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Abstract We establish an affine equivariant, constrained heteroscedastic model and criterion
with trimming for clustering contaminated, grouped data. We show existence of the maximum
likelihood estimator, propose a method for determining an appropriate constraint, and design a
strategy for finding reasonable clusterings. We finally compute breakdown points of the estimated
parameters thereby showing asymptotic robustness of the method.
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1 Introduction

1.1 Background

Statistical clustering methods start from a statistical model of the data deriving from it, in general
by the maximum likelihood or maximum a posteriori paradigms, a cluster criterion to be optimized.
Various problems, expected and unexpected ones, are encountered on this way. First, the criteria do
not possess maxima in general so that special precautions have to be taken. Second, the criteria
possess so–called “local maxima” and “minimum distance partitions” (MDP’s), some of them
reasonable solutions but others containing spurious, undesirable clusters. Third, optimization of
the criteria is not easy. Fourth, the clustering method obtained may not be robust in the sense
that deviations from the model may grossly falsify the result.

Solutions to some of these problems are available. Hathaway (1985), following a proposal by
Dennis (1981), Evelyn Martin Lansdowne Beale, and James R. Thompson (oral communications),
investigated constraints on the scale parameters v1, . . . , vg of a univariate normal mixture of g
components showing that they mitigated or even avoided some of the problems. Hathaway also
indicated how to extend the constraints to d dimensions. We call them the HDBT constraints.
Denoting the covariance matrices of the g (multivariate) components by V1, . . . , Vg, they may be
written

Vj � cVℓ, 1 ≤ j, ℓ ≤ g, (1)

for some constant c > 0. The symbol � stands for the positive semidefinite or Löwner ordering
on the space of symmetric matrices and the constant c is necessarily bounded above by 1 so that
0 < c ≤ 1. The constraints are affine equivariant and mean that the covariance matrices Vj must
not be too different in size and shape. They are a generalization of homoscedasticity, i.e., equality
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of all covariance matrices, which they contain as the special case c = 1. We also define the HDBT
ratio of a g–tuple V = (V1, . . . , Vg) of positive-definite matrices as the maximum c for which the
constraints (1) hold. It is easy to see that it can be computed as

rHDBT(V) = max{c | Vj � c Vℓ for all j, ℓ} = min
j,ℓ,k

λk

(
V

−1/2
ℓ VjV

−1/2
ℓ

)
, (2)

where λ1(A), . . . , λd(A) denote the d eigenvalues of a symmetric d by d matrix A. The HDBT
ratio of a clustering is the HDBT ratio of its scatter matrices. Hathaway showed in the univari-
ate context that, besides guaranteeing the maximum likelihood estimate and its consistency, the
HDBT constraints removed many undesirable local optima. In the clustering context, Pollard
(1981) proves (for the homoscedastic, spherical normal model) that the optimal solution is consis-
tent in a certain sense. This means that the global maximum is the favorite solution if the data set
is large. But the asymptotic nature of this result must not be overlooked. If the data set is small
or of medium size then experience shows that the optimal solution may again be undesirable. We
will show here that the HDBT constraints are of benefit also in the clustering context.

Outliers, i.e., observations discordant with the posited populations, are known to severely hamper
the performance of statistical methods, see Barnett and Lewis (1994), Ritter and Gallegos (1997),
Becker and Gather (1999). Clustering algorithms deemed to be robust actually break down un-
der the influence of a single gross outlier, see Garćıa–Escudero and Gordaliza (1999). Neverthe-
less there are nowadays some robust trimming methods based on classification models. Cuesta–
Albertos et al. (1997) and Garćıa–Escudero and Gordaliza (1999) proposed a trimmed extension
of the k–means algorithm conjecturing on the basis of empirical studies that its breakdown point
applied to “well–structured” data sets could be large. Gallegos and Ritter (2005) undertook a
mathematical analysis of a trimmed homoscedastic classification model obtaining among other
things a high asymptotic breakdown point of the covariance matrices. The mean values turn out
to be more fragile but we were able to show that their maximum likelihood estimates, too, are
robust in the presence of well–separated data sets. The majority of data sets is neither spher-
ical nor homoscedastic and it is desirable to extend these methods and results to the general
heteroscedastic case. However, it is well known that homoscedasticity cannot be dispensed with
without additional cost since the very existence of a maximum likelihood or maximum a poste-
riori estimate already poses a problem. Moreover, one cannot expect robustness if clusters with
arbitrarily different covariance matrices are allowed.

To our knowledge, the first heteroscedastic, normal classification model with full covariance struc-
ture and trimming is Rocke and Woodruff’s (1999) MINO. Besides trimming they used also
constraints on the cluster sizes nj, 1 ≤ j ≤ g, in order to enforce the existence of maximum
likelihood estimates. The constraints nj ≥ d + 1 protect scatter matrices against singularity if
the data are in general position. Gallegos and Ritter (2009) extended their method to maximum
a posteriori estimation and showed that their algorithm leads to a standard problem from com-
binatorial optimization, λ-assignment, a special transportation problem. Despite trimming, these
methods do not act robustly on all data sets. Garćıa-Escudero et al. (2008) present a constrained
heteroscedastic trimming algorithm relaxing the requirements on sphericity in Garćıa-Escudero
and Gordaliza (1999) and of equality of shapes in Gallegos and Ritter (2005). They also prove
convergence of the parameter estimates as the size of the data set tends to infinity. The limit is
given by the parameters obtained from the related cluster criterion for the underlying mixture if
they are unique. However, their constraints lack affine equivariance. Here, we propose and anal-
yse a robust, affine equivariant, heteroscedastic, full normal classification model. Specializations
to normal submodels such as the diagonal or spherical are immediate and left to the interested
reader.
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1.2 Outline

In Section 2, we first use again the statistical clustering model with “spurious” outliers presented
in Gallegos and Ritter (2005, 2009) in order to derive a heteroscedastic clustering criterion with
trimming. Its maximum exists provided that some constraints are introduced. In the normal
case, contrary to Rocke and Woodruff (1999) and Gallegos and Ritter (2009), we apply here the
HDBT constraints (1) on the covariance matrices obtaining a trimmed, heteroscedastic, affine
equivariant cluster criterion, the Trimmed Determinant Criterion (TDC). It is the extension of
the homonymous criterion appearing in Gallegos and Ritter (2005) to the heteroscedastic case.
We propose and substantiate an iterative and alternating reduction step for finding MDP’s w.r.t.
the posterior density. It consists of three successive steps: maximum likelihood estimation of
parameters, maximum a posteriori classification, and trimming.

Of course, the minimizer of the TDC depends on the constant c in (1). The space of possible
solutions increases as c decreases. However, if c is chosen too small, the optimal clustering turns
out to be undesirable in many cases of real and synthetic data sets, see Section 5. Although it
provides optimal fit of estimated populations and clusters it may be unbalanced in the sense that its
HDBT ratio is excessively small. In most applications, cluster balance turns out to be an important
asset of a credible solution. Since the solution with the best fit often lacks sufficient balance we
need a trade-off between the two and solutions which combine a large posterior density with a
large HDBT ratio are more promising. This means that we are facing a problem of biobjective
optimization. Making a compromise by optimizing the target function under a fixed constraint c
is not advisable for two reasons. First it introduces a parameter in the algorithm that must be
known a priori. What is more, the optimal solution under the HDBT constraints is hard to find, at
least in the multivariate case. The crux is the estimation step. In Section 2.4, we propose instead
a heuristic method based on a plot of the posterior density vs. the HDBT ratio of MDP’s or local
optima for finding reasonable clusterings together with a constant c.

The aim of a trimming algorithm is robustness. We show here that, as an additional benefit
besides existence of solutions and balance, the HDBT constraints render the estimates obtained
from the TDC robust. Mutatis mutandis, the properties of the homoscedastic case, Gallegos and
Ritter (2005), remain valid if the HDBT constraints are used instead. Constraints serving a similar
purpose can be designed for statistical models other than normality. The method first uses the
number of clusters and the number of discarded elements as fixed parameters. In Section 2.5, we
comment on their choice.

In Sections 3 and 4, we offer a theoretical robustness analysis of the TDC estimates showing first
that the estimates of the covariance matrices are indeed robust under the HDBT constraints. The
same cannot be said about the location parameters if arbitrary data sets are allowed, Section 4.
However, the question of their robustness has an affirmative answer for data sets that possess a
certain separation property. The larger the constraint c is the more robust the method turns out
to be. These results are obtained from a mathematical analysis of breakdown points.

Thus, the consideration of HDBT ratio and constraints serves five purposes: it guarantees a so-
lution, it reduces local optima, it avoids spurious clusters, it adds robustness, and it is a key to
feasible solutions. In the final Section 5 we report on our experience with two numerical data sets.

1.3 Notation

The n elements or objects to be clustered are numbered 1, . . . , n. Associated with them are n
observations or data points x1, . . . , xn in a sample space E which we collect in the data set D =
{x1, . . . , xn}. Given natural numbers g ≥ 2 and r ≤ n, a solution of the trimming and clustering
problem is given by an r–element subset R ⊆ {1, . . . , n} and a partition of R in g groups or
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clusters C1, . . . , Cg. It is most easily specified by an array ℓ = (ℓ1, . . . , ℓn) of labels ℓi, 0 ≤ ℓi ≤ g,
which is admissible in the sense that exactly n− r labels ℓi are 0. If ℓi ≥ 1 then object i is retained
and assigned to class ℓi. If ℓi = 0 then object i is discarded, i.e., not assigned to a class. (If ℓ

is a “meaningful” assignment then discarded objects may be regarded as “outliers” and retained
elements as “regular.”) The g clusters defined by the assignment ℓ are written Cj(ℓ) = {i | ℓi = j},
1 ≤ j ≤ g. Their cardinalities are nj = nj(ℓ) = |Cj(ℓ)| and we have

∑g
j=1 nj = r. We denote the

set of all admissible assignments by Λr and allow one or more clusters to be empty.

