Appeared in Symposia Mathematica XXII, Analisi armonica e spazi di funzioni su gruppi localmente compatti (1977), 21–31

The Orlicz–Paley–Sidon Phenomenon for Singular Measures^{*}

EDWIN HEWITT and GUNTER RITTER

1. Introduction.

This note is concerned with the question "how small can the Fourier–Stieltjes transform of a singular measure be?," a question which we have also studied in another communication [5]. There is a companion question "how large can the Fourier transform of a continuous function with compact support be?." This question too we have studied in another communication [6].

Throughout this note, the symbol G will denote a nondiscrete locally compact abelian group and X will denote the character group of G. Haar measure on G is denoted by λ and on X by θ . The symbol $\mathbf{M}(G)$ will denote the space of all measures on G, defined as in [7], §19. The symbols $\mathbf{M}_d(G)$, $\mathbf{M}_c(G)$, $\mathbf{M}_s(G)$, and $\mathbf{M}_a(G)$ denote the discrete, continuous, continuous singular (with respect to Haar measure), and absolutely continuous (with respect to Haar measure) measures, respectively, in $\mathbf{M}(G)$. The nonnegative (real) measures in a set \mathbf{B} of measures are denoted by \mathbf{B}^+ (\mathbf{B}^r). The nonnegative functions in a space \mathcal{F} of functions are similarly denoted by \mathcal{F}^+ .

The Fourier-Stieltjes transform of a measure $\mu \in \mathbf{M}(G)$ is the function $\widehat{\mu}$ on X such that

$$\widehat{\mu}(\chi) = \int_G \overline{\chi(t)} d\mu(t) \quad \text{for } \chi \in X.$$

For $f \in \mathcal{L}_1(G)$, we identify f and the measure $\mu \in \mathbf{M}(G)$ such that $d\mu = f d\lambda$, we write \hat{f} for the Fourier transform of f:

$$\widehat{f}(\chi) = \int_{G} \overline{\chi(t)} f(t) d\lambda(t) \quad \text{for } \chi \in X$$

The symbols \mathbb{N} , \mathbb{Z} , \mathbb{R} , and \mathbb{C} denote the positive integers, the integers, the real numbers, and the complex numbers, respectively.

For a topological space Y, the symbols $\mathfrak{C}(Y)$, $\mathfrak{C}_0(Y)$, and $\mathfrak{C}_k(Y)$ denote respectively: the space of all bounded complex-valued continuous functions on Y; the space of all $f \in \mathfrak{C}(Y)$ that are arbitrarily small in absolute value outside of compact sets; and the space of all $f \in \mathfrak{C}(Y)$ that vanish outside of compact sets. If Y is discrete, we write $\mathfrak{C}_0(Y)$ as $\mathfrak{c}_0(Y)$.

The symbol $\mathbf{S}(G)$ denotes the set of all $\sigma \in \mathbf{M}_s^+(G)$ with compact support such that $\sigma(G) = 1$ and $\widehat{\sigma} \in \mathfrak{C}_0^+(X)$.

2. Singular transforms that are pointwise small.

Wiener and Wintner [14] constructed a probability measure $\sigma \in \mathbf{M}_{s}^{+}(\mathbb{T})$ ($\mathbf{M}_{s}^{+}(\mathbb{R})$) such that for every $\varepsilon > 0$, the relation

$$\begin{aligned} \widehat{\sigma}(n) &= O(|n|^{-\frac{1}{2}+\varepsilon}) \quad |n| \to \infty, \quad n \in \mathbb{Z} \\ (\widehat{\sigma}(t) &= O(|t|^{-\frac{1}{2}+\varepsilon}) \quad |t| \to \infty, \quad t \in \mathbb{R}) \end{aligned}$$

holds. They conjectured that if $\gamma_1, \gamma_2, \ldots$ are given positive numbers for which $\sum \gamma_n^2 = \infty$, then there exists a singular nonnegative measure σ for which $\hat{\sigma}(n) = O(\gamma_n)$ or $\hat{\sigma}(n) = o(\gamma_n)$ (*loc.cit.*, p. 514). This conjecture is incorrect, as the following construction shows.

