _~ Chl~ ~ H. 

Proof For  the first inclusion see (2.2); for the second inclusion let 
;r s A. As TAYLOR [ 18] we start with analyticity on Re z > 0 of  the 
function z -* fi ([ X ]z h) for all # e Jg ,  where [Z[ h is the polar  decomposi-  
t ion of  z. It follows that  the function z --* log[fi ([ ;r [~ h)[is subharmonic  
there and we have 

log I~10c) < j log I~1 ([zI zh) 2 (dz). 

Here 2 is normalized Lebesgue measure  on a circle with center 1 and 
radius r < 1. This representat ion of  Z with respect to log I ~  I is non- 
trivial except in the case [Z 12 = [Z[ JCl-a. e. This completes  the proof.  

(3.2) Explanation. There is no known characterization of  the 
extreme points  of  the limit of  a projective system S of  convex, com- 
pact  sets in terms of  the extreme points  of  these sets. G. CHOQtmT 
[7], Lemme 38 (see also D .A .  EDWARDS [8]), gave a necessary 
condit ion which says roughly that  the coordinates  of  an extreme point  
may  be approximatedby extreme points  in the coordinates.  In order to 
reformulate  this result in our context we need some preliminaries. 

Let p~,~ : ~ '  ~ J/// (v,/z e Jg ,  # ~ v) be the canonical  restriction 
mapp ing  and let q~,~ :conv A (Jg~) ~ cony A (Jg~) be its restriction to 
conv A (~Q. The system (q~,~)F,~ of  affine, cont inuous  mappings  of  
convex, compact  sets is projective. We show that  its limit 

lim conv A ( ~ )  = {(Z~) e 1--[ c-~fff-A (J/~) [ Z~ = ;C~ #-a. e. for # ~ v} 

is equal to conv A. It is clear that  the canonical  mapping  
st: conv A ~ lira conv A (~/~) is cont inuous  and injective. Each 

4--- 

extreme point  in conv A ( J / , )  is in the Silov boundary  of  A (Jg~) and 
extends therefore to a multiplicative linear functional  on ~/g. 

It follows that  the range of  the canonical  mapping  

~ : ~ A ~ conv A ( ~ )  

contains all the extreme points  of  c~fi-VA (~'~). By Kre in-Milman 's  
theorem,  st~ is onto. Hence st is onto. 

We now obtain the following necessary condition. 
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(3.3) Proposition. Let U be a neighborhood in China o f  h ~Ch'UA. 
Then for all sufficiently large (w. r. t. ~ ) v ~ J / s .  th. ~o ~ ~, ~ * ~' ~ v, 
there exists h~ ~ U whose ~-th coordinate is in Ch~"(A (Jg,)). 

Proof  We may suppose that  U is of  the form 

U =  {Z ~ Ch~aA IZ~6 V} 

where # ~ ~ and '  V is a ne ighborhood  of  h~ in conv A (Jr By 
Choquet ' s  l emma cited in (3.2) there exists ~0 ~ J~,  ~0 >> tz such that  for 
all , >> r0 there exists an extreme point  z ~ c ~ V A  (dg~) such that  
z~,~ (Z0~ V. Since ~r~ maps  conv A onto  conv A (J//,) (see (3.2)), Z" 
extends to an extreme point  h ~ of  c--0-ffVA. If  ~0 ~ v, ~' * v ~ ~', then h ~ 
has all the desired properties.  

(3.4) Remark. If  h~A is an isolated point  of  Ch~CA, then 
h,~Ch~a'A (d/~) for all sufficiently large ~ ,~ J / s .  th. 60 ~ ~,, ~ * ~ ~ ~,. 

