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1 Introduction

This communication deals with the approach via Lyapunov functions to existence and uniqueness of
stationary distributions of time-homogeneous diffusion processes in Hilbert spaces and to their trend
to stationary distributions. We consider (mild) solutions X to stochastic initial-value problems of It6’s
type

(1) dX(t) = (-AX(t) + f(X(8)))dt + o (X (2))dW (2),
X(0) ==z cE.

Here, the state space E of X is measurably imbedded in a Hilbert space H with inner product (-,-) and
(W(t))s>0 is a (possibly cylindrical) Wiener process on another Hilbert space K with a (continuous)
covariance operator @ on K and defined on a probability space (€2, .4, P). The linear drift part A :
D(A) — H is a self-adjoint and uniformly positive, linear operator in H. With £(K,H) denoting
the space of all continuous, linear operators from K to H, f : E - H and 0 : E — L(K,H) are
measurable mappings, nonlinear in general. Equations of the form (1) arise when stochastic parabolic
partial differential equations
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are treated in a Hilbert-space context, cf. Section 6.1 where we also explain the notation. The solution
X to Eq. (1) gives rise to a semi-group (P:)¢>o of transition kernels on E in the usual way. Often, this
semigroup can be extended to a semigroup on a larger set D D E, e.g. via a generalized solution; cf.
Section 3.2.2. We denote the extended semigroup again by (P;);.

Our chief results on stationary distributions are, on the one hand, conditions for the Feller property,
existence, uniqueness, and trend in the abstract Hilbert-space setting couched in terms of the coeffi-
cients of the equation alone; see Proposition 5.3 and Corollary 5.5, where we use quadratic Lyapunov
functions of the form (y, A%y), @ € R. No prior information on moments of the diffusion is needed. In
the linear case, these conditions are sharp in the sense that they reduce to Zabczyk’s [28] well-known
criterion if this Lyapunov function is used with exponent @ = —1, cf. Section 5.6. On the other hand,



these conditions may be applied to stochastic reaction-diffusion equations with bounded, nonconstant
diffusion coefficients and essentially decreasing drift functions of unlimited growth on a bounded, open
subset @ C R¢, cf. Theorem 6.5. We also gain information on the supports of the stationary distri-
butions. In important cases, our conditions ensure that the stationary distribution is supported by
the domain of definition of A™%* for suitable a € R, cf. Corollary 5.5. Unfortunately, our approach
via Young’s inequality does not allow the above Lyapunov function with & = —1 in the presence of a
nonlinear drift part f so that, in this case, we have to confine ourselves to a nuclear diffusion term.

The outlines of the paper are as follows. In order to verify the tightness properties necessary for
having stationary distributions we introduce in Section 2 a completely regular Radon space X which
contains D as a measurable, dense subset. Since the semi-group (P;); is defined on D, only, the usual
notion of a stationary distribution 4 on X does not make sense unless v is supported by D. We,
therefore, first weaken the notion of a stationary distribution, cf. 2.4. Well-known properties assuring
existence, uniqueness, and trend are a combination of the Feller property and tightness, attractivity
in the mean, and attractivity, respectively. We provide sufficient conditions for a semigroup (P;); of
transition kernels on a dense subset D of a completely regular Radon space X to possess weakened
versions of these properties, cf. Proposition 2.14. These sufficient conditions, stated in 2.11 and 2.13,
are formulated in terms of Lyapunov functions for the underlying semigroup (P;); and a family (P;);
of kernels on the squared state space D x D with marginal distributions equal to Py, cf. 2.12. In the
case of the Feller property and the attractivities, the Lyapunov functions are powers of a metric. Using
the weakened versions we prove existence, uniqueness, and trend first in an abstract setting, Theorem
2.15.

In Section 3, we recall the concept of m—solution thus laying the ground for our main tool, the
Forward Inequality 4.2. This inequality serves to apply It6’s calculus to irregular Lyapunov functions
in the infinite dimensional situation. It is a generalization of Kolmogorov’s forward equation and
extends also the so-called energy inequality which is related to the Lyapunov function “norm square.”

In Section 4, we reformulate the conditions of Section 2 in terms of “superharmonic functions” of the
process X, cf. 4.4 and 4.5, and of superharmonic functions of the linked process 4.6. As in our earlier
paper [17], we obtain again a unified view of Feller property and attractivity, cf. 4.7 and 4.8. Section 5
considers generally unbounded quadratic forms on H of the type (z, A%z) for some real number « as
Lyapunov functions. Here, we use the completion X of D equipped with the uniform structure induced
by some continuous operator on H.

We conclude our paper by applying the general results of Section 5 to stochastic partial differential
equations. In the cases specified in Theorem 6.5, we obtain sufficient conditions for existence of and
trend to stationary distributions in the usual sense. Qur treatment of the drift term is based on Young’s
inequality, Lemma 6.2, cf. also [18], Lemma 6.3; it enables us to deal with measurable, nonlinear drift
functions f of unlimited growth. To our knowledge, there are only few communications constructing
stationary distributions for equations with highly nonlinear drift terms f not everywhere defined on
H and nonconstant diffusions ¢ such as stochastic reaction-diffusion equations.

The use of Lyapunov functions for analyzing stochastic differential equations was initiated by Khas-
minskii [13] in finite dimensions; it was transferred to infinite dimensions, among others, by Ichikawa
[12], Maslowski [20], and, more recently, by Leha and Ritter [17] and Chow and Khasminskii [3].
The last-mentioned authors couch their theory in a framework more general than ours, including the
stochastic Navier-Stokes equation, but use the norm square as a Lyapunov function. For this reason,
they need nuclear covariance of the noise for having stationary distributions also in the linear case.

Other recent papers on the subject matter are Da Prato and Pardoux [4], Gatarek and Goldys [10],
and Cerrai [2]. Da Prato and Pardoux deal with stochastic partial differential equations on an interval
in the real line. They use a decomposition technique which enables them to deal with polynomially
bounded drift coefficients and a cylindrical diffusion. Gatarek and Goldys use certain conditions on the
solution X and related processes in order to show existence and uniqueness of stationary distributions
for fairly general continuous functions f and o on E. Their result applies in particular to the case of a
stochastic parabolic partial differential equation (2) with H = L2([0,1]), E = C([0, 1]), and continuous
functions F' and G, F lying between two nonincreasing functions and G > 0 bounded away from
zero. Cerrai treats systems of stochastic partial differential equations with polynomially bounded drift



coeflicients and constant correlation operators of the diffusion commuting with A; the diffusion may
be cylindrical in the one-dimensional case.

2 Existence and uniqueness of stationary distributions of semi-
groups on completely regular Radon spaces

Let X = (X, D) be a uniform space, D being a family of semi-metrics on X. For details on uniform
and completely regular spaces we refer the reader to Gillman and Jerison [11], Chapters 3 and 15. We
denote the spaces of all continuous, all bounded continuous, and all bounded, uniformly continuous,
real-valued functions on X by C(X), Cy(X), and C,;(X), respectively. The norm ||g||o of a bounded,
real-valued function g on X is the least upper bound sup,cx | g(u) |. For any d € D, the space of
bounded, uniformly d—continuous functions on X is denoted by Cgb(X). Let D be a Borel measurable,
dense subset of X and let (P)>0 be a semigroup of transition kernels on D.

2.1 Prohorov’s theorem on completely regular Radon spaces We want to resort
to Prohorov’s theorem on X for proving existence of stationary distributions of (P;):; therefore, we
consider “stationary” distributions not only on D but also on the enlarged space X.