^{*}I risultati conseguiti in questo lavoro sono stati esposti da E. Hewitt nella conferenza tenuta il 25 marzo 1976.

(2.1) THEOREM: There exists a strictly positive sequence $(\gamma_n)_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} \gamma_n^2 = \infty$ and such that if $\mu \in \mathbf{M}^r(\mathbb{T})$ and $|\hat{\mu}(n)| \leq \gamma_n$ for all $n \in \mathbb{N}$, then μ is absolutely continuous (with Radon–Nikodym derivative in $\mathcal{L}_2(\mathbb{T})$).

PROOF: First, let F be a Sidon set contained in \mathbb{Z} and suppose that ν is a measure in $\mathbf{M}(\mathbb{T})$ such that $\hat{\nu}(n) = 0$ for $n \in \mathbb{Z} \setminus F$. As Professor Alessandro Figà–Talamanca has kindly pointed out to us, this implies that $\hat{\nu} \in l_2(\mathbb{Z})$. For, let α be any function on \mathbb{Z} of absolute value 1. Since F is a Sidon set, there is a measure $\varrho \in \mathbf{M}(\mathbb{T})$ such that $\hat{\varrho}|_F = \alpha|_F$. Since $\hat{\nu}$ vanishes on $\mathbb{Z} \setminus F$, we have

$$\widehat{\nu \star \varrho} = \alpha \widehat{\nu}.$$

That is, $\alpha \hat{\nu}$ is a Fourier–Stieltjes transform for all choices of α . It is well known (see for example [7], (36.13)) that this property implies that $\hat{\nu} \in l_2(\mathbb{Z})$ and so in particular ν is absolutely continuous.

To define $(\gamma_n)_{n=1}^{\infty}$, let D be any infinite Sidon set contained in \mathbb{N} , and let γ_n be 1 (say) for $n \in D$. On the set $\mathbb{N} \setminus D$, let γ_n be strictly positive and such that $\sum_{n \in \mathbb{N} \setminus D} \gamma_n^2 < \infty$. Let μ be any measure in $\mathbf{M}^r(\mathbb{T})$ such that $|\hat{\mu}(n)| \leq \gamma_n$ for all $n \in \mathbb{N}$. Write F for the set $D \cup (-D)$. By a theorem of Drury [2], F is a Sidon set. Since $\hat{\mu}(-n) = \widehat{\mu}(n)$, the function $\hat{\mu} \cdot 1_{\mathbb{Z} \setminus F}$ is in $l_2(\mathbb{Z})$ and so has the form \hat{g} for some g in $\mathcal{L}_2(\mathbb{T})$.

The function $\hat{\mu} - \hat{g}$ vanishes on $\mathbb{Z} \setminus F$ and as noted above is therefore in $l_2(\mathbb{Z})$. Thus $\hat{\mu}$ is in $l_2(\mathbb{Z})$, so that μ is absolutely continuous with Radon–Nikodym derivative in $\mathcal{L}_2(\mathbb{T})$.

Some additional conditions must be imposed on $(\gamma_n)_{n=1}^{\infty}$ in order to establish the conjecture of Wiener and Wintner. The most refined result in this direction that we know of is due to Ivašev–Musatov [9]. We state a typical case of his theorem for measures on \mathbb{R} . For every $p \in \mathbb{N}$, there is a probability measure $\sigma \in \mathbf{M}_s^+(\mathbb{R})$ with support a perfect set E of Lebesgue measure 0 (E may be contained in $[0, 2\pi]$ or it may be unbounded) such that

(1)
$$\widehat{\sigma}(y) = o\left(\left(y\log(y)\log(\log(y))\dots\log_{(p)}(y)\right)^{-\frac{1}{2}}\right) \qquad y \to \infty.$$

We know of no complete resolution of the Wiener-Wintner conjecture.