We also consider g distributional models (classes) on E with class–specific parameters γj ∈ Γj

and density functions fγj
, 1 ≤ j ≤ g. The joint parameter γ = (γ1, . . . , γg) is contained in some

subspace Γ ⊆ Γ1 × · · · × Γg of the product. Given an assignment ℓ ∈ Λr with retained objects R
and a parameter γ ∈ Γ, we abbreviate f [R | ℓ, γ] =

∏g
j=1

∏
i∈Cj(ℓ) fγj

(xi). We call it the trimmed

likelihood function. If E = R
d and if the model is normal then γj = (mj , Vj) with the location

parameters mj ∈ R
d and the covariance matrices Vj ∈ PD(d), the cone of symmetric, positive–

definite d by d matrices. We gather m = (m1, . . . ,mg) and V = (V1, . . . , Vg). We will often need
the positive semidefinite or Löwner ordering � on PD(d).

Estimates of the parameters γj, mj, and Vj w.r.t. an assignment ℓ are denoted by γj(ℓ), mj(ℓ),
and Vj(ℓ), respectively. We also abbreviate γ(ℓ) = (γ1(ℓ), . . . , γg(ℓ)), m(ℓ) = (m1(ℓ), . . . ,mg(ℓ)),
V(ℓ) = (V1(ℓ), . . . , Vg(ℓ)). A bar as in x denotes a sample mean and the letters W and S indicate
(pooled) SSP matrices and scatter matrices, respectively. The precise meaning becomes clear
from various additional specifications as subscripts or in parentheses. E.g., xT = 1

|T |

∑
i∈T xi

is the sample mean of a non-empty subset T ⊆ {1, . . . , n}, WT =
∑

i∈T (xi − xT )(xi − xT )T

(ST = 1
|T |WT ) is its SSP matrix (scatter matrix), and W (ℓ) =

∑g
j=1 WCj(ℓ) (S(ℓ) = 1

r W (ℓ))

is the pooled SSP matrix (pooled scatter matrix) of the retained elements w.r.t. ℓ. Likewise,
xj(ℓ) = xCj(ℓ), Wj(ℓ) = WCj(ℓ), and Sj(ℓ) = SCj(ℓ). Sample means and SSP and scatter matrices

of empty clusters are put to zero.

The entropy of a probability vector (p1, . . . , pg) is H(p1, . . . , pg) = −
∑g

j=1 pj ln pj. Finally, ℓ
∗

denotes an optimal assignment and a ∗ indicates parameter estimates w.r.t. ℓ
∗. E.g., m∗

j = mj(ℓ
∗)

is the estimated mean of its jth cluster.

2 Statistical model, criteria and algorithm

Gallegos and Ritter (2005) and (2009) established parametric classification models with trimming
for data with so-called “spurious” outliers for a data set D of n observations in some sample space
E as explained in Section 1.3. At least r ≤ n of the data are regular, i.e., independent draws from
the g class–specific densities fγ1

, . . . , fγg , each, (γ1, . . . , γg) ∈ Γ. The remaining n− r observations
may, but do not have to be gross outliers. Besides the population parameters, their assignment
to the g classes and the number of occurrences of each class are unknown. Therefore, the number
of classes, the number of outliers in the data set, the outliers themselves, the class assignments,
and the population parameters are subject to estimation. Applying the ideas presented in these
papers to the present context of constrained parameters Γ ⊆ Γ1×· · ·×Γg, we obtain a trimmed a
posteriori density, i.e., the a posteriori probability w.r.t. the assignment and the likelihood function
w.r.t. the parameters γj. We use it here as our starting point referring the interested reader to
the communications cited above for the details.

2.1 The trimmed a posteriori cluster criterion

The trimmed a posteriori log–density for (ℓ, γ) in the setup just described is

−rH
(n1(ℓ)

r
, . . . ,

ng(ℓ)

r

)
+ ln f [R | ℓ, γ] = −rH

(n1(ℓ)

r
, . . . ,

ng(ℓ)

r

)
+

g∑

j=1

∑

i:ℓi=j

ln fγj
(xi).
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It implies the trimmed maximum a posteriori cluster criterion

−rH
(n1(ℓ)

r
, . . . ,

ng(ℓ)

r

)
+ ln f [R | ℓ, γ(ℓ)]

= −rH
(n1(ℓ)

r
, . . . ,

ng(ℓ)

r

)
+ max

γ∈Γ

g∑

j=1

∑

i:ℓi=j

ln fγj
(xi) (3)

to be maximized w.r.t. all admissible assignments ℓ. The use of the entropy H of the cluster propor-
tions nj(ℓ)/r goes back to Symons (1981) and accounts for unequal cluster sizes. It distinguishes
the maximum a posteriori from the maximum likelihood estimator.

It must be noted that the maximum w.r.t. γ ∈ Γ required in criterion (3) does not exist in general
for all Γ and all ℓ ∈ Λr. If Γ = Γ1 × · · · ×Γg, i.e., if the parameters γj may be chosen freely in the
factors Γj then the maximum, if it exists, and the sum over j commute so that the double sum
reduces to

g∑

j=1

max
γ∈Γj

∑

i:ℓi=j

ln fγ(xi) =

g∑

j=1

∑

i:ℓi=j

ln fγj(ℓ)(xi). (4)

Sometimes, the maximum likelihood estimate γj(ℓ) w.r.t. Cj(ℓ) appearing here does not exist, e.g.
in a normal model if Cj(ℓ) is too small. The problem may be circumvented in various ways. A first
is restricting Γ (or parts of it) to a compact subset (together with continuity of the likelihoods
γ 7→ fγ(x)). This has the effect that the estimator looses equivariance. A second way requires that
each cluster should contain sufficiently many data points together with an assumption on their
locations such as “general position” (affine independence of any d + 1 elements) in the normal
case, see Rocke and Woodruff (1999) and Gallegos and Ritter (2009). If the data are in general
position and if we allow only assignments ℓ with cluster sizes nj(ℓ) ≥ b for some lower bound
b ≥ d + 1 then the maximum of criterion (3) exists with free parameters and (4) shows that, up
to a constant, the criterion reduces to minimization of

2rH
(n1(ℓ)

r
, . . . ,

ng(ℓ)

r

)
+

g∑

j=1

nj(ℓ) · ln detSj(ℓ); (5)

here Sj(ℓ) is the scatter matrix of cluster j w.r.t. ℓ. (In the outlier–free context, see also
Symons (1981), criterion (11). The SSP matrix appearing there must be replaced with the scatter
matrix which was plainly intended.) In this case, the estimates of means and covariance matrices
are the sample means and scatter matrices of the optimal clusters. However, the sizes or shapes
of the estimated covariance matrices may sometimes be too different to be credible, cf. Fig. 1,
so that the lower bound b has to be properly chosen. We will follow here a third way using the
HDBT constraints (1) on the covariance matrices.

2.2 The normal case – Trimmed Determinant Criterion

We next specialize criterion (3) to the general normal case with parameters γj = (mj, Vj), 1 ≤
j ≤ g, under the HDBT constraints. Letting

Vc = {V = (V1, . . . , Vg) | Vj ≻ 0, Vj � cVℓ for all j, ℓ, 1 ≤ j, ℓ ≤ g}, 0 < c ≤ 1,

we show first that the HDBT constraints guarantee the existence of the maximum w.r.t. the
population parameters γ in criterion (3). We need an analytic lemma.
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Figure 1: A synthetic data set with two clusters of ten points, each, randomly sampled from the normal
distributions N−2e1,I2 and N2e1,I2 , respectively (separated by the dashed line). There are no outliers. Shown
are nine almost collinear “spurious clusters.” The partitions defined by them all mask the genuine partition
in two clusters, their negative log–posteriors (5) falling below its value 65.96. However, the HDBT ratio (2)
of the genuine partition is 1/1.69 whereas the largest of the spurious ones shown is 1/2757 (the cluster of
five points). The optimal unconstrained solution uses the uppermost horizontal cluster and has a negative
log–posterior (5) of 60.95 but an HDBT ratio of 1/66 244.

Lemma 1. If the the data D are in general position and if r ≥ gd + 1 then, for any assignment
ℓ ∈ Λr (some clusters may be empty), the minimum of

g∑

j=1

nj(ℓ)
[
ln det Vj + tr(V −1

j Sj(ℓ))
]

w.r.t. V ∈ Vc exists for any 0 < c ≤ 1.

Proof. The HDBT constraints imply detVj ≥ det(cVℓ) and V −1
j � cV −1

ℓ . Hence, we have for any
1 ≤ ℓ ≤ g

g∑

j=1

nj

[
ln detVj + tr(V −1

j Sj(ℓ))
]
≥

g∑

j=1

nj

[
ln det(cVℓ) + tr(cV −1

ℓ Sj(ℓ))
]

= r ln det(cVℓ) + c tr(V −1
ℓ W (ℓ)),

where W (ℓ) is the pooled SSP matrix specified by ℓ. By assumption there is some cluster, say ℓ,
of size nℓ(ℓ) ≥ d + 1. By general position, its SSP matrix is positive definite so that W (ℓ) ≥ εId

with some constant ε > 0 that depends only on the data. Hence

g∑

j=1

nj

[
ln detVj + tr(V −1

j Sj(ℓ))
]
≥ r ln det(cVℓ) + εc trV −1

ℓ .

As V approaches the boundary of Vc, i.e., as some Vj approaches the boundary of PD(d), again
by the HDBT constraints, so does Vℓ. It is well known that this implies that the right, and hence
the left side of the above inequality tends to ∞. This proves the claim. 2

Now standard normal estimation theory shows that, for any admissible assignment ℓ, the partial
maximizer w.r.t. the means mj in (3) (here, γj = (mj , Vj)) depends only on Cj(ℓ) and is given by
the sample means of the clusters defined by ℓ,

mj(ℓ) =

{
xj(ℓ), if Cj(ℓ) 6= ∅,

arbitrary, e.g. 0, otherwise,
1 ≤ j ≤ g. (6)
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Omitting the entropy term, the partial maximum w.r.t. the location parameter m(ℓ) is

const −
1

2

g∑

j=1

nj(ℓ)
[
ln detVj + tr(V −1

j Sj(ℓ))
]
.