(a) The completely regular Hausdorff space X is endowed with its Borel o—field B. A finite Radon
measure y on X is a finite Borel measure which is inner regular with respect to the compact sets of
X, i.e., satisfies p(A) = sup{u(K)/K C A, K compact} < oo for all A € B (cf. Schwartz [23], p.
13). We denote the set of all Radon probability measures on X by Prob(X). The space X is called
a Radon space (cf. Schwartz, loc. cit.) if every finite Borel measure y on X is a Radon measure.
Details on Radon spaces can be found in Gardner [8], Gardner and Pfeffer [9], and Dellacherie and
Meyer [7], Chapter III. Since X is completely regular, the topology of narrow convergence on the
vector space of all finite, signed Radon measures on X is the coarsest topology for which the mappings
u — ulg), g € Cp(X), are continuous (cf. Schwartz, loc. cit., pp. 249 and 371, Dellacherie and Meyer,
loc. cit., p. 71).

(b) A family M C Prob(X) is (uniformly) tight if, for every £ > 0, there exists a compact set
K C X such that u(X \ K) < ¢ for all ug € M. We will use the generalization of Prohorov’s classical
compactness criterion to completely regular spaces based on ideas of Topsge [24], bottom of p.98. It
states that any uniformly tight family of Radon probability measures on a completely regular space
X is narrowly relatively compact (cf. Topsge [25], Cor. 1 (i), p. 203, Topsge [26], Theorem 9.1 (ii),
Schwartz [23], p. 379, and Dellacherie and Meyer [7], p. 72, Theorem 59).

(c) If K is a transition kernel, u a probability measure, and g a function then the probability
measure uK and the function Kg are defined in the usual way.
2.2 Feller property Let F be a system of bounded, continuous, real-valued functions on X.

(a) The system F separates Prob(X) if, for any two different measures u,v € Prob(X), there
exists a function f € F such that [ fdu # [ fdv.

(b) A semigroup (P¢)s>0 of kernels on D operating on the space Cy(D) is usually said to possess
the Feller property. The following is a modification of this notion. We say that the semigroup (P:)s>0
possesses the F-Feller property if F is a separating subspace of C3(X) such that P;F C Fp for all
t > 0. Then, for all g € F, there exists a uniquely defined continuous extension of P;g to all of X
which we denote by T;g (€ F).

If (Pt)t>0 possesses the F-Feller property then (7;); is a semigroup of continuous, linear operators
on F. Indeed, 7; defines a continuous, linear operator F — F, t > 0. Moreover, for g € F, s,t > 0,
and z € D, we have

Ti(Tg)@) = P(Teg)(@) = /D Py(e, dy)Tag(y) = /D Pi(a, dy)Pug(y)
= Porig(x) = Tore9(x).

Since both functions 7;7;9 and Ts4+g are continuous we have equality for # € X and the claim follows.



2.3 Example The following example shows that the operator 7; on F need not be representable
by integration with respect to a kernel on X, not even in the deterministic linear case. Let

X =co={(ar) € RN/lilgna:k =0}
be endowed with the product uniform structure, let
D =R™ = {(z;) € RN/z; = 0 for all but finitely many indices k},

and let A : D — £2(N) be defined by Ay = (y5, In k). Note that D is dense both in X and in RN. Define
(Siz)r, = zikt, k € N, t > 0,z € RN. Then X (¢) = S;z solves the equation dX (t) = AX;dt with initial
value X (0) = z € D. The transition kernel of X is P;(z,-) = §s,,. As a measurable subset of the Polish
space RN, X is a Radon space; moreover, (P;); is a semigroup of transition kernels on D possessing the
F—Feller property with respect to F = Cy3(X). Indeed, the mapping £ — S;z is uniformly continuous
on D and P:g = g o S;. Now choose a € ¢y such that Sia ¢ co. Since Trg(a) = §(Sia), where § is the
unique continuous extension of g to RN, and since F is separating, the linear form g — T;g(a), g € F,
cannot be represented by integration on X.

2.4 Stationary distributions A probability distribution v on D is called stationary with
respect to (Py)s if [Pigdy = [ gdv for all bounded, measurable functions g on D and all ¢. The
following is a generalization of this notion.

Let (P:): possess the F-Feller property and let (7;); be the associated semigroup of operators on
F as defined in 2.2(b). We call v € Prob(X) F-stationary with respect to the semigroup (P;); if, for
allt >0and all g € F,
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F—stationarity of a probability measure on D amounts to its stationarity with respect to (P:):. F—
stationarity of a distribution v on X says that, for all ¢ > 0, the continuous, linear form g — v(T;g), g €
F, is represented by integration with respect to v.

2.5 Notation Let M; be the kernel on D defined by
1 t
M;(z, B) := ;/ Ps(z,B)ds, z€D,B e B(D).
0
If (P;): possesses the F-Feller property then we also define the operators A : F — Cp(X):

t
Niglu) := /0 Tig(w)ds, ueX,geF.

2.6 Existence principle Let (P;); possess the F-Feller property. If there exists u € Prob(D)
such that the family (uM;);>1 is narrowly relatively sequentially compact on X then (P;); has an
F—stationary distribution; in fact, each narrow cluster point v of (uM;); as t — oo is F—stationary.

Proof. Let v € Prob(X) be a cluster point of (uM;)s>1 as t = 00, v = limy,_, o My, for some
sequence (t,), — oo of real numbers > 1. Let ¢ > 0 and g € F. A standard computation shows

tim [ (uMs,)(@)Peg(e) = tim [ (uMe,)(da)g(a).

Since g € Cp(X), the right side equals [y v(du)g(u) and, since Trg € Cy(X), the left side equals
Jx 7(du)Tig(u). This is F-stationarity of +y. O



2.7 Attractivity and trend (a) The semigroup (P;); is said to exhibit trend to the distri-
bution v on X if

(3) wP:— v narrowlyast— oo

for all probability distributions x4 on D. Note that (3) holds if and only if P;(z,) — v narrowly as
t — oo for all z € D.

A related notion is attractivity which we now recall.

(b) A subset A C C3(X) determines convergence if A generates the narrow topology on Prob(X),
i.e., if the narrow topology is the coarsest topology on Prob(X) for which all mappings u — u(g),g € A,
are continuous. Part of the portmanteau theorem in the context of a completely regular Radon space
X shows: the space Cy(X) of all bounded, uniformly continuous, real-valued functions is convergence
determining. This follows, e.g., from Topsge [26], Theorem 8.1, and the fact that finite Radon measures
are 7—smooth. In the case of a metric space X this theorem is also true; cf. Billingsley [1], p. 12.
Obviously, any convergence-determining system is separating.

(c) Let A be a subspace of C(X). We call the semigroup (P;); A-attractive if
(i) A determines convergence;

(i) Pig(y) — Pig(z) = 0 ast — oo for all g € A and all z,y € D;

(iii) the family (Ptg)s>1 is uniformly equicontinuous on D for all g € A.

2.8 Trend principle Let (P;); possess the A-Feller property. If (P;); is A-attractive and pos-
sesses an A-stationary distribution  then we have trend to 7.

Proof. Let 4 € Prob(D) and let g € A. By 2.7(ii),(iii) and denseness of D C X, we have T;g(v) —
Tig{u) — 0 as t — oo for all g € A and all u,v € X. Hence,

tliglo/gd(uPt) —/gd’y:tliglo{/ﬁgdﬂ—/ﬁgd’Y}
= [ ® uldudv) Jim (Tig(v) - Tig(w) = 0
X xX —o0

by Lebesgue’s theorem on bounded convergence. Since A is convergence determining the claim follows.
O

2.9 Attractivity in the mean (a) Let AM be a subspace of C;(X). We call the semigroup
P:): AM-attractive in the mean if

(i) AM separates Prob(X);
(if) Myg(y) — Meg{z) > 0 ast — oo for all g € AM and all z,y € D;
(iii) the family (M;g)¢>1 is uniformly equicontinuous on D for all g € AM.

Note that A-attractivity implies A-attractivity in the mean. The latter is sufficient for uniqueness:

2.10 Uniqueness Principle Let (P;); possess the AM-Feller property. If (P;); is AM-
attractive in the mean then there exists at most one AM-stationary distribution.