(3.5) Explanation. Noth ing  can be said a priori about  the size of  
the Choque t  boundary.  It may  be H or a proper  subset of  H and it may  
be A-  1 or a proper  superset of  A-  1. This follows f rom known  facts 
about  St ~ A and Sh ~t A and is also illustrated by the following simple 
examples:  

a) I f ~ / =  k ~ (R)2 + C d0, then A may  be identified with N u {o9} 
(o9 = 1{0} is the project ion on C 00) and we have H = A. As ~ '  is 
symmetric  here, J /  is dense in I$ c (A) by the theorem of  Stone- 
WeierstraB. It follows that  Ch~tA = A = H. 

b) If  .//t = 11 ( N 0 ) -  M ( E )  (N 0 = {0, 1 ,2 , . . .}) ,  then A may  be 
identified with the unit  disk 13, where ~ 13 is identified with the 
sequence (1, 1 ,  2 , . . . )  ~ i~+ (No). Here H = q]- w {0}. But 0 ( ~  o~) is not  
in the Choque t  boundary  of  A, since all elements of  M/are  analytic in 
the interior of  •. Examples  where the Choque t  boundary  is different 
f rom A-  1 arise also f rom asymmetry  of  Jg :  

c) Let ~ '  be an asymmetric  L-subalgebra o f M  (G) that  is closed 

for conjugat ion ,-, (fi (E) := /z  ( -  E)) and s. th. 1_ 1 (G) _ rig. Then  
C h ~ A ~ A  -1. (Because of  LI(G)___M/ we have A - I = G .  If  the 
Choque t  boundary  were equal to G, then the Silov boundary  would 
consist  of  symmetric  functionals. Kre in -Mi lman ' s  theorem would 
then imply the symmetry  of  rig.) 
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(3.6) Notations. We will now deal with a necessary and suf- 
ficient criterion for h ~ H to be in Ch ~ A. Let h ~ H be fixed and 
let Jgl be the prime L-subalgebra of  Jg  associated with h, i.e.,  
Jgl: = { ~ e J g l l h ~ [ #  = #}. Clearly we have 60e~' l .  Moreover ,  let 
q~l : c ~ - A  ~ conv A (Jgl) be the canonical  restriction mapping  Z-~ 

X lJgl. Since every functional  in the Silov boundary  of  A (iN1) 
extends to an element of  A, ~Vl is onto. We put  

Ah:= {Z~A [zlJgl  = h l ~ l }  = ~ i  1 (q)l (h)) n A  . 

Ah is a compact  subset of  A that  contains h. This set plays an impor tant  
role in BROWN--MORAY [6], where the set Ah:= At, \ {h} is used to 
exhibit strong boundary  points  of  A. However,  their methods  are 
different f rom ours. 

In order  to obtain the criterion ment ioned  above, we need some 
lemmas. First note  that  ~[)l(h)eA -1(d//1). Consequent ly  (see (2.3)), 
q51 (h) is an extreme point  in conv A (~'1) and q~ ~- 1 (q~1 (h)) is a face 
in cony A. 

(3.7) Lemma. conv Ah is a face in conv A. 

Proof By our last remark,  we have only to show conv Ah = 
= ~0 ~- ~ (q~l (h)). Each extreme point  e ~ q~ ~- 1 (q~l (h)) is also extreme 
in conv A. By Milman 's  theorem we have e6A, i. e., e6Ah. Therefore,  
by Kre in -Mi lman ' s  theorem,  the right side is contained in the left 
side. The  opposi te  inclusion is evident. 

(3.8) Lemma. a) Ah is closed for the hull-kernel operation. 

b) A h is canonically the Gelfand space of  the factor algebra of  Jg with 
respect to the kernel of  Ah. 

Proof Let ;g ~u) = 0 for all # in the kernel k (Ah) ofAh. If/~l s Jg l ,  
h(~l) = 0, then we have #l~k(Ah).  It follows that  Z ( ~ l ) =  0. This 
shows that  ke rh  c~ ~/gl - ke rx  c~ J/g~ and X [ ~ l  = ch [Jgl, where c is a 
complex constant.  But as d0~/g~, we obtain c = 1, i. e., z6Ah. This 
proves that  h k (Ah) -- Ah and equality follows. Part  b) is an immediate  
consequence of  a). 

We formulate  our  next lemma in the setting of  a commutat ive  
semisimple Banach algebra s~' with identity. Ch (X) stands for the 
connected componen t  of  an element h in a topological  space X. 