According to Lemma 1, this expression attains its maximum w.r.t. V ∈ Vc, i.e., under the HDBT
constraints for any 0 < c ≤ 1. Summing up, after a change of sign, the (HDBT constrained)
trimmed maximum a posteriori cluster criterion (3) becomes in the normal case the Trimmed
Determinant Criterion (TDC)

r · H
(n1(ℓ)

r
, . . . ,

ng(ℓ)

r

)
+ min

V∈Vc

1

2

g∑

j=1

nj(ℓ)
[
ln det Vj + tr

(
V −1

j Sj(ℓ)
)]

. (TDC)

It is to be minimized w.r.t. all ℓ ∈ Λr and it contains the scatter matrices Sj(ℓ) of Cj(ℓ). Finally,
we denote the minimizing assignment by ℓ

∗, R∗ = {i | ℓi 6= 0} is the set of regular elements w.r.t.
ℓ
∗, and the partition of R∗ associated with ℓ

∗ is (C∗
1 , . . . , C∗

g ). The optimal assignment ℓ
∗ induces

estimates m∗
j and V ∗

j of the location and scale parameters mj and Vj which we call the TDC
parameter estimates. They are m∗

j = mj(ℓ
∗) as in (6), and the minimizers w.r.t. V ∈ Vc appearing

in the TDC, where ℓ
∗ is inserted for ℓ.

There are only few cases where the minimizing parameters Vj for given ℓ are known to us in
closed form. One is the unconstrained model where they are the scatter matrices if clusters are
large enough. If the scatter matrices happen to satisfy the constraints then they are the solutions
also in the constrained case. Another is the homoscedastic case, c = 1, where the common estimate
of the Vj ’s is the pooled scatter matrix S(ℓ), see Section 1.3; up to an additive constant, the TDC
reduces to

r ·
{

H
(n1(ℓ)

r
, . . . ,

ng(ℓ)

r

)
+

1

2
ln det S(ℓ)

}
. (7)

Without the entropy term, this is the criterion of the same name derived in Gallegos and Ritter
(2005). Finally, a univariate case is treated in Proposition 1.

The optimal clustering may contain empty clusters, an indication that the number of clusters g
has been chosen too large. E.g., if a data set is a clear sample from a single univariate normal
population then the optimal partition in two clusters will leave one cluster empty. A simple
example is n = r = 4, D = {0, 3, 4, 7}, and c = 1. Some values of the criterion (7) are





3.66516, for the partition {D, ∅},

3.79572, for the partition {{0, 3, 4}, {7}},

4.39445, for the partition {{0, 3}, {4, 7}}.

The remaining partitions need not to be considered, either by symmetry or since they cannot be
optimal. Hence the method returns a single nonempty cluster. Empty clusters become less likely
as c decreases.

2.3 Minimum distance partitions and optimization

Several strategies for optimizing the TDC are available, among them local descent methods on
a suitably defined graph structure on Λr and alternating methods of type k-means. An apparent
disadvantage of these methods is their getting stuck in suboptimal solutions such as local minima
or MDP’s. A closer analysis of the situation shows however that particular suboptimal solutions
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often deserve more attention than the absolute optimum of the criterion itself. It is therefore
interesting to generate local optima and MDP’s.

We propose next an alternating method of type k-means for producing MDP’s of criterion (3).
We begin by rewriting the trimmed posterior density in a different form:

−rH
(n1(ℓ)

r
, . . . ,

ng(ℓ)

r

)
+

g∑

j=1

∑

i:ℓi=j

ln fγj
(xi) =

∑

i:ℓi 6=0

(
ln

nℓi

r
+ ln fγℓi

(xi)
)

=
∑

i:ℓi 6=0

ui,ℓi

with ui,j = ln
nj

r + ln fγj
(xi), the logarithm of the posterior probability of j for xi. For given pa-

rameters γj, this sum is maximized w.r.t. ℓ by assigning each object i according to the maximum a
posteriori discriminant rule and by discarding the n−r observations with the overall smallest pos-
terior probabilities. Given a labelling ℓ, the unconstrained maximum in criterion (3) chooses as γ
the (unconstrained) maximum likelihood estimate for the retained observations. As a consequence
the following strategy improves the criterion (3) starting from an initial admissible labelling ℓ. It
extends the k–means algorithm and its generalization by Schroeder (1976) to trimming. We first
keep the parameters g and r fixed.

Multipoint reduction step

// Input: An admissible labelling ℓ;
// Output: An admissible labelling ℓnew with larger value of the criterion or the response

“fail.”

Estimation: if some cluster Cj(ℓ) does not allow maximum likelihood estimation of its
parameters, respond “fail;”

else update each γj with the maximum likelihood estimate for Cj(ℓ) (no constraints);

Classification: assign each of the n objects i to the cluster j with maximum posterior
probability ui,j to obtain a labelling ℓ’;

Trimming: discard the n − r objects i with smallest values ui,ℓ′i
from ℓ’ to obtain ℓnew;

In the Classification step all misfits are removed, hence the name “multipoint.” (Other schemes are
possible, e.g., the “single-point” reduction step which removes just one misfit. They all improve the
criterion.) In the Trimming step the r observations which best fit in their clusters are retained.
Note that either step may leave one or more clusters empty. Iteration of the three steps will
eventually result in a stationary configuration since there is only a finite number of labellings and
since the criterion continually improves. The solution attained at convergence is self–consistent
(or a (free) minimum distance partition) in the sense that clustering and parameters generate each
other.

The preceding reduction step disregards constraints (e.g. HDBT if the TDC is considered) in
the Estimation step. We claim that MDP’s at the boundary of the constraints do not deserve
much interest. A solution at the boundary depends on the precise value of c (see Proposition 1
below). But there is no precise value since it is unknown. Moreover, even if c were known, the
Estimation step would require the maximum likelihood estimate w.r.t. Vc. We do not know of a
practicable analytical solution to the associated constrained optimization problem in Euclidean
space R

d for d ≥ 2 and numerical methods such as gradient descent would lead to inefficient
overall algorithms. An exception are free MDP’s that happen to satisfy the constraints – they are
automatically constrained MDP’s. The constant c must be estimated together with the assignment
and the other parameters. In Section 2.4, we will propose a method based on free MDP’s or free
local optima.

We can say more in the univariate case. Given ℓ, we denote the sample variance of cluster j by
sj and wj = njsj. Our next proposition deals with arbitrary g and covers the general constrained
case if g = 2.
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Proposition 1. Let d = 1, let g ≥ 2, let r ≥ g + 1, and let 0 < c ≤ 1. Let ℓ be such that the
sample variances sj satisfy s2 > 0 and csℓ ≤ sj ≤ sℓ/c for all 3 ≤ j ≤ g, ℓ < j.2 (In other words,
the sample variances satisfy the HDBT constraints except, possibly, for the pair s1, s2.) Then
partial minimization of the TDC w.r.t. V = (v1, . . . , vg) ∈ Vc is solved by





v1(ℓ) = s1, v2(ℓ) = s2, if cs1 ≤ s2 ≤ s1/c,

v1(ℓ) = w1+w2/c
n1+n2

, v2(ℓ) = cw1+w2

n1+n2
, if s2 < cs1,

v1(ℓ) = w1+cw2

n1+n2
, v2(ℓ) = w1/c+w2

n1+n2
, if s1 < cs2,

and vj(ℓ) = sj, 3 ≤ j ≤ g.

Proof. Let us abbreviate hj(v) = nj(ln v +
sj

v ). In the present case, the partial minimum of the
TDC w.r.t. (v1, . . . , vg) can be rewritten in the form (omitting the entropy term)

h := min
v1>0

cvℓ≤vj≤vℓ/c, ℓ<j

g∑

j=1

hj(vj) = min
v1>0

{
h1(v1) + min

cv1≤v2≤v1/c

{
h2(v2) + min

cvℓ≤vj≤vℓ/c
ℓ<j, j≥3

∑

j≥3

hj(vj)
}}

≥ min
v1>0

{
h1(v1) + min

cv1≤v2≤v1/c

{
h2(v2) +

∑

j≥3

min
v>0

hj(v)
}}

= min
v1>0

{
h1(v1) + min

cv1≤v2≤v1/c
h2(v2)

}
+

∑

j≥3

hj(sj),

since hj , j ≥ 3, assumes its unconstrained minimum at v = sj (> 0). The constrained minimizer
of h2(v2) w.r.t. v2 is

ṽ2(v1) =





s2, cs2 < v1 < s2/c,

cv1, v1 ≥ s2/c,

v1/c, v1 ≤ cs2,

and we have thus shown

h ≥ min
v1>0

{
h1(v1) + h2(ṽ2(v1))

}
+

∑

j≥3

hj(sj). (8)

The function v1 7→ h2(ṽ2(v1)) is differentiable, monotone decreasing in ]0, cs2], constant in
[cs2, s2/c], and monotone increasing in [s2/c,∞[. It follows that the sum v1 7→ h1(v1)+ h2(ṽ2(v1))
has a minimum which is attained in the interval where the minimum of the unimodal function
h1(v1) is located. The minimizer of the lower bound (8) turns out to be the value v1(ℓ) given in
the proposition.

We have, thus, shown that the target function is nowhere less than its value at the parameters
stated in the proposition. The proof will be finished if we show that these parameters satisfy the
HDBT constraints. This is true by assumption for all pairs (j, ℓ), j, ℓ ≥ 3, and was ensured for the
pair (1, 2). The remaining pairs (1, j), (2, j), j ≥ 3, follow from elementary estimates based on the
constraints assumed for (s1, sj) and (s2, sj). The condition r ≥ g + 1 ensures that the minimum
w.r.t. v1 > 0 exists so that vj(ℓ) > 0 for all j. 2

2.4 Overall algorithm and choice of the constant c

Iteration of (unconstrained) multipoint reduction steps strives for labellings with large values of
criterion (3) (or small values of the TDC). If the “fail” signal does not occur then the iteration

2This presupposes that the clusters 2, . . . , g contain at least two different elements, each.
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stalls at some unconstrained MDP for the reasons stated before. However, it does not necessarily
represent an interesting solution so that the process has to be replicated, for possibly many differ-
ent, randomly or expediently chosen, initial assignments or parameters. The number of replications
needed depends on the data set and on the initial assignments.

Two different outcomes of this algorithm are possible. It may happen that all replications return
the signal “fail.” This occurs typically if the data set contains very small clusters or if the number
of clusters, g, has been chosen too large. E.g., if one attempts to group a d–dimensional data set
of less than g(d + 1) elements in g clusters (normal model, r = n) then “fail” signals, only, are
returned. In this case, the parameters g and/or r must be adapted. Reducing r discards very small
clusters. Moreover, clusters large enough to allow estimation of their parameters can be enforced
by putting lower bounds on cluster sizes in the reduction step if r is large enough, cf. Gallegos
and Ritter (2009).

