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The Orlicz–Paley–Sidon Phenomenon
for Singular Measures∗

Edwin Hewitt and Gunter Ritter

1. Introduction.

This note is concerned with the question “how small can the Fourier–Stieltjes transform of a singular
measure be?,” a question which we have also studied in another communication [5]. There is a companion
question “how large can the Fourier transform of a continuous function with compact support be?.” This
question too we have studied in another communication [6].

Throughout this note, the symbol G will denote a nondiscrete locally compact abelian group and
X will denote the character group of G. Haar measure on G is denoted by λ and on X by θ. The
symbol M(G) will denote the space of all measures on G, defined as in [7], §19. The symbols Md(G),
Mc(G), Ms(G), and Ma(G) denote the discrete, continuous, continuous singular (with respect to Haar
measure), and absolutely continuous (with respect to Haar measure) measures, respectively, in M(G).
The nonnegative (real) measures in a set B of measures are denoted by B+ (Br). The nonnegative
functions in a space F of functions are similarly denoted by F

+.

The Fourier–Stieltjes transform of a measure µ ∈ M(G) is the function µ̂ on X such that

µ̂(χ) =

∫

G

χ(t)dµ(t) for χ ∈ X.

For f ∈ L1(G), we identify f and the measure µ ∈ M(G) such that dµ = fdλ, we write f̂ for the Fourier
transform of f :

f̂(χ) =

∫

G

χ(t)f(t)dλ(t) for χ ∈ X.

The symbols N, Z, R, and C denote the positive integers, the integers, the real numbers, and the complex
numbers, respectively.

For a topological space Y , the symbols C(Y ), C0(Y ), and Ck(Y ) denote respectively: the space of all
bounded complex–valued continuous functions on Y ; the space of all f ∈ C(Y ) that are arbitrarily small
in absolute value outside of compact sets; and the space of all f ∈ C(Y ) that vanish outside of compact
sets. If Y is discrete, we write C0(Y ) as c0(Y ).

The symbol S(G) denotes the set of all σ ∈ M+
s (G) with compact support such that σ(G) = 1 and

σ̂ ∈ C
+
0 (X).

2. Singular transforms that are pointwise small.

Wiener and Wintner [14] constructed a probability measure σ ∈ M+
s (T) (M+

s (R)) such that for every
ε > 0, the relation

σ̂(n) = O(|n|−
1

2
+ε) |n| → ∞, n ∈ Z(

σ̂(t) = O(|t|−
1

2
+ε) |t| → ∞, t ∈ R

)

holds. They conjectured that if γ1, γ2, . . . are given positive numbers for which
∑
γ2

n = ∞, then there
exists a singular nonnegative measure σ for which σ̂(n) = O(γn) or σ̂(n) = o(γn) (loc.cit., p. 514). This
conjecture is incorrect, as the following construction shows.

∗I risultati conseguiti in questo lavoro sono stati esposti da E. Hewitt nella conferenza tenuta il 25 marzo 1976.
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(2.1) Theorem: There exists a strictly positive sequence (γn)∞n=1 such that
∑∞

n=1 γ
2
n = ∞ and such

that if µ ∈ Mr(T) and |µ̂(n)| ≤ γn for all n ∈ N, then µ is absolutely continuous (with Radon–Nikodym
derivative in L2(T)).

Proof: First, let F be a Sidon set contained in Z and suppose that ν is a measure in M(T) such
that ν̂(n) = 0 for n ∈ Z \ F . As Professor Alessandro Figà–Talamanca has kindly pointed out to us, this
implies that ν̂ ∈ l2(Z). For, let α be any function on Z of absolute value 1. Since F is a Sidon set, there
is a measure % ∈ M(T) such that %̂|F = α|F . Since ν̂ vanishes on Z \ F , we have

ν̂ ? % = αν̂.

That is, αν̂ is a Fourier–Stieltjes transform for all choices of α. It is well known (see for example [7],
(36.13)) that this property implies that ν̂ ∈ l2(Z) and so in particular ν is absolutely continuous.

To define (γn)∞n=1, let D be any infinite Sidon set contained in N, and let γn be 1 (say) for n ∈ D.
On the set N \D, let γn be strictly positive and such that

∑
n∈N\D γ2

n < ∞. Let µ be any measure in

Mr(T) such that |µ̂(n)| ≤ γn for all n ∈ N. Write F for the set D ∪ (−D). By a theorem of Drury [2], F
is a Sidon set. Since µ̂(−n) = µ̂(n), the function µ̂ · 1Z\F is in l2(Z) and so has the form ĝ for some g in
L2(T).

The function µ̂− ĝ vanishes on Z \ F and as noted above is therefore in l2(Z). Thus µ̂ is in l2(Z), so
that µ is absolutely continuous with Radon–Nikodym derivative in L2(T).

