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ABSTRACT

We study global and local stabilities of the stationary zero solution to certain infinite-dimensional
stochastic differential equations. The stabilities are in terms of fractional powers of the linear part of
the drift. The abstract results are applied to semilinear stochastic partial differential equations with
non-Lipschitzian drift terms and, in particular, to some specific models of population dynamics. We also
expose the stabilizing effect of noise on the otherwise unstable zero solution.

As a basic tool we use the Forward Inequality, a generalization of Kolmogorov’s forward equation; it
is an appliation of Lyapunov’s second method with a sequence of Lyapunov functionals.
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INTRODUCTION

The classical simple “logistic” model of population growth introduced by Verhulst (1836) has
been modified or improved by numerous authors in various directions. One way is to add a
“geographical structure” to the model and to consider a certain “migration in space” of the
population, which basically leads to a parabolic partial differential equation (or a parabolic
system, see for instance the monographs Smoller [33], Grindrod [9] or Murray [26] and the
references there). Another way is to include random fluctuations and inaccuracies by adding
a stochastic perturbation term, in which way a stochastic differential equation is obtained.
The basic stochastic logistic model with bilinear noise term has been introduced by May [25]
and a detailed analysis of the long-time behavior has been carried out, e.g., by Feldman and
Roughgarden [6], Turelli [36], or Gard [8]; cf. also the monograph by Roughgarden [29] and the
references there.

It is natural to consider both modifications in one model; this leads, however, to semilinear
stochastic partial differential equations with non-Lipschitzian drift terms and solutions which
can explode for initial values outside the cone of nonnegative functions. For such equations,
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results on existence and uniqueness of solutions have been proved in various settings in Viot [37]
or Kotelenez [14], Manthey and Stiewe [21], Manthey and Zausinger [22]. In these works also
suitable comparison techniques have been developed.

In the present paper (long-range) global and local stabilities of general infinite-dimensional
stochastic differential equations are studied. These cover some stochastic PDE’s arising in popu-
lation dynamics as special cases. In the Lipschitzian case, such or similar stabilities for stochas-
tic semilinear equations have been investigated, e.g., by Ichikawa [10], [11], Taniguchi [34], or
Maslowski, Seidler, and Vrko¢ [23], [24] in the semigroup framework, or by Chow [2], Khas’'minskii
and Mandrekar [13], Mandrekar [20], or Caraballo and Real [1] in the variational context.

The novelty of the present paper is twofold: First of all, we consider a non-Lipschitzian case,
the solutions being defined only on a certain subset of the basic state space. This enables us
to handle stochastic PDE’s like those considered in Examples 4.14 and 4.17 — 4.19, where the
nonlinear term in the drift is not always globally Lipschitzian and the solutions exist only for
nonnegative functions as initial values. Secondly, we deal with stability in subspaces X of H
endowed with separable norms stronger than that of the basic Hilbert space H (which, in appli-
cations, is usually a space of square-integrable functions). This enables us to draw conclusions
on local stability of stationary solutions to stochastic PDE’s from local behavior of their coef-
ficients. This is not possible in general with Lo-norms because the local behavior of a function
F : R — R does not determine the local behavior of the mapping y — F oy, y € La, in the
Ly-norm.

Our basic tool is a version of Lyapunov’s method; cf. Khas'minskii [12] in the finite-
dimensional case. However, typical Lyapunov functions are not smooth and are only densely
defined on the basic Hilbert space. Moreover, the drift term which appears in the Lyapunov
operator is densely defined, only. To overcome these difficulties Leha and Ritter [16], [17] and
Leha, Ritter, and Wakolbinger [18] developed a Forward Inequality. It is a generalization of Kol-
mogorov’s Forward Equation for a sequence of Lyapunov functionals rather than one functional
alone. In this paper, we employ a more general, localized, version of the Forward Inequality
and prove general stability statements in terms of explicit characteristics of the coeflicients of
the equation. Note that the method described above can also be used in order to establish the
required regularity of solutions in some cases; cf. [18] and Remark 3.4(b) of the present paper.

The main body of the paper is divided into four Sections. In Section 1, the abstract equation
and the basic example, a stochastic parabolic partial differential equation, are introduced. We
recall some basic facts about stochastic parabolic partial differential equations and introduce
the concept of X-stability as the Lyapunov stability in probability or the exponential stability
in the norm of the space X. Section 2 is of independent interest and devoted to two versions of
the Forward Inequality, cf. [16], [17], [18], for nonsmooth functionals defined on a subset of the
basic Hilbert space. Section 3 contains general Lyapunov-type theorems for various X-stabilities
formulated in terms of sequences of Lyapunov functionals (Theorems 3.1 — 3.3).

In Section 4, X is the domain of a fractional power of the linear drift part of the equation
equipped with its graph norm. In our basic example, X is equivalent to a Sobolev-Slobodeckii
space, cf. Kufner, John, and Fuéik [15], Section 8.3. Proposition 4.1 is a reformulation of The-
orems 3.1 — 3.3 in this case. Corollaries and more explicit sufficient conditions for stability
follow. The nonlinear part of the drift is considered to be either Lipschitzian (Proposition 4.11)
or dissipative in a certain sense (Proposition 4.12). If the Wiener process in the equation is
just one-dimensional then sharper sufficient conditions for stability can be found: Proposition
4.15 and Remark 4.16 show that “sufficiently large” noise can stabilize the zero solution of the
equation. At the end of the section, we present three examples: A stochastic parabolic equation
with a general noise sufficiently regular in space (Example 4.14) and with scalar noise (Example



4.18). In the latter example we investigate again the stabilizing effect of noise. Example 4.19 is
an application of the previous one to a model of population dynamics.

Notation. Let (H, (-,-)) and (K, (-,-)) be real, separable Hilbert spaces with norms || - || and
| - |lx, respectively. The symbols £ and L, denote the spaces of linear, bounded and Hilbert-
Schmidt operators between the spaces indicated and S* denotes the adjoint of an operator S
in £ or L. The domain of an operator A defined in H is denoted by D(A). The restriction
of a function g on a subset B of its domain is denoted by g;5. The symbols ot and o~ stand
for the positive and negative parts of a real number «, respectively. The symbols lim and lim
denote the lower and upper limits, respectively. For any normed space X and r > 0 we let
Bx(r) ={y € X; |lyllx < r}, the centered ball in X of radius r.

1 PRELIMINARIES

1.1 The Stochastic Initial Value Problem

Consider the initial-value problem

. dX(8) + AX(£)dt = £(t, X(2))dt + o(t, X(£)dW (2),
() { X(0) = ,

in H. Here, A is a linear, self-adjoint operator in H such that — A generates an analytic semigroup
S(-) on H. Furthermore, W (t) stands for a Wiener process with positive, nuclear incremental
covariance operator @ on K defined on a filtered probability space (2, F,{F:}, P). Let Ko =
QY?K, |lyllk, = |Q *?y|lx, where Q~'/? is the pseudo-inverse of Q/2. We assume that there
exists a measurable subset E C H such that the mappings f : Ry XE +Hando: Ry XE —
L2(Ko,H) are measurable (note that £L(K,H) C £2(Kg, H)). Moreover, we assume that, for
every x € E, Equation (1) has a unique, H-continuous, mild solution with infinite lifetime, that
18, an E-valued, H-continuous, (F;)-adapted process X (t) = X*(t),t > 0, satisfying P-a.s. for
allt >0

t
(2) /0 170, X ()l dr < oo,
t
®) [ o Xy dr <o, and

t t
@) X(t) =Stz + /0 S(t = r)f(r, X (r))dr + /0 S(t = r)o(r, X (r)) dW (r).

The latter integral is a stochastic It integral in H (cf. Da Prato and Zabczyk [3] for details).
The mild solutions (X®),cg of Equation (1) are assumed to define a Markov semigroup on
E in the usual way. Furthermore, we assume that there exists an zyg € D(A) N E such that
Azxg = f(t,zo) = 0, o(t,zg) = 0 for ¢ > 0; thus X(¢) = x¢ is a stationary solution to (1). For
simplicity we take g = 0. A simple class of functions f and o satisfying the assumptions (2)
and (3) with E = H are the Lipschitzian ones. However, in our basic example of a stochastic
reaction-diffusion equation described below, the drift coefficient f is not Lipschitzian on H.

1.2 Example

Consider a formal stochastic partial differential equation

(3) 88—1:(75,5)ZLU(t,§)+F(t,U(t,§))+G(t,U(t,§))n(t,§), (t,€) eRy <O,



where @ C R? is a bounded domain with a smooth boundary, 7 stands formally for a noise
correlated in space and white in time, F : R xR, —+ R and G : R, X R, — R are continuous,
real-valued functions, and

.9
(6) Lu(t,§) = Z 8_ (aij(€ u(t,§))

8
85]
is a second-order, uniformly-elliptic operator, a;; € C*(0),4,j = 1,2,...d, a;j = aj;. Further-
more, assume F(t,0) = G(t,0) = 0,t € Ry, and
(7) |G(t,u1)—G(t,uz)| Skg|’u,1—’u,2|, t€R+, U1, U2 €R+,

(8) |F(t,u1)—F(t,uz)| Sk:p,N|u1—uz|, t€R+, Ui, ’U,QER_|_,|’U,1|+|U2| SN, NEN,
(9) |F@u)| <k(1l+u”), ¢t u>0, for somewv >1,
(10) F(t,u) <k(l4wu), t,u>0
for some constants kg > 0, kpn >0, k, >0, and £ > 0.
We consider Equation (5) with initial condition
(11) U(O, ) =1Ug € L2(O)
and boundary conditions either of Dirichlet’s type, i.e.,
(12) U(t,f) =0, (t,f) € R+ X aoa
or of Neumann’s type, i.e.,

(13) %‘L(t,é) ~0, (4,€)€R, x 90;

here % stands for the conormal derivative. The formal system (5), (11), and (12) or (13) is
given a precise mathematical meaning in the sense of Equation (1) if we specify

(14) H = Ly(0), E = {p € L2,(0); ¢ > 0} with some v as in (9),
(15) A = the closed extension of — L to D(A) = Hs(O) N H(O)
(in the Dirichlet case) or

(16) A = the closed extension of — L to D(A) = {p € H*(O); 88791(5) =0,£ € 00}

(in the Neumann case), and

(17) f@9)(€) = F(t,y()), ¢ €Ry x 0O,y €k,

(18) [o(t,y)hl(§) := G(t,y(E)R(E), () €Ry x O, yeE, heK;

here, K is a Hilbert space continuously embedded into H = Ls(Q). Since the covariance operator
Q of the Wiener process W (t) is assumed to be a self-adjoint, positive, nuclear operator on K
there exists an orthonormal basis (1) of K such that

(19) QYn = antPn, n €N,



where a;, > 0, > ap, < 0o. We shall assume that each 1, is in Lo (O) and
(20) sup ||[9nllz.. ) < oo-
n

From (7) and (20) it easily follows that o : R X E — L£2(Kg, H). Note that the Conditions (19)
and (20) are obviously satisfied if K is continuously embedded into L (O). Also note that the
behavior of F(¢t,u) and G(¢,u) for u < 0 is not controlled by Conditions (7) — (10). However,
since F(t,0) = G(¢,0) = 0 it can be shown by comparison techniques that Equation (1) with
coefficients defined as above has a unique solution evolving in the cone of nonnegative functions
provided that the initial point is also nonnegative, cf. Manthey and Zausinger [22], Kotelenez
[14]. More precisely, there is the following proposition which is essentially due to Manthey and
Zausinger [22].