Otherwise, we obtain unconstrained MDP’s and we have to decide which one to use. The optimum
of the criterion does not guarantee a reasonable clustering as experience shows and a solution close
to the desired one cannot be estimated without a further assumption. In most normal cases, we
are interested in solutions that combine a large value of the criterion with a large HDBT ratio. Of
course, this is not a law. Rescaling Fig. 1 in such a way that the five-point cluster becomes spherical,
we obtain an oblong, vertical data set which contains the quintuple as a region of concentration.
This might suggest a partition in two clusters with five and fifteen elements. But we contend that
this is not the point of view to be taken in general. The criterion measures how well the estimated
populations fit their clusters. Declaring the HDBT ratio of a solution a measure of its balance, we
postulate that, in general, it is good fit combined with high balance that characterizes a feasible
solution. Since it occurs only rarely that the best fitting solution enjoys high (but not the highest)
balance, this leads to a biobjective optimization problem which calls for a compromise.

Here is a simple heuristic method that finds a well-fitting, balanced clustering together with a
constant c: Generate a large number of (unconstrained) MDP’s and display their HDBT ratios
vs. the values of their criteria in a negative double–logarithmic plot as shown in Figs. 3 and 5 in
Section 5. The convex hull of all MDP’s will usually show a knee at its left lower part. The extreme
point at the knee determines the favorite solution and c. Often, the MDP’s are supported from
below by an almost horizontal line segment and this MDP is found close to its left end. It is not
unusual that it has an HDBT ratio of a hundredth or less. The plot provides also some guidance
about the number of replications needed. Run the algorithm until its convex hull has stabilized.

The method may also be applied with local optima instead of MDP’s.

2.5 Choice of the parameters g and r

Criteria and reduction step (or steepest descent) depend on two parameters, the number of clusters
g and the number of retained elements r. So far we have designed a tool that allows us to establish
interesting clusterings for arbitrary but fixed pairs (g, r). This is a substantial reduction of the
complexity of the data analytic problem but the task of reducing the number of pairs, maybe
even to one, remains. For obvious reasons, r should be chosen no larger than and close to the
(unknown) number of regular elements in the data set. We give some guidelines for the selection
of g and r.

Recently, Neykov et al. (2007) proposed a simple method that estimates both parameters at a
time, the trimmed BIC. They establish a table of BIC values indexed by g and r proposing to use
the parameter values where the minima w.r.t. g stabilize. There are many other methods and we
compile first some known methods for estimating the number of classes of uncontaminated data
sets.
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2.5.1 The number of classes of uncontaminated data

For the number of clusters there are essentially three approaches, cf. Milligan and Cooper (1985)
and Gordon (1999), cluster validation, the so-called elbow criterion, and model selection criteria.
Cluster validation assesses the quality of a partition and may be divided in two branches: tests
and validity measures. The classical test, due to Wolfe (1970), is a likelihood ratio test for the
hypothesis of k clusters against (k − 1) clusters. Bock (1985) discusses some significance tests
for distinguishing between the hypothesis of a homogeneous population vs. the alternative of
heterogeneity. Chen et al. (2004) propose a modified likelihood ratio test for a mixture of two
components vs. g ≥ 3. Also normality tests may sometimes be beneficial in this respect, see
the comprehensive review by Mecklin and Mundfrom (2004). Validity measures are functionals
of partitions and usually measure between cluster separation and within cluster cohesion (or
“compactness”); see, e.g., Bezdek et al. (1999). In the case of (almost) spherical models, the total
within–clusters sum of squared distances about the centroids is used as a measure of cohesion and
the total between–clusters sum of squared distances for separation; cf. Milligan and Cooper (1985)
and the abridged presentation of their work by Gordon (1999). The elbow criterion identifies the
number of clusters as the location where the decrease of some cluster criterion flattens markedly.
For a refinement of this method see Tibshirani et al. (2001).

Comparing the maximum likelihoods or a posteriori densities between solutions for different num-
bers of classes does not make sense since each additional class allows better fit so that these values
increase with g. A model selection criterion counteracts this tendency by subtracting a penalty
term that increases with g from the maximum of the log–likelihood or from the posterior log–
density. Schwarz (1978) proposed his popular Bayesian Information Criterion, BIC, for exponential
families. In the uncontaminated case, its penalty term is q

2 · ln n, q being the total dimension of the
parametric model. There is some practical evidence that supports BIC as a means for estimating
the number of clusters of mixture models, too; see the discussion in McLachlan and Peel (2000),
Ch. 6. Moreover, Kéribin (2000) described a family of penalty terms, among them BIC, which
asymptotically as n → ∞ neither over– nor underestimate the correct number of components of
a mixture model

∑g
j=1 πjfγj

if the class–conditional populations satisfy certain regularity condi-
tions and the parameters certain constraints. Her interesting result is applicable, e.g., to Gaussian
families if the mean values are bounded and if the covariance matrices are bounded below in the
Löwner ordering by a positive multiple of the identity matrix. In the case of a mixture, q = q(g)
equals g−1 (for the mixing rates) plus the total number of (real) parameters of the g components.

We propose BIC with this value of q also for our clustering model if there is sufficient separation.
For a justification, we compare the maximum a posteriori density (3) in an outlier–free context, r =
n, with the maximum likelihood of the related g–class mixture model under suitable constraints
as in Kéribin’s theorem. Let ℓ

∗ be the optimal maximum a posteriori assignment and let π∗ and
γ∗ be the optimal mixing rates and population parameters of the mixture model. For any g, the
optimal value of criterion (3) is no larger than that of the mixture model:

−nH
(n1(ℓ

∗)

n
, . . . ,

ng(ℓ
∗)

n

)
+

g∑

j=1

∑

i:ℓ∗i =j

ln f
γj(ℓ

∗
)
(xi) =

∑

i

{
ln

nℓ∗i
(ℓ∗)

n
+ ln f

γℓ∗
i
(ℓ

∗
)
(xi)

}

= ln
∏

i

nℓ∗i
(ℓ∗)

n
f

γℓ∗
i
(ℓ

∗
)
(xi) ≤ ln

∏

i

∑

j

nj(ℓ
∗)

n
f

γj(ℓ
∗
)
(xi) ≤ max

π,γ
ln

∏

i

∑

j

πjfγj
(xi)

= ln
∏

i

∑

j

π∗
j fγ∗

j
(xi).

On the other hand, if the data set is well separated in g clusters then fγ∗
j
(xi) ≪ fγ∗

ℓ∗
i

(xi) for all

j 6= ℓ∗i , 1 ≤ i ≤ n, fγ∗
ℓ∗
i

(xi) ≈ f
γℓ∗

i
(ℓ

∗
)
(xi), and π∗

j ≈
nj(ℓ

∗
)

n , 1 ≤ j ≤ g, so that, for this g, the
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third and the last terms of the above chain are close and both ends almost meet. This reasoning
supports BIC as a penalty term also for maximum a posteriori partitioning in the case of large
data sets and good separation.

2.5.2 The number of outliers

An approach to estimating the number of clusters can be combined with a test for estimating the
number of outliers. In a first step, establish a table of the optimal clusterings for all (reasonable)
numbers of clusters, g, and all numbers of discarded elements, n − r. It is, of course, sufficient to
perform the procedure with a lacunary set of values n − r. Next, reduce the number of possible
solutions by validating them w.r.t. absence of outliers with a multiple testing procedure. Tests
for goodness of fit of the regular densities and the clusters Cj(ℓ

∗), 1 ≤ j ≤ g, normality tests,
see Mecklin and Mundfrom’s (2004) extensive survey article, and methods for outlier detection or
identification, see Becker and Gather (1999), are available for this task. If g admits an acceptable
pair (g, n− r), keep the one with maximum r (=: rg) as a candidate. After having run through all
values of g, at most one pair is left in each line of the table so that the complexity of the problem
is again substantially reduced. It remains to choose the favorite g. Since the estimated numbers
rg of regular observations depend on g, the numbers of objects have to be normalized, e.g. to n.
By consistency of parameter estimation, cf. Gallegos and Ritter (2009), Theorems 2.1 and 2.2, the
value of the maximum a posteriori criterion (3) increases approximately linearly with the number
r, asymptotically, at least if there is sufficient separation. Therefore, we propose to combine the
TDC estimates with the following corrected BIC in order to estimate the number of clusters:

argmax
g

{
− n H

(n1(ℓ
∗)

rg
, . . . ,

ng(ℓ
∗)

rg

)
+

n

rg

g∑

j=1

∑

ℓ∗i =j

ln f
γj(ℓ

∗
)
(xi) −

q(g)

2
ln n

}
. (9)

Experience with various data sets has shown the effectiveness of this method, see again Gallegos
and Ritter (2009).

3 Robustness

Although criterion and algorithm involve trimming, neither the estimates of the means nor those
of the covariance matrices would be robust without HDBT constraints. In fact, no matter how
r is chosen they would break down under the influence of a single outlier. An example is pro-
vided by the data set consisting of seven points x1, . . . , x7 shown in Fig. 2. We use criterion (5)
to subdivide it in two groups of minimum cluster size 3 and r = 6, i.e., we discard one ob-
ject. There are two equivalent optimal clusterings, {{x2, x3, x4}, {x5, x6, x7}}, x1 discarded, and

x1 x2

x3

x4

x5
x6

x7

x′
3

Figure 2: Non–robustness of criterion (5) with full normal covariance matrices in the free heteroscedastic
case with minimum cluster size 3. Data point x3 is replaced with some x′

3
close to the abscissa and far

away. Minimization of the criterion (5) discards x7 generating the clustering {{x1, x2, x
′

3}, {x4, x5, x6}}

{{x3, x4, x5}, {x6, x7, x1}}, x2 discarded. We now replace x3 with a distant outlier x′
3 close to the

abscissa, say x′
3 = (a, a−2) for large a. Although we discard one point, the criterion does not
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choose the “right” one, x′
3. In fact, x′

3 creates together with x1 and x2 a cluster with a small
determinant of its scatter matrix which determines the optimal clustering. This turns out to be
{{x1, x2, x

′
3}, {x4, x5, x6}}, x7 discarded. As a consequence, neither do mean and largest eigen-

value of the scatter matrix of the slim cluster remain bounded as a → ∞ nor does the smallest
eigenvalue remain bounded away from zero.