Proof. By 2.9(ii),(iii) and denseness of D in X, we have M;g(v) — Nig(u) — 0 as t — co for all g €
AM and all u,v € X. Let 4 and v be two AM-stationary distributions. The proof is now carried out
with the aid of separation of AM as in 2.8 with A} instead of T;. O

Our general objective is to give Lyapunov-type conditions for existence and uniqueness of stationary
distributions and for trend to equilibrium. In view of the three principles formulated above it is sufficient
to concentrate on relative compactness of (uM;):, the Feller property, attractivity, and attractivity in
the mean.



2.11 The Condition (T) The following is a general condition of Lyapunov’s type ensuring
tightness of the family (uM;); of distributions.

(T) There exists a probability measure x4 on D and a lower bounded, measurable function : D - R
such that

(i) {n < r} C D is relatively compact in X for all real numbers r > 0;

(i) [n(y)(uM;)(dy) < cfor allt > 1 and some c € R.
D

In many cases, it is possible to choose Dirac measures for the measure u; in Section 4.4, we will
indicate how to find functions 5 with the desired properties in the case of diffusion processes on a
Hilbert space H.

Interestingly, Feller property, attractivity, and attractivity in the mean allow a unified approach by
means of Lyapunov functions on the product space D x D equipped with the product structures, i.e.,
the product topology and the corresponding Borel structure. We need a few preliminaries.

2.12 Notation In the sequel, P; will denote any kernel on D x D such that

(i) P:i((z,y), B x D) = P;(z, B) and Py((z,y), D x B) = P;(y, B) for all measurable subsets B C D
and all z,y € D.

Examples are the tensor product P:((x,y),") = Pi(e,") ® Pi(y,-) and the linked semigroup
which we will use extensively in the Hilbert-space context, cf. 4.6. We also write M((z,y),-) =

%fg Ps((z,y), )ds for t >0 and z,y € D.
2.13 The Conditions (F), (A), and (AM)

(F) There exists a metric d € D and some p > 0 such that
(i) PidP(z,y) < c(t)dP(z,y) for some function c: Ry — R, allt >0, and all z,y € D,
(ii) C4,(X) separates Prob(X).

(A) There exists a metric d € D and some p > 0 such that
(i) the Condition (F)(i) is satisfied with some bounded function ¢ : Ry — R, vanishing at infinity,

(ii) €4, (X) is convergence determining.

(AM) There exists a metric d € D and some p > 0 such that

(i) the Condition (F)(i) is satisfied with M; instead of P; and some bounded function c: Ry — R
vanishing at infinity,

(ii) C4,(X) separates Prob(X).

If the metric d appearing in these conditions generates the D-Borel structure of X then the Parts (ii)
of the foregoing conditions are satisfied, cf. 2.7(b).

We recall that the lower semi-continuous regularization 7 : X — R of a lower bounded function
7 : D — R is the largest lower semi-continuous function on X dominated by  on D.



2.14 Proposition Let X be a completely regular Radon space.

(a) If Condition (T) (cf. 2.11) is satisfied with ;1 € Prob(D) then the family (u#M;):>1 is sequentially
narrowly relatively compact. Let y be a narrow cluster point of (uM;);>1 as t — co. We have y({fj <
00}) =1, where 4 is the lower semi-continuous regularization of the function 5 appearing in Condition

(T).

(b) Condition (F) implies the C4,(X)-Feller property of (P;); with the metric d appearing in (F).

(c) Condition (A) implies Conditions (F), (AM), and the C¢, (X)-attractivity of (P;); with the
metric d appearing in (A).

(d) If Condition (AM) is satisfied and if (P;); has the C3,(X)-Feller property with the metric d
appearing in (AM) then the semigroup (P;); is C%,(X)-attractive in the mean.

Proof. (a) Choose a lower bound cr of  and let r > 0. Putting o = n —cr and K, := {no < r} it
suffices to use Markov’s inequality and to estimate for ¢t > 1

C—Cr

MK\ ) < kMK K < / o () (M) (du) <

X

The first claim follows from Prohorov’s theorem, cf. 2.1(b). For the second claim note that, by the
portmanteau theorem, [ fdy < liminf [ Ad(uM;) < liminf [ nd(pM;) < c.

(b) Let d and p be as in Condition (F) and let F = C%,(X). Since F is separating by (F)(ii), it
remains to show that P;F C Fp. To this end, let g € F, let £ > 0, and choose § > 0 such that
| g(v) — g(u) |< € whenever dP(u,v) < §. Using 2.12(i) and F(i), we may estimate for z,y € D

P -Pg@ | < [ Pu@dwo) g0 -gw) = [ +

XxX {dr<s}  {d»=6}

4)

IA
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Hence, P;g is uniformly d-continuous on D and may, therefore, be extended to a uniformly d-continuous
function on X, ie., Pig € Fip.

(c) Hypothesis A(i) together with (4) implies 2.7(ii), (iii) and 2.7(i) is just A(ii).

The proof of Part (d) is analogous to that of (c) after we replace P; (P;) with M; (M;). a

Summarizing Proposition 2.14 and the Principles 2.6, 2.8, and 2.10, we obtain the following main
result of this section.

2.15 Theorem Let X be a completely regular Radon space.

(a) Assume the Condition (T) (cf. 2.11) and let (F) (cf. 2.13) be satisfied with some metric d € D.
Then (P;); has a C%,(X)-stationary distribution v satisfying v({i < co}) = 1, where 7 is the lower
semi-continuous regularization on X of the function 7 appearing in Condition (T). In particular, if
A= oo on X \ D then + is a stationary distribution with respect to (P;);.

(b) Suppose that Condition (A) (cf. 2.13) is satisfied with some metric d € D and that (P);
possesses a C%, (X)-stationary distribution . Then we have trend to v; i.e., we have yP; —  narrowly
as t — oo for all probability distributions g on D. In particular, there exists exactly one Cﬁb(X)—
stationary distribution.

(c) If Condition (AM) (cf. 2.13) is satisfied with some metric d € D and if (P;)¢ has the C2, (X)-
Feller property then there exists at most one CZ,(X)-stationary distribution.

Condition (T) is also necessary for the existence of a stationary distribution carried by D: Given
such a stationary distribution «y one can construct, due to inner regularity of 7, a function 7 as required
in Condition (T) by choosing a suitable sequence of compact subsets of the Radon space X.



3 Ito diffusions on Hilbert spaces

3.1 Notation From now on, H denotes a real Hilbert space and E a measurable subset of H.
Often E carries the structure of a separable Banach space with a norm finer than that of the Hilbert
space. Then measurability of E is guaranteed by a theorem of Lusin’s, cf. Schwartz [23], p. 101, Theorem
5. We denote the inner product and the norm of H by (-,-) and || - ||, respectively, and the domain of
any linear operator B in H by D(B). The symbol ¢r stands for the trace of a linear operator and A
denotes Lebesgue measure on R,. We consider a formal stochastic differential equation of the form

).

3.2 Concepts of solutions We first recall some concepts of solutions to the differential equa-
tion (1). We suppose that a solution X = (X (£))o<t<co With initial point 2 € E enjoys the following
basic properties:

(i) X is adapted to the filtration (A¢)¢>0 on (2, A, P) induced by the Wiener
process W;

(ii) X(¢,w) € E for A ® P-a.a. (t,w) €e Ry x Q.

Concerning the treatment of the singular drift coefficients A and f and the diffusion coefficient
o there exist several approaches. Among them are mild solutions, cf. Da Prato and Zabczyk [5], pp.
152, 182, generalized solutions, cf. Da Prato and Zabczyk [6], p.81, and w-solutions [18] which we next
recall. We abbreviate

Aly) = o(y)Qo* (), y € E.