Some additional conditions must be imposed on (γn)∞n=1 in order to establish the conjecture of Wiener
and Wintner. The most refined result in this direction that we know of is due to Ivašev–Musatov [9]. We
state a typical case of his theorem for measures on R. For every p ∈ N, there is a probability measure
σ ∈ M+

s (R) with support a perfect set E of Lebesgue measure 0 (E may be contained in [0, 2π] or it may
be unbounded) such that

(1) σ̂(y) = o
((
y log(y) log(log(y)) . . . log(p)(y)

)− 1

2

)
y → ∞.

We know of no complete resolution of the Wiener–Wintner conjecture.

3. Singular transforms that are small on the average.

For behavior “on the average” of singular Fourier–Stieltjes transforms, however, the situation is much
clearer. First, in the communication [5], we have proved the following.

(3.1) Theorem: (a) Let r be a real number greater than or equal to 2. There is a measure σ ∈ S(G)
such that σ̂ ∈ Lp(X) if and only if p > r.

(b) Let r be a real number strictly greater than 2. There is a measure σ ∈ S(G) such that σ̂ ∈ Lp(X)
if and only if p ≥ r.

(c) There is a measure σ ∈ S(G) such that σ̂ is in no space Lp(X), 1 ≤ p <∞.

We also have proved in [5] the following improvement on (3.1) Part (a) for r = 2.

(3.2) Theorem: Let ϕ be a nonnegative, Borel measurable, locally bounded function defined on
]0,∞[ with the property that lims→∞ ϕ(s) = 0. Then there exists a measure σ in S(G) such that

(i)
∫

X
σ̂(χ)2ϕ(σ̂(χ))dθ(χ) <∞.

(3.3) Remarks: (a) Theorem (3.2) is a counterpart for singular measures of Gronwall’s theorem [4]
for Fourier transforms of continuous functions on T, which we have extended in [6] to all groups G, using
Ck(G). Nothing like (3.2) appears in Gronwall loc.cit., however.

(b) In (3.2) we need only set ϕ(s) =
(
log(1 + 1/s)

)−1
to obtain (3.1) Part (a) with r = 2.
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4. Statement of present results.

A classical result of Orlicz [11], Paley [12], and Sidon [13], later extended by R.E. Edwards [3], asserts
that l2(X) is the multiplier set for C(G) if G is compact. The exact result is as follows.

(4.1) Theorem: Let G be a compact group, so that X is discrete. If w is any complex function on

X such that wf̂ ∈ l1(X) for all f ∈ C(G), then w must be in l2(X).

The analogue of (4.1) for compact not necessarily abelian groups also holds, and can be found for
example in [7], (36.12).

We may ask if any “inverse” phenomenon occurs with singular measures. Our first result is a some-
what surprising affirmative answer.

(4.2) Theorem: Let G be a nondiscrete locally compact abelian group, and let w be any function in
L

+
2 (X). There exists a measure σ ∈ S(G) such that

(i)
∫

X
σ̂(χ)w(χ)dθ(χ) <∞.

For compact G, we can say even more.

(4.3) Theorem: Let G be a compact abelian group and let w be any function in c
+
0 (X). There is a

measure σ ∈ S(G) such that

(i)
∑

χ∈X

σ̂(χ)w(χ) <∞.

5. Proof of (4.2).

We first prove a measure–theoretic lemma. In (5.1), let (Y,A, µ) be an arbitrary measure space, i.e.,
a set Y , a σ–algebra A of subsets of Y , and a countably additive nonnegative (possibly infinite) measure
µ on A. Write L2 for L2(Y,A, µ).

(5.1) Lemma: Let w be a function in L
+
2 . There exists a function Ψ defined on ]0,∞[ with values in

]0,∞[ such that

(i) Ψ is continuous;

(ii) Ψ is strictly increasing;

(iii) limy→0 Ψ(y) = 0;

(iv) limy→0 Ψ(y) · y−1 = ∞;

(v) limy→0 Ψ(y) = ∞;

(vi)
∫

Y
w(t)Ψ(w(t))dµ(t) <∞.

Proof: For all n ∈ N, let An = {y ∈ Y : (n+ 1)−1 ≤ w(y) < n−1}. It is clear that

(1)
∞∑

n=1

(n+ 1)−2µ(An) ≤
∞∑

n=1

∫

An

w2(t)dµ(t) ≤

∫

Y

w2(t)dµ(t) <∞,

and since
1

n2
≤

4

(n+ 1)2
,
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(1) implies that

(2)
∞∑

n=1

n−2µ(An) <∞.

A theorem of Dini (see e.g. [10], §39, paragraph 15, p. 302) shows that there is a nondecreasing sequence
(γn)n∈N of positive real numbers such that

(3) lim
n→∞

γn = ∞

and

(4)

∞∑

n=1

γnn
−2µ(An) <∞.