We show in this and the following section that the HDBT constraints do not only guarantee
existence of a solution but also robustness of the TDC. Our main results are the following:

(i) If r is large enough then the TDC estimates of the covariance matrices resist n − r + g − 1
arbitrary replacements. On the other hand they break down under n−r+g suitable replacements,
see Theorem 1;

(ii) there exists a data set such that the TDC estimate of at least one mean (i.e., a sample mean)
breaks down with 2 suitable replacements no matter how many objects we discard, see Theorem 2;

(iii) if the data set bears a clear structure of g clusters and if r is large enough and properly chosen
then the TDC estimates of all means resist n− r arbitrary replacements. On the other hand, it is
possible to break down one mean with n − r + 1 suitable replacements, see Theorem 3.

3.1 Breakdown values

The finite–sample breakdown value of an estimator, Hodges (1967) and Donoho and Huber (1983),
measures the minimum fraction of gross outliers that can completely spoil the estimate. Two types
of breakdown points are customary, the addition and the replacement breakdown point. The former
refers to the addition of n − r outliers to a data set of r regular observations and the latter to
n− r replacements in a data set of n regular observations. The former is technically simpler since
the set of regular observations is fixed, but one needs two estimators, one for r data and one for
n. By contrast, the latter considers all

(n
r

)
possible replacements of n − r observations but needs

only one estimator for n objects. For this reason, we deal with replacements only.

Let δ : A → Θ be an estimator on its natural domain of definition A ⊆ En of admissible data sets
of size n (e.g., “general position” in case of the m.l.e. under normal assumptions). Given m ≤ n,
we say that M ∈ A is an m–modification of D ∈ A if it arises from D by modifying at most m
observations of D in an (admissible but otherwise) arbitrary way. An estimator δ “breaks down
with D under m replacements” if the set

{δ(M) | M is m–modification of D} ⊆ Θ

is not relatively compact in Θ. Of course, there is no breakdown if Θ is compact. The individual
breakdown point for the data set D is the number

β(δ,D) = min
1≤m≤n

{m

n
| δ breaks down with D under m replacements

}
.

It is the minimal fraction of replacements in D that may cause δ to break down. The individual
breakdown point is not an interesting concept per se since it depends on a single data set. It tells
the statistician how many gross outliers the data set M under his or her study may contain without
causing excessive damage if the imaginary “clean” data set that should have been observed were
D. Now let K ⊆ A be some subclass of admissible data sets. The restricted breakdown point of δ
w.r.t. K, cf. Gallegos and Ritter (2005), is

β(δ,K) = min
D∈K

β(δ,D).

The restricted breakdown point depends only on δ and the subclass K. It provides information
about the robustness of δ if the hypothetic “clean” data set D that should have been observed
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instead of the contaminated data set M had been a member of K. Finally, we call Donoho and
Huber’s breakdown point the universal breakdown point

β(δ) = β(δ,A).

It depends solely on the estimator. The restricted breakdown value may be seen as a relaxed
version of it. We have the chain of inequalities

β(δ) ≤ β(δ,K) ≤ β(δ,D), D ∈ K.

We deal here with breakdown points of the estimates of the parameters mj ∈ R
d and Vj ∈ PD(d)

obtained from (minimizing) the TDC w.r.t. ℓ, m, and V. The relatively compact subsets of the
parameter space R

d of the means are the bounded subsets of R
d. A subset of PD(d) is relatively

compact if the eigenvalues of its elements are bounded and bounded away from zero. This is
equivalent to saying that the subset is bounded above and below by positive definite matrices in
the Löwner ordering �.

We first show that the minimum of the TDC, with any 0 < c ≤ 1, provides an asymptotically
robust estimate of the covariance matrices Vj and compute the universal breakdown point. We
need a lemma. It exploits the pooled SSP matrix W (ℓ) of an admissible assignment ℓ.

Lemma 2. Let V = (V1, . . . , Vg) ∈ Vc, let m = (m1, . . . ,mg) ∈ R
gd, let ℓ be an admissible

labelling, and let R be the set of retained objects w.r.t. ℓ. We have for all ℓ, 1 ≤ ℓ ≤ g,

2 ln f [R | ℓ,m,V] ≤ −r ln det(2πcVℓ) − c tr(W (ℓ)V −1
ℓ ).

Proof. By the HDBT constraints, we have

2 ln f [R | ℓ,m,V] = −
∑

1≤j≤g

{
nj(ℓ) ln det(2πVj) +

∑

i∈Cj(ℓ)

(xi − mj)
TV −1

j (xi − mj)
}

≤ −
∑

1≤j≤g

{
nj(ℓ) ln det(2πcVℓ) + c tr

∑

i∈Cj(ℓ)

(xi − mj)(xi − mj)
TV −1

ℓ

}

≤ −r ln det(2πcVℓ) − c tr
∑

1≤j≤g

∑

i∈Cj(ℓ)

(xi − xj(ℓ))(xi − xj(ℓ))
TV −1

ℓ

= −r ln det(2πcVℓ) − c tr
(
W (ℓ)V −1

ℓ

)
. 2

The following theorem deals with the universal breakdown point of the TDC estimates of the
covariance matrices.

Theorem 1. Let the data D be in general position and assume r ≥ gd + 1.

(a) If 2r ≥ n+ g(d+1) then the TDC estimates of the covariance matrices remain in a compact
subset of PD(d) that depends only on the original data set D as at most n− r + g − 1 data
points of D are replaced in an arbitrary way.

(b) It is possible to replace n− r + g elements of D in such a way that the largest eigenvalue of
the TDC estimate of some covariance matrix (and hence of all covariance matrices) exceeds
any given number.

(c) If 2r ≥ n + g(d + 1) then βvar(n, r, g) = n−r+g
n .
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Proof. (a) We first note that, no matter what the admissibly modified data set M is, the con-
strained maximum posterior density and, hence, the constrained maximum likelihood f [R∗ |
ℓ
∗,m∗,V∗] remains bounded below by a strictly positive constant that depends only on the original

data set D. To this end, we compare the optimal solution with one that is constrained irrespective
of the constant c. Indeed, let ℓ be the labelling that assigns the remaining r− g +1 original points
to the first cluster C1 and g − 1 replacements yj to one–point clusters Cj = {yj}, 2 ≤ j ≤ g.
Moreover, let m = (0, y2, . . . , yg), and let Vj = Id for all 1 ≤ j ≤ g. By optimality, we have

−rH
(n1(ℓ

∗)

r
, . . . ,

ng(ℓ
∗)

r

)
+ ln f [R∗ | ℓ

∗,m(ℓ∗),V(ℓ∗)]

≥ −rH
(r − g + 1

r
,
1

r
, . . . ,

1

r

)
+ ln f [R | ℓ,m, Id] = const −

1

2

∑

ℓi=1

‖xi‖
2.

The right side of this expression does not depend on the replacements.

Now, by assumption, we replace at most n − r + g − 1 ≤ r − (gd + 1) (≥ 0) data points of D so
that, for any assignment, at least one cluster contains at least d+1 original points T ⊆ D. This is
in particular true for an optimal assignment ℓ

∗. By general position, it follows W (ℓ∗) � WT � εId

for some ε > 0. Lemma 2 and the initial remark imply

−r ln det(2πcV ∗
1 ) − c tr

(
W (ℓ∗)V ∗

1
−1) ≥ 2 ln f [R∗ | ℓ

∗,m∗,V∗] ≥ const > −∞.

Now, it is well known that the set of matrices V ∗
1 for which the left side is bounded below is a

compact subset of PD(d). The HDBT constraints finally imply that the associated set of g–tuples
(V ∗

1 , . . . , V ∗
g ) is a compact subset of PD(d)d. This proves Claim (a).

(b) Modify D by n− r + g replacements at a large distance from each other and from all original
data points to obtain M . Each r–element subset of M contains at least g replacements. Moreover,
there is a cluster C of size at least 2 that contains at least one replacement. Indeed, if no cluster
contains two replacements then each cluster contains at least one and, by r ≥ gd + 1, one of them
contains another element. Now, let Cℓ be such a cluster, let y ∈ Cℓ be a replacement, and let
x ∈ Cℓ, x 6= y. We have

Wℓ(ℓ) ≥
{(

x −
x + y

2

)(
x −

x + y

2

)T
+

(
y −

x + y

2

)(
y −

x + y

2

)T}

=
1

2
(y − x)(y − x)T .

Now let (ℓ∗, (m∗
j )j , (V

∗
j )j) be optimal parameters of the TDC. Comparing them with the inferior

parameters (ℓ∗, (m∗
j ), (2V

∗
j )) and noting that the entropy terms coincide, we infer

0 ≤
∑

j

nj(ℓ
∗)

{
ln det 2V ∗

j + tr
(
(2V ∗

j )−1Sj(ℓ
∗)

)
−

[
ln det V ∗

j + tr
(
V ∗

j
−1Sj(ℓ

∗)
)]}

=
∑

j

nj(ℓ
∗)

{
d ln 2 −

1

2
tr

(
V ∗

j
−1Sj(ℓ

∗)
)}

≤ dr ln 2 −
1

2
tr

(
V ∗

ℓ
−1Wℓ(ℓ

∗)
)

≤ dr ln 2 −
1

4
(y − x)TV ∗

ℓ
−1(y − x).

The resulting inequality (y −x)TV ∗
ℓ
−1(y−x) ≤ 4dr ln 2 implies that at least one eigenvalue of V ∗

ℓ

exceeds any positive number as the distance between x and y is chosen large enough.

Claim (c) follows from (a) and (b). 2
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It is interesting to remark that the TDC estimates of the covariance matrices withstand g−1 more
outliers than there are discarded elements, n − r. Outliers that are spread out may be assigned
to one–point clusters and outliers located close together may form a cluster of their own. In each
case the optimal assignment does not completely destroy the estimates.

The asymptotic breakdown point of an estimator is its limit as n → ∞.

Corollary 1. If r = ⌊αn⌋ for some α > 1/2 then the universal asymptotic breakdown point of
the TDC estimates of the covariance matrices is 1 − α.

As noted after Lemma 1, the TDC estimates of the means are the sample means defined by the
optimal assignment. Contrary to the covariance matrices their universal breakdown point is low.
In order to show this, we need a lemma and denote (univariate) scatter values and sums of squares
by the letters s and w, respectively.