1.3 Proposition

Let H E A, f, and o be as defined by (14), (15) or (16), (17), and (18), respectively. Let K C
Ly(O) and let W(t) be a K-valued Wiener process with a trace-class covariance operator Q
satisfying (19) and (20). Let F and G satisfy Conditions (7) — (10) and let F(t,0) = G(¢,0) =0
for allt > 0. Then, for each © € E, Equation (1) has a unique solution X in E starting from x.
This solution is a Markov process satisfying

(21)  sup E|IX(r)Z,, < oo
re 10,T]

for all T > 0, where v is as in (9).

Proof. See [22], Theorem 3.4.1 for the proof of existence of solutions. Nonmnegativity of
solutions is obtained from the construction of this proof together with the hypotheses present
here. Uniqueness (which follows from local Lipschitzianity of the coefficients) and the Markov
property can be shown in the standard way; cf. also [14] for a similar proof of existence and
uniqueness of solutions. O

Note that the growth condition (9) is true for any ¢/ > v and the relative state space E' C E,
cf. (14); in particular, if the process is started in E' then (21) is valid with ¢/ instead of v.

1.4 Example

A nonlinearity F' to which Proposition 1.3 applies is
(22) F(t,u) = F(u) = au — cu®, u >0,

where ¢ > 0 and ¢ > 0 are constants. The corresponding stochastic differential equation is
a model of stochastic population dynamics of logistic type with geographical structure and
migration.

1.5 The Concept of Stability

We review next several concepts of stability of the zero solution to Equation (1). They corre-
spond to their classical finite-dimensional counterparts as introduced, e.g., in Khas’minskii [12];
however, in order to cover some important examples, we need a smaller state space X with a
norm stronger than that of H, c¢f. Examples 4.14, 4.17, 4.18, and 4.19.



Let (X, || - ||x) be a separable Banach space, continuously and densely embedded in H. By a
theorem of Lusin’s, cf. Schwartz [30], p. 101, Theorem 5, X is a (Borel-)measurable subset of H.
In the following definitions we restrict ourselves to the initial time ¢ = 0 and the trivial solution
XO(t) = 0. We first need an assumption that relates the processes X* to the space X.

(A1) For every z € XNE, we have P-a.s. X?(t) € XNE for all ¢ > 0 and X7 is right-continuous
in the norm of X.

1.5.1 Definition

The trivial solution X°(¢) = 0 of Equation (1) is said to be

(i) X-stable in probability if, for every € > 0, there exists a § > 0 such that for all z €
XNE,|z||x <4, we have

Plsup [ X*()lx <¢] > 1—¢;
>0
(ii) asymptotically X-stable in probability if (i) holds and if, for every & > 0, there exists a
do > 0 such that for all z € X NE, ||z||x < do, we have

e o
Pllim | X*(6)]x = 0] > 1—¢;

(iii) globally asymptotically X-stable in probability if (i) holds and if
. w o
Pllim [ X*(t)x = 0] = 1
forallz €« XNE.

Besides these “pathwise” stabilities of the trivial solution there are various stabilities in the
mean. We restrict ourselves to recalling ezponential stability in the mean.

1.5.2 Definition

Let p > 0 be fixed. The solution X°(t) = 0 of Equation (1) ist said to be ezponentially X-stable
in the pth mean (for p = 2 in the mean square) if there exist constants K > 0 and ¢ > 0 such
that

BlX* @)% < Kllzlke™, t=0

holds for all z € XN E.

1.6 The Operators 7

For technical reasons we need, besides mild solutions, another concept of solution already in-
troduced in Leha, Ritter, and Wakolbinger [18]: m-solutions. It turns out that, in the cases
considered here, the two concepts are equivalent. Let 7, € L(H), k € N, be such that

(a) the sequence () converges to the identity operator on H in the strong operator topology
on L(H) as k — o0,



(8) Rangemy C D(A) and Ay is bounded and extends 7; A for all .
From (3) it follows that
(v) 7St = Symy, for all k € N and ¢ > 0.

A standard choice is m;y = kRy(—A) = k(kI + A)~1, the Yosida approximation of the identity
operator associated with A. It follows from (a) and (3) that the sequence of vectors (Amy)s
converges to Ay for every y € D(A).

The proof of the following proposition is as in [18], Proposition 3.6, where the coefficients f
and o do not depend on time.

1.7 Proposition

Let x € E. Any mild solution X = X of Equation (1) is a w-solution of Equation (1) in the
sense that it satisfies the system of stochastic differential equations

t t
(23) mX(t) :ﬂkx+/0 {—AﬂkX(s)+7rkf(s,X(s))}ds+/0 mro(s, X (s))dW(s)

forallk e N and t > 0.

1.8 Notation

Let G C R, x H be open such that (s, mxy) € G for all (s,y) € G and all k € N.

(a) The space of all functions U : G — R, continuously differentiable in the first coordinate and
twice continuously (Fréchet) differentiable in the second coordinate, will be denoted by C1'?(G).

If U € CY*(@) and if B € L(H) is nuclear then tr%zTg(s,y)(B-, -) is the trace of the bilinear

form (u,v) —> ?Tg(s,y)(Bu,v), (s,y) € G, u,v € H. Ci”*(G) stands for the space of functions

U € C%(G) such that ?;T’{ is uniformly continuous on bounded, closed subsets of G.

(b) The sequence of differential operators £*) associated with the system of equations (23) de-
fined next plays a key role in the sequel. The idea of using a sequence rather than a single differen-
tial operator goes back to [18] where it appears in the autonomous case. For U € C1?(G), k € N,
and (s,y) € GN (R4 x E) let

oU oU
cPU(s,y) = S (8 Tky) + a—y(s, my) (— Ay + 7 £ (5,Y))

1, 0%U . «
+ 5 t’r’a—y2(8, 7Tky) (7Tk0'(5a y)QU (8, y)ﬂ-k'a )

2 FORWARD INEQUALITIES

The material in this section is more general than actually needed in the sequel. Let G' be
a subset of R. x H, and let G C G’ be open in Ry x H. Let v, € C(G'), v, > 0, be a
sequence of (Lyapunov) functions such that v, ¢ € Cy*(G) for all n and define v = lim,,v,. We
assume throughout that the function v is lower semicontinuous on G’. For v > 0 and z € E,



let X = (X®2)(t));>, be an H-continuous, E-valued 7-solution to Equation 1(1) starting from
(u, x), cf. Proposition 1.7, i.e.,

¢ ¢
meX () = mpx + / {—Amp, X (s) + 7 f(s,X(s))}ds + / mro(s, X(s))dW (s),

for all £ € N and all ¢ > u. Fixing first « > 0, let 7 > u be a bounded stopping time and suppose
that (u,z) € G', (s,X(s)) € G for u < s < 7, and (7, X (7)) € G', P-a.s.. We denote the exit
time of (¢, X (t)) from G (after u) by 7¢. Note that X(0%) = X2,

Let us note that, in our Forward Inequalities below, the process X need not be defined
outside the stochastic interval [u, 7].

2.1 Lemma

Let U € C(G') be lower bounded such that Ug € Cy*(G). Suppose that

(i) there exists a P-a.s. locally Lebesgue integrable, random function g : [u, 7[— [0, 00] such
that, P-a.s. for u < s < 7, we have

sup LBU (s, X (5)) < wo(s);
k
(i) there exists a measurable function ¢ : [u,T] X Q@ — [0,00] such that Ef: p(s)ds < 0o and
such that P-a.s. for all u < s < T we have

limg LBV (s, X (5)) < @(s).
Then we have
BU(F X(7)) < Ulu, ) +E/ Ty, L9V (s, X (5))ds.

Proof. Let (n,,) be an ascending sequence of stopping times such that u < 7, < 7¢ and
sup Nm = 7¢ (the sequence (7,,) “announces” 7¢) and let

t

Tm = inf{t > u;/

u

oUu -
vo(s)ds > m or ||@(t,X(t))||H >m} AT Ay

Since X (t) € G for u < t < 7y, the same arguments as in the proof of [18], Lemma 4.2, show
the estimate

(1) BU(rm, X(1m)) < Ulu,z) + B / ™ g LOU (s, X (5))ds.