3.2.1 Mild solutions Let (S(t)):>0 be the Cy-semigroup generated by —A. A process X is called
a mild solution of (1) if it satisfies (i), (ii) and if the following hold:

(iii) P-a.s., we have
¢
[ 18- 97X (s)lds <oo, 20,
0
(iv) o(X) is predictable and, P-a.s.,

¢
/ 1St — 8)A(X (s))S(t — 8)ds < 00, 3 0;
0
(v) the variation-of-constants formula

t t
X(t)=8@)= +/0 S(t—s)f(X(s))ds + /0 S(t — s)o(X(s))dW (s)

is satisfied for all ¢ > 0.

3.2.2 Generalized solutions A generalized solution to Eq. (1) is an H—valued process X such that
there exists a sequence (X,,),, of mild solutions to Eq. (1) converging in norm to X locally uniformly
on [0, co[. Of course, any mild solution is a generalized solution.

3.2.3 m-solutions In the Forward Inequality 4.2 we will need yet another concept of solution, the
m-solution introduced in [18]. This concept is useful for dealing with It6’s calculus in the presence of
an unbounded operator A. Let (7;)xen be a sequence of symmetric Hilbert-Schmidt operators on H
such that

e the sequence (7)) converges to the identity operator I in the strong operator topology,



o the operators Amy are bounded and self-adjoint and extend the operators 7y A.
It follows that the sequence of vectors Am,y converges to Ay for y € D(A) as k — oo. Examples for

7, are the operators kRy(—A), where Ry(—A) = (kI + A)~! is the k-resolvent operator of —A, and
the operators 1o z(A4). We abbreviate for y € E

(6)  br(y) = —Ampy + 71 f(y),

(6) Ar(y) = mo(y)Qo™(y)ms.

The operator A (y) is nuclear. A process X = (X (£))o<t<oo is a w-solution to the stochastic differential
equation (1) if it satisfies (i), (ii) and if the following hold:

(vi) P-a.s., we have for all k € N
t
/ Imf(X(s))ds < co, &> 0;
0

(vii) the £(K, H)-valued mappings t — mpo(X(¢)), k € N, are locally Itd integrable on [0, oo with
respect to W; i.e., mpo(X) is predictable and, P-a.s.,

¢
/ trAR(X(s))ds < oo, t>0;
0
(viii) for all ¥ € N and ¢t > 0, the equality

t t
X (1) = mpx +/ {—Amp X (s) + 7, f(X(s))}ds + / mro (X (s))dW (s)
0 0
is satisfied.

In Leha et al. [18], Proposition 3.6, the following connection between mild and w-solutions is proved.

3.3 Proposition Let X be a P-a.s. locally Bochner integrable mild solution to Eq. (1) satisfying
P-a.s.

t
1) / 17(X (5)) ds < oo,
t

(8) / trA(X(s))ds < oo

0
for all t > 0. Then X is also a w-solution to (1).

There are several results on existence and uniqueness of mild solutions to stochastic differential
equations of the form (1), cf. Da Prato and Zabczyk [5], Theorem 7.10, Da Prato and Zabczyk [6], and
Peszat [21], and the literature cited there. These are mainly based on dissipativity of the drift term
and a Banach-space topology on E.

4 Lyapunov conditions for Ito diffusions

Let E C H, A, f, 0, and 7, be as defined in the introduction and in Section 3.2.3. For each z € E,
let X = X* = (X®(t))t>0 be an H-continuous m-solution 3.2.3 to (1) starting from z with infinite
lifetime, e.g. a mild solution 3.2.1 satisfying the assumptions of Proposition 3.3.



4.1 Notation (a) We denote the space of all twice continuously (Fréchet-) differentiable real-
valued functions on H by C2(H). For any U € C2(H), U’ and U" stand for the first and second Fréchet
derivatives of U. If U € C2(H), y € H, and if B € L(H) then tr U”(y)(B-,-) is the trace of the bilinear
form (u,v) — U"(y)(Bu,v), u,v € H, if it exists. C2(H) denotes the space of functions U € C?(H)
such that U" is uniformly continuous on bounded sets.

(b) For U € C?*(H), k € N, and y € E, we put

©)  LOVE) = U (mxy)bu(y) + 5tr0" (i) (Asw)),

where b, and Ay, are defined in (5) and (6), respectively. In order to control the growth of the diffusion
process X in terms of a Lyapunov function U we have repeatedly used some kind of forward inequality;
cf. Leha and Ritter [15], [16], [17], Leha, Ritter and Wakolbinger [18], Lemma 4.2, and Leha, Maslowski,
and Ritter [14], Section 2. It is applicable to nonquadratic and even irregular Lyapunov functions. The
following version of the forward inequality is adapted from [14], Section 2, for our present needs.

4.2 The Forward Inequality Let V,, € C2(H), V,, > 0, be a sequence of (Lyapunov) functions
such that V := lim,V,, is lower semi-continuous (with respect to the norm topology on H) and let
z € E. Suppose that

(i) V(z) < oo;

(ii) for all n, there exists a P-a.s. locally-integrable random function
©n : Ry — [0, 00] such that, A ® P-a.s.,

sup Vy, (mx X ) (= Anp X) < on;
k

(iii) there exists a constant C' > 0 such that, for all n and all y € E,
Valy) <C1+V(y) and ImpL®Va(y) < O(1L+Valy))-

Then, we have
t
EV(X(t) <V(z) + E / T, e LBV, (X (s))ds, ¢ > 0,
0

Proof. Invoking [14], Theorem 2.7, it is sufficient to provide a P-a.s. locally-integrable random function
&n : Ry — [0, 00] such that, A ® P-a.s., we have

(10) sgpﬁ(k)Vn(X) < B
Indeed, from (9), we infer
LOV(X) < VimeX)(=AmX) + Vo (mX) e 1 £CO
45 IV (0 X) P e Pt o (X) Q0 (X)

and an estimate of the form (10) follows from (ii) and the properties of V,, and those of X, =, f, o,
and @ stipulated in 3.2.3. 0O

4.3 Explanation We now specify the semigroup (P:);>0 appearing in Section 2 as the semigroup
associated with a mild solution to Eq. (1) on D = E or the semigroup associated with a generalized
solution 3.2.2 on a measurable subset D C H containing E. The advantage of using generalized
solutions and the extended semigroup is that F—stationary distributions are stationary more often. In
Da Prato and Zabczyk [6], Section 5.5.3, there appears a theorem guaranteeing an extension to all of
H. We endow D with a uniform structure assuming that

e the measurable structures on D induced by this uniformity and by H are equal and

e the completion X of D is a Radon space.

An example is given in Remark 5.1(a).
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4.4 The Condition (7)) We next deal with a condition sufficient for (T), see 2.11, in the
present situation; cf. Leha and Ritter [17]. In the special case of a constant sequence (V,,), cf. also
Ichikawa [12], Proposition 4.1 and Corollary 4.3.

(To) There exists a sequence (V;,)nen of nonnegative functions V,, € C2(H) and an initial point z € E
for X such that

(i) V :=lim V, is lower semi-continuous and V (z) < oo;

(ii) for all n, there exists a P-a.s. locally Lebesgue-integrable random function ¢,, : Ry — [0, o0]
such that, A ® P-a.s.,

sup Vy, (mx X ) (= Anp X) < on;
k

(iii) there exists a constant C' > 0 such that, for all n and all y € E, we have
Va(y) <C1+V(y)) and TmLPV,(y) < C(1+ Va(y))

(iv) lim,, lim, £(®V,, is bounded above on E;

(v) with

~lim, im; LPV,(y), y€E
n(y) :==
00, y € D\E,

the subset {n < r} C E is relatively compact in X for all » > 0.

4.5 Proposition Condition (Tp) implies Condition (7). More precisely:
If x € E, 9, and c are as in (Tp) then (T') is satisfied with y = §,, the Dirac measure at the point z.