3. Singular transforms that are small on the average.

For behavior "on the average" of singular Fourier–Stieltjes transforms, however, the situation is much clearer. First, in the communication [5], we have proved the following.

(3.1) THEOREM: (a) Let r be a real number greater than or equal to 2. There is a measure $\sigma \in \mathbf{S}(G)$ such that $\hat{\sigma} \in \mathcal{L}_p(X)$ if and only if p > r.

(b) Let r be a real number strictly greater than 2. There is a measure $\sigma \in \mathbf{S}(G)$ such that $\widehat{\sigma} \in \mathcal{L}_p(X)$ if and only if $p \ge r$.

(c) There is a measure $\sigma \in \mathbf{S}(G)$ such that $\widehat{\sigma}$ is in no space $\mathcal{L}_p(X), 1 \leq p < \infty$.

We also have proved in [5] the following improvement on (3.1) Part (a) for r = 2.

(3.2) THEOREM: Let φ be a nonnegative, Borel measurable, locally bounded function defined on $]0, \infty[$ with the property that $\lim_{s\to\infty} \varphi(s) = 0$. Then there exists a measure σ in $\mathbf{S}(G)$ such that

(i) $\int_X \widehat{\sigma}(\chi)^2 \varphi(\widehat{\sigma}(\chi)) d\theta(\chi) < \infty$.

(3.3) REMARKS: (a) Theorem (3.2) is a counterpart for singular measures of Gronwall's theorem [4] for Fourier transforms of continuous functions on \mathbb{T} , which we have extended in [6] to all groups G, using $\mathfrak{C}_k(G)$. Nothing like (3.2) appears in Gronwall *loc.cit.*, however.

(b) In (3.2) we need only set $\varphi(s) = (\log(1+1/s))^{-1}$ to obtain (3.1) Part (a) with r = 2.

4. Statement of present results.

A classical result of Orlicz [11], Paley [12], and Sidon [13], later extended by R.E. Edwards [3], asserts that $l_2(X)$ is the multiplier set for $\mathfrak{C}(G)$ if G is compact. The exact result is as follows.

(4.1) THEOREM: Let G be a compact group, so that X is discrete. If w is any complex function on X such that $w\hat{f} \in l_1(X)$ for all $f \in \mathfrak{C}(G)$, then w must be in $l_2(X)$.

The analogue of (4.1) for compact not necessarily abelian groups also holds, and can be found for example in [7], (36.12).

We may ask if any "inverse" phenomenon occurs with singular measures. Our first result is a somewhat surprising affirmative answer.

(4.2) THEOREM: Let G be a nondiscrete locally compact abelian group, and let w be any function in $\mathcal{L}_2^+(X)$. There exists a measure $\sigma \in \mathbf{S}(G)$ such that

(i) $\int_X \widehat{\sigma}(\chi) w(\chi) d\theta(\chi) < \infty$.

For compact G, we can say even more.

(4.3) THEOREM: Let G be a compact abelian group and let w be any function in $\mathfrak{c}_0^+(X)$. There is a measure $\sigma \in \mathbf{S}(G)$ such that

(i)
$$\sum_{\chi \in X} \widehat{\sigma}(\chi) w(\chi) < \infty$$
.

5. **Proof of** (4.2).

We first prove a measure-theoretic lemma. In (5.1), let (Y, A, μ) be an arbitrary measure space, i.e., a set Y, a σ -algebra A of subsets of Y, and a countably additive nonnegative (possibly infinite) measure μ on A. Write \mathcal{L}_2 for $\mathcal{L}_2(Y, A, \mu)$.

(5.1) LEMMA: Let w be a function in \mathcal{L}_2^+ . There exists a function Ψ defined on $]0, \infty[$ with values in $]0, \infty[$ such that

- (i) Ψ is continuous;
- (ii) Ψ is strictly increasing;
- (iii) $\lim_{y\to 0} \Psi(y) = 0;$
- (iv) $\lim_{y\to 0} \Psi(y) \cdot y^{-1} = \infty;$
- (v) $\lim_{y\to 0} \Psi(y) = \infty;$
- (vi) $\int_{Y} w(t)\Psi(w(t))d\mu(t) < \infty$.