Lemma 3. Let F ∪ {z1, . . . , zg−2} ∪ {y1, y2} ⊆ R be a data set of r pairwise distinct elements. If
w{y1,y2} ≤ 2c

r−2wF then the constrained normal m.l.e.’s vj(ℓ) of the variances vj for the partition
ℓ = {F, {z1}, . . . , {zg−2}, {y1, y2}} are

v1(ℓ) =
wF + w{y1,y2}/c

r
and vj(ℓ) = c v1(ℓ), 2 ≤ j ≤ g.

Proof. Putting s1 = sF and sg = s{y1,y2}, the TDC requires minimizing the expression

h(v1, . . . , vg) := n1

(
ln v1 +

s1

v1

)
+

∑

2≤j≤g−1

ln vj + 2
(

ln vg +
sg

vg

)

w.r.t. (v1, . . . , vg) ∈ Vc. We start with the minimum of h on the larger set V ′
c = {(v1, . . . , vg) ∈

R
g
> | cv1 ≤ vj ≤ v1/c, 2 ≤ j ≤ g} ⊇ Vc. Since mincv1≤vj≤v1/c ln vj = ln cv1, dynamic optimization

shows

min
v∈V ′

c

h(v1, . . . , vg)

= min
cv1≤vg≤v1/c

{
n1

(
ln v1 +

s1

v1

)
+

∑

2≤j≤g−1

min
cv1≤vj≤v1/c

ln vj + 2
(

ln vg +
sg

vg

)}

= (g − 2) ln c + min
cv1≤vg≤v1/c

{(
(r − 2) ln v1 +

w1

v1

)
+

(
2 ln vg +

wg

vg

)}
.

This is a virtual two–cluster problem. The second line of the three cases in Proposition 1 shows
that, under the assumption

wg

2 ≤ c w1

r−2 stated in the lemma, its solution is indeed given by the
values claimed for v1(ℓ) and vg(ℓ). Finally, the vector (v1(ℓ), cv1(ℓ) . . . , cv1(ℓ)) is even located in
Vc so that it is the minimum w.r.t. the smaller parameter set, too. 2

Our next theorem deals with the universal breakdown point of the TDC estimates of the means.

Theorem 2. Let the data D be in general position and let g ≥ 2.

(a) If n ≥ r+1 and r ≥ gd+2 then the TDC estimates of all means remain bounded by a constant
that depends only on the data set D as one observation is arbitrarily replaced. (In the case of ties
the solution is returned that has the largest discarded element.)

(b) If r ≥ g + 2 (besides the standard assumption r ≥ gd + 1), there is a data set such that
the TDC estimate of one sample mean breaks down as two particular observations are suitably
replaced.

(c) Under the assumptions of (a) we have βmean(n, r, g) = 2
n .
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Proof. (a) We show by contradiction that an optimal assignment ℓ
∗ discards a remote replacement.

Thus, assume that the replacement y lies in cluster ℓ. The cluster must contain a second (original)
element x since, by the convention, y would otherwise be swapped with a discarded original
element without change of the TDC. Now, by the assumption r ≥ gd+2, the retained data points
contain at least gd + 1 original elements so that one cluster has at least d + 1 of them. Whether
this is cluster ℓ or not, general position of D and this remark imply detW (ℓ∗) → ∞ as ‖y‖ → ∞.
We now use Lemma 2 which says that

2 ln f [R∗ | ℓ
∗,m∗,V∗] ≤ −r ln det(2πcV ∗

ℓ ) − c tr
(
W (ℓ∗)V ∗

ℓ
−1).

It is well known that, given a positive-definite matrix W , the minimum of the function V 7→
ln detV +trWV −1 is ln det W +d. Hence, the right side of the inequality tends to −∞ as ‖y‖ → ∞
and so does the left side. On the other hand, by the assumption r < n, there exists an assignment
ℓ such that y /∈ R. Optimality of ℓ

∗,m∗,V∗ implies

−rH
(n1(ℓ

∗)

r
, . . . ,

ng(ℓ
∗)

r

)
+ln f [R∗ | ℓ

∗,m∗,V∗] ≥ −rH
(n1(ℓ)

r
, . . . ,

ng(ℓ)

r

)
+ln f [R | ℓ,0, Id].

Since the entropies are bounded, this means that ln f [R∗ | ℓ
∗,m∗,V∗] has a finite lower bound

that does not depend on y, a contradiction to what was found before.

(b) A proof in the multivariate case requires a subtle construction of a data set. It must secure
that the optimal solution retains at least one outlier. As a main hurdle one has to avoid point
patterns that are almost degenerate and mask the desired solution just as in Fig. 1. A construction
for the case c = 1 appears in Gallegos and Ritter (2005). For the sake of illustration, we treat here
general c confining ourselves to the univariate case. Since Claim (b) is plainly true if r ≥ n − 1,
we assume r ≤ n − 2 and proceed in three steps.

(α) Construction of the modified data set M :

Let xi, 1 ≤ i ≤ r − g, be strictly increasing and put F = {x1, . . . , xr−g}, let K > 0, and choose
z1 < z2 < . . . < zn−r+g−2 such that

(i) z1 − xr−g ≥ K and zℓ+1 − zℓ ≥ K for all 1 ≤ ℓ < n − r + g − 2.

Let 0 < ε ≤
√

c wF

r−2 , let y > zn−r+g−2 + ε, define the replacements y1,2 = y ± ε, and put

M = {x1, . . . , xr−g, z1, . . . , zn−r+g−2, y1, y2}. Plainly, M is in general position.

Let ℓ̃ be the assignment associated with the clustering {F, {z1}, . . . , {zg−2}, {y1, y2}}
(zg−1, . . . , zn−r+g−2 discarded).

(β) The maximum a posteriori density for ℓ̃ does not depend on K and y:

Since w{y1,y2} = 2ε2 ≤ 2c
r−2wF , Lemma 3 shows v1(ℓ̃) =

wF +w{y1,y2}
/c

r and v2(ℓ̃) = . . . = vg(ℓ̃) =

cv1(ℓ̃). Twice the logarithm of the corresponding posterior density equals

2
(
(r − g) ln

(r − g

r

)
+ 2 ln

(2

r

))
− r ln v1(ℓ̃) − g ln c − r(1 + ln 2π).

(γ) If K is large enough then no assignment ℓ of r points from the set F ∪ {z1, . . . , zn−r+g−2} is
optimal:

By r ≤ n − 2, the set contains at least r elements. Since |F | = r − g and since r > g, any such
assignment ℓ creates a cluster Cℓ(ℓ) which contains some zk and some other point. From (i), it
follows

w(ℓ) ≥ wCℓ(ℓ) −→
K→∞

∞. (10)
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By Lemma 2, twice its log-likelihood is bounded above by

−r ln(2πc vj(ℓ)) − c
w(ℓ)

vj(ℓ)
≤ −r

(
ln 2πc2/r + ln w(ℓ) + 1

)
−→

K→∞
−∞, 1 ≤ j ≤ g;

here we have used the maximum of the left side as a function of the TDC estimate vj(ℓ) and (10).
The claim follows from (β) since there are only finitely many ℓ’s.

Finally, choose K as in (γ). The optimal solution retains at least one yh causing at least one
sample mean to break down as y → ∞. This proves Part (b) in the special case and Part (c)
follows from (a) and (b). 2

As a consequence, the asymptotic universal breakdown value of the TDC estimates of the means
is zero. More cannot be expected. The reason is that the universal breakdown point makes a
statement on any data set for any g, even if these two do not fit together. On the other hand,
Garćıa–Escudero and Gordaliza (1999), carried out experiments with trimmed k–means observing
that the means of a clear cluster structure are hard to break down with the algorithm. We offer
next an analysis of this phenomenon in the present situation.

4 Restricted breakdown point of the TDC estimates of the means

Dealing with the homoscedastic case, we computed in Gallegos and Ritter (2005) the restricted
breakdown point of the TDC estimates of the means w.r.t. a class of data sets with a certain
separation property thus defining what we mean by a “clear cluster structure.” The separation
property defined there is not satisfied for large data sets so that asymptotic robustness does
not follow. Besides carrying over the theory to the heteroscedastic case we will also remove this
weakness here.

The proof of the main result of this section, Theorem 3, depends on lemmas which we first
state and prove. Let P = {P1, . . . , Pg} be a partition of D and let ∅ 6= T ⊆ D. The partition
T ∩ P = {T ∩ P1, . . . , T ∩ Pg} is the trace of P in T . Let g′ ≥ 1 be a natural number and let
T = (T1, . . . , Tg′) be some partition of T . The common refinement of T and P is denoted by
T ⊓ P = {Tk ∩ Pj | k ≤ g′, j ≤ g}, a partition of T (some clusters may be empty). The pooled
SSP matrix of T w.r.t. some partition T is defined by

WT =
∑

j≤g′

WTj
.

The following proposition states a basic condition which implies robustness of the TDC estimates
of the means.

Proposition 2. Let the data D be in general position, let g ≥ 2 and gd + 1 < r < n, and let q
be an integer such that max{2r − n, gd + 1} ≤ q < r. Assume that D possesses a partition P in
g clusters such that, for all T ⊆ D, q ≤ |T | < r, and all partitions T of T in g − 1 clusters (some
clusters may be empty), the pooled SSP matrix satisfies

det WT ≥ g2 max
R∈(D

r ),R⊇T
det

( 1

c2
WR∩P

)
. (11)

Then the individual breakdown point of the TDC estimates of the means satisfies

βmean(n, g, r,D) ≥
1

n
(r − q + 1).
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Proof. Let M be any admissible data set obtained from D by modifying at most r − q elements
and let (R∗, ℓ∗, (m∗

j )
g

j=1
, (V ∗

j )g
j=1

) be a TDC estimate for M . We will show that its sample means

m∗
j are bounded by a number that depends solely on the original data D. Our proof proceeds in

several steps.

(α) The matrices V ∗
j are bounded above and below by positive–definite matrices that depend only

on D, not on the replacements:

Let R∗
j be the jth cluster generated by ℓ

∗. Since |R∗| = r, R∗ =
⋃g

j=1 R∗
j has at least q ≥ gd + 1

original observations so that some R∗
j contains at least d + 1 of them. The proof now finishes as

that of Theorem 1 (a).