Proof. By definition, # is bounded below and, since E is measurable in D, it is also measurable.
Condition (T)(i) is just (Tp)(v). Positivity of V and the Forward Inequality 4.2 first imply

t
0<EV(X(t)) <V(z)+ E/ lim,, lim, £L®V,, (X (s))ds, t>0.
0

Since uM; is supported by E we have, for ¢t > 1,

[ ntwumedy) =~ [ T e L9V, (1) Moo, dy)
D E
t
= —%E/ lim,, lim, £®)V,, (X (s))ds
0
< Vi(z);
together with (Tp)(i) this implies (T)(ii). a

In order to formulate Lyapunov conditions for (F) and (A) in terms of the coeflicients of X we
follow [17] using the linked diffusion. Recall that the superscript # denotes the starting point of the
process X .

4.6 The linked diffusion X The linked diffusion X = X®¥ defined by
Xov(t) = (X°(t), X¥(t)), @,y €E,t>0,

is an It6 diffusion in E X E satisfying the initial value problem

dX(t) = (“AX()+ F(X®))dt +5(X(t)dW(t), ¢>0,
X(©0) = (z,y)€ExE.
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Here, A is the self-adjoint operator in H x H defined by A(u,v) = (Au, Av), u,v € D(4), f:ExXE —
HxH is defined by f(u,v) = (f(u), f(v)),and ¢ : ExE — L(K, HxH) by 5(u,v)(k) = (o(u)k,o(v)k).
If X is a generalized solution with initial values in D, see Section 4.3, then X is defined for initial values
in DxD and the associated linked semigroup P; satisfies the requirements of Section 2.12. The sequence
7, defined in 3.2.3 gives rise to the approximation of identity associated with A, 7, : HxH — Hx H,
7 (u,v) = (mpu,mpv). Let U € C2(H) and k¥ € N. The counterpart of the operator £(*) defined
in Eq. (9) in the present situation of the linked diffusion, applied to the function U € C2(H x H),

U(u,v) := U(v — u), is the operator £((ik) defined by
£PU(z,y)

U (7 (@,9)) [~ A7k (,y) + T fl@,9)] + tr %ff”(ﬁk(az, V) (75 (2,4)Q5" (2, y) 7w, )

= U'(m(y — @) [-Am(y — z) + me(f(y) — f(2)] + %tr U" (me(y — 2))(Ax (2, ), ),

z,y € E, where Ay (z,y) = (o (y) — o(2))Q(c* (y) — o* (z))7ws. Of course, Ay = 0 if o is constant.

We next formulate sufficient conditions for (F) and (A) (cf. 2.13) in terms of drift and diffusion of
the process, more precisely of the linked differential operators ﬁ((zk).

4.7 The Conditions (F;) and (4,)

(Fy) There exists a metric d € D, a function U € C2(H), and a real number p > 0 such that
Uy — z) = dP(z,y) for all z,y € D with the following properties:

(i) there exists a P-a.s. locally integrable random function ¢ : [0, co[— [0, 00] such that, for all
z,y € E, we have A ® P-a.s.

SI;pU' (mp (XY — X®)) (—Amp (XY — X®)) < o

(ii) there exists a constant ¢ € R such that
Hkﬁ((ik) U(u,v) <cU(v—u), u,veE;
(iii) C4,(X) separates Prob(X).

(Ao) Condition (Fy) with ¢ < 0 in (ii) and convergence determination instead of separation in (iii).

4.8 Proposition The Conditions (Fy) and (4g) imply Conditions (F) and (A), respectively, with
the same metric d and c(t) = e, t > 0.

Proof. Let z,y € E, t > 0. The Forward Inequality 4.2 admits a straightforward generalization
to the case where V,, and V depend also on time ¢. An application of this generalized version to the
process X = X*¥ and the functions V,,(t,z,y) = V(¢,z,y) := e U(y — z) instead of X and V,, yields

EV(t,X(t) <V(0,z,y) + E/Ot m, £V (s, X (s))ds
with LBV (s,2,y) = e~ (—cU(y —-z)+ ﬁ((ik)U(a:,y)) and the constant ¢ appearing in (Fp)(ii). In-
deed, 4.2(ii) and 4.2(iii) are just Conditions (Fp)(i) and (Fp)(ii), respectively; cf. also 4.6. Now, again
by Condition (Fp)(ii), lim; £ ¥V (s, X (s)) < 0 and, hence,
(11) e P U(z,y) < U(z,y), =,y € E.
It follows from the definition of a generalized solution and from Fatou’s lemma that this estimate is

even true for z,y € D; it implies (F)(i) with c(t) = e°*. Condition (F)(ii) is just (Fp)(iii). If ¢ < 0 then
(11) plainly implies (A)(i). This proves the claim. a

Theorem 2.15 and Propositions 4.5 and 4.8 combine to show the following general result for It6
diffusions.

12



4.9 Theorem (a) If Conditions (Tp) and (Fp) (cf. 4.4 and 4.7) are satisfied then (P;); has the
C4,(X)-Feller property and possesses a C4,(X)-stationary distribution y on X with the metric d ap-
pearing in (Fp). We have v({#j < co}) = 1, where 7} is the lower semi-continuous regularization of the
function n appearing in (Tp). If # = co on X \ D then + is a stationary distribution with respect to

(Pe)s-

(b) Suppose that Condition (Ag) (cf. 4.7) is satisfied and let d be the metric appearing in (Fp). If
(P:): possesses a 3, (X)-stationary distribution v then there is trend to v; i.e., uP; — v narrowly on
X as t — oo for all probability distributions ¢ on D. In particular, v is unique.

5 Stationary distributions of It6 diffusions — existence, unique-
ness, and trend

Let the set-up be as in Sections 3 and 4.3 and recall the definition of CZ,(X) in Section 2. In this and
the following section, the Hilbert-Schmidt operators 7 are chosen as spectral theoretic functions of A4,
7r = hi(4), hy: Ry — Ry such that kg 71 as & — oo and rhy(r) is bounded for r > 0. We denote

R® = R, (—A%) = (n] + A*)™!
the resolvent operator of — A% and
A® = A*nR{) = Ry/p(—A™%)

the Yosida approximation of A%, a € R. We also define the norm ||By|| of a positive, self-adjoint
operator B at a point y ¢ D(B) as oo. Note also that, given another positive, self-adjoint operator T,
the trace trBT := ", ||V BvTcy||? (ck an orthonormal basis of H) is always defined as an element in
[0, 00].

We now illustrate how a uniform structure on D and Lyapunov functions V,, and U adapted to X
and satisfying the requirements stated in Conditions (T5), (Fp), and (Ag) may be chosen. In view of
(Fb), the uniform structure is chosen in accordance with U. A crucial point is the proper choice of
V., and U related to the parameters of the given differential equation. We restrict matters to positive
quadratic forms V,, and U and assume from here on 0 € E.

5.1 Construction of X, U, and V,, (a) Any positive-definite operator S € £(H) induces
the quadratic form U(y) = (y, Sy), y € H, and the S—metric d on D defined by d(y,z) = ||z — y|ls =
v/ (z—y,8(2 —y)). Let X be the completion of D with respect to d. We call the extension of d to
X the S—metric on X. This metric being separable, X is a completely regular Radon space, cf. [17],
Section 2.5. The Borel structures of X and (H, || -||) coincide on D (cf. again [17], Section 2.5), i.e.,
the assumptions stated in 4.3 are satisfied. Note that v/ induces an isometry &g : X - $sX C H
and we have Cy,(X) = C¢,(X). Moreover, any uniformly d-continuous, bounded function on D has a
unique extension to a function in C%, (X).

Conversely, let X be a subset of some Hilbert space L with inner product (-,-)r. and assume that
the linear structures on D induced by H and L are equal. Put Dg := (D), the linear hull of D in H
endowed with the inner product of H and let J : Dy — L be the natural embedding. Suppose that J
is continuous and let J* : L — H be its adjoint operator. Choose a positive-definite, linear operator
S € L(H) such that S|, = J*J. Fory, 2 € D, we have ||z —y||s = ||z — y[|. and we are in the situation
of the previous paragraph. If D is total in H then, of course, S is uniquely determined.