(3.9) Lemma. For each multiplicative linear functional h on ~ ,  
conv Ch (A (~/)) is a face in conv A (s~). 
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Proof Let K ~ 0 be an open and compact subset ofA (d) .  We first 
show that conv K is a face in conv A (d) .  It is well known that there 
exists an x e d  such that 2 =  1K. The element x e d  induces a 
continuous, affine functional f :  c--6-fi-qA ( d )  ~ ~. As f vanishes on 
A ( d )  \ K and as it maps K on 1, its range is the unit interval. Our 
claim is proved if we show conv K = f - 1  (1). But if Z is an extreme 
point in the face f - l ( 1 ) ,  then zeA ( d )  by Milman's theorem and 
it follows z e K ,  i. e . , f  -1 (1) c conv K by Krein-Milman's theorem. 
The opposite inclusion is evident. 

We now show that conv Ch (A (d)) = (~ c--6-fiVK, where the inter- 
section ranges over all open and compact K that contain h. As the 
intersection &the  faces E6nv K is again a face, our lemma will follow. 
If X is an extreme point of the right side, then it is extreme in cony K 
for all such K, hence z ~ K by Milman's theorem. But, A ( d )  being 
compact, Ch (A (d)) is the intersection of all open and compact 
subsets of A ( d )  that contain h, i. e., Z e Ch (A (d)). Again by Kre in -  
Milman's theorem we obtain ~ c~fff-K _ cony Ch (A (d)). The 
opposite inclusion is obvious. 

(3.10) Lemma. a) Ch (A (d))  is closed for the hull-kernel operation. 

b) Ch (A (d)) is canonically the Gelfand space of the factor algebra 
of d with respect to the kernel of Ch (A (d)). 

Proof Every open and closed subset K of A ( d )  is the hull of its 
kernel. This is a consequence of the existence of x e d s. th. 2 = 1K. 
Since Ch (A (d ) )  is the intersection of all such K that contain h, Part a 
follows. Part b is an immediate consequence thereof. 

We are now in the position of reducing the problem of deciding 
whether h e H is in the Choquet boundary of A to deciding the same 
question for Ch (Ah). 

(3.1 1) Theorem. A multiplicative linear functional h e H belongs to 
Ch~A if and only if it belongs to Ch~CCh (Ah). 

Proof If h is in the Choquet boundary of A, it is trivially in the 
Choquet boundary of each compact subset of A. The natural injection 
Ch (Ah) ~ Jg '  is a Convex embedding. If h is extreme in conv Ch (Ah), 
then h is extreme in conv Ah by (3.8.b) and (3.9) applied to the factor 
algebra d = ~l/k (Ah). The tfieorem now follows from (3.7). 

We now derive some corollaries from this theorem. It is some- 
times possible to decide the question ifh is a Choquet boundary point 
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by looking at the elementary L-algebras contained in ~g. This is the 
content of  our first corollary. Unfortunately, the condition that we 
obtain seems only to be sufficient (cf. (3.2)). 

(3.12) Corollary. Let hr Suppose that there is a system F of  
measures/~ ~ /g  such that 

O) F is cofinal in Jg with respect to 4 ,  and 

(ii) h~ e Ch ~ Ch~ (Ah,~ (Jg~)) for all/~ ~ F. 

Then h ~ Ch~eA. 

Proof Hypothesis ii) and Theorem (3.11) imply that h~ is an 
extreme point of  c-0-fiVA (M,) _ M'~ for all # ~ F. Then h is extreme 
in conv A by the very definition of  an extreme point. 

(3.13) Corollary. Suppose that for all z ~ Ch (Ah), Z # h, there exists 
a measure # ~ / g  (depending on X) such that 

(i) Re ~ ] Ch (Ah) >t0, 

(ii) Re fi (h) = O, 

(iii) Re/;  (x) > O. 

Then h e Ch ~ (A). 

Proof A standard compactness argument shows that 
h ~ St~Ch (Ah). 