Now define a sequence (βn)n∈N of positive real numbers by induction. Let β1 = γ1, and suppose that
β1, . . . , βn−1 have been defined. Then we define

βn = min(γn, n
1

2 , (n+
3

2
)(n+ 1)−1βn−1).

It is obvious that (βn)n∈N is nondecreasing, that

(5) βn ≤ n
1

2 ,

(6) βn/βn−1 < (n+ 2)/(n+ 1),

and from (4) that

(7)
∞∑

n=1

βnn
−2µ(An) <∞.

The only way for (βn)n∈N possibly to be bounded is for βn to be (n+ 3
2 )(n+ 1)−1βn−1 for all n ≥ k for

some fixed index k. Then we have

βk+l =
l+1∏

j=1

(
1 +

1

2

1

k + j

)
βk−1

>
1

2

(
1

k + 1
+ · · · +

1

k + l + 1

)
βk−1.

We thus have

(8) lim
n→∞

βn = ∞.

Now for all n ∈ N, define

ψ

(
1

n+ 1

)
= βn,

interpolate ψ as a linear function in each interval ]1/(n + 1), 1/n[ (n ∈ {2, 3, . . .}), and for y > 1
2 let

ψ(y) = β1(2y)
− 1

2 . Finally, define the function Ψ on ]0,∞[ by

(9) Ψ(y) = yψ(y).

Clearly Ψ is continuous. A short computation using (6) shows that Ψ is strictly increasing: we omit the
details. It follows from (5) and the monotonicity of Ψ that limy→0 Ψ(y) = 0. Relation (iv) follows from
(8) and the definitions of ψ and Ψ while (v) is immediate.
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It remains to establish (vi). Write B for the set {t ∈ Y : w(t) ≥ 1}, and then estimate as follows:

∫

Y

wΨ(w)dµ =

∫

Y

w2ψ(w)dµ

=

∫

B

w2ψ(w)dµ+

∞∑

n=1

∫

An

w2ψ(w)dµ

≤ψ(1)

∫

Y

w2dµ+

∞∑

n=1

1

n2
µ(An)βn

<∞.

(5.2) Completion of Proof: For the measure space of Lemma (5.1), take the character group X
of G, the σ–algebra of Borel sets, and Haar measure θ on X . Given a function w in L

+
2 (X), construct

the function Ψ as in (5.1), and further define Ψ(0) = 0. Thus Ψ is continuous on [0,∞[. Let Φ be the
inverse function to Ψ : Ψ(Φ(x)) = x for all x ∈ [0,∞[. For x ∈]0,∞[, let ϕ(x) = Φ(x)/x. For x ∈]0,∞[,
let y be the (unique) number such that x = Ψ(y). Then we have

ϕ(x) = Φ(x)/x = y/Ψ(y)

and (5.1.iv) implies that

(1) lim
x→0

ϕ(x) = 0.

Note next that for arbitrary numbers a, b in [0,∞[, the inequality

(2) ab ≤ aΨ(a) + bΦ(b)

obtains (a simple sketch suffices to verify this).

Finally, we cite Theorem (3.2) to produce a measure σ ∈ S(G) such that

(3)

∫

X

σ̂(χ)2ϕ(σ̂(χ))dθ(χ) <∞,

where ϕ is the function defined in the preceding paragraph. For every χ ∈ X , (2) shows that

w(χ)σ̂(χ) ≤w(χ)Ψ(w(χ)) + σ̂(χ)Φ(σ̂(χ))(4)

=w(χ)Ψ(w(χ)) + σ̂(χ)2ϕ(σ̂(χ)).

Integrate the inequality (4) over X and apply (3) and (5.1.vi). This shows that

∫

X

w(χ)σ̂(χ)dθ(χ) <∞,

as we wished to prove.

6. Proof of (4.3).

Throughout this section, we take G to be compact (and infinite), so that X is discrete. We prove first
a group–theoretic fact.

(6.1) Lemma: Let X be an infinite abelian group and (Φn)∞n=1 a sequence of finite subsets of X .
There is a countably infinite dissociate subset (χn)∞n=1 of X such that for all n ∈ N,

(i) no product χε1

1 χ
ε2

2 . . . χ
εn−1

n−1 χ
±1
n lies in Φn,

where εj ∈ {−1, 0, 1} for 1 ≤ j ≤ n− 1.
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Proof: Case I: the set {χ2 : χ ∈ X} is infinite. The proof is by induction. Let χ1 be any element
not in {1} ∪ Φ1 ∪ Φ−1

1 . Suppose that χ1, . . . , χn−1 have been chosen so as to be dissociate and to satisfy
(i) with n replaced by n− 1. Let An be the set of all products