(b) We choose the functions V,, required in (Tp) as quadratic forms V,,(y) = i(y,Bny), y € H,
where (B,,), is an increasing sequence of positive, self-adjoint operators in £(H).

5.2 Remarks (a) Let us compute the operators £(*) and £((ik) appearing in (Tp), (Fo), and
(Ao) in the special case where the functions U in (Fp) and (4g) and V,, in (Tp) are quadratic forms
W (y) = +(y, By) with positive, self-adjoint operators B € L(H). For z,y € E, we have W' (m,y) Ampy =
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(Bﬂ-ky7 Aﬂ-ky)7

(12)  LOW() = (Briy,~Amy +mf()) + 50r Brio(y)Qo" )m, and
(13) LPW(y,2) = (Bm(z —y), —Ami(z —y) + m(f(2) - F®)))
+§tr Bri(a(2) — 0())Q(0* (2) — o™ ()7

If o is constant then the last summand on the right side of (13) vanishes.

(b) Parts of the Conditions (Fp), (Ag), and (Ty) are automatically satisfied in the situation of Section
5.1: From the choice of X and U it follows that Parts (iii) in (Fp) and (Ap) are satisfied. Moreover, the
definition of V,, implies Condition (T5)(i) with z = 0, (T5)(ii) with ¢,, = 0, and also the first inequality
in (Tp)(iii). According to (Top), (Fp), and (Ao), we need to take superior limits in ﬁ((ik)U and L®)V,
with respect to k and n. In passing to the superior limits of the terms on the right sides of (12) and
(13) we have to exclude the situation —ooc + oc. This is the reason for the subdivisions appearing in
5.3(i) (for limg) and 5.4(a) (for lim,,).

5.3 Proposition Let S € £(H) be positive definite, let X be constructed with the aid of the
S-metric as described in 5.1(a), let @ € R, and let 6 : D — R be a lower bounded, measurable function.

(a) Suppose that

(i) there exists a constant C' > 0 such that, for all n € N, we have

— I/ A Ay|2 + (AP, F () + Ltr AP0(1)Qo* (y) < C(1+ (APy, y)),
ye END(A
trA%a)a(y)Qa*(y) < 00, ye E\D(4

l—a

(i) T, (—u AL Ay)2 + (ALY, f(g)) + Lir A,(:‘)a(y)cza*(y)) < —6(y)

l—a™

foralye END(A = );

(iii) the set {# < r} C D is relatively compact in X for all r > 0;

(iv) for all z,y € E, there exists a P-a.s. locally—integrable random function ¢ : [0, co[— [0, 0c] such
that, A ® P-a.s., we have

sup(Smp (XY — X*), —Amp (XY — X*)) < o5
k

(v) there exists a constant ¢ € R such that, for all z,y € E, we have

limy, (S73,(y — @), —Ami(y — ) + (S(y — 2), f(y) — (2))
1
+5trS(o(y) — o(2)Q(0"(y) — o%(2))
< oSy —=)y — 7).
Then (P;); has the Cy;(X)-Feller property and possesses a C,,(X)-stationary distribution v on X. We

have v({# < co}) = 1, where § is the lower semi-continuous regularization of § on X. If § = 0o on
X \ D then # is a stationary distribution with respect to (Py):.

(b) Suppose that (v) is satisfied with ¢ < 0. If there exists a Cy;(X)—stationary distribution 7 then
there is trend to ~.
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Proof. In view of applying Theorem 4.9 we first verify (Tp) with V,,(y) = (A%a)y, y), y € H, and

z = 0. Conditions (Tp)(i),(ii) and the first part of (Tp)(iii) follow from p051t1v1ty of A as noted in
5.2(b). In order to prove the second part of (Tp)(iii), note first that we have for all y € H

o plte

L uy(dt) = -/ A Ay
ta+n“y( y=-ll yll®

(14) T (AL AmglP) = T [ 2 h ot = - [

where 1, denotes the spectral measure associated with the operator A and y. (By definition, the last

line is —oc0 if y & D(\/ A%a)A). Since there exists a number 8(a,n, &) > 0 such that
- Ito -
Bla,n,e) 179 < —— <7 t>e>0,
t*+n
it follows from uniform positivity of A that the domain of definition D(4/ A%a)A) equals D(
all n. Hence,

=5—) for

=),
for all n by (i) and (14). If y e EN D(A ) then the second part of (To)(m) follows again from (i)

and (14). Thus, we have the second half of (Tp)(iii). For y € E\ D(A ), (To)(iv) follows from (15)
and for y € END(A*5) this is (ii).

(15) TimLPV,(y) = —o0, y € E\D(

We show next (Tp)(v). f y e EN D(A >—) then, according to (ii),
n(y) = ~Tim,, Timg LV, (y) > 6(y).
If y € E\ D(A*5 ) then, by (15),
n(y) = ~lim,limg L*V, (y) = oo.

Hence, n > 6 and {y € D/n(y) <r} C {y € D/6(y) < r}; therefore, (iii) implies Condition (Tp)(v).

The Condition (Fp) with the S—metric d on X and p = 2 follows from (iv) and (v) and from 2.7(b).
Now, Theorem 4.9(a) guarantees the existence of a C,;(X)—stationary distribution v on X satisfying

({7 <oo}) = 1.
Finally, > 6 implies # > § and {fj < 00} C {# < co}. This proves Part (a).
Part (b) is a direct consequence of Theorem 4.9(b). a

5.4 Remarks (a) If im, ((Ag“)y, F@) + Ltr Ag“)a(y)Qa*(y)) < oo for all y € D(A*5) then

the left hand side of 5.3(ii) is —oo for y ¢ D(A *$*) and it is sufficient to require 5.3(ii) for y €
END(A™%") instead of END(A™5).

(b) If S is chosen such that SA is positive then Condition 5.3(iv) is satisfied with ¢ = 0 since the
range of 7, is contained in D(A) by the choice of hjy at the beginning of this section.

5.5 Corollary Let S € £L(H) be positive definite and let o € R.
(a) Suppose that

(i) 5.3(i) and 5.3(v) are satisfied;

1ta 1ta

JUR— < A7z y|? eENDA =
(i) T (A, 1)) + Str AP0 ()Qo" () 4 =T Tl = vl veBNDA R ),
< 00, yeENDA =2 ),

for some cr € R, ¢; < 1;
(iii) D(A~"%*) = H and the operator T := v/SA~ %" is compact on H;
(iv) (Sy,Ay) 20, ye€D(A).
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Let X be constructed with the aid of the S-metric as described in 5.1(a). Then (P;): has the Cp(X)-
Feller property and possesses a Cy;(X)—stationary distribution v with respect to (P;); on X. Moreover,
7 is supported by ’D(AH'X ). If ’D(AHTQ) C D then v is a stationary distribution.

(b) If, in addition, 5.3(v) is satisfied with ¢ < 0 then there is trend to =.
Proof. Let us first verify the Conditions of Proposition 5.3 with

6(y) = —er + (1-c) [AF Y|, yeD.
Condition 5.3(iv) with ¢ = 0 follows from (iv) as noted in 5.4(b). For y € EN D(A *), the left side
of 5.3(ii) may be estimated
1 *
LA P+ i (47,16 + 50 AT 0(0)Q0" )

1t lte
—IIA="yl* +er +allA= y?
1+¢x
er = (1—a)llA= y|?
= —6(y)

by (ii). Together with 5.4(a), this proves 5.3(ii).

In view of 5.3(iii), we have for r > —cp

r+cr

{(<r}=Dn{yeDAFT)/ AT y|? < }CDmA—*B . D,

where B is the ball of radius 1/(r + c7)/(1 — c1) in H. By isometry and (iii), D is a totally bounded
subset of D and, hence, relatively compact in X; this is 5.3(iii).