(3.14) Remark. Let ~1 (G) ___ Jg. I f K  # 0 is open and compact in 
A, then there exists ~ s ~/" s. th. fi = 1K. It follows that K ~ (~ # 0. This 
argument shows that A has no isolated points outside of(~, and if the 
connected component  of z e A is {Z}, then X must be in the closure of  
(~. (We thank Dr. W. ARENDT for a discussion on this point.) On the 
other hand,  if G is nondiscrete, i f / d  ----- M (G), and if h eA is proper 
maximal (see BROWN-MORAN [6], see also [9], (8.5.5)), then h is 
isolated in Ah and h ~ G. Another  standard example is furnished by 
G = Y, ~t' = [i (60 + ~ + ,l), where # # 0 is a continuous singular 
measure on T such that ~ * # ~ ~. I fh  t H i s  the generalized character 
induced by the prime L-subalgebra ~_1 (8 0 dr - # ) ,  then Ah = { 1, h}. 

Our next corollary gives a purely topological condition for h ~ Ch. 
It should be compared with BROWN and MORAN'S lemma [6], Section 
3. They show that h is a strong boundary point of A if it is isolated 
in Ah. 



202 SUSANNA PAPADOPOULOU, G. R1TTER 

(3.15) Corollary. I fCh  (Ah) = {h}, then heCh~A .  

(3.16) Corollary. Suppose that ~ l  is symmetric on Ch (Ah). Then 
h e Ch~tA. 

Proo f  By hypothesis ,  Re if{ is dense in the set of  all real-valued, 
cont inuous  functions on Ch (Ah). Hence every element  of  Ch (Ah) is in 
Ch ~t (Ch (A h)). 

We now use l emma (3.10) to obtain 

(3.17) Corollary. Suppose that for  all z ~ Ch (Ah), X # h, there exists a 
measure v e J/t (depending on z) so that 

(i) ~ (Z) = ~ (h) and that 

(ii) the complex number ~ (h) can be touched with a closed disk 
D c_ C whose interior points lie outside o f r  (Ch (Ah)). Then h ~ Ch~tA. 

Proof  r (Ch (Ah)) is the spectrum of  the class ~; of  v in the factor 
algebra of  Jr' with respect to the ideal I: = k (Ch (Ah)) (Lemma 3.10). 
Wi thou t  loss of  generality D c~ ~ (Ch (Ah)) = {~ (h)}. Let a be the center 
of  D. We use the linear t ransformat ion  T: z ~ (z - ~ (h))/(z - a) of the 
Riemann  sphere. For  Iz - al > [~(h) - a] we have l1 - Tz[ < 1, in 
particular Re T z  > 0. The  functional  calculus applied to the algebra 
Jr and ~; now shows that  there exists an element/~ e ~ such that  
/; = T o ~  on Ch (Ah). Therefore  # satisfies the hypotheses  of  Corol- 
lary (3.13). This  proves the corollary. 

The quest ion whether  h is in the Choque t  boundary  may  
sometimes be reduced to the quest ion if ~o (the indicator function of  
the neutral  e lement  in G) is in the Choque t  boundary  of  a certain 
subalgebra of  J//. We will describe this now. 

(3.18) Notations. Let h ~ H be fixed and let I0 be the prime L-ideal 
of  i t / a s s o c i a t e d  with h, i. e., I0 :=  {~sJ / / [  (1 - [h~l)~ = #}. 

Clearly we have ~gg = Io 0 JOin, Jgl ~- Jg/Io, and d0~I0. We 
put  ~ :=  I0 @ C d0. Moreover ,  let q~0: cony 3 ~ conv A (~0) --- ~go' 
be the Canonical restriction mapp ing  z ~ z l J//0. Like q~l, q~0 is onto. It 
is clear that  r induces a h o m e o m o r p h i s m  Ah ~ qS0 (Ah) as well as an 
i somorphism c--6fiVA h ~ qS0 co(UdfiVAh) of  compact ,  convex sets. Clearly 
 o(h) = o). 

(3.19) Proposition. Let  h ~ H .  We have h~Ch~A i f  and only i f  
Ch (3h)). 
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Proof By the above remarks  on q~0, h is extreme in conv Ch (Ah) 
if and only if ~o is extreme in q~0 co(U6fiV Ch (Ah)) and 

co(V6  ch =conv  Co, (e0 

The proposi t ion  now follows from Theorem (3.11). 