(1) ψδ1

1 ψ
δ2

2 . . . ψδn

n

where δj ∈ {−4,−3,−2,−1, 0, 1, 2, 3, 4}, and {ψ1, ψ2, . . . , ψn} is an arbitrary subset of {χ1, χ2, . . . , χn−1}∪
Φn. The set An is finite. Under our hypothesis, there is an element χn ∈ X such that χ2

n /∈ An. If

χε1

1 . . . χ
εn−1

n−1 χ
±1
n ∈ Φn,

with εj ∈ {−1, 0, 1}, then χ2
n is in An. Thus (i) holds with this choice of χn. To prove that {χ1, . . . , χn}

is dissociate, suppose that
χm1

1 , χm2

2 . . . χmn

n = 1

with mj ∈ {−2,−1, 0, 1, 2}. If mn 6= 0, then χ2
n is obviously a product (1). Hence mn = 0 and

χm1

1 = · · · = χ
mn−1

n−1 = 1 by our inductive hypothesis.

Case II: the set {χ2 : χ ∈ X} is finite. In this case X contains a subgroup Γ isomorphic with the
direct sum P ∗∞

n=1Z(2), which we realize as the group D of all sequences x = (x1, x2, . . . ) with xn ∈ {0, 1}
and xn eventually zero. (See [8].) Replacing Φn by Φn ∩ Γ, we may suppose that X = D. For n ∈ N, let

e(n) be the element of D such that e
(n)
k = δnk (Kronecker’s δ–function). For n ∈ N, let

ln = max{l ∈ N : xl = 1 for some x ∈ Φn}.

We define a sequence (sn)∞n=1 of positive integers by induction. Let s1 = l1 + 1. When s1, . . . , sn−1 have
been defined, let

sn = max{s1, . . . , sn−1, l1, . . . , ln} + 1.

It is clear that the set {e(sn)}n∈N ⊂ D is dissociate and satisfies (i).

(6.2) Completion of Proof. Let w be any function in c
+
0 (X). For n ∈ N, let

Φn = {χ ∈ X : w(χ) ≥ 4−n}.

Let ∆ = {χn}n∈N be a dissociate set in X satisfying (6.1.i) for these sets Φn. Now form the Riesz product

µ∆,β for this set ∆ and the function β on ∆ such that β(χn) = 1
2n

− 1

2 for all n ∈ N. The measure µ∆,β

is defined by the following relations:

(1) µ̂(1) = 1;

(2) µ̂(χδ1

1 . . . χδm

m ) =

(
1

2

)|δ|

1−
1

2
|δ1| . . .m− 1

2
|δm|

for all sequences δ = (δ1, . . . , δm) with δj ∈ {−1, 0, 1}, where we write |δ| =
∑m

j=1 |δj |;

µ̂(ψ) = 0 for all ψ ∈ X not of the form appearing in (2).

It is known that µ∆,β is in M+(G), µ(G) = 1, and that µ∆,β is uniquely determined by (1)–(3).
See for example [7], (37.14). We write σ for the measure µ∆,β. It is clear that σ̂ ∈ c0(X) and hence
σ ∈ Mc(G). Since

∑∞
n=1 β

2
n = ∞, we cite a theorem of Brown and Moran [1] to prove that σ is purely

singular: σ ∈ Ms(G).

For m ∈ N, let Qm be the set of all sequences δ as in (2) for which δm = ±1. If δ ∈ Qm, the character

χδ1

1 χ
δ2

2 . . . χδm

m = ψδ

is not in Φm (Lemma (6.1)). The cardinal number of Qm is 2 · 3m−1. The number σ̂(ψδ) does not exceed
1
2m

− 1

2 . We have

∑

χ∈X

w(χ)σ̂(χ) ≤ w(1) +

∞∑

m=1

∑

δ∈Qm

w(ψδ)σ̂(ψδ) ≤ w(1) +

∞∑

m=1

4−m2 · 3m−1 1

2
m− 1

2 <∞.

Testo pervenuto il 30 aprile 1976

Bozze licenziate il 10 maggio 1977.

6



References

[1] Gavin Brown and William Moran. On orthogonality of Riesz products. Math. Proc. Camb. Phil.

Soc., 76:173–181, 1974.

[2] S.W. Drury. Sur les ensembles de Sidon. C.R. Acad. Sci. Paris, Sér. A-B, 271:A 162–A 163, 1970.

[3] R.E. Edwards. Changing signs of Fourier coefficients. Pacific J. Math., 15:463–475, 1965.

[4] T.H. Gronwall. On the Fourier coefficients of a continuous function. Bull. Amer. Math. Soc., 27:320–
321, 1921.

[5] Edwin Hewitt and Gunter Ritter. On the integrability of Fourier transforms on groups, Part II:
Fourier-Stieltjes transforms of singular measures. Proc. Royal Irish Acad., 77, Sec. A:265–287, 1976.
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