It remains to show that the set {9 < 00} is contained in D(A “). Since S and A are injective so

is T'. Moreover, the range of T' is dense in H since S is positive definite and A s densely defined.
Hence, T* and TT* are both injective. Now, we have ((TT*)~ 1/2) (TT*)™Y2 = (T—1)*(T~1); hence

(16) D((TT*)7/?) =D(T"!)  and

17 NTTH V2l =T yll, yeDT™),
cf., e.g., Weidmann [27], Satz 5.40. Let us show
(18) Ayl = [(TT*)7/2VSyll, yeH,

where the right side is infinite if v/Sy ¢ D((TT*)~/?). Indeed, for y € D(A ") we have TA 3y =
V8y, i.e., VSy € R(T) = D(T~1), and (16) and (17) imply

I(TT*)~/2VSy = |IT7VSy|| = |4 y|.

For y ¢ D(A™5"), we have /Sy ¢ R(T) = D(T~') = D((TT*)~/2) by (16). Hence, both sides of (18)
are infinite in this case.

By positivity of TT*, the function z — ||(TT*)~%/22|| is lower semi-continuous on H. Therefore,
by isometry, the functlon z = |(TT*)"/2®sz| is lower semi-continuous on X and (18) implies
6(z) > —cr + (1 — ) |(TT*)~2/2®gz||? for all z € X. Consequently, if z € X is such that (z) < oo
then

Bgz €D ((TT*)—1/2) =D (T!) = R(T),

ie., ®sx = /Sy for some y € R(A ) Therefore, z =y € ’D(A ). The Claims (a) and (b) now
follow from Proposition 5.3. O
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5.6 The linear case Zabczyk [28], see also Da Prato and Zabczyk [5], Theorem 11.7, gave a
complete answer to the question of existence of stationary distributions in the linear case, i.e., if f =0
and o = identity. He considered a not necessarily positive operator A, generator of a Cy-semigroup
S(t), and showed that a stationary distribution of (1) exists if and only if ¢r f0°° St)QS(t)ds < oo.
This is equivalent to the condition

(19) sup tr R1(—A4)Q < oo.

Let us show that, in the linear case, Corollary 5.5 is sharp in the present set-up, i.e., if A is uniformly
positive, self-adjoint, and not necessarily bounded and if @ is not necessarily nuclear, cf. also [17], 2.25.
To this end, let E=D = H, o = —1, and let S be any compact, self-adjoint, positive-definite operator
on H commuting with A such that SA is continuous and positive. Such an operator always exists since
A > 0. Note that AS™) = R, /n(—A). The Condition 5.5(ii) is equivalent to (19) and implies 5.3(i).
Condition 5.5(iii) is just compactness of S.

Plainly, all conditions of Corollary 5.5(a) are satisfied and we have ’D(AHTQ) = H = E. It follows
that (P;); has a stationary distribution v on H. Moreover, if the spectrum of A is bounded away from
0 then 5.5(b) shows that there is trend to equilibrium.

6 Stationary distributions of nonlinear stochastic partial differ-
ential equations

In this section we show that the foregoing material is applicable to stochastic partial differential
equations, in particular, to reaction-diffusion processes.

6.1 Notation Let us consider a formal stochastic partial differential equation

d
@) Geo=3 o

,j=1

( (s)a%u(t, 5)) u(t,€) + F(u(t,£)) + Clult, ))n(t, ©),

(t,€) € Ry x O. Here O C R? is a bounded domain with a smooth boundary, 5 stands for a Gaussian
noise correlated in space and white in time, F' : R — R is measurable and locally bounded, G: R -+ R
is Lipschitz-continuous, the second-order differential operator on the right side is uniformly-elliptic,

and a;; € C*(0), 4,5 =1,2,...d, aj; = aj;. We consider Equation (20) with initial condition
(21) 6(0,-) = ug € L*(0)

and boundary conditions of Dirichlet type, i.e.,

(22) w(t,€) =0, (¢, € Ry x00.

The formal system (20), (21), and (22) can be given a precise meaning in the sense of Equation (1). To
this end, we assume that 7 gives rise to a Wiener process W (t) with covariance operator @ on a Hilbert
space K continuously embedded in L°°(0©) by means of a continuous, linear mapping J : K — L*(0);
moreover, we specify H = L2(0), E = C(0), and

(23) A = the closed extension of — L to D(4) = Hy(O) N H*(0),

f(y)(g) = F(y({)), £€0, yekE,

[e(W)h(€) == Gy(§))Jh(§), £€0,yecE, heK.

It follows from (23) that A : D(A) — H is a self-adjoint and uniformly positive operator. Since F' is
locally bounded, f maps E into H and we have

24) 7w <My, y€E.
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Moreover, since G is Lipschitzian,
lo(y)hllz= = / IG(y ©FPde < C(lyll® + DIJIPIRIK, vy €E, heK,

and hence

trA(y) tro(y)Qo* (y) < lo()Qo* W)l < Qo)1

(25) SIIPIRIMYI* +1),  yeE.

IA

Let (X (£));>o0 be a mild solution to Equation (1). If ¢ — X (¢) is P-a.s. locally bounded in C(O)
then (24) and (25) imply that both Assumptions (7) and (8) of Proposition 3.3 are satisfied. This
proposition now shows that X is also a m-solution. Concerning the existence of such mild solutions we
refer the reader to the literature, e.g., Da Prato and Zabczyk [5], Theorem 7.10 and Example 7.11.

Our aim is to derive from Corollary 5.5 a theorem on stationary distributions of mild solutions for
fairly general functions F' and G. In order to control the nonlinear drift part we first state two lemmas
which are adapted from Leha et al. [18], Lemma 6.3 and Remark 6.5. The first one is more general
than we actually need here.

6.2 Lemma (dissipativity) Let (M, B, u) be a measure space, let K be a submarkovian kernel
on M such that uK < u, and let H : R — R be a function vanishing at zero.

(a) If H is strictly increasing then, for all bounded, measurable functions y on M, we have

/ w(de) |H (y(€))| Klyl(€) < / w(de) H (y(€)w ().
M M

(b) If 4 is finite then the same is true if H is (not necessarily strictly) increasing.

Proof. (a) Let ®(u) = ;' H(r)dr and ¥(v) = f H~'(s)ds, where H™" is the inverse function with
respect to composmon Using Young s 1nequa11ty and the propertles of K we first estimate

[ wae ([ Kt antm) 16|

/ u(dg) / K (& dn)@(ly(m)]) + T(H@©))]
M M

/ u(dn)@ (Jy(m)]) + / W(de) T (H (y(©)))

M M

(26) = /M u(de) [2(y(©)]) + THGE))].

IA

IA

It is well known that ®(a) + ¥(H(a)) = aH (a) for a > 0 (cf. the equality case in Young’s inequality).
Hence, (26) equals [, u(d€)|y(€)||H (y(€))| which, by positivity of uH (u), yields Claim (a).

(b) If H is only increasing then H + ¢ id is strictly increasing and we obtain the claim from (a) by
letting ¢ — 0 since u is finite here. a

6.3 Lemma Let H: R — R be an increasing function vanishing at zero, let n € N, and assume
that nRﬁLa) induces a kernel K on O which satisfies the assumptions of Lemma 6.2 with M = O and
Lebesgue measure y on O. Then, for all bounded, measurable functions y : O — R, we have

(A®y Hoy)p> > 0.

Proof. The claim follows from the identity Al = n(l — nRﬁLa)) and Lemma 6.2(b).
Our next lemma deals with the diffusion term.
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6.4 Lemma (a) If G: R — R is Lipschitz continuous with constant L > 0 then we have for all
n € N and all y € L2(0)

(A5G 0y, G oy)'/? < LAy, y)'/* +1G(0)|]1 4?1
(b) If g,h € L*°(O) then
(A5 (gh), gh)'* < llglloo (AL Ry h)72 + IRl (ALY g, 9) /2.