(In [18], the coefficients do not depend explicitly on time and G = H.) Due to local integrability
of ¢ and pathwise continuity of X 7,, converges to ¥ as m — oo. An application of Fatou’s
lemma to both sides of (1) yields the assertion. O

2.2 Forward Inequality, Elementary Version

(a) Suppose that



(i) for all n, there exists a P-a.s. locally Lebesque integrable, random function
©n : [u, F[— [0, 0] such that, P-a.s. for u < s < T, we have

sup L® vy, (s, X (5)) < ¢n(s);
k
(i) there exists a P-a.s. locally Lebesgue integrable, random function ¢ : [u,7[— [0, 00] such
that, P-a.s. for all n and all u < s < 7, we have

limy, E(k)vn(s, X(s)) < p(s);

(#ii) there exists a random function ¢ : [u, 7] — [0,00] such that Ef: Y(s)ds < oo and such
that we have P-a.s. for allu <s < 7T

Tim, Timy, £F) v (s, X (5)) < 9(s).
If v(u,z) < 0o then we have
Bu(7, X(7)) < v(u,z) + E/i Tim,, limy, £L® vy, (s, X (s))ds.
u
(b) If (i) and (ii) are satisfied and if (iii) is strengthened to
(111)) P-a.s. we have for allu < s <7
Timy, limy, £F) v, (s, X (s)) < 0

then we have Ev(T, X (T)) < v(u, z).
Proof. (a) Let
t
Tm := inf{t > u;/ p(s)ds >m} AT, meN.

u

Using (i) and applying Lemma 2.1 with U = v,, and 7 = 7,,, we first obtain for all m and n
Tm
(2)  Evn(Tm, X(1m)) < va(u,z) + E / iy, £F) v, (s, X (s))ds.
U

Since v, > 0 and v = lim,v,,, and since v(u, z) < oo, we infer from (2)
Ev(tm, X(Tm)) < lim, Bvy(Tm, X(Tm))

Tm
(3) < v(u,z) +Tomy B / Ty, £Bu, (s, X (5))ds.
U
By (ii) and the definition of 7,,, we may interchange lim,, and integration in (3) to obtain
Tm -
(4)  Bo(rm, X(1m)) < v(u,7) + B / Tivm, iy, £F v (s, X (s))ds.
U

Since ¢ is locally integrable 7, increases to 7. Lower semi-continuity of v and (iii) finally enable
passage to the limit in (4); hence Part (a).

If v(u,x) = oo nothing has to be shown in Part (b). Otherwise, (b) is a direct consequence
of (a). O



2.3 Remark

Condition 2.2(i) is not critical in the cases of the Lyapunov functions v, that we will use, cf.
the proof of Proposition 4.1. If the function ¢ in 2.2(ii) is globally integrable on the stochastic
interval [u, 7] then 2.2(iii) follows from 2.2(ii) with ¥ = ¢.

2.4 Corollary

Let (0,z) € G' and suppose that X = X©2) is Markovian. Let T be a (not necessarily bounded)
stopping time. Assume that

(i) for all n, there exists a P-a.s. locally Lebesque integrable, random function
¢n ¢ [0, 7[— [0,00] such that, P-a.s. for 0 < s < T, we have

sup L® v, (s, X (5)) < pn(s);
k

(i) there exists a P-a.s. locally Lebesque integrable, random function ¢ : [0,7[— [0,00] such
that, P-a.s. for all n and all 0 < s < 7, we have

limy, E(k)vn(s, X(s)) < p(s);

(111)) P-a.s. we have for all0 < s < T
Tim,, limy, £LF v, (s, X (s)) <0
(a) If T satisfies P-a.s. (t,X(t)) € G for all0 < t < 7 and (1, X(7)) € G' on {r < oo} then
v(EAT,X(EAT)), t >0, is a supermartingale > 0.
(b) Suppose that Conditions (i), (ii), (1) are satisfied up to T A 7¢ and that

(iv) X(t) is P-a.s. constant for t > 1g;
(v) v(t,y) is independent of t for (t,y) ¢ G.

If we have (t A7q, X(1 AN7g)) € G' P-a.s. on {T AN7g < oo} then v(t A7, X(t AT)) is a super-
martingale.

Proof. (a) Letting ¢t > u > 0 and writing ¥ = (¢ A 7) V u we have by the Markov property
Bt A7, X(t AT)ly,00)(T) | Fl
= Eo(7, X(7)jy,00)(7 ) | fu]
= Ef(7, X(7)) | fu]luoo (7)
() = Bl X @) xw Yool (7).
From Part (b) of the elementary version of the Forward Inequality we obtain next
6)  Elo(7, X (F)]jmxw) < v(u, X (u)).
Now, for 0 < u < t, we have by (5) and (6)
Ev(tAr,X(EAT)) | Ful
Elot A1, X(¢ A7) ju,e0)(T) | Ful + B[t AT, X (¢ AT)) 1[0, (T) | Ful

(U, X (u))1)y,00] (7) + v(7, X (7)) 110, (T)
V(U AT, X(uAT) 00 (T) +v(u AT, X(uAT)) L (T)
vlu AT, X(uAT)).

IA



This is claim (a).

(b) The conditions imply that the processes v(t AT A7, X(EATATg)) and v(E AT, X(EAT))
are indistinguishable, i.e., P-a.s. pathwise equal. An application of Part (a) with 7 = 7 A 7¢
shows that v(t AT A7g, X(t AT ATg)) is a supermartingale. Hence, Part (b) follows. m

We next formulate an advanced version of the Forward Inequality in which the functions v,
and v take over the role of ¢; the main tool in order to obtain this version is Gronwall’s lemma.

2.5 Lemma
Let U be a function as in Lemma 2.1 such that
(i) 2.1(i) is satisfied and
(ii) there exists a constant C such that P-a.s., for allu < s < 7,

Timg LM U (s, X (5)) < C(1 +U(s, X(s)))-

Then, for allt > u, EUGAF, X(tAT)) < (U(u,z) + Ct)e’?
Proof. Let

t
(7)1 = influ <t < %;/ U(s, X (s))ds > m} A7,

u

a bounded stopping time for all m € N. Let us abbreviate
w(t) =UQEATm, X(EATR)), t>u.

By (i), (ii), and (7), we may use Lemma 2.1 with 7, instead of ¥ to obtain finiteness of Ew(y,).
We now estimate

t
/ Ew(s)ds < E/ (s, X(s ds+E[/ (Tmy X (Tm ) )ds, T, < t]
< E/ ))ds + tEw(my,) < oo,

i.e., Ew is locally integrable on [u, co[. Invoking again Lemma 2.1, this time with ¢ A 7, instead
of 7, we next use (ii) to estimate for t > u

tATm
Bot) < Ulw,z)+E / Ty, LU (s, X (5))ds
< Ulwa)+ CE/MTm(l + U(s, X(s))ds
< U(uz)+Ct)+C / " Bu(s)ds.

An application of Gronwall’s lemma to the locally integrable function Fw now yields
(8) EBU@EA T, X(t A1) < (U(u, z) + Ct)e?

a bound independent of m. From H-continuity of X and continuity of U we infer 7,,, 1 7 and
letting m — oo in (8) we obtain the claim from Fatou’s lemma since U and X are continuous.O



2.6 Proposition
Suppose that

(i) the sequence (vy,) satisfies 2.2(i) and
(ii) there exists a constant C such that P-a.s., for alln and all u < s < T,

T, £F (s, X (5)) < C(1 + va(s, X(5))).

Then, for all t > u, we have

tAT
E/ v(s, X(s))ds < g(z,t),

where g(x,t) = (v(u, z) + Ct)eCt is independent of 7.

Proof. If v(u,z) = oo nothing has to be shown. In the opposite case it is sufficient to apply the
preceding lemma with U = v,, and to use Fatou’s lemma. |

2.7 Forward Inequality, Advanced Version

Let D be a measurable subset of G N (R4 x E) and suppose that, P-a.s., (t, X(t)) € D for all
u<t<T.

(a) Suppose that

(i) for all n, there exists a P-a.s. locally Lebesque integrable, random function
©n : [u, F[— [0, 0] such that, P-a.s. for u < s < T, we have

sup L® v, (s, X (5)) < pn(s);
k

(i) there exists a constant C such that, for all n and for all (s,y) € D, we have
n(s,9) < C(1+v(s,9))
and

Hk ['(k)/vn(sa y) < C(]- + /Un(sa y))
If v(u,z) < oo then
(o) for all t > u we have
tAT
B[ s, X(5)ds < g(a,1),
where g(x,t) = (v(u, ) + Ct)e®? is independent of 7;
(B)  Bo(7X(7) < v(u,2) + B [ Tl £¥v,(s, X ())ds.

(b) If (i) and (ii) are fulfilled and if



(i) for all (s,y) € D
TimyJimy £Fvn (s, y) < 0
then we have Ev(T, X (T)) < v(u, z).
Proof. (a) We verify the conditions of the elementary version of the Forward Inequality 2.2.

Condition 2.2(i) is just (i). Since Condition 2.6(ii) follows from (ii) we obtain Part (o) from 2.6.
Conditions 2.2(ii), (iii) now follow from (ii) if we put ¢¥/(s) = ¢(s) = C(1+v(s, X(s)),u < s < 7.0

The next corollary follows in the same way from the advanced version of the Forward Inequal-
ity 2.7 as Corollary 2.4 followed from its elementary version. One has to put D = DN ([0, ¢] X E).

2.8 Corollary

Let D C GN (R, x E) be measurable, let (0,z) € G', and suppose that X = X %) s Markovian.
Let 7 be a (not necessaryly bounded) stopping time. Assume that

(i) for all n, there exists a P-a.s. locally Lebesque integrable, random function
©n ¢ [0, 7[— [0, 00] such that, P-a.s. for u < s < 7, we have

sup LEuy, (s, X (5)) < pn(s);
k

(i) for allt > 0 there exists Cy such that, for all n and all (s,y) € DN ([0,¢] x E), we have
/Un(say) < Ct(]' +U(5ay)) and
lim L®vn (s, ) < Ce(1+ vn(s,9));

(1) for all (s,y) € D,

(a) If T satisfies P-a.s. (t,X(t)) € D for all0 <t < 7 and (1,X(7)) € G' on {7 < oo} then
v(EAT,X(EAT)), t >0, is a supermartingale > 0.

(b) Suppose that Conditions (i), (i), (¥i) are satisfied up to 7 A 7¢ and that
(iv) X(t) is P-a.s. constant for t > 1g;
(v) v(t,y) is independent of t for (t,y) ¢ G.

If we have P-a.s. (t,X(t)) € D for all0 <t <1A7g and (1 A7, X(T AN1g)) € G' on {TA7¢ <
oo} then v(t AT, X(t AT)) is a supermartingale.

2.9 Quadratic Forms

Let Go C H be open and let G = R, x Gy, let S, € L(H) be self-adjoint, and let p > 0. Let
vn(s,y) = (y,Sny)?, (s,y) € GN (R4 x E), a function independent of s. Here we have for all
(s,y) e GNR; x E
E(k)vn(say)
= 2p(Snmiy, Tey)’ " {— (Snmiy, Ampy) + (Snmiy, mef (5, 9))
1 <Ak(5, y)Sany, Snﬂ-ky>
+—trSpAr(s,y) — (1 —
2" Wsy) = (1-p) (SnTry, TrY) J

where Ak(sa y) = 7Tk0'(8, y)QU* (8, y)?‘[‘;



2.10 Remark: Continuous Operator A and Quadratic Forms

In the case A € L{H) we do not need the sequence (7;) as introduced in 1.6. Putting S, = I
for all n (cf. 2.9) we have for all (s,y) € DN (R4 x E)

vn(s,y) = v(y) =yl
Ae(s,y) = Als,y) = a(s,y)Qa" (s, ),
and
LEvy(s,y) = Lo(s,y)
Il ({9, Ay) + (0, F,9) + v Als,9)

1 (Al Y)Y, y)
i

3 GENERAL THEOREMS ON STABILITY

In the present section we formulate some sufficient conditions for the various stabilities defined
in Section 1 by means of sequences of Lyapunov functionals. Note that balls in X are Borel
measurable subsets of H, cf. 1.5. Let G' = R4 x H, G = R, x (H\ {0}) and let 7,k € N, be as
defined in 1.6 and injective. As in Section 2, let v, € C(G'), v, > 0, be a sequence of (Lyapunov)
functions such that v, g € Cy*(G) for all n and define v = lim,v,. We assume again that the
function v is lower semicontinuous on G'. As before, X® stands for the process X (®®) introduced
in Section 2.

3.1 Theorem

Letr >0, let D =R x (Bx(r)NE\ {0}), and assume that, for all x € Bx(r) N E, Conditions
(i) and (ii) of Corollary 2.4(b) or of Corollary 2.8(b) are satisfied for T = 7., the first exit time
of X = X?® from Bx(r) \ {0}. Moreover, assume (A1), cf. 1.5, and

(A2) Ty, £F)v(s,y) < 0
for all (s,y) € D (cf. 2.4(111) and 2.8(111)');

(A8) v(t,0) =0 for all t > 0 and the function v(0,-) is finite on X and || - ||x -continuous at the
origin,;

(A4) b(e) := inf{v(t,y);t > 0,y € Bx(r)\Bx(e)} >0
forall0 < e <r.

Then the trivial solution X°(t) = 0 of Equation 1(1) is X-stable in probability.

Proof. Let t > 0 and let 0 < ¢ < r, x € Bx(e) N E\{0}. From H-continuity of X* and B(H)-
measurability of Bx(e) it follows that the exit time 7. of X* from Bx(e) \ {0} is a stopping
time (cf. Dellacherie and Meyer [4], Theorem 3.44). Thus, we can apply Part (b) of either
Corollary 2.4 or Corollary 2.8 with 7 = 7, to obtain that v(7. A t, X®(7. A t)) is a (nonnegative)
supermartingale. Hence,

(1) EBEv(re AN, X®(re NE)) <w(0,z), t€R,,



for all z € Bx(e) N E since, for = 0, (1) follows from (A3). By right continuity (A1) of X% in
the norm of X and by (A4) we have

{OS<1;I<>t||X””(8)||x > e} C {o(re AL, X5(7: AT)) > b(e)},

and hence, by Chebyshev’s inequality and (1),

v(0, z)
b(e)

(2) P[OS<1:I<>t||X””(8)||x >el <

Letting t — oo we arrive at

v(0, z)
b(e) ’

(3) P[igg [ X% (s)llx >¢e] <

The conclusion now follows from (A3). O

3.2 Theorem

Let all assumptions of Theorem 3.1 be satisfied with (A2) and (A8) strengthened to

(A2) For every 0 < & < r there exists a number a(e) > 0 such that for all
(s,9) € Ry x ((Bx(r) \ Bx(¢)) NE)

TimyJimg £LFvn (s, y) < —a(e);
(A3) v(t,0) =0 for all t > 0 and the function v is finite and || - ||x -continuous on Ry x Bx(r);
moreover, sup;>qv(t,y) — 0 as [|yllx — 0.
Then the trivial solution X°(t) = 0 of Equation 1(1) is asymptotically X-stable in probability.
Proof. By Theorem 3.1, the trivial solution is X-stable in probability. We preserve the notation
of the proof of Theorem 3.1.

Let 0 < e <r and ¢ € Bx(e)NE\ {0}. By either Corollary 2.4 or Corollary 2.8 the process
v(1e At,X%(1: A t)) is a (nonnegative) supermartingale, which, by assumption and (A3)’, is
(right-)continuous. Therefore, there exists P—a.s. tlim v(1e Nt, X% (1 A t)) =: €. We show that

—00
(4) lim Pl =0]=1.

llzllx—0

For n > 1/||z||x, denote the first time that X® hits Bx(1/n) by 7". By the Forward Inequalities
2.2 or 2.7 and by (A2)' we have

Te NEATT
() 0< Buo(r. At AT™ X%(r. AEAT™) < 0(0,2) — E/ o1 /n)ds,
0

t € R,. This implies B(1. AtAT") < ;’((f}‘fl)) for these t and, letting ¢ — 0o, we arrive at

(6) Plr.AT" <o0]=1.

By X-stability in probability there exists § > 0 such that, for all y € X NE, 0 < ||y||x < J, we
have 7. = oo with probability exceeding 1 — e. By (6), 7™ is finite on {7, = oo} for all n. Since
X is continuously embedded in H it follows from continuity of X? in H that X®(sup,, 7") =0
and hence X*(t) = 0 for all ¢ > sup,, 7" on {sup, 7" < oo}. From right continuity of X we
infer nl;ngo X*(t™) = 0 and by equicontinuity (A3)' we have nl;ngo v(X®(r™) = 0and £ =0
on {re = oo, sup,, 7" = oo} for all z, ||z||x < . This is (4). Asymptotic X-stability now follows
from (A4). O



3.3 Theorem

(a) Let D =R x (XNE\ {0}) and let 7 = co. Suppose that the function s — v(s, X(s)) is
locally integrable on [0,00[ and that Conditions (i) and (i) of Corollary 2.4(b) or of Corollary
2.8(b) are satisfied. Moreover, assume (A1), (A83), (A4), and

(A2)" there exists a constant ¢ > 0 such that, for all (s,y) € D,
Timy, Timy, [£®) v (s, 1) + cvn(s,y)] < 0.

Then X°(t) = 0 is globally asymptotically X-stable in probability.
(b) If, moreover,

(A5) there exist constants dy > 0, do > 0, and p > 0 such that, for all (t,y) € Ry x (X NE),
dillylll < v(t,y) < dallyllf;

then the solution X°(t) = 0 is exponentially X-stable in the pth mean.
Proof. X-stability in probability following from Theorem 3.1, in order to prove (a), we have to
show
(7) Pllim | X®(#)||lx =0]=1, z€XnNE.
t—00

Let ¢ be as in (A2)") and let wy,(s,y) := e“v,(s,y) for all n € N, (s,y) € Ry x (XNE). We
show that the hypotheses of Corollary 2.4(b) or 2.8(b), respectively, are fulfilled for w,, instead of
Up, w := lim, wy, instead of v, and D = Ry x (XNE\ {0}). Since v, is bounded on bounded sets
in R, x H, since X is continuously embedded into H, and since £®wy,(s,y) = e (cvn(s,y) +
L®)v,,(s,3)) we have Condition (i) of both Corollaries. Since 2.4(ii) is valid for v, and from local
integrability of v(s, X(s)) we obtain 2.4(ii) also with wy, instead of v,. Validity of Condition
2.8(ii) for w,, follows directly from that for v,. Condition (iii) of both corollaries just follows
from (A2)". It now follows from Part (b) of either Corollary that the process £*(t) := v(t, X*(t))
is a nonnegative, right-continuous supermartingale, in particular,

(8) Ew(t,X*(t)) < v(0,z)e”%, (t,z) €Ry x (XNE)
and that there exists the limit
T ._ 1; T _
£ = tlgélo v(t, X*(t)), P —a.s.
From Fatou’s lemma and (8) it follows that £&* = 0 P-a.s.. Now, (A4) yields tl_i}m |X*(¢)|lx =0
co

P-a.s. which completes the proof of global asymptotical X-stability.
If also (A5) is fulfilled then it follows from (8) that

d
EIX* @)% < Ze Nl (o) € Ry x (XNE)
1

which is exponential stability in the pth mean. |

3.4 Remarks

(a) For the proof of exponential stability in the pth mean in Theorem 3.3, X-right-continuity of
the solutions of Equation 1(1) is not necessary.

(b) If the Conditions (i),(ii), and (iii)’ of Corollary 2.8 and (A5) are satisfied for all (t,y) € R, X
(HNE\ {0}) then we need not assume in advance that the solution of 1(1) starting from z € X
has an X-valued version. Indeed, we can apply these corollaries with D = Ry x (HNE\ {0})
to arrive at (8) and then we can use (A5) to obtain exponential X-stability in the pth mean.



4 APPLICATIONS

Note that under the assumptions stated at the beginning of Section 1 the operator A is lower
semi-bounded, i.e.,

(1) (Ay,y) > BlylE, v < D(A),

for some B € R. It is called uniformly positive if (1) is satisfied with a constant 8 > 0. Since 8
plays a role in the Lyapunov inequalities (31), (34), and (56), we fix 8 as large as possible. Let
us put B =0if 8> 0 and B — —f+¢ for some small number ¢ > 0, otherwise. Then A = A+BI
is uniformly positive. Now introduce the spaces Hq = D(A%), a > 0, equipped with the norm
lylle = [|A%y||, ¥y € Hg; this norm is equivalent to the A*-graph norm.

In the present section, the general results from Section 3 will be applied to the case X = H,,
for some suitably chosen o > 0. The section is organized as follows. At the beginning results of
the preceding section, applied to the present case, are summarized in Proposition 4.1, followed
by a series of lemmas which state some useful estimates for verifying the Lyapunov inequalities
appearing in Corollaries 2.4 and 2.8. The main results of the section, stability results formulated
in terms of explicit characteristics of the coefficients, are stated in Propositions 4.11, 4.12 and
4.15. More concrete examples are given subsequently (Examples 4.14, 4.18, 4.19).

Denote by R, (—A2%) = (nI + A2*)~! the resolvent operator of —A%* and by Jao(n),n € N,
the Yosida-type operators

(2)  Jaa(n) := nRp(—A2%),
and let

(3)  Aga(n):= A% Jha(n), neN.

In this section, we shall use the sequence of time-independent Lyapunov functions

(4)  oa(t,y) = vn(y) = (A2a(n)y,y)", neN,ycH,

for a suitable exponent p > 0. By self-adjointness of A, the functions v, and v have the form

A 1 1
(5)  vnly) = AT, (n)yllF = 192, (n)yl3F

and

2p H
6 5 _ lylla’, v € Ha,
(6) v(y) 1m vn(y) { + 00, otherwise.

For a = 0 we have v,(y) = nLH||y||2p and v(y) = ||ly||??, y € H. A possible choice of 7 enjoying

all properties required in Section 3 is 7w = J1(k) = kRy(—A).

Theorems 3.1 — 3.3, applied to the case described above, are summarized in the following
proposition.

4.1 Proposition

Let r € ]0,+00] and let p > 0. Assume that for every x € Hy NE the solution X® of Equation
1(1) is a right-continuous, Hy-valued process. Furthermore, for alln € N and all T > 0, assume
either

(7) Hk E(k)vn(s, y) < Ce,r,T (1 + U(y))



for all e >0, all (s,) € [0,T] x (Bra(r) NE), lyllex > ¢, and some Ce iz < o0 and, P-a.s.,

T
() / 1X%(s)[[2ds < oo
0
or
(9) Hk E(k)vn(s, y) S CT‘,T(]- + Un(y))

for all (s,y) € [0,T] x (BHa(r) NE \ {0}) and some C,1 < co. Then the following assertions
hold true:

(a) If

(10) mnmk [’(k)/vn(sa y) <0, (8, y) € R+ X ('BHa (7’) n E\ {O})a

then the solution X°(t) = 0 is H-stable in probability.
(b) If, for any 0 < e < r, there exists ae) > 0 such that

(11) limy, limy, E(k)vn(say) < —af(e)

for all (s,y) € Ry x {y € Hyp;0 < ¢ < |lyll, < r} NE) then X°(t) = 0 is asymptotically
H,, -stable in probability.

(c) If there exists ¢ > 0 such that
(12) Timy,limy, LM (s, y) < —c v(y)

for all (s,y) € Ry x (Ho NE\ {0}) and if one of the alternative Hypotheses (7) (together
with (8)) or (9) is satisfied globally (i.e., with 1 = +00) then the solution X°(t) = 0 is globally
asymptotically H-stable in probability and exponentially H,-stable in the 2pth mean.
Proof: We verify the conditions of the theorems in Section 3 and begin with Condition (i) of
2.4(b) (which equals (i) of 2.8(b)). Let 7. be as in Theorem 3.1 and let z € Bx(r) N E. Note
that 7 is the first hitting time 7° of the origin of the process X = X*. By 1.8(b) we have
0
£LWun(s, X(s)) = 5" (X (3))(—Am X (5))

Ovy,
(13) + o mX (s)) (mu (5, X )

1 0%,

t3 tra—yz(ﬂkX(S))(ﬂka(s,X(S))QU* (s, X (8))mk ),

0 < s < 79. Since

%)) = A )it P )

for all y € H\ {0}, the first term on the right side of (13) is < 0 and the second term is bounded
by C$(s)117 (s, X (5))llsz, where

Ovy,

ci(s) = Sup {Ila—y(ﬂk(X(S))IIH' x| gy }-

In a similar way the third term of (13) is bounded by 01(12)(5)||a(s, X(s))||%2(K0,H), where

1 a2'Un
C(s) = 5 Sllip{” i (X ()| ey 1217 ey }-



Since v, is a power of a continuous quadratic form, since X is H-continuous, and since the
sequence () converges strongly to the identity operator the functions C,gl) and C7g2) are locally
bounded and hence locally integrable on [0, 79[. Thus, by 1(2) and 1(3), Conditions 2. 4(b)() and

2.8(b)(i) are satisfied with @n(s) = 5" (s)[|f (5, X (5))l1x + CL (5l (s, X (5))[I2 (Kol
We next deal with Condition 2.4(b)(ii). By (7) we have
Timy LEon(s, X (5)) < Cerr(1+ | X (s)]|2P),

0 < s <78 A7y, where 7° is the first hitting time of Bx(e) and the required condition follows
from (8). Condition 2.8(b)(ii) with D as in Theorem 3.1 follows directly from (9) and the fact,
that the sequence (vy,) is increasing. Condition (A1) is just the assumption at the beginning of
the proposition.

We now turn to the proof of (a). Condition (A2) is just (10) and Conditions (A3) and (A4)
follow from (6). The claim now follows from Theorem 3.1. Parts (b) and (c) follow in a similar
way from Theorem 3.2 and (11) and Theorem 3.3 and (12), respectively. m

In the remainder of the section we apply Proposition 4.1 to various situations. To this end
we first give an explicit representation of limy L®)y,,. From 2.9, we have

E(k)Un(ta y)
= 2p(Aga(n)miy, Thy)"™
(14) {—(Amky, Aza(n)my) + (M f (8,), Aza(n)Thy)
+1 trAga(n)mro(t, y) Qo™ (¢, y) ),

2
_ W (mko(t,y)Qo* (¢, y) mr Asa(n) iy, Asa(n)mry)
Hp—1) (A2a(n) TRy, TrY) 4

(t,y) € Ry x (E\ {0}). Since 7 — id (cf. 1.6(a)), all terms but one converge as k — oo.
In particular, we have supy, ||mx||c(z)y < 00, s0 it is easy to see that mpAsq(n)my — A2q(n) as
k — o0 in the strong operator topology and hence

”A2Ot (n)ﬂ-za(t’ y)QU* (t’ y)ﬂ-]: - A2Ot (n)a(t, y)QU* (t’ y)”[,1 (H) —+0
as k — oco. Thus, the trace term in (14) converges to trAsq.(n)o(t,y)Qo*(t,y) and we obtain

Hk Ekvn(tay)
(15) = 2p(Aaa(n)y,y)" H{~lim,(Amy, Asa(m)my) + (F(2, ), Aza(n)y)
43 trAsa()o (t,3)Q0" (1,9)

(o(t,y)Qo* (2, y) A2a(n)y, A20(n)y) }
<A2a (n)ya y)

+(p—1)
1
=: 2p Io{—Il + I+ 5 I3 + (p — 1)]4},

(t,y) € Ry x (E\ {0}). Note that Iy = vn(y)l_%-, y € H,. In the series of Lemmas below we
give some useful estimates on the particular terms Iy, --- , Iy which will allow us to formulate
the Conditions (7) — (12) more explicitly. We first deal with the terms I; and Iy[; in (15). The
next lemma follows directly from (15) and (1).

4.2 Lemma
With B as in (1) we have for y € H,

N 1
(16) I = limy (Amgy, Asa(n)mry) > BIIA%JZ, (n)yl3 = Bon(y)*? and



(17) Iol = (Axa(n)y,y)P ™" limy(Amiy, Asa(n)mry) > Bun(y)- =

4.3 Lemma

Assume that A is positive and let n > 1.
(a) There exists an ng € N such that, for all p > 0, all n > ny, and all y € H, we have

1
(18) 1A% J2,(n)ylle = 17" Byl
(b)) f0<a< % then we have for alln and ally € H

1 L 1
(19) |A%F2 02, (n)ylly > B2 (| A% Jaa(n)ylly

and there exists ng such that, for all n > ng and all y € H, we have

11 1,1
(20) [|A%*2 05, (n)ylly > 07" B2 (| A%l
Proof: The function z — %% being nondecreasing for z > 0, we have
n}\2a 2p n/@2a > I82p+2a n
n+ e =" p4 g2 n + 32

for all p > 0 and all A > B (> 0) if n is large enough. Therefore, we obtain (18) from the
spectral representation of A2972 J,,(n) with respect to A. The inequalities (19) and (20) are
proved analogously. |

)\2p > /82a+2p/772

Our next aim is to estimate the term I in (15). We will distinguish between two cases: The
function f will be assumed to be either (locally) Lipschitzian on H or dissipative in a certain
sense. At first, assume

(F1) There exists r > 0 and a locally-bounded function kf : R4 — R such that |[|f(¢,9)|y <
ks()llylly for all (£,y) € Ry X (Bua(r) NE).

4.4 Lemma

Let A be uniformly positive and assume Condition (F1), let o € [0, %], and let n > 1. Then there
exists an ng = ng(n) such that, for all n > ny, allt € Ry, and all y € By, (r) NE, we have

nke(t 11
@) B = (7(0), Asaloly) < PO AT ()l
Proof: From (F1), (18) with p = 1/2, and (19) we infer for all n > ng and all (¢,y) €
R, X (Bua(r) NE)

k 11
(f(t,9), Aza(n)y) < ks (®)llylla - 147 Taa(n)ylly < %@)IIA”?JSa(n)yII%{- O

4.5 Definition

We call a function f : Ry x E — H a-dissipative (on Ry X (Bua(r) N E) if there exists
a locally-bounded function ay : Ry — R such that the function f(¢,y) := f(¢,y) —az(t)y
satisfies

for all n € N, all (t,y) € Ry X (Bug(r) N E), and some r €]0, +0o0].



4.6 Example

Let H = Ly(O), O C R? being a bounded domain with a smooth boundary, let —A be defined
by the second order uniformly elliptic operator 1{6) and the boundary conditions 1(12) or 1(13),
let f be defined by 1(17), where F satisfies the Conditions 1(8) — 1(10). Set

(23) E={ye€ L(0);y =0},
where the number v is defined in 1(9). If F has the form
(24) F(t,u) =ag(t)u+ F(t,u), (t,u)€R],

with ay as in Definition 4.5 and F<0 then, since u > 0 and Asy(n) = nLHI , f is a-dissipative
for o =0 on Ry x (HNE) = R, x E. If, moreover, F has the form

(25) F(t,u) = —c(t)ud, (t,u) € R4 x[0,R],

for somec: Ry — Ry, 1 <¢g<v, R E€]0,x] and if a > % then f is a-dissipative on
R, x (Bu,(r) N E) for some r > 0. If we have only o > g, but (25) is satisfied globally (with
R = o0) then f is a-dissipative on the whole space R x (Hy N E).

To prove these two statements note that, for a > ¢, the resolvent Ry, (—A2¥) = (nI + A2*)~?
and hence Jy, are Hilbert-Schmidt operators (cf. Edmunds and Triebel [5]); therefore, for fixed
n and «, there exists a kernel k € La(O x O) such that

(26) Joa(n)y(E) = /O k(e D)y(o)dp, 3 € La(0), E€O,

(see e.g. Reed and Simon [27]). Since the operator A is self-adjoint and positive the operators
Jaq(n) are contractions and R, is a sub-Markovian contraction resolvent in the sense of Ma and
Rockner [19], Definition I.4.1 and Theorem I.4.4. This means in particular that the operators
Jy, are sub-Markovian in the usual sense. Thus, the kernel % is nonnegative and symmetric and
we have [, k(& p)dp <1 for all £ € O. Now, if (25) is satisfied globally we can apply Example
6.4 and Remark 6.5 of Leha, Ritter, and Wakolbinger [18] to obtain

<f(tay)aA2a(n)y> SOa yEE’ TLEN, tER-I-’

where f(t,y) = F(t,y(-)). If, moreover, o > 4 then H,, is continuously embedded into C(O) by
Sobolev’s theorem. Thus, proceeding as above, we obtain a-dissipativity of f on R4 X (Bu, (r)N
E) for some 7 > 0.

It is clear that f is a-dissipative also if the right side in (25) is a positive linear combination
of terms of the form —¢(t)u?. The following lemma is elementary.

4.7 Lemma
Let f be a-dissipative on Ry X (Bu,(r) NE). Then we have

(27) L= (f(t,9), Asa(n)y) < as(t)(y, A2a(n)y) = as(t)vn(y)"”
for (t,y) € Ry x (EN By, (r)\{0}), n € N, o >0, p > 0, where r and ay are specified in
Definition 4.5. |

In the sequel, we estimate the terms I3 and Iy of (15) which come from the stochastic term
of Equation 1(1). We formulate two more conditions.



(31) For all (¢,y) € R4 x (Hy NE) we have o(t,y) € L(K,H) and there exists r € ]0, c0] and
a locally-bounded function &, : Ry — R such that

llo(t Wl eacmy < ke ()llylla
for all (¢,y) € Ry x (Bu,(r) NE).

(¥2) For all (¢,y) € Ry x (Hq NE) we have o(t,y) € L2(Ko, Hy) and there exist r € |0, o0]
and a locally-bounded function b, : Ry — R such that

llo (& 9l (o, Ha) < bo(t)lyll,

for all (¢,y) € Ry x (Bu,(r) NE).

Note that, for o = 0, (31) implies (£2) with by = | QI ) ko-

4.8 Lemma

If (£2) holds then we have for all (t,y) € Ry X (Bu, (r) NE)
(28) Iy = trAza(n)o(t,y)Qo" (t,y) < B2 = B (£)o(y) 7.
Proof: We estimate

tr Asa(n)o(t,¥)Qo*(t,y) < |lJa(n)llcantr A2o(t,y)Qo* (t,y)
N 1
||Aa0'(tay)Q§”%‘,2(K,H)

= IIU(t,y)Ili2(K0,Ha)

and (28) follows from (X2). O

IA

The next lemma follows from (28) and (20).

4.9 Lemma

Let o € [0, 3], let A be uniformly positive and assume Condition (X2). Then, for any n > 1 there
exists an ng = ng(n) € N such that

b2 1L
(20) Iy = trdsa(n)o(t, y)Qo" (1, ) < ’ﬁ#nAaﬂJzz(n)yn%{

for alln > ng and all (t,y) € Ry X (Bu,(r) NE). O

4.10 Lemma

If A is uniformly positive and if (X1) holds then, for any n > 1, there exists ng = no(n) such
that

(o(t,y)Qo*(t,y)Asa(n)y, Asa(n)y)
(A2a(n)y,y)
nk;(t)

2t atl % 2
TIIQllﬁl(K) 14%72 J5, (n)yllf

(30) I, =

IA



for all n > ny, (t,y) € Ry X (Bu, (r) NE).
Proof: For sufficiently large n, we have
(o(t, )Q0* (t, y) Asa(n)y, Asa(n)y) lo(t, N2 ey | Qe (xc) 147 Joa (m)y 1y
1 1
|42 J5, (n)yllF [l A2 J5, (n)y I

k}g t a+l .2
"Tf’nczuﬁl(x)nA 573 ()il
by (1), (19), and (18) with p = 0. O

IA

4.11 Proposition

Let o € [0, %] and let p > 0. Assume that the solutions of Equation 1(1) starting from initial
points in Hy N E have Hy-valued and H-right-continuous versions. Assume also that A is
uniformly positive and that the Conditions (F1), (£1), (£2) and

1
(81) -8+ St‘;llg{kf(t) +3 bt + (0= D) Qe ko (1)} <0
are satisfied. Then the trivial solution X°(t) = 0 of Equation 1(1) is asymptotically H-stable in
probability. Moreover, if (F1), (1), and (X2) are satisfied with r = oo then the trivial solution
s globally asymptotically H,-stable in probability and exponentially stable in the 2pth mean.

Proof: From (15) and Lemmas 4.4, 4.9, and 4.10 we obtain
Hk [’(k)vn(ta y)
1
= 2plo{-h+ D+ 5l + (p— 1)}

nks(t) | nb2(t) nk3(t)
—_ 1)t i%\Y
L0+ T2+ - 1 P2 Qe o)
for (t,y) € R4 x (Bu,(r) NE\ {0}),n > no(n), where ng(n) is a natural number independent
of t and y. If we choose 17 > 1 small enough then the sum in curly brackets becomes negative,
< —c say, uniformly in £ > 0 by Assumption (31). For this reason, by uniform positivity of A
and by (17), we see that (32) is majorized by —2pclyl; < —2pcfBv,(y). This is (9). Moreover,

1 1
< 2l |[A%T2 IR, (n)yllF {—1 +

(32) Tim,limg £LFu,(t,y) < —2pcBo(y),

(t,y) € Ry x (Bu,(r) N E\ {0}); hence (11) follows from (6). Furthermore, if (F1), (¥1),
and (¥2) are valid globally then we also have (12). Therefore, we can use Proposition 4.1 to
complete the proof. O

In the following statement, we avoid uniform positivity of A and the restriction on o and we
replace Lipschitzianity of f by its a-dissipativity in the sense of Definition 4.5. We apply again
Proposition 4.1, using this time (7) and (8) instead of (9).

4.12 Proposition

Let o > 0 and let p € |0, 1]. Assume that the solutions X* of Equation 1(1) starting from initial
points © € Hy NE have Hy-valued, right-continuous versions satisfying P-a.s., for any T > 0,

T
(33) /0 1X2 (1) |22 dt < oo.



Let f be a-dissipative and assume that the Conditions (X2) and
1
(34) —B +sup{as(t) + Zb2()} <0
£0 2

hold. Then the trivial solution X°(t) = 0 of Equation 1(1) is asymptotically H-stable in proba-
bility. If, moreover, f is a-dissipative on Ry x (Hy NE) and (X2) is satisfied with r = oo then
the trivial solution is globally H,-stable in probability and exponentially H,-stable in the 2pth
mean.

Proof: By (15), p <1, (16), (27), and Lemma 4.8, we have for (t,y) € R4 x (Bu,(r) NE) and
neN

Hk [’(k)vn(ta y)
1
2pUn(y)1_1/p{_Il + I+ 513}

IA

(35) < 2on) VP {~Bun()"? + ag(t)on(y) P + SB (10 (3)"7)
< 2p{~Bunly) +as(tonly) + SR (0)}
< (6 +af()+ 0.
Now (7) follows from local boundedness of ay and b,. From (35) we also deduce
(36) Tl L0 (t,4) < 2B+ ag(t) + L),
(t,y) € Ry x (Bu,(r) N E). Together with Condition (34) this yields (11) and, if the global

assumptions stated in the proposition are satisfied, also (12). The two claims now follow from
Proposition 4.1. O

4.13 Remark

If Equation 1(1) is autonomous, that is, if f(¢,y) = f(y) and o(t,y) = o(y) do not depend on
t then we may choose kf(t) = ky, ay(t) = ay, bs(t) = by, and k,(t) = k, independent of ¢ > 0
and Conditions (31) and (34) become

1

~B+ks+ 8+ (- D7IQlego <0 and
1

—ﬁ+af+§b(2, <O,

respectively.

4.14 Example

Resuming the basic Example 1.2 we next discuss in detail the Stochastic Parabolic Equation
1(5) with the Initial Condition 1(11) and boundary conditions of either Dirichlet’s 1(12) or
Neumann’s type 1(13) in the case of a noise 7 sufficiently “regular in the space variable.” We
assume that the coefficients F, G are measurable satisfying F(¢,0) = G(¢,0) =0, ¢t > 0, and that
the Conditions 1(7) — 1(10) hold true. As described in Section 1, the formal system 1(5), 1(11)
with boundary conditions 1(12) or 1(13) can be considered as an infinite-dimensional equation



of the form 1(1), where A is defined by 1(15) or 1(16) and H,E, and f are defined by 1(14) and
1(17), respectively. Since 8 > 0 we have 8 = 0.

We assume that K is continuously embedded into L (O) so that
(37) lhllzoo) < pllkllk,  heK,

for some p > 0. For example, if K = Hy with § > % then K is continuously embedded in C(O) by
Sobolev’s embedding theorem. In view of the basic example this can be interpreted as a certain
“gpatial regularity” of the noise.

Now define o : Ry x E — L(K, H) by 1(18), i. e.,
(38) [o(t,y)r](€) :=G(t,y(E)h(E), () €eRy x O, yeE, heK.

By Proposition 1.3, Equation 1(1) specified in this way has a unique solution in E which is a
Markov process in E in the usual way. We have

lott.lEacm = swe [ G y©mE L

IRl <1

(39) < s lblE, o)kt [ a(e)Pde
Ak <1 o0
< PRIyl

so we get (X1) with k, = pkg and, by the remark following the definition of (X2), we also get
(22) with o = 0.

Assume that F' is of the form

with F(t,u) < 0. Note that, by 1(10), F is always this form with some a;: R, — R, but in
order to exploit the Lyapunov inequality a; should be chosen as small as possible. Since X has
H-continuous paths we have (33) with o = 0 and p = 1. Now, by Proposition 4.12 applied with
these parameters o and p, the trivial solution is globally asymptotically H-stable in probability
and exponentially H-stable in the mean square provided

1
(41) —B+supas(t) + §Mp2kg <0;
>0

here 3 > 0 is a lower bound of the spectrum of 4 and M = [|Q||z, k) < oo with the covariance
operator @ of the Wiener process W (¢) in K.

Our next aim is to establish some H,-stability results with a > 0. In order to apply Propo-
sition 4.12 we need first sufficient regularity (33) of the solutions to the equation under consid-
eration. Let F' satisfy the growth condition 1(9) for some » > 1 and let & € [0,1 — %[, note that
v in 1(9) can always be chosen large enough so that we can basically consider o € [0,1]. Let
x € Hy N Ly,2(O), z > 0. By definition, a mild solution X (¢) = X*(t) satisfies

t t
X(t) = S(t)z + /0 S(t = 1) f(r, X (r))dr + /0 S(t = r)o(r, X (r))dW (r)
=: S(t)z + J1(t) + Ja(t).

(42)



Since z € Hy, the function ¢t — S(¢)z belongs to C([0, T], Hy ). A standard estimate for analytic
semigroups, cf. [3], A.32, 1(9), and Holder’s inequality show

s [ A
Lol
(43) < cte /0 E[/O%d]dt

T
202
ere | (/0 raq) (/ IX(r ||L2”dr)dt,
2v

for ¢ = 32%5 (note that ag < 1). In this and the following estimates, ¢ stands for a constant
that may vary from line to line. Since the embedding of Ly,2(O) into Lo, (O) is continuous we
have by 1(21), applied with v2 instead of v,

IA

IA

T
(44) B / 12 (&) dt < oo
0

Similarly, we obtain that J1(-) € C([0,T],Hy), P-as..

We next prove an analogous assertion for J>. The equivalence of the §-norm and the Sobolev-
Slobodeckii norm (cf. Seeley [31], Triebel [35], or Kufner, John, and Fuéik [15], p. 386), 1(7),
(39), and (37) show

llo(t, y)”%‘,(K,H,;)
= sup |lo(t,y)hll}

Ak <1
2
< ¢ sup / [ = B VDML ey + e, )l
Il <1 |§ |

_(9(9

G(t, 2 1h(£)]2
(45) < ¢ sup //(' y(€ |§ 57|d+(26>>| Ih(8)]

Allx <1
LO O
G(t, y(m)I2 |h(€) — h(n) 2
+ CEVIEIEO=ROLY dean + 1ol
< sup (IR IE + 16 ) o ylE A3 + )

([Pl <1

< ¢ sup [llylf + G -) oyllZ IRl + llyllE] -
IRl <1

Now, suppose that § € [O,% — 21—V[ is such that K is continuously embedded into Hg. Then
lRlls < ¢||lh|lx- If Hs is continuously embedded into Ly (@) then, by formula 1(7), ||G(¢,-) o
Yl < kellyllze, < cllylls- Hence,

(46) ot 9k m,) < cllvlf, (t,y) € Ry x Hy,
in this case. Alternatively, if G is bounded then ||G(¢,-) o y||z., < ||G|lcc and hence

llot, D2k 11, < elllylls +1),  (6y) € Ry x H.
( )



Furthermore, we can use analyticity of the semigroup S(¢) (similarly as in (43)) and Seidler’s
[32], Theorem 1.1, regularity result to obtain pathwise H-continuity of J; and

T
(47) E / 1 T5(8)[2dt < oo.
0

Thus, if § > o we conclude from (42), (44), and (47) that the solution X?* is continuous in H,
and satisfies the required regularity (33) for p = 1 in this case. If § < o then (44) and (47) yield

T
E/ 11X (8|2 dt < oo.
0

Taking into account (46) we use again [32], Theorem 1.1, obtaining continuity of J in Hs
and

T
@) B [ a0 < oo

for A < 1/2 — 1/2v. Similarly as above, we obtain (33) for o < § + 5 — .
1_ 1

In conclusion, if § € [0, 5 — 5[ is such that K is continuously embedded into Hs and such
that H; is continuously embedded into Ly (O) unless G is bounded then we have continuity of
X®in Hy, x € Hy N Ly,2(0), and (33) with p =1 for each

1 1 1 1 1

(49) a<m1n(1—5,5+§—5):5+§_5.

The assumption (X2) can be verified in various situations. For example, if we have continuous
embeddings K — H, < L (O) then, similarly as in (45), we obtain from (46)

1
llo(t, 9l coxo,a) < Q2 cox)llolt: Yl e Ha) < b ()|Yllas

(t,y) € Ry x Hy, where b,(t) = 1/c \/Q1/2 £.(k) and c is as in (46).
2(K)

Another interesting class of examples satisfying (£2) flows from assuming Q% € Lo(K,H)
and

(50) llo(t:9llcma) < bollyllas  (t,y) € Ry x Ha,

where H is a suitable Hilbert space, usually a space of sufficiently smooth functions. For example,
ifa =%, G(t,-) € C*(Ry), and if H is a Hilbert space continuously embedded into C*(O) it is
easy to verify (50) with some by < 0o involving the constants kg, and the norm of the embedding
H — C1(O). Now we can use Proposition 4.12 in order to establish H,-stability for the zero

solution of our equation.

If F is of the form
(51) F(t,u) =as(t)u —c(t)u?, (t,u) € R3,

with1 <g¢g<v,a5:R;y - R, c: Ry — Ry, we obtain for g <a< % that the zero solution
is globally asymptotically H,-stable in probability and exponentially H,-stable in the mean
square provided

(52) —B+ supf{as(t) + %5(2,(15)} <0.
>0



If F has the form (51) only locally on a neighborhood of zero (i.e., for (¢,£) € Ry x [0, R[
for some R > 0) and k¢ is a Lipschitz constant of G just on a neighborhood of zero but, on
the other hand, & > ¢ (and, thus, H, is continuously embedded into C(O)) then (52) im-
plies the (local) asymptotical H,-stability in probability of the zero solution (cf. Example 4.6). O

In the rest of this section we congider the important particular case when the driving Wiener
process is one-dimensional. More precisely, let W be a standard scalar Wiener process (put K =
R and @ = 1) and identify the operator ¢ in the usual way with the functional 6 : Ry x E — H,
a(t,y) == o(t,y)(1). In this case, the terms I3 and I of (15) have the form

(83) I3 = trAsa(n)o(t,y)Qo™ (t,y) = (A2a(n)o(t,y),o(t,y)) and

(54) I — (o(t,y)Q0*(t,y) Aza(n)y, Asa(n)y) _ (A2a(n)y,o(t,y))?
4= =
(A2a(n)y,y) (A2a(n)y, y)

n € N,a>0,(t,y) € Ry x (E\ {0}). We formulate now a sample result in the case of
one-dimensional noise. Similarly to the finite-dimensional case, an unstable trivial solution of a
deterministic equation can be “stabilized” in probability by adding sufficiently large noise. For
simplicity we restrict ourselves to the case p € |0, 1] which is the most interesting one for results
on stability in probability. Note that Condition (¥2)' below is just a reformulation of (32) in
the case of a scalar Wiener process.

4.15 Proposition

Let K=R, let Q =1, let a >0, and let p € ]0,1]. Assume that the solutions X* to Equation
1(1) starting from initial points x € HyNE have H, -valued, right-continuous versions satisfying
P-a.s., for any T > 0,

T
(55) /0 X (1) dt < oo.

Let f be a-dissipative and suppose that there exists a number r € |0, 00| and two locally-bounded
functions by, ks : Ry — Ry such that o(R; x (Bu,(r) NE)) C Hy,

(22) llot,y)lla < bo(®)llylla;
(33) (A%y, A%a(t,9))* 2 ke ()1 A°YlE,  (t,y) € Ry X (Bm, (r) NE),

and

1
(56) —B+ St‘;lg){af(t) + 5bs(t) — (1 =)o ()} <O
hold. Then the trivial solution X°(t) = 0 of Equation 1(1) is asymptotically H-stable in prob-
ability. If, moreover, f is a-dissipative on Ry X (Hy NE) and Conditions (X2) and (23)' are
satisfied with r = oo then the trivial solution is globally H-stable in probability and exponentially
H,, -stable in the 2pth mean.

Proof: The claim follows easily from Propositon 4.1, similarly as Proposition 4.12. Note that,
for (t,y) € Ry x (EN By, (r) \ {0}), we have

(57) Tl £Fon(t,y) < 2{=5 + ay(t) + 32(6) — (1 = D)o ()} (v). =



4.16 Remarks

(a) In the case of an autonomous equation we may choose a¢(t) = ay, b;(t) = by, and ke (t) = ko
independent of ¢ > 0 so that Condition (56) reads

1
—,3+af+§bg—(1—p)lia<0.

(b) The Conditions (32)’ and (X3)' are obviously satisfied if o is linear, that is, if o (¢, y) = b(t)y,
t € Ry, and y € E. In particular, we may choose b,(t) = |b(t)| and ky(t) = b%(t). Then the
Lyapunov inequality (56) has the form

(58) —B+sup {ay(t) - (3~ P)E(0)} <0.
>0

Since p may be chosen arbitrarily close to zero, the stabilizing effect of noise becomes apparent
here.

4.17 Example

Besides linearity there is another important case when (X2)' can be verified. Let H = Ly(O)
and A be as in Example 4.6, let E be a Borel subset of {¢ € H; ¢ > 0}, and let

(59) U(t’y)(é‘) = G(t’y(é‘))’ teRy,yeH, (€O,

where G : Ri — R is a measurable function satisfying

(60) G(t,w)| < bo(tyu, () €Ry x [0, B,

for some R € ]0,00]. If R = oo then (X2)' is clearly satisfied with @ = 0 and 7 = oco. Assume,
moreover, that G(t,-) € C2([0, R[) and

(61) swp [G'(hu)| <bo(t),  tER,,
u€ 0,R[

where G’ denotes the derivative with respect to the second variable v and b: Ry — R is locally
bounded. It follows from Fujiwara [7] that H; /5 = HY(0), H; = {p € H*(0); 22 —0on 00},

' vy
in the Neumann case and Hyjp = {p € H'(O); 090 = 0}, Hy = H*(O) N Hj(O), in the
Dirichlet case. Hence, it is easy to see that in both cases the mapping y — G(¢,y(-)) maps
H;/; NE into H, ;5 and H; NE into H; (note that G(¢,0) = 0). For any y € H; N E such that

supg |y(§)| < R, we have
(Ao(t,y),a(t,y))
13}

14)
_ /O _G(t,y(@)%a—&(aﬁ(a 5g; C(tv(©) d¢
- _ G(t,y(f))G'(t,y(é))%y(f)dss

(62) + /O S ais(6) a%a(t,y(s)) % (Gt () dt

e S O 9(E)
- [ @ D) T e,

2 e 9y(6) 0y(§)
< B() /O %am@) dt

o0& 0§
= b2(t)(Ay,y).



Note that the surface integral equals zero under both the Dirichlet and the Neumann conditions.
Therefore, for each suitable 8 > 0, we have

lA2o(t, )l = (Ao(t,y),0(t,y)) = ((A+BDo(t,y),0(ty))
< BR(t)(Ay,y) + BE®Nylk = B2()(Ay,y) = B2 (D) ATyl
for t € Ry and y € Hy NE such that sup, [y(§)| < R. It is easy to see that the mapping
y — ||fl%a(t,y)||%{ is continuous on Hy/; N E. Since H; N E is dense in H; /5 N E (endowed

with the H; j,-norm) we obtain (¥2)" with o = 1 and either 7 = oo (if R = oo in (60)) or some
r € ]0,00[ (if R < oo in (60) and the space dimension d equals 1, so that H,; is continuously

embedded into C(O) and the Nemytskii operator o can be localized).

4.18 Example

Let us discuss again the Stochastic Parabolic Equation 1(5) with the Initial Condition 1(11) and
boundary conditions of either Dirichlet’s 1(12) or Neumann’s 1(13) type, but with a “scalar”
noise 7. Again, we assume that the coefficients F' and G are measurable and satisfy F(¢,0) =
G(t,0) =0, t > 0, and that the Conditions 1(7) — 1(10) are satisfied. This stochastic parabolic
problem can be rewritten in the form 1(1) with the spaces H, E, the operator A, and the
functional f as in Example 4.14. The Wiener process W is standard one-dimensional, so we put
K=R and

(63) o:R. xE — H, o(t,y)(€) := G(t,y(£)), (t,y) eR. X E, £ € 0.

It is obvious that for & = 0 the Conditions (X1) and (X2)' are satisfied with k,(¢) = b (t) =
kg. Thus, it is easy to establish H-stability results: for example, if F' has the form (40) and

1
(64) —B+sup ag(t) + 51% <0
£>0

holds then, by Proposition 4.12, the trivial solution X°(¢) = 0 of the equation under consider-
ation is globally asymptotically H-stable in probability and exponentially H-stable in the 2pth
mean for each p € 10, 1].

However, it is desirable to find some stability in a norm stronger than the H-norm. At
first we must verify the corresponding regularity. We proceed as in Example 4.14 to show that
J1 € C([0,T],Hy) and

T
B [ Al < oo
0

for a € [0,1 — 5[ Note that, in the present case,
(65) llo@ w5 <kallylls, ¢ y) €Ry x (HsNE), 0<6<1/2,

8o, mimicking the arguments in Example 4.14, we see that X has continuous trajectories in Hy,
and

T
(%)Elnﬂmﬁﬁ<w

for z € Hy N Ly2(0) and 0 < o < 1 — L, cf. (49). We aim at showing H; -stability (or,

v
equivalently, H(O)-stability) of the trivial solution in the present case. Assume that v > 2 and
d<3(sothata=1> g) and that F is of the form

(67) F(t,u) =asp(t)u—c(t)u?, (t,u) € Ry x[0,R],



for some R € ]0,0], ay : Ry = R, ¢c: Ry = Ry, 1 < ¢ < v. Assume, moreover, that
G(t,-) € C%([0, R[) and

(68) Vio(®) < |G'(t,u)] <bo(t), (t,u) € Ry x [0, R],
for two locally-bounded functions «,, b, : R+ —+ R4

We first deal with the case R = oo in (67), (68). By Example 4.6, the function f is 1-
dissipative on Ry x (H 10 E) and, by Example 4.17, Condition (£2)' is satisfied with o = %

2
r = 0o. In view of (£3)’, for any suitable 3> 0 and A = A + I, we have

(Azy, Azo(t,y))’
(69) = ((A+BDy,o(ty)’ A
= (Ay,0(t,y)) + |8y, o(t,9)) + 28(Ay, 0(t,9)) (v, 0 (t,v)),

y € H) NE = D(A) N E. Moreover,

2
(4y,a(t,y))* = /O —G(t,y@))}:—ai_(aij(a—az y(€)dé
By
2

/ NN
- | [ewwe D s(6) 5 16) g UE

1
Kol A2y,

v

cf. (62), and clearly

26( Ay, o(t,y))(y,0(t,y)) > 26k,(t)(Ay,y)|lylk  and
By, o(t,y))? > FPro®llyll,  (ty) € Ry x Hy.

Hence, by a similar continuity argument as in Example 4.17, we arrive at
(Ary, Aso(t,y))? > ro(t)|AZyllls, (t,9) € Ry x (Hy NE),

ie., (23) with a = % It now follows from Proposition 4.15 that the trivial solution is globally
asymptotically H %—stable (or, equivalently, H'(O)-stable) in probability and exponentially H 1-
stable in the 2pth mean, 0 < p < 1, if

(10) =B+ suplas(t) + 5H() — (1 — pIro(t)} < 0.

If the Conditions (67), (68) are satisfied with some R € |0, o[, only, and if the dimension d
is 1 (so that H 1 is continuously embedded into C(Q)) then we have 1/2-dissipativity, (£2)’, and

(23)' on the set Ry X (B, (r) N E) with some r € 0, 00|, only. In this case (70) yields (local)
2
H%-stability in probability. In particular, if the coefficients ' and G do not depend on ¢t € R

(so that F(u) = ayu — cu? for some a5 € R,c € R) then the Condition (70) for asymptotical
H L -stability in probability has the simple form

(1) ~B+ag— 3(G'(0)) <0

and (68) is valid with a possibly different number R.



4.19 A Stochastic Logistic Equation of Population Dynamics

Consider the formal equation of the form 1(5), 1(6), 1(22) (cf. also Example 4.14)

o 0 0
(12) 5p(6:6) = (@) gou(t,€)) +asu(t,) — ew?(t,8) + Gt ult (¢, §)
(t,€) € Ry x]0,1[, with the initial and boundary conditions
o o
(73) u(0,€) =uo(é) > 0, a—Z(t,m = a—‘g(t, 1) =0.

Here, a € C*([0,1]), @ > ag > 0, ay > 0, ¢ > 0, G : Ry x Ry — R satisfies G(¢,0) = 0,
and 7 stands for a scalar noise. The formal problem (72), (73) is a stochastic counterpart of a
logistic population-growth model with migration (cf., e.g., Murray [26]). It is a particular case
of Example 4.18. Assume that G(t,-) € C?([0, R[) and that

(74) Vho(t) < |G'(tu)] < bo(t), (t,u) € Ryx]0,R],

for some 0 < R < oo, where k, : Ry — R, and b, : R, — R are locally bounded and

(75) sup{gh3(0) ~ (1~ pIro(t)} < —a;
>0

for some 0 < p < 1. Then Example 4.18 shows that the zero solution is asymptotically H* ([0, 1])-
stable in probability. If G(¢,u) = G(u) does not depend on ¢t € R, then Condition (75) becomes

(76) oy < 5(G'(0))%

cf. (71). Thus, if |G'(0)| is large enough, that is, if the “diffusion” is large in a certain sense
then the zero solution can become stable, although it is unstable for Equation (72) without the
stochastic term.

Now assume also G(t,ay/c) =0, t € R; from the viewpoint of applications it is sometimes
interesting when the diffusion stabilizes near the level of saturation z; = ay /c. Then the formal
equation (72) has another trivial stationary solution, namely the constant X*! = ;. Stability
of this trivial solution can be analyzed by the method used above for the zero solution: After
the simple transformation of variables w = 1 — u, Equation (72) becomes the equation

F06) = elal€)5rut,0) + asu(t,§) + w6 - Glt, 1 — wlt, (e, ),

(t,€) € Ryx]0,1[, and X® is transformed into the zero solution. Let us, e.g., consider the
autonomous case G(t,u) = G(u). Since

(71) —ag < 3G (@)

is always true another application of Formula (71) shows, that the trivial solution X%1(t) = z;
is always asymptotically H'(0, 1)-stable in probability. The behaviour of (72) at saturation is,
however, different from that at 0 since, in the former case, the drift itself is stabilizing whereas
in the latter case it is destabilizing.
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