(β) If R∗
j contains some original observation, then m∗

j is bounded by a number that depends only
on D:

By (α), trW (ℓ∗) remains bounded above by a constant which depends solely on the original data
D. Now, let x ∈ R∗

j ∩D. We have W (ℓ∗) � (x−m∗
j)(x −m∗

j)
T and, hence, ‖x −m∗

j‖
2 ≤ trW (ℓ∗)

and the claim follows.

(γ) If R∗
j contains some replacement then ‖m∗

j‖ → ∞ as the replacement tends to ∞:

This is proved like (β) where x is now the replacement.

From (β) and (γ) it follows: as the replacements tend to ∞ then, in the long run, each R∗
j ,

1 ≤ j ≤ g, consists solely of original observations or solely of modifications. We next put cd,r =
−dr

2 (1 + ln 2π) and state:

(δ) −rH
(n∗

1

r
, . . . ,

n∗
g

r

)
+ ln f [R∗ | ℓ

∗,m∗,V∗] < cd,r − dr ln c −
r

2
ln det

W (ℓ∗)

r
,

whenever 0 < n∗
j < r for some j:

On account of Lemma 2 and of the assumption, the left side is strictly bounded above by

−dr ln c −
dr

2
ln 2π −

1

2

[
r ln det(V ∗

1 /c) + tr
(
W (ℓ∗)(V ∗

1 /c)−1)
]
.

Part (α) and normal estimation theory now show that the function A 7→ r ln det(A/c) +

tr
(
W (ℓ∗)(A/c)−1

)
, A � 0, attains its minimum value r

[
ln det

(W (ℓ
∗
)

r

)
+ d

]
at cW (ℓ

∗
)

r and the

claim follows.

(ǫ) R∗ contains no modification with a sufficiently large norm:

Assume on the contrary that R∗ contains a large replacement. In view of the remark right after (γ),
some cluster, say R∗

g, consists solely of replacements. Note that r > |R∗ ∩D| ≥ q. Let T = R∗ ∩D
and let T = {R∗

1 ∩ D, . . . , R∗
g−1 ∩ D}. From Steiner’s formula we have the relation W (ℓ∗) � WT

between the pooled SSP matrices and hypothesis (11) implies

det W (ℓ∗) ≥ det WT ≥ g2 max
R∈(D

r ),R⊇T
det

( 1

c2
WR∩P

)
.

Hence,

2d ln c + ln det
W (ℓ∗)

r
≥ 2 ln g + max

R∈(D

r ),R⊇T
ln det

1

r
WR∩P . (12)

Now, denoting the assignment associated with R ∩ P by ℓR∩P , and writing mR∩P =
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(mR∩P1
, . . . ,mR∩Pg ) and SR∩P = 1

rWR∩P , the pooled scatter matrix, we have

r ln g + min
R∈(M∩D

r )
− ln f [R | ℓR∩P ,mR∩P , SR∩P ]

= −cd,r + r ln g +
r

2
min

R∈(M∩D

r )
ln det SR∩P

≤ −cd,r + r ln g +
r

2
min

T⊆R∈(M∩D
r )

ln det SR∩P

≤ −cd,r + r ln g +
r

2
max

T⊆R∈(D

r )
ln detSR∩P (13)

≤ −cd,r + dr ln c +
r

2
ln detV (ℓ∗)

< rH
(n∗

1

r
, . . . ,

n∗
g

r

)
− ln f [R∗ | ℓ

∗,m∗,V∗],

where the last two inequalities follow from (12) and (δ), respectively. Note that Part (δ) is appli-
cable since R∗∩D 6= ∅ implies n∗

j > 0 for some j < g and since n∗
g > 0 as well. The last expression

above is the minimum of the TDC. It is no larger than its value at the clustering R ∩P with the
parameters mR∩P and SR∩P for all R ∈

(M∩D
r

)
. By an elementary property of the entropy, the

latter value is no larger than the first line of (13). This contradiction proves Claim (ǫ).

Finally, Part (β) shows that all sample means m∗
j remain bounded by a number that depends

only on D. This proves the proposition. 2

In the remainder of this section, we show that the hypothesis of Proposition 2 actually states a
separation property. We need more notation. Let g ≥ 2. Given an integer u ≥ 1 and a real number
̺, 0 < ̺ < 1, we define the number

qu,̺ = max
{

2r − n, (g − 1)gd + 1,
n − u

1 − ̺

}
.

If n > r > (g − 1)gd + 1 and u ≥ n − (1 − ̺)(r − 1) then q = ⌈qu,̺⌉ satisfies the assumption in
Proposition 2.

Let P, T , and T be as in Proposition 2. Our next, combinatorial, lemma gives conditions that
secure the existence of sufficiently many elements of T in each class Pj and a large intersection
Tk ∩ Pj for some pair (k, j).

Lemma 4. Let P = {P1, . . . , Pg} be a partition of D in g ≥ 2 clusters of size ≥ u, let T ⊆ D such
that qu,̺ ≤ |T | < r, and let T = {T1, . . . , Tg−1} be a partition of T (some Tk’s may be empty).
Then:

(a) For all j, we have |T ∩ Pj | ≥ ̺|T |.
(b) At least one Tk contains elements of two different Pj ’s.
(c) There are clusters Tk and Pj such that |Tk ∩ Pj| ≥

qu,̺

(g−1)g (> d).

Proof. (a) Assume on the contrary that |T ∩ Pj | < ̺|T | for some j. From D ⊇ T ∪ Pj we infer

n ≥ |T | + |Pj | − |T ∩ Pj | > |T | + u − ̺|T | = u + (1 − ̺)|T | ≥ u + (1 − ̺)qu,̺ ≥ u + n − u

by definition of qu,̺, a contradiction.

(b) Since ̺|T | > 0 and since there are more Pj ’s than Tk’s, this follows from the pigeon hole
principle with (a).
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(c) The observations in T are spread over the (g − 1)g disjoint sets of the form Tk ∩ Pj . If (c) did
not hold, we would have |T | < qu,̺, contradicting one of the assumptions. 2

The theorem on the breakdown point of the TDC estimates of the means presented in this section
applies to a class of clustered data sets with a certain separation property which we now present.
We put

κ̺ =

{
(1 − ̺)̺, g = 2,

̺/2, g ≥ 3.

Definition (Separation property) Let u ∈ N such that 1 ≤ u ≤ n/g and let 0 < ̺ < 1. We denote
by Lu,̺,c the system of all d-dimensional admissible data sets D of size n which have the following
separation property:

D possesses a partition P in g subsets of size at least u such that, for all subsets T ⊆ D, qu,̺ ≤
|T | < r and for all partitions T = {T1, . . . , Tg−1} of T in g − 1 clusters, we have

1 + κ̺ · min
k, j 6= ℓ :

Tk ∩ Ph 6= ∅, h = j, ℓ

(xTk∩Pj
− xTk∩Pℓ

)T
(WT ⊓P

|T |

)−1
(xTk∩Pj

− xTk∩Pℓ
)

≥ g2
max

R∈(D

r ),R⊇T
det 1

c2
WR∩P

det WT ⊓P
. (14)

According to Lemma 4 (b), the minimum extends over at least one triple (k, j, ℓ), j 6= ℓ, and
by Lemma 4 (c), the pooled scatter matrix ST ⊓P is bounded below by a positive-definite matrix
which depends only on D. Condition (14) is affine equivariant. We require the minimum of the
Mahalanobis distances of the submeans xTk∩Pj

and xTk∩Pℓ
of Pj and Pℓ appearing on its left-hand

side to be large. Thus, condition (14) means that the partition P subdivides the data set in well–
separated clusters, it is the “natural” partition of D. The set Lu,̺,c increases with decreasing u
and with increasing ̺ ≤ 1/2.

We show next that any data set D in Lu,̺,c satisfies the hypotheses of Proposition 2.

Lemma 5. Let g ≥ 2, let n > r > (g−1)gd+1, let u ∈ N and 0 < ̺ < 1 satisfy n−(1−̺)(r−1) ≤
u ≤ n/g. Let D ∈ Lu,̺,c, let T ⊆ D be such that qu,̺ ≤ |T | < r, and let T = {T1, . . . , Tg−1} be a
partition of T (some Tk’s may be empty). We have

det WT ≥ g2 max
R∈(D

r ),R⊇T
det

1

c2
WR∩P .

Proof. An application of Gallegos and Ritter (2005), Lemma A.3, to each Tk, 1 ≤ k < g, with
partition {Tk ∩ P1, . . . , Tk ∩ Pg}, 1 ≤ j ≤ g, shows first

WT =

g−1∑

k=1

WTk
=

∑

k:Tk 6=∅

{ g∑

j=1

WTk∩Pj
+

∑

1≤j<ℓ≤g

akjakℓ

|Tk|
(xTk∩Pj

− xTk∩Pℓ
)(xTk∩Pj

− xTk∩Pℓ
)T

}
,

where akj = |Tk ∩Pj |, 1 ≤ j ≤ g, 1 ≤ k < g. Now use Gallegos and Ritter (2005), Lemma A.1(b),
and Lemma A1 to obtain

detWT

≥ detWT ⊓P ·
{
1 +

∑

k:Tk 6=∅

∑

1≤j<ℓ≤g

akjakℓ

|Tk|
(xTk∩Pj

− xTk∩Pℓ
)TW−1

T ⊓P(xTk∩Pj
− xTk∩Pℓ

)
}

≥ detWT ⊓P ·
{
1 + κ̺ min

k, j 6= ℓ :
Tk ∩ Ph 6= ∅

(xTk∩Pj
− xTk∩Pℓ

)T
(WT ⊓P

|T |

)−1
(xTk∩Pj

− xTk∩Pℓ
)
}
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and the claim follows from the separation property. 2

The conditions on r and u imply that the interval [qu,̺, r[ contains some integer so that a set T
as in Lemma 5 exists. A simple reasoning shows that the bounds on u imply ̺ < 1

g .

We finally state and prove the main result of this section: the restricted breakdown point of the
TDC estimates of the means. If a data set has the separation property then the TDC estimates
of the means are much more robust than predicted by Theorem 2.

Theorem 3. Let the data D be in general position, let g ≥ 2, and let r < n.
(a) Assume r ≥ (g − 1)gd + 2 and n− (1− ̺)(r − 1) ≤ u ≤ n/g. Then the restricted breakdown

value of the TDC estimates of the means w.r.t. Lu,̺,c satisfies

βmean(n, g, r,Lu,̺,c) ≥
1

n
min

{
n − r + 1, r − (g − 1)gd, r + 1 −

n − u

1 − ̺

}
.