PROOF: For all $n \in \mathbb{N}$, let $A_n = \{y \in Y : (n+1)^{-1} \le w(y) < n^{-1}\}$. It is clear that

(1)
$$\sum_{n=1}^{\infty} (n+1)^{-2} \mu(A_n) \le \sum_{n=1}^{\infty} \int_{A_n} w^2(t) d\mu(t) \le \int_Y w^2(t) d\mu(t) < \infty,$$

and since

$$\frac{1}{n^2} \le \frac{4}{(n+1)^2},$$

(1) implies that

(2)
$$\sum_{n=1}^{\infty} n^{-2} \mu(A_n) < \infty.$$

A theorem of Dini (see e.g. [10], §39, paragraph 15, p. 302) shows that there is a nondecreasing sequence $(\gamma_n)_{n \in \mathbb{N}}$ of positive real numbers such that

(3)
$$\lim_{n \to \infty} \gamma_n = \infty$$

and

(4)
$$\sum_{n=1}^{\infty} \gamma_n n^{-2} \mu(A_n) < \infty.$$

Now define a sequence $(\beta_n)_{n \in \mathbb{N}}$ of positive real numbers by induction. Let $\beta_1 = \gamma_1$, and suppose that $\beta_1, \ldots, \beta_{n-1}$ have been defined. Then we define

$$\beta_n = \min(\gamma_n, n^{\frac{1}{2}}, (n + \frac{3}{2})(n + 1)^{-1}\beta_{n-1}).$$

It is obvious that $(\beta_n)_{n\in\mathbb{N}}$ is nondecreasing, that

$$\beta_n \le n^{\frac{1}{2}},$$

(6)
$$\beta_n/\beta_{n-1} < (n+2)/(n+1),$$

and from (4) that

(7)
$$\sum_{n=1}^{\infty} \beta_n n^{-2} \mu(A_n) < \infty$$

The only way for $(\beta_n)_{n \in \mathbb{N}}$ possibly to be bounded is for β_n to be $(n + \frac{3}{2})(n+1)^{-1}\beta_{n-1}$ for all $n \ge k$ for some fixed index k. Then we have

$$\beta_{k+l} = \prod_{j=1}^{l+1} \left(1 + \frac{1}{2} \frac{1}{k+j} \right) \beta_{k-1}$$

> $\frac{1}{2} \left(\frac{1}{k+1} + \dots + \frac{1}{k+l+1} \right) \beta_{k-1}.$

We thus have

(8)

Now for all $n \in \mathbb{N}$, define

$$\psi\left(\frac{1}{n+1}\right) = \beta_n,$$

 $\lim_{n \to \infty} \beta_n = \infty.$

interpolate ψ as a linear function in each interval $\left[\frac{1}{(n+1)}, \frac{1}{n}\right]$ $(n \in \{2, 3, ...\})$, and for $y > \frac{1}{2}$ let $\psi(y) = \beta_1(2y)^{-\frac{1}{2}}$. Finally, define the function Ψ on $\left[0, \infty\right]$ by

(9)
$$\Psi(y) = y\psi(y)$$

Clearly Ψ is continuous. A short computation using (6) shows that Ψ is strictly increasing: we omit the details. It follows from (5) and the monotonicity of Ψ that $\lim_{y\to 0} \Psi(y) = 0$. Relation (iv) follows from (8) and the definitions of ψ and Ψ while (v) is immediate.