(3.20) Remark. It follows immediately that  h ~Ch~eA if 

o~ ~ Ch ~~ Cox (A (3//0)) or ~ ~ Ch ~~ A (~0) .  

There are also corollaries analogous to (3.12), (3.13) and (3.15)--  
(3.17). We omit  the details. 

4. Examples of Choquet Boundaries 

The Silov boundaries  of  certain L-algebras have been determined 
by various authors.  We now determine the Choque t  boundaries  in 
certain cases. 

a) The Discrete Case. 

(4.1) Proposition. I f  J /  consists of discrete measures, then 
Sh~A = Ch~A = A-  1 

Proof Any functional  z in Sh~A extends to a functional in 
A (Md (G)) ---- (~d = A - l (Md (G)). (Gd is the group G endowed with the 
discrete topology.)  Hence ;~ e A-  1. 

b) Hewitt--Kakutani' s Example. 

(4.2) Explanation. A subset P ___ G is called independent, if 
l 

nk Zk = 0 implies nl Xl . . . . .  ntxl = 0 (nk ~ Z, Zk ~ P distinct), and 
k = l  

a subset Q _ G is called algebraically scattered, if for each x G (Q), 
x # 0 ,  there exists a countable  subset Y _  Q such that  x ~ ( Q \  t'). 
(Here (X) is the subgroup of  G generated by X ___ G.) I f  G is non- 
discrete, then it contains independent ,  compact ,  perfect sets P,  and 
for each independent  P, Q :-- U {nx]x~P} is algebraically scattered. 

n~Z 

Let Q be algebraically scattered and a-compact,  and let Mc (Q) be 
the L-subspace of  M(G)  consisting of  all cont inuous  measures  
# e M (G) that  live on Q. Let dg be the L-algebra generated by Mr (Q) 
and a0. Hewi t t -Kaku tan i  showed in the case Q - - - P  u ( - P ) ,  P 
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independent, that every generalized function of Mc (Q) of modulus 
~< 1 extends to a generalized character of M (G). The extension to 
algebraically scattered Q is mainly due to SAEKI [13] (see [9], 6.2.8). 

The measures that are absolutely continuous with respect to a 

measure of the form ~0 + ~/~j,  * . . .  */~j, b (~J, te M + (Q)) are dense in 
/ q  

j = l  
31. It follows (cf. [18], p. 155 (3)) that these sums of convolutions 
themselves are dense in 3t. Hence the extension is unique, i. e., A is 
homeomorphic with the unit ball of Mc (Q). 

The invertible elements of A correspond to the generalized 
functions ~0 for Me(Q) s. th. 191 = 1 (modM~(Q))" Let zeA and 
suppose that ~0"= zlMc(Q) has this property. As the measures 
absolutely continuous with respect to a measure of the form 

(~0 "-}- ~ [Zj, I*'" .* ~j, lj ~j, leM+(Q)) 
j=l 

are dense in 31, and as IXl ~< 1 31-a. e., it is sufficient to show 
I z l @ l * . . . * / ~ t )  = II~,l* . . . * ~ t l L  for/zkeM+(Q): 

Izl @1 * - - . *  ~'k) = Izl ( ~ 1 ) . . .  Izl # 'k) = Iv'l (~,) - . .  Iv'l (~k) = 

= II /~ l l l - - .  II~'kll = I 1 ~ , * . . . * ~ k 1 1 -  

(4.3) Proposition. Let notation be as in (4.2). Then Ch~A = A -1 

Proof. By Theorem (3.1), we have to show that each h ~ H \ A -  1 
has a nontrivial representation. Let wt(It l  = 1) be the generalized 
function for Mc (Q) obtained by ,,inserting t for zero"" 