Proof. (a) The function T := (G — G(0))/L is a normal contraction in the sense of Ma and Rockner
[19]. Hence, the identity Al = n(l — nR%a)) and Formula (4.10) in Ma and Réckner [19], Chapter I,
imply

(AT 0y, Toy)/? = (n(I = nRNT 0y, T oy)/? < (n(I — nR{ )y, y)/? = (AP y, y)/2.

Positivity of Al now permits to estimate

(AYGoy,Goy)'? = (AP (LT oy+G(0)),LT oy + G(0))"/?
< LA®T oy, Toy)? + (AG(0),G(0))/?
< L(APy,y)'? +1G0)|| A1)

(b) Let u := gh, let u1 = ||g||ooh, and let uz = ||h||ocg. Then, for all z,y € O,
lu(z) — u(¥)] < |ua(z) —ur(y)] + |uz(z) —ua(y)] and  |u(z)| < |ur(@)] + fuz(2)].

Observing again Al = n(l — nRﬁLa)), we obtain the claim from Ma and Réckner [19], Chapter I,
Formula (4.13). a

A function s on O is called A-excessive if s > 0, s € D(A), and As > 0.

6.5 Theorem Let notation be as specified in Section 6.1, let s be a bounded, strictly positive,
A-excessive function, and let o > 0. Suppose that

(i) F is of the form
F(ry=»b-r— H(r),
where b is a constant and H : R — R is an increasing function vanishing at the origin;
(ii) G is bounded and Lipschitzian with Lipschitz constant L;

(iii) («) for eventually all n, the operators nR'® induce submarkovian kernels K,

on O such that uK, < u, where u is Lebesgue measure on O, cf. Remark
6.6(a);

(8) trA*JQJ* < oo, where J is the embedding K — L®(0) considered as a
mapping J : K — L2(0);

() there exists an orthonormal basis (v;) of K such that

C := 3, IIVQuill%, < oo
(6) b+ L2C < )\, where ) is the greatest lower bound of the spectrum of A.

Suppose that Eq. (1) possesses a P-a.s. locally bounded mild solution for all initial values in C ((_9)
Let (P;); be the transition semigroup on D, C(O) C D C L2(0), associated with some generalized
solution, and let X be the metric space L2(0, s). Then we have:

(a) (P:): has the Cyp(X)-Feller property and X has a C,;(X)-stationary distribution v in L2(0);
v is supported by D(AHTQ). Moreover, there is trend to v with respect to the narrow topology on
Prob(X).
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(b) If D(AHTQ) C D then « is a stationary distribution of (P;); in the usual sense.

(c) If & > [d/2] then ~ is supported by C(O).

Proof. Let E = C(O) and let S be the operator multiplication by s on H = L2(0©). Plainly, the
space X is the metric space associated with D and S specified in 5.1(a). Let us verify the assumptions
of Corollary 5.5.

In order to verify 5.3(i) we let n € N and y € E and estimate first, using Lemma 6.3 and (i),
27) (AP, f(y)) = (A y,by) — (AMy, H o y) < b(AMy, y).
Next, we have by Lemma 6.4(b) and (a) for y € H and h € K

(AP o (y)h, o(y)h)"/?
(AL (G oy Jh),G oy Jh)/?
(

< (APGoy,Goy) /2| Jhlle + (A TR, JR)?||G oyl
< (L(A,%*)y,y)l/z + |G(0>|||Aa/21||) [ TR ]loo + (A Th, JTB)2||G 0 yl|oo-

Applying this estimate with h = 1/Qu;, where (v;) is as in (iii)(3), we have

%"A%“)o(y)@o*(y)
= S0V WAL WV
= 23 (AP0w)v/Qu,o()v/Qw)
1

08) < (LAY + 1O 14°10) Y 17V ull
l
+1G 0 g2, S (AL TV Qui, v/ Qu)

1
< 2(12(Ay,y) + GOPIA1])) Y17V Qul + IG 0 yltr A QT
1

= or +2CL*(APy,y)

with e = 2C G(0)2]|A%/21||2 + ||G||2, sup,, trA'® JQJ* < oo by (iii)(a),(B). Estimates (27) and (28)
combine to show

(20) (APy, f@W)) + %tr AP a(y)Qo*(y) < er + (b + CL*) (AP y,y)

for y € E. Hence, 5.3(i) follows. Moreover, (29) implies for y € E

I 1 "
limy, | (A5y, f(v)) + 5tr Ao (y)Qo" ()
< er+ (b+CLY)lim(AWy,y)
= cr+ (b4 CL?)||A%2y|2.

Now, ||A%/2y||2 < ;—0||A(1+“)/2y||2 for all y € H; thus, we have 5.5(ii) with ¢; = (b + CL?) /X < 1.

Since L is uniformly elliptic and O is bounded and smooth, A~ is compact, i.e., 5.5(iii) is satisfied,
cf. Renardy and Rogers [22], Lemma 8.20. Since s is A-excessive we also have 5.5(iv).

Finally,
(S(y — ), f(y) — f(2)) =bllVs(y — 2)|I” = (s(y — @), H oy — H o) < b|V/s(y — 2)||*
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since H is increasing; moreover, we have

S trS(o(y) — o(2)Qo" W) ~ 0° (=) = 5 try/Q(o(w) — 0(a) S(o(y) ~ o(2)) V@
- —Zuf DVl =53 [ sOCW(O) - Ca(e)? Iy Qu) d

< Bivat -0l D vanrle < Zolvay - o).
1

Hence, 5.3(v) is satisfied with ¢ := b+ L;C — X0 (< 0). This concludes the proof of Part (a) and
proves also Part (b).

(c)If1+a >[d/2] +1 then D (AHTQ) C Hy1,4(0) C C(O) by Sobolev’s lemma. Hence, Part (c)
follows. 0

6.6 Remarks (a) Assumption (iii)(a) of the previous theorem is satisfied, e.g., in the following
three cases

- a=0,

- a=1,

— 0<a<land A=-A.
Information on the last two cases can be found, e.g., in Ma and Réckner [19], Chapter II. In particular,
the property uK, < u follows from symmetry of R,,.

(b) In Section 5.6, we pointed out that the quadratic Lyapunov function y — (y, A~ly) yields
a necessary and sufficient condition for the existence of a stationary distribution in the linear case.
Unfortunately, Conditions 5.3(i),(ii) and 5.5(ii) are often not satisfied with (the Yosida approximation
(y,A%_l)y) of) this function and it cannot be used together with the present methods to obtain sta-

tionary distributions for equations with nonlinear drift coefficients. The reason is that nRS™ cannot

be represented by a kernel and, therefore, Lemma 6.3 fails to be applicable with @« = —1. In fact,
(A7'y,H oy) isnot >0 in general.

As an example, let O =]0,1[, let H(r) =%, and let A = —d?/dz® so that A~y fo n)dn

with g({, n) =&(1—n), f £ <n, and g(£,n) = (1 — £)n, otherwise. Define o, = 261 T 35% - 46%_”,

0<r< 2, and let y, ; = kl[_i L]*Or. We have y, 1, — oy andy ke = 851 +275% —645%+T

weakly as k£ — oco. Hence

Jim (A~ Yk Yo k)

k—o00

- /0 /0 9(&, ) (dE) s (dn)

= [ e - nor(de)m(dn) + /E (1= €y (de)rean)

£<n

_ 12 1_ 1.1 1o
= 272(; — %) ~160(; —7)* ~ 234- 5 - (5 —7) +81(3)

= 11m// (& myrx( Z/Tk( )dédn

— —41/4 asr —0.

Therefore, there exists r > 0 and k¥ € N such that (A~ y,. 1, yf,k) < 0. It is now plain that Conditions
5.3(i),(ii) and 5.5(ii) are not satisfied in this situation.
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