It remains to establish (vi). Write B for the set $\{t \in Y : w(t) \ge 1\}$, and then estimate as follows:

$$\begin{split} \int_{Y} w\Psi(w)d\mu &= \int_{Y} w^{2}\psi(w)d\mu \\ &= \int_{B} w^{2}\psi(w)d\mu + \sum_{n=1}^{\infty} \int_{A_{n}} w^{2}\psi(w)d\mu \\ &\leq \psi(1) \int_{Y} w^{2}d\mu + \sum_{n=1}^{\infty} \frac{1}{n^{2}}\mu(A_{n})\beta_{n} \\ &< \infty. \end{split}$$

(5.2) COMPLETION OF PROOF: For the measure space of Lemma (5.1), take the character group X of G, the σ -algebra of Borel sets, and Haar measure θ on X. Given a function w in $\mathcal{L}_2^+(X)$, construct the function Ψ as in (5.1), and further define $\Psi(0) = 0$. Thus Ψ is continuous on $[0, \infty[$. Let Φ be the inverse function to $\Psi : \Psi(\Phi(x)) = x$ for all $x \in [0, \infty[$. For $x \in]0, \infty[$, let $\varphi(x) = \Phi(x)/x$. For $x \in]0, \infty[$, let y be the (unique) number such that $x = \Psi(y)$. Then we have

$$\varphi(x) = \Phi(x)/x = y/\Psi(y)$$

and (5.1.iv) implies that

(1)
$$\lim_{x \to 0} \varphi(x) = 0.$$

Note next that for arbitrary numbers a, b in $[0, \infty]$, the inequality

(2)
$$ab \le a\Psi(a) + b\Phi(b)$$

obtains (a simple sketch suffices to verify this).

Finally, we cite Theorem (3.2) to produce a measure $\sigma \in \mathbf{S}(G)$ such that

(3)
$$\int_X \widehat{\sigma}(\chi)^2 \varphi(\widehat{\sigma}(\chi)) d\theta(\chi) < \infty,$$

where φ is the function defined in the preceding paragraph. For every $\chi \in X$, (2) shows that

(4)

$$w(\chi)\widehat{\sigma}(\chi) \leq w(\chi)\Psi(w(\chi)) + \widehat{\sigma}(\chi)\Phi(\widehat{\sigma}(\chi))$$

$$=w(\chi)\Psi(w(\chi)) + \widehat{\sigma}(\chi)^{2}\varphi(\widehat{\sigma}(\chi)).$$

Integrate the inequality (4) over X and apply (3) and (5.1.vi). This shows that

$$\int_X w(\chi)\widehat{\sigma}(\chi)d\theta(\chi) < \infty,$$

as we wished to prove.

6. **Proof of** (4.3).

Throughout this section, we take G to be compact (and infinite), so that X is discrete. We prove first a group–theoretic fact.

(6.1) LEMMA: Let X be an infinite abelian group and $(\Phi_n)_{n=1}^{\infty}$ a sequence of finite subsets of X. There is a countably infinite dissociate subset $(\chi_n)_{n=1}^{\infty}$ of X such that for all $n \in \mathbb{N}$,

(i) no product $\chi_1^{\varepsilon_1}\chi_2^{\varepsilon_2}\ldots\chi_{n-1}^{\varepsilon_{n-1}}\chi_n^{\pm 1}$ lies in Φ_n ,

where
$$\varepsilon_j \in \{-1, 0, 1\}$$
 for $1 \le j \le n - 1$.

PROOF: Case I: the set $\{\chi^2 : \chi \in X\}$ is infinite. The proof is by induction. Let χ_1 be any element not in $\{1\} \cup \Phi_1 \cup \Phi_1^{-1}$. Suppose that $\chi_1, \ldots, \chi_{n-1}$ have been chosen so as to be dissociate and to satisfy (i) with n replaced by n-1. Let A_n be the set of all products