(b) For any data set D ∈ Lu,̺,c, the individual breakdown point of the TDC estimates of the
means satisfies

βmean(n, g, r,D) ≤
1

n
(n − r + 1).

(c) Let 2r − n ≥ (g − 1)gd + 1, let u ∈ N such that 2(n − r) < u ≤ n/g, and put ̺ = u−2(n−r)
2r−n .

Then

βmean(n, g, r,Lu,̺,c) =
1

n
(n − r + 1).

(A necessary condition for the existence of such a u is the inequality 2(n − r) ≤ n/g − 1.)

(d) Under the assumptions of (a), the TDC discards all sufficiently large replacements in a data
set that satisfies the separation property (with any parameters).

Proof. Part (a) is a direct consequence of Proposition 2 and Lemma 5.

(b) Let M be a data set obtained from D by replacing n− r+1 of its elements with a narrow and
distant cluster. The modified data set contains only r−1 original observations so that the optimal
set R∗ contains some modification. Then so does C∗

j = Cj(ℓ
∗) for some j. Lemma A2 shows that

the norm of m∗
j tends to infinity together with the narrow cluster of replacements.

(c) The hypotheses imply min
{
n − r + 1, r − (g − 1)gd, r + 1 − n−u

1−̺

}
= n − r + 1. (Note that ̺

is maximum so that the first term does not exceed the last for a given u.) Furthermore, the first
condition in (a) follows from the first condition, whereas the second condition in (a) follows from
the choice of ̺ and from second condition. Finally, the condition 2(n − r) < u implies ̺ > 0. The
claim now follows from Parts (a) and (b).

Claim (d) follows from Part (ǫ) of the proof of Proposition 2. �

The inequality n−(1−̺)(r−1) ≤ u implies u ≥ n−r+2. I.e., the sizes of the natural clusters must
exceed the number of discarded elements in Part (a) of Theorem 3. Moreover, the assumptions of
Part (c) imply that these sizes exceed twice the number of discarded elements.

The following corollary of Theorem 3 says that the TDC estimates of the means are asymptotically
robust on well–separated, balanced data sets if the parameter g is set to its natural number of
clusters.

Corollary 2. Let g ≥ 2, let 0 < η < δ < 1/g, let r = ⌈n
(
1− 1

2g + δ
2

)
⌉, let u = ⌈n

(
1
g − η

)
⌉, and let

̺ = δ−η
1− 1

g
+δ

. Then, asymptotically,

βmean(n, g, r,Lu,̺,c) −→
1

2

(1

g
− δ

)
, as n → ∞.
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Figure 3: Synthetic data set of Fig. 1: negative double-logarithmic HDBT-ratio-posterior-density
plot for a large number of minimum distance partitions with two clusters and no discarded ele-
ments.

5 Two studies

We illustrate the method described in Sections 2.3 – 2.5 with two examples and first recall the
simple data set of Fig. 1. As already seen there may exist minimum distance partitions the maxi-
mum posterior densities (3) of which exceed that of the desired partition. Fig. 3 shows the negative
double-logarithmic HDBT-ratio-posterior-density plot of the MDP’s found for the heteroscedastic
full normal model with two clusters, no discarded elements, and unknown cluster sizes for the
synthetic data set of Fig. 1. According to the method of Section 2.4, the most plausible MDP is
the one in the left lower region close to (66, 0.2). It belongs indeed to the desired partition of the
data set in two clusters of 10 elements, each. The solution close to (61, 4.8) in Fig. 3 with the
largest posterior density represents the uppermost horizontal cluster in Fig. 1.
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tiles.dat Zn vs. Fe2O3

Figure 4: Tiles data: scatter plot of the features Zn and Fe2O3 displaying outliers
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Figure 5: Tiles data: negative double-logarithmic HDBT-ratio-posterior-density plot for the min-
imum distance clusterings of 1100 replications for the heteroscedastic, full normal model with six
clusters and 66 discarded points. The encircled solution in the left lower part is most promising.

3 4 5 6 7 8 9

Figure 6: Tiles data: the BIC curve for the favorite solutions with three to nine clusters suggested
by the posterior-density-HDBT ratio plots.

Our second example is the Tiles data set, see Mucha et. al. (2002), from archeometry. It can
be found under the URL www.uni-passau.de/ritter . Its objects consist presently of 660 antique
roman tiles collected in the Rhine valley between Strasbourg/France and Frankfurt/Germany.
Our questions are: which tiles originate from the same clay pits and how many clay pits are
represented ? Feature data from X-ray Fluorescence Analysis about the contents of nineteen
minerals and metals are available to this end, viz., flint SiO2, Titanium dioxide (titania) TiO2,
Aluminium oxide (aloxite) Al2O3, Ferric oxide (rust) Fe2O3, Manganese oxide MnO, Magnesium
oxide (magnesia) MgO, burnt lime CaO, Sodium oxide Na2O, Potassium oxide K2O, vanadium V,
chromium Cr, nickel Ni, zinc Zn, rubidium Rb, strontium Sr, yttrium Y, zirconium Zr, niobium
Nb, and barium Ba.

Although we expect cluster sizes of a hundred or less which are not sufficient for safely estimating
more than a hundred real parameters for each cluster, we used the heteroscedastic full normal
model with unknown cluster sizes (maximum a posteriori) and unknown number of clusters. A
look at the 2D scatter plots suggests marked correlation between some of the features: SiO2 with
MnO, CaO, Sr, and Zr, TiO2 with Cr and Nb, CaO with Sr, and K2O with Rb. This fact allows

24



us to reduce the dimension of the sample space by deleting SiO2, TiO2, CaO, and K2O from the
feature list so that d = 19 − 4 = 15. Like almost any real data set, the present one contains
outliers, see Fig. 4, and we apply the algorithm proposed in Sections 2.3, 2.4, and 2.5 with ten
percent of discarded elements. The minimum cluster size was set to d + 1 = 16.

Fig. 5 shows the negative double-logarithmic HDBT-ratio-posterior-density plot of the MDP’s of
1100 replications for six clusters. The favorite solution at the left end of the almost horizontal
support line is encircled. A 2D representation of this clustering is shown in Fig. 7. Its cluster sizes
are 145, 111, 111, 105, 61, and 61, its HDBT ratio is 1/158. One or a few small clusters that cannot
be detected by the full normal model may be hidden in the set of discarded elements (crosses).
Fig. 7 shows that the assumed number of outliers is too small. The oblong shape of the left lower
ellipse points to two distant elements in the upper part of the figure which are assigned to this
cluster but do not fit in it.

The BIC curve for the favorite solutions obtained with three to nine clusters is presented in
Fig. 6. It clearly pleads for six clusters. It turns out that increasing the number of clusters by one
essentially splits one group in the preceding solution.
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Figure 7: Tiles data: MnO-Y plot of the favorite MDP. The ellipses indicate the 0.8-quantiles of
the clusters and crosses stand for discarded points.

A Appendix

Lemma A1. Let g ≥ 2, let 0 < ̺ ≤ 1/g, let a = (akj) 1 ≤ k < g
1 ≤ j ≤ g

∈ N
(g−1)×g be such that

‖a‖1 =
∑

k,j akj > 0, let
∑

k akj ≥ ̺‖a‖1 for all 1 ≤ j ≤ g, and put ak ··· =
∑

j akj. Then

∑

k:ak ···>0

1

ak ···

∑

1≤j<ℓ≤g

akjakℓ ≥ κ̺‖a‖1. (15)
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Proof. Write the left hand side of (15) as

‖a‖1

∑

k:ak ···>0

ak ···

‖a‖1

∑

1≤j<ℓ≤g

akj

ak ···

akℓ

ak ···
= ‖a‖1

∑

k:ak ···>0

βk

∑

1≤j<ℓ≤g

Ak,jAk,ℓ.

Since β = (ak ···/‖a‖1)k:ak ···>0 is a probability vector and since A = (ak,j/ak ···)k:ak ···>0, j is a stochastic
matrix s.th. βA ≥ ̺ elementwise, the claim follows from an elementary reasoning. 2

Lemma A2. Let h ≥ 0 and let k ≥ 1. Let C = {x1, . . . , xh, y1, . . . , yk} consist of h original data
points and k replacements. Then the norm of the sample mean of C tends to infinity as ‖y1‖ → ∞
and as yi − y1, 2 ≤ i ≤ k, remain bounded.

Proof. The sum of C is
∑h

i=1 xi + ky1 +
∑k

i=2(yi − y1) from which the lemma follows. 2

Acknowledgments. We thank H.-H. Bock for a number of hints that improved the presentation.
We also thank the referees for their constructive suggestions.

References

V. Barnett and T. Lewis (1994): Outliers in Statistical Data. Wiley, Chichester, UK

Claudia Becker and Ursula Gather (1999): The masking breakdown point of multivariate outlier identifi-
cation rules. JASA 94:947–955

James C. Bezdek, James Keller, Raghu Krisnapuram, and Nikhil R. Pal (1999): Fuzzy Models and Al-
gorithms for Pattern Recognition and Image Processing. The Handbooks of Fuzzy Sets Series. Kluwer,
Boston, London, Dordrecht

Hans-Hermann Bock (1985): On some significance tests in cluster analysis. J. Classification 2:77–108

Hanfeng Chen, Jiahua Chen, and John D. Kalbfleisch (2004): Testing for a finite mixture model with two
components. J. Royal Stat. Soc, Series B 66:95–115

J. A. Cuesta-Albertos, Alfonso Gordaliza, and C. Matrán (1997): Trimmed k–means: An attempt to
robustify quantizers. The Annals of Statistics 25:553–576

John E. Dennis Jr. (1981): Algorithms for nonlinear fitting. In M.J.D. Powell, ed., Nonlinear Optimization
1981, Academic Press, London, New York, etc. (Procedings of the NATO Advanced Research Institute
held at Cambridge in July 1981).

David L. Donoho and Peter J. Huber (1983): The notion of a breakdown point. In Peter J. Bickel,
Kjell A. Doksum, and J.L. Hodges, Jr., eds., A Festschrift for Erich L. Lehmann, The Wadsworth Statis-
tics/Probability Series. Wadsworth, Belmont, CA, pages 157–184
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