~~ = {~ ~ where Ih~l = else. 1, 

Let Zt be the extension of~ot to a generalized character of 31. By (4.2), 
ZteA -1. It remains to prove that 

f i (h )=  S f i(Zt)2(dt),  
Itl=l 

where 2 is normalized Lebesque measure on the unit circle. For the 
same reason as above it is sufficient to prove this claim for/z of the 
form/~1 * . . .  */~l (~k eMc (Q))" 
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S :~, ( ~  * . . .  * ~,) ~ (dr)  = ~ [ ~ , L , ,  & , ]  �9 �9 �9 . [ I '~ , , , , ,& , ]  '~ ( m )  = 

= ~[ ~ (~ md[~i-[- S ~t,md#l] "'" "" 
]h~ll= 1 ]h~,ll = 0 

"[ I ~,,,.dl~, + ~ (ot,~,d#,12 (dt) = 
IGzl = 1 IGr =0 

= I [~ h/~l d# l  --t- t #1 {h#, -~- 0 } ] . . .  [f Tlmd#l-Jl- t #l{hm ~- 0}] ~ (dt) 

= I ~ + , . . . I L + , =  h ~,1)... h ~,a = h (~,*.. .*~,).  

(4.4) Remark. I fP  _ G is Z-independent and compact, it is even 
easier to see by pointwise considerations that Ch~A = A - 1, where J/// 
is the unital L-algebra generated by any L-subspace of M (P). 

c) Simon's Example. 

(4.5) Explanation. SIMON [14] showed that the Silov boundary 
of the smallest translation invariant L-subalgebra X of M (G) (G 
nondiscrete) that contains the L-algebra ~//g of the Hewitt-Kakutani 
example is homeomorphic with Ge x U, where Gd is the group G with 
the discrete topology and U is the unit ball in Mc (Q)'. 

(4.6) Proposition. Let G be nondiscrete, let Jet be as in (4.2), and let 
W be the L-subalgebra o f M  (G)generatedby {G ]xs  G} and~gl. Then 
ChXA @V') "~ (~.x A-1 (J/ / )(_ ~ A-I (Y)). 

Proof Note that ChMd(a)A (Me(G)) = A (Md(G)) = Gd, where 
Md(G) denotes the discrete measures in M (G). We have to show that 

ChWA (JU) _~ A (Md (G)) x Ch~A (Jd). 

By [9], 6.2.9 and its proof, A(JV)~-AOVIe(G))xA(J/I)  and the 
n 

measures of the form ~ v;*/% where vjs Me(G) a n d / ~ ; ~  are dense 
y=1 

in X .  These measures appear on zl (Me (G)) x A (de) as tensor pro- 

ducts ~ r @/;;; they are uniformly dense in ~ .  The inclusion 
/ 7  

j ~ l  

Ch A (Me (G)) x A (J/t) _ A (Me (G)) x Ch~A (j~) can now be seen by 
using representing measures, whereas the converse sense is most 
easily seen by applying the "function characterization" of the 
Choquet boundary (see 2.2). 
14 Monatshefte far Mathemafik, Bd. 93/3 
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5. Integral Representation for Elementary L-Algebras 

(5.1) Explanation. Bochner's theorem on the representation of 
normalized, positive definite functions as Fourier-Stieltjes transforms 
of probability measures may be obtained by applying Choquet's 
integral representation theorem to the algebra ~_1 (G) (see [ 12]). In fact, 
since the algebra ~ ' : =  D_ 1 (G) -t- C d0 is symmetric, ChA = A is closed 
here and the theorem is an application ofKrein-Milman's theorem. It 
remains to identify the state space with (essentially) the set of 
normalized, positive definite functions. 

It is only in the asymmetric case that the need for Choquet's 
theorem becomes apparent. We want to restrict matters to the 
metrizable case. However, 1 ~ G is G~ if and only ifG is a-compact (see 
[11], (24.48)), and if G is non-discrete then no z s A  ( M ( G ) ) \ G  is 
Go ([4], Cor. 3.4). On the other hand, if G has a countable base and if 
d// is an elementary L-subalgebra of M (G), then Jg is separable. 
Hence the unit ball in J//' and A are metrizable in the weak* topology. 
Choquet's theorem, Section (2.3), and Theorem (3.1) now combine to 
show 

(5.2) Theorem. Let G have a countable base and let Jig be an 
elementary L-subalgebra o f M  (G). Then: 

a) Ch~A is a G~-subset of  A such that 

A- 1 _ Ch~A __ H. 

b) For every essentially bounded function )r of  positive type for ~r 
there exists a probabiBty measure qx~M (A) such that 

O) qx (Ch~A) = 1 and 

(ii) X (~) = ~ h (/z) ez (dh) for all/~ ~ 3g. 

We now show that if G and J// are as in (5.2) then H is Baire 
measurable. 

(5.3) Lemma. Let X be a locally compact space with a countable 
base, # a finite, positive, regular measure on X. l_ ~ (~) is canonically 
embedded in D_ ~ (/z). Let T1 be the topology on L ~~ (,u) induced by the 
Ll-norm. Then we have B(rO=B(a(D-~176 (where B(O 
denotes the Borel a-algebra generated by a topology 3). 

Proof Since fi_l @) is separable, B (31) is generated by the sets of the 
form B~ = {fe n- ~ (~) IS IJ] dtz < e} and their translates. Let ~k be the 
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set of  continuous functions on Xwi th  compact supports and let C be a 
countable subset of {~0 e ~k[ l[ ~; [[u ~< 1 } that is uniformly dense there. 
Then we have B~ = (~ {f~ I_ ~ (~)[Sfv d# < e}. This shows that B~ 

~ C  
belongs to B(a(I_ ~176 ~) ,  [i_ 1 (~))). 

Let U be the closed unit ball in L ~ (~) (with respect to the 
L~176 The topology 31 is stronger than a (1- ~ ~) ,  I_ 1 (~)) on U. 

Indeed, let (fn) be a sequence in U such that f ,  ~ 0 and g e L1. For 
given e > 0 there is M e N +  such that:  S [g[d#<~e. 

(Igt >/M} 
Then we have 

f ,  gd, u ~ O ,  I ~ f ,  gd#[ <~ e. 
{]glUM} {Ig[~ TM} 

It follows that the two considered Borel algebras coincide on U. 
As U belongs to both Borel algebras and as I_ ~ (~) is the union of 

countably many multiples of U, the assertion of  the lemma follows. 

(5.4) Lemma. Let G and J// be as in (5.2). Then H is Bah'e 
measurable. 

Proof As A is metrizable it suffices to prove that H is Borel 
measurable. It is clear that H is closed for T1. The assertion now 
follows from Lemma (5.3). 

(5.5) Remark. The mapping A ~ A +, )r ~ ]zl does not have nice 
properties for general ~ '  (see [18], p. 162). However,  for G and Jg  as in 
(5.2), as this map is continuous for rl ,  it is Baire measurable for 
a ( ~ ' ,  ~ )  by Lemma (5.3). 

The following corollary is an immediate consequence of  (5.2) and 
(5.4). 

(5.6) Corollary. Let G and Jr be as in (5.2). Then: 

a) H is Baire measurable. 

b) For every essentially bounded function z of  positive type (in 
part&ular for every generalized character )~) for JC/ there exists a 
probability measure 0z~M (A) such that 

(i) 9z (H)= 1 and 

(ii) Z (/z) = ~ h ~)  Oz (dh) for all/~ ~ Jet. 

(5.7) Remarks. a) The integral representation is not  unique in 
general. Let G be non-discrete, let u ~ M  (G) be continuous and 

14" 
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singular with independent powers (i. e . , /n•  #,~ if  0 ~< n < m), and let 
?,eG be different from a constant (mod/,). Define two families 
(Zt)ltl=l, and (Vt)ltj=l of  generalized characters for ~/d~ by putting 

gt:=t'~(mod#"), n>~O and ~Ot:-~- Zt ~ . 

It is nOW a simple calculation using the mean-value property to show 

(2 = normalized Lebesgue measure on the unit circle). 

b) If H4= A, each Z~A \ H  has a representation over H. The 
possibility of  representing multiplicative functionals (additively) by 
means of  other multiplicative functionals is of  course again a 
consequence of  asymmetry of  rig. 
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