(1)
$$\psi_1^{\delta_1} \psi_2^{\delta_2} \dots \psi_n^{\delta_n}$$

where $\delta_j \in \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$, and $\{\psi_1, \psi_2, \dots, \psi_n\}$ is an arbitrary subset of $\{\chi_1, \chi_2, \dots, \chi_{n-1}\} \cup \Phi_n$. The set A_n is finite. Under our hypothesis, there is an element $\chi_n \in X$ such that $\chi_n^2 \notin A_n$. If

$$\chi_1^{\varepsilon_1} \dots \chi_{n-1}^{\varepsilon_{n-1}} \chi_n^{\pm 1} \in \Phi_n,$$

with $\varepsilon_j \in \{-1, 0, 1\}$, then χ_n^2 is in A_n . Thus (i) holds with this choice of χ_n . To prove that $\{\chi_1, \ldots, \chi_n\}$ is dissociate, suppose that

$$\chi_1^{m_1}, \chi_2^{m_2} \dots \chi_n^{m_n} = 1$$

with $m_j \in \{-2, -1, 0, 1, 2\}$. If $m_n \neq 0$, then χ_n^2 is obviously a product (1). Hence $m_n = 0$ and $\chi_1^{m_1} = \cdots = \chi_{n-1}^{m_{n-1}} = 1$ by our inductive hypothesis.

Case II: the set $\{\chi^2 : \chi \in X\}$ is finite. In this case X contains a subgroup Γ isomorphic with the direct sum $P_{n=1}^{\infty} \mathbb{Z}(2)$, which we realize as the group D of all sequences $\mathbf{x} = (x_1, x_2, ...)$ with $x_n \in \{0, 1\}$ and x_n eventually zero. (See [8].) Replacing Φ_n by $\Phi_n \cap \Gamma$, we may suppose that X = D. For $n \in \mathbb{N}$, let $e^{(n)}$ be the element of D such that $e_k^{(n)} = \delta_{nk}$ (Kronecker's δ -function). For $n \in \mathbb{N}$, let

 $l_n = \max\{l \in \mathbb{N} : x_l = 1 \text{ for some } x \in \Phi_n\}.$

We define a sequence $(s_n)_{n=1}^{\infty}$ of positive integers by induction. Let $s_1 = l_1 + 1$. When s_1, \ldots, s_{n-1} have been defined, let

$$s_n = \max\{s_1, \dots, s_{n-1}, l_1, \dots, l_n\} + 1.$$

It is clear that the set $\{e^{(s_n)}\}_{n \in \mathbb{N}} \subset D$ is dissociate and satisfies (i).

(6.2) COMPLETION OF PROOF. Let w be any function in $\mathfrak{c}_0^+(X)$. For $n \in \mathbb{N}$, let

$$\Phi_n = \{ \chi \in X : w(\chi) \ge 4^{-n} \}.$$

Let $\Delta = {\chi_n}_{n \in \mathbb{N}}$ be a dissociate set in X satisfying (6.1.i) for these sets Φ_n . Now form the Riesz product $\mu_{\Delta,\beta}$ for this set Δ and the function β on Δ such that $\beta(\chi_n) = \frac{1}{2}n^{-\frac{1}{2}}$ for all $n \in \mathbb{N}$. The measure $\mu_{\Delta,\beta}$ is defined by the following relations:

(1)
$$\widehat{\mu}(1) = 1;$$

(2)
$$\widehat{\mu}(\chi_1^{\delta_1}\dots\chi_m^{\delta_m}) = \left(\frac{1}{2}\right)^{|\delta|} 1^{-\frac{1}{2}|\delta_1|}\dots m^{-\frac{1}{2}|\delta_m|}$$

for all sequences $\delta = (\delta_1, \dots, \delta_m)$ with $\delta_j \in \{-1, 0, 1\}$, where we write $|\delta| = \sum_{j=1}^m |\delta_j|$;

 $\widehat{\mu}(\psi) = 0$ for all $\psi \in X$ not of the form appearing in (2).

It is known that $\mu_{\Delta,\beta}$ is in $\mathbf{M}^+(G)$, $\mu(G) = 1$, and that $\mu_{\Delta,\beta}$ is uniquely determined by (1)–(3). See for example [7], (37.14). We write σ for the measure $\mu_{\Delta,\beta}$. It is clear that $\hat{\sigma} \in \mathfrak{c}_0(X)$ and hence $\sigma \in \mathbf{M}_c(G)$. Since $\sum_{n=1}^{\infty} \beta_n^2 = \infty$, we cite a theorem of Brown and Moran [1] to prove that σ is purely singular: $\sigma \in \mathbf{M}_s(G)$.

For $m \in \mathbb{N}$, let Q_m be the set of all sequences δ as in (2) for which $\delta_m = \pm 1$. If $\delta \in Q_m$, the character

$$\chi_1^{\delta_1}\chi_2^{\delta_2}\dots\chi_m^{\delta_m}=\psi_\delta$$

is not in Φ_m (Lemma (6.1)). The cardinal number of Q_m is $2 \cdot 3^{m-1}$. The number $\hat{\sigma}(\psi_{\delta})$ does not exceed $\frac{1}{2}m^{-\frac{1}{2}}$. We have

$$\sum_{\chi \in X} w(\chi) \widehat{\sigma}(\chi) \le w(1) + \sum_{m=1}^{\infty} \sum_{\delta \in Q_m} w(\psi_{\delta}) \widehat{\sigma}(\psi_{\delta}) \le w(1) + \sum_{m=1}^{\infty} 4^{-m} 2 \cdot 3^{m-1} \frac{1}{2} m^{-\frac{1}{2}} < \infty.$$

Testo pervenuto il 30 aprile 1976 Bozze licenziate il 10 maggio 1977.

References

- Gavin Brown and William Moran. On orthogonality of Riesz products. Math. Proc. Camb. Phil. Soc., 76:173–181, 1974.
- [2] S.W. Drury. Sur les ensembles de Sidon. C.R. Acad. Sci. Paris, Sér. A-B, 271:A 162–A 163, 1970.
- [3] R.E. Edwards. Changing signs of Fourier coefficients. Pacific J. Math., 15:463–475, 1965.
- [4] T.H. Gronwall. On the Fourier coefficients of a continuous function. Bull. Amer. Math. Soc., 27:320– 321, 1921.
- [5] Edwin Hewitt and Gunter Ritter. On the integrability of Fourier transforms on groups, Part II: Fourier-Stieltjes transforms of singular measures. Proc. Royal Irish Acad., 77, Sec. A:265–287, 1976.
- [6] Edwin Hewitt and Gunter Ritter. Über die Integrierbarkeit von Fourier-Transformierten auf Gruppen. Teil I. Stetige Funktionen mit kompaktem Träger und eine Bemerkung über hyperbolische Differentialoperatoren. Math. Ann., 224:77–96, 1976.
- [7] Edwin Hewitt and Kenneth A. Ross. Abstract Harmonic Analysis, volume I, II. Springer, Berlin, Heidelberg, New York, 1963 and 1970.
- [8] Edwin Hewitt and H.S. Zuckerman. Singular measures with absolutely continuous convolution squares. Proc. Camb. Phil. Soc., 62:399–420, 1966. Corrigendum ibid. 63, 367-368 (1967).
- [9] O.S. Ivašev-Musatov. On coefficients of trigonometric null-series. Izv. Akad. Nauk SSSR, Ser. mat., 21:559–578, 1957.
- [10] K. Knopp. Theorie und Anwendungen der unendlichen Reihen. Springer, Berlin-Heidelberg, 4. edition, 1947.
- [11] W. Orlicz. Beiträge zur Theorie der Orthogonalentwicklungen (III). Bull. Int. Acad. Polon., Série A, 8/9:229–238, 1932.
- [12] R.E.A.C. Paley. A note on power series. J. London Math. Soc., 7:122–130, 1932.
- [13] S. Sidon. Ein Satz über die Fourierschen Reihen stetiger Funktionen. Math. Z., 34:485–486, 1932.
- [14] N. Wiener and A. Wintner. Fourier-Stieltjes transforms and singular infinite convolutions. Amer. J. Math., 60:513-522